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1 What is NHTSA analyzing, and why? 

The National Highway Traffic Safety Administration (NHTSA) is proposing to establish revised 
Corporate Average Fuel Economy (CAFE) standards for passenger cars and light trucks 
produced for model years (MYs) 2024-2026.  On January 20, 2021, President Biden signed 
Executive Order 13990, Protecting Public Health and the Environment and Restoring Science to 
Tackle the Climate Crisis, signed by President Biden directing the review of the 2020 final rule 
that established CAFE standards for MYs 2021-2026 and the consideration of whether to 
suspend, revise, or rescind that action by July 2021.1  Because of  President Biden’s direction, 
NHTSA reexamined the 2020 final rule.  In doing so, NHTSA tentatively concluded that the fuel 
economy standards set in 2020 should be revised so that they to increase at a rate of 8 percent per 
year annually from MY 2024 through MY 2026 for both passenger cars and light trucks.  This 
responds to the agency’s statutory mandate to insulate our nation’s economy against external 
factors associated with petroleum consumption.  .  NHTSA estimates that over the lives of 
vehicles produced prior to MY 2030, the proposal would save about 50 billion gallons of 
gasoline and increase electricity consumption by about 275 TWh.   

Accounting for emissions from both vehicles and upstream energy sector processes (e.g., 
petroleum refining and electricity generation), NHTSA estimates that the proposal would reduce 
greenhouse gas emissions by about 465 million metric tons of carbon dioxide (CO2), about 500 
thousand tons metric tons of methane (CH4), and about 12 thousand tons of nitrous oxide (N2O).  
Also accounting for vehicular and upstream emissions, NHTSA has estimated annual emissions 
of most criteria pollutants (i.e., pollutants for which EPA has issued National Ambient Air 
Quality Standards).  NHTSA estimates that under each regulatory alternative, annual emissions 
of carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxide (NOX), and fine 
particulate matter (PM2.5) attributable to the light-duty on-road fleet will decline dramatically 
between 2020 and 2050, and that emissions in any given year could be very nearly the same 
under each regulatory alternative.  For example, Figure 1-1 shows NHTSA’s estimate of future 
NOX emissions under each alternative. 

 
1 86 Fed. Reg. 7037 (Jan. 25, 2021). 



 

 

Figure 1-1 – Estimated Annual NOx Emissions Attributable to Light-Duty On-Road Fleet 

On the other hand, as discussed in the PRIA and SEIS, NHTSA projects that annual SO2 
emissions attributable to the light-duty on-road fleet could increase modestly under the action 
alternatives, because, as discussed above, NHTSA projects that each of the action alternatives 
could lead to greater use of electricity (for PHEVs and BEVs).  The adoption of actions—such as 
actions prompted by President Biden’s Executive Order directing agencies to develop a Federal 
Clean Electricity and Vehicle Procurement Strategy—to reduce electricity generation emission 
rates beyond projections underlying NHTSA’s analysis (discussed in Chapter 5) could 
dramatically reduce SO2 emissions under all regulatory alternatives considered here.2 

For the “standard setting” analysis, the PRIA accompanying today’s notice provides additional 
detail regarding projected criteria pollutant emissions and health effects, as well as the inclusion 
of these impacts in today’s benefit-cost analysis.  For the “unconstrained” or “EIS” type of 
analysis, the SEIS accompanying today’s notice presents much more information regarding 
projected criteria pollutant emissions, as well as model-based estimates of corresponding impacts 
on several measures of urban air quality and public health.  As mentioned above, these estimates 
of criteria pollutant emissions are based on a complex analysis involving interacting simulation 

 
2 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-
climate-crisis-at-home-and-abroad/, accessed June 17, 2021. 

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/


 

techniques and a myriad of input estimates and assumptions.  Especially extending well past 
2040, the analysis involves a multitude of uncertainties.  Therefore, actual criteria pollutant 
emissions could ultimately be different from NHTSA’s current estimates. 

This Technical Support Document (TSD) describes the supporting technical analysis that 
informed agency decision-makers in deciding to propose this rate of stringency increase. 

Chapter 1 of this TSD explains how NHTSA develops footprint-based curves for the regulatory 
alternatives that represent different levels of possible CAFE stringency.  Chapter 1 also presents 
the regulatory alternatives themselves and explains how the CAFE Model uses inputs to conduct 
the analysis. 

Chapter 2 of this TSD describes the development of the inputs that the CAFE Model (“the 
model”) uses, including the analysis fleet, the ZEV Module, compliance credits, technology 
effectiveness values, technology adoption and availability, technology costs, and other inputs. 

Chapter 3 of this TSD describes the technology paths within the model. 

Chapter 4 of this TSD describes consumer responses to manufacturer compliance strategies, 
including macroeconomic assumptions that affect and describe consumer behavior, changes in 
fleet composition (including new vehicle sales and retirement or scrappage of existing vehicles), 
changes in vehicle miles traveled, and changes in fuel consumption. 

Chapter 5 of this TSD describes how the model simulates the environmental effects of the 
different regulatory alternatives, including greenhouse gas emissions effects, criteria pollutant 
emissions effects, and how health effects flow from those changes. 

Chapter 6 of this TSD describes how the model simulates the economic effects of the different 
regulatory alternatives, in terms of costs and benefits that accrue to consumers and to society. 

Chapter 7 of this TSD describes how the model simulates the safety effects of the different 
regulatory alternatives. 

1.1 Why does NHTSA conduct this analysis? 

When NHTSA promulgates new regulations, it generally presents an analysis that estimates the 
impacts of such regulations, and the impacts of other regulatory alternatives.  These analyses 
derive from statutes such as the Administrative Procedure Act (APA) and National 
Environmental Policy Act (NEPA), from Executive Orders (such as Executive Order 12866 and 
13653), and from other administrative guidance (e.g., Office of Management Budget Circular A-
4).  For CAFE, the Energy Policy and Conservation Act (EPCA), as amended by the Energy 
Independence and Security Act (EISA), contains a variety of provisions that require NHTSA to 
consider certain compliance elements in certain ways and avoid considering other things, in 
determining maximum feasible CAFE standards.  Collectively, capturing all of these 
requirements and guidance elements analytically means that, at least for CAFE, NHTSA presents 
an analysis that spans a meaningful range of regulatory alternatives, that quantifies a range of 
technological, economic, and environmental impacts, and that does so in a manner that accounts 
for EPCA’s express requirements for the CAFE program (e.g., passenger cars and light trucks 



 

are regulated separately, and the standard for each fleet must be set at the maximum feasible 
level in each model year).   

NHTSA’s decision regarding the proposed standards is thus supported by extensive analysis of 
potential impacts of the regulatory alternatives under consideration.  Along with the preamble to 
the proposed rule, this Technical Support Document (TSD), a Preliminary Regulatory Impact 
Analysis (PRIA), and a Supplemental Environmental Impact Statement (SEIS), together provide 
an extensive and detailed enumeration of related methods, estimates, assumptions, and results.  
NHTSA’s analysis has been constructed specifically to reflect various aspects of governing law 
applicable to CAFE standards and has been expanded and improved in response to comments 
received to the prior rulemaking and based on additional work conducted over the last year.  
Further improvements may be made based on comments received to this proposal, the 2021 NAS 
Report3 and other additional work generally previewed in these rulemaking documents.  The 
analysis for this proposal aided NHTSA in implementing its statutory obligations, including the 
weighing of various considerations, by reasonably informing decision-makers about the 
estimated effects of choosing different regulatory alternatives. 

NHTSA’s analysis makes use of a range of data (i.e., observations of things that have occurred), 
estimates (i.e., things that may occur in the future), and models (i.e., methods for making 
estimates).  Two examples of data include (1) records of actual odometer readings used to 
estimate annual mileage accumulation at different vehicle ages and (2) CAFE compliance data 
used as the foundation for the “analysis fleet” containing, among other things, production 
volumes and fuel economy levels of specific configurations of specific vehicle models produced 
for sale in the U.S.  Two examples of estimates include (1) forecasts of future GDP growth used, 
with other estimates, to forecast future vehicle sales volumes and (2) the “retail price equivalent” 
(RPE) factor used to estimate the ultimate cost to consumers of a given fuel-saving technology, 
given accompanying estimates of the technology’s “direct cost,” as adjusted to account for 
estimated “cost learning effects” (i.e., the tendency that it will cost a manufacturer less to apply a 
technology as the manufacturer gains more experience doing so). 

NHTSA uses the CAFE Compliance and Effects Modeling System (usually shortened to the 
“CAFE Model”) to estimate manufacturers’ potential responses to new CAFE and CO2 standards 
and to estimate various impacts of those responses.  DOT’s Volpe National Transportation 
Systems Center (often simply referred to as the “Volpe Center”) develops, maintains, and applies 
the model for NHTSA.  NHTSA has used the CAFE Model to perform analyses supporting every 
CAFE rulemaking since 2001.  The 2016 rulemaking regarding heavy-duty pickup and van fuel 
consumption and CO2 emissions also used the CAFE Model for analysis. 

The basic design of the CAFE Model is as follows:  the system first estimates how vehicle 
manufacturers might respond to a given regulatory scenario, and from that potential compliance 
solution, the system estimates what impact that response will have on fuel consumption, 
emissions, and economic externalities.  In a highly summarized form, the following diagram 
shows the basic categories of CAFE Model procedures, and the sequential flow between 

 
3 National Academies of Sciences, Engineering, and Medicine, 2021.  Assessment of Technologies for Improving 
Fuel Economy of Light-Duty Vehicles – 2025-2035, Washington, DC:  The National Academies Press (hereafter, 
“2021 NAS Report”).  Available at https://www.nationalacademies.org/our-work/assessment-of-technologies-for-
improving-fuel-economy-of-light-duty-vehicles-phase-3 and for hard copy review at DOT headquarters. 

https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3
https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3


 

different stages of the modeling.  The diagram does not present specific model inputs or outputs, 
as well as many specific procedures and model interactions.  The model documentation 
accompanying this TSD presents these details. 

 

 

Figure 1-2 – CAFE Model Procedures and Logical Flow 

More specifically, the model may be characterized as an integrated system of models.  For 
example, one model estimates manufacturers’ responses, another estimates resultant changes in 
total vehicle sales, and still another estimates resultant changes in fleet turnover (i.e., scrappage).  



 

A regulatory scenario involves specification of the form, or shape, of the standards (e.g., flat 
standards, or linear or logistic attribute-based standards), scope of passenger car and truck 
regulatory classes, and stringency of the CAFE standards for each model year to be analyzed.  
For example, a regulatory scenario may define CAFE standards that increase in stringency by 8 
percent per year for 3 consecutive years.  Additionally, and importantly, the model does not 
determine the form or stringency of the standards.  Instead, the model applies inputs specifying 
the form and stringency of standards to be analyzed and produces outputs showing the impacts of 
manufacturers working to meet those standards, which become the basis for comparing between 
different potential stringencies.   

Manufacturer compliance simulation and the ensuing effects estimation, collectively referred to 
as compliance modeling, encompass numerous subsidiary elements.  Compliance simulation 
begins with a detailed user-provided4 initial forecast of the vehicle models offered for sale during 
the simulation period.  The compliance simulation then attempts to bring each manufacturer into 
compliance with the standards5 defined by the regulatory scenario contained within an input file 
developed by the user.   

Estimating impacts involves calculating resultant changes in new vehicle costs, estimating a 
variety of costs (e.g., for fuel) and effects (e.g., CO2 emissions from fuel combustion) occurring 
as vehicles are driven over their lifetimes before eventually being scrapped, and estimating the 
monetary value of these effects.  Estimating impacts also involves consideration of consumer 
responses – e.g., the impact of vehicle fuel economy, operating costs, and vehicle price on 
consumer demand for passenger cars and light trucks.  Both basic analytical elements involve the 
application of many analytical inputs.  Many of these inputs are developed outside of the model 
and not by the model.  For example, the model applies fuel prices; it does not estimate fuel 
prices.  

NHTSA also uses EPA’s MOtor Vehicle Emissions Simulator (MOVES) model to estimate 
“tailpipe” (a.k.a. “vehicle” or “downstream”) emission factors for criteria pollutants,6 and use 
four DOE and DOE-sponsored models to develop inputs to the CAFE Model, including three 
developed and maintained by DOE’s Argonne National Laboratory.  The agency uses the DOE 
Energy Information Administration’s (EIA’s) National Energy Modeling System (NEMS) to 
estimate fuel prices,7 and uses Argonne’s Greenhouse gases, Regulated Emissions, and Energy 
use in Transportation (GREET) model to estimate emissions rates from fuel production and 
distribution processes.8  DOT also sponsored DOE/Argonne to use Argonne’s Autonomie full-
vehicle modeling and simulation system to estimate the fuel economy impacts for roughly a 

 
4 Because the CAFE Model is publicly available, anyone can develop their own initial forecast (or other inputs) for 
the model to use.  The DOT-developed Market Data file that contains the forecast used for this proposal is available 
on NHTSA’s website. 
5 With appropriate inputs, the model can also be used to estimate impacts of manufacturers’ potential responses to 
new CO2 standards and to California’s ZEV program. 
6 See https://www.epa.gov/moves.  Today’s proposal uses version MOVES3, available at 
https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves. 
7 See https://www.eia.gov/outlooks/aeo/info_nems_archive.php.  Today’s proposal uses fuel prices estimated using 
the Annual Energy Outlook (AEO) 2021 version of NEMS (see  
https://www.eia.gov/outlooks/aeo/pdf/02%20AEO2021%20Petroleum.pdf). 
8 Information regarding GREET is available at https://greet.es.anl.gov/index.php.  Today’s notice uses the 2020 
version of GREET. 

https://www.epa.gov/moves
https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves
https://www.eia.gov/outlooks/aeo/info_nems_archive.php
https://www.eia.gov/outlooks/aeo/pdf/02%20AEO2021%20Petroleum.pdf
https://greet.es.anl.gov/index.php


 

million combinations of technologies and vehicle types.9,10  Other chapters in this TSD and 
discussion in the accompanying preliminary RIA describe details of the agency’s use of these 
models.  In addition, as discussed in the draft SEIS accompanying today’s notice, DOT relied on 
a range of climate models to estimate impacts on climate, air quality, and public health.  The 
SEIS discusses and describes the use of these models. 

The CAFE Model, therefore, serves as a “hub” that connects and holds together a wide range of 
inputs, processes, and other models that all inform DOT’s analysis, and that, in turn, provides 
essential model results underlying the SEIS accompanying today’s notice.  Though not 
exhaustive, the diagram on the following page shows most of the important connections between 
different elements of DOT’s analysis. 
 

 
9 As part of the Argonne simulation effort, individual technology combinations simulated in Autonomie were paired 
with Argonne’s BatPaC model to estimate the battery cost associated with each technology combination based on 
characteristics of the simulated vehicle and its level of electrification.  Information regarding Argonne’s BatPaC 
model is available at https://www.anl.gov/cse/batpac-model-software. 
10 In addition, the impact of engine technologies on fuel consumption, torque, and other metrics was characterized 
using GT-POWER simulation modeling in combination with other engine modeling that was conducted by IAV 
Automotive Engineering, Inc. (IAV).  The engine characterization “maps” resulting from this analysis were used as 
inputs for the Autonomie full-vehicle simulation modeling.  Information regarding GT-POWER is available at 
https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software. 

https://www.anl.gov/cse/batpac-model-software
https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software


 

 

 

Figure 1-3 – Key Elements of DOT’s Analysis 

 



 

To prepare for analysis supporting today’s proposal, DOT has refined and expanded the CAFE 
Model through ongoing development.  Examples of such changes, some informed by past 
external comments, made since early 2020 include: 

• Inclusion of 400- and 500-mile BEVs; 

• Inclusion of high compression ratio (HCR) engines with cylinder deactivation; 

• Accounting for manufacturers’ responses to both CAFE and CO2 standards jointly (rather 
than only separately); 

• Accounting for the ZEV mandates applicable in California and the “Section 177” states; 

• Accounting for some vehicle manufacturers’ (BMW, Ford, Honda, VW, and Volvo) 
voluntary agreement with the State of California to continued annual reductions of 
vehicle greenhouse gas emissions through MY 2026, with greater rates of electrification 
than would have been required under the 2020 Federal final rule;11 

• Including CAFE civil penalties in the “effective cost” metric used when simulating 
manufacturers’ potential application of fuel-saving technologies; 

• Refined procedures to estimate health effects and corresponding monetized damages 
attributable to criteria pollutant emissions; 

• New procedures to estimate the impacts and corresponding monetized damages of 
highway vehicle crashes that do not result in fatalities; 

• Procedures to ensure that modeled technology application and production volumes are 
the same across all regulatory alternatives in the earliest model years; and 

• Procedures to more precisely focus application of EPCA’s “standard setting constraints” 
(i.e., regarding the consideration of compliance credits and additional dedicated 
alternative fueled vehicles) to only those model years for which NHTSA is proposing or 
finalizing new standards. 

These changes reflect DOT’s long-standing commitment to ongoing refinement of its approach 
to estimating the potential impacts of new CAFE standards and, since the early 2000s, refining 
the CAFE Model DOT maintains to make such estimates as shown in Figure 1-4. 

 
11 For more information on the Framework Agreements for Clean Cars, including the specific agreements signed by 
individual manufacturers, please see https://ww2.arb.ca.gov/news/framework-agreements-clean-cars. 

https://ww2.arb.ca.gov/news/framework-agreements-clean-cars


 

 

Figure 1-4 – CAFE Model Refinement Milestones 



 

Because the CAFE Model simulates a wide range of actual constraints and practices related to 
automotive engineering, planning, and production, such as common vehicle platforms, sharing of 
engines among different vehicle models, and timing of major vehicle redesigns, the analysis 
produced by the CAFE Model provides a transparent and realistic basis to show pathways 
manufacturers could follow over time in applying new technologies, which helps better assess 
impacts of potential future standards.  Furthermore, because the CAFE Model also accounts fully 
for regulatory compliance provisions (now including CO2 compliance provisions), such as 
adjustments for reduced refrigerant leakage, production “multipliers” for some specific types of 
vehicles (e.g., PHEVs), and carried-forward (i.e., banked) credits, the CAFE Model provides a 
transparent and realistic basis to estimate how such technologies might be applied over time in 
response to CAFE or CO2 standards. 

Considering the technological heterogeneity of manufacturers’ current product offerings, and the 
wide range of ways in which the many fuel economy-improving technologies included in the 
analysis can be combined, the CAFE Model has been designed to use inputs that provide an 
estimate of the fuel economy achieved for many tens of thousands of different potential 
combinations of fuel-saving technologies.  Across the range of technology classes encompassed 
by the analysis fleet, today’s analysis involves more than a million such estimates.  While the 
CAFE Model requires no specific approach to developing these inputs, the National Academy of 
Sciences (NAS) has recommended, and stakeholders have commented, that full-vehicle 
simulation provides the best balance between realism and practicality.  DOE/Argonne has spent 
several years developing, applying, and expanding means to use distributed computing to 
exercise its Autonomie full-vehicle modeling and simulation tool over the scale necessary for 
realistic analysis of CAFE.  This scalability and related flexibility (in terms of expanding the set 
of technologies to be simulated) makes Autonomie well-suited for developing inputs to the 
CAFE Model. 

In addition, DOE/Argonne’s Autonomie also has a long history of development and widespread 
application by a wide range of users in government, academia, and industry.  Many of these 
users apply Autonomie to inform funding and design decisions.  These real-world exercises have 
contributed significantly to aspects of Autonomie important to producing realistic estimates of 
fuel economy levels, such as estimation and consideration of performance, utility, and drivability 
metrics (e.g., towing capability, shift business, frequency of engine on/off transitions).  This 
steadily increasing realism has, in turn, steadily increased confidence in the appropriateness of 
using Autonomie to make significant investment decisions.  Notably, DOE uses Autonomie for 
analysis supporting budget priorities and plans for programs managed by its Vehicle 
Technologies Office (VTO).   

Like any model, both Autonomie and the CAFE Model benefit from ongoing refinement.  
However, NHTSA is confident that this combination of models produces a realistic 
characterization of the potential impacts of proposed new standards.  The majority of 
stakeholders that have supported the agency’s reliance on the DOE/Argonne Autonomie tool and 
DOT CAFE Model, noting not only technical reasons to use these models, but also other reasons 
such as efficiency, transparency, and ease with which outside parties can exercise models and 
replicate the agency’s analysis. 



 

Today’s analysis exercises the CAFE Model in a manner that explicitly accounts for the fact that 
in producing a single fleet of vehicles for sale in the United States, manufacturers face the 
combination of CAFE standards, EPA CO2 standards, and ZEV mandates, and five 
manufacturers have agreed with California to more stringent CO2 reduction requirements (also 
applicable to these manufacturers’ total production for the U.S. market) through model year 
2026.  These regulations and contracts have important structural and other differences that affect 
the impact strategy a manufacturer could use to comply with each of the above. 

As explained, the analysis is designed to reflect a number of statutory and regulatory 
requirements applicable to CAFE and tailpipe CO2 standard setting.  EPCA contains a number of 
requirements governing the scope and nature of CAFE standard setting.  Among these, some 
have been in place since EPCA was first signed into law in 1975, and some were added in 2007, 
when Congress passed EISA and amended EPCA.  The CAA, as discussed elsewhere, provides 
EPA with very broad authority under Section 202(a), and does not contain EPCA/EISA’s 
prescriptions.  In the interest of harmonization, however, EPA has adopted some of the 
EPCA/EISA requirements into its tailpipe CO2 regulations, and NHTSA, in turn, has created 
some additional flexibilities by regulation not expressly included by EPCA/EISA in order to 
harmonize better with some of EPA’s programmatic decisions.  EPCA/EISA requirements 
regarding the technical characteristics of CAFE standards and the analysis thereof include, but 
are not limited to, the following, and the analysis reflects these requirements as summarized: 

Corporate Average Standards: 49 U.S.C. 32902 requires standards that apply to the average fuel 
economy levels achieved by each corporation’s fleets of vehicles produced for sale in the U.S.12  
EPA has adopted a similar approach under Section 202(a) of the CAA in the interest of 
harmonization.  The CAFE Model calculates the CAFE and CO2levels of each manufacturer’s 
fleets based on estimated production volumes and characteristics, including fuel economy levels, 
of distinct vehicle models that could be produced for sale in the U.S. 

Separate Standards for Passenger Cars and Light Trucks: 49 U.S.C. 32902 requires the Secretary 
of Transportation to set CAFE standards separately for passenger cars and light trucks.  EPA has 
adopted a similar approach under Section 202(a) of the CAA.  The CAFE Model accounts 
separately for passenger cars and light trucks, including differentiated standards and compliance. 

Attribute-Based Standards: 49 U.S.C. 32902 requires the Secretary of Transportation to define 
CAFE standards as mathematical functions expressed in terms of one or more vehicle attributes 
related to fuel economy.  This means that for a given manufacturer’s fleet of vehicles produced 
for sale in the U.S. in a given regulatory class and model year, the applicable minimum CAFE 
requirement (i.e., the numerical value of the requirement) is computed based on the applicable 
mathematical function, and the mix and attributes of vehicles in the manufacturer’s fleet.  EPA 
has also adopted attribute-based standards under its broad CAA Section 202(a) authority in its 

 
12 This differs from safety standards and traditional emissions standards, which apply separately to each vehicle.  For 
example, every vehicle produced for sale in the U.S. must, on its own, meet all applicable federal motor vehicle 
safety standards (FMVSS), but no vehicle produced for sale must, on its own, meet federal fuel economy standards.  
Rather, each manufacturer is required to produce a mix of vehicles that, taken together, achieve an average fuel 
economy level no less than the applicable minimum level. 



 

current GHG standards.  The CAFE Model accounts for such functions and vehicle attributes 
explicitly. 

Separately Defined Standards for Each Model Year: 49 U.S.C. 32902 requires the Secretary to 
set CAFE standards (separately for passenger cars and light trucks13) at the maximum feasible 
levels in each model year.  CAA Section 202(a) allows EPA to establish CO2 standards 
separately for each model year, and EPA has chosen to do this in the previous light-duty vehicle 
CO2 standard-setting rules.  The CAFE Model represents each model year explicitly, and 
accounts for the production relationships between model years.14 

Separate Compliance for Domestic and Imported Passenger Car Fleets:  49 U.S.C. 32904 
requires the EPA Administrator to determine CAFE compliance separately for each 
manufacturers’ fleets of domestic passenger cars and imported passenger cars, which 
manufacturers must consider as they decide how to improve the fuel economy of their passenger 
car fleets.  EPA does not face a similar requirement for CO2 standard compliance.  The CAFE 
Model accounts explicitly for this requirement when simulating manufacturers’ potential 
responses to CAFE standards and combines any given manufacturer’s domestic and imported 
cars into a single fleet when simulating that manufacturer’s potential response to CO2 standards. 

Minimum CAFE Standards for Domestic Passenger Car Fleets: 49 U.S.C. 32902 requires that 
domestic passenger car fleets meet a minimum standard, which is calculated as 92 percent of the 
industry-wide average level required under the applicable attribute-based CAFE standard, as 
projected by the Secretary at the time the standard is promulgated.  EPA’s GHG program does 
not contain a similar requirement.  The CAFE Model accounts explicitly for this requirement for 
CAFE standards and sets this requirement aside for CO2 standards. 

Civil Penalties for Noncompliance: 49 U.S.C. 32912 (and implementing regulations) prescribes a 
rate (in dollars per tenth of a mpg) at which the Secretary is to levy civil penalties if a 
manufacturer fails to comply with a CAFE standard for a given fleet in a given model year, after 
considering available credits.  Some manufacturers have historically demonstrated a willingness 
to pay civil penalties rather than achieving full numerical compliance across all fleets.  The 
CAFE Model calculates civil penalties for CAFE shortfalls and provides means to estimate that a 
manufacturer might stop adding fuel-saving technologies once continuing to do so would be 
effectively more “expensive” (after accounting for fuel prices and buyers’ willingness to pay for 
fuel economy) than paying civil penalties.  In contrast, the CAA does not authorize the EPA 
Administrator to allow manufacturers to sell noncompliant fleets and pay civil penalties; 
manufacturers who have chosen to pay civil penalties for CAFE compliance instead have tended 
to employ EPA’s more-extensive programmatic flexibilities to meet CO2 emissions standards.  
Thus, the CAFE Model does not allow civil penalty payment as an option for CO2 standards. 

 
13 49 U.S.C. chapter 329 uses the term “non-passenger automobiles,” while NHTSA uses the term “light trucks” in 
its CAFE regulations.  The terms’ meanings are identical. 
14 For example, a new engine first applied to given vehicle model/configuration in model year 2020 will most likely 
be “carried forward” to model year 2021 of that same vehicle model/configuration, in order to reflect the fact that 
manufacturers do not apply brand-new engines to a given vehicle model every single year.  The CAFE Model is 
designed to account for these real-world factors. 



 

Dual-Fueled and Dedicated Alternative Fuel Vehicles: For purposes of calculating CAFE levels 
used to determine compliance, 49 U.S.C. 32905 and 32906 specify methods for calculating the 
fuel economy levels of vehicles operating on alternative fuels to gasoline or diesel through MY 
2020.  After MY 2020, methods for calculating alternative fuel vehicle (AFV) fuel economy are 
governed by regulation.  The CAFE Model is able to account for these requirements explicitly 
for each vehicle model.  However, 49 U.S.C. 32902 prohibits consideration of the fuel economy 
of dedicated alternative fuel vehicle (AFV) models when NHTSA determines what levels of 
CAFE standards are maximum feasible.  The CAFE Model therefore has an option to be run in a 
manner that excludes the additional application of dedicated AFV technologies in model years 
for which maximum feasible standards are under consideration.  As allowed under NEPA for 
analysis appearing in EISs informing decisions regarding CAFE standards, the CAFE Model can 
also be run without this analytical constraint.  CAA Section 202(a) does not similarly require 
EPA to avoid consideration of dedicated alternative fuel vehicles when setting CO2 standards.  
The CAFE Model thus accounts for dual- and alternative fuel vehicles when simulating 
manufacturers’ potential responses to CO2 standards.  For natural gas vehicles, both dedicated 
and dual-fueled, EPA has a multiplier of 2.0 for model years 2022-2026.15 

ZEV Mandates:  The CAFE Model can simulate manufacturers’ compliance with ZEV mandates 
applicable in California and “Section 177”16 states.  The approach involves identifying specific 
vehicle model/configurations that could be replaced with PHEVs or BEVs, and immediately 
making these changes in each model year, before beginning to consider the potential that other 
technologies could be applied toward compliance with CAFE or CO2 standards. 

Creation and Use of Compliance Credits: 49 U.S.C. 32903 provides that manufacturers may earn 
CAFE “credits” by achieving a CAFE level beyond that required of a given fleet in a given 
model year, and specifies how these credits may be used to offset the amount by which a 
different fleet falls short of its corresponding requirement.  These provisions allow credits to be 
“carried forward” and “carried back” between model years, transferred between regulated classes 
(domestic passenger cars, imported passenger cars, and light trucks), and traded between 
manufacturers.  However, credit use is also subject to specific statutory limits.  For example, 
CAFE compliance credits can be carried forward a maximum of five model years and carried 
back a maximum of three model years.  Also, EPCA/EISA caps the amount of credit that can be 
transferred between passenger car and light truck fleets and prohibits manufacturers from 
applying traded or transferred credits to offset a failure to achieve the applicable minimum 
standard for domestic passenger cars.  The CAFE Model explicitly simulates manufacturers’ 
potential use of credits carried forward from prior model years or transferred from other fleets.17  

 
15 While EPA is proposing changes to this and other flexibility provisions in its separate NPRM, for purposes of this 
NPRM, the CAFE Model only reflects the current EPA regulatory flexibilities. 
16 The term “Section 177” states refers to states which have elected to adopt California’s standards in lieu of Federal 
requirements, as allowed under Section 177 of the CAA. 
17 The CAFE Model does not explicitly simulate the potential that manufacturers would carry CAFE or CO2 credits 
back (i.e., borrow) from future model years, or acquire and use CAFE compliance credits from other manufacturers.  
At the same time, because EPA has currently elected not to limit credit trading, the CAFE Model can be exercised in 
a manner that simulates unlimited (a.k.a. “perfect”) CO2 compliance credit trading throughout the industry (or, 
potentially, within discrete trading “blocs”).  NHTSA believes there is significant uncertainty in how manufacturers 
may choose to employ these particular flexibilities in the future: for example, while it is reasonably foreseeable that 
a manufacturer who over-complies in one year may “coast” through several subsequent years relying on those 
 



 

49 U.S.C. 32902 prohibits consideration of manufacturers’ potential application of CAFE 
compliance credits when setting maximum feasible CAFE standards.  The CAFE Model can be 
operated in a manner that excludes the application of CAFE credits for a given model year under 
consideration for standard setting.  CAA 202(a) does not preclude the EPA Administrator from 
adopting analogous provisions.  With some exceptions, EPA has opted to limit the “life” of 
compliance credits from most model years to 5 years, and to limit borrowing to 3 years, but has 
not adopted any limits on transfers (between fleets) or trades (between manufacturers) of 
compliance credits.  The CAFE Model accounts for the absence of limits on transfers of CO2 
standards.  Insofar as the CAFE Model can be exercised in a manner that simulates trading of 
CO2 compliance credits, such simulations treat trading as unlimited.18   

Statutory Basis for Stringency: 49 U.S.C. 32902 requires the Secretary to set CAFE standards at 
the maximum feasible levels, considering technological feasibility, economic practicability, the 
need of the Nation to conserve energy, and the impact of other government standards.  
EPCA/EISA authorizes the Secretary to interpret these factors, and as the Department’s 
interpretation has evolved, NHTSA has continued to expand and refine its qualitative and 
quantitative analysis to account for these statutory factors.  For example, the Autonomie 
simulations reflect the agency’s judgment that it would not be economically practicable for a 
manufacturer to “split” an engine shared among many vehicle model/configurations into myriad 
versions each optimized to a single vehicle model/configuration.   

National Environmental Policy Act:  In addition, NEPA requires the Secretary to issue an EIS 
that documents the estimated impacts of regulatory alternatives under consideration.  The SEIS 
accompanying today’s notice documents changes in emission inventories as estimated using the 
CAFE Model, but also documents corresponding estimates—based on the application of other 
models documented in the SEIS, of impacts on the global climate, on tropospheric air quality, 
and on human health.   

Other Aspects of Compliance:  Beyond these statutory requirements applicable to DOT and/or 
EPA are a number of specific technical characteristics of CAFE and/or CO2 regulations that are 
also relevant to the construction of today’s analysis.  For example, EPA has defined procedures 

 
credits rather than continuing to make technology improvements, it is harder to assume with confidence that 
manufacturers will rely on future technology investments to offset prior-year shortfalls, or whether/how 
manufacturers will trade credits with market competitors rather than making their own technology investments.  
Historically, carry-back and trading have been much less utilized than carry-forward, for a variety of reasons 
including higher risk and preference not to ‘pay competitors to make fuel economy improvements we should be 
making’ (to paraphrase one manufacturer), although NHTSA recognizes that carry-back and trading are used more 
frequently when standards require increase more rapidly in stringency.  Given the uncertainty just discussed, and 
given also the fact that the agency has yet to resolve some of the analytical challenges associated with simulating use 
of these flexibilities, the agency considers borrowing and trading to involve sufficient risk that it is prudent to 
support today’s proposal with analysis that sets aside the potential that manufacturers could come to depend widely 
on borrowing and trading.  While compliance costs in real life may be somewhat different from what is modeled 
today as a result of this analytical decision, that is broadly true no matter what, and the agency does not believe that 
the difference would be so great that it would change the policy outcome.  Furthermore, a manufacturer employing a 
trading strategy would presumably do so because it represents a lower-cost compliance option.  Thus, the estimates 
derived from this modeling approach are likely to be conservative in this respect, with real-world compliance costs 
possibly being lower. 
18 To avoid making judgments about possible future trading activity, the model simulates trading by combining all 
manufacturers into a single entity, so that the most cost-effective choices are made for the fleet as a whole. 



 

for calculating average CO2 levels, and has revised procedures for calculating CAFE levels, to 
reflect manufacturers’ application of “off-cycle” technologies that increase fuel economy.  
Although too little information is available to account for these provisions explicitly in the same 
way that the agency has accounted for other technologies, the CAFE Model does include and 
makes use of inputs reflecting the agency’s expectations regarding the extent to which 
manufacturers may earn such credits, along with estimates of corresponding costs.  Similarly, the 
CAFE Model includes and makes use of inputs regarding credits EPA has elected to allow 
manufacturers to earn toward CO2 levels (not CAFE) based on the use of air conditioner 
refrigerants with lower global warming potential (GWP), or on the application of technologies to 
reduce refrigerant leakage.  In addition, EPA has elected to provide that through certain model 
years, manufacturers may apply “multipliers” to plug-in hybrid electric vehicles, dedicated 
electric vehicles, fuel cell vehicles, and hydrogen vehicles, such that when calculating a fleet’s 
average CO2 levels (not CAFE), the manufacturer may, for example, “count” each electric 
vehicle twice.  The CAFE Model accounts for these multipliers, based on current regulatory 
provisions or on alternative approaches.  Although these are examples of regulatory provisions 
that arise from the exercise of discretion rather than specific statutory mandate, they can 
materially impact outcomes. 

Besides the updates to the model described above, any analysis of regulatory actions that will be 
implemented several years in the future, and whose benefits and costs accrue over decades, 
requires a large number of assumptions.  Over such time horizons, many, if not most, of the 
relevant assumptions in such an analysis are inevitably uncertain.19  It is natural that each 
successive CAFE analysis should update assumptions to reflect better the current state of the 
world and the best current estimates of future conditions.   

A number of assumptions have been updated since the 2020 final rule for today’s proposal.  
While NHTSA would have made these updates as a matter of course, we note that that the 
COVID-19 pandemic has been profoundly disruptive, including in ways directly material to 
major analytical inputs such as fuel prices, gross domestic product (GDP), vehicle production 
and sales, and highway travel.  As discussed below, NHTSA has updated its “analysis fleet” 
from a model year 2017 reference to a model year 2020 reference, updated estimates of 
manufacturers’ compliance credit “holdings,” updated fuel price projections to reflect the U.S. 
Energy Information Administration’s (EIA’s) 2021 Annual Energy Outlook (AEO), updated 
projections of GDP and related macroeconomic measures, and updated projections of future 
highway travel.  In addition, through Executive Order 13990, President Biden has required the 
formation of an Interagency Working Group (IWG) on the Social Cost of Greenhouse Gases and 
charged this body with updating estimates of the social costs of carbon, nitrous oxide, and 
methane.  As discussed below, NHTSA has applied the IWG’s interim guidance, which contains 
cost estimates (per ton of emissions) considerably greater than those applied in the analysis 
supporting the 2020 SAFE rule.  These and other updated analytical inputs are discussed in detail 
in the remainder of this TSD. 

 
19 As often stated, “It’s difficult to make predictions, especially about the future.”  See, e.g., 
https://quoteinvestigator.com/2013/10/20/no-predict/. 

https://quoteinvestigator.com/2013/10/20/no-predict/


 

1.2 What is NHTSA analyzing? 

1.2.1 Attribute-Based Standards 

As in the CAFE and CO2 rulemakings in 2010, 2012, and 2020, NHTSA is proposing to set 
attribute-based CAFE standards defined by a mathematical function of vehicle footprint, which 
has observable correlation with fuel economy.  EPCA, as amended by EISA, expressly requires 
that CAFE standards for passenger cars and light trucks be based on one or more vehicle 
attributes related to fuel economy and be expressed in the form of a mathematical function.20  
Thus, the proposed standards (and regulatory alternatives) take the form of fuel economy targets 
expressed as functions of vehicle footprint (the product of vehicle wheelbase and average track 
width) that are separate for passenger cars and light trucks.  Chapter 1.2.3 below discusses 
NHTSA’s continued reliance on footprint as the relevant attribute in this proposal. 

Under the footprint-based standards, the function defines a fuel economy performance target for 
each unique footprint combination within a car or truck model type.  Using the functions, each 
manufacturer thus will have a CAFE average standard for each year that is almost certainly 
unique to each of its fleets,21 based upon the footprints and production volumes of the vehicle 
models produced by that manufacturer.  A manufacturer will have separate footprint-based 
standards for cars and for trucks, consistent with 49 U.S.C. 32902(b)’s direction that NHTSA 
must set separate standards for cars and for trucks.  The functions are mostly sloped, so that 
generally, larger vehicles (i.e., vehicles with larger footprints) will be subject to lower mpg 
targets than smaller vehicles.  This is because, generally speaking, smaller vehicles are more 
capable of achieving higher levels of fuel economy, mostly because they tend not to have to 
work as hard (and therefore require as much energy) to perform their driving task.  Although a 
manufacturer’s fleet average standards could be estimated throughout the model year based on 
the projected production volume of its vehicle fleet (and are estimated as part of EPA’s 
certification process), the standards with which the manufacturer must comply are determined by 
its final model year production figures.  A manufacturer’s calculation of its fleet average 
standards, as well as its fleets’ average performance at the end of the model year, will thus be 
based on the production-weighted average target and performance of each model in its fleet.22 

For passenger cars, consistent with prior rulemakings, NHTSA is proposing to define fuel 
economy targets as shown in Equation 1-1.   

 
20 49 U.S.C. 32902(a)(3)(A). 
21 EPCA/EISA requires NHTSA and EPA to separate passenger cars into domestic and import passenger car fleets 
for CAFE compliance purposes (49 U.S.C. 32904(b)), whereas EPA combines all passenger cars into one fleet. 
22 As discussed in prior rulemakings, a manufacturer may have some vehicle models that exceed their target and 
some that are below their target.  Compliance with a fleet average standard is determined by comparing the fleet 
average standard (based on the production-weighted average of the target levels for each model) with fleet average 
performance (based on the production-weighted average of the performance of each model). 
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Equation 1-1 – Passenger Car Fuel Economy Footprint Target Curve 

Where: 

TARGETFE is the fuel economy target (in mpg) applicable to a specific vehicle model 
type with a unique footprint combination, 

a is a minimum fuel economy target (in mpg), 

b is a maximum fuel economy target (in mpg), 

c is the slope (in gallons per mile per square foot, or gpm, per square foot) of a line 
relating fuel consumption (the inverse of fuel economy) to footprint, and 

d is an intercept (in gpm) of the same line. 

Here, MIN and MAX are functions that take the minimum and maximum values, respectively, of 
the set of included values.  For example, MIN[40, 35] = 35 and MAX(40, 25) = 40, such that 
MIN[MAX(40, 25), 35] = 35. 

The resultant functional form is reflected below in graphs displaying the passenger car target 
function in each model year for each regulatory alternative. 

For light trucks, also consistent with prior rulemakings, NHTSA is proposing to define fuel 
economy targets as shown in Equation 1-2. 
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Equation 1-2 – Light Truck Fuel Economy Target Curve 

Where: 

TARGETFE is the fuel economy target (in mpg) applicable to a specific vehicle model 
type with a unique footprint combination, 

a, b, c, and d are as for passenger cars, but taking values specific to light trucks, 

e is a second minimum fuel economy target (in mpg), 

f is a second maximum fuel economy target (in mpg), 



 

g is the slope (in gpm per square foot) of a second line relating fuel consumption (the 
inverse of fuel economy) to footprint, and 

h is an intercept (in gpm) of the same second line. 

As for the passenger car target function, the resultant functional form is reflected below in graphs 
displaying the light truck target function in each model year for each regulatory alternative. 

Although the general model of the target function equation is the same for each vehicle category 
(passenger cars and light trucks) and each model year, the parameters of the function equation 
differ for cars and trucks.   

To be clear, as has been the case since NHTSA began establishing attribute-based standards, no 
vehicle needs meet the specific applicable fuel economy target, because compliance with CAFE 
standards is determined based on corporate average fuel economy.  In this respect, CAFE 
standards are unlike, for example, Federal Motor Vehicle Safety Standards (FMVSS) and certain 
vehicle criteria pollutant emissions standards where each car must meet the requirements.  CAFE 
standards apply to the average fuel economy levels achieved by manufacturers’ entire fleets of 
vehicles produced for sale in the U.S.  Safety standards apply on a vehicle-by-vehicle basis, such 
that every single vehicle produced for sale in the U.S. must, on its own, comply with minimum 
FMVSS.  When first mandating CAFE standards in the 1970s, Congress specified a more 
flexible averaging-based approach that allows some vehicles to “under-comply” (i.e., fall short 
of the overall flat standard, or fall short of their target under attribute-based standards) as long as 
a manufacturer’s overall fleet is in compliance. 

The required CAFE level applicable to a given fleet in a given model year is determined by 
calculating the production-weighted harmonic average of fuel economy targets applicable to 
specific vehicle model configurations in the fleet, as shown in Equation 1-3. 
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Equation 1-3 – Calculation for Required CAFE Level 

Where: 

CAFErequired is the CAFE level the fleet is required to achieve, 

i refers to specific vehicle model/configurations in the fleet, 

PRODUCTIONi is the number of model configuration i produced for sale in the U.S., and 

TARGETFE,I is the fuel economy target (as defined above) for model configuration i. 

Chapter 1.2.2 describes the advantages of attribute-based standards, generally.  Chapter 1.2.3 0 
explains the specific decision, in past rules and for the current rule, to continue to use vehicle 
footprint as the attribute over which to vary stringency.  Chapter 1.2.6 discusses the policy in 



 

selecting the specific mathematical function.  Chapter 1.2.4 discusses the methodologies used to 
develop the current attribute-based standards, while Chapter 1.2.5 discusses methodologies 
previously used to reconsider the mathematical function for CAFE standards.  Chapter 1.2.8 
explains NHTSA’s current proposal to continue to set standards of similar shape for MYs 2024-
2026. 

1.2.2 Why attribute-based standards, and what are the benefits? 

As explained above, Congress expressly requires the CAFE standards to be attribute-based.  
Under attribute-based standards, every vehicle model has a fuel economy target, the levels of 
which depend on the level of that vehicle’s determining attribute (for the MYs 2024-2026 
standards, NHTSA proposes that footprint would continue to be the determining attribute, as 
discussed below).  The manufacturer’s fleet average CAFE performance is calculated by the 
harmonic production-weighted average of those targets, as shown in Equation 1-4. 

𝑇𝑇𝑒𝑒q𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑑𝑑 𝐶𝐶𝑇𝑇𝐹𝐹𝑇𝑇 =
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Equation 1-4 – Attribute-Based CAFE Requirement 

Here, i represents a given model23 in a manufacturer’s fleet, Productioni represents the U.S. 
production of that model, and Targeti represents the target as defined by the attribute-based 
standards.  This means no vehicle is required to meet its target; instead, manufacturers are free to 
balance improvements however they deem best within (and, given credit transfers, at least 
partially across) their fleets. 

While Congress expressly requires CAFE standards to be specified as a mathematical function 
dependent on one or more attributes related to fuel economy, Congress has provided NHTSA the 
authority to select specific attribute(s) and mathematical functions.  Before Congress amended 
EPCA to introduce these requirements, CAFE standards were specified as single values (e.g., 
27.5 mpg for passenger cars and 20.7 for light trucks).  Being wholly independent of fleet 
composition, these requirements posed a significantly greater technical challenge for 
manufacturers producing more larger vehicles for the U.S. market than for manufacturers 
focused more on smaller vehicles, because all else equal, smaller vehicles achieve greater fuel 
economy levels.  Therefore, these single-value requirements presented an inherent incentive to 
shift production toward smaller vehicles rather than increasing the application of fuel-saving 
technologies across their fleets.  In carrying out the Congressional requirement to adopt attribute-
based standards defined as a mathematical function, NHTSA has sought to reflect the trade-off—
i.e., the relationship—between the attribute and fuel economy, consistent with the overarching 
purpose of EPCA/EISA to conserve energy.  If the shape captures these trade-offs, every 
manufacturer is more likely to continue adding fuel-efficient technology across the distribution 
of the attribute within their fleet, instead of potentially changing the attribute—and other 
correlated attributes, including fuel economy—as a part of their compliance strategy.   

 
23 If a model has more than one footprint variant, here each of those variants is treated as a unique model, i, since 
each footprint variant will have a unique target. 



 

1.2.3 Choosing Footprint as the Attribute 

49 U.S.C. 32902(b)(3)(A) states that the attribute used to set CAFE standards must be a “vehicle 
attribute related to fuel economy.”  While there are many vehicle attributes that are related to 
fuel economy, NHTSA (and EPA) have chosen to use vehicle footprint as the attribute since MY 
2011, the first year of CAFE standards set under EISA, and NHTSA proposes to continue this 
approach in the proposed rule.  Footprint has an observable correlation to fuel economy.  There 
are several policy and technical reasons why NHTSA believes that footprint remains the most 
appropriate attribute on which to base the proposed standards for the vehicles covered by this 
rulemaking, even though some other vehicle attributes (notably, curb weight) are better 
correlated to fuel economy, and even though the 2021 NAS Report suggested adding another 
attribute. 

First, the 2002 NAS Report described at length and quantified the potential safety problem with 
average fuel economy standards that specify a single numerical requirement for the entire 
industry,24 identifying that smaller and lighter vehicles incentivized by those standards could be 
less safe for their occupants.  Since that report, NHTSA has sought to set CAFE standards with 
an eye toward possible safety effects associated with the standards.  Because vehicle size is 
correlated with vehicle safety for the occupants of that vehicle, and because CAFE standards can 
affect vehicle size when manufacturers are considering how to improve the fuel economy of their 
vehicles, it is important to choose an attribute correlated with vehicle size (mass or some 
dimensional measure). 

Vehicle mass is strongly correlated with fuel economy; on a per-mile basis, a vehicle with more 
mass takes more energy to move than a vehicle with less mass.  Footprint has some positive 
correlation with frontal surface area, likely a negative correlation with aerodynamics, and 
therefore fuel economy, but the relationship is less deterministic.  Mass and crush space are both 
important safety considerations.  Mass disparity in particular can affect crash outcomes.  
Although mass is more strongly correlated with fuel economy than footprint, NHTSA continues 
to believe that there is less risk of artificial manipulation (i.e., changing the attribute(s) to achieve 
a more favorable target) by increasing footprint under footprint-based standards than there would 
be by increasing vehicle mass under mass-based standards.  It is relatively easy for a 
manufacturer to add enough mass to a vehicle to decrease its applicable fuel economy target by a 
significant amount – even infotainment systems add weight through components, wiring, etc. – 
as compared to increasing vehicle footprint, which is a much more complicated change that 
typically takes place only with a vehicle redesign.  A mass-based attribute would be the wrong 
incentive if EPCA’s objective is energy conservation.  Changes in footprint can affect vehicle 
dynamics, for example, requiring reevaluation of compliance with certain FMVSS and safety 
system performance, among other things.  Mass-based standards can also discourage 
manufacturers from applying mass-efficient materials and designs, because their standards would 
become more stringent as mass is reduced. 

As discussed in NHTSA’s MY 2011 CAFE final rule,25 when first electing to adopt footprint-
based standards for both passenger cars and light trucks, NHTSA carefully considered other 

 
24 See 2002 NAS Report at 5, finding 12. 
25 See 74 FR at 14359 (Mar. 30, 2009). 



 

alternatives, including vehicle mass and “shadow” (overall width multiplied by overall length).  
Compared to both of these other alternatives, footprint is much less susceptible to gaming, 
because while there is some potential to adjust track width, wheelbase is more difficult (and 
expensive) to change, at least outside a planned vehicle redesign.  This is not to say that a 
footprint-based system eliminates manipulation, or that a footprint-based system eliminates the 
possibility that manufacturers will change vehicles in ways that compromise occupant protection.  
NHTSA is aware of research suggesting that the footprints of vehicles in the on-road fleet have 
been increasing over time.  Because consumers value utility (size and capability), larger vehicles 
are encouraged (relative to a mass-based approach).  Both the current footprint-based standards 
and the pre-EISA flat standards allow(ed) manufacturers to change the sizes and shapes of 
individual vehicles, as long as average standards were met. 

The question has also arisen periodically of whether NHTSA should instead consider multi-
attribute standards, such as those that also depend on weight, torque, power, towing capability, 
and/or off-road capability.  To date, every time NHTSA has considered options for which 
attribute(s) to select, the agency has concluded that a properly-designed footprint-based approach 
provides the best means of achieving the basic policy goals (i.e., by increasing the likelihood of 
improved fuel economy across the entire fleet of vehicles; by reducing disparities between 
manufacturers’ compliance burdens; and by reducing incentives for manufacturers to respond to 
standards by reducing vehicle size in ways that could compromise overall highway safety) 
involved in applying an attribute-based standard.  At the same time, footprint-based standards 
can be structured in a way that furthers the energy and environmental policy goals of EPCA by 
not creating inappropriate incentives to increase vehicle size in ways that could increase fuel 
consumption. 

In the 2021 NAS Report, the committee recommended that if Congress does not act to remove 
the prohibition at 49 U.S.C. 32902(h) on considering the fuel economy of dedicated alternative 
fuel vehicles (like BEVs) in determining maximum feasible CAFE standards, then NHTSA 
should account for the fuel economy benefits of ZEVs by “setting the standard as a function of a 
second attribute in addition to footprint – for example, the expected market share of ZEVs in the 
total U.S. fleet of new light-duty vehicles – such that the standards increase as the share of ZEVs 
in the total U.S. fleet increases.”26   

In considering this recommendation, NHTSA believes that one possible approach to including 
the expected market share of ZEVs as an attribute on which fuel economy could be based might 
be as follows.  The statutes under which NHTSA regulates fuel economy clearly state that the 
Secretary of Transportation “may not consider the fuel economy of dedicated automobiles” 
(emphasis added) when “deciding maximum feasible average fuel economy” standards.  The 
standard setting process described below can be carried out without using any information about 
the fuel economy of dedicated automobiles.  Importantly, the intent of the prohibition was clearly 
not to discourage adoption of dedicated automobiles, as other parts of the statute specify 
incentives for their production and sale.  Rather, it was to protect manufacturers from being 

 
26 National Academies of Sciences, Engineering, and Medicine, 2021.  Assessment of Technologies for Improving 
Fuel Economy of Light-Duty Vehicles – 2025-2035, Washington, DC:  The National Academies Press (hereafter, 
“2021 NAS Report”), at Summary Recommendation 5.  Available at https://www.nationalacademies.org/our-
work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3 and for hard copy 
review at DOT headquarters. 

https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3
https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3


 

required to sell dedicated automobiles whose costs might be excessive and for which the 
refueling infrastructure was inadequate or nonexistent.  Thus, the broad interpretation of this 
stipulation as requiring that dedicated automobiles not be considered in any way in the setting of 
fuel economy standards should be conditional on their cost, the status of energy supply 
infrastructure, manufacturers’ product plans, and the adequacy of supporting policies.  In all 
respects, the position of dedicated electric vehicles in today’s automotive market is markedly 
different from that of dedicated automobiles in the past.  The profound differences justify a 
reconsideration of the broad interpretation of the statute as prohibiting any consideration of 
dedicated automobiles when establishing fuel economy standards and support a narrower 
interpretation that, given the conditions necessary for a viable market for dedicated automobiles, 
only their fuel economy must not be considered. 

The statutes also give NHTSA broad authority to prescribe standards based on 1 or more vehicle 
attributes related to fuel economy, as the agency determines to be appropriate.  Thus, choosing 
an attribute that is related to fuel economy, as electrification is, is specifically authorized by the 
statute.   

The degree of vehicle electrification, defined as the fraction of work done by electric motors over 
the test cycles, has promise as an additional attribute that might allow NHTSA to set standards 
that would incentivize almost any level of electrification necessary to achieve energy 
conservation goals, subject to the usual requirements of technological feasibility and economic 
practicability.  Electrification, as defined above, is not restricted to dedicated alternative fuel 
vehicles and is strongly related to fuel economy.  HEVs are partially electrified, as are PHEVs 
and even some vehicles with integrated starter generators.  The process described below for 
setting standards based on the degree of electrification attribute does not require any use of data 
about the fuel economy of dedicated electric vehicles. 

The basic idea is the following: 

• Define a 3-dimensional function relating mpg (or gpm) to footprint and degree of 
electrification based on current vehicle data and simulation modeling of technologically 
feasible vehicle designs.  This would include everything from integrated starter-
generators to very long-range PHEVs but need not include dedicated automobiles such as 
BEVs and FCEVs.  In this phase, there is no need to consider the cost of electrification. 

• Choose a set of levels of electrification by model year consistent with policy goals to test 
for economic practicability.  A level of electrification is a curve (a line) on the surface of 
the 3-D attribute function.  The electrification levels would be chosen based on 
engineering analysis and policy goals. 

• Evaluate the cost-effectiveness of achieving the different levels of electrification.  In this 
step, dedicated vehicles would be included because they are a potentially cost-effective 
way for OEMs to achieve electrification.  The fuel economy of dedicated automobiles is 
not be considered, but only their cost and contribution to meeting the level of 
electrification consistent with policy goals. 



 

• Project the preferred cost-effective line onto the 2-D mpg (gpm), footprint plane, as 
illustrated in Figure 1-5.  That footprint curve is then used to determine compliance with 
the standard.  In effect, that makes the compliance function, mpg (footprint, 
electrification), flat with respect to electrification.  Making the electrification function flat 
is consistent with the arguments in the 2012 TSD that recognize the validity of reflecting 
policy goals in the attribute function.  The relevant policy goal is using electrification to 
achieve deep reductions in GHG emissions. 

In Figure 1-5 (which is strictly for illustration purposes), the line at 25% electrification on the 
surface of the curve ranges from 40 mpg at a footprint of 60 ft2 up to 80 mpg at 40 ft2.  This 
projects onto the 2-dimensional mpg,footprint plane, as indicated by the gray arrows.  This 
compares with the 0%-electrified footprint function, which ranges from 20 mpg to 40 mpg.  

The CAFE statutes are specific with respect to defining dual and alternative fuel vehicles and 
assigning them mpg values for compliance purposes.  Under the proposed attribute function, a 
manufacturer’s target depends only the footprints of its vehicles.  Mile per gallon numbers are 
calculated in the usual ways as specified by law.  

As proposed, the attribute function used for compliance is flat with respect to level of 
electrification.  In this respect, it is like the flat portions of the current footprint functions.  
However, it could as easily be made very gently sloping, or with cutpoints, like the footprint 
curves, and still provide a substantial incentive for electrification.  NHTSA has broad latitude in 
that regard, provided that the shape of the function reflects legitimate policy goals.  

 
Figure 1-5 – Hypothetical Attribute Function Including Footprint and Electrification 



 

Degree of Electrification is an Attribute Strongly Related to Fuel Economy. 

Electrification of a vehicle’s drivetrain is strongly related to fuel economy because electric 
motors are approximately three times as efficient as internal combustion engines with respect to 
the use of onboard energy.  In addition, combining an electric motor and an internal combustion 
engine in a drivetrain allows manufacturers to take advantage of synergies between the two 
technologies and adding an energy storage device allows kinetic energy captured during breaking 
to be easily reused. 

As electrification increases, fuel consumption per mile decreases substantially.  Figure 1-6 
displays data from the 2020 reference fleet by categories of electrification.  Exponential 
functions have been fitted to the data to illustrate the average effect of electrification.27 There is 
little difference between the internal combustion engine (ICE) only curve and that of vehicles 
with stop-start technology (SS12V), which is arguably not meaningful electrification.  There is 
also little difference between the ICE curves and vehicles with integrated starter generators 
(BISG) which can provide limited power to the drivetrain as well as regenerative braking.28 On 
the other hand, the effects of strong hybridization (HEV), plug-in hybridization (PHEV) and all-
electric drive (BEV) are large. 

 

Figure 1-6 – Gallons per Mile as a Function of Footprint for 2020 Model Year Light-duty Vehicles 

The relationships among footprint, electrification and fuel economy are illustrated in mpg space 
in Figure 1-7.  In mpg space, the wide range of effects of the potential effects of plug-in 
electrification are more evident. 

 
27 The largest footprint vehicles are not shown in Figure 1-6 and a handful of high performance vehicles have been 
eliminated to improve the fit of the exponential curves to the data.  Exponential curves fit well over the limited range 
shown but are not an appropriate functional form for footprint functions, in general. 
28 The lack of apparent benefit is likely due to differences in the types of vehicles to which the BISG technology has 
been applied. 



 

 

Figure 1-7 – Fuel Economy vs. Footprint by Degree of Electrification for 2020 Model Year Vehicles 

Clearly, a great deal more thought and engineering analysis would be needed before the 
approach described above could be implemented.  Modifications to the CAFE Model would also 
be required, although the overwhelming majority of the Model’s functions would be unchanged. 

The legitimacy of the proposed method depends on the fact that establishing a relationship 
between electrification and fuel economy need not include dedicated automobiles.  And, in 
considering the cost-effectiveness of achieving levels of electrification, the fuel economy of 
dedicated automobiles need not be considered.  In other words, the entire process of setting fuel 
economy standards consistent with the requirements of the statutes can be done without any use 
of the fuel economies of dedicated automobiles.  HEVs are partially electrified yet 100% of their 
energy comes from gasoline (actually E10).  PHEVs are dual fuel vehicles and can have a wide 
range of degrees of electrification.  For example, the BMW i3 with range extender is nearly fully 
electrified but it can also run on energy supplied by gasoline.  

The method also depends on the legality of allowing dedicated automobiles’ potentially cost-
effective contributions to electrification, not their fuel economy per se, to be considered in 
determining the economic practicability of the standards.  Put another way, is it within the 
limitations of the statute to demonstrate the economic practicability of a fuel economy footprint 
function by showing that the degree of electrification that could accomplish the levels of fuel 
economy it requires is economically practicable?  This is potentially important because in the 
near future BEVs are likely to be less expensive than PHEVs. 



 

By specifying a feasible and practical level of electrification, the standards incentivize all levels 
of electrification to greater of lesser degrees.  Economics and consumer acceptance, as well as 
other public policies will determine which forms of electrification manufacturers choose to 
implement.  If, in the long-run, EVs are more cost effective than PHEVs and HEVs, specifying a 
level of electrification of, say 60% or 70% would likely be sufficient to incentivize full or nearly 
full electrification. 

Implementing a 3-D electrification attribute function would require research and analysis.  
However, NHTSA, together with Volpe and Argonne National Laboratory have the necessary 
expertise and tools.  Vehicle simulation modeling together with statistical analysis of vehicle 
attribute data should be able to define appropriate attribute functions.  

The CAFE Model also would continue to be essential to, 1) estimate the costs associated with 
various levels of electrification and 2) evaluate the full range of costs and benefits of the 
standards.  Some modification would be needed for the analysis of the cost of electrification.  
The maximum feasible average fuel economy having been established based on degree of 
electrification, its costs and benefits could be estimated by using the CAFE Model in the usual 
way, i.e., to calculate technology pathways manufacturers could use to meet the mpg-footprint 
requirements. 

1.2.4 Choosing the Mathematical Function to Specify Footprint-Based Standards 

In requiring NHTSA to “prescribe by regulation separate average fuel economy standards for 
passenger and non-passenger automobiles based on 1 or more vehicle attributes related to fuel 
economy and express each standard in the form of a mathematical function,” EPCA/EISA 
provides discretion regarding not only the selection of the attribute(s), but also regarding the 
nature of the function.  While NHTSA is proposing to continue employing the curve shapes that 
have been used since the 2012 final rule, which did not change under the 2020 final rule, the 
discussion is reiterated for purposes of completeness. 

The relationship between fuel economy and footprint, though directionally clear (i.e., fuel 
economy tends to decrease with increasing footprint), is theoretically vague, and quantitatively 
uncertain; in other words, not so precise as to a priori yield only a single possible curve.  The 
decision of how to specify this mathematical function therefore reflects some amount of 
judgment.  The function can be specified with a view toward achieving different environmental 
and petroleum reduction goals, encouraging different levels of application of fuel-saving 
technologies, avoiding any adverse effects on overall highway safety, reducing disparities of 
manufacturers’ compliance burdens, and preserving consumer choice, among other aims.  The 
following are among the specific technical concerns and resultant policy tradeoffs that NHTSA 
and EPA have previously considered in selecting the details of specific past and future curve 
shapes: 

1. Steeper footprint-based standards may create incentives to upsize vehicles, potentially 
oversupplying vehicles of certain footprints beyond what the market would naturally 
demand, and thus increasing the possibility that fleetwide (or total) fuel savings  benefits 
will be forfeited artificially. 



 

2. Flatter standards (i.e., curves) increase the risk that the size of vehicles will be reduced,  
reducing any utility consumers would have gained from a larger vehicle. 

3. Given the same industry-wide average required fuel economy standard, flatter standards 
tend to place greater compliance burdens on full-line manufacturers, although this is not 
necessarily true if the vehicles are ZEVs. 

4. Given the same industry-wide average required fuel economy standard, dramatically 
steeper standards tend to place greater compliance burdens on limited-line manufacturers 
(depending, of course, on which vehicles are being produced), although this is not 
necessarily true if the vehicles are ZEVs. 

5. If cutpoints (i.e., locations of rapid change in slope, as with piecewise-linear functions) 
are adopted, given the same industry-wide average required fuel economy, moving small-
vehicle cutpoints to the left (i.e., up in terms of fuel economy) discourages the 
introduction of small vehicles, and reduces the incentive to downsize small vehicles. 

6. If cutpoints are adopted, given the same industry-wide average required fuel economy, 
moving large-vehicle cutpoints to the right (i.e., down in terms of fuel economy) better 
accommodates the design requirements of larger vehicles – especially large pickups – and 
extends the size range over which downsizing is discouraged in ways that could 
compromise overall highway safety. 

1.2.5 Mathematical Functions that Have Been Used Previously 

Notwithstanding the aforementioned discretion under EPCA/EISA, data should inform 
consideration of potential mathematical functions, but how relevant data are defined and 
interpreted, and the choice of methodology for fitting a curve to those data, can and should 
include some consideration of specific policy goals.  This chapter summarizes the methodologies 
and policy concerns that were considered in developing previous target curves (for a complete 
discussion see the 2012 FRIA). 

As discussed below, the MY 2011 final curves followed a constrained logistic function defined 
specifically in the final rule.29  The MYs 2012-2021 final standards and the MYs 2022-2025 
augural standards were defined by constrained linear target functions of footprint, as shown in 
Equation 1-5.30 

 
29 See 74 Fed. Reg. 14196, 14363-14370 (Mar. 30, 2009) for NHTSA discussion of curve fitting in the MY 2011 
CAFE final rule. 
30 The right cutpoint for the light truck curve was moved further to the right for MYs 2017-2021, so that more 
possible footprints would fall on the sloped part of the curve.  In order to ensure that, for all footprints, future 
standards would be at least as high as MY 2016 levels, standards for light trucks for MYs 2017-2020 are the 
maximum of a “floor” target curve and the target curves for the given MY standard.  This is defined further in the 
2012 final rule.  See 77 Fed. Reg. 62624, at 62699-700 (Oct. 15, 2012), and in Table VII of 49 CFR 533.5(a). 
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Equation 1-5 – Constrained Logistic Target Function 

Here, Target is the fuel economy target applicable to vehicles of a given footprint in square feet 
(Footprint).  The upper asymptote, a, and the lower asymptote, b, are specified in mpg; the 
reciprocal of these values represent the lower and upper asymptotes, respectively, when the 
curve is instead specified in gallons per mile (gpm).  The slope, c, and the intercept, d, of the 
linear portion of the curve are specified as gpm per change in square feet, and gpm, respectively. 

The min and max functions will take the minimum and maximum values within their associated 
parentheses.  Thus, the max function will first find the maximum of the fitted line at a given 
footprint value and the lower asymptote from the perspective of gpm.  If the fitted line is below 
the lower asymptote it is replaced with the floor, which is also the minimum of the floor and the 
ceiling by definition, so that the target in mpg space will be the reciprocal of the floor in mpg 
space, or simply, a.  If, however, the fitted line is not below the lower asymptote, the fitted value 
is returned from the max function and the min function takes the minimum value of the upper 
asymptote (in gpm space) and the fitted line.  If the fitted value is below the upper asymptote, it 
is between the two asymptotes and the fitted value is appropriately returned from the min 
function, making the overall target in mpg the reciprocal of the fitted line in gpm.  If the fitted 
value is above the upper asymptote, the upper asymptote is returned from the min function, and 
the overall target in mpg is the reciprocal of the upper asymptote in gpm space, or b. 

In this way, curves specified as constrained linear functions are specified by the following 
parameters in Equation 1-5. 

a = upper limit (mpg) 

b = lower limit (mpg) 

c = slope (gpm per ft2) 

d = intercept (gpm) 

The slope and intercept are specified as gpm per sq. ft. and gpm, instead of mpg per sq. ft. and 
mpg, because fuel consumption and emissions appear roughly linearly related to gallons per mile 
(the reciprocal of miles per gallon). 

1.2.5.1 NHTSA in MY 2008 and MY 2011 CAFE (Constrained Logistic) 

In 2009, for the MY 2011 CAFE rule, NHTSA estimated fuel economy levels by footprint from 
the MY 2008 fleet after normalization for differences in technology,31 but did not make 
adjustments to reflect other vehicle attributes (e.g., power-to-weight ratios).  Starting with the 

 
31 See 74 Fed. Reg. 14196, 14363-14370 (Mar. 30, 2009) for NHTSA discussion of curve fitting in the MY 2011 
CAFE final rule. 



 

technology-adjusted passenger car and light truck fleets, NHTSA used minimum absolute 
deviation (MAD) regression without sales weighting to fit a logistic form as a starting point to 
develop mathematical functions defining the standards.  NHTSA then identified footprints at 
which to apply minimum and maximum values (rather than letting the standards extend without 
limit) and transposed those functions vertically (i.e., on a gallons per mile basis, uniformly 
downward) to produce the promulgated standards.  In the preceding 2006 rule for MYs 2008-
2011 light truck standards, NHTSA examined a range of potential functional forms, and 
concluded that, compared to other considered forms, the constrained logistic form provided the 
expected and appropriate trend (decreasing fuel economy as footprint increases), but avoided 
creating “kinks” that the agency was then concerned would provide distortionary incentives for 
vehicle with neighboring footprints.32 

1.2.5.2 MYs 2012-2016 Standards (Constrained Linear) 

In 2010, for the MYs 2012-2016 rule, potential methods for specifying mathematical functions to 
define fuel economy and CO2 standards were reevaluated.  These methods were fit to the same 
MY 2008 data as the MY 2011 standard.  Considering these further specifications, the 
constrained logistic form, if applied to post-MY 2011 standards, would have likely contained a 
steep mid-section that would have provided undue incentive to increase the footprint of midsize 
passenger cars.33  A range of methods to fit the curves would have been reasonable, and a 
minimum absolute deviation (MAD) regression without sales weighting on a technology-
adjusted car and light truck fleet was used to fit a linear equation.  This equation was used as a 
starting point to develop mathematical functions defining the standards.  Footprints were then 
identified at which to apply minimum and maximum values (rather than letting standards extend 
without limit.  Finally, these constrained/piecewise linear functions were transposed vertically 
(i.e., on a gpm or CO2 basis, uniformly downward) by multiplying the initial curve by a single 
factor for each MY standard to produce the final attribute-based targets for passenger cars and 
light trucks described in the final rule.34  These transformations are typically presented as 
percentage improvements over a previous MY target curve. 

1.2.5.3 MYs 2017 and Beyond Standards (Constrained Linear) – 2012 Final Rule 

The mathematical functions finalized in 2012 for MYs 2017 and beyond changed somewhat 
from the functions for the MYs 2012-2016 standards.  These changes were made both to address 
comments from stakeholders, and to consider further some of the technical concerns and policy 
goals judged more preeminent under the increased uncertainty of the impacts of finalizing and 
proposing standards for model years further into the future.35  Recognizing the concerns raised 
by full-line OEMs, it was concluded that continuing increases in the stringency of the light truck 
standards would be more feasible if the light truck curve for MYs 2017 and beyond was made 

 
32 See 71 Fed. Reg. 17556, 17609-17613 (Apr. 6, 2006) for NHTSA discussion of “kinks” in the MYs 2008-2011 
light truck CAFE final rule (there described as “edge effects”).  A “kink,” as used here, is a portion of the curve 
where a small change in footprint results in a disproportionally large change in stringency. 
33 75 Fed. Reg. at 25362. 
34 See generally 74 Fed. Reg. at 49491-96; 75 FR at 25357-62. 
35 The MYs 2012-2016 final standards were signed April 1st, 2010—putting 6.5 years between its signing and the 
last affected model year, while the MYs 2017-2021 final standards were signed August 28th, 2012—giving just 
more than nine years between signing and the last affected final standards. 



 

steeper than the MY 2016 truck curve and the right (large footprint) cutpoint was extended only 
gradually to larger footprints.  To accommodate these considerations, the 2012 final rule 
finalized the slope fit to the MY 2008 fleet using a sales-weighted, ordinary least-squares 
regression, using a fleet that had technology applied to make the technology application across 
the fleet more uniform, and after adjusting the data for the effects of weight-to-footprint.  
Information from an updated MY 2010 fleet was also considered to support this decision.  As the 
curve was vertically shifted (with fuel economy specified as mpg instead of gpm or CO2 
emissions) upwards, the right cutpoint was progressively moved for the light truck curves with 
successive model years, reaching the final endpoint for MY 2021. 

1.2.6 NHTSA’s Process for Reconsidering the Mathematical Functions in the 2020 Final Rule 

1.2.6.1 Why did NHTSA reconsider the mathematical functions? 

By shifting the developed curves by a single factor, it is assumed that the underlying relationship 
of fuel consumption (in gallons per mile) to vehicle footprint does not change significantly from 
the model year data used to fit the curves to the range of model years for which the shifted curve 
shape is applied to develop the standards.  However, it must be recognized that the relationship 
between vehicle footprint and fuel economy is not necessarily constant over time; newly 
developed technologies, changes in consumer demand, and even the curves themselves could 
influence the observed relationships between the two vehicle characteristics.  For example, if 
certain technologies are more effective or more marketable for certain types of vehicles, their 
application may not be uniform over the range of vehicle footprints.  Further, if market demand 
has shifted between vehicle types, so that certain vehicles make up a larger share of the fleet, any 
underlying technological or market restrictions that inform the average shape of the curves could 
change.  That is, changes in the technology or market restrictions themselves, or a mere re-
weighting of different vehicle types, could change the observed unweighted or production-
weighted relationship between footprint and fuel economy. 

For the above reasons, the curve shapes were reconsidered in the 2018 proposal using the newest 
available data (at that time, from MY 2016).  With a view toward corroboration through different 
techniques, a range of descriptive statistical analyses were conducted that did not require 
underlying engineering models of how fuel economy and footprint might be related, and a 
separate analysis that used vehicle simulation results as the basis to estimate the relationship 
from a perspective more explicitly informed by engineering theory was conducted as well.  
Despite changes in the new vehicle fleet both in terms of technologies applied and in market 
demand, that analysis found that the underlying statistical relationship between footprint and fuel 
economy had not changed significantly since the MY 2008 fleet used for the 2012 final rule; 
therefore, EPA and NHTSA proposed in 2018 to continue to use the curve shapes fit in 2012.  
The analysis and reasoning supporting that decision, which this proposal also relies on, follows.  
Chapter 1.2.8 explains why NHTSA is proposing to continue to employ these curve shapes for 
MYs 2024-2026. 

1.2.6.2 What statistical analyses were considered? 

In considering previously how to address the various policy concerns discussed above, NHTSA 
considered data from the MY 2016 fleet, and performed a number of descriptive statistical 



 

analyses (i.e., involving observed fuel economy levels and footprints) using various statistical 
methods, weighting schemes, and adjustments to the data to make the fleets less technologically 
heterogeneous.  There were several adjustments to the data that were common to all of the 
statistical analyses considered. 

With a view toward isolating the relationship between fuel economy and footprint, NHTSA 
excluded the few diesels in the fleet, as well as the limited number of vehicles with partial or full 
electric propulsion; when the fleet is normalized so that technology is more homogenous, 
application of these technologies is not allowed.  This is consistent with the methodology used in 
the 2012 final rule. 

NHTSA applied the above adjustments to all statistical analyses, regardless of the specifics of 
each of the methods, weights, and technology level of the data, considered to view the 
relationship of vehicle footprint and fuel economy.  Table 1-1 summarizes the different 
assumptions considered and the key attributes of each.  NHTSA considered all possible 
combinations of these assumptions, producing a total of eight footprint curves. 

Table 1-1 – Summary of Assumptions Considered in the Statistical Analysis of the Footprint-FE Relationship 

Varying 
Assumptions: Regression Type Regression Weights Technology Level 

Alternatives 
Considered: OLS MAD Production-

weighted 
Model-

weighted 
Existing 

Technology 
Max. 

Technology 

Details 

Ordinary 
Least 

Squares 
Regression 

Minimum 
Absolute 
Deviation 

Regression 

Points 
weighted by 
production 
volumes of 
each model. 

Equal weight for 
each model; 

collapses points 
with similar: 
footprint, FE, 

and curb weight. 

MY 2016 tech., 
excluding: 

HEV, PHEV, 
BEV, and 

FCV. 

Maximum tech. 
applied, 

excluding: 
HEV, PHEV, 

BEV, and FCV. 

Key Attributes 

Describes 
the average 
relationship 

between 
footprint 
and fuel 

economy; 
outliers can 

skew 
results. 

Describes 
the median 
relationship 

between 
footprint 
and fuel 

economy; 
does not 

give outliers 
as much 
weight. 

Tends towards 
higher-volume 
models; may 

systematically 
disadvantage 

manufacturers 
who produce 

fewer 
vehicles. 

Tends towards 
the space of the 
joint distribution 
of footprint and 

FE with the 
most models; 

gives low-
volume models 
equal weight. 

Describes 
existing 
market, 

including 
demand 

factors; may 
miss changes 
in curve shape 

due to 
advanced 

technology 
application. 

Captures 
relationship 

with 
homogenous 
technology 

application; may 
miss varying 

demand 
considerations 
for different 
segments. 

 

1.2.6.2.1 Existing Technology Level Curves 

The “existing technology” level curves excluded diesels and vehicles with electric propulsion, as 
discussed above, but made no other changes to each model year fleet.  Comparing the MY 2016 
curves to ones built under the same methodology from previous model year fleets showed 
whether the observed curve shape had changed significantly over time as standards became more 



 

stringent.  Importantly, those curves included any market forces that made technology 
application variable over the distribution of footprint.  Those market forces were not present in 
the “maximum technology” level curves:  by making technology levels homogenous, this 
variation was removed.  The existing technology level curves, built using both regression types 
and both regression weight methodologies from the MY 2008, MY 2010, and MY 2016 fleets, 
shown in more detail in Chapter 4.4.2.1 of the 2018 PRIA, supported the curve slopes finalized 
in the 2012 final rule.  The curves built from most methodologies using each fleet generally 
shifted but remained very similar in slope.  This suggested that the relationship of footprint to 
fuel economy, including both technology and market limits, did not significantly change after the 
2012 final rule. 

1.2.6.2.2 Maximum Technology Level Curves 

As in prior rulemakings, NHTSA considered technology differences between vehicle models to 
be a significant factor producing uncertainty regarding the relationship between fuel 
consumption and footprint.  Because attribute-based standards are intended to encourage the 
application of additional technology to improve fuel economy across the distribution of footprint 
in the fleet, NHTSA considered approaches in which technology application was simulated for 
purposes of the curve fitting analysis to produce fleets that are less varied in technology content.  
This approach helped to reduce “noise” (i.e., dispersion) in the plot of vehicle footprints and fuel 
consumption levels and to identify a more technology-neutral relationship between footprint and 
fuel consumption.  The results of that analysis for maximum technology level curves is also 
shown in Chapter 4.4.2.2 of the 2018 PRIA.  Especially if vehicles progress over time toward 
more similar size-specific efficiency, further removing variation in technology application both 
better isolated the relationship between fuel consumption and footprint and further supported the 
curve slopes established in the 2012 final rule. 

1.2.7 What other methodologies were considered? 

The methods discussed above are descriptive in nature, using statistical analysis to relate 
observed fuel economy levels to observed footprints for known vehicles.  As such, these methods 
were clearly based on actual data, answering the question of “how does fuel economy appear to 
be related to footprint?”  However, being independent of explicit engineering theory, they did not 
answer the question of “how might one expect fuel economy to be related to footprint?”  
Therefore, in addition to the above methods, an alternative methodology was also developed and 
applied, using full vehicle simulation, to come closer to answering the second question, 
providing a basis either to corroborate answers to the first, or to suggest that further investigation 
could be important. 

As discussed in the 2012 final rule, several manufacturers have confidentially shared with 
NHTSA what they describe as “physics-based” curves, with each OEM showing significantly 
different shapes for the footprint-fuel economy relationships.  This variation affirms that while 
footprint is related to fuel economy, many other things are also related to fuel economy.  In 
reconsidering the shapes of the curves for the 2018 NPRM, NHTSA developed a similar 
estimation of physics-based curves leveraging third-party simulation work from Argonne 
National Laboratories (Argonne).  Estimating physics-based curves helped to ensure that 
technology and performance were held constant for all footprints.  This process augmented the 



 

largely-statistical analysis described above with an analysis that more explicitly incorporated 
engineering theory, which helped to corroborate that the relationship between fuel economy and 
footprint was in fact being characterized. 

A tractive energy prediction model was also developed to support the 2018 proposal.  Tractive 
energy is the amount of energy it will take to move a vehicle.36  Given a vehicle’s mass, frontal 
area, aerodynamic drag coefficient, and rolling resistance as inputs, the model predicted the 
amount of tractive energy required for the vehicle to complete the Federal test cycle.  This model 
was used to predict the tractive energy required for the average vehicle of a given footprint37 and 
“body technology package” to complete the cycle.  The body technology packages considered 
are defined in Table 1-2.   

Using the absolute tractive energy predicted and tractive energy effectiveness values spanning 
possible internal combustion engines, fuel economy values were then estimated for different 
body technology packages and engine tractive energy effectiveness values.  Here, tractive energy 
effectiveness is defined as the share of the energy content of fuel consumed, which is converted 
into mechanical energy and used to move a vehicle – for internal combustion engine (ICE) 
vehicles, this will vary with the relative efficiency of specific engines.  Data from Argonne 
simulations suggested that the limits of tractive energy effectiveness are approximately 25 
percent for ICE vehicles that do not possess integrated starter generator, other hybrid, plug-in, 
pure electric, or fuel cell technology. 

Table 1-2 – Summary of Body Technology Packages Considered for Tractive Energy Analysis 

Body Tech. 
Package 

Mass Reduction 
Level 

Aerodynamics 
Level 

Roll Resistance 
Level 

1 0% 0% 0% 
2 0% 10% 10% 
3 10% 10% 10% 
4 10% 15% 20% 
5 15% 20% 20% 

Chapter 6 of the 2018 PRIA shows the resultant CAFE levels estimated for the vehicle classes 
Argonne simulated for this analysis, at different footprint levels and by vehicle “box.”  Pickups 
are considered 1-box, hatchbacks and minivans are 2-box, and sedans are 3-box.  These 
estimates were compared with the MY 2021 standards finalized in 2012.  The general trend of 
the simulated data points followed the pattern of the MY 2021 standards set in 2012 for all 
technology packages and tractive energy effectiveness values presented in the 2018 PRIA.  The 
tractive energy curves were intended to validate the curve shapes against a physics-based 

 
36 Thomas, J. “Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results,” 
SAE Int. J. Passeng.  Cars - Mech. Syst. 7(4):2014, doi:10.4271/2014-01-2562.  Available at 
https://www.sae.org/publications/technical-papers/content/2014-01-2562/ and for hard copy review at DOT 
headquarters. 
37The mass reduction curves used elsewhere in the 2018 analysis were used to predict the mass of a vehicle with a 
given footprint, body style box, and mass reduction level.  The ‘Body style Box’ is 1 for hatchbacks and minivans, 2 
for pickups, and 3 for sedans, and is an important predictor of aerodynamic drag.  Mass is an essential input in the 
tractive energy calculation.  

https://www.sae.org/publications/technical-papers/content/2014-01-2562/


 

alternative, and the analysis suggested that the curve shapes tracked the physical relationship 
between fuel economy and tractive energy for different footprint values. 

The relationship between fuel economy and footprint remains directionally discernible but 
quantitatively uncertain.  Nevertheless, each standard must commit to only one function.  
Approaching the question “how is fuel economy related to footprint” from different directions 
and applying different approaches has given NHTSA confidence that the function we propose to 
continue to apply appropriately and reasonably reflects the relationship between fuel economy 
and footprint. 

1.2.8 Maintaining the Existing Footprint Curves for MYs 2024-2026 

Changes in the market that have occurred since NHTSA last examined the appropriateness of the 
footprint curves have been, for the most part, consistent with the trends in 2018.  For the most 
part, vehicle manufacturers have continued over the past several years to reduce their offerings 
of smaller footprint vehicles and increase their sales of larger footprint vehicles and continue to 
sell many small to mid-size crossovers and SUVs.  While this trend may not be as optimal for 
reducing fuel consumption and carbon dioxide emissions as compared to manufacturers 
increasing their offerings of smaller footprint vehicles and reducing their sales of larger footprint 
vehicles, it does not appear that the trend has changed so dramatically over the last three years to 
warrant a detailed re-examination of that relationship as part of this proposal.  Moreover, 
changes to the footprint curves can significantly affect manufacturers’ ability to comply.  Given 
the available lead time between now and the beginning of MY 2024, NHTSA believes it is 
unlikely any potential benefit of changing the shape of the footprint curves (when we are already 
proposing to change standard stringency) would outweigh the costs of doing so.  NHTSA may 
explore changes to curve shapes in a future action. 

1.3 What does the CAFE Model need to conduct this analysis? 

In order to conduct the analysis described above, the CAFE Model needs a variety of inputs.  At 
a high level, the model needs the following regulatory alternatives: an analysis fleet (see Chapter 
2.2), technology effectiveness values (see Chapter 2.4), technology cost information, (see 
Chapter 2.6), and economic assumptions (see Chapter 4.1 for macroeconomic assumptions and 
Chapter 6 for all others).  Additionally, for this proposal, NHTSA has added the specific inputs 
to enable the model to simulate compliance with California’s ZEV program (see Chapter 2.2).  
Chapter 2 discusses the required inputs in more detail. 

1.4 What are the regulatory alternatives under consideration in this proposal? 

Agencies typically consider regulatory alternatives in proposals as a way of evaluating the 
comparative effects of different potential ways of accomplishing their desired goal.  NEPA 
requires agencies to compare the potential environmental impacts of their proposed actions to 
those of a reasonable range of alternatives.  Executive Orders 12866 and 13563, as well as OMB 
Circular A-4, also encourage agencies to evaluate regulatory alternatives in their rulemaking 
analyses. 



 

Alternatives analysis begins with a “no-action” alternative, typically described as what would 
occur in the absence of any regulatory action.  This proposal includes a no-action alternative, 
described below, and three “action alternatives.”  The proposed standards may, in places, be 
referred to as the “preferred alternative,” which is NEPA parlance, but NHTSA intends 
“proposal” and “preferred alternative” to be used interchangeably for purposes of this 
rulemaking. 

Regulations regarding implementation of NEPA require agencies to “rigorously explore and 
objectively evaluate all reasonable alternatives, and for alternatives which were eliminated from 
detailed study, briefly discuss the reasons for their having been eliminated.”38  This does not 
amount to a requirement that agencies evaluate the widest conceivable spectrum of alternatives.  
Rather, the range of alternatives must be reasonable and consistent with the purpose and need of 
the action.   

The different regulatory alternatives are defined in terms of percent-increases in CAFE 
stringency from year to year.  Readers should recognize that those year-over-year changes in 
stringency are not measured in terms of mile per gallon differences (as in, 1 percent more 
stringent than 30 miles per gallon in one year equals 30.3 miles per gallon in the following year), 
but rather in terms of shifts in the footprint functions that form the basis for the actual CAFE 
standards (as in, on a gallon per mile basis, the CAFE standards change by a given percentage 
from one model year to the next).  Under some alternatives, the rate of change is the same from 
year to year, while under others, it differs, and under some alternatives, the rate of change is 
different for cars and for trucks.  One action alternative is more stringent than the proposal, while 
one is less stringent than the proposal.  The alternatives considered in this proposal represent a 
reasonable range of possible agency actions. 

The regulatory alternatives for this proposal are presented here as the percent-increases-per-year 
that they represent.  The sections that follow will present the alternatives as the literal 
coefficients which define standards curves increasing at the given percentage rates and will also 
explain the basis for the alternatives selected. 

Table 1-3 – Regulatory Alternatives Considered in this Proposal 

Regulatory 
Alternative 

Year-Over-Year Stringency Increases 
(Passenger Cars) 

Year-Over-Year Stringency Increases 
(Light Trucks) 

2024 2025 2026 2024 2025 2026 
Alternative 0 
(No Action) 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 

Alternative 1 9.14% 3.26% 3.26% 11.02% 3.26% 3.26% 
Alternative 2 
(Preferred) 8% 8% 8% 8% 8% 8% 

Alternative 3 10% 10% 10% 10% 10% 10% 

As for past rulemaking analyses, NHTSA has analyzed each of the regulatory alternative in a 
manner that estimates manufacturers’ potential application of technology in response to the 
corresponding CAFE requirements and the estimated market demand for fuel economy, 

 
38 40 CFR 1502.14. 



 

considering estimated fuel prices, estimated product development cadence, and the estimated 
availability, applicability, cost, and effectiveness of fuel-saving technologies.  The analysis 
sometimes shows that specific manufacturers could increase CAFE levels beyond requirements 
in ways estimated to, through avoided fuel outlays, “pay buyers back” very quickly (i.e., within 
30 months) for the corresponding additional costs to purchase new vehicles.  Consistent with the 
analysis published with the 2020 final rule, today’s analysis shows that if battery costs decline as 
projected while fuel prices increase as projected, BEVs should become increasingly attractive on 
this basis, such that the modeled application of BEVs (and some other technologies) clearly 
outstrips regulatory requirements after the mid-2030s. 

Our no-action alternative is more nuanced than in any prior rulemaking.  In this analysis, 
Alternative 0 includes the national standards finalized in 2020 for both CAFE and GHG, as well 
as the voluntary California Framework Agreement (which affects five manufacturers – BMW, 
Ford, Honda, Volkswagen, and Volvo, together about 30 percent of the market) and the ZEV 
mandate that California and the “Section 177” states have adopted.  In order to properly estimate 
fuel economies (and achieved GHG emissions) in the no-action alternative, it is necessary to 
simulate all of these policies simultaneously.  As a consequence, the CAFE Model is 
dynamically identifying the binding standard (whether CAFE, GHG, or CA agreement) in each 
model year, for each manufacturer/fleet.  Friction between fleets and compliance provisions 
creates over-compliance in one program, even if a manufacturer is able to exactly comply (or 
under-comply) in the other program.  This is similar to how manufacturers approach the question 
of concurrent compliance in the real world – when faced with multiple regulatory programs, the 
most cost-effective path may be to focus efforts on meeting one or two sets of requirements, 
even if that results in “more effort” than would be necessary for another set of requirements.  We 
elaborate on these new model capabilities below.  Generally speaking, the model treats each 
manufacturer as applying the following logic when making technology decisions: 

1. What do I need to carry over from last year? 

2. What should I apply more widely in order to continue sharing (of, e.g., engines) across 
different vehicle models? 

3. What new PHEVs or BEVs do I need to build in order to satisfy the ZEV mandates? 

4. What further technology, if any, could I apply that would enable buyers to recoup 
additional costs within 30 months after buying new vehicles? 

5. What additional technology, if any, should I apply in order to respond to CAFE and CO2 
standards? 

All of the regulatory alternatives considered here include, for passenger cars, the following 
coefficients defining the combination of baseline federal CO2 standards and the California 
Framework agreement. 



 

Table 1-4 – Passenger Car CO2 Target Function Coefficients 

 2022 2023 2024 2025 2026 

a (g/mi) 159 156 154 151 149 
b (g/mi) 217 214 210 207 203 
c (g/mi per s.f.) 3.88 3.82 3.77 3.71 3.65 
d (g/mi) -0.1 -0.4 -0.6 -0.9 -1.2 
e (s.f.) 41 41 41 41 41 
f (s.f.) 56 56 56 56 56 
g (g/mi) 151 146 140 135 130 
h (g/mi) 207 199 192 185 178 
i (g/mi per s.f.) 3.70 3.56 3.43 3.30 3.18 
j (g/mi) -0.4 -0.4 -0.4 -0.3 -0.3 

Coefficients a, b, c, d, e, and f define the current federal CO2 standards for passenger cars.  
Analogous to coefficients defining CAFE standards, coefficients a and b specify minimum and 
maximum passenger car CO2 targets in each model year.  Coefficients c and d specify the slope 
and intercept of the linear portion of the CO2 target function, and coefficients e and f bound the 
region within which CO2 targets are defined by this linear form.  Coefficients g, h, i, and j define 
the CO2 targets applicable to BMW, Ford, Honda, Volkswagen, and Volvo, pursuant to the 
agreement these manufacturers have reached with California.  Beyond 2026, the MY 2026 
federal standards apply to all manufacturers, including these five manufacturers.  The 
coefficients shown in Table 1-5 define the corresponding CO2 standards for light trucks.  

Table 1-5 – Light Truck CO2 Target Function Coefficients 

 2022 2023 2024 2025 2026 

a (g/mi) 203 200 196 193 190 
b (g/mi) 324 319 314 309 304 
c (g/mi per s.f.) 4.44 4.37 4.31 4.23 4.17 
d (g/mi) 20.6 20.2 19.6 19.6 19.0 
e (s.f.) 41 41 41 41 41 
f (s.f.) 74 74 74 74 74 
g (g/mi) 188 181 175 168 162 
h (g/mi) 322 310 299 288 277 
i (g/mi per s.f.) 4.12 3.97 3.82 3.68 3.54 
j (g/mi) 19.1 18.4 17.7 17.0 16.4 

All of the regulatory alternatives considered here also include NHTSA’s estimates of ways each 
manufacturer could introduce new PHEVs and BEVs in response to ZEV mandates.39  As 

 
39 NHTSA interprets EPCA/EISA as allowing consideration of already-built fully electric vehicles in its analytical 
baseline because (1) 49 U.S.C. 32902(h) clearly applies to the “maximum feasible” determination, which NHTSA 
has long held is informed by analytical results but not dictated by them; and (2) it would be arbitrary for NHTSA to 
 



 

discussed in greater detail below, these estimates force the model to convert specific vehicle 
model/configurations to either a BEV200, BEV300, or BEV400 at the earliest estimated 
redesign.  These “ZEV Candidates” define an incremental response to ZEV mandates (i.e., 
beyond PHEV and BEV production through MY 2020) comprise the following shares of 
manufacturers’ MY 2020 production for the U.S. market as shown in Table 1-6. 

Table 1-6 – ZEV “Candidates” as Share of MY 2020 Production 

Manufacturer BEV200 BEV300 BEV400 
BMW  1.9%  
Daimler 2.6%  0.8% 
FCA  1.1%  
Ford 0.1% 1.1%  
GM  1.0%  
Honda  1.8%  
Hyundai  1.3%  
Kia 1.7% 0.5%  
Jaguar – Land Rover 0.2% 1.4%  
Mazda 3.1%   
Mitsubishi 0.6% 1.2%  
Nissan  0.5%  
Subaru  2.2%  
Tesla    
Toyota 1.2% 0.7%  
Volvo 2.3% 0.7%  
VWA  1.5%  

 

For example, while Tesla obviously need not introduce additional BEVs to comply with ZEV 
mandates, our analysis indicates Nissan could need to increase BEV offerings modestly to do so, 
and Mazda and some other manufacturers may need to do considerably more than Nissan to 
introduce new BEV offerings. 

This representation of CO2 standards and ZEV mandates applies equally to all regulatory 
alternatives, and NHTSA’s analysis applies the CAFE Model to examine each alternative 
treating each manufacturer as responding jointly to the entire set of requirements. 

1.4.1 “No-Action” Alternative 

The No-Action Alternative (also sometimes referred to as “Alternative 0”) applies the CAFE 
target curves set in 2020 for MYs 2024-2026, which raised stringency by 1.5 percent per year for 
both passenger cars and light trucks.   

 
interpret 32902(h) as requiring it to ignore already-built fully electric vehicles, because doing so would be 
unrealistic, would make the analysis less informative by biasing the cost-benefit results, and would be inconsistent 
with OMB guidance in Circular A-4. 



 

Table 1-7 – Characteristics of No-Action Alternative – Passenger Cars 

 2024 2025 2026 
a (mpg) 51.78 52.57 53.37 
b (mpg) 38.74 39.33 39.93 
c (gpm per s.f.) 0.000433 0.000427 0.000420 
d (gpm) 0.00155 0.00152 0.00150 

 
Table 1-8 – Characteristics of No-Action Alternative – Light Trucks 

 2024 2025 2026 
a (mpg) 41.55 42.18 42.82 
b (mpg) 26.82 27.23 27.64 
c (gpm per s.f.) 0.000484 0.000477 0.000469 
d (gpm) 0.00423 0.00417 0.00410 

 
These equations are presented graphically in Figure 1-8 and Figure 1-9, where the x-axis 
represents vehicle footprint and the y-axis represents fuel economy, showing that in “CAFE 
space,” targets are higher in fuel economy for smaller footprint vehicles and lower for larger 
footprint vehicles. 

 

Figure 1-8 – No-Action Alternative, Passenger Car Fuel Economy Target Curves 



 

 

Figure 1-9 – No-Action Alternative, Light Truck Fuel Economy Target Curves 

EPCA, as amended by EISA, requires that any manufacturer’s domestically-manufactured 
passenger car fleet must meet the greater of either 27.5 mpg on average, or 92 percent of the 
average fuel economy projected by the Secretary for the combined domestic and non-domestic 
passenger automobile fleets manufactured for sale in the U.S. by all manufacturers in the model 
year.  The projection shall be published in the Federal Register when the standard for that model 
year is promulgated in accordance with 49 U.S.C. 32902(b).40  Any time NHTSA establishes or 
changes a passenger car standard for a model year, the MDPCS must also be evaluated or re-
evaluated and established accordingly, but for purposes of the No-Action alternative, the 
MDPCS is as it was established in the 2020 final rule, as shown in Table 1-9. 

Table 1-9 – No-Action Alternative – Minimum Domestic Passenger Car Standard 

2024 2025 2026 

41.8 mpg 42.4 mpg 43.1 mpg 
 

 
40 49 U.S.C. 32902(b)(4). 



 

As the baseline against which the Action Alternatives are measured, the No-Action Alternative 
also includes several other actions that NHTSA believes will occur in the absence of further 
regulatory action, as discussed above.   

NHTSA accomplished much of this through expansion of the CAFE Model after the prior 
rulemaking.  The previous version of the model had been extended to apply to GHG standards as 
well as CAFE standards but had not been published in a form that simulated simultaneous 
compliance with both sets of standards.  As discussed at greater length in the current CAFE 
Model documentation, the updated version of the model simulates all the following 
simultaneously: 

1. Compliance with CAFE standards. 

2. Compliance with GHG standards applicable to all manufacturers. 

3. Compliance with alternative GHG standards applicable to a subset of manufacturers. 

4. Compliance with ZEV mandates. 

5. Further fuel economy improvements applied if sufficiently cost-effective for buyers. 

Inclusion of these actions in the No-Action Alternative means that they are necessarily included 
in each of the Action Alternatives.  That is, the impacts of all the alternatives evaluated in this 
proposal are against the backdrop of these State and voluntary actions by automakers.  This is 
important to remember, because it means that automakers will be taking actions to improve fuel 
economy even in the absence of new CAFE standards, and that costs and benefits attributable to 
those actions are therefore not attributable to possible future CAFE standards. 

One of the effects of the costs and benefits attributable to those actions not being attributable to 
possible future CAFE standards is that the effects of this proposal appear less cost-beneficial 
than they would otherwise.  The apparent “over-compliance” with the No-Action Alternative 
alluded to above, in particular, reduces the benefits attributable to the proposal.  There are 
several causes for this apparent over-compliance, as also listed above.  The following text 
explores one of them in more detail. 

Among the realities that face manufacturers is consumer demand for fuel economy.  While this 
topic creates much debate, for purposes of compliance simulations, the NPRM analysis assumes 
that market demand for fuel economy can be represented by a 30 month payback (meaning that 
the value of future fuel savings (undiscounted) fully offsets the cost of the technology).  
However, the benefit cost analysis accounts for the full lifetime fuel savings that accrue to 
vehicles affected by the proposed standards. 



 

NHTSA staff believe that manufacturers do improve fuel economy even in the absence of 
standards, because: 

1) The last 15 years’ worth of CAFE compliance data show that they do. 

From 2004 – 2017 (the last year for which NHTSA has final compliance data and certified 
compliance positions), Figure 1-10 through Figure 1-12 illustrate the extent of certified over-
compliance by each manufacturer and fleet (as a percentage of the standard).  While some 
manufacturers’ compliance history, JLR for example, support the notion that manufacturers do 
not exceed their standards, the majority of the data tell a different story.  Some manufacturers 
have even exceeded their standards in certain fleets by 20 percent or more over many 
consecutive years (Honda passenger cars, or Subaru trucks, for example).  Others have similarly 
observed the auto industry’s secular march toward higher fuel economy over time, even in the 
absence of standards.  For example, Margo Oge told the Atlantic last year that “A 1.5 percent 
annual improvement is really nothing.  The industry, historically, has improved by anywhere 
from 1 to 2 percent.”41 

 

 
41 https://www.theatlantic.com/science/archive/2020/04/trumps-auto-rollback-will-eliminate-13500-jobs-
cafe/609748/ . 

https://www.theatlantic.com/science/archive/2020/04/trumps-auto-rollback-will-eliminate-13500-jobs-cafe/609748/
https://www.theatlantic.com/science/archive/2020/04/trumps-auto-rollback-will-eliminate-13500-jobs-cafe/609748/


 

 

Figure 1-10 – Percent Over-Compliance with CAFE Over Time (Domestic PC) 



 

 

Figure 1-11 – Percent CAFE Over Compliance Over Time (Imported PC)  



 

 

Figure 1-12 – Percent CAFE Over Compliance Over Time (Light Truck) 



 

2) Manufacturers have consistently told NHTSA that they make any fuel economy 
improvements for which the cost can be fully recovered within the first 2-3 years of 
ownership.  They have said that consumers typically shift toward improvements in other 
attributes after that point.   

The 2015 NAS report discussed this assumption explicitly, stating: “There is also empirical 
evidence supporting loss aversion as a possible cause of the energy paradox.  Greene (2011)  
showed that if consumers accurately perceived the upfront cost of fuel economy improvements 
and the uncertainty of fuel economy estimates, the future price of fuel, and other factors affecting 
the present value of fuel savings, the loss-averse consumers among them would appear to act as 
if they had very high discount rates or required payback periods of about 3 years.”42  Naturally, 
there are heterogeneous preferences for vehicle attributes in the marketplace, only one of which 
is the focus of this program.  At the same time, we are observing record sales of battery electric 
vehicles, we are also seeing sustained demand for pickup trucks with higher payloads and towing 
capacity.  This analysis, like all the CAFE analyses preceding it, uses an average value to 
represent these preferences across the market.   

3) As in previous CAFE analyses, our fuel price projections assume sustained increases in 
real fuel prices over the course of the rule (and beyond).  

As readers are certainly aware, fuel prices have changed over time – sometimes quickly, 
sometimes slowly, generally upward (see Figure 1-13). 

 

 
42 National Research Council 2015, Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-
Duty Vehicles, at 317.  Washington, DC: The National Academies Press.  https://doi.org/10.17226/21744.  Available 
for review in hard copy at DOT headquarters. 

https://doi.org/10.17226/21744


 

 
Figure 1-13 – Real Fuel Prices over Time 

In the 1990s, when fuel prices were historically low, manufacturers did not tend to improve their 
fuel economy, likely because there simply was very little consumer demand for improved fuel 
economy.  In subsequent decades, when fuel prices were higher, many of them have exceeded 
their standards in multiple fleets, and for multiple years (see Figure 1-10 through Figure 1-12).  
Our current fuel price projections look more like the last two decades, where prices have been 
more volatile, but also closer to $3/gallon on average.   

In general, during periods of either less stringent standards or consistently higher fuel prices, 
manufacturers across the industry have over-complied by varying amounts across regulatory 
classes.  In recent years, as fuel prices have steadily declined and CAFE standards have 
continued to increase (since 2008 for light trucks and since 2011 for passenger cars), fewer 
manufacturers have exceeded their standards.  However, our compliance data shows that that at 
least some manufacturers do improve their fuel economy if fuel prices are high enough, even if 
they are not able to respond perfectly to fluctuations right when they happen.  In many cases, 
specific manufacturers have exceeded their standards by significantly larger margins than we 
simulate in the rulemaking analysis, as the blue-bar graphs above illustrate.  This highlights the 
importance of fuel price assumptions both in the analysis and in the real world on the future of 
fuel economy improvements. 

4) Rulemaking analysis attempts to isolate the impact of the action being considered, which 
means that we need to capture accurately what else is happening besides the action.  

Given that fuel prices influence the degree to which manufacturers will increase fuel economy in 
the absence of regulation, the characterization of that behavior must be sufficiently flexible to 
accommodate multiple fuel price projections.  If, instead of our central analysis assumptions 



 

about fuel prices, we assumed fuel prices more like the historically low prices of the 1990s, this 
analysis would show little, if any, over-compliance.  Similarly, a multi-year spike in prices like 
the one that occurred from 2012 – 2014 should result in additional consumer demand for fuel 
economy – which we observed during that period.   

While the assumption in this analysis does result in some manufacturers continuing to improve 
fuel economy beyond the levels required in the baseline, the amount of this that occurs is 
generally small. 

Who is over-complying, and by how much? 

Manufacturers separate into three distinct groups: the manufacturers in the Framework 
Agreement; manufacturers who are bound by the 2020 GHG standards; and manufacturers who 
are exceeding their CAFE standard through the additional application of cost-effective 
technology (i.e., the 30-month payback assumption).  

Table 1-10 – Simulated (and Recent) Compliance for CA Agreement Companies  

CA 
Agreement 
Companies 

Fleet 
Percent Overcompliance (CAFE) Percent Overcompliance (GHG) 

2018 2019 2020 2026 2029 2020 2026 2029* 

BMW PC - - - 13 14 - - 6 
BMW LT - - - 17 17 1 1 14 
Ford PC - - - 9 10 - - 4 
Ford LT - 3 3 17 18 3 2 15 
Honda PC 13 7 3 15 15 2 - 10 
Honda LT 8 5 6 17 17 7 1 15 
Volvo PC 1 - - 1 4 - - - 
Volvo LT 9 4 - 21 25 - 5 19 
Volkswagen PC - - - 18 24 - 3 14 
Volkswagen LT - - - 15 16 - 1 12 

*MY 2027+ standards revert to national EPA final standards, by assumption. 
 
Table 1-10 shows that, for the Framework companies, the CA requirement is the binding 
constraint.  For example, BMW slightly under-complies with its PC standard by slightly over-
complies with its LT standard.  (Within the context of the simulation, under or over-complying 
by one percent is the equivalent of a gram or two per mile.  This is well within the precision of 
these simulations.)  Other manufacturers, Ford and Volvo for example, exceed their CA 
requirement but by less than their recent (and historical) over-compliance with CAFE.  However, 
in every case, compliance with the Framework Agreement leads to over-compliance in the CAFE 
program.  None of the over-compliance with baseline CAFE standards appears to be problematic 
for these companies. 

Other manufacturers are generally bound by the 2020 EPA standards, as Table 1-11 shows.  For 
example, Hyundai and General Motors are both bound by the 2020 EPA standards (compliance 
within 1 percent of the standard), and resulting fleets exceed CAFE standards by 3 – 5 percent.  
Mitsubishi exactly complies with its GHG standard, and the resulting fleet exceeds CAFE 



 

standards by about 3 percent.  A similar result occurs for JLR and Daimler (though Daimler LT 
also adds some cost-effective technology, discussed further below).   

Table 1-11 – Simulated (and Recent) Compliance for Companies Bound by National GHG  

Bound by CO2 Fleet 
Percent Overcompliance (CAFE) Percent Overcompliance (GHG) 

2018 2019 2020 2026 2029 2020 2026 2029 
Daimler PC - - - 3 5 - 1 - 
Daimler LT - - - 6 8 - 6 7 
FCA PC - - - 8 11 - 8 2 
FCA LT - - - 2 5 - 2 4 
General Motors PC - - - 2 3 - 1 - 
General Motors LT - - - 2 5 - 1 3 
Hyundai PC - - - 3 4 - 1 1 
Hyundai LT - - - 4 4 - 1 2 
JLR PC - - - - 4 - - 1 
JLR LT - - - 1 3 - 2 2 
Mitsubishi PC 6 - - 2 3 - 1 - 
Mitsubishi LT 1 - - 3 3 - 2 2 

 
For some OEMs, over-compliance is instead the result of technology application.  For example, 
while Mazda PC over-complies with both CAFE and GHG, the GHG over-compliance (the 
binding standard here) is less than their historical compliance.  However, Mazda’s LT fleet is 
over-complying through the application of cost-effective technology.  The same is generally true 
of Toyota’s PC fleet, though the LT fleet over-complies more than in recent years.   

Looking at the actual technologies that the CAFE Model is applying voluntarily, we see that in 
general, the model applies technologies that increase fuel economy for less than $40 per percent 
improvement – this is the amount that will pay back within the defined period.  An important 
exception is Subaru, which barely complies with its PC standard (in both programs), but 
significantly exceeds its LT standard in both programs.  While Subaru has historically exceeded 
its LT CAFE standard by comparable degrees, the over-compliance here is not driven by 
technology application, but rather by the assumed application of off-cycle (and AC) credits.  As 
the figures below demonstrate, Subaru is not actually applying much on-cycle technology, but 
simply making the economic decision to max out AC/OC, as some companies do.  Reliance on 
AC leakage and off-cycle credits has little impact on estimated real-world fuel savings (at least 
in the CAFE Model).  In fact, all of the companies in Table 1-12 are characterized by rapid 
increases in deployment of AC/OC credits toward compliance, which leaves many cost-effective 
technologies available.  



 

Table 1-12 – Simulated Over-Compliance through Cost-Effective Technology Application 

Overcomplying Fleet Percent Overcompliance (CAFE) Percent Overcompliance (GHG) 
2018 2019 2020 2026 2029 2020 2026 2029* 

Kia PC - 0 - 6 6 - 4 4 
Kia LT - - - 5 8 - 5 7 
Mazda PC 3 - - 5 6 - 3 1 
Mazda LT 3 1 - 9 9 - 6 8 
Nissan PC - - - 8 10 - 2 1 
Nissan LT - - - 4 4 - 7 9 
Subaru PC - - - 3 3 - 1 - 
Subaru LT 6 11 10 29 30 8 25 24 
Toyota PC 5 6 6 8 14 3 6 10 
Toyota LT - - - 9 11 - 9 11 

 
The following figures show the technologies that the CAFE Model actually applies for a subset 
of manufacturers.  



 

 

Figure 1-14 – Kia Voluntary Tech Application 

In theory, the technologies whose cost of application is negative should be applied regardless of 
regulatory pressure (or even fuel prices), because it would literally save manufacturers money to 
apply them.  Kia’s figure illustrates a common theme, that a number of technologies appear to 
have attractive cost-effectiveness – notably aerodynamic improvements and low rolling 
resistance tires.  Given that Hyundai-Kia is targeting their share of HEV/PHEV/BEV to be closer 
to 25 percent by 2025 (and we simulate less than 4 percent in the baseline), our estimated over-
compliance in the baseline is almost certainly too low, rather than too high.   



 

  

Figure 1-15 – Mazda Voluntary Tech Application 

Mazda’s figure tells a similar story – minor technologies that are either cost-saving, or very cost-
effective. 



 

 

Figure 1-16 – Nissan Voluntary Tech Application 

Nissan’s technology application is broader than the first two, but features many of the same 
technologies – aero, tires, certain cost-effective transmissions, certain cost-effective engines. 

As stated above, Subaru’s over-compliance is not a function of technology application.   



 

 

Figure 1-17 – Subaru Voluntary Tech Application 

Rather, Subaru exceeds both standards because we assume (a priori) that most manufacturers 
will make increasing use of AC/OC credits toward compliance in both programs.  Subaru’s OC 
credits are assumed to nearly triple during the rulemaking timeframe, and AC leakage credits to 
nearly double.  While CAFE does not account for AC leakage credits, manufacturers who opt to 
comply with GHG standards through their application leave cost-effective fuel economy 
technology on the table.  If instead, they opt to pursue compliance only through on-cycle fuel 
economy improvements, our analysis will still show some over-compliance in the LT fleet, but 
less than Subaru has typically exhibited.   



 

 

Figure 1-18 – Toyota Voluntary Tech Application 

We show Toyota applying more technology than the other manufacturers in this set.  Toyota has 
old truck engines that are infrequently redesigned (in the pickup segment), and the model takes 
advantage of cost-effective opportunities to upgrade them, as seems reasonable to expect that 
they will.  The same technologies that appear cost-effective for other manufacturers, also appear 
cost-effective for Toyota (including several whose cost is negative).  And, similar to Subaru, we 
show Toyota nearly doubling their application of both OC and AC leakage credits during the 
rulemaking period.  If instead, they choose to comply through the application of fuel economy 
technology, many of these cost-effective technologies would be applied in service of compliance, 
rather than in excess of it. 



 

What does this over-compliance mean for costs and benefits attributable to the proposal? 

If NHTSA had instead used a baseline in which fuel economy only ever improved due to CAFE 
regulation, net benefits attributable to the proposal would have increased by about $17 billion.  
While there can be reasoned arguments supporting higher or lower representations of consumer 
demand for fuel economy (or stratifying those assumptions by manufacturer or brand), NHTSA 
staff are not sure at this time that a basis exists to support a zero valuation given the compliance 
data and the fuel price assumptions we are using. 

NHTSA seeks comment on the above discussion, and whether and how to change our approach 
to developing the No-Action Alternative for the final rule. 

1.4.2 Action Alternatives 

In addition to the aforementioned No-Action Alternative, NHTSA has considered three “action” 
alternatives, each of which is more stringent than the No-Action Alternative during MYs 2024-
2026.  These action alternatives are as specified below, with Alternative 1 being the least 
stringent in MY 2026, Alternative 3 being the most stringent, and Alternative 2 (the Preferred 
Alternative) falling between Alternatives 1 and 3 in terms of MY 2026 stringency. 

1.4.2.1 Alternative 1  

Alternative 1 would increase CAFE stringency for MY 2024 by 9.14% for passenger cars and 
11.02% for light trucks and increase stringency in MYs 2025 and 2026 by 3.26% per year for 
both passenger cars and light trucks.  NHTSA calculates that the stringency of Alternative 1 in 
each of MYs 2024-2026 is equivalent to the average stringency of the California framework 
agreement applied to all manufacturers in those model years.  NHTSA calculated the stringency 
values using the following spreadsheet, assuming manufacturers would achieve a one percent 
reduction in stringency each model year under the California framework through the application 
of ZEV vehicle multipliers.  The spreadsheet applies a normalized stringency value of 100 
percent in MY 2021 for both CO2 standards and CAFE standards. 

      /y
CARB CO2 Reductions

2021 2022 2023 2024 2025 2026
Overall Fleet Average Required CO2 3.7% per year     100.00        96.30        92.74        89.31        86.00        82.82
Overall Fleet Average Required CO2 2.7% per year     100.00        97.30        94.67        92.12        89.63        87.21
Offset Through BEV            -          1.00          1.94          2.81          3.63          4.39
BEV Vehicle Multiplier          2.00          2.00          2.00          1.75          1.50
Percentage of Fleet BEV (for 1%/y effective offset)          0.50          0.97          1.41          2.07          2.93

Calculation of Equivalent CAFE Stringency
2021 2022 2023 2024 2025 2026

% CAFE fuel consumption offset for BEV fleet % (85%)          0.43          0.82          1.19          1.76          2.49
CAFE stringency (FC % of 2021)     100.00        96.88        93.85        90.92        87.87        84.72
Equivalent annualized rate 3.26%  

Figure 1-19 – CARB-Provided Spreadsheet Calculation 



 

Informed by these calculations, NHTSA defined Alternative 1 by applying the CAFE equivalent 
stringency increases in MYs 2024-2026, resulting in the coefficients listed in Table 1-13 and 
Table 1-14. 

Table 1-13 – Characteristics of Alternative 1 – Passenger Cars 

 2024 2025 2026 
a (mpg) 56.15 58.04 60.00 
b (mpg) 42.00 43.41 44.88 
c (gpm per s.f.) 0.000400 0.000387 0.000374 
d (gpm) 0.00141 0.00136 0.00132 

 

Table 1-14 – Characteristics of Alternative 1 – Light Trucks 

 2024 2025 2026 
a (mpg) 46.17 47.73 49.34 
b (mpg) 27.73 28.67 29.63 
c (gpm per s.f.) 0.000436 0.000422 0.000408 
d (gpm) 0.00377 0.00365 0.00353 

These equations are represented graphically in Figure 1-20 and Figure 1-21.  



 

 
Figure 1-20 – Alternative 1, Passenger Car Fuel Economy, Target Curves 



 

 

Figure 1-21 – Alternative 1, Light Truck Fuel Economy, Target Curves 

Under this alternative, the MDPCS is as shown in Table 1-15. 

Table 1-15 – Alternative 1 - Minimum Domestic Passenger Car Standard 

2024 2025 2026 

44.9 mpg 46.5 mpg 48.0 mpg 

NHTSA considered this alternative as a way to evaluate the effects of industry-wide CAFE 
standards approximately equivalent to the GHG standards the California framework agreement 
applies to signatory OEMs’ production for the U.S. market.43  The fact that five major 

 
43 CAFE standards defining this alternative reflect the fact that EPCA does not provide a basis for CAFE standards 
to include “multipliers” applicable to PHEV and/or BEV production volumes, as well as the fact that EPCA’s 
 



 

manufacturers voluntarily bound themselves to these levels, not just for MYs 2024-2026 but for 
MYs 2021-2026, is a relevant data point in terms of their technological feasibility and economic 
practicability for the fleet as a whole.   

1.4.2.2 Alternative 2 – Preferred Alternative 

Alternative 2 would increase CAFE stringency at 8 percent per year, which NHTSA calculates 
would result in total lifetime CO2 emissions from vehicles produced during MYs 2021-2029 
similar to total lifetime emissions that would occur if the California framework agreement had 
applied to all manufacturers during MYs 2021-2026.   

Table 1-16 – Characteristics of Alternative 2 – Passenger Cars 

 2024 2025 2026 
a (mpg) 55.44 60.26 65.50 
b (mpg) 41.48 45.08 49.00 
c (gpm per s.f.) 0.000405 0.000372 0.000343 
d (gpm) 0.00144 0.00133 0.00122 

 

Table 1-17 – Characteristics of Alternative 2 – Light Trucks 

 2024 2025 2026 
a (mpg) 44.48 48.35 52.56 
b (mpg) 26.74 29.07 31.60 
c (gpm per s.f.) 0.000452 0.000416 0.000382 
d (gpm) 0.00395 0.00364 0.00334 

These equations are represented graphically in Figure 1-22 and Figure 1-23. 

 
treatment of BEV energy consumption is different from the “0 grams/mile” treatment for purposes of determining 
compliance with GHG emissions standards. 



 

 

Figure 1-22 – Alternative 2, Passenger Car Fuel Economy, Target Curves 

 



 

 

Figure 1-23 – Alternative 2, Light Truck Fuel Economy, Target Curves 

Under this alternative, the MDPCS is as shown in Table 1-18. 

Table 1-18 – Alternative 2 – Minimum Domestic Passenger Car Standard 

2024 2025 2026 

44.4 mpg 48.2 mpg 52.4 mpg 

 
NHTSA considered this alternative as a way to evaluate the effects of CAFE standards that 
sought to achieve the climate objectives of the California framework agreement if all vehicle 
manufacturers had signed up for it from its beginning.  As for Alternative 1, the fact that five 
major manufacturers voluntarily bound themselves to these levels, not just for MYs 2024-2026 



 

but for MYs 2021-2026, is a relevant data point in terms of their technological feasibility and 
economic practicability for the fleet as a whole.44   

1.4.2.3 Alternative 3 – 10% per Year 

Alternative 3 would increase CAFE stringency at 10 percent per year, which NHTSA calculates 
would result in total lifetime CO2 emissions from vehicles produced during MYs 2021-2029 
similar to total lifetime emissions that would have occurred if NHTSA had promulgated final 
CAFE standards for MYs 2021-2025 at the augural levels announced in 2012 and, in addition, if 
NHTSA had also promulgated MY 2026 standards that reflected a continuation of that average 
rate of stringency increase (4.48% for passenger cars and 4.54% for light trucks).  

Table 1-19 – Characteristics of Alternative 3 – Passenger Cars 

 2024 2025 2026 
a (mpg) 56.67 62.97 69.96 
b (mpg) 42.40 47.11 52.34 
c (gpm per s.f.) 0.000396 0.000356 0.000321 
d (gpm) 0.00141 0.00127 0.00114 

 

Table 1-20 – Characteristics of Alternative 3 – Light Trucks 

 2024 2025 2026 
a (mpg) 45.47 50.53 56.14 
b (mpg) 27.34 30.38 33.75 
c (gpm per s.f.) 0.000442 0.000398 0.000358 
d (gpm) 0.00387 0.00348 0.00313 

 

These equations are represented graphically in Figure 1-24 and Figure 1-25. 

 
44 Section VI of the NPRM discusses economic practicability in more detail, including NHTSA’s long-standing 
interpretation that economic practicability need not mean that the standards are comfortably achievable for every 
single manufacturer individually, as long as they appear economically practicable for the fleet as a whole. 



 

 

Figure 1-24 – Alternative 3, Passenger Car Fuel Economy, Target Curves 



 

 

Figure 1-25 – Alternative 3, Light Truck Fuel Economy, Target Curves 

Under this alternative, the MDPCS is as follow shown in Table 1-21.  

Table 1-21 – Alternative 3 – Minimum Domestic Passenger Car Standard 

2024 2025 2026 

45.4 mpg 50.4 mpg 56.0 mpg 

NHTSA considered this alternative as a way to evaluate the effects of CAFE standards that 
would return to a fuel consumption trajectory exemplified by the standards announced in 2012.   

 



 

2 What inputs does the compliance analysis require? 

The CAFE Model applies various technologies to different vehicle models in each 
manufacturer’s product line to simulate how each manufacturer might make progress toward 
compliance with the specified standard.  Subject to a variety of user-controlled constraints, the 
model applies technologies based on their relative cost-effectiveness, as determined by several 
input assumptions regarding the cost and effectiveness of each technology, the cost of 
compliance (determined by the change in CAFE or CO2 credits, CAFE-related civil penalties, or 
value of CO2 credits, depending on the compliance program being evaluated), and the value of 
avoided fuel expenses.  For a given manufacturer, the compliance simulation algorithm applies 
technologies either until the manufacturer runs out of cost-effective technologies,45 until the 
manufacturer exhausts all available technologies, or, if the manufacturer is assumed to be willing 
to pay civil penalties or acquire credits from another manufacturer, until paying civil penalties or 
purchasing credits becomes more cost-effective than increasing vehicle fuel economy.  At this 
stage, the system assigns an incurred technology cost and updated fuel economy to each vehicle 
model, as well as any civil penalties incurred/credits purchased by each manufacturer.  This 
compliance simulation process is repeated for each model year included in the study period 
(through model year 2050 in this analysis). 

This point marks the system’s transition between compliance simulation and effects calculations.  
At the conclusion of the compliance simulation for a given regulatory scenario, the system 
produces a full representation of the registered light-duty vehicle population in the United States.  
The CAFE Model then uses this fleet to generate estimates of the following (for each model year 
and calendar year included in the analysis): lifetime travel, fuel consumption, carbon dioxide and 
criteria pollutant emissions, the magnitude of various economic externalities related to vehicular 
travel (e.g., congestion and noise), and energy consumption (e.g., the economic costs of short-
term increases in petroleum prices, or social damages associated with GHG emissions).  The 
system then uses these estimates to measure the benefits and costs associated with each 
regulatory alternative (relative to the no-action alternative).   

To perform this analysis, the CAFE Model uses millions of data points contained in several input 
files that have been populated by engineers, economists, and safety and environmental program 
analysts at both NHTSA and the DOT’s Volpe National Transportations Systems Center 
(Volpe).  In addition, some of the input data comes from modeling and simulation analysis 
performed by experts at Argonne National Laboratory using their Autonomie full vehicle 
simulation model and BatPaC battery cost model.  Other inputs are derived from other models, 
such as the U.S. Energy Information Administration’s (EIA’s) National Energy Modeling 
System (NEMS), Argonne’s “GREET” fuel-cycle emissions analysis model, and U.S. EPA’s 
“MOVES” vehicle emissions analysis model.  As NHTSA and Volpe are both organizations 
within DOT, we use DOT throughout these chapters to refer to the collaborative work performed 
for this analysis. 

 
45 Generally, the model considers a technology cost-effective if it pays for itself in fuel savings within 30 months.  
Depending on the settings applied, the model can continue to apply technologies that are not cost-effective rather 
than choosing other compliance options; if it does so, it will apply those additional technologies in order of cost-
effectiveness (i.e., most cost-effective first). 



 

This Chapter 2 and the following Chapter 3 describe the inputs that the compliance simulation 
requires, including an in-depth discussion of the technologies used in the analysis, how they are 
defined in the CAFE Model, how they are characterized on vehicles that already exist in the 
market, how they can be applied to realistically simulate manufacturer’s decisions, their 
effectiveness, and their cost.  The inputs and analyses for the effects calculations, including 
economic, safety, and environmental effects, are discussed later in Chapters 4 through 7, 
although the overview of inputs below provides a brief description of the information contained 
in the input files that supports those calculations. 

2.1 Overview of Inputs to the Analysis  

The CAFE Model input files defining the analysis fleet and the fuel-saving technologies to be 
included in the analysis span more than a million records, but deal with a relatively discrete 
range of subjects (e.g., what vehicles are in the fleet, what are the key characteristics of those 
vehicles, what fuel-saving technologies are expected to be available, and how might adding those 
technologies impact vehicles’ fuel economy levels and costs).  The CAFE Model makes use of a 
considerably wider range of other types of inputs, and most of these are contained in other model 
input files.  The nature and function of many of these inputs remains unchanged relative to 2020 
versions, although DOT staff have updated the values of many of these same inputs.  The CAFE 
Model documentation accompanying today’s notice lists and describes all model inputs and 
explains how inputs are used by the model.  Most input values are discussed below, in 
subsections discussing specific technical, economic, energy, safety, and environmental factors.  
The remainder of this subsection provides an overview of the scope of different model input 
files.  The overview is organized based on CAFE Model file types, as in the model 
documentation. 

2.1.1 Market Data File 

The “Market Data” file contains the detailed description—discussed above—of the vehicle 
models and model configurations each manufacturer produces for sale in the U.S.  The file also 
contains a range of other inputs that, though not specific to individual vehicle models, may be 
specific to individual manufacturers.   

The file contains a set of specific worksheets, as follows: 

• “Manufacturers” worksheet:  Lists specific manufacturers, indicates whether 
manufacturers are expected to prefer paying CAFE fines to applying technologies that 
would not be cost-effective, indicates what “payback period” defines buyers’ willingness 
to pay for fuel economy improvements, enumerates CAFE and CO2 credits banked from 
model years prior to those represented explicitly, and indicates how sales “multipliers” 
are to be applied when simulating compliance with CO2 standards.  DOT staff have 
updated this worksheet to include inputs used to account for aspects of each 
manufacturer’s production relevant to compliance with ZEV mandates, as discussed 
further in Chapter 2.3, Simulating the Zero Emissions Vehicle Program. 

• “Credits and Adjustments” worksheet:  Enumerates estimates—specific to each 
manufacturer and fleet—of expected CO2 and CAFE adjustments reflecting improved AC 



 

efficiency, reduced AC refrigerant leakage, improvements to “off cycle” efficiency, and 
production of flexible fuel vehicles (FFVs).  The model applies AC refrigerant leakage 
adjustments only to CO2 levels, and applies FFV adjustments only to CAFE levels. 

• “Vehicles” worksheet:  Lists vehicle models and model configurations each 
manufacturer produces for sale in the U.S.; identifies shared vehicle platforms; indicates 
which engine and transmission is present in each vehicle model configuration; specifies 
each vehicle model configuration’s fuel economy level, production volume, and average 
price; specifies several engineering characteristics (e.g., curb weight, footprint, and fuel 
tank volume); assigns each vehicle model configuration to a regulatory class, technology 
class, engine class, and safety class; specifies schedules on which specific vehicle models 
are expected to be redesigned and freshened; specifies how much U.S. labor is involved 
in producing each vehicle model/configuration; and indicates whether specific 
technologies are already present on specific vehicle model configurations, or, due to 
engineering or product planning considerations, should be skipped.  DOT staff have 
updated this worksheet to include inputs used to indicate which models might reasonably 
treated as candidates to be replaces with vehicles earning credit toward compliance with 
ZEV mandates, as discussed in Chapter 2.3, Simulating the Zero Emissions Vehicle 
Program.  DOT staff have also updated this worksheet to include inputs used to indicate 
which manufacturers are subject to the CARB’s “Framework Agreement,” as discussed 
in Chapter 1. 

• “Engines” worksheet:  Identifies specific engines used by each manufacturer and for 
each engine, lists a unique code (referenced by the engine code specified for each vehicle 
model configuration and identifies the fuel(s) with which the engine is compatible, the 
valvetrain design (e.g., DOHC), the engine’s displacement, cylinder configuration and 
count, and the engine’s aspiration type (e.g., naturally aspirated, turbocharged).  The 
worksheet also indicates whether specific technologies are already present on specific 
engines, or, due to engineering or product planning considerations, should be skipped. 

• “Transmissions” worksheet:  Similar to the Engines worksheet, identifies specific 
transmissions used by each manufacturer and for each transmission, lists a unique code 
(referenced by the transmission code specified for each vehicle model configuration and 
identifies the type (e.g., automatic or CVT) and number of forward gears.  Also, indicates 
whether specific technologies are already present or, due to engineering or product 
planning considerations, should be skipped. 

2.1.2 Technologies File 

The Technologies file identifies about six dozen technologies to be included in the analysis, 
indicates when and how widely each technology can be applied to specific types of vehicles, 
provides most of the inputs involved in estimating what costs will be incurred, and provides 
some of the inputs involved in estimating impacts on vehicle fuel consumption and weight.   



 

The file contains the following types of worksheets: 

• “Parameters” worksheet:  Not to be confused with the “Parameters” file discussed 
below, this worksheet in the Technologies file indicates, for each technology class, the 
share of the vehicle’s curb weight represented by the “glider” (the vehicle without the 
powertrain). 

• “Technologies” worksheet:  For each named technology, specifies the share of the 
entire fleet to which the technology may be additionally applied in each model year. 

• “Technology Class” worksheets:  In a separate worksheet for each of the 10 technology 
classes discussed above (and an additional 2—not used for this analysis—for heavy-duty 
pickup trucks and vans), identifies whether and how soon the technology is expected to 
be available for wide commercialization, specifies the percentage of miles a vehicle is 
expected to travel on a secondary fuel (if applicable, as for plug-in hybrid electric 
vehicles), indicates a vehicle’s expected electric power and all-electric range (if 
applicable), specifies expected impacts on vehicle weight, specifies estimates of costs for 
technologies in each model year (and factors by which electric battery costs are expected 
to be reduced in each model year), specifies any estimates of maintenance and repair cost 
impacts, and specifies any estimates of consumers’ willingness to pay for the technology. 

• “Engine Type” worksheets:  In a separate worksheet for each of 28 initial engine types 
identified by cylinder count, number of cylinder banks, and configuration (DOHC, unless 
identified as OHV or SOHC), specifies estimates of costs in each model year, as well as 
any estimates of impacts on maintenance and repair costs. 

2.1.3 Parameters File 

The “Parameters” file contains inputs spanning a range of considerations, such as economic and 
labor utilization impacts, vehicle fleet characteristics, fuel prices, scrappage and safety model 
coefficients, fuel properties, and emission rates.   

The file contains a set of specific worksheets, as follows: 

• “Economic Values” worksheet:  Specifies a variety of inputs, including social and 
consumer discount rates to be applied, the “base year” to which to discount social 
benefits and costs (i.e., the reference years for present value analysis), discount rates to be 
applied to the social cost of CO2 emissions, the elasticity of highway travel with respect 
to per-mile fuel costs (also referred to as the rebound effect), the gap between test (for 
certification) and on-road (i.e., real world) fuel economy, the fixed amount of time 
involved in each refuel event, the share of the tank refueled during an average refueling 
event, the value of travel time (in dollars per hour per vehicle), the estimated average 
number of miles between mid-trip EV recharging events (separately for each BEV 
considered in the analysis), the rate (in miles of capacity per hour of charging) at which 
EV batteries are recharged during such events, the values (in dollars per vehicle-mile) of 
congestion and noise costs, costs of vehicle ownership and operation (e.g., sales tax), 
economic costs of oil imports, estimates of future macroeconomic measures (e.g., GDP), 



 

and rates of growth in overall highway travel (separately for low, reference, and high oil 
prices). 

• “Vehicle Age Data” worksheet:  Specifies nominal average survival rates and annual 
mileage accumulation for cars, vans and SUVs, and pickup trucks.  These inputs are used 
only for displaying estimates of avoided fuel savings and CO2 emissions while the model 
is operating.  Calculations reported in model output files reflect, among other things, 
application of the scrappage model. 

• “Fuel Prices” worksheet:  Separately for gasoline, E85, diesel, electricity, hydrogen, 
and CNG, specifies historical and estimated future fuel prices (and average rates of 
taxation).  Includes values reflecting low, reference, and high estimates of oil prices. 

• “Scrappage Model Values” worksheet:  Specifies coefficients applied by the scrappage 
model, which the CAFE Model uses to estimate rates at which vehicles will be scrapped 
(removed from service) during the period covered by the analysis. 

• “Historic Fleet Data” worksheet:  For model years not simulated explicitly (here, 
model years through 2016), and separately for cars, vans and SUVs, and pickup trucks, 
specifies the initial size (i.e., number new vehicles produced for sale in the U.S.) of the 
fleet, the number still in service in the indicated calendar year (here, 2016), the relative 
shares of different fuel types, and the average fuel economy achieved by vehicles with 
different fuel types, and the averages of horsepower, curb weight, fuel capacity, and price 
(when new). 

• “Safety Values” worksheet:  Specifies coefficients used to estimate the extent to which 
changes in vehicle mass impact highway safety.  Also, specifies statistical value of 
highway fatalities, the share of incremental risk (of any additional driving) internalized 
by drivers, rates relating the cost of damages from non-fatal losses to the cost of fatalities, 
and rates relating the occurrence of non-fatal injuries to the occurrence of fatalities.  DOT 
staff have updated this worksheet to include inputs used to estimate the occurrence and 
monetized damages from crashes resulting in injuries or property damage, but not 
fatalities.  Chapter 7 discussions these new estimation procedures. 

• “Fatality Rates” worksheet:  Separately for each model year from 1975-2050, and 
separately for each vehicle age (through 39 years) specifies the estimated nominal 
number of fatalities incurred per billion miles of travel by which to offset fatalities. 

• “Credit Trading Values” worksheet:  Specifies whether various provisions related to 
compliance credits are to be simulated (currently limited to credit carry-forward and 
transfers), and specifies the maximum number of years’ credits may be carried forward to 
future model years.  Also, specifies statutory (for CAFE only) limits on the quantity of 
credits that may be transferred between fleets, and specifies amounts of lifetime mileage 
accumulation to be assumed when adjusting the value of transferred credits.  Also, 
accommodates a setting indicating the maximum number of model years to consider 
when using expiring credits. 



 

• “Employment Values” worksheet:  Specifies the estimated average revenue OEMs and 
suppliers earn per employee, the retail price equivalent factor applied in developing 
technology costs, the average quantity of annual labor (in hours) per employee, a 
multiplier to apply to U.S. final assembly labor utilization in order to obtain estimated 
direct automotive manufacturing labor, and a multiplier to be applied to all labor hours. 

• “Fuel Properties” worksheet:  Separately for gasoline, E85, diesel, electricity, 
hydrogen, and CNG, specifies energy density, mass density, carbon content, and tailpipe 
SO2 emissions (grams per unit of energy). 

• “Fuel Import Assumptions” worksheet:  Separately for gasoline, E85, diesel, 
electricity, hydrogen, and CNG, specifies the extent to which (a) changes in fuel 
consumption lead to changes in net imports of finished fuel, (b) changes in fuel 
consumption lead to changes in domestic refining output, (c) changes in domestic 
refining output lead to changes in domestic crude oil production, and (d) changes in 
domestic refining output lead to changes in net imports of crude oil. 

• “Emissions Health Impacts” worksheet:  Separately for NOx, SO2 and PM2.5 
emissions, separately for upstream and vehicular emissions, and for each of calendar 
years 2020, 2025, and 2030, specifies estimates of various health impacts, such as 
premature deaths, acute bronchitis, and respiratory hospital admissions.  Consulting with 
technical staff at EPA and Argonne National Laboratory, DOT staff have refined the 
structure of these inputs to account separately for refining, petroleum extraction, finished 
fuel distribution (i.e., transportation, storage, and distribution), and electricity generation, 
and to differentiate between gasoline and diesel vehicle emissions. 

•  “Greenhouse Emission Costs” worksheet:  For each calendar year through 2080, 
specifies low, average, and high estimates of the social cost of CO2 emissions, in dollars 
per metric ton.  Accommodates analogous estimates for CH4 and N2O. 

• “Criteria Pollutant Emission Costs” worksheet:  Separately for NOx, SO2 and PM2.5 
emissions, separately for upstream and vehicular emissions, and for each of calendar 
years 2016, 2020, 2025, and 2030, specifies social costs on a per-ton basis. 

• “Upstream Emissions (UE)” worksheets:  Separately for gasoline, E85, diesel, 
electricity, hydrogen, and CNG, and separately for calendar years 2020, 2025, 2030, 
2035, 2040, 2045, and 2050, and separately for various upstream processes (e.g., 
petroleum refining), specifies emission factors (in grams per million BTU) for each 
included criteria pollutant (e.g., NOx) and toxic air contaminant (e.g., benzene). 

• “Tailpipe Emissions (TE)” worksheets:  Separately for gasoline and diesel, for each of 
model years 1975-2050, for each vehicle vintage through age 39, specifies vehicle 
tailpipe emission factors (in grams per mile) for CO, VOC, NOx, PM2.5, CH4, N2O, 
acetaldehyde, acrolein, benzene, butadiene, formaldehyde, and diesel PM10. 



 

2.1.4 Scenarios File 

The CAFE Model represents each regulatory alternative as a discrete scenario, identifying the 
first-listed scenario as the baseline relative to which impacts are calculated.  Each scenario is 
described in a worksheet in the Scenarios input file, with standards and related provisions 
specified separately for each regulatory class (passenger car or light truck) and each model year.  
Inputs specify the standards’ functional forms and defining coefficients in each model year.  
Multiplicative factors and additive offsets are used to convert fuel economy targets to CO2 
targets, the two being directly mathematically related by a linear transformation.  Additional 
inputs specify minimum CAFE standards for domestic passenger car fleets, determine whether 
upstream emissions from electricity and hydrogen are to be included in CO2 compliance 
calculations, specify the governing rates for CAFE civil penalties, specify estimates of the value 
of CAFE credits (for CAFE Model operating modes applying these values), specify how flexible 
fuel vehicles (FFVs) and PHEVs are to be accounted for in CAFE compliance calculations, 
specific caps on adjustments reflecting improvements to off-cycle and AC efficiency and 
emissions, specify any estimated amounts of average Federal tax credits earned by HEVs, 
PHEVs, BEVs, and FCVs.  Consulting with CARB technical staff, DOT staff have added inputs 
to account for some manufacturers’ commitment to CARB’s “Framework Agreement,” as 
discussed above in Chapters 1 and 2.  DOT staff have also added inputs to identify specific 
model years for which new standards are being proposed or finalized.  The worksheets also 
accommodate some other inputs, such those as involved in analyzing standards for heavy-duty 
pickups and vans, not used in today’s analysis. 

2.1.5 Run Time Settings 

In addition to inputs contained in the above-mentioned files, the CAFE Model makes use of 
some settings selected when operating the model.  These include which standards (CAFE or 
CO2) are to be evaluated; what model years the analysis is to span; when technology application 
is to begin; whether use of compliance credits is to be simulated and, if so, until what model 
year; whether dynamic economic models are to be exercised and, if so, how many sales model 
iterations are to be undertaken and using what price elasticity; whether low, average, or high 
estimates are to be applied for fuel prices, the social cost of carbon, and fatality rates; by how 
much to scale benefits to consumers; and whether to report an implicit opportunity cost.  DOT 
staff have also added inputs that can be used to require technology application and vehicle sales 
under each regulatory alternative to remain unchanged from the no-action alternative (i.e., the 
baseline) until some future model year. 

2.1.6 Simulation Inputs 

As mentioned above, the CAFE Model makes use of databases of estimates of fuel consumption 
impacts and, as applicable, battery costs for different combinations of fuel saving technologies.  
For today’s analysis, DOT developed these databases using a large set of full vehicle and 
accompanying battery cost model simulations developed by Argonne National Laboratory.  To 
be used as files provided separately from the model and loaded every time the model is executed, 
these databases are prohibitively large, spanning more than a million records and more than half 
a gigabyte.  To conserve memory and speed model operation, the agencies have integrated the 



 

databases into the CAFE Model executable file.  When the model is run, however, the databases 
are extracted and placed in an accessible location on the user’s disk drive.   

The databases, each of which is in the form of a simple (if large) text file, are as follows: 

• “FE1_Adjustments.csv”:  This is the main database of fuel consumption estimates.  
Each record contains such estimates for a specific indexed (using a multidimensional 
“key”) combination of technologies for each of the technology classes in the Market Data 
and Technologies files.  Each estimate is specified as a percentage of the “base” 
technology combination for the indicated technology class. 

• “FE2_Adjustments.csv”:  Specific to PHEVs, this is a database of fuel consumption 
estimates applicable to operation on electricity, specified in the same manner as those in 
the main database. 

• “Battery_Costs.csv”:  Specific to technology combinations involving vehicle 
electrification (including 12V stop-start systems), this is a database of estimates of 
corresponding base costs (before learning effects) for batteries in these systems. 

2.1.7 Argonne National Laboratory Autonomie Simulation Databases 

As discussed above, the technology effectiveness values used in the CAFE Model come from a 
set of full vehicle simulations developed by Argonne National Laboratory using the Autonomie 
model.  While DOT adapts these prohibitively large simulation databases into the CAFE Model 
executable file, DOT provides a summary of simulation outputs for each vehicle technology 
class.  Argonne also provides assumptions summary files to describe the assumptions used in 
building vehicle models and for the BatPaC battery cost modeling.   

The workbooks Argonne provides for the full vehicle simulations are, as follows: 
 

• “CompactNonPerfo_2101.csv; CompactPerfo_2101.csv; MidsizeNonPerfo_2101.csv; 
MidsizePerfo_2101.csv; MidsizeSUVNonPerfo_2101.csv; 
MidsizeSUVPerfo_2101.csv; PickupNonPerfo_2101.csv; PickupPerfo_2101.csv; 
SmallSUVNonPerfo_2101.csv; SmallSUVPerfo_2101.csv”:  These are the ten 
databases that contain the outputs of the Autonomie full vehicle simulations.  These ten 
vehicle classes account for over one million simulations that have been considered for 
this analysis.  These results are in raw absolute mpg form and then are converted to the 
appropriate incremental effectiveness value for use in the CAFE Model. 

• “ANL - All Assumptions_Summary_NPRM_022021.xlsx”:  This summary workbook 
provides broad summaries of assumptions used for the Autonomie full vehicle 
simulations, such as component weights, cold start penalties, component specifications, 
etc. 

• “ANL - Data Dictionary_January 2021.xlsx”:  This workbook contains descriptions of 
inputs and units for the Autonomie simulation results.  



 

• “ANL - Summary of Main Component Performance 
Assumptions_NPRM_022021.xlsx”:  This workbook contains another set of 
characteristics data for transmission efficiencies, engine fueling rates, and electric motor 
efficiencies.  

“ANL_BatPac_Lookup_tables_Feb2021v2.xlsx”:  This contains the inputs, assumptions, and 
outputs of the battery pack modeling performed by Argonne for this NPRM analysis. 

2.2 The Market Data File  

The starting point for the evaluation of different stringency levels for future fuel economy 
standards is the analysis fleet, which is a snapshot of the recent light duty vehicle market.  The 
analysis fleet provides a reference from which to project how manufacturers could apply 
additional technologies to vehicles to cost-effectively improve vehicle fuel economy, in response 
to regulatory action and market conditions.46  As the scope of CAFE analysis has widened over 
successive rulemakings, the range of data that must be included for each vehicle in the analysis 
fleet has, in turn, widened, currently including nearly half a million pieces of information used 
and referenced in the CAFE Model analysis.  As for all CAFE rulemakings to date, DOT’s Volpe 
National Transportation Systems Center (a multidisciplinary federal resource overseen by the 
Department’s Assistant Secretary for Research and Technology) has provided support for 
NHTSA’s CAFE rulemaking analysis through an interagency agreement between NHTSA and 
the Volpe Center. 

The Market Data file contains information about manufacturer credit banks, fine payment 
preferences, and whether a manufacturer has, through an agreement with the California Air 
Resources Board (CARB), committed to exceed the standards set in the 2020 final rule.  
Additionally, the Market Data file includes some information about the distribution of vehicle 
sales within the United States, recognizing the proportion of vehicles sold in California and 
Section 177 states, and in the rest of the U.S.  This information supports the representation of 
Zero Emissions Vehicle (ZEV) mandates, discussed in detail below.  Credit banks, fine payment 
preferences, and other information described in this paragraph appear on the “Manufacturers” tab 
of the Market Data file. 

The “Credits and Adjustments” tab of the Market Data file summarizes additional credits 
previously claimed by manufacturer, by regulatory class.  On this tab, the Market Data file 
includes historical data about claimed A/C efficiency, A/C leakage, off-cycle credits, and flex 
fuel vehicle (FFV) credits, as well as forward looking projections about credits that DOT 
believes may be claimed in the future.47   

The “Vehicles” tab of the Market Data file includes information about the vehicles sold in the 
U.S. in a given model year.  In this tab, DOT staff catalogue the types of vehicles sold (including 
the number sold, the regulatory class, the footprint, and the fuel economy), and information 

 
46 The CAFE Model does not generate compliance paths a manufacturer should, must, or will deploy.  It is intended 
as a tool to demonstrate a compliance pathway a manufacturer could choose.  It is almost certain all manufacturers 
will make compliance choices differing from those projected by the CAFE Model. 
47 DOT discusses the flexibilities and credits, as well as the basis for these projections, in Chapter 3.8 and Preamble 
Section VII. 



 

about those vehicles that informs the baseline for the analysis (for instance, which fuel saving 
technologies already appear on production vehicles).  The vehicles tab includes information 
necessary to link observed vehicles to effectiveness estimates for additional fuel saving 
technologies (with “technology class” assignments), and technology costs (with “technology 
class,” and “engine class” assignments, needed to point to relevant cost information in the 
technologies input file).  The Market Data file contains additional information about projected 
refresh and redesign cycles, and current part sharing of structural parts, engines, and 
transmissions (with “platforms,” “engine code,” and “transmission code”) that the CAFE Model 
takes into account when applying additional fuel saving technologies.  Estimates of manufacturer 
suggested retail price (MSRP), labor hours per vehicle, and percent U.S. content provide 
reference information used in other CAFE Model calculations. 

The Market Data file “Engines” and “Transmissions” tabs characterize technology content of 
engine and transmission systems in use in the observed fleet and link these systems back to 
observed vehicles via the “engine code” and “transmission code.”     

A reasonable characterization of the analysis fleet is key to estimating costs and benefits 
resulting from the rulemaking action.  The baseline sales volumes, fuel economies, and 
manufacturer fleet fuel economies when compared to future standards help DOT (via CAFE 
Model compliance simulations) evaluate how manufacturers may respond to any projected future 
standards (as future standards are outlined in the scenarios input file), in light of each 
manufacturer’s product portfolio and projected market conditions (with market conditions 
including cost of fuel saving technologies as outlined in the technologies input file, and projected 
fuel prices as outlined in the parameters input file).  The analysis fleet inputs, as characterized in 
the Market Data file, help DOT assess how and when technologies may be adopted in the future 
(considering refresh and redesign cycles and part sharing), help DOT account for technologies 
already applied to vehicles (reducing the likelihood of “double-counting” the effectiveness of 
technologies, which can occur if the analysis assumes already applied technologies are still 
available to improve a vehicle’s fuel economy), and help DOT account for the idea that some 
fuel saving technologies may not meet functional requirements for all vehicle types, or 
performance applications.  The Market Data file, and information outlined in this TSD, 
endeavors to make clear the baseline assumptions with respect to the fleet used in a rulemaking 
analysis. 

The market for light-duty automotive equipment in the United States is highly heterogeneous, 
and even half a million data points may not be enough to characterize every potentially relevant 
nuance of the automotive marketplace.  As for every CAFE rulemaking, today’s analysis fleet 
reflects a balance between the exigencies of the rulemaking and the availability of supporting 
data. 

The following sections discuss the inputs included in the Market Data file, including vehicles 
and their technology content built in MY 2020 (i.e., the analysis fleet or baseline fleet), and 
baseline safety, economic, and manufacturer compliance positions.   



 

2.2.1 Characterizing Vehicles and their Technology Content  

Most of the information in the Market Data file is about specific vehicles, including sales, fuel 
economies, regulatory class, and the vehicle specifications (based on best information available 
at the time DOT staff assemble the Market Data file).  Beyond specifications, information in the 
Market Data file links parts of the analysis.  For instance, while the analysis fleet sets the 
baseline for fuel saving technology content already in use, by vehicle, the Market Data file also 
includes information linking individual vehicles to technology effectiveness estimates and 
technology costs (both of which may vary by the type of vehicle, and the configuration of 
equipment on the vehicle).  

In the Market Data file, DOT staff assign each vehicle a “technology class.”  The technology 
class is used to link the observed vehicle to effectiveness estimates and technology costs.  The 
CAFE Model references the Argonne National Laboratory (Argonne) Autonomie simulations for 
many effectiveness estimates used in the compliance simulation.  In these simulations, Argonne 
projects the fuel economies for ten different types of vehicles for many combinations of fuel 
saving technologies.  The technology class in the Market Data file points the CAFE Model to the 
most relevant reference set of effectiveness estimates for each vehicle.  Similarly, some costs for 
fuel saving technologies vary by the type of vehicle (for instance, a pound of weight saved on a 
small car may not cost the same as the cost of a pound of weight on a pickup truck, even if the 
two have adopted very little of the mass reduction technology considered in the analysis).  The 
technology class in the Market Data file also points the CAFE Model to the most relevant 
reference costs in the “Technologies File,” with costs for vehicle technologies being listed on the 
technology class tab.   

Just as some vehicle technology costs vary by type of vehicle (or technology class, as listed in 
the Market Data file and Technologies file), the cost of fuel saving engine technologies and some 
electrification systems vary by the engine architecture, or peak power output most closely 
associated with an engine architecture.  For instance, the cost of adding cylinder deactivation to a 
naturally aspirated dual overhead cam (DOHC) inline four-cylinder engine is not projected to be 
the same as adding cylinder deactivation to a naturally aspirated overhead valve (OHV) V eight-
cylinder engine.  Similarly, some naturally aspirated inline four cylinder engines may retain four 
cylinders when turbocharged (“4C1B” engine technology class, meaning an engine with four 
cylinders and one bank), but lower power variants might go to three cylinders when 
turbocharged (“4C1B_L” engine technology class), and thereby have lower projected costs in 
comparison for the step to turbocharging.  For a more detailed discussion of the mechanics of 
engine technology classes and engine costs, see Chapter 3.1.5.  The engine technology class in 
the Market Data file points the CAFE Model to the most relevant engine technology costs.   

For each type of vehicle (or row), the Market Data file lists a certification fuel economy, sales 
volume, regulatory class, and footprint.  These are the bare minimum pieces of information 
needed to understand if a manufacturer is under complying, or over complying with standards.  
The Market Data file often includes a few rows for vehicles that may have identical certification 
fuel economies, regulatory classes, and footprints (with compliance sales volumes divided out 
among rows), because other pieces of information used in the CAFE Model may be dissimilar. 



 

For instance, in the reference materials used to create the Market Data file, for a nameplate curb 
weight may vary by trim level (with premium trim levels often weighing more on account of 
additional equipment on the vehicle), or a manufacturer may provide consumers the option to 
purchase a larger fuel tank size for their vehicle.  These pieces of information may not impact the 
observed compliance position directly, but curb weight (in relation to other vehicle attributes) is 
important to assess mass reduction technology already used on the vehicle, and fuel tank size is 
directly relevant to saving time at the gas pump, which the CAFE Model uses when calculating 
the value of avoided time spent refueling. 

The Market Data file also provides an inventory of fuel saving technologies already equipped on 
the observed vehicles.  A reasonable characterization is important: underestimating the amount 
of fuel saving technology content on a vehicle would allow the CAFE Model to apply that 
technology again in the compliance simulation (likely at a low cost) and create a “phantom” 
projection of potential fuel economy savings.  On the other hand, overestimating the amount of 
fuel saving technology content already on a vehicle would also remove the misapplied 
technologies from consideration, and confuse the cost accounting if that technology is replaced 
with another (for instance, if the assigned amount of engine technology content is higher than 
actually used, the projected incremental cost to switch to electrified technologies may be 
underestimated).  The assignment process for each technology is described in detail in Chapter 
3.1.2. 

For some fuel saving technologies, manufacturers share parts or systems to get the most from 
economies of scale.  The CAFE Model accounts for some relationships between vehicles that are 
important to consider.  For instance, similar engines and transmissions often appear on many 
types of vehicles.  Manufacturers often use platforms (with shared mass reduction technologies) 
on a family of vehicles.  The CAFE Model includes measures to maintain complexity in 
compliance simulations as it evaluates cost-effective compliance pathways.  DOT staff assign 
each vehicle in the Market Data file an “engine code,” and “transmission code,” and a 
“platform.”  With few exceptions, vehicles that share engine codes will adopt engine 
technologies together, and vehicles that share transmission codes will adopt transmission 
technologies together.  Vehicles that share platforms will adopt mass reduction technologies 
together.  Redesign cycles for all of the vehicles with shared components may not always be in 
sync, but vehicles in the family (with laggard redesigns and refreshes) inherit these shared 
systems at the first available opportunity.  

In limited cases, the Market Data file includes information about technologies that the CAFE 
Model may not apply.  For the row on the vehicle, engine, or transmission, and for the 
technology column listed in the Market Data file, “SKIP” appears in the spreadsheet cell.  
Generally, DOT staff have used data and logic to come up with these rules.  For instance, 
secondary axle disconnect (SAX) may not be applied to vehicles that drive power through two 
wheels (because the SAX technology has a prerequisite of the vehicle driving all four wheels to 
be applied), so SKIP would appear in the Market Data file for vehicles to which the technology 
could not be applied (therefore acknowledging that manufacturers could not apply this particular 
fuel saving technology to achieve fuel economy improvements for a particular vehicle).  
Instances of SKIP logic includes SKIPs to high levels of aerodynamic improvements (taking into 
account form drag of some vehicle body styles), SKIPs to high levels of rolling resistance for 
performance vehicles (that have high needs for traction to meet handling objectives), and SKIPs 



 

to some engine packages (to account for low specific power output and torque requirements).  If 
SKIP is applicable for a technology, the rules for restricting technology for a specific set of 
vehicles are described in Chapter 3. 

The CAFE Model considers many types of fuel saving technologies, but some are very difficult 
to observe from public information available.  For instance, the rolling resistance of a set of tires 
may not appear on a public specifications sheet, and the inner workings and efficiencies of a 
transmission may be hard for DOT staff to assess (without detailed study, or confidential 
business information).  In these cases, DOT staff rely on best information available, and, 
occasionally, analyst judgement (or described analytical techniques, like in the case of mass 
reduction technology).  When manufacturers or suppliers do provide confidential business 
information, NHTSA often verifies the information in due time, usually through contracted 
analysis at independent labs.   

For today’s analysis, for some technologies (like rolling resistance and aerodynamic 
improvements), DOT staff relied on confidential information provided by manufacturers about 
their MY 2016 fleet, and carried these values forward, by nameplate, for the MY 2020 fleet.  
With this approach, it is possible that DOT underestimates the extent to which manufacturers 
have added more hard-to-observe technologies in the MY 2020 fleet since MY 2016, increasing 
the risk of “double counting” effectiveness (especially for aerodynamics, rolling resistance, and 
improved accessory devices).  While some technologies are difficult to observe, many 
technologies are straight forward to identify via specification sheets, marketing materials, or 
published technical papers, and to link with the most representative Argonne simulation, and 
equipment cost estimate.  Whether a technology is easy to observe, or difficult to observe, DOT 
staff assign baseline technology content for each vehicle in the Market Data file. 

The Market Data file catalogues DOT’s understanding of technologies already equipped on 
vehicles, with many vehicles not yet exhausting all technologies that may improve internal 
combustion engine efficiency.  The current technology assessment in the baseline fleet shows 
that many vehicles, even ones with advanced engine or transmission technologies, still may be 
marginally improved with the application of additional technologies.  Often, recently released 
engines or transmissions may be reasonably characterized as early adopters of some technologies 
already considered in the analysis, in combination with a representation of a previous generation, 
widely adopted technology. 

The following sections discuss the data sources used to populate the analysis fleet, and how DOT 
staff accurately characterize the starting point for the compliance simulation.   

2.2.1.1 Data Sources Used to Populate the Analysis Fleet 

The Market Data file integrates information from many sources, including manufacturer 
compliance submissions, publicly available information, and confidential business information.  
At times, information is still incomplete, and DOT staff use analyst judgement in populating the 
analysis fleet.  When analyst judgement is used, DOT staff try to make clear the underlying data 
and logic informing the analysis.48 

 
48 Forward looking refresh/redesign cycles are one example of when analyst judgement is necessary.  



 

DOT staff make every effort to use current, credible sources with information that may be shared 
with the public or independently verified.  DOT staff used mid-model year 2020 compliance data 
as the basis of the analysis fleet.  Compliance data contain information about projected sales 
volumes, vehicle fuel economies, vehicle footprints, and often contains some information about 
engine architecture, transmission architecture, and vehicle drive configuration.  For each vehicle 
nameplate, DOT staff identified and downloaded manufacturer specification sheets, usually from 
the manufacturer media website, or from online marketing brochures.49  From specification 
sheets, DOT staff gathered information to identify engine technologies, engine families, 
transmission technologies, transmission families, and electrified drivetrain technologies.  The 
team also recorded curb weights (often varying by powertrain, by drive configuration, and by 
trim level), peak horsepower, and occasionally a manufacturer reported the vehicle’s 
aerodynamic drag coefficient, and occasionally some information useful in identifying hard to 
observe technologies, like improved accessory devices or secondary axle disconnect.  For 
additional information in about how specification sheets informed the assignment of a 
technology to a vehicle in the MY 2020 fleet, see the technology specific “baseline assignment” 
sections in Chapter 3.   

Often, one entry in the compliance record (typically including a nameplate, sales volume, fuel 
economy, footprint, drive configuration, and basic description of the engine and transmission) 
describes a range of vehicles with attributes that may vary meaningfully for the CAFE Model 
analysis.  For instance, one compliance record may represent a range of trim levels, offered for 
sale at a range of prices, or spanning a range of curb weights.  In these cases, DOT staff divide 
compliance record sales volume evenly among the vehicle types with different attributes, thereby 
increasing the number of rows in the Market Data file and atomizing the sales volume of each 
individual row.  While this may seem superfluous from some perspectives, the atomization of 
sales in each row in the Market Data file plays an important role in the application of technology, 
especially the application of hybrid and electric vehicle technology, as the CAFE Model may add 
costly fuel saving technology only to the extent needed to comply with standards (reducing the 
likelihood of significant over compliance, after redesign cycles, and inheritance of shared engine, 
transmission, and mass reduction platform technology is taken into account). 

One consequence of using historical compliance data to populate the Market Data file is that the 
analysis carries forward fleet composition, or at least iterates the fleet from an observation taken 
in the past.  In other words, the Market Data file does not use forward looking information to 
project which nameplates may be introduced, or which nameplates will be retired, or evaluate 
how competitive positions may evolve as manufacturers add fuel saving technologies and adjust 
product plans over time.50  Similarly, manufacturers who submitted no compliance information 
in the baseline compliance year (perhaps because they had not yet commercialized products), are 
not included in the forward looking compliance simulation.  The Market Data file does identify 
some vehicle model/configurations for which each manufacturer may adopt ZEV candidate 
technology (in today’s case, battery electric vehicle technology), and more detail about how 

 
49 The catalogue of reference specification sheets (broken down by manufacturer, by nameplate) used to populate 
information in the Market Data file is available in the docket.  BMW Data, FCA Data, Ford Data, Hyundai Data, Kia 
Data, Mercedes Data, Nissan Data, Toyota Data, Volvo Data, GM Data, Honda Data, Mitsubishi Data, VW Data, 
and JLR Data. 
50 The sales model in the CAFE Model does, at an industry level, adjust overall sales volume up or down, and sales 
share between light trucks and passenger cars in response to technology costs, fuel economies, and fuel prices.  



 

DOT staff selected these vehicles is described in Chapter 2.3.2, Calculation of ZEV Credits Per 
Manufacturer.  As a result, it is reasonable to expect the composition of the fleet (in terms of 
nameplates offered, and manufacturer market shares) to look very different in the future years 
beyond the rulemaking time frame than the CAFE Model’s projected compliance pathways. 

2.2.1.1.1 Source and Vintage of Fleet Data 

Using recent data for baseline assessments is more likely to reflect current market conditions 
than older data.  Recent data will inherently include manufacturer’s practical considerations 
about fuel saving technology characterization and efficiency, mix shifts in response to consumer 
preferences, and industry sales volumes that incorporate substantive macroeconomic events.  
Also, using recent data decreases the likelihood that the CAFE Model selects compliance 
pathways for future standards that affect vehicles already built in previous model years.51   

While current data are highly desirable, real time data to support fleet characterization in the 
Market Data file are extremely difficult to come by.  There is a lag time for finalized model year 
compliance data and finalized compliance data for a given model year may not be available for a 
year or more after the last product for that model year rolls off the assembly line.  Further 
complicating matters, once DOT staff identify a suitable set of compliance data, it takes 
significant effort to translate those compliance data into the Market Data file, augment that 
information with data from specification sheets and confidential business information, 
characterize fuel saving technology content on each vehicle, and produce a high-quality file that 
is suitable for use in the CAFE Model.  DOT must balance the resources required to create the 
Market Data file (i.e., several staff for several months), with the availability of data and the 
timing of the rulemaking effort. 

For today’s analysis, DOT staff used mid-year compliance submissions from MY 2020 as the 
basis for the analysis fleet characterized in the Market Data file.  While mid-year data are not 
“final” data, historically, manufacturers’ mid-model year submissions change little between mid 
and final submissions.  Most manufacturers had submitted mid-model year 2020 data as of 
August 2020, when DOT staff began building the Market Data file used in today’s analysis.  
Moreover, by August of 2020, many manufacturers had shifted production to MY 2021 vehicles, 
so the “mid-year” vehicle volume data were stable, as production was mostly complete. 

MY 2020 was an important year for the automotive marketplace.  Light-duty sales dipped 
meaningfully in MY 2020 as compared to prior years, with the coronavirus pandemic and 
historically low gasoline prices causing an impact.  Manufacturers reacted to supply chain factors 
as well, with notable events including transmission factories shutting down due to tornados, and 
assembly plants idling due to coronavirus.  The MY 2020 Market Data file used in today’s 
analysis reflects the market impacts of these events.   

While MY 2020 may have been extraordinary, many long-term trends continued.  Manufacturers 
continued to integrate more fuel saving technology in redesigned vehicles, likely in response to 

 
51 For example, in this analysis the CAFE Model must apply technology to the MY 2020 fleet from MYs 2021-2023 
for the compliance simulation that begins in MY 2024.  While manufacturers have already built MY 2021 and later 
vehicles, the most current, complete dataset with regulatory fuel economy test results to build the analysis fleet at 
the time of writing remains MY 2020 data.   



 

steady increases in fuel economy stringency and consumer preferences.  Also, prices for new 
vehicles continued to rise, and many consumers continued to work with dealers and banks to 
finance or lease new cars and trucks.  The compliance data from MY 2020 reflect the extent to 
which manufacturers successfully integrated additional fuel saving technology into their 
products, and the extent to which the market adopted the products offered.   

While DOT staff used mid-MY 2020 compliance data as the basis for the Market Data file, the 
team often had to disaggregate compliance data to capture variation in curb weights, 
manufacturer suggested retail prices, and other market data fields that varied by trim level.  As a 
result, the specific trim level sales volumes are estimates that reflect a mostly even distribution of 
sales volume as reported at the compliance level across sub-divisions.  However, the combined 
compliance level reporting data are still reflected, exactly, in the Market Data file, when the 
atomized rows are aggregated.  With respect to the luxury option content, and sales volumes of 
an individual trim level (to the extent that the Market Data file row volume reflects a 
disaggregated compliance row), the Market Data file can only go so far.  However, the rows (and 
vehicle characteristics recorded) are well suited for use in the CAFE Model for projecting 
compliance pathways in response to regulatory alternatives.  

2.2.1.1.2 Treatment of Confidential Business Information in Fleet Development 

Some data in the Market Data file are informed by confidential business information.  For 
instance, some mid-year manufacturer compliance submissions are marked as confidential.  DOT 
staff occasionally considers confidential business information to assess vehicle engineering 
characteristics that, like rolling resistance and aerodynamic drag, are neither included in 
compliance data nor reliably available. 

Prior to the 2018 NPRM, DOT staff gave manufacturers the opportunity to confidentially share 
rolling resistance values and drag coefficients.  Manufacturers had commented extensively, in 
response to the Draft TAR, that their prior efforts to improve aerodynamics and tire rolling 
resistance had not been reasonably characterized in the Draft TAR Market Data file.  Many 
manufacturers volunteered engineering data (aerodynamic drag coefficients, and tire rolling 
resistance values) to inform DOT staff, resulting in a more informed characterization of fuel 
saving technology already equipped on vehicles, and a more informed mapping of observed 
vehicles onto reference Argonne simulations and projected technology costs.  However, this took 
place in 2017.  The Market Data file for today’s analysis still (in many cases) references 
previously submitted confidential business information, even though manufacturers may have 
integrated additional rolling resistance and aerodynamic technology over the past few years.  
DOT staff have supplemented the older confidential business information with recent studies and 
public information (as observed on specification sheets) when more recent, credible information 
is available.  Generally, DOT recognizes benefits from referencing recent, credible information 
to inform the characterization of vehicles in the Market Data file and baseline fleet.  

In addition, some transmission content, accessory efficiency improvements, and other vehicle 
technologies are difficult for DOT staff to objectively verify.  As a practical matter, DOT cannot 
do a teardown study of every vehicle in the fleet every time staff produce a new analysis fleet.  
Agency staff use engineering judgement, and occasionally rely upon supplier, manufacturer, and 
Argonne’s AMTL-presented information to inform the Market Data file. 



 

2.2.1.2 Technology Classes in the Fleet 

The Market Data file includes information the CAFE Model uses to connect each observed 
vehicle (per compliance data and DOT staff characterization of vehicle attributes, including fuel 
saving technologies), with estimates of the effectiveness of other possible combinations of fuel 
saving technologies, and prospective costs of those technologies.  The “Technology Class” 
assigned in the Market Data file is the link the CAFE Model uses.   

During the CAFE Model compliance simulations, the CAFE Model evaluates adding fuel saving 
technologies to each vehicle appearing in the Market Data file, at some projected fuel economy 
benefit.  The CAFE Model references incremental effectiveness estimates, provided by Argonne 
with the Autonomie software, to project how the fuel efficiency of a vehicle may improve with 
the application of additional fuel saving technologies.  For the CAFE Model to select the most 
relevant reference effectiveness estimate, informed by the catalogue of more-than-1-million 
Autonomie simulations, the Market Data file includes a reference “type” of vehicle (or 
“Technology class”), and the combination of fuel saving technologies already applied to that 
vehicle (technologies listed as “USED” on the vehicles, engines, and transmissions tabs of the 
Market Data file).  With this information, the CAFE Model knows the reference point, and which 
effectiveness estimates to use, for vehicle as it progresses through the compliance simulations.   

The CAFE Model considers costs of additional fuel saving technologies when forecasting which 
technologies manufacturers are likely to adopt in future scenarios.  Costs of technologies can 
vary (sometimes significantly) by vehicle type.  The “technologies” input file lists technology 
costs, and the CAFE Model uses the technology class (and engine class) in the Market Data file 
to lookup the most relevant technology costs for each vehicle, and fuel saving technology.  The 
CAFE Model also references battery costs for electrification technologies (with battery costs 
derived from Argonne’s BatPaC Model and Autonomie simulations), and these costs often vary 
significantly by technology class, and by combination of road load reducing technologies.   

The algorithm by which each vehicle model/configuration is assigned to a technology class is a 
two-step process.  First, a “size” of technology class is assigned to each nameplate; only the 
SmallCar, MedCar, SmallSUV, MedSUV, and Pickup classes are eligible to be assigned in this 
step.  The algorithm then evaluates whether to assign the performance variant of the initial 
assignment to each vehicle within the nameplate.  Performance variants include the 
SmallCarPerf, MedCarPerf, SmallSUVPerf, MedSUVPerf, and PickupHT classes.  

The evaluations in both steps of the algorithm are conducted quantitatively using “fit scores,” 
which are calculations that take into account key characteristics of vehicles in the fleet and 
compare those to the baseline characteristics of each technology class.52  A vehicle receives a fit 
score for every technology class for which it is eligible.  The lower the fit score, the more closely 
aligned a vehicle’s characteristics are with the baseline characteristics for a given technology 

 
52 Baseline 0 to 60 mph acceleration times are assumed for each technology class as part of the full vehicle 
simulations conducted in Autonomie.  For more information, see Chapter 2.4 Technology Effectiveness Values.  
DOT staff calculated class baseline curb weights and footprints by averaging the curb weights and footprints of 
vehicles within each technology class as assigned in previous analyses.  



 

class.  Therefore, the algorithm will assign the technology class with the lowest fit score to a 
given vehicle. 

In the first step of the algorithm, the fit score used to assign the “size” of technology class 
evaluates each vehicle’s footprint and curb weight according to Equation 2-1.  (Both of these 
characteristics are recorded in the baseline fleet.)  The difference in curb weight between the 
vehicle and the class baseline is divided by a “pounds per 1 second” quantity53 that normalizes 
the equation such that curb weight and footprint are more equally weighted.  Note that the 
equation is also weighted by the ratio of individual vehicle sales to total sales for the nameplate, 
so that the initial assignment favors higher-selling vehicle models.  The MR0 curb weight is 
calculated as part of the mass reduction level assignment process.54 
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Equation 2-1 – Size Fit Score 

In the second step, the fit score that evaluates the performance variant of the technology class as 
seen in Equation 2-2 takes a 0 to 60 mph acceleration time into account.   

𝐹𝐹𝑒𝑒𝑢𝑢𝑓𝑓𝑃𝑃𝑢𝑢𝑃𝑃𝑎𝑎𝑃𝑃𝑐𝑐𝑒𝑒 𝐹𝐹𝑢𝑢𝑃𝑃 𝑆𝑆𝑐𝑐𝑃𝑃𝑢𝑢𝑒𝑒 = | (𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑒𝑒𝐶𝐶𝑃𝑃𝑢𝑢𝑃𝑃𝑎𝑎𝑃𝑃𝑒𝑒𝑑𝑑 0 𝑃𝑃𝑃𝑃 60 𝑃𝑃𝐹𝐹ℎ 𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑒𝑒𝑢𝑢𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒) −
(𝐶𝐶𝑖𝑖𝑎𝑎𝐶𝐶𝐶𝐶 𝐵𝐵𝑎𝑎𝐶𝐶𝑒𝑒𝑖𝑖𝑢𝑢𝑃𝑃𝑒𝑒 0 𝑃𝑃𝑃𝑃 60 𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒) |  

Equation 2-2 – Performance Fit Score 

This characteristic is not consistently reported in publicly available data, so a 0 to 60 mph 
acceleration time for each vehicle is estimated based on its weight-to-horsepower ratio, 
calculated in Equation 2-3.  
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Equation 2-3 – Vehicle Estimated 0 to 60 mph acceleration Time 

The Pickup and PickupHT classes are evaluated slightly differently.  They use a different fit 
score calculation that considers the same vehicle characteristics as Equation 2-1, Equation 2-2, 
and Equation 2-3.  The first step of the algorithm will initially assign the Pickup class if a vehicle 
has been assigned the “pickup” body style.  The second step then assigns a fit score to Pickup 
and PickupHT that takes into account footprint, curb weight, and a 0 to 60 mph acceleration 
time, as seen in Equation 2-4. 

 

 
53 This quantity is calculated by multiplying the vehicle’s horsepower by 2.744. 
54 For more information on how MR0 curb weight is calculated, see Chapter 3.4.2. 
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Equation 2-4 – Pickup Fit Score 

2.2.1.3 Fuel Saving Technology Content 

The CAFE Model considers the application of many technologies to improve vehicle fuel 
economy.  For each of these technologies, on each vehicle application, the CAFE Model needs 
reference cost and effectiveness values.  Importantly, the CAFE Model must also consider which 
technologies are already equipped on vehicles in the baseline fleet, and the Market Data file 
includes this information. 

The products offered in the U.S. automotive marketplace are highly heterogeneous, and 
manufacturers routinely update their products.  Over time, some innovation efforts and 
investments in research and development can pay off, and manufacturers may bring to market 
new fuel saving technologies.  The CAFE Model considers many technologies; some are nearly 
universally adopted in the MY 2020 fleet, some are used occasionally but show great future 
potential, and others have yet to be commercialized but are reasonable to include in the analysis 
based on reported activities in the supply chain and manufacturer interest.  Similarly, costs of 
technologies in the future may be uncertain, but the analysis inputs assume that innovations will 
occur to lower the real costs of many fuel saving technologies over time.  As manufacturers and 
suppliers bring technologies to market, intellectual property can significantly influence which 
manufacturers adopt technologies, and at what cost.55  While every application of technology 
may have its own nuance, the CAFE Model effectiveness and cost assumptions attempt to 
represent a general characterization of fuel saving technologies that is a reasonable 
representation of the technology for any manufacturer.  

If a technology is included in the analysis for possible application, the technology appears in the 
heading row of Market Data file, either on the vehicles tab, the engines tab, or the transmissions 
tab.  The baseline fleet identifies which combination of modeled technologies most reasonably 
represents the fuel saving technologies on each vehicle in the compliance data.  The fuel saving 
technologies considered in today’s analysis are listed in Table 2-1. 

 
55 Ford. May 20, 2021. Ford News Media: FORD COMMITS TO MANUFACTURING BATTERIES, TO FORM 
NEW JOINT VENTURE WITH SK INNOVATION TO SCALE NA BATTERY DELIVERIES. 
https://media.ford.com/content/fordmedia/fna/us/en/news/2021/05/20/ford-commits-to-manufacturing-batteries.html  
Ford Commits to Manufacturing Batteries, to Form New Joint Venture with SK Innovation to Scale NA Battery 
Deliveries _ Ford Media Center.pdf. Last Accessed July 20, 2021. 

https://media.ford.com/content/fordmedia/fna/us/en/news/2021/05/20/ford-commits-to-manufacturing-batteries.html


 

Table 2-1 – Fuel Saving Technologies that the CAFE Model May Apply 

Technology Name Abbreviation 
Market 

Data File 
Location 

Technology Group 

Electric Power Steering EPS Vehicles tab Additional technologies 
Improved Accessory Devices IACC Vehicles tab Additional technologies 
Start-Stop system 12VSS Vehicles tab Electrification 
Belt Integrated Starter Generator BISG Vehicles tab Electrification 
Strong Hybrid Electric Vehicle, Parallel SHEVP2 Vehicles tab Electrification 
Strong Hybrid Electric Vehicle, Power 
Split with Atkinson Engine SHEVPS Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR0 Engine (Alternative path for 
Turbo Engine Vehicles) 

P2HCR0 Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR1 Engine (Alternative path for 
Turbo Engine Vehicles) 

P2HCR1 Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR1D Engine (Alternative path 
for Turbo Engine Vehicles) 

P2HCR1D Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR2 Engine (Alternative path for 
Turbo Engine Vehicles) 

P2HCR2 Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 20 miles of electric range PHEV20 Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 50 miles of electric range PHEV50 Vehicles tab Electrification 

Plug-in Hybrid Vehicle with TURBO1 
Engine and 20 miles of electric range PHEV20T Vehicles tab Electrification 

Plug-in Hybrid Vehicle with TURBO1 
Engine and 50 miles of electric range PHEV50T Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 20 miles of electric range 
(Alternative path for Turbo Engine 
Vehicles) 

PHEV20H Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 50 miles of electric range 
(Alternative path for Turbo Engine 
Vehicles) 

PHEV50H Vehicles tab Electrification 

Battery Electric Vehicle with 200 miles 
of range BEV200 Vehicles tab Electrification 

Battery Electric Vehicle with 300 miles 
of range BEV300 Vehicles tab Electrification 

Battery Electric Vehicle with 400 miles 
of range BEV400 Vehicles tab Electrification 

Battery Electric Vehicle with 500 miles 
of range BEV500 Vehicles tab Electrification 

Fuel Cell Vehicle FCV Vehicles tab Electrification 
Low Drag Brakes LDB Vehicles tab Additional technologies 



 

Technology Name Abbreviation 
Market 

Data File 
Location 

Technology Group 

Secondary Axle Disconnect SAX Vehicles tab Additional technologies 
Baseline Tire Rolling Resistance ROLL0 Vehicles tab Rolling Resistance 
Tire Rolling Resistance, 10% 
Improvement ROLL10 Vehicles tab Rolling Resistance 

Tire Rolling Resistance, 20% 
Improvement ROLL20 Vehicles tab Rolling Resistance 

Baseline Aerodynamic Drag Technology AERO0 Vehicles tab Aerodynamic Drag 
Aerodynamic Drag, 5% Drag Coefficient 
Reduction AERO5 Vehicles tab Aerodynamic Drag 

Aerodynamic Drag, 10% Drag 
Coefficient Reduction AERO10 Vehicles tab Aerodynamic Drag 

Aerodynamic Drag, 15% Drag 
Coefficient Reduction AERO15 Vehicles tab Aerodynamic Drag 

Aerodynamic Drag, 20% Drag 
Coefficient Reduction AERO20 Vehicles tab Aerodynamic Drag 

Baseline Mass Reduction Technology MR0 Vehicles tab Mass Reduction 
Mass Reduction – 5.0% of Glider MR1 Vehicles tab Mass Reduction 
Mass Reduction – 7.5% of Glider MR2 Vehicles tab Mass Reduction 
Mass Reduction – 10.0% of Glider MR3 Vehicles tab Mass Reduction 
Mass Reduction – 15.0% of Glider MR4 Vehicles tab Mass Reduction 
Mass Reduction – 20.0% of Glider MR5 Vehicles tab Mass Reduction 
Mass Reduction – 28.2% of Glider MR6 Vehicles tab Mass Reduction 
Single Overhead Cam SOHC Engines tab Basic Engines 
Dual Overhead Cam DOHC Engines tab Basic Engines 
Engine Friction Reduction EFR Engines tab Engine Improvements 
Variable Valve Timing VVT Engines tab Basic Engines 
Variable Valve Lift VVL Engines tab Basic Engines 
Stoichiometric Gasoline Direct Injection SGDI Engines tab Basic Engines 
Cylinder Deactivation DEAC Engines tab Basic Engines 
Turbocharged Engine TURBO1 Engines tab Advanced Engines 
Advanced Turbocharged Engine TURBO2 Engines tab Advanced Engines 
Turbocharged Engine with Cooled 
Exhaust Gas Recirculation CEGR1 Engines tab Advanced Engines 

Advanced Cylinder Deactivation ADEAC Engines tab Advanced Engines 
High Compression Ratio Engine 
(Atkinson Cycle) HCR0 Engines tab Advanced Engines 

Advanced High Compression Ratio 
Engine (Atkinson Cycle) HCR1 Engines tab Advanced Engines 

Advanced High Compression Ratio 
Engine (Atkinson Cycle) with Cylinder 
Deactivation 

HCR1D Engines tab Advanced Engines 

EPA, 2016 Vintage Characterization 
High Compression Ratio Engine 
(Atkinson Cycle), with Cylinder 
Deactivation 

HCR2 Engines tab Advanced Engines 

Variable Compression Ratio Engine VCR Engines tab Advanced Engines 



 

Technology Name Abbreviation 
Market 

Data File 
Location 

Technology Group 

Variable Turbo Geometry Engine VTG Engines tab Advanced Engines 
Variable Turbo Geometry Engine with 
eBooster VTGE Engines tab Advanced Engines 

Turbocharged Engine with Cylinder 
Deactivation TURBOD Engines tab Advanced Engines 

Turbocharged Engine with Advanced 
Cylinder Deactivation TURBOAD Engines tab Advanced Engines 

Advanced Diesel Engine ADSL Engines tab Advanced Engines 
Advanced Diesel Engine with 
Improvements DSLI Engines tab Advanced Engines 

Advanced Diesel Engine with 
Improvements and Advanced Cylinder 
Deactivation 

DSLIAD Engines tab Advanced Engines 

Compressed Natural Gas Engine CNG Engines tab Advanced Engines 
 
Many of the technologies in the CAFE Model may be applied in combination.  For instance, an 
engine and transmission may be selected independent of one another, and road load reducing 
technologies (mass reduction, aerodynamic drag, and rolling resistance) may be applied in any 
combination.  Basic engine technologies may be applied in any combination.  In the 
effectiveness estimates, some technologies have synergies, while others offer efficiency 
improvements from the same mechanism,56 and therefore provide less benefit in combination 
than the sum of their efficiency improvements generated, independently. 

Some technologies cannot appear together, on one vehicle (defined as a single row in the Market 
Data file), in the analysis.  For instance, a vehicle may only have one advanced engine at a time.  
Similarly, battery electric vehicles do not have an internal combustion engine or a conventional 
transmission, and the costs projected for battery electric vehicles include the fixed drive gearbox 
that transmits the electric motor torque to the tires. 

For additional information on the characterization of these technologies (including the cost, 
prevalence in the 2020 fleet, effectiveness estimates, and considerations for their adoption) see 
the appropriate technology section in Chapter 3.  Depending on comments received to this 
proposal or other information published, DOT may include additional technologies or update 
cost or effectiveness values, or the rules for technology application, for the final rule analysis.   

2.2.1.4 A/C and Off-Cycle Fuel Consumption Improvement Values 

The Market Data file includes information about A/C and off-cycle technologies, but the 
information is not currently broken out at a row level, vehicle by vehicle.  Instead, historical data 
(and forecast projections, which are used for analysis regardless of regulatory scenario) are listed 
by manufacturer, by fleet on the “Credits and Adjustments” tab of the Market Data file. 

 
56 For example, SHEVP2 paired with advanced engine technologies.  See Chapter 3.1.1 for further discussion. 



 

A/C and off-cycle fuel consumption improvement values (FCIV), or credits,57 significantly 
impact compliance pathways manufacturers choose.  Chapter 3.8 shows model inputs specifying 
estimated adjustments (all in grams/mile) for improvements to air conditioner efficiency and 
other off-cycle energy consumption, and for reduced leakage of air conditioner refrigerants with 
high global warming potential (GWP).  DOT estimated future values based on an expectation 
that manufacturers already relying heavily on these adjustments would continue do so, and that 
other manufacturers would, over time, also approach the limits on adjustments allowed for such 
improvements.  

Regulatory provisions regarding off-cycle technologies are new, and manufacturers have only 
recently begun including related detailed information in compliance reporting data.  For today’s 
analysis, though, such information was not sufficiently complete to support a detailed 
representation of the application of off-cycle technology to specific vehicle model/configurations 
in the MY 2020 fleet.   

2.2.1.5 Engine Configurations 

Engine configurations may affect the cost of engine technologies.  In that Market Data file, 
column “AE” on the vehicles tab lists the “Engine Technology Class,” so the CAFE Model may 
reference the powertrain costs in the technologies file that most reasonably align with the 
observed vehicle (or row).  DOT staff assign engine technology classes for all vehicles, including 
electric vehicles.  If an electric powertrain replaces and internal combustion engine, the electric 
motor specifications may be different (and hence costs may be different) depending on the 
capabilities of the internal combustion engine it is replacing, and the costs in the technologies file 
(on the engine tab) account for the power output and capability of the gasoline or electric 
drivetrain.   

2.2.1.6 Shared Engines, Transmissions, and Vehicle Platforms 

Parts sharing across products is important, and common in the industry.  Parts sharing helps 
manufacturers achieve economies of scale, deploy capital efficiently, and make the most of 
shared research and development expenses, while still presenting a wide array of consumer 
choices to the market.  The CAFE Model takes part sharing into account, with shared engines, 
shared transmissions, and shared mass reduction platforms.  Vehicles sharing a part (as 
recognized in the CAFE Model), will adopt fuel saving technologies affecting that part together. 

In the Market Data file used as an input to the CAFE Model, vehicle model/configurations that 
share engines are assigned the same engine code,58 vehicle model/configurations that share 
transmissions have the same transmission code, and vehicles that adopt mass reduction 

 
57 Adjustments to a vehicle’s fuel economy value based on off-cycle technologies are termed fuel consumption 
improvement values in NHTSA’s program because they increase the rated fuel economy of a vehicle, whereas the 
off-cycle benefits are called credits in the EPA program. 
58 Engines (or transmissions) may not be exactly identical, as specifications or vehicle integration features may be 
different.  However, the architectures are similar enough that it is likely the powertrain systems share R&D, tooling, 
and production resources in a meaningful way. 



 

technologies together share the same platform.  For more information about engine codes, 
transmission codes, and mass reduction platforms, see subsections in Chapter 3. 

2.2.1.7 Product Design Cycles 

Manufacturers often introduce fuel saving technologies at a major redesign of their product or 
adopt technologies at minor refreshes in between major product redesigns.  In most cases, the 
CAFE Model may apply new fuel saving technologies to a vehicle only in redesign years.  If a 
vehicle shares an engine or transmission, and the shared powertrain part has already incorporated 
additional fuel savings technology on other vehicle applications, the vehicle may inherit the 
upgraded shared engine or transmission at refresh or redesign. 

To support the CAFE Model accounting for new fuel saving technology introduction as it relates 
to product lifecycle, the Market Data file includes a projection of redesign years (column “BN”) 
and refresh years (column “BO”) for each vehicle.  DOT staff projected future redesign years 
and refresh years based on the historical cadence of that vehicle’s product lifecycle.  For new 
nameplates, DOT staff considered the manufacturer’s treatment of product lifecycles for past 
products in similar market segments. 

Table 2-2 – Sales Distribution by Age of Vehicle Engineering Design 

Most Recent 
Engineering 

Redesign Model 
Year of the 

Observed MY 
2020 Vehicle 

% of MY 
2020 Fleet 

(Unit Sales) 
by 

Engineering 
Design Age 

Portion of the 
Analysis Fleet 

Observations MY 
2020 Fleet by 
Engineering 
Design Age 

Age of 
Vehicle 

Engineering 
Design 

Portion of MY 2020 New 
Vehicle Sales with 

Engineering Designs as 
New or Newer than "Age 

of Vehicle Engineering 
Design" 

2007 0.6% 0.7% 13 100.0% 
2008 0.1% 0.4% 12 99.4% 
2009 1.1% 5.1% 11 99.3% 
2010 0.0% 0.0% 10 98.2% 
2011 2.4% 1.0% 9 98.2% 
2012 0.4% 0.6% 8 95.8% 
2013 2.4% 2.3% 7 95.4% 
2014 5.4% 6.0% 6 93.0% 
2015 9.8% 16.7% 5 87.7% 
2016 11.7% 9.3% 4 77.9% 
2017 9.8% 11.6% 3 66.2% 
2018 16.4% 12.2% 2 56.4% 
2019 24.0% 25.3% 1 40.0% 
2020 15.9% 8.8% 0 15.9% 

 



 

Redesigns are major investments, and require coordination of product development, 
manufacturing, and market and sales.  Many manufacturers have redesigned a large portion of 
products sold in MY 2020 recently, as shown in Table 2-2. 

Manufacturers have different business strategies with respect to how frequently products are 
redesigned.  Some manufacturers use shorter product cycles, and others use longer product 
cycles.  Some manufacturers may use a shorter redesign cycle in one segment, and a longer 
redesign cycle in another.  On average across the industry, manufacturers redesign vehicles every 
6.5 years, as shown in Table 2-3.  Note that many manufacturers do not compete in the 
marketplace in every vehicle segment. 

Table 2-3 – Summary of Sales Weighted Average Time between Engineering Redesigns, by Manufacturer, by 
Vehicle Technology Class 

Manufacturer 
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BMW 5.6 6.1 6.3 6.5 - 6.2 - 6.2 - - 6.2 
Daimler - 5.8 6.3 6.4 10.0 6.9 6.9 8.2 - - 7.1 
FCA 7.0 6.8 - 8.2 8.1 8.2 8.8 8.9 9.0 10.0 9.0 
Ford - - 6.2 6.6 7.6 6.6 6.0 6.9 5.5 6.0 6.6 
GM 6.1 6.0 5.0 6.6 7.0 7.2 8.2 7.5 7.5 5.3 6.6 
Honda 6.7 5.8 4.9 5.0 5.2 5.1 - 5.9 7.0 - 5.5 
Hyundai Kia-H 5.5 4.9 5.0 6.1 5.4 5.1 - 6.0 - - 5.3 
Hyundai Kia-K 4.9 5.9 5.3 5.5 6.6 6.3 - 6.4 - - 5.8 
JLR - 7.8 - 6.9 6.2 6.1 7.0 6.5 - - 6.5 
Mazda 8.0 6.2 4.8 - 5.2 5.0 7.0 - - - 5.5 
Mitsubishi 9.7 - - - 6.0 6.0 - - - - 6.6 
Nissan 6.4 8.2 5.5 6.8 6.2 5.9 - 9.2 8.3 10.5 6.6 
Subaru 4.9 5.3 6.0 6.0 5.0 5.0 - 5.0 - - 5.0 
Tesla - - - 5.6 - - - 5.6 - - 5.6 
Toyota 5.1 5.3 6.1 5.9 6.2 5.7 6.0 6.7 10.3 9.4 6.5 
Volvo - 10.0 8.0 8.0 8.0 8.0 - 7.4 - - 7.7 
VWA 5.5 6.8 7.4 7.2 7.1 7.5 7.1 7.2 - - 6.9 
TOTAL 5.5 5.6 5.6 6.5 6.2 6.4 6.9 7.3 8.2 7.1 6.5 

 

Even for manufacturers with similar times between redesigns, offering products in similar 
segments, the expected timing of product redesigns are often out of phase.  When considering 
year-by-year analysis of standards, the timing of redesigns and the timing between redesigns 
often affect projected compliance pathways.  As shown in Table 2-4, many manufacturers have 



 

very recently redesigned significant products, and will have some time before they are expected 
to redesign these products again.  The timing of redesigns, and the duration between redesigns 
affect how quickly manufacturers may respond to standards. 

Table 2-4 – Summary of Sales Weighted Average Age of Engineering Design in MY 2020 by Manufacturer, 
by Vehicle Technology Class 

 Manufacturer 
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BMW 0.8 1.4 4.3 4.4 - 3.9 - 2.4 - - 3.2 
Daimler - 2.7 2.5 4.2 8.0 4.4 1.5 2.1 - - 3.4 
FCA 6.0 4.7 - 8.2 3.4 0.5 3.5 5.0 1.3 2.9 3.9 
Ford - - 0.2 3.8 1.8 0.0 2.0 1.7 1.6 5.0 2.5 
GM 5.2 2.6 3.9 2.5 2.9 1.9 1.9 2.7 3.4 1.1 2.5 
Honda 4.3 4.1 2.3 2.9 3.2 1.0 - 3.6 3.0 - 3.2 
Hyundai Kia-H 2.5 2.9 0.0 3.6 2.2 1.0 - 0.0 - - 2.0 
Hyundai Kia-K 1.3 2.8 1.0 1.8 5.7 6.0 - 0.1 - - 2.6 
JLR - 6.0 - 3.2 3.0 1.6 6.0 4.1 - - 3.6 
Mazda 2.0 3.7 0.0 - 0.1 0.0 1.0 - - - 0.8 
Mitsubishi 5.0 - - - 4.0 4.0 - - - - 4.2 
Nissan 0.1 5.0 1.0 4.4 4.7 4.1 - 6.5 6.0 4.0 3.5 
Subaru 3.0 4.3 0.0 0.0 0.9 0.0 - 1.0 - - 1.2 
Tesla - - - 1.0 - - - 1.0 - - 1.0 
Toyota 1.6 1.5 2.0 1.7 2.3 2.6 0.0 4.4 4.1 13.0 2.9 
Volvo - 9.0 1.0 1.4 1.0 1.0 - 2.7 - - 2.1 
VWA 1.2 3.5 0.7 1.9 1.8 4.0 1.4 1.6 - - 2.1 
TOTAL 1.8 3.2 1.7 3.4 2.7 2.4 1.5 3.1 3.2 3.4 2.8 

 

Table 2-5 shows the resultant portion of each manufacturers MY 2020 total light-duty vehicle 
production volume (for the U.S. market) expected to be redesigned in each MY through 2029.   



 

Table 2-5 – Portion of Production Redesigned in Each MY Through 2029 

Name 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 
BMW 13% 25% 37% 13% 7% 14% 4% 39% 21% 7% 
Daimler 0% 9% 19% 22% 17% 8% 23% 7% 13% 10% 
Stellantis (FCA) 14% 6% 21% 7% 0% 0% 23% 13% 16% 2% 
Ford 41% 27% 9% 12% 9% 2% 41% 27% 9% 8% 
GM 2% 9% 12% 3% 30% 24% 20% 16% 7% 26% 
Honda 0% 5% 63% 22% 7% 4% 2% 34% 52% 5% 
Hyundai 22% 25% 16% 6% 32% 11% 35% 19% 2% 23% 
Kia 35% 25% 0% 0% 60% 12% 5% 3% 39% 26% 
Jaguar - Land Rover 7% 0% 13% 30% 35% 14% 7% 0% 0% 25% 
Mazda 68% 3% 0% 13% 7% 63% 14% 0% 0% 16% 
Mitsubishi 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 
Nissan 14% 26% 24% 10% 22% 10% 1% 22% 21% 35% 
Subaru 32% 5% 11% 16% 36% 27% 10% 11% 16% 36% 
Tesla 0% 0% 0% 0% 100% 0% 0% 100% 0% 0% 
Toyota 6% 5% 17% 8% 52% 2% 16% 6% 11% 36% 
Volvo 0% 0% 0% 32% 0% 1% 2% 64% 0% 0% 
VWA 13% 0% 10% 2% 31% 38% 10% 5% 8% 19% 
Average 15% 12% 19% 10% 25% 12% 18% 18% 16% 20% 

 

2.2.2 Characterizing Baseline Safety, Economic, and Compliance Positions  

In addition to characterizing technologies, some information in the Market Data file supports 
economic calculations in the CAFE Model.   

2.2.2.1 Safety Classes 

The CAFE Model considers the potential safety effect of mass reduction technologies and crash 
compatibility of different vehicle types.  Mass reduction technologies lower the vehicle’s curb 
weight, which may change crash compatibility and safety, depending on the type of vehicle.  
DOT staff assign each vehicle in the Market Data file a “Safety class” (in column “AG” on the 
vehicles tab) that best aligns with the mass-size-safety analysis.   

Baseline curb weight data, as recorded in the Market Data file, factor into the mass-size-safety 
analysis.  In nearly all cases, DOT staff sourced curb weight data appearing in the Market Data 
file from manufacturer specification sheets.  The curb weight data on the specification sheets 
may be generally representative of the weight of a vehicle row, but some deviation from that 
reported curb weight is expected depending on the option content of represented vehicles, and 
manufacturing variations. 

2.2.2.2 Labor and Modeled Vehicles 

The CAFE Model includes procedures to consider the direct labor impacts of manufacturer’s 
response to CAFE regulations, considering the assembly location of vehicles, engines, and 



 

transmissions, the percent U.S. content (that reflects percent U.S. and Canada content),59 and the 
dealership employment associated with new vehicle sales.  Baseline labor information, by 
vehicle, is included in the market data input file.  Sales volumes included in and adapted from 
the market data also influence total estimated direct labor projected in the analysis.  

For the duration of the analysis, the percent U.S. content is held constant for each vehicle row.  
In practice, this may not be the case.  Changes to trade policy and tariff policy may affect percent 
U.S. content in the future.  Also, some technologies may be more or less likely to be produced in 
the U.S., and if that is the case, their adoption could affect future U.S. content. 

The labor hours projected in the Market Data file per unit transacted at dealerships, per unit 
produced for final assembly, per unit produced for engine assembly, and per unit produced for 
transmission assembly are projected to remain constant for the duration of the analysis, and the 
origin of these activities is projected to remain unchanged.  In practice, it is reasonable to expect 
that plants could move locations, or engine and transmission technologies are replaced by 
another fuel saving technology (like electric motors and fixed gear boxes) that could require a 
meaningfully different amount of assembly labor hours. 

 
59 Percent U.S. content was informed by the 2020 Part 583 American Automobile Labeling Act Reports, appearing 
on NHTSA’s website. 



 

Table 2-6 – Sales Weighted Percent U.S. Content by Manufacturer, by Regulatory Class 

Manufacturer PC LT 

Total MY 2020 
Sales Weighted 

Percent U.S. 
Content 

Portion of 
Vehicles 

Assembled 
in the U.S. 

Portion of 
Engines 

Assembled 
in the U.S. 

Portion of 
Transmissions 
Assembled in 

the U.S. 

BMW 7.1% 29.3% 15.4% 42.4% 0.0% 0.0% 

Daimler 19.1% 36.2% 28.1% 41.2% 39.8% 0.0% 

FCA 47.7% 52.9% 52.2% 68.0% 41.3% 45.7% 

Ford 35.2% 47.5% 44.2% 83.4% 32.9% 88.5% 

GM 39.8% 47.0% 44.7% 68.3% 69.8% 86.1% 

Honda 55.8% 61.7% 58.3% 74.9% 85.9% 58.6% 

Hyundai Kia-H 21.8% 0.0% 19.4% 46.0% 46.0% 34.3% 

Hyundai Kia-K 12.8% 33.3% 20.7% 38.4% 17.2% 37.8% 

JLR 2.6% 6.3% 6.2% 0.0% 0.0% 31.7% 

Mazda 1.1% 1.1% 1.1% 0.0% 0.0% 0.0% 

Mitsubishi 0.0% 0.3% 0.2% 0.0% 0.0% 0.0% 

Nissan 29.0% 32.6% 30.1% 49.9% 47.5% 0.0% 

Subaru 35.5% 22.9% 25.6% 53.2% 0.0% 0.0% 

Tesla60 50.6% 50.0% 50.6% 100.0% 100.0% 100.0% 

Toyota 35.2% 42.7% 38.7% 42.4% 46.0% 19.4% 

Volvo 10.2% 1.1% 3.4% 12.4% 0.0% 0.0% 

VWA 10.3% 8.8% 9.4% 13.5% 0.0% 0.0% 

TOTAL 32.4% 41.2% 37.4% 57.1% 44.1% 44.1% 

 

As observed from Table 2-6, manufacturers employ U.S. labor with varying intensity.  In many 
cases, vehicles certifying in the light truck (LT) regulatory class have a larger percent U.S. 
content than vehicles certifying in the passenger car (PC) regulatory class.   

2.2.2.3 Credit Banks 

Manufacturers may over-comply with CAFE standards and bank so-called over compliance 
credits.  As discussed further in Preamble Section III.C.7, manufacturers may use these credits 
later, sell them to other manufacturers, or let them expire.  The CAFE Model does not explicitly 
trade credits between and among manufacturers, but analysts have adjusted starting credit banks 
to reflect trades that are likely to happen when the simulation begins (in MY 2020).  Considering 

 
60 Tesla does not have internal combustion engines, or multi-speed transmissions, even though they are identified as 
producing engine and transmission systems in the United States in the Market Data file. 



 

information manufacturers have reported regarding compliance credits, and considering recent 
manufacturers’ compliance positions, DOT staff have estimated manufacturers’ potential use of 
compliance credits in earlier MYs.  This aligns to an extent that represents how manufactures 
could deplete their credit banks rather than producing high volume vehicles with fuel saving 
technologies in earlier MYs.  This also avoids unrealistic application of technologies for 
manufacturers in early analysis years that typically rely on credits.  These assumptions are 
included in the market data input file. 

To estimate the size and potential disposition of manufacturer’s CAFE compliance credit banks, 
staff make use of data in NHTSA’s CAFE Public Information Center (PIC), which provides 
public access to a range of information regarding the CAFE program,61 including manufacturers’ 
credit balances.  However, there is a data lag in the information presented on the CAFE PIC that 
may not capture credit actions across the industry for as much as several months.  To address the 
limitations of the publicly available data, DOT staff examined preliminary compliance data for 
each manufacturer’s fleets in MYs 2018 and 2019, as well as verified credit transactions between 
manufacturers that have been reported to NHTSA.  From these sources, staff estimated 
compliance deficits or surpluses for each fleet based on fuel economy performance, then 
combined those estimates with credits either acquired from another manufacturer or traded from 
a model year fleet’s surplus. 

CAFE credits that are traded between manufacturers are adjusted to preserve the gallons saved 
that each credit represents.62,63  The adjustment occurs at the time of application rather than at 
the time the credits are traded.  This means that a manufacturer that has acquired credits through 
trade, but has not yet applied them, may show a credit balance that is either considerably higher 
or lower than the real value of the credits when they are applied.  For example, a manufacturer 
that buys 40 million credits from Tesla may show a credit balance in excess of 40 million.  
However, when those credits are applied, they may be worth only 1/10 as much—making that 
manufacturer’s true credit balance closer to 4 million than 40 million. 

In order to accurately determine each manufacturer’s current credit position – inclusive of earned 
credits (or deficits), acquired credits that have not yet been applied, or transferred credits that 
have not yet been applied – DOT adjusted each credit transaction to reflect the true value of the 
credit in the current model year and fleet where it resides.64  Staff reevaluated existing 
compliance positions for MYs 2017-2019 after adjusting credit values and used analyst judgment 
to resolve deficits in those years.  The CAFE program allows manufacturers to pay civil penalties 
for non-compliance; however, manufacturers cannot comply with the minimum domestic 
passenger car standard with transferred credits,65 so a manufacturer must pay civil penalties if it 
fails to meet that standard.  Credits can then be applied to any remaining deficit between the 
domestic car fleet CAFE and the calculated standard.  However, in most other instances, 

 
61 CAFE Public Information Center, http://www.nhtsa.gov/CAFE_PIC/CAFE_PIC_Home.htm (last visited June 8, 
2021). 
62 See 49 U.S.C. 32903(f), which requires the credit trading program preserve total oil savings.   
63 CO2 credits for EPA’s program are denominated in metric tons of CO2 rather than gram/mile compliance credits 
and require no adjustment when traded between manufacturers or fleets. 
64 Because compliance credits are specific to the model year and fleet in which they are earned, even if they are 
traded between manufacturers, traded credits must be traded into a specific model year and fleet. 
65 49 U.S.C. 32903(g)(4). 



 

manufacturers have preferred to apply credits when possible.  Credits expire five years after they 
are earned, so in MY 2018 (for example) expiring credits would have been earned in MY 2013.  
Manufacturers typically find trading partners for expiring credits, and we let no expiring credits 
go unused if there were opportunities to resolve deficits in MYs 2018 and 2019.   

Some manufacturers faced deficits in the MYs prior to 2020 that had not yet been resolved, 
despite holding positive credit balances (of mostly traded credits).  These credits were also 
applied, where appropriate to resolve compliance deficits – including transfers between fleets 
and credit carry-forward from older model years.  In a small number of cases, we assume some 
small amount of fine payment (aside from the minimum domestic standard) would be required to 
resolve deficits.  All of these actions were required to estimate credit banks in MYs 2015-2019 
across the industry because all of those credits can be carried forward into the analysis in this 
proposal – beginning with MY 2015 credits that expire in MY 2020 and can be used to offset 
compliance deficits in the first year of the simulation. 

Staff reviewed credit balances, estimated the potential that some manufacturers could trade 
credits based on their projected compliance positions in the no-action alternative, and developed 
inputs that make carried-forward credits available in each of Model Years 2020-2024, after 
subtracting credits assumed to be traded to other manufacturers, adding credits assumed to be 
acquired from other manufacturers through such trades, and adjusting any traded credits (up or 
down) to reflect their true value for the fleet and model year into which they were traded.66  
When identifying trading partners for credit transactions, staff examined hundreds of individual 
credit transactions that have occurred over the last decade and attempted to avoid trading credits 
between manufacturers that have not previously traded.  While the specific transactions are 
considered confidential business information, manufacturers report to NHTSA the fleet and 
model year in which the credits were earned, the fleet and model year into which they are traded, 
and the (unadjusted) quantity of traded credits.  DOT staff took a conservative approach, 
preserving credits in a manufacturer’s bank for future use if it was forced to take aggressive 
compliance actions (defined as applying technologies that did not “pay back” for new car buyers 
in the first three years of ownership).  This ensures that the CAFE Model has the maximal ability 
to balance the need for technology application against the need to minimize compliance costs in 
the early years of the program for manufacturers who have accumulated compliance credits. 

Manufacturers’ estimated credit banks for the domestic car, imported car, and light truck fleets 
are shown below.  While the CAFE Model will transfer expiring credits into another fleet (e.g., 
moving expiring credits from the domestic car credit bank into the light truck fleet), staff moved 
some of these credits into the initial banks to improve the efficiency of application and both to 
reflect better the projected shortfalls of each manufacturer’s regulated fleets and to represent 
observed behavior.  For context, a manufacturer that produces one million vehicles in a given 
fleet, and experiences a shortfall of 2 mpg, would need 20 million credits, adjusted for fuel 
savings, to offset the shortfall completely. 

 
66 The adjustments, which are based upon the CAFE standard and model year of both the party originally earning the 
credits and the party applying them, were implemented assuming the credits would be applied to the model year in 
which they were set to expire.  For example, credits traded into a domestic passenger car fleet for MY 2017 were 
adjusted assuming they would be applied in the domestic passenger car fleet for MY 2022. 



 

Table 2-7 – Estimated Domestic Car CAFE Credit Banks 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW - - - -  
Daimler - - - -  
FCA - 3,808,660 7,463,700 6,904,300 6,710,380 
Ford 7,089,840 - - - - 
GM - - 20,648,600 10,107,600 9,624,540 
Honda - - - - - 
Hyundai Kia-H - - - -  
Hyundai Kia-K - - - - - 
JLR - - - - - 
Mazda - - - - - 
Mitsubishi - - - - - 
Nissan 62,285,000 29,295,800 20,845,700 - - 
Subaru - - - - - 
Tesla - - - - - 
Toyota 2,328,440 875,292 - 1,237,920 16,900,300 
Volvo - - - - - 
VWA 2,769,080 2,953,040 2,198,680 2,621,610 2,843,660 

 

Table 2-8 – Estimated Imported Car CAFE Credit Banks 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW 9,084,950 2,418,490 - - - 
Daimler 5,080,630 698,678 - 7,799,040 - 
FCA 11,545,600 11,685,400 5,504,460 5,416,840 5,368,870 
Ford - - 6,163,920 519,456 - 
GM 1,304,200 - 5,970,840 - - 
Honda - - 2,073,250 1,527,830 - 
Hyundai Kia-H - 8,901,780 - - - 
Hyundai Kia-K 3,565,710 3,940,200 3,093,680 4,362,850 389,371 
JLR 3,701,660 3,587,060 4,117,450 4,460,500 - 
Mazda - 14,670,500 1,825,340 2,873,730 - 
Mitsubishi 640,530 - 1,781,950 1,518,710 - 
Nissan 3,522,070 473,522 - - - 
Subaru 8,874,730 10,618,700 10,388,800 10,861,200 - 
Tesla - - - - - 
Toyota - - 3,458,500 159,407 5,336,410 
Volvo 219,505 - - 48,354 - 
VWA - 8,880,780 - - - 

 



 

Table 2-9 – Estimated Light Truck CAFE Credit Banks 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW 480,144 - - - - 
Daimler - - - -  
FCA - - 7,266,830 13,540,000 6,019,540 
Ford - - - - 11,227,400 
GM - 107,249 1,338,560 - - 
Honda - - - - - 
Hyundai Kia-H - - 883,431 - 101,044 
Hyundai Kia-K - - - - - 
JLR 3,535,400 3,533,360 1,871,660 4,318,390 - 
Mazda 1,260,690 4,289,380 1,116,210 1,150,140 640,075 
Mitsubishi 232,985 470,352 640,211 136,052 - 
Nissan 3,851,010 - - - - 
Subaru 2,068,050 1,082,840 4,412,450 2,524,660 8,440,450 
Tesla - - - - - 
Toyota 9,198,200 9,891,330 10,286,800 6,173,270 - 
Volvo - - 943,100 1,981,480 1,158,000 
VWA 2,790,830 3,588,920 4,038,400 - - 

 

The CAFE Model includes a similar representation of existing credit banks in EPA’s CO2 

program.  As discussed in Chapter 1, today’s analysis accounts for the combined effects of 
CAFE standards, federal CO2 standards, ZEV mandates, and the CARB/OEM “Framework 
Agreement” that specifies de facto federal CO2 standards for participating manufacturers.  While 
the life of a CO2 credit, denominated in metric tons of CO2, has a five-year life, matching the 
lifespan of CAFE credits, such credits earned in the early MY 2009-2011 years of the EPA 
program, may be used through MY 2021.67  As inputs to today’s analysis, staff developed the 
CO2 compliance credit banks presented below for manufacturers’ passenger car (unlike EPCA, 
the CAA does not require EPA to differentiate between domestic and imported cars) and light 
truck fleets. 

 
67 In the 2010 rule, EPA placed limits on credits earned in MY 2009, which expired prior to this rule.  However, 
credits generated in MYs 2010-2011 may be carried forward, or traded, and applied to deficits generated through 
MY 2021.  



 

Table 2-10 – Estimated Passenger Car CO2 Credit Banks (metric tons) 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW 1,300,000 835,000 1200000 940,000 1,200,000 
Daimler 1,950,000 1,300,000 1,300,000 1,500,000 1,300,000 
FCA 3,200,000 1,800,000 2,000,000 2,000,000 1,500,000 
Ford 3,000,000 6,300,000 - - - 
GM 3,600,000 3,800,000 2,100,000 3,500,000 - 
Honda 4,000,000 3,000,000 2,500,000 2,200,000 2,300,000 
Hyundai Kia-H 3,700,000 3,200,000 2,000,000 1,900,000 100,000 
Hyundai Kia-K 1,200,000 - - - - 
JLR 50,000 50,000 70,000 50,000 50,000 
Mazda 1,500,000 2,500,000 170,000 165,000 - 
Mitsubishi 330,000 300,000 171,000 200,000 53,000 
Nissan 2,300,000 2,000,000 650,000 - - 
Subaru 1,500,000 1,500,000 500,000 100,000 2,000,000 
Tesla - - - - - 
Toyota - - - - - 
Volvo 225,000 225,000 330000 270000 300,000 
VWA 1,250,000 1,350,000 2,000,000 2,050,000 2,100,000 

 

Table 2-11 – Estimated Light Truck CO2 Credit Banks (metric tons) 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW - - - - - 
Daimler 1,150,000 950,000 1,050,000 580,000 650,000 
FCA 5,950,000 7,900,000 2,700,000 8,000,000 9,500,000 
Ford - - - - - 
GM 5,050,000 550,000 - 2,000,000 - 
Honda 4,000,000 3,000,000  2,000,000  
Hyundai Kia-H 600,000 1,000,000 850,000 600,000 700,000 
Hyundai Kia-K 1,300,000 - - - - 
JLR 950,000 900,000 700,000 450,000 480,000 
Mazda 500,000 2,000,000 170,000 - - 
Mitsubishi 105,000 170,000 - - - 
Nissan 2,000,000 2,000,000 - - - 
Subaru 500,000 2,500,000 - - 500,000 
Tesla - - - - - 
Toyota 5,000,000 5,000,000 1,900,000 2,100,000 1,600,000 
Volvo - - 943,100 1,981,480 1,158,000 
VWA 2,790,830 3,588,920 4,038,400 - - 

 

While the CAFE Model does not simulate the ability to trade credits between manufacturers, it 
does simulate the strategic accumulation and application of compliance credits, as well as the 
ability to transfer credits between fleets to improve the compliance position of a less efficient 
fleet by leveraging credits earned by a more efficient fleet.  The model prefers to hold on to 
earned compliance credits within a given fleet, carrying them forward into the future to offset 



 

potential future deficits.  This assumption is consistent with observed strategic manufacturer 
behavior dating back to 2009. 

From 2009 to present, no manufacturer has transferred CAFE credits into a fleet to offset a 
deficit in the same year in which they were earned.  This has occurred with credits acquired from 
other manufacturers via trade but not with a manufacturer’s own credits.  Therefore, the current 
representation of credit transfers between fleets—where the model prefers to transfer expiring, or 
soon-to-be-expiring credits rather than newly earned credits—is both appropriate and consistent 
with observed industry behavior. 

This may not be the case for CO2 standards, though it is difficult to be certain at this point.  The 
CO2 program seeded the industry with a large quantity of early compliance credits (earned in 
MYs 2009-201168) prior to the existence formal CO2 standards.  Early credits from MYs 2010 
and 2011, however, do not expire until 2021.  Thus, for manufacturers looking to offset deficits, 
it is more sensible to exhaust credits that were generated during later model years (which are set 
to expire within the next five years), rather than relying on the initial bank of credits from MYs 
2010 and 2011.  Considering that under the CO2 program manufacturers simultaneously comply 
with passenger car and light truck fleets, to more accurately represent the CO2 credit system the 
CAFE Model simulates (and, in effect, encourages) intra-year transfers between regulated fleets 
for the purpose of simulating compliance with the CO2 standards. 

2.2.2.4 Civil Penalty Payment Preferences 

EPCA requires that if a manufacturer does not achieve compliance with a CAFE standard in a 
given model year and cannot apply credits sufficient to cover the compliance shortfall, the 
manufacturer must pay civil penalties (i.e., fines) to the federal government.  Until recently, such 
penalties were assessed at $5.50 per 0.1 mpg of residual shortfall (i.e., after applying compliance 
credits) per vehicle in the noncompliance fleet, and some manufacturers have sometimes elected 
to pay civil penalties rather than achieving compliance with CAFE standards.   

If inputs indicate that a manufacturer treats civil penalty payment as an economic choice (i.e., 
one to be taken if doing so would be economically preferable to applying further technology 
toward compliance), the CAFE Model, when evaluating the manufacturer’s response to CAFE 
standards in a given model year, will apply fuel-saving technology only up to the point beyond 
which doing so would be more expensive (after subtracting the value of avoided fuel outlays) 
than paying civil penalties. 

For today’s analysis, DOT has exercised the CAFE Model with inputs treating all manufacturers 
as treating civil penalty payment as an economic choice through model year 2023.  While DOT 
expects that only manufacturers with some history of paying civil penalties would actually treat 
penalty payment as an acceptable option, the CAFE Model does not currently simulate 
compliance credit trading between manufacturers, and DOT expects that this treatment of 
penalty payment will serve as a reasonable proxy for compliance credit purchases some 
manufacturers might actually make through model year 2023.  These input assumptions for 
model years through 2023 reduce the potential that the model will overestimate technology 

 
68 In response to public comment, EPA eliminated the possible use of credits earned in MY 2009 for future model 
years.  However, credits earned in MY 2010 and MY 2011 remain available for use.  



 

application in the model years leading up to those for which the agency is proposing new 
standards.  As in past CAFE rulemaking analyses (except that supporting the 2020 final rule), 
DOT has treated manufacturers with some history of fine payment (i.e., BMW, Daimler, FCA, 
Jaguar-Land Rover, Volvo, and Volkswagen) as continuing to treat civil penalty payment as an 
acceptable option beyond model year 2023, but has treated all other manufacturers as unwilling 
to do so beyond model year 2023. 

2.2.2.5 Payback 

The CAFE Model uses an “effective cost” metric to evaluate options to apply specific 
technologies to specific engines, transmissions, and vehicle model configurations.  Expressed on 
a $/gallon basis, this metric is computed by subtracting the estimated values of avoided fuel 
outlays and civil penalties from the corresponding technology costs and dividing the result by the 
quantity of avoided fuel consumption.  The value of fuel outlays is computed over a “payback 
period” representing the manufacturer’s expectation that the market will be willing to pay for 
some portion of fuel savings achieved through higher fuel economy.  Once the model has applied 
enough technology to a manufacturer’s fleet to achieve compliance with CAFE standards (and 
CO2 standards and ZEV mandates) in a given model year, the model will apply any further fuel 
economy improvements estimated to produce a negative effective cost (i.e., any technology 
applications for which avoided fuel outlays during the payback period are larger than the 
corresponding technology costs).  As discussed above in Chapter 1 and below in Chapter 4, DOT 
staff anticipate that manufacturers are likely to act as if the market is willing to pay for avoided 
fuel outlays expected during the first 30 months of vehicle operation. 

2.2.2.6 Zero Emissions Vehicles 

When considering other standards that may affect fuel economy compliance pathways, DOT 
included projected zero emissions vehicles (ZEV) that would be required for manufacturers to 
meet standards in California and Section 177 States, per the waiver granted under the Clean Air 
Act. 

To support the inclusion of the ZEV program in the analysis, DOT staff identified specific 
vehicle model/configurations that could adopt BEV technology in response to the ZEV program, 
independent of CAFE standards, at the first redesign.  These ZEVs are identified in the Market 
Data file as future BEV200s, BEV300s, or BEV400s.  Not all announced BEV nameplates 
appear in the MY 2020 Market Data file; in these cases, in consultation with NHTSA and 
CARB, DOT staff used the volume from a comparable vehicle in the manufacturer’s Market 
Data file portfolio as a proxy.69  The Market Data file also includes information about the portion 
of each manufacturer’s sales that occur in California and Section 177 states, which is helpful for 
determining how many ZEV credits each manufacturer will need to generate in the future to 
comply with the ZEV program with their own portfolio in the 2025 timeframe.  These new 
procedures are described in more detail in Chapter 2.3.  

 
69 While manufacturers may introduce BEVs that are entirely new designs, staff anticipate that simulating BEVs as 
new versions of existing vehicle model/configurations should represent these designs reasonably for purposes of this 
analysis, given that CAFE Model inputs should account reasonably for electric powertrains supplanting 
conventional powertrains. 



 

2.2.2.7 California Agreement  

In 2020, five vehicle manufacturers reached a voluntary commitment with the State of California 
to improve the fuel economy of their future nationwide fleets above and levels required by the 
2020 final rule.  For this analysis, compliance with this agreement is in the baseline case for 
designated manufacturers.  The market data input file contains inputs indicating whether each 
manufacturer has committed to exceed federal requirements per this agreement.  

2.3 Simulating the Zero Emissions Vehicle (ZEV) Program  

California’s Zero Emissions Vehicle (ZEV) program is one part of a program of coordinated 
standards that the California Air Resources Board (CARB) has enacted to control emissions of 
criteria pollutants and greenhouse gas emissions from vehicles.  The program began in 1990, 
within the low-emission vehicle (LEV) regulation,70 and has since expanded to include eleven 
other states.71  These states are usually referred to as Section 177 states, in reference to Section 
177 of the Clean Air Act,72 but it is important to note that not all Section 177 states have adopted 
the ZEV program component.73  In the following discussion of the incorporation of the ZEV 
program into the CAFE Model, any reference to the Section 177 states refers to those states that 
have also adopted California’s ZEV program requirements. 

To account for the ZEV program, and particularly as other states have recently adopted 
California’s ZEV standards, DOT staff have included the main provisions of the ZEV program in 
the CAFE Model’s analysis of compliance pathways.  As explained below, incorporating the 
ZEV program into the model includes converting vehicles that have been identified as potential 
ZEV candidates into battery-electric vehicles (BEVs) at the first redesign opportunity, so that a 
manufacturer’s fleet meets calculated ZEV credit requirements.  Since ZEV program compliance 
pathways happen independently from the adoption of fuel saving technology in response to 
increasing CAFE standards, the ZEV program is considered in the baseline of the CAFE Model, 
and in all other regulatory alternatives for CAFE standards. 

2.3.1 Overview of the ZEV Program 

Through its zero-emissions vehicle program, California requires that all manufacturers that sell 
cars within the state meet the ZEV credit standards.  The current credit requirements are 
calculated based on manufacturers’ California sales volumes.  Manufacturers primarily earn ZEV 
credits through the production of battery electric vehicles (BEVs), fuel cell electric vehicles 
(FCEVs), and transitional zero-emissions vehicles (TZEVs), which are vehicles with partial 

 
70 California Air Resource Board (CARB), Zero-Emission Vehicle Program.  California Air Resources Board.  
Accessed April 12, 2021.  https://ww2.arb.ca.gov/our-work/programs/zero-emission-vehicle-program/about.  
71 At the time of writing, the Section 177 states that have adopted the ZEV program are Colorado, Connecticut, 
Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, Vermont, and Washington. 
See Vermont Department of Environmental Conservation, Zero Emission Vehicles.  Accessed April 12, 2021.  
https://dec.vermont.gov/air-quality/mobile-
sources/zev#:~:text=To%20date%2C%2012%20states%20have,ZEVs%20over%20the%20next%20decade.  
72 Section 177 of the Clean Air Act allows other states to adopt California’s air quality standards. 
73 At the time of writing, Delaware and Pennsylvania are the two states that have adopted the LEV standards, but not 
the ZEV portion. 

https://ww2.arb.ca.gov/our-work/programs/zero-emission-vehicle-program/about
https://dec.vermont.gov/air-quality/mobile-sources/zev#:%7E:text=To%20date%2C%2012%20states%20have,ZEVs%20over%20the%20next%20decade
https://dec.vermont.gov/air-quality/mobile-sources/zev#:%7E:text=To%20date%2C%2012%20states%20have,ZEVs%20over%20the%20next%20decade


 

electrification, namely plug-in hybrids (PHEVs).  Total credits are calculated by multiplying the 
credit value each ZEV receives by the vehicle’s volume.  

The ZEV credit value per vehicle is calculated based on the vehicle’s range, according to the 
formula in Equation 2-5.  ZEVs may earn up to 4 credits each. 

 
𝑍𝑍𝑇𝑇𝑉𝑉 𝑐𝑐𝑢𝑢𝑒𝑒𝑑𝑑𝑢𝑢𝑃𝑃 𝐴𝐴𝑎𝑎𝑖𝑖𝑢𝑢𝑒𝑒 =  (0.01 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 𝑢𝑢𝑎𝑎𝑃𝑃𝑔𝑔𝑒𝑒)  + 0.5 

Equation 2-5 – ZEV Credits per Vehicle 

The TZEV (PHEV) credit formula also depends on the vehicle’s range, as seen in Equation 2-6. 

   𝑇𝑇𝑍𝑍𝑇𝑇𝑉𝑉 𝑐𝑐𝑢𝑢𝑒𝑒𝑑𝑑𝑢𝑢𝑃𝑃 𝐴𝐴𝑎𝑎𝑖𝑖𝑢𝑢𝑒𝑒 =  (0.01 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖𝑒𝑒𝑐𝑐𝑃𝑃𝑢𝑢𝑢𝑢𝑐𝑐 𝑢𝑢𝑎𝑎𝑃𝑃𝑔𝑔𝑒𝑒)  +  0.03 
Equation 2-6 – TZEV Credits per Vehicle 

PHEVs with a US06 all-electric range capability of 10 mi or higher receive an additional 0.2 
credits.74  The maximum PHEV credit amount available per vehicle is 1.10.75  

2.3.2 Calculation of ZEV Credits per Manufacturer 

For the purposes of simulating the ZEV program, DOT staff calculated approximate ZEV credit 
targets as a first step in adding ZEV compliance to the baseline.  We built these credit targets 
based on examination of the ZEV regulation updates from 2018, estimation of national sales 
volumes by manufacturer, analysis of manufacturers’ market share in Section 177 states, and 
application of CARB’s credit requirement formulas. 

2.3.2.1 Characterizing the Market 

The CAFE Model is designed to present outcomes at a national scale, so the ZEV analysis 
considers the Section 177 states as a group as opposed to estimating each state’s ZEV credit 
requirements individually.  To capture the appropriate volumes subject to the ZEV requirement, 
we calculate each manufacturer’s total market share in Section 177 states.  We also calculate the 
market share of ZEVs in Section 177 states, in order to estimate as closely as possible the 
number of predicted ZEVs expected to be sold in those states.  These shares are later used to 
scale down national-level information in the CAFE Model to ensure that only Section 177 states 
are represented in the final calculation of ZEV credits projected to be earned by each 
manufacturer in future years. 

DOT staff used the most recent Polk data available at the time of analysis, the National Vehicle 
Population Profile (NVPP) from January 2020, to calculate these percentages.76  These data 
include vehicle characteristics such as powertrain, fuel type, manufacturer, nameplate, and trim 

 
74 US06 is one of the drive cycles used to test fuel economy and all-electric range, specifically for the simulation of 
aggressive driving.  See Dynamometer Drive Schedules | Vehicle and Fuel Emissions Testing | US EPA for more 
information, as well as Chapter 2.4 Technology Effectiveness Values and Chapter 3.3.4 in this document. 
75 13 CCR § 1962.2(c)(3). 
76 National Vehicle Population Profile (NVPP) 2020, IHS Markit – Polk. 

https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules


 

level, as well as the state in which vehicles were sold, which allows staff to identify the different 
types of ZEVs sold in the Section 177 state group.  At the time of the analysis, model year 2019 
data from the NVPP contained the most current estimate of market shares by manufacturer, and 
best represented the registered vehicle population on January 1, 2020.  DOT staff may make use 
of future Polk data in updating the analysis for the final rule and may include other states that 
join the ZEV program after the publication of this NPRM, if necessary. 

Table 2-12 illustrates the estimated total and ZEV-only market shares of manufacturers in 
Section 177 states, using the 2019 model year data.  

Table 2-12 – Total and ZEV-only Market Shares in Section 177 States  

 Percent of Total Vehicle Sales in Section 
177 States 

Percent of ZEVs sold in Section 
177 States 

BMW 50.6% 76.3% 
Daimler 50.1% 85.5% 
FCA 24.4% 60.9% 
Ford 22.5% 50.0% 
General Motors 22.2% 72.1% 
Honda 41.0% 98.0% 
Hyundai  30.6% 90.8% 
Kia 29.8% 79.4% 
JLR 43.5% 57.8% 
Mazda 42.9% N/A77 
Mitsubishi 27.6% 71.2% 
Nissan 27.2% 72.0% 
Subaru 45.8% 91.1% 
Tesla 61.8% 61.8% 
Toyota 36.3% 84.8% 
Volvo 43.6% 64.4% 
VWA 39.4% 71.7% 

 

2.3.2.2 Estimating ZEV Credit Targets 

Volumes used for the ZEV credit requirement calculation are based on each manufacturer’s 
future assumed market share in Section 177 states.  The market shares shown in Table 2-12, 
calculated using NVPP data from model year 2019 as discussed in the previous section, are 
carried forward to future years.  The assumption to carry these data forward was made after 
examination of past market share data from model year 2016, from the 2017 version of the 

 
77 In the dataset used in the calculation of these percentages, Mazda was shown to have produced no ZEV-qualifying 
vehicles.  However, as discussed in Chapter 2.2, Mazda has indicated its intention to build electric vehicles in the 
future.  In the absence of ZEV market share data for Mazda, DOT staff assumed that 100% of future ZEVs would be 
sold in Section 177 states. 



 

NVPP.78  Comparison of these data to the 2020 version showed that manufacturers’ market 
shares remain fairly constant in terms of geographic distribution.  Therefore, we determined that 
it was reasonable to carry forward the recently calculated market shares to future years.   

Table 2-13 – ZEV Credit Percentage Requirement Schedule79 

Year ZEV credit percentage requirement 
2020 9.5% 
2021 12% 
2022 14.5% 
2023 17% 
2024 19.5% 

2025 onward 22% 
 

We calculate total credits required for ZEV compliance by multiplying the percentages from 
CARB’s ZEV requirement schedule by the Section 177 state volumes, as seen in Equation 2-7.  
Table 2-13 shows CARB’s ZEV credit percentage requirements for each future year.  Note that 
CARB’s ZEV percentage requirements do not currently change after 2025.80 

 
𝑇𝑇𝑒𝑒𝑅𝑅𝐶𝐶𝑢𝑢𝑒𝑒𝑑𝑑𝑢𝑢𝑃𝑃𝐶𝐶 = 𝑆𝑆𝑎𝑎𝑖𝑖𝑒𝑒𝐶𝐶𝑉𝑉𝑃𝑃𝑖𝑖𝑂𝑂 ∗ 𝑀𝑀𝑘𝑘𝑃𝑃𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝑂𝑂 ∗ 𝑍𝑍𝑇𝑇𝑉𝑉𝐹𝐹𝑒𝑒𝑢𝑢𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃 

Equation 2-7 – Required ZEV Credits Formula 

Where: 

 ReqCredits = Required credits 

 Sales Vol = National sales volumes 

 Mktshare = Share of sales in Section 177 states with ZEV standards 

 ZEVPercent = ZEV credit percentage requirement 

 M = Manufacturer 

We generate national sales volume predictions for future years using CAFE Model outputs 
reporting sales by manufacturer, fleet, and model year.  The compliance report used corresponds 
to the baseline scenario of 1.5% per year increases in standards for both passenger car and light 
truck fleets.  

The resulting national sales volume predictions by manufacturer are then multiplied by each 
manufacturer’s total market share in the Section 177 states to capture the appropriate volumes in 
the ZEV credits calculation (See Table 2-14).  Required credits by manufacturer, per year, are 

 
78 National Vehicle Population Profile (NVPP) 2017, IHS Markit – Polk. 
79 13 CCR § 1962.2(b).  
80 13 CCR § 1962.2(b). 



 

determined by multiplying the Section 177 state volumes by CARB’s ZEV credit percentage 
requirement.  These required credits are subsequently added to the CAFE Model inputs as targets 
for manufacturer compliance with ZEV standards in the CAFE baseline. 

Table 2-14 – Estimated Sales Volumes in Section 177 States 

Manufacturer Estimated Sales Volumes in Section 177 States 
2020 2021 2022 2023 2024 2025 

BMW 149,829 165,849 190,765 201,795 202,216 199,651 
Daimler 182,364 198,540 224,488 235,597 234,106 229,816 
FCA 366,807 390,980 432,127 448,646 440,582 429,043 
Ford 379,909 406,993 452,309 470,838 463,732 452,487 
GM 514,095 550,411 611,293 636,138 626,317 610,988 
Honda 530,745 581,491 661,838 696,726 694,599 683,396 
Hyundai 226,679 247,912 281,648 296,241 295,064 290,123 
Kia 177,618 195,613 223,839 236,221 236,119 232,722 
JLR 60,142 63,939 70,465 73,057 71,634 69,683 
Mazda 111,752 120,557 134,995 141,032 139,448 136,432 
Mitsubishi 31,086 33,331 37,078 38,615 38,052 37,144 
Nissan 280,583 306,345 347,417 365,121 363,353 357,058 
Subaru 344,272 370,757 414,381 432,524 427,250 417,736 
Tesla 121,113 137,263 161,629 172,779 175,058 174,092 
Toyota 643,330 702,964 797,883 838,869 835,161 820,928 
Volvo 45,299 48,840 54,653 57,082 56,414 55,186 
VWA 168,255 183,847 208,666 219,377 218,404 214,678 

 

2.3.3 Identifying ZEV Candidates in the Analysis Fleet  

The ZEV credit requirements estimated in the previous section serve as a target for simulating 
ZEV compliance in the baseline.  To achieve this, we determined a modeling philosophy for 
ZEV pathways, reviewed various sources for information regarding upcoming ZEV programs, 
and inserted those programs into the analysis fleet inputs.  The following sections elaborate on 
these components. 

2.3.3.1 Modeling Philosophy on ZEV Pathways 

As manufacturers can meet ZEV standards in a variety of different ways, using various 
technology combinations, DOT staff made certain simplifying assumptions in choosing ZEV 
pathways.  These assumptions were made in conjunction with guidance from CARB staff. 

First, we target 2025 compliance, as opposed to assuming manufacturers would perfectly comply 
with their credit requirements in each year prior to 2025.  This simplifying assumption was made 
upon review of past history of ZEV credit transfers, existing ZEV credit banks, and redesign 
schedules.  We focus on integrating ZEV technology throughout that timeline with the target of 
meeting 2025 obligations; thus, some manufacturers are estimated to over-comply or under-
comply, depending on their individual situations, in the years 2021-2024.   



 

Second, we determined that the most reasonable way to model ZEV compliance would be to 
allow under-compliance in certain cases and assume that some manufacturers would not meet 
their ZEV obligation on their own in 2025.  Instead, these manufacturers are assumed to prefer to 
purchase credits from another manufacturer with a credit surplus.  Reviews of past ZEV credit 
transfers between manufacturers informed the decision to make this simplifying assumption.81  
CARB staff advised that for these manufacturers, the CAFE Model should still project that each 
manufacturer meet approximately 80% of their ZEV requirements with technology included in 
their own portfolio.  Manufacturers that are observed to have generated many ZEV credits in the 
past or had announced major upcoming BEV initiatives are projected to meet 100% of their ZEV 
requirements on their own, without purchasing ZEV credits from other manufacturers.82 

Third, we assume that manufacturers will meet their ZEV credit requirements in 2025 though the 
production of battery electric vehicles (BEVs).  As discussed in Chapter 2.3.1, manufacturers 
may choose to build plug-in hybrid electric vehicles (PHEVs) or fuel cell vehicles to earn some 
portion of their required ZEV credits.  However, we project that manufacturers will rely on 
BEVs to meet their credit requirements, based on reviews of press releases and industry news, as 
well as discussion with CARB staff.  Since nearly all manufacturers have announced some plans 
to produce BEVs at a scale meaningful to future ZEV requirements, we consider this to be a 
reasonable assumption.83  Furthermore, as CARB only allows intermediate-volume 
manufacturers to meet their ZEV credit requirements through the production of PHEVs, and the 
volume status of these few manufacturers might change over the years, assuming BEV 
production for ZEV compliance is the most straightforward path. 

Fourth, to account for the new BEV programs announced by some manufacturers, we identify 
vehicles in the 2020 fleet that closely match the upcoming BEVs, by regulatory class, market 
segment, and redesign schedule.  We made an effort to distribute ZEV candidate vehicles by 
CAFE regulatory class (light truck, passenger car), by manufacturer, in a manner consistent with 
the 2020 manufacturer fleet mix.  Since passenger car and light truck mixes by manufacturer 
could change in response to the CAFE policy alternative under consideration, this effort was 
deemed necessary in order to avoid redistributing the fleet mix in an unrealistic manner.  
However, there are some exceptions to this assumption, as some manufacturers are already a 
long way to meeting their ZEV obligation through 2025 with BEVs currently produced, and 
some manufacturers underperform their compliance targets more so in one fleet than another.  In 
these cases, we deviate from keeping the LT/PC mix of BEVs evenly distributed across the 
manufacturer’s portfolio.84  See Table 2-16 for examples of the regulatory class distribution 
across manufacturers.   

 
81 See https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/zev-program/zero-emission-vehicle-
credit-balances for past credit balances and transfer information. 
82 The following manufacturers were assumed to meet 100% ZEV compliance: Ford, General Motors, Hyundai, Kia, 
Jaguar Land Rover, and Volkswagen Automotive.  Tesla was also assumed to meet 100% of its required standards, 
but we did not need to add additional ZEV substitutes to the baseline for this manufacturer. 
83 See Table 2-15 for a list of potential BEV programs recently announced by manufacturers. 
84 The GM light truck and passenger car distribution is one such example. 

https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/zev-program/zero-emission-vehicle-credit-balances
https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/zev-program/zero-emission-vehicle-credit-balances


 

2.3.3.2 Potential ZEV Programs 

DOT staff identified future ZEV programs that could plausibly contribute towards the ZEV 
requirements for each manufacturer by 2025.  To obtain this information, staff examined various 
sources, including trade press releases, industry announcements, and investor reports.  In many 
cases, these BEV programs are in addition to programs already in production.85  Some 
manufacturers have not yet released details of future electric vehicle programs at the time of 
writing, but have indicated goals of reaching certain percentages of electric vehicles in their 
portfolios by a specified year.  In these cases, we reviewed the manufacturer’s current fleet 
characteristics as well as the aspirational information in press releases and other news in order to 
make reasonable assumptions about the vehicle segment and range of those future EVs.86  DOT 
staff may reassign some manufacturer’s ZEV programs in the analysis fleet for the final rule 
based on stakeholder comments or other public information releases that occur in time for the 
final rule analysis. 

Table 2-15 lists the potential upcoming ZEV programs that we consider.  Overall, we assume 
that manufacturers will lean towards producing BEV300s rather than BEV200s, based on the 
information reviewed and an initial conversation with CARB staff.87  Phase-in caps are also 
considered, especially for BEV200, with the understanding that the CAFE Model will always 
pick BEV200 before BEV300 or BEV400, until the quantity of BEV200s is exhausted.  See 
Chapter 3.3.3 for details regarding phase-in caps in the CAFE Model. 

BEVs, especially BEVs with smaller battery packs and less range, are less likely to meet all the 
performance needs of traditional pickup truck owners.  However, new markets for BEVs may 
emerge, potentially in the form of electric delivery trucks and some light-duty electric truck 
applications in state and local government.  The extent to which BEVs will be used in these and 
other new markets is difficult to project.  We do identify certain trucks as upcoming BEVs for 
ZEV compliance, and these BEVs are expected to have higher ranges, due to the specific 
performance needs associated with these vehicles.  Outside of the ZEV inputs described here, the 
CAFE Model does not handle the application of BEV technology with any special considerations 
as to whether the vehicle is a pickup truck or not.  Comments from manufacturers are solicited 
on this issue.  See Chapter 3.3 for more information regarding BEV application in the CAFE 
Model. 

 
85 Examples of BEV programs already in production include the Nissan Leaf and the Chevrolet Bolt. 
86 For example, see the entries under FCA and Mitsubishi in Table 2-15. 
87 BEV300s are battery-electric vehicles with 300-mile range.  See Chapter 3.3.2 for further information regarding 
electrification fleet assignments. 



 

Table 2-15 – Potential Upcoming ZEV Programs88 

Manufacturer Nameplate Technology First Model Year Likely Fleet 
BMW i4 BEV300 2022 IC 
BMW iX3 BEV300 2022 LT 
BMW iNext BEV300 2024 LT 
Daimler Mercedes-Benz EQA SUV BEV200 2022 PC 
Daimler Mercedes-Benz EQE Sedan BEV200 2022 PC 
Daimler Mercedes-Benz EQS Sedan BEV400 2022 PC 
Daimler Mercedes-Benz EQB SUV BEV200 2023 LT 
Daimler Mercedes-Benz EQE SUV BEV200 2023 LT 

Daimler Mercedes-Benz G-Class 
Electric BEV300 2023 LT 

Daimler Mercedes-Benz EQS SUV BEV400 2023 LT 
Daimler Mercedes-Benz EQC SUV BEV200 2024 LT 
FCA Jeep Wrangler EV BEV300 2023 LT 
FCA Car EV BEV300 2024 PC 
FCA SUV EV BEV300 2024 LT 
Ford Mustang Mach-e BEV200 2021 PC 
Ford Mustang Mach-e BEV300 2021 PC 
Ford F-150 Electric Pickup BEV300 2022 LT 
Ford E-Transit BEV200 2023 LT 
Ford Lincoln SUV BEV200 2024 LT 
Ford Lincoln SUV BEV300 2025 LT 
GM Cadillac Lyriq BEV300 2022 LT 
GM Bolt EUV BEV300 2022 PC 
GM GMC Hummer BEV400 2022 LT 
GM Cadillac Celestiq BEV300 2024 LT 
GM Chevrolet Electric Pickup BEV300 2025 LT 
Honda SUV EV BEV200 2025 LT 
Honda SUV EV BEV300 2025 LT 
Honda PC EV BEV300 2025 PC 
Hyundai Ioniq 5 (Midsize SUV) BEV300 2023 LT 
Hyundai Ioniq 6 Sedan BEV300 2023 PC 
Hyundai Genesis Essentia BEV300 2024 PC 
Hyundai Ioniq 7 SUV BEV300 2024 LT 
JLR Jaguar XJ Electric BEV200 2022 IC 
JLR Range Rover EV BEV300 2024 LT 

 
88 See Car and Driver, Every Electric Vehicle that’s expected in the Next Five Years.  Car and Driver (Jan 12, 2021),  
https://www.caranddriver.com/news/g29994375/future-electric-cars-trucks/; Preston, B., Hot New Electric Cars Are 
Coming Soon.  Consumer Reports (Feb 4, 2021), https://www.consumerreports.org/hybrids-evs/hot-new-electric-
cars-are-coming-soon/; Docket No. NHTSA-2021-0053, Press Releases for ZEV Candidate Vehicles. 

https://www.caranddriver.com/news/g29994375/future-electric-cars-trucks/
https://www.consumerreports.org/hybrids-evs/hot-new-electric-cars-are-coming-soon/
https://www.consumerreports.org/hybrids-evs/hot-new-electric-cars-are-coming-soon/


 

Manufacturer Nameplate Technology First Model Year Likely Fleet 
Kia 7 dedicated EVs by 2026 BEV200 2023 PC 
Kia 7 dedicated EVs by 2026 BEV300 2024 PC 
Kia 7 dedicated EVs by 2026 BEV400 2025 PC 
Mazda MX-30 BEV200 2023 LT 
Mitsubishi Unknown BEV200 2022 LT 
Mitsubishi Unknown BEV300 2022 LT 
Nissan Ariya BEV300 2022 PC 
Nissan Ariya BEV300 2022 LT 

Subaru Electric SUV / Joint 
venture with Toyota BEV200 2022 LT 

Subaru Electric SUV / Joint 
venture with Toyota BEV300 2022 LT 

Toyota Electric SUV / Joint 
venture with Subaru BEV200 2022 LT 

Toyota Lexus EV SUC BEV300 2023 LT 
Volvo Polestar 2 BEV200 2021 PC 
Volvo XC40 Recharge BEV200 2022 LT 
Volvo XC40 Recharge BEV300 2023 LT 
VWA Audi E-Tron Sportback BEV200 2021 LT 
VWA ID.4 BEV300 2021 PC 
VWA Audi E-Tron GT BEV200 2022 PC 
VWA ID.4 BEV200 2022 LT 
VWA Audi Q4 e-tron BEV300 2022 LT 

VWA Porsche Taycan Cross 
Turismo BEV300 2022 PC 

VWA I.D. Buzz BEV300 2023 LT 
VWA I.D. Space Vizzion BEV300 2023 PC 
VWA Porsche Macan EV BEV300 2024 LT 
 

2.3.3.3 Inserting ZEV Programs into the CAFE Model Analysis Fleet 

The CAFE analysis fleet summarizes the roughly 13.6 million light-duty vehicles produced and 
sold in the United States in the 2020 model year with more than 3,500 rows, each reflecting 
information for one vehicle type observed.  Each row includes the vehicle’s nameplate and trim 
level, the sales volume, engine, transmission, drive configuration, regulatory class, projected 
redesign schedule, and fuel saving technologies, among other attributes.  For a comprehensive 
discussion of how we built the analysis fleet, see Chapter 2.1.   

In order to simulate manufacturers’ compliance with their particular ZEV credits target, 142 
rows in the analysis fleet are identified as substitutes for future ZEV programs (See Table 2-15).  
As the goal of the ZEV analysis is to simulate compliance with the ZEV program in the baseline, 
and the analysis fleet only contains vehicles produced during model year 2020, we identify 



 

existing models in the analysis fleet that share certain characteristics with upcoming BEVs.  We 
also focus on identifying substitute vehicles with redesign years similar to the future BEV’s 
introduction year.  The sales volumes of those existing models, as predicted for 2025, are then 
used to simulate production of the upcoming BEVs.  We were able to identify a combination of 
rows that would meet the ZEV target, could contribute productively towards CAFE program 
obligations (by manufacturer and by fleet), and would introduce BEVs in each manufacturer’s 
portfolio in a way that reasonably aligned with projections and announcements.  We tag each of 
these rows with information in the Market Data file,89 instructing the CAFE Model to apply the 
specified BEV technology to the row at the first redesign year, regardless of the scenario or type 
of CAFE or GHG simulation. 

The CAFE Model does not optimize compliance with the ZEV mandate; it relies upon the inputs 
described in this chapter in order to estimate each manufacturers’ resulting ZEV credits.  The 
resulting amount of ZEV credits earned by manufacturer for each model year can be found in the 
CAFE Model’s output files.  For a visual overview of each manufacturer’s full ZEV compliance 
timeline, see Figure 2-1. 

Not all ZEV-qualifying vehicles in the U.S. earn ZEV credits, as they are not all sold in states 
that have adopted ZEV regulations.  In order to reflect this in the CAFE Model, which only 
estimates sales volumes at the national level, we use the percentages calculated in Chapter 
2.3.2.1 to scale down the national-level volumes.  These percentages (representing the share of 
ZEVs sold in Section 177 states) may be found in Table 2-12.  Multiplying national-level ZEV 
sales volumes by these percentages ensures that only the ZEVs sold in Section 177 states count 
towards the ZEV credit targets of each manufacturer.90  See Chapter 5.8 of the CAFE Model 
Documentation for a detailed description of how the model applies these ZEV technologies and 
any changes made to the model’s programming for the incorporation of the ZEV program into 
the baseline.  

As discussed in Chapter 2.3.3.1, DOT staff made an effort to distribute the newly identified ZEV 
candidates between CAFE regulatory classes (light truck and passenger car) in a manner 
consistent with the proportions seen in the 2020 analysis fleet, by manufacturer.  The resulting 
distribution of the ZEV candidates compared to the observed fleet mix distribution in the 2020 
analysis fleet is shown in Table 2-16.  As mentioned previously, there are a few exceptions to 
this assumption in cases where manufacturers’ regulatory class distribution of current or planned 
ZEV programs clearly differed from their regulatory class distribution as a whole.   

 
89 See Chapter 2.2 for further information on the Market Data file. 
90 The single exception to this assumption is Mazda, as Mazda has not yet produced any ZEV-qualifying vehicles at 
the time of writing.  Thus, the percentage of ZEVs sold in section 177 states cannot be calculated from existing data.  
However, Mazda has indicated its intention to produce ZEV-qualifying vehicles in the future, so DOT staff assumed 
that 100% of future ZEVs would be sold in Section 177 states for the purposes of estimating ZEV credits in the 
CAFE Model. 



 

Table 2-16 – Regulatory Class Distributions 

Manufacturer 2020 LT sales 
(percent) 

LT ZEV candidates 
(percent) 

2020 PC sales 
(percent) 

PC ZEV candidates 
(percent) 

BMW 37.2% 52.0% 62.8% 48.0% 
Daimler 52.9% 46.1% 47.1% 53.9% 
FCA 86.2% 87.1% 13.8% 12.9% 
Ford 73.5% 75.0% 26.5% 25.0% 
GM 67.5% 0.0% 32.5% 100.0% 
Honda 42.3% 45.9% 57.7% 54.1% 
Hyundai 10.7% 31.9% 89.3% 68.1% 
Kia 38.5% 43.9% 61.5% 56.1% 
JLR 95.8% 88.6% 4.2% 11.4% 
Mazda 51.7% 0.0% 48.3% 100.0% 
Mitsubishi 54.3% 0.0% 45.7% 100.0% 
Nissan 30.9% 68.3% 69.1% 31.7% 
Subaru 79.0% 77.5% 21.0% 22.5% 
Tesla91 3.1% N/A 96.9% N/A 
Toyota 46.9% 59.1% 53.1% 40.9% 
Volvo 74.7% 86.1% 25.3% 13.9% 
VWA 58.0% 86.1% 42.0% 13.9% 
 
In some instances, the regulatory distribution of flagged ZEV candidates leans towards a higher 
portion of PCs.  The reasoning behind this differs in each case, but there is an observed pattern in 
the 2020 analysis fleet of fewer BEVs being light trucks, especially pickups.  The 2020 analysis 
fleet contains no BEV pickups in the light truck segment.  The slow emergence of electric 
pickups could be linked to the specific performance needs associated with pickup trucks.  
However, the market for BEVs may emerge in unexpected ways that are difficult to project.  
Examples of this include anticipated electric delivery trucks and light-duty electric trucks used 
by state and local governments.  Due to these considerations, we tagged some trucks as BEVs for 
ZEV, and expected that these would generally be of higher ranges. 

Table 2-17 shows the portion of BEVs observed in the analysis fleet, by manufacturer and by 
regulatory class, and compares those percentages to the regulatory class distribution in the 2020 
analysis fleet overall. 

 

 
91 No ZEV candidates were flagged for Tesla, as Tesla is already compliant with the ZEV program and its vehicles 
in the 2020 fleet are already EVs. 



 

Table 2-17 – Portion of Battery Electric Vehicles Observed in the Analysis Fleet 

Manufacturer 
2020 LT 

Sales 
(percent) 

2020 PC 
Sales 

(percent) 

2020 BEVs 
Observed 
(percent) 

Portion of LT 
BEVs Observed 
in 2020 (percent) 

Portion of PC 
BEVs Observed 
in 2020 (percent) 

BMW 37.2% 62.8% 0.67% 0% 100% 
Daimler 52.9% 47.1% 0.07% 0% 100% 
FCA 86.2% 13.8% 0.00% N/A N/A 
Ford 73.5% 26.5% 0.00% N/A N/A 
GM 67.5% 32.5% 1.22% 0% 100% 
Honda 42.3% 57.7% 0.00% N/A N/A 
Hyundai Kia-H 10.7% 89.3% 0.81% 0% 100% 
Hyundai Kia-K 38.5% 61.5% 0.16% 0% 100% 
JLR 95.8% 4.2% 1.34% 100% 0% 
Mazda 51.7% 48.3% 0.00% N/A N/A 
Mitsubishi 54.3% 45.7% 0.00% N/A N/A 
Nissan 30.9% 69.1% 1.12% 0% 100% 
Subaru 79.0% 21.0% 0.00% N/A N/A 
Tesla 3.1% 96.9% 100.00% 3% 97% 
Toyota 46.9% 53.1% 0.00% N/A N/A 
Volvo 74.7% 25.3% 0.00% N/A N/A 
VWA 58.0% 42.0% 1.21% 15% 85% 
 
Table 2-18 shows the scope of the fleet affected, including the penetration rates of BEVs 
observed in the 2020 fleet prior to and after the simulation of the ZEV program in the baseline.  
The penetration rate of BEVs in 2025 is also shown.  These rates are all based on 2020 baseline 
volumes and 2025 projected sales volumes in the baseline scenario.  For further discussion of the 
effects of increased BEV penetration rates in the baseline fleet, see RIA Chapter 6.1. 



 

Table 2-18 – Penetration of BEVs due to Simulation of the ZEV Program 

Manufacturer 

Penetration 
Rate of BEVs 
Observed in 

2020 fleet 

2020 
Observed 

BEV 
Volume 

Penetration 
Rate of BEVs 

(Observed and 
Added) in 2020 

2025 ZEV 
Candidate 

Volume 

Penetration 
Rate of ZEV 

Candidates in 
2025 

BMW 0.67% 1997 2.58% 7396 1.90% 
Daimler 0.07% 258 3.48% 14108 3.07% 
FCA 0% 0 1.08% 18957 1.08% 
Ford 0% 0 1.24% 25534 1.28% 
GM 1.22% 28197 2.24% 26798 0.98% 
Honda 0% 0 1.78% 30675 1.83% 
Hyundai 0.81% 6003 2.13% 13567 1.42% 
Kia 0.16% 965 2.40% 17882 2.27% 
JLR 1.34% 1858 2.98% 2655 1.67% 
Mazda 0% 0 3.09% 9135 2.88% 
Mitsubishi 0% 0 1.73% 2217 1.65% 
Nissan 1.12% 11558 1.66% 6280 0.48% 
Subaru 0% 0 2.27% 20779 2.28% 
Tesla 100.00% 196000 100% 0 0.00% 
Toyota 0% 0 1.96% 39540 1.74% 
Volvo 0% 0 2.96% 3653 2.89% 
VWA 1.21% 5187 2.70% 7525 1.38% 

 
Figure 2-1 compares the target ZEV credits with the achieved ZEV credits estimated by the 
CAFE Model, illustrating the effects of the ZEV analysis’s goal of 2025 compliance for most 
manufacturers.  These achieved target results pertain only to the baseline scenario (the 1.5% no-
action alternative), not the proposed alternatives, as we intended for the ZEV program to be 
represented in the CAFE Model’s baseline.  Note also that CARB’s ZEV percentage 
requirements do not currently change after 2025 (any fluctuation is due to predicted increases in 
manufacturer volume).  



 

 

Figure 2-1 – ZEV Credits Estimated by the CAFE Model 

2.4 Technology Effectiveness Values  

The next inputs required to simulate manufacturers’ decision-making processes for the year-by-
year application of technologies to specific vehicles are estimates of how effective each 
technology would be at reducing fuel consumption.  For this analysis, we use full-vehicle 
modeling and simulation to estimate the fuel economy improvements manufacturers could make 
to a fleet of vehicles, considering the vehicles’ technical specifications and how combinations of 
technologies interact.  Full-vehicle modeling and simulation uses physics-based models to 
predict how combinations of technologies perform as a full system under defined conditions. 

A model is a mathematical representation of a system, and simulation is the behavior of that 
mathematical representation over time.  In this analysis, the model is a mathematical 
representation of an entire vehicle,92 including its individual components such as the engine and 
transmission, overall vehicle characteristics such as mass and aerodynamic drag, and the 
environmental conditions, such as ambient temperature and barometric pressure.  We simulate 

 
92 Each full vehicle model in this analysis is composed of sub-models, which is why the full vehicle model could 
also be referred to as a full system model, composed of sub-system models. 



 

the model’s behavior over test cycles, including the 2-cycle laboratory compliance tests (or 2-
cycle tests),93 to determine how the individual components interact.  The 2-cycle tests are test 
cycles used to measure fuel economy and emissions for CAFE compliance, and therefore are the 
relevant test cycles for determining technology effectiveness when establishing CAFE standards.  
In the laboratory, 2-cycle testing involves sophisticated test and measurement equipment, 
carefully controlled environmental conditions, and precise procedures to provide the most 
repeatable results possible with human drivers.  Measurements using these structured procedures 
serve as a uniform assessment for fuel economy. 

Full-vehicle modeling and simulation was initially developed to avoid the costs of designing and 
testing prototype parts for every new type of technology.  For example, if a truck manufacturer 
has a concept for a lightweight tailgate and wants to determine the fuel economy impact for the 
weight reduction, the manufacturer can use physics-based computer modeling to estimate the 
impact.  The vehicle, modeled with the proposed change, can be simulated on a defined test route 
and under defined test conditions, such as city or highway driving in warm ambient temperature 
conditions, and compared against the baseline vehicle without the change.  Full-vehicle modeling 
and simulation allows the consideration and evaluation of different designs and concepts before 
building a single prototype.  In addition, full vehicle modeling and simulation is beneficial when 
considering technologies that provide small incremental improvements.  These improvements are 
difficult to measure in laboratory tests due to variations in how vehicles are driven over the test 
cycle by human drivers, variations in emissions measurement equipment, and variations in 
environmental conditions.94 

Full-vehicle modeling and simulation requires detailed data describing individual vehicle 
technologies and performance-related characteristics.  Those specifications generally come from 
design specifications, laboratory measurements, and other subsystem simulations or modeling.  
One example of data used as an input to the full vehicle simulation are engine maps for each 
engine technology that define how much fuel is consumed by the engine technology across its 
operating range. 

Using full-vehicle modeling and simulation to estimate technology efficiency improvements has 
two primary advantages over using single or limited point estimates.  An analysis using single or 
limited point estimates may assume that, for example, one fuel economy improving technology 
with an effectiveness value of 5 percent by itself and another technology with an effectiveness 
value of 10 percent by itself, when applied together achieve an additive improvement of 15 
percent.  Single point estimates generally do not provide accurate effectiveness values because 
they do not capture complex relationships among technologies.  Technology effectiveness often 
differs significantly depending on the vehicle type (e.g., sedan versus pickup truck) and the way 

 
93 EPA’s compliance test cycles are used to measure the fuel economy of a vehicle.  For readers unfamiliar with this 
process, it is like running a car on a treadmill following a program—or more specifically, two programs.  The 
“programs” are the “urban cycle,” or Federal Test Procedure (abbreviated as “FTP”), and the “highway cycle,” or 
Highway Fuel Economy Test (abbreviated as “HFET”), and they have not changed substantively since 1975.  Each 
cycle is a designated speed trace (of vehicle speed versus time) that all certified vehicles must follow during testing.  
The FTP is meant roughly to simulate stop and go city driving, and the HFET is meant roughly to simulate steady 
flowing highway driving at about 50 mph.  
94 Difficulty in controlling for such variability is reflected, for example, in 40 CFR 1065.210, Work input and output 
sensors, which describes complicated instructions and recommendations to help control for variability in real world 
(non-simulated) test instrumentation set up. 



 

in which the technology interacts with other technologies on the vehicle, as different 
technologies may provide different incremental levels of fuel economy improvement if 
implemented alone or in combination with other technologies.  Any oversimplification of these 
complex interactions leads to less accurate and often overestimated effectiveness estimates. 

In addition, because manufacturers often implement several fuel-saving technologies 
simultaneously when redesigning a vehicle, it is difficult to isolate the effect of individual 
technologies using laboratory measurement of production vehicles alone.  Modeling and 
simulation offer the opportunity to isolate the effects of individual technologies by using a single 
or small number of baseline vehicle configurations and incrementally adding technologies to 
those baseline configurations.  This provides a consistent reference point for the incremental 
effectiveness estimates for each technology and for combinations of technologies for each 
vehicle type.  Vehicle modeling also reduces the potential for overcounting or undercounting 
technology effectiveness. 

An important feature of this analysis is that the incremental effectiveness of each technology and 
combinations of technologies should be accurate and relative to a consistent baseline vehicle.  
We use the absolute fuel economy values from the full vehicle simulations only to determine 
incremental effectiveness, but not to assign an absolute fuel economy value to any vehicle model 
or configuration.   

For this analysis, the baseline absolute fuel economy value for each vehicle in the analysis fleet 
is based on CAFE compliance data.95  For subsequent technology changes, we apply the 
incremental effectiveness values of one or more technologies to the baseline fuel economy value 
to determine the absolute fuel economy achieved for applying the technology change.  We 
determine the effectiveness values using full vehicle simulations performed in Autonomie, a 
physics-based full-vehicle modeling and simulation software developed and maintained by the 
U.S. Department of Energy’s Argonne National Laboratory.   

As an example, if a Ford F-150 2-wheel drive crew cab and short bed in the analysis fleet has a 
fuel economy value of 30 mpg for CAFE compliance, we consider 30 mpg the reference absolute 
fuel economy value.  A similar full vehicle model node in the Autonomie simulation may begin 
with an average fuel economy value of 32 mpg, and with the incremental addition of a specific 
technology X its fuel economy improves to 35 mpg, a 9.3 percent improvement.  In this example, 
the incremental fuel economy improvement (9.3 percent) from technology X is applied to the F-
150’s 30 mpg absolute value. 

We determine the incremental effectiveness of technologies as applied to the thousands of 
unique vehicle and technology combinations in the analysis fleet.  Although, as mentioned 
above, full-vehicle modeling and simulation reduces the work and time required to assess the 
impact of moving a vehicle from one technology state to another, it would be impractical—if not 
impossible—to build a unique vehicle model for every individual vehicle in the analysis fleet.  
Therefore, as discussed in the following chapters, the Autonomie analysis relies on ten vehicle 
technology class models that are representative of large portions of the analysis fleet vehicles.  

 
95 See Chapter 2.2.1 Characterizing Vehicles and their Technology Content for further discussion of CAFE 
compliance data.  



 

The vehicle technology classes ensure that we reasonably represent key vehicle characteristics in 
the full vehicle models.  The next sections discusses the details of the technology effectiveness 
analysis input specifications and assumptions. 

2.4.1 Full-Vehicle Modeling, Simulation Inputs, and Data Assumptions  

This analysis uses Argonne’s full vehicle modeling tool, Autonomie, to build vehicle models 
with different technology combinations to determine the effectiveness of those technologies over 
simulated regulatory test cycles.  We consider over 50 technologies as inputs to the Autonomie 
modeling.96  These inputs consist of engine technologies, transmission technologies, powertrain 
electrification, light-weighting, aerodynamic improvements, and tire rolling resistance 
improvements.  Chapter 3 broadly discusses each of the technology groupings definitions, inputs, 
and assumptions.  We include a deeper discussion of the Autonomie modeled subsystems, and 
how inputs feed the sub models resulting in outputs, in the Argonne Autonomie documentation 
that accompanies this analysis.   

We develop Autonomie model inputs considering real-world and compliance test cycle 
constraints, to the extent the modeling tool allows.  Examples include using an engine knock 
model in engine map development, noise-vibration-harshness (NVH) constraints on cylinder 
deactivation, and NVH constraints on the number of engine on/off events (e.g., from start/stop 
12V micro hybrid systems). 

One of the important inputs to the Autonomie model is the set of engine fuel map models.  The 
engine map models define the fuel consumption rate for an engine equipped with specific 
technologies when operating over a variety of engine load (torque) and engine speed conditions.  
We developed the engine map models by creating a base, or root, engine map and then 
modifying that root map, incrementally, to isolate the effects of the added technologies.  These 
engine maps, developed by IAV using their GT-Power modeling tool, are based on real-world 
engine designs.  One important feature of the IAV’s GT Power modeling tool is the embedded 
IAV knock model, which was also developed using real-world engine data.97,98  This ensures that 
the engine maps appropriately include real-world constraints as the Autonomie built vehicles are 
simulated on the test cycles.  Although the same engine map models are used for all vehicle 
technology classes, the effectiveness varies based on the characteristics of each class.  For 
example, a compact car with a turbocharged engine will have a different effectiveness value than 
a pickup truck with the same engine technology type.  The engine map models development and 
specifications are discussed further in TSD Chapter 3.1. 

 
96 Islam, E. S., A. Moawad, N. Kim, R. Vijayagopal, and A. Rousseau. A Detailed Vehicle Simulation Process to 
Support CAFE Standards for the MY 2024–2026 Analysis. ANL/ESD-21/9 [hereinafter Autonomie model 
documentation]. ANL - All Assumptions_Summary_NPRM_022021.xlsx, ANL - Data Dictionary_January 
2021.xlsx, ANL - Summary of Main Component Performance Assumptions_NPRM_022021.xlsx, and 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx. 
97 Engine knock in spark ignition engines occurs when combustion of some of the air/fuel mixture in the cylinder 
does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel 
mixture explodes outside of the envelope of the normal combustion front.  
98 See IAV material submitted to the docket; IAV_20190430_Eng 22-26 Updated_Docket.pdf, 
IAV_Engine_tech_study_Sept_2016_Docket.pdf, IAV_Study for 4 Cylinder Gas Engines_Docket.pdf. 



 

Other key Autonomie inputs and assumptions are default values and recommendations from 
Argonne’s technical teams, based on test data and technical publication review.99  For other 
Autonomie model inputs, such as, for example, throttle time response and shifting strategies for 
different transmission technologies, assumptions are based on the latest test data and current 
market information.100  The Autonomie modeling tool did not simulate vehicle attributes 
determined to have minimal impacts, like whether a vehicle had a sunroof or leather seats, as 
those attributes would have trivial impact in the overall analysis. 

Because this analysis modeled ten different vehicle types (i.e., vehicle classes) to represent the 
3,627 vehicles in the analysis fleet, improper assumptions about an advanced technology could 
lead to errors in estimating effectiveness.  Autonomie is a sophisticated full-vehicle modeling 
tool that requires extensive technology characteristics based on both physical and intangible data, 
like proprietary software (e.g., control strategies for cylinder deactivation).  For a few 
technologies, we did not have publicly available data but had received confidential business 
information confirming the potential availability of the technology in the market during the 
rulemaking timeframe.  For some advanced technologies, such as advanced cylinder 
deactivation, we adopt a method in the CAFE Model to represent the effectiveness of the 
technology and did not explicitly simulate the technologies in the Autonomie model.  For this 
limited set of technologies, we determined that effectiveness could reasonably be represented as 
a fixed value.101  Effectiveness values for technologies not explicitly simulated in Autonomie are 
discussed further in the individual technology sections of this TSD.  

2.4.2 Defining Vehicle Classes in Autonomie  

Argonne built full-vehicle models and ran simulations for many combinations of technologies, 
but it did not simulate literally every single vehicle model/configuration in the analysis fleet.  
Not only would it be impractical to assemble the requisite detailed information specific to each 
vehicle/model configuration, much of which would likely only be provided on a confidential 
basis, but doing so would increase the scale of the simulation effort by orders of magnitude.  
Instead, Argonne simulates ten different vehicle types, corresponding to the five “technology 
classes” generally used in CAFE analysis over the past several rulemakings, each with two 
performance levels and corresponding vehicle technical specifications (e.g., small car, small 
performance car, pickup truck, performance pickup truck, and so on). 

Technology classes are a means of specifying common technology input assumptions for 
vehicles that share similar characteristics.  Because each vehicle technology class has unique 
characteristics, the effectiveness of technologies and combinations of technologies is different 
for each technology class.  Conducting Autonomie simulations uniquely for each technology 

 
99 An example of a default assumption is the cylinder deactivation methodology within Autonomie.  The controller 
within Autonomie has been developed, using test data, to consider NVH and cold start operation when to enable 
cylinder deactivation.  
100 See further details in Chapter 2.2 and in Chapter 3’s individual technology pathway sections. 
101 For this analysis, 12 out of 50 plus technologies use fixed offset effectiveness values.  The total effectiveness of 
these technologies cannot be captured on the 2-cycle test or, like ADEAC, they are a new technology where robust 
data that could be used as an input to the technology effectiveness modeling does not yet exist.  Specifically, these 
technologies are LDB, SAX, EPS, IACC, EFR, HCR1D, BEV400, BEV500, ADEAC, DSLI, DSLIAD and 
TURBOAD. 



 

class provides a specific set of simulations and effectiveness data for each technology class.  In 
this analysis the technology classes are compact cars, midsize cars, small SUVs, large SUVs, and 
pickup trucks.  In addition, for each vehicle class there are two levels of performance attributes 
(for a total of 10 technology classes).  The high performance and low performance vehicles 
classifications allow for better diversity in estimating technology effectiveness across the fleet. 

We directed Argonne to develop a vehicle characteristics database to capture baseline vehicle 
attributes that are used to build the full vehicle models.  Representative vehicle attributes and 
characteristics are identified from publicly available information and automotive benchmarking 
databases such as A2Mac1,102 Argonne’s Downloadable Dynamometer Database (D3),103 EPA 
compliance and fuel economy data,104 and EPA’s guidance on the cold start penalty on 2-cycle 
tests.105  The resulting vehicle technology class baseline characteristics assumptions database 
consists of over 100 different attributes like vehicle frontal area, drag coefficient, fuel tank 
weight, transmission housing weight, transmission clutch weight, hybrid vehicle component 
weights, weights for components that comprise engines and electric machines, tire rolling 
resistance, and transmission gear ratios and final drive ratios.   

Argonne then assigns each of the ten vehicle types a set of baseline attributes based on 
representative values determined from the compiled vehicle databases.  For example, the 
characteristics of a MY 2020 Honda Civic are considered along with a wide range of other 
compact cars to identify representative characteristics for the base compact car technology class 
models.  These vehicle technology class attributes coupled with technology attributes are 
compiled as inputs for the full-vehicle Autonomie simulations.  The simulations then determine 
the fuel economy improvement from applying each combination of technologies to the baseline 
technology set. 

For each vehicle technology class and for each vehicle attribute, Argonne estimates the attribute 
value using statistical distribution analysis of publicly available data and data obtained from the 
A2Mac1 benchmarking database.  Some vehicle attributes are based on test data and vehicle 
benchmarking, like the cold-start penalty for the FTP test cycle and vehicle electrical accessories 
load.  Table 2-19 shows some key attributes that are assigned to the baseline reference vehicles.  
The Autonomie model documentation includes more detail about vehicle attributes used in this 

 
102 A2Mac1: Automotive Benchmarking.  (Proprietary data).  Retrieved from https://a2mac1.com.  A2Mac1 is 
subscription-based benchmarking service that conducts vehicle and component teardown analyses.  Annually, 
A2Mac1 removes individual components from production vehicles such as oil pans, electric machines, engines, 
transmissions, among the many other components.  These components are weighed and documented for key 
specifications which is then available to their subscribers. 
103 Downloadable Dynamometer Database (D3).  Argonne National Laboratory, Energy Systems Division.  
https://www.anl.gov/es/downloadable-dynamometer-database.  Last accessed April 16, 2021. 
104 Data on Cars used for Testing Fuel Economy.  EPA Compliance and Fuel Economy Data.  
https://www.epa.gov/compliance-and-fuel-economy-data/data-cars-used-testing-fuel-economy.  Last accessed April 
20, 2021. 
105 EPA PD TSD at 2-265-2-266. 

https://a2mac1.com/
https://www.anl.gov/es/downloadable-dynamometer-database
https://www.epa.gov/compliance-and-fuel-economy-data/data-cars-used-testing-fuel-economy


 

analysis,106 and values for each vehicle technology class are provided with the Argonne Input 
and Assumptions files.107  

 
106 Autonomie model documentation, Chapter 5. 
107 ANL - All Assumptions_Summary_NPRM_022021.xlsx, ANL - Data Dictionary_January 2021.xlsx, ANL - 
Summary of Main Component Performance Assumptions_NPRM_022021.xlsx, and 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx . 



 

Table 2-19 – Reference Autonomie  

Vehicle Class Performance 
Category 

0-60 
MPH 

Time (s) 

Towing 
(kg) 

Drag 
Coefficient 

Tire 
Rolling 

Resistance 

Frontal 
Area 
(m2) 

Estimated 
Curb 

Weight (kg) 

Base Elec 
Acc Load 

(w) 

Cold Start Penalty 
(bag1/bag2 %) 

NA:TC 

Compact Car Low 10 N/A 0.3 0.009 2.3 1337 250 14.6/2.3:13.8/1.7 

Midsize Car Low 9 N/A 0.3 0.009 2.35 1431 250 14.6/2.3:13.8/1.7 

Small SUV Low 9 N/A 0.36 0.009 2.65 1633 250 14.6/2.3:13.8/1.7 

Midsize SUV Low 9 N/A 0.38 0.009 2.85 1746 300 14.6/2.3:13.8/1.7 

Pickup Low 10 3000 0.42 0.009 3.25 1675 300 14.6/2.3:13.8/1.7 

Compact Car High 8 N/A 0.3 0.009 2.3 1835 300 14.6/2.3:13.8/1.7 

Midsize Car High 6 N/A 0.3 0.009 2.35 1801 300 14.6/2.3:13.8/1.7 

Small SUV High 7 N/A 0.36 0.009 2.65 2103 300 14.6/2.3:13.8/1.7 

Midsize SUV High 7 N/A 0.38 0.009 2.85 2011 300 14.6/2.3:13.8/1.7 

Pickup High 7 4350 0.42 0.009 3.25 2481 300 14.6/2.3:13.8/1.7 

 These are the reference points for the baseline vehicles.   

 



 

One notable vehicle attribute is engine mass.  We did not believe it appropriate to assign a single 
engine mass for each vehicle technology class.  To account for the difference in weight for 
different engine types, Argonne performed a regression analysis of engine peak power versus 
weight, based on attribute data taken from the A2Mac1 benchmarking database.  For example, to 
account for the weight of different engine sizes, like 4-cylinder versus 8-cylinder or turbocharged 
versus naturally aspirated engines, Argonne developed a relationship curve between peak power 
and engine weight based on the A2Mac1 benchmarking data.  Argonne uses the developed 
relationship to estimate mass for all engines.  The analysis applies secondary weight reduction 
associated with changes in engine technology by using this linear relationship between engine 
power and engine weight.   

For example, when a vehicle in the analysis fleet with an 8-cylinder engine adopts a more fuel-
efficient 6-cylinder engine, the total vehicle weight reflects the updated engine weight with two 
fewer cylinders based on the peak power versus engine weight relationship.  The Autonomie 
simulation data accounts for the impact of engine mass reduction on effectiveness directly in the 
Autonomie simulation data through the application of the above relationship.  Engine mass 
reduction through downsizing is, therefore, appropriately not included as part of vehicle mass 
reduction technology that is discussed in Chapter 3.4, because doing so would result in double 
counting the impacts.  As discussed further below, for this analysis we improved upon the 
precision of engine weights by using two separate curves, with one for naturally aspirated 
engines and the other for turbocharged engines. 

In addition, we held some attributes at constant levels within each technology class to maintain 
vehicle functionality, performance, and utility, including NVH, safety, performance and other 
utilities important for customer satisfaction.  For example, in addition to the vehicle performance 
constraints discussed in Chapter 2.4.5, the analysis does not allow the frontal area of the vehicle 
to change in order to maintain utility like ground clearance, head-room space, and cargo space.  
Another example is the cold-start penalty used to account for fuel economy degradation for 
heater performance and emissions system catalyst light-off.108  This allows the analysis to 
capture discrete improvements in technology effectiveness while maintaining vehicle attributes 
that are important like vehicle utility, consumer acceptance and compliance with criteria 
emission standards.  These constraints are considered as manufacturers consider them in the real 
world. 

2.4.3 Building Representative Vehicles and Vehicle Optimization  

Before any simulation is initiated in Autonomie, Argonne must “build” a vehicle by assigning 
reference technologies and initial attributes to the components of the vehicle model representing 
each technology class.109  The reference technologies are baseline technologies that represent the 
first step on each technology pathway used in the analysis.  For example, a compact car is built 
by assigning it a baseline engine (DOHC, VVT, PFI), a baseline transmission (AT5), a baseline 
level of aerodynamic improvement (AERO0), a baseline level of rolling resistance improvement 
(ROLL0), a baseline level of mass reduction technology (MR0), and corresponding attributes 

 
108 The catalyst light-off is the temperature necessary to initiate the catalytic reaction and this energy is generated 
from the engine.  
109 Further discussion of this process is in Chapter 5 of the Autonomie model documentation. 



 

from the Argonne vehicle assumptions database like individual component weights.110  A 
baseline vehicle will have a unique starting point for the simulation and a unique set of assigned 
inputs and attributes, based on its technology class. 

The next step in the process is to run a powertrain sizing algorithm that ensures the built vehicle 
meets or exceeds defined performance metrics, including low-speed acceleration (time required 
to accelerate from 0-60 mph), high-speed passing acceleration (time required to accelerate from 
50-80 mph), gradeability (the ability of the vehicle to maintain constant 65 miles per hour speed 
on a six percent upgrade), and towing capacity.  Together, these performance criteria are widely 
used by the automotive industry as metrics to quantify vehicle performance attributes that 
consumers observe and that are important for vehicle utility and customer satisfaction. 

In the compact car example used above, we assign an initial specific engine design and engine 
power, transmission, AERO, ROLL, and MR technologies, and other attributes like vehicle 
weight.  If the built vehicle does not meet all the performance criteria as the vehicle is simulated 
over the defined test cycles in the first iteration, then the engine power is increased to meet the 
performance requirement.  The increase in power achieved by increasing engine displacement, 
which might involve an increase in number of cylinders, may lead to an increase in the engine 
weight.  This iterative process then determines if the compact car with increased engine power 
and corresponding updated engine weight meets the required performance metrics.  The iterative 
process stops once all the performance requirements are met for the baseline vehicle, and it is at 
this point the compact car technology class vehicle model is ready for simulation.  For further 
discussion of the vehicle performance metrics, see Chapter 2.4.5. 

Autonomie then adopts a single fuel saving technology to the baseline vehicle model, keeping 
everything else the same except for that one technology and the attributes associated with it.  For 
example, the model applies an 8-speed automatic transmission in place of the baseline 6-speed 
automatic transmission, which would lead either to an increase or decrease in the total weight of 
the vehicle based on the technology class assumptions.  Autonomie then confirms whether 
performance metrics are met for this new vehicle model through the previously discussed sizing 
algorithm and iterations.  Once a technology is assigned to the vehicle model and the resulting 
vehicle meets its performance metrics, the vehicle model is used as an input to the full vehicle 
simulation.  As an example, for just the 6-speed to 8-speed automatic transmission technology 
update, the initial ten vehicle models (one for each technology class) are created, plus the ten 
new vehicle models with the updated 8-speed automatic transmission, for a total of 20 different 
vehicle models for simulation.  This permutation process is repeated for each of the over 50 
technologies considered, which results in more than one million optimized vehicle models.  
Figure 2-2 shows a flow chart of the process for building vehicle models in Autonomie for 
simulation. 

 
110 Further discussion of this setup is in Chapter 5.2 of the Autonomie model documentation. 



 

 
Figure 2-2 – Autonomie Technology Adoption Process for Vehicle Building with Compact Car Technology 

Class as an Example 

Some technologies require extra steps for optimization before the vehicle models are built for 
simulation.  For example, the sizing and optimization process is more complex for the electrified 
vehicles (e.g., HEVs, PHEVs) compared to vehicles with only internal combustion engines, as 
discussed further below.  During the vehicle building process, the following items are considered 
for optimization:  

• Vehicle weight is adjusted in response to switching from one type of engine or 
transmission technology to another. 

• Vehicle performance is decreased or increased in response to the addition of mass 
reduction technologies. 

• Vehicle performance is decreased or increased in response to the addition of a new 
technology like Aero or Roll for the same hybrid electric machine. 

• Electric vehicle battery size is decreased or increased in response to the addition of 
MASS, AERO and/or ROLL technologies. 

Every time a vehicle adopts a new technology, the vehicle weight is updated to reflect the new 
component weight.  For some technologies, the direct weight change is easy to assess.  For 
example, when a vehicle is updated to a higher geared transmission the weight of the original 
transmission is replaced with the corresponding transmission weight (e.g., the weight of a vehicle 



 

moving from a 6-speed automatic transmission to an 8-speed automatic transmission is updated 
based on the 8-speed transmission weight). 

For other technologies, like engine technologies, assessing the updated vehicle weight is more 
complex.  As discussed earlier, modeling a change in engine technology involves both the new 
technology adoption and a change in power (because the reduction in vehicle weight leads to 
lower engine loads, and a resized engine).  When a vehicle adopts new engine technology, the 
associated weight change to the vehicle is accounted for based on the earlier discussed regression 
analysis of weight versus power.  The engine weight regression analysis includes mass data for 
19 different engine technologies that consisted of unique components to achieve fuel economy 
improvements.  This regression analysis is technology agnostic by taking the approach of using 
engine peak power versus engine weight because it removed biases to any specific engine 
technology in the analysis.  Although using the regression does not estimate the specific weight 
for each individual engine technology, such as VVT or SGDI, this process provides a reasonable 
estimate of the weight differences among engine technologies.  

Figure 2-3 shows an example of the engine mass regression for the naturally aspirated, forced air 
induction, and diesel engines.  Argonne updated the regression for this analysis to reflect the 
latest data from A2Mac1, which resulted in two changes.  First, small naturally aspirated 4-
cylinder engines that adopt turbocharging technology reflect the increased weight of associated 
components like ducting, clamps, the turbocharger itself, a charged air cooler, wiring, fasteners, 
and a modified exhaust manifold.  Second, larger cylinder count engines like naturally aspirated 
8-cylinder and 6-cylinder engines that adopt turbocharging and downsized technologies have less 
weight due to having fewer engine cylinders.  For example, a naturally aspirated 8-cylinder 
engine that adopts turbocharging technology when downsized to a 6-cylinder turbocharged 
engine appropriately reflects the added weight of turbocharging components, and the lower 
weight of fewer cylinders. 



 

 

Figure 2-3 – Engine Mass Determination as a Function of Power and Type of Air Induction and Engine Type 

As with conventional vehicle models, Autonomie also builds electrified vehicle models from the 
ground up.  For MY 2020, the U.S. market has an expanded number of available hybrid and 
electric vehicle models.  To capture improvements for electrified vehicles for this analysis, 
Argonne applied the same mass regression analysis process that considers electric motor weight 
versus electric motor power for vehicle models that have adopted electric motors.  Argonne 
analyzed benchmarking data for hybrid and electric vehicles from the A2Mac1 database to 
develop a regression curve of electric motor peak power versus electric motor weight.111  Figure 
2-4 below shows the electric motor mass regression as a function of peak power.  

 
111 Autonomie model documentation, Chapter 5.2.10 Electric Machines System Weight. 



 

 

Figure 2-4 – Electric Motor Mass Determination as Function of Peak Power 

2.4.4 Sizing Powertrains 

We maintain performance neutrality in the full vehicle simulations by resizing engines, electric 
machines, and hybrid electric vehicle battery packs at specific incremental technology steps.  To 
address product complexity and economies of scale, engine resizing is limited to specific 
incremental technology changes that would typically be associated with a major vehicle or 
engine redesign.  This is intended to reflect manufacturers’ comments to DOT on how they 
consider engine resizing and product complexity, and DOT’s observations on industry product 
complexity. 

When a powertrain does need to be resized, Autonomie attempts to mimic manufacturers’ 
practices to the greatest extent possible.  As discussed earlier, the Autonomie vehicle building 
process is initiated by building a baseline vehicle model with a baseline engine, transmission, 
and other baseline vehicle technologies.  This baseline vehicle model (for each technology class) 
is sized to meet a specific set of performance criteria, including acceleration and gradeability. 

The modeling also accounts for the industry practice of platform, engine, and transmission 
sharing to manage component complexity and the associated costs.112  At a vehicle refresh cycle, 

 
112 For example, Ford EcoBoost Engines are shared across ten different models in MY 2019.  
https://www.ford.com/powertrains/ecoboost/.  Last accessed April 20, 2021. 

https://www.ford.com/powertrains/ecoboost/


 

a vehicle may inherit an already resized powertrain from another vehicle within the same engine-
sharing platform that adopted the powertrain in an earlier model year.  In the Autonomie 
modeling, when a new vehicle adopts fuel saving technologies that are inherited, the engine is 
not resized (the properties from the baseline reference vehicle are used directly and unchanged) 
and there may be a small change in vehicle performance.  For example, in Figure 2-2 above, 
Vehicle 2 inherits Eng01 from Vehicle 1 while updating the transmission.  Inheritance of the 
engine with the new transmission may change performance.  This example illustrates how 
manufacturers generally manage manufacturing complexity for engines, transmissions, and 
electrification technologies. 

Autonomie implements different powertrain sizing algorithms depending on the type of 
powertrain being considered because different types of powertrains contain different components 
that must be optimized.113  For example, Autonomie’s conventional powertrain resizing 
algorithm considers only the reference power of the conventional engine (e.g., Eng01, a basic 
VVT engine, is rated at 108 kilowatts and this is the starting reference power for all technology 
classes), versus the power-split hybrid (SHEVPS) resizing algorithm that must separately 
optimize engine power, battery size (energy and power), and electric motor power.  An engine’s 
reference power rating can either increase or decrease depending on the architecture, vehicle 
technology class, and whether it includes other advanced technologies. 

Performance requirements also differ depending on the type of powertrain because vehicles with 
different powertrain types may need to meet different criteria.  For example, a plug-in hybrid 
electric vehicle (PHEV) powertrain that can travel a certain number of miles on its battery 
energy alone (referred to as all-electric range, or AER, or as performing in electric-only mode) is 
also sized to ensure that it can meet the performance requirements of a US06 drive cycle in 
electric-only mode. 

The powertrain sizing algorithm is an iterative process that attempts to optimize individual 
powertrain components at each step.  For example, the sizing algorithm for conventional 
powertrains estimates required power to meet gradeability and acceleration performance and 
compares it to the reference engine power for the technology class.  If the power required to meet 
gradeability and acceleration performance exceeds the reference engine power, the engine power 
is updated to the new value.  Similarly, if the reference engine power exceeds the gradeability 
and acceleration performance power, it is decreased to the lower power rating.  If the change in 
power requires a change in the engine design, like increasing displacement (e.g., going from a 
5.2-liter to 5.6-liter engine) or increasing cylinder count (e.g., going from an I4 to a V6), the 
engine weight will also change.  The new engine power is used to update the weight of the 
engine. 

Next, the conventional powertrain sizing algorithm enters an acceleration algorithm loop to 
verify low-speed acceleration performance (the time it takes to go from 0 mph to 60 mph).  In 
this step, Autonomie adjusts engine power to maintain a performance attribute for the given 
technology class and updates engine weight accordingly.  Once this performance criteria are met, 

 
113 Autonomie model documentation, Chapter 8.3.1 Conventional-Vehicle Sizing Algorithm; Chapter 8.3.2 Split-
HEV Sizing Algorithm; Chapter 8.3.3 Parallel HEV Sizing Algorithm; 8.3.4 Parallel PHEV sizing Algorithm; 8.3.5 
Split PHEV (Vehicle Sizing Algorithm; Chapter 8.3.6 Voltec PHEV Vehicle Sizing Algorithm; Chapter 8.3.7 BEV 
Sizing Algorithm. 



 

Autonomie ends the low-speed acceleration performance algorithm loop and enters a high-speed 
acceleration (the time it takes to go from 50 mph to 80 mph) algorithm loop.  Again, Autonomie 
might need to adjust engine power to maintain a performance attribute for the given technology, 
and it exits this loop once the performance criteria have been met.  At this point, the sizing 
algorithm is complete for the conventional powertrain based on the designation for engine type, 
transmission type, aerodynamic improvement type, mass reduction technology, and low rolling 
resistance technology.  Figure 2-5 below shows the sizing algorithm for conventional 
powertrains.  Each circle in the flow chart is a closed loop system and the loop must be 
completed to move to the next loop; e.g., the acceleration performance loop must be complete 
before the model sizes components to meet the passing acceleration performance loop.  This 
allows us to avoid under- or oversizing components, engines, and electric motors to minimize 
over and under compliance in the analysis.  

 

Figure 2-5 – Conventional Powertrain Sizing Algorithm 

Depending on the type of powertrain considered, the sizing algorithms may size to meet the 
different performance criteria in a different order.  For example, the electrified powertrain sizing 
algorithm considers different requirements range, and battery power in addition to performance.  



 

The powertrain sizing algorithms for electrified vehicles are considerably more complex, and are 
discussed in further detail in Autonomie model documentation.114 

2.4.5 Performance Neutrality 

The purpose of this analysis is to examine the impact of technology application that can improve 
fuel economy.  A fuel economy improvement can be realized by improving the powertrain that 
propels the vehicle (e.g., by replacing a 6-cylinder engine with a smaller, turbocharged 4-
cylinder engine), or by reducing the vehicle’s loads or burdens (e.g., by lowering aerodynamic 
drag, reducing vehicle mass and/or rolling resistance).  Either way, these changes reduce energy 
consumption and create a range of choices for vehicle manufacturers.  At the two ends of the 
range, the manufacturer can choose to either: 

A)  Design a vehicle that does same the amount of work as before but uses less fuel. 

For example, a redesigned pickup truck would receive a turbocharged V6 engine in place of the 
outgoing V8.  The pickup would offer no additional towing capacity, acceleration, larger wheels 
and tires, expanded infotainment packages, or customer convenience features, but would achieve 
a higher fuel economy rating. 

Or: 

B)  Design a vehicle that does more work and uses the same amount of fuel as before. 

For example, a redesigned pickup truck would receive a turbocharged V6 engine in place of the 
outgoing V8, but with engine efficiency improvements that allow the same amount of fuel to do 
more work.  The pickup would offer increased towing capacity, faster acceleration, larger wheels 
and tires, an expanded (heavier) infotainment package, and more convenience features, while 
maintaining (not improving) the fuel economy rating of the previous year’s model. 

In other words, automakers weigh the trade-offs between vehicle performance/utility and fuel 
economy, and they choose a blend of these attributes to balance meeting fuel economy and 
emissions standards and meeting utility requirements during research and development. 

Historically, vehicle performance has improved over the years.  The average horsepower is the 
highest that it has ever been; all vehicle types have improved horsepower by at least 42 percent 
compared to the 1978 model year, and pickup trucks have improved by 48 percent.115  Since 
1978, vehicles’ 0-60 acceleration time has improved by 39-48 percent depending on vehicle 
type.116  Fuel economy has also improved, but the horsepower and acceleration trends show that 
not 100 percent of technological improvements have been applied to fuel savings.  While future 
trends are uncertain, the past trends suggest vehicle performance is unlikely to decrease, as it 

 
114 Autonomie model documentation, Chapter 8.3.1 Conventional-Vehicle Sizing Algorithm; Chapter 8.3.2 Split-
HEV Sizing Algorithm; Chapter 8.3.3 Parallel HEV Sizing Algorithm; 8.3.4 Parallel PHEV sizing Algorithm; 8.3.5 
Split PHEV (Vehicle Sizing Algorithm; Chapter 8.3.6 Voltec PHEV Vehicle Sizing Algorithm; Chapter 8.3.7 BEV 
Sizing Algorithm. 
115 “The 2020 EPA Automotive Trends Report, Greenhouse Gas Emissions, Fuel Economy, and Technology since 
1975,” EPA-420-R-21-003, January 2021, at 20-4 [hereinafter 2020 EPA Automotive Trends Report]. 
116 2020 EPA Automotive Trends Report, at 24-5. 



 

seems reasonable to assume that customers will at a minimum demand vehicles that offer the 
same utility as today’s fleet. 

For this rulemaking analysis, we analyze technology pathways manufacturers could use for 
compliance that attempt to maintain vehicle attributes, utility, and performance.  Using this 
approach allows us to assess the costs and benefits of potential standards under a scenario where 
consumers continue to get the similar vehicle attributes and features, other than changes in fuel 
economy.  The purpose of constraining vehicle attributes is to simplify the analysis and reduce 
variance in other attributes that consumers may value across the analyzed regulatory alternatives.  
This allows for a streamlined accounting of costs and benefits by not requiring the values of 
other vehicle attributes that trade off with fuel economy. 

The CAFE Model maintains the initial performance and utility levels of the analysis fleet, while 
considering real world constraints faced by manufacturers. 

To maintain performance neutrality when applying fuel economy technologies, it is first 
necessary to characterize the performance levels of each of the nearly 3,627 vehicle models in 
the MY 2020 baseline fleet.  As discussed in Chapter 2.4.2, above, we assign each individual 
vehicle model in the analysis fleet to one of ten vehicle “technology classes”— the class that is 
most similar to the vehicle model.  The technology classes include five standard class vehicles 
(compact car, midsize car, small SUV, midsize SUV, pickup) plus five “performance” versions 
of these same body styles.117  Each vehicle class has a unique set of attributes and characteristics, 
including vehicle performance metrics, that describe the typical characteristics of the vehicles in 
that class. 

The analysis uses four criteria to characterize vehicle performance attributes and utility:  

• Low-speed acceleration (time required to accelerate from 0-60 mph) 

• High-speed acceleration (time required to accelerate from 50-80 mph)  

• Gradeability (the ability of the vehicle to maintain constant 65 miles per hour speed on a 
six percent upgrade); and   

• Towing capacity 

Low-speed and high-speed acceleration target times are typical of current production vehicles 
and range from 6 to 10 seconds depending on the vehicle class; for example, the midsize SUV 
performance class has a low- and high-speed acceleration target of 7 seconds.118  The 
gradeability criterion requires that the vehicle, given its attributes of weight, engine power, and 
transmission gearing, be capable of maintaining a minimum of 65 mph while going up a six 
percent grade.  The towing criterion, which is applicable only to the pickup truck and 
performance pickup truck vehicle technology classes, is the same as the gradeability requirement 

 
117 Separate technology classes better account for performance diversity across the fleet. 
118 Note, for all vehicle classes, the low and high-speed acceleration targets use the same value.  See Chapter 2.2. 



 

but adds an additional payload/towing mass (3,000 lbs. for pickups, or 4,350 lbs. for 
performance pickups) to the vehicle, essentially making the vehicle heavier. 

In addition, to maintain the capabilities of certain electrified vehicles in the MY 2020 analysis 
fleet, the analysis requires that those vehicles be capable of achieving the accelerations and 
speeds of certain standard driving cycles.  Autonomie uses the US06 “aggressive driving” cycle 
and the UDDS “city driving” cycle to ensure that core capabilities of BEVs and PHEVs, such as 
driving certain speeds and/or distances in electric-only mode, are maintained.  In addition to the 
four criteria discussed above, the following performance criteria are applied to these electrified 
vehicles: 

• Battery electric vehicles (BEV) are sized to be capable of completing the US06 
“aggressive driving” cycle. 

• Plug-in hybrid vehicles with 50 mile all-electric range (PHEV50) are sized to be capable 
of completing the US06 “aggressive driving” cycle in electric-only mode. 

• Plug-in hybrid vehicles with 20 mile all-electric range (PHEV20) are sized to be capable 
of completing the UDDS “city driving” cycle in electric-only (charge depleting) mode.119 

Together, these performance criteria are widely used by the automotive industry as metrics to 
quantify vehicle performance attributes that consumers observe and that are important for vehicle 
utility and customer satisfaction.120 

When fuel-saving technologies are applied that significantly affect vehicle performance, such as 
replacing a pickup truck’s V8 engine with a turbocharged V6 engine, Autonomie iteratively 
resizes the vehicle powertrain (engine, electric motors, and/or battery) such that the above 
performance criteria are maintained.  For example, if the aforementioned engine replacement 
causes an improvement in acceleration, the engine may be iteratively resized until vehicle 
acceleration performance is shifted back to the initial target time for that vehicle technology 
class.  For the low and high-speed acceleration criteria, engine resizing iterations continue until 
the acceleration time is within plus or minus 0.2 seconds of the target time,121,122 which 
reasonably balances the precision of engine resizing with the number of simulation iterations 

 
119 PHEV20s are blended-type plug-in hybrid vehicles, which are capable of completing the UDDS cycle in charge 
depleting mode without assistance from the engine.  However, under higher loads, this charge depleting mode may 
use supplemental power from the engine. 
120 Conlon, B., Blohm, T., Harpster, M., Holmes, A. et al., “The Next Generation “Voltec” Extended Range EV 
Propulsion System,” SAE Int. J. Alt. Power. 4(2):2015, doi:10.4271/2015-01-1152.  Kapadia, J., Kok, D., Jennings, 
M., Kuang, M., et al., "Powersplit or Parallel - Selecting the Right Hybrid Architecture," SAE Int. J. Alt. Power. 
6(1):2017, doi:10.4271/2017-01-1154.  Islam, E., A. Moawad, N. Kim, and A. Rousseau, 2018a, An Extensive 
Study on Vehicle Sizing, Energy Consumption and Cost of Advance Vehicle Technologies, Report No. ANL/ESD-
17/17, Argonne National Laboratory, Lemont, Ill., Oct 2018. 
121 For example, if a vehicle has a target 0-60 acceleration time of 6 seconds, a time within 5.8-6.2 seconds is 
accepted. 
122 With the exception of a few performance electrified vehicle types which, based on observations in the 
marketplace, use different criteria to maintain vehicle performance without battery assist.  Performance PHEV20, 
and Performance PHEV50 resize to the performance of a conventional six-speed automatic (CONV 6AU).  
Performance SHEVP2, engines/electric-motors are resized if the 0-60 acceleration time is worse than the target, but 
not if the acceleration time is better than the target time. 



 

needed to achieve performance within the 0.2 second window, and the associated computer 
resources and time required to perform the iterative simulations. 

The Autonomie simulation resizes until the least capable of the performance criteria is met, to 
ensure the pathways do not degrade any of the vehicle performance metrics.  It is possible that as 
one criterion target is reached after the application of a specific technology or technology 
package, other criteria may be better than their target values.  For example, if the engine size is 
decreased until the low speed acceleration target is just met, it is possible that the resulting 
engine size would cause high speed acceleration performance to be better than its target.  Or, a 
PHEV50 may have an electric motor and battery appropriately sized to operate in all electric 
mode through the repeated accelerations and high speeds in the US06 driving cycle, but the 
resulting motor and battery size enables the PHEV50 to slightly over-perform in 0-60 
acceleration, which utilizes the power of both the electric motor and combustion engine. 

To address product complexity and economies of scale, we limit engine resizing to specific 
incremental technology changes that would typically be associated with a major vehicle or 
engine redesign.  Manufacturers have repeatedly and consistently told NHTSA and EPA that the 
high costs for redesign and the increased manufacturing complexity that would result from 
resizing engines for small technology changes preclude them from doing so.  It would be 
unreasonable and unaffordable to resize powertrains for every unique combination of 
technologies.  Engine displacements are further described in Chapter 3.1. 

To address this issue, the Autonomie simulations allow engine resizing when mass reduction is 
applied at several different levels,123 and when one powertrain architecture is replaced with 
another architecture during a redesign cycle.124  At its refresh cycle, a vehicle may also inherit an 
already resized powertrain from another vehicle within the same engine-sharing platform.  The 
analysis does not resize the engine in response to adding technologies that have smaller effects 
on vehicle performance.  For instance, if MR1 is applied to a vehicle, causing the 0-60 mile per 
hour time to improve slightly, the analysis would not resize the engine.  This criterion better 
reflects what is feasible for manufacturers to do.125 

Because the regulatory analysis compares differences in impacts among the alternatives, we 
believe that having consistent performance across the alternatives is an important aspect of 
performance neutrality.  If the vehicle fleet had performance gains which varied significantly 
depending on the alternative, performance differences would impact the comparability of the 
simulations. 

 
123 For more detail on glider mass calculations, see Chapter 3.4. 
124 Some engine and accessory technologies may be added to an engine without an engine architecture change.  For 
instance, manufacturers may adapt, but not replace engine architectures to include cylinder deactivation, variable 
valve lift, belt-integrated starter generators, and other basic technologies.  However, switching from a naturally 
aspirated engine to a turbo-downsized engine is an engine architecture change typically associated with a major 
redesign and radical change in engine displacement. 
125 For instance, a vehicle would not get a modestly bigger engine if the vehicle comes with floor mats, nor would 
the vehicle gets a modestly smaller engine without floor mats.  This example demonstrates small levels of mass 
reduction.  If manufacturers resized engines for small changes, manufacturers would have dramatically more part 
complexity, potentially losing economies of scale. 



 

In order to confirm that there are minimal differences in performance metrics across regulatory 
alternatives, we analyzed the sales-weighted average 0-60 mph acceleration performance of the 
entire simulated vehicle fleet for MYs 2020 and 2029.  The analysis compared performance 
under the baseline standards and preferred alternative.  Two inputs are required for this 
performance neutrality analysis.  The first input required is the CAFE Model’s Vehicles Report, 
which lists the MY 2020 sales volumes and the resulting “tech key” for every vehicle in the 
analysis fleet for every simulated model year.  The tech key is a string of characters that 
summarizes the technologies applied to that vehicle, as deemed necessary by the CAFE Model 
simulations of manufacturers’ responses to different proposed standards.  The second input is the 
full set of Autonomie simulation databases, which include the 0-60 and 50-80 mph acceleration 
times related to every tech key.  Using a spreadsheet program, each vehicle in the Vehicles 
Report is matched, via tech key, with the appropriate acceleration time in the Autonomie 
simulation databases.  This process effectively assigned a 0-60 mph time to every vehicle in the 
fleet for four scenarios: 1) MY 2020 under the no action scenario, 2) MY 2020 under the 
preferred alternative, 3) MY 2029 under the no action scenario, and 4) MY 2029 under the 
preferred alternative.126  Using the MY 2020 sales volumes as weights, we calculated the 
weighted average 0-60 mph acceleration time for the analysis fleet in each of the four above 
scenarios.  This analysis identified that the analysis fleet under no action standards in MY 2029 
had a 0.77 percent worse 0-60 mph acceleration time than under the preferred alternative, 
indicating there is minimal difference in performance between the alternatives.  Figure 2-6 shows 
the spread of 0-60 mph acceleration times between the no action alternative and preferred 
alternative.  This assessment shows that for this analysis, the performance difference is minimal 
across regulatory alternatives and across the simulated model years, which allows for fair, direct 
comparison among the alternatives. 

  

 
126 The baseline reference for both the no action and the preferred alternative is MY 2020 fleet performance.  



 

 

 

Figure 2-6 – 0-60 mph Acceleration Times for Analysis Fleet, No Action Baseline NPRM Alternative 
Standard and Preferred Alternative Standard127 

As we attempt to minimize the performance shift occurring over the relevant analysis years, it 
must be noted that a small increase in performance is expected and would be reasonable.  This 
increase is attributed to the analysis recognizing the practical constraints on the number of 
unique engine displacements manufacturers can implement, and therefore not resizing 
powertrains for every individual technology and every combination of technologies when the 
performance impacts are small.  Perfectly equal performance with zero percent change would not 
be achievable while accounting for these real-world resizing constraints.  The performance 
analysis in the 2011 NAS report shared a similar view on performance changes, stating that 
“truly equal performance involves nearly equal values… within 5 percent.”128  We determined 

 
127 The sales weighted average in MY 2020 is 7.43 seconds.  The change in sales weighted average performance for 
the no action and preferred alternative are 7.13 seconds and 7.08 seconds, respectively.  This equates to 0.77% 
difference in performance between the two alternatives.  In the 2020 final rule, this difference was 4%, which 
demonstrates that successive Autonomie analyses are improving performance neutrality across alternatives. 
128 National Research Council.  2011.  Assessment of Fuel Economy Technologies for Light-Duty Vehicles.  
Washington, DC – The National Academies Press, at 62.  http://nap.edu/12924. 



 

that the change in performance seen for this analysis is reasonable and is well within the 5 
percent bound discussed by the NAS in its 2011 report. 

2.4.6 Simulating the Built Vehicles on Test Cycles  

After Autonomie builds vehicle models for every combination of technologies and vehicle 
classes represented in the analysis, Autonomie simulates the vehicles’ performance on test cycles 
to calculate the effectiveness improvement of adding fuel-economy-improving technologies to 
the vehicle.  Simulating vehicles’ performance using tests and procedures specified by federal 
law and regulations minimizes the potential variation in determining technology effectiveness. 

Autonomie simulates vehicles in a very similar process as the test procedures and energy 
consumption calculations that manufacturers must use for CAFE compliance.129,130,131  Argonne 
simulates each vehicle model across several test cycles to evaluate technology effectiveness.  For 
vehicles with conventional powertrains and micro hybrids, Autonomie simulates the vehicles per 
EPA 2-cycle test procedures and guidelines.132  For mild and full hybrid electric vehicles and 
FCVs, Autonomie simulates the vehicles using the same EPA 2-cycle test procedure and 
guidelines, and the drive cycles repeat until the initial and final state of charge are within a SAE 
J1711 tolerance.  For PHEVs, Autonomie simulates vehicles per similar procedures and 
guidelines as prescribed in SAE J1711.133  For BEVs Autonomie simulates vehicles per similar 
procedures and guidelines as prescribed in SAE J1634.134 

2.4.7 Implementation in the CAFE Model   

While the Autonomie model produces a large amount of information about each simulation 
run—for a single technology combination, in a single technology class—the CAFE Model only 
uses two elements of that information: battery costs and fuel consumption on the city and 
highway cycles.  We combine the fuel economy information from the two cycles to produce a 
composite fuel economy for each vehicle, and on each fuel for dual fuel vehicles.  Plug-in 
hybrids are the only dual-fuel vehicles in the Autonomie simulation, and require efficiency 
estimates for operation on both gasoline and electricity, as well as an estimate of the utility 
factor, or the number of miles driven on each fuel.  The fuel economy information for each 
technology combination, for each technology class, is converted into a single number for use in 
the CAFE Model.  

As described in greater detail below, each Autonomie simulation record represents a unique 
combination of technologies, and we create a technology “key” or technology state vector that 
describes all the technology content associated with a record.  The 2-cycle fuel economy of each 

 
129 EPA, “How Vehicles are Tested.”  https://www.fueleconomy.gov/feg/how_tested.shtml.  Last accessed April 20, 
2021. 
130 Autonomie model documentation, Chapter 6 Test Procedures and Energy Consumption Calculations. 
131 EPA Guidance Letter.  “EPA Test Procedures for Electric Vehicles and Plug-in Hybrids.”  Nov. 14, 2017.  
https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf.  Last 
accessed April 20, 2021.   
132 40 CFR part 600. 
133 PHEV testing is broken into several phased based on SAE J1711.  Charge-Sustaining on the City cycle, Charge-
Sustaining on the HWFET cycle, Charge-Depleting on the City and HWFET cycles.   
134 SAE J1634.  “Battery Electric Vehicle Energy Consumption and Range Test Procedure.”  July 12, 2017.   



 

combination is converted into fuel consumption (gallons per mile) and then normalized relative 
to the starting point for the simulations.  In each technology class, the combination with the 
lowest technology content is the VVT (only) engine, with a 5-speed transmission, no 
electrification, and no body-level improvements (mass reduction, aerodynamic improvements, or 
low rolling resistance tires).  This is the reference point (for each technology class) for all of the 
effectiveness estimates in the CAFE Model.  The improvement factors that the model uses are a 
given combination’s fuel consumption improvement relative to the reference vehicle in its 
technology class.  

For the majority of the technologies analyzed within the CAFE Model, the fuel economy 
improvements are derived from the database of Autonomie’s detailed full-vehicle modeling and 
simulation results.  In addition to the technologies found in the Autonomie simulation database, 
the CAFE modeling system also incorporates a handful of technologies that are included for 
CAFE modeling but are not explicitly simulated in Autonomie.  The total effectiveness of these 
technologies either could not be captured on the 2-cycle test, or there are no robust data usable as 
an input to the full-vehicle modeling and simulation, like with emerging technologies such as 
advanced cylinder deactivation (ADEAC).  These additional technologies are discussed further 
in Chapter 3’s individual technologies sections.  For calculating fuel economy improvements 
attributable to these additional technologies, the model uses defined fuel consumption 
improvement factors that are constant across all technology combinations in the database and 
scale multiplicatively when applied together.  The Autonomie-simulated and additional 
technologies are then externally combined, forming a single dataset of simulation results 
(referred to as the vehicle simulation database, or simply, database), which may then be utilized 
by the CAFE modeling system.  

To incorporate the results of the combined database of Autonomie-simulated and additional 
technologies, while still preserving the basic structure of the CAFE Model’s technology 
subsystem, it is necessary to translate the points in this database into corresponding locations 
defined by the technology pathways.  By recognizing that most of the pathways are unrelated, 
and are only logically linked to designate the direction in which technologies are allowed to 
progress, it is possible to condense the paths into a smaller number of groups based on the 
specific technology.  In addition, to allow for technologies present on the Basic Engine and 
Dynamic Road Load (DLR, i.e., MASS, AERO, and ROLL) paths to be evaluated and applied in 
any given combination, we established a unique group for each of these technologies. 

As such, the following technology groups are defined within the modeling system: engine cam 
configuration (CONFIG), VVT engine technology (VVT), VVL engine technology (VVL), 
SGDI engine technology (SGDI), DEAC engine technology (DEAC), non-basic engine 
technologies (ADVENG), transmission technologies (TRANS), electrification and hybridization 
(ELEC), low rolling resistance tires (ROLL), aerodynamic improvements (AERO), mass 
reduction levels (MR), EFR engine technology (EFR), electric accessory improvement 
technologies (ELECACC), LDB technology (LDB), and SAX technology (SAX).  The 
combination of technologies along each of these groups forms a unique technology state vector 
and defines a unique technology combination that corresponds to a single point in the database 
for each technology class evaluated within the modeling system.  This technology state vector is 
commonly referred to as a ‘technology key’ or ‘tech key’ in this analysis. 



 

As an example, a technology state vector describing a vehicle with a SOHC engine, variable 
valve timing (only), a 6-speed automatic transmission, a belt-integrated starter generator, rolling 
resistance (level 1), aerodynamic improvements (level 2), mass reduction (level 1), electric 
power steering, and low drag brakes, is specified as “SOHC; VVT; ; ; ; ; AT6; BISG; ROLL10; 
AERO20; MR1; ; EPS; LDB ; .”135  By assigning each unique technology combination a tech 
key such as the one in the example, the CAFE Model can identify the initial technology state of 
each vehicle in the analysis fleet  and map it to a point (unique technology combination) in the 
database. 

Once a vehicle is assigned (or mapped) to an appropriate technology state vector (from one of 
approximately three million unique combinations, which are defined in the vehicle simulation 
database as CONFIG; VVT; VVL; SGDI; DEAC; ADVENG; TRANS; ELEC; ROLL; AERO; 
MR; EFR; ELECACC; LDB; SAX), adding a new technology to the vehicle simply represents 
progress from a previous state vector to a new state vector.  The previous state vector simply 
refers to the technologies that are currently in use on a vehicle.  The new state vector, however, 
is computed within the modeling system by adding a new technology to the combination of 
technologies represented by the previous state vector, while simultaneously removing any other 
technologies that are superseded by the newly added one. 

For example, consider the vehicle with the state vector described as: SOHC; VVT; AT6; BISG; 
ROLL10; AERO20; MR1; EPS; LDB.  Assume the system is evaluating PHEV20 as a candidate 
technology for application on this vehicle.  The new tech state vector for this vehicle is computed 
by removing SOHC, VVT, AT6, and BISG technologies from the previous state vector,136 while 
also adding PHEV20, resulting in the following: PHEV20; ROLL10; AERO20; MR1; EPS; 
LDB. 

From here, it is relatively simple to obtain a fuel economy improvement factor for any new 
combination of technologies and apply that factor to the fuel economy of a vehicle in the analysis 
fleet.  The formula for calculating a vehicle’s fuel economy after application of each successive 
technology represented within the database is defined as the ratio of the fuel economy 
improvement factor associated with the technology state vector before application of a candidate 
technology, and after the application of a candidate technology.137  The resulting improvement is 
applied to the original compliance fuel economy value for a discrete vehicle in the MY 2020 
analysis fleet, as discussed previously in this chapter. 

 

 
135 In the example technology state vector, the series of semicolons between VVT and AT6 correspond to the engine 
technologies which are not included as part of the combination, while the gap between MR1 and EPS corresponds to 
EFR and the omitted technology after LDB is SAX.  The extra semicolons for omitted technologies are preserved in 
this example for clarity and emphasis, and will not be included in future examples. 
136 For more discussion of how the CAFE Model handles technology supersession, see S4.5 of the CAFE Model 
Documentation. 
137 For more discussion of how the CAFE Model calculates a vehicle’s fuel economy where the vehicle switches 
from one type of fuel to another, for example, from gasoline operation to diesel operation or from gasoline operation 
to plug-in hybrid/electric vehicle operation, see S4.6 of the CAFE Model Documentation. 



 

2.4.8 Compliance and Real-World Fuel Economy “Gap” 

The statutorily-mandated vehicle fuel economy test cycles for NHTSA CAFE and EPA GHG 
program compliance consist of two separate test cycles, the “city” and “highway” cycles, 
commonly referred to as the 2-cycle tests.  In 2008, EPA introduced three additional test cycles 
to bring “label” values from two-cycle testing in line with efficiency values consumers were 
experiencing in the real world, particularly for hybrids.  This is known as 5-cycle testing. 

Generally, the revised 5-cycle testing values have proven to be a good approximation of what 
consumers will experience during vehicle operation, significantly better than the previous 2-
cycle test values. 

The CAFE regulatory analysis utilizes “on-road” fuel economy values, which are the ratio of 5-
cycle to 2-cycle testing values, i.e., the CAFE compliance values to the “label” values. 

For this NPRM analysis, DOT applies a certain percent difference between the 2-cycle test and 
5-cycle test to represent the gap in compliance fuel economy and real-world fuel economy.138  
This percent difference, or “gap”, is calculated as shown in Equation 2-8. 

2𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝐹𝐹𝑇𝑇 − 5𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝐹𝐹𝑇𝑇
2𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝐹𝐹𝑇𝑇

∗ 100 = "𝑓𝑓𝑢𝑢𝑒𝑒𝑖𝑖 𝑒𝑒𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 𝑔𝑔𝑎𝑎𝐹𝐹" (%) 

Equation 2-8 – Percent Difference Between 2-cycle and 5-cycle Tests 

Table 2-20 below shows a summary of the inputs used for the fuel economy gap for different 
fuel types.139  The underlying data for this was from EPA test data.140  These data are average 
fleet-wide values; in reality the true fuel economy gap will be lower for some vehicles and higher 
for other vehicles.  

Table 2-20 – 2-Cycle to 5-Cycle "Gap" Used for this NPRM Analysis, by Fuel Type 

 Cars Vans/SUVs Pickups 
Gasoline 24% 24% 24% 
Ethanol-85 24% 24% 24% 
Diesel 24% 24% 24% 
Electricity 29% 29% 29% 
Hydrogen 29% 29% 29% 
Compressed Natural Gas 24% 24% 24% 

2.5 Defining Technology Adoption in the Rulemaking Timeframe 

As discussed in Chapter 2.2, starting with a fixed analysis fleet (for today’s analysis, the model 
year 2020 fleet indicated in manufacturers’ early CAFE compliance data), the CAFE Model 
estimates ways each manufacturer could potentially apply specific fuel-saving technologies to 

 
138 For more details see the CAFE Model Documentation. 
139 This input is specific in the CAFE Model Parameters file. 
140 Download Fuel Economy Data. EPA. https://www.fueleconomy.gov/feg/download.shtml.  Last accessed June 6, 
2021. 



 

specific vehicle model/configurations in response to, among other things (such as fuel prices), 
CAFE standards, CO2 standards, commitments some manufacturers have made to CARB’s 
Framework Agreement, and ZEV mandates imposed by California and several other states.  The 
CAFE Model follows a year-by-year approach to simulating manufacturers’ potential decisions 
to apply technology, accounting for multiyear planning within the context of estimated schedules 
for future vehicle redesigns and refreshes during which significant technology changes may most 
practicably be implemented. 

The modeled technology adoption for each manufacturer under each regulatory alternative 
depends on this representation of multiyear planning, and on a range of other factors represented 
by other model characteristics and inputs, such as the logical progression of technologies defined 
by the model’s technology pathways; the technologies already present in the analysis fleet; 
inputs directing the model to “skip” specific technologies for specific vehicle 
model/configurations in the analysis fleet (e.g., because secondary axle disconnect cannot be 
applied to 2-wheel-drive vehicles, and because manufacturers already heavily invested in engine 
turbocharging and downsizing are unlikely to abandon this approach in favor of using high 
compression ratios); inputs defining the sharing of engines, transmissions, and vehicle platforms 
in the analysis fleet; the model’s logical approach to preserving this sharing; inputs defining each 
regulatory alternative’s specific requirements; inputs defining expected future fuel prices, annual 
mileage accumulation, and valuation of avoided fuel consumption; and inputs defining the 
estimated efficacy and future cost (accounting for projected future “learning” effects) of included 
technologies; inputs controlling the maximum pace the simulation is to “phase in” each 
technology; and inputs further defining the availability of each technology to specific technology 
classes. 

Two of these inputs—the “phase-in cap” and the “phase-in start year”—apply to the 
manufacturer’s entire estimated production and, for each technology, define a share of 
production in each model year that, once exceeded, will stop the model from further applying 
that technology to that manufacturer’s fleet in that model year.  The influence of these inputs 
varies with regulatory stringency and other model inputs.  For example, setting the inputs to 
allow immediate 100% penetration of a technology will not guarantee any application of the 
technology if stringency increases are low and the technology is not at all cost effective.  Also, 
even if these are set to allow only very slow adoption of a technology, other model aspects and 
inputs may nevertheless force more rapid application than these inputs, alone, would suggest 
(e.g., because an engine technology propagates quickly due to sharing across multiple vehicles, 
or because BEV application must increase quickly in response to ZEV requirements).  For 
today’s analysis, nearly all of these inputs are set at levels that do not limit the simulation at all.   

As discussed below in Chapter 3.1, for the most advanced engines (advanced cylinder 
deactivation, variable compression ratio, variable turbocharger geometry, and turbocharging with 
cylinder deactivation), DOT has specified phase-in caps and phase-in start years that limit the 
pace at which the analysis shows the technology being adopted in the rulemaking timeframe.  
For example, today’s analysis applies a 34% phase-in cap and MY 2019 phase-in start year for 
advanced cylinder deactivation (ADEAC), meaning that in MY 2021 (using a MY 2020 fleet, the 
analysis begins simulating further technology application in MY 2021), the model will stop 
adding ADEAC to a manufacturer’s MY 2021 fleet once ADEAC reaches more than 68% 
penetration, because 34% x (2021 – 2019) = 34% x 2 = 68%.   



 

As discussed in Chapter 3.3, today’s analysis also applies phase-in caps and corresponding start 
years to prevent the simulation from showing inconceivable rates of applying battery-electric 
vehicles (BEVs), such as showing that a manufacturer producing very few BEVs in MY 2020 
could plausibly replace every product with a 300- or 400-mile BEV by MY 2025.  Also, as 
discussed in Chapter 3.4, today’s analysis applies phase-in caps and corresponding start years 
intended to ensure that the simulation’s plausible application of the highest included levels of 
mass reduction (20% and 28.2% reductions of vehicle “glider” weight) do not, for example, 
outpace plausible supply of raw materials and development of entirely new manufacturing 
facilities. 

These model logical structures and inputs act together to produce estimates of ways each 
manufacturer could potentially shift to new fuel-saving technologies over time, reflecting some 
measure of protection against rates of change not reflected in, for example, technology cost 
inputs.  This does not mean that every modeled solution would necessarily be economically 
practicable.  Using technology adoption features like phase-in caps and phase-in start years is 
one mechanism that can be used so that the analysis better represents the potential costs and 
benefits of technology application in the rulemaking timeframe. 

2.6 Technology Costs  

We estimate present and future costs for fuel-saving technologies taking into consideration the 
type of vehicle, or type of engine if technology costs vary by application.  These cost estimates 
are based on three main inputs.  First, direct manufacturing costs (DMCs), or the component and 
labor costs of producing and assembling the physical parts and systems, are estimated assuming 
high volume production.  DMCs generally do not include the indirect costs of tools, capital 
equipment, financing costs, engineering, sales, administrative support or return on investment.  
We account for these indirect costs via a scalar markup of direct manufacturing costs (the retail 
price equivalent, or RPE).  Finally, costs for technologies may change over time as industry 
streamlines design and manufacturing processes.  To reflect this, we estimate potential cost 
improvements with learning effects (LE).  The retail cost of equipment in any future year is 
estimated to be equal to the product of the DMC, RPE, and LE.  Considering the retail cost of 
equipment, instead of merely direct manufacturing costs, is important to account for the real-
world price effects of a technology, as well as market realities.  Absent a government mandate, 
motor vehicle manufacturers will not undertake expensive development and production efforts to 
implement technologies without realistic prospects of consumers being willing to pay enough for 
such technology to allow for the manufacturers to recover their investment. 

2.6.1 Direct Manufacturing Costs  

Direct manufacturing costs (DMCs) are the component and assembly costs of the physical parts 
and systems that make up a complete vehicle.  The analysis uses agency-sponsored tear-down 
studies of vehicles and parts to estimate the DMCs of individual technologies, in addition to 
independent tear-down studies, other publications, and confidential business information.  In the 
simplest cases, the agency-sponsored studies produced results that confirmed third-party industry 
estimates and aligned with confidential information provided by manufacturers and suppliers.  In 
cases with a large difference between the tear-down study results and credible independent 



 

sources, we scrutinized the study assumptions, and sometimes revised or updated the analysis 
accordingly. 

Due to the variety of technologies and their applications, and the cost and time required to 
conduct detailed tear-down analyses, the agency did not sponsor teardown studies for every 
technology.  In addition, the analysis includes some fuel-saving technologies that are pre-
production or sold in very small pilot volumes.  For those technologies, we could not conduct a 
tear-down study to assess costs because the product is not yet in the marketplace for evaluation.  
In these cases, we rely upon third-party estimates and confidential information from suppliers 
and manufacturers; however, there are some common pitfalls with relying on confidential 
business information to estimate costs.  The agency and the source may have had incongruent or 
incompatible definitions of “baseline.”  The source may have provided DMCs at a date many 
years in the future, and assumed very high production volumes, important caveats to consider for 
agency analysis.  In addition, a source may provide incomplete and/or misleading information.  
In other cases, intellectual property considerations and strategic business partnerships may have 
contributed to a manufacturer’s cost information and could be difficult to account for in the 
CAFE Model as not all manufacturers may have access to proprietary technologies at stated 
costs.  We carefully evaluate new information in light of these common pitfalls, especially 
regarding emerging technologies.  

While costs for fuel-saving technologies reflect the best estimates available today, technology 
cost estimates will likely change in the future as technologies are deployed and as production is 
expanded.  For emerging technologies, we use the best information available at the time of the 
analysis and will continue to update cost assumptions for any future analysis.  Chapter 3 
discusses each category of technologies (e.g., engines, transmissions, electrification) and the cost 
estimates we use for this analysis. 

2.6.2 Indirect Costs (Retail Price Equivalent) 

As discussed above, direct costs represent the cost associated with acquiring raw materials, 
fabricating parts, and assembling vehicles with the various technologies manufacturers are 
expected to use to meet future CAFE standards.  They include materials, labor, and variable 
energy costs required to produce and assemble the vehicle.  However, they do not include 
overhead costs required to develop and produce the vehicle, costs incurred by manufacturers or 
dealers to sell vehicles, or the profit manufacturers and dealers make from their investments.  All 
of these items contribute to the price consumers ultimately pay for the vehicle.  These 
components of retail prices are illustrated in Table 2-21.  



 

Table 2-21 – Retail Price Components 

Direct Costs 

  Manufacturing Cost Cost of materials, labor, and variable energy needed 
for production 

Indirect Costs 
Production Overhead  

            Warranty Cost of providing product warranty 
            Research and Development Cost of developing and engineering the product 

            Depreciation and amortization Depreciation and amortization of manufacturing 
facilities and equipment 

            Maintenance, repair, operations Cost of maintaining and operating manufacturing 
facilities and equipment 

Corporate Overhead  

            General and Administrative   Salaries of nonmanufacturing labor, operations of 
corporate offices, etc. 

            Retirement Cost of pensions for nonmanufacturing labor 
            Health Care Cost of health care for nonmanufacturing labor 
Selling Costs  

            Transportation Cost of transporting manufactured goods 

            Marketing Manufacturer costs of advertising manufactured 
goods 

Dealer Costs  

             Dealer selling expense Dealer selling and advertising expense 
             Dealer profit Net Income to dealers from sales of new vehicles 

Net income Net income to manufacturers from production and 
sales of new vehicles 

 

To estimate the impact of higher vehicle prices on consumers, we must consider both direct and 
indirect costs.  To estimate total consumer costs, we multiply direct manufacturing costs by an 
indirect cost factor to represent the average price for fuel-saving technologies at retail. 

Historically, the method most commonly used to estimate indirect costs of producing a motor 
vehicle has been the retail price equivalent (RPE).  The RPE markup factor is based on an 
examination of historical financial data contained in 10-K reports filed by manufacturers with the 
Securities and Exchange Commission (SEC).  It represents the ratio between the retail price of 
motor vehicles and the direct costs of all activities that manufacturers engage in. 

Figure 2-7 indicates that for more than three decades, the retail price of motor vehicles has been, 
on average, roughly 50 percent above the direct cost expenditures of manufacturers.  This ratio 
has been remarkably consistent, averaging roughly 1.5 with minor variations from year to year 
over this period.  At no point has the RPE markup exceeded 1.6 or fallen below 1.4.141  During 
this time frame, the average annual increase in real direct costs was 2.5 percent, and the average 

 
141 Based on data from 1972-1997 and 2007.  Data were not available for intervening years, but results for 2007 
seem to indicate no significant change in the historical trend.  



 

annual increase in real indirect costs was also 2.5 percent.  Figure 2-7 illustrates the historical 
relationship between retail prices and direct manufacturing costs.142 

An RPE of 1.5 does not imply that manufacturers automatically mark up each vehicle by exactly 
50 percent.  Rather, it means that, over time, the competitive marketplace has resulted in pricing 
structures that average out to this relationship across the entire industry.  Prices for any 
individual model may be marked up at a higher or lower rate depending on market demand.  The 
consumer who buys a popular vehicle may, in effect, subsidize the installation of a new 
technology in a less marketable vehicle.  But, on average, over time and across the vehicle fleet, 
the retail price paid by consumers has risen by about $1.50 for each dollar of direct costs 
incurred by manufacturers. 

 
Figure 2-7 – Historical Data for Retail Price Equivalent (RPE), 1972-1997 and 2007 

It is also important to note that direct costs associated with any specific technology will change 
over time as some combination of learning and resource price changes occurs.  Resource costs, 
such as the price of steel, can fluctuate over time and can experience real long-term trends in 
either direction, depending on supply and demand.  However, the normal learning process 
generally reduces direct production costs as manufacturers refine production techniques and seek 
out less costly parts and materials for increasing production volumes.  By contrast, this learning 
process does not generally influence indirect costs.  The implied RPE for any given technology 
would thus be expected to grow over time as direct costs decline relative to indirect costs.  The 
RPE for any given year is based on direct costs of technologies at different stages in their 
learning cycles, and that may have different implied RPEs than they did in previous years.  The 
RPE averages 1.5 across the lifetime of technologies of all ages, with a lower average in earlier 

 
142 Rogozhin, A., Gallaher, M., & McManus, W., 2009, Automobile Industry Retail Price Equivalent and Indirect 
Cost Multipliers.  Report by RTI International to Office of Transportation Air Quality.  U.S. Environmental 
Protection Agency, RTI Project Number 0211577.002.004, February, Research Triangle Park, N.C. 
Spinney, B.C., Faigin, B., Bowie, N., & St. Kratzke, 1999, Advanced Air Bag Systems Cost, Weight, and Lead 
Time analysis Summary Report, Contract NO. DTNH22-96-0-12003, Task Orders – 001, 003, and 005.  
Washington, D.C., U.S. Department of Transportation. 



 

years of a technology’s life, and, because of learning effects on direct costs, a higher average in 
later years. 

NHTSA has used RPE in all of the safety and most previous CAFE rulemakings to estimate 
costs.  In 2011 the National Academy of Sciences recommended RPEs of 1.5 for suppliers and 
2.0 for in-house production be used to estimate total costs.143  The former Alliance of 
Automobile Manufacturers also advocated these values as appropriate markup factors for 
estimating costs of technology changes.144  In their 2015 report, the National Academy of 
Sciences recommend 1.5 as an overall RPE markup.145  An RPE of 2.0 has also been adopted by 
a coalition of environmental and research groups (NESCCAF, ICCT, Southwest Research 
Institute, and TIAX-LLC) in a report on reducing heavy truck emissions, and 2.0 is 
recommended by the U.S. Department of Energy for estimating the cost of hybrid-electric and 
automotive fuel cell costs (see Vyas et al. (2000) in Table 2-22 below).  Table 2-22 below also 
lists other estimates of the RPE.  Note that all RPE estimates vary between 1.4 and 2.0, with 
most in the 1.4 to 1.7 range. 

Table 2-22 – Alternate Estimates of the RPE146 

Author and Year Value, Comments 
Jack Faucett Associates for EPA, 
1985 1.26 initial value, later corrected to 1.7+ by Sierra research 

Vyas et al., 2000 1.5 for outsourced, 2.0 for OEM, electric, and hybrid vehicles 
NRC, 2002 1.4 (corrected to > by Duleep) 
McKinsey and Company, 2003 1.7 based on European study 

CARB, 2004 1.4 (derived using the JFA initial 1.26 value, not the corrected 
1.7+ value) 

Sierra Research for AAA, 2007 2.0 or >, based on Chrysler data 
Duleep, 2008 1.4, 1.56, 1.7 based on integration complexity 
NRC, NAS 2011 1.5 for Tier 1 supplier, 2.0 for OEM 
NRC, NAS 2015 1.5 for OEM 

 

 
143 Effectiveness and Impact of Corporate Average Fuel Economy Standards, Washington, D.C. - The National 
Academies Press; NRC, 2011. 
144 Communication from Chris Nevers (Alliance) to Christopher Lieske (EPA) and James Tamm (NHTSA) VIA 
Regulations.gov http://www.regulations.gov Docket ID Nos. NHTSA-2018-0067; EPA-HQ-OAR-2018-0283, 
p.143. 
145 Assessment of Fuel Economy Technologies for Light Duty Vehicles.  Washington, D.C. - The National 
Academies Press; Cost, Effectiveness, and Deployment of Fuel Economy Technologies in Light Duty Vehicles.  
Washington, D.C. – The National Academies Press, 2015. 
146 Duleep, K.G. “2008 Analysis of Technology Cost and Retail Price.”  Presentation to Committee on Assessment 
of Technologies for Improving Light Duty Vehicle Fuel Economy, January 25, Detroit, MI.; Jack Faucett 
Associates, September 4, 1985.  Update of EPA’s Motor Vehicle Emission Control Equipment Retail Price 
Equivalent (RPE) Calculation Formula.  Chevy Chase, MD - Jack Faucett Associates; McKinsey & Company, 
October 2003.  Preface to the Auto Sector Cases.  New Horizons - Multinational Company Investment in Developing 
Economies, San Francisco, CA.; NRC (National Research Council), 2002.  Effectiveness and Impact of Corporate 
Average Fuel Economy Standards, Washington, D.C. - The National Academies Press; NRC, 2011.  Assessment of 
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The RPE has thus enjoyed widespread use and acceptance by a variety of governmental, 
academic, and industry organizations. 

As in previous CAFE analyses and safety rulemaking analyses, we relied on the RPE to account 
for indirect manufacturing costs.  The RPE accounts for indirect costs like engineering, sales, 
and administrative support, as well as other overhead costs, business expenses, warranty costs, 
and return on capital considerations. 

In past rulemakings a second type of indirect cost multiplier has also been examined.  Known as 
the “Indirect Cost Multiplier” (ICM) approach.  ICMs were first examined alongside the RPE 
approach  in the 2010 rulemaking regarding standards for MYs 2012-2016.  Both methods have 
been examined in subsequent rulemakings. 

Consistent with the 2020 final rule, we continue to employ the RPE approach as a cost multiplier 
for this analysis.  A detailed discussion of indirect cost methods and the basis for our use of  the 
RPE to reflect these costs is available in the FRIA for the 2020 SAFE rule.147   

2.6.3 Stranded Capital Costs  

The idea behind stranded capital is that manufacturers amortize research, development, and 
tooling expenses over many years, especially for engines and transmissions.  The traditional 
production life-cycles for transmissions and engines have been a decade or longer.  If a 
manufacturer launches or updates a product with fuel-saving technology, and then later replaces 
that technology with an unrelated or different fuel-saving technology before the equipment and 
research and development investments have been fully paid off, there will be unrecouped, or 
stranded, capital costs.  Quantifying stranded capital costs accounts for such lost investments.  

As we observed previously, manufacturers may be shifting their investment strategies in ways 
that may alter how stranded capital could be considered.  For example, some suppliers sell 
similar transmissions to multiple manufacturers.  Such arrangements allow manufacturers to 
share in capital expenditures or amortize expenses more quickly.  Manufacturers share parts on 
vehicles around the globe, achieving greater scale and greatly affecting tooling strategies and 
costs. 

As a proxy for stranded capital in recent CAFE analyses, the CAFE Model has accounted for 
platform and engine sharing and includes redesign and refresh cycles for significant and less 
significant vehicle updates.  This analysis continues to rely on the CAFE Model’s explicit year-
by-year accounting for estimated refresh and redesign cycles, and shared vehicle platforms and 
engines, to moderate the cadence of technology adoption and thereby limit the implied 

 
Fuel Economy Technologies for Light Duty Vehicles.  Washington, D.C. - The National Academies Press; Cost, 
Effectiveness, and Deployment of Fuel Economy Technologies in Light Duty Vehicles.  Washington, D.C. – The 
National Academies Press, 2015; Sierra Research, Inc., November 21, 2007, Study of Industry-Average Mark-Up 
Factors used to Estimate Changes in Retail Price Equivalent (RPE) for Automotive Fuel Economy and Emissions 
Control Systems, Sacramento, CA - Sierra Research, Inc.; Vyas, A. Santini, D., & Cuenca, R. 2000.  Comparison of 
Indirect Cost Multipliers for Vehicle Manufacturing.  Center for Transportation Research, Argonne National 
Laboratory, April.  Argonne, Ill. 
147 Final Regulatory Impact Analysis, The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 
2021-2026 Passenger Cars and Light Trucks, USDOT, EPA, March, 2020, pp. 354-76. 



 

occurrence of stranded capital and the need to account for it explicitly.  In addition, confining 
some manufacturers to specific advanced technology pathways through technology adoption 
features acts as a proxy to indirectly account for stranded capital.  Adoption features specific to 
each technology, if applied on a manufacturer-by-manufacturer basis, are discussed in each 
technology section.  We will monitor these trends to assess the role of stranded capital moving 
forward. 

2.6.4 Cost Learning  

Manufacturers make improvements to production processes over time, which often result in 
lower costs.  “Cost learning” reflects the effect of experience and volume on the cost of 
production, which generally results in better utilization of resources, leading to higher and more 
efficient production.  As manufacturers gain experience through production, they refine 
production techniques, raw material and component sources, and assembly methods to maximize 
efficiency and reduce production costs.  Typically, a representation of this cost learning, or 
learning curves, reflects initial learning rates that are relatively high, followed by slower learning 
as additional improvements are made and production efficiency peaks.  This eventually produces 
an asymptotic shape to the learning curve, as small percent decreases are applied to gradually 
declining cost levels.  These learning curve estimates are applied to various technologies that are 
used to meet CAFE standards. 

We estimate cost learning by considering methods established by T.P. Wright and later expanded 
upon by J.R. Crawford.148,149  Wright, examining aircraft production, found that every doubling 
of cumulative production of airplanes resulted in decreasing labor hours at a fixed percentage.  
This fixed percentage is commonly referred to as the progress rate or progress ratio, where a 
lower rate implies faster learning as cumulative production increases.  J.R. Crawford expanded 
upon Wright’s learning curve theory to develop a single unit cost model, that estimates the cost 
of the nth unit produced given the following information is known: (1) cost to produce the first 
unit; (2) cumulative production of n units; and (3) the progress ratio. 

As pictured in Figure 2-8, Wright’s learning curve shows the first unit is produced at a cost of 
$1,000.  Initially cost per unit falls rapidly for each successive unit produced.  However, as 
production continues, cost falls more gradually at a decreasing rate.  For each doubling of 
cumulative production at any level, cost per unit declines 20 percent, so that 80 percent of cost is 
retained.  The CAFE Model uses the basic approach by Wright, where cost reduction is 
estimated by applying a fixed percentage to the projected cumulative production of a given fuel 
economy technology. 

 
148 Wright, T. P., Factors Affecting the Cost of Airplanes.  Journal of Aeronautical Sciences, Vol. 3 (1936), pp.124-
25.  Available at http://www.uvm.edu/pdodds/research/papers/others/1936/wright1936a.pdf.   
149 Crawford, J.R., Learning Curve, Ship Curve, Ratios, Related Data, Burbank, California-Lockheed Aircraft 
Corporation (1944). 

http://www.uvm.edu/pdodds/research/papers/others/1936/wright1936a.pdf


 

 
Figure 2-8 – Wright’s Learning Curve (Progress Ratio = 0.8) 

The analysis accounts for learning effects with model year-based cost learning forecasts for each 
technology that reduces direct manufacturing costs over time.  We evaluate the historical use of 
technologies and review industry forecasts to estimate future volumes to develop the model year-
based technology cost learning curves. 

The following section discusses the development of model year-based cost learning forecasts, 
including how the approach has evolved from the 2012 rulemaking for MY 2017-2025 vehicles, 
and how we developed the progress ratios for different technologies considered in the analysis.  
Finally, we discuss how these learning effects are applied in the CAFE Model. 

2.6.4.1 Time versus Volume-Based Learning 

For the 2012 joint CAFE and GHG rulemaking, we developed learning curves as a function of 
vehicle model year.150  Although the concept of this methodology is derived from Wright’s 
cumulative production volume-based learning curve, its application for CAFE technologies was 
more of a function of time.  More than a dozen learning curve schedules were developed, varying 
between fast and slow learning, and assigned to each technology corresponding to its level of 
complexity and maturity.  The schedules were applied to the base year of direct manufacturing 
cost and incorporate a percentage of cost reduction by model year, declining at a decreasing rate 
through the technology’s production life.  Some newer technologies experience 20 percent cost 
reductions for introductory model years, while mature or less complex technologies experience 
0-3 percent cost reductions over a few years. 

 
150 CAFE 2012 Final Rule, NHTSA DOT, 77 FR 62624. 



 

In their 2015 report to Congress, the National Academy of Sciences (NAS) recommended 
NHTSA “continue to conduct and review empirical evidence for the cost reductions that occur in 
the automobile industry with volume, especially for large-volume technologies that will be relied 
on to meet the CAFE/GHG standards.”151 

In response, we incorporated statically projected cumulative volume production data of fuel 
economy improving technologies, representing an improvement over the previously used time-
based method.  Dynamic projections of cumulative production are not feasible with current 
CAFE Model capabilities, so we developed one set of projected cumulative production data for 
most vehicle technologies for the purpose of determining cost impact.  We obtained historical 
cumulative production data for many technologies produced and/or sold in the U.S. to establish a 
starting point for learning schedules.  Groups of similar technologies or technologies of similar 
complexity may share identical learning schedules. 

The slope of the learning curve, which determines the rate at which cost reductions occur, has 
been estimated using research from an extensive literature review and automotive cost tear-down 
reports (see below).  The slope of the learning curve is derived from the progress ratio of 
manufacturing automotive and other mobile source technologies. 

2.6.4.2 Deriving the Progress Ratio Used in this Analysis 

Learning curves vary among different types of manufactured products.  Progress ratios can range 
from 70 to 100 percent, where 100 percent indicates no learning can be achieved.152  Learning 
effects tend to be greatest in operations where workers often touch the product, while effects are 
less substantial in operations consisting of more automated processes.  As automotive 
manufacturing plant processes become increasingly automated, a progress ratio towards the 
higher end would seem more suitable.  We incorporated findings from automotive cost-teardown 
studies with EPA’s 2015 literature review of learning-related studies to estimate a progress ratio 
used to determine learning schedules of fuel economy improving technologies. 

EPA’s literature review examined and summarized 20 studies related to learning in 
manufacturing industries and mobile source manufacturing.153  The studies focused on many 
industries, including motor vehicles, ships, aviation, semiconductors, and environmental energy.  
Based on several criteria, EPA selected five studies providing quantitative analysis from the 
mobile source sector (progress ratio estimates from each study are summarized in Table 2-23, 
below).  Further, those studies expand on Wright’s learning curve function by using cumulative 
output as a predictor variable, and unit cost as the response variable.  As a result, EPA 
determined a best estimate of 84 percent as the progress ratio in mobile source industries.  
However, of those five studies, EPA at the time placed less weight on the Epple et al. (1991) 
study, because of a disruption in learning due to incomplete knowledge transfer from the first 

 
151 Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles, National Research 
Council of the National Academies (2015), available at https://www.nap.edu/resource/21744/deps_166210.pdf. 
152 Martin, J., “What is a Learning Curve?” Management and Accounting Web, University of South Florida, 
available at:  https://www.maaw.info/LearningCurveSummary.htm. 
153 Cost Reduction through Learning in Manufacturing Industries and in the Manufacture of Mobile Sources, United 
States Environmental Protection Agency (2015).  Prepared by ICF International and available at 
https://19january2017snapshot.epa.gov/sites/production/files/2016-11/documents/420r16018.pdf. 

https://www.nap.edu/resource/21744/deps_166210.pdf
https://www.maaw.info/LearningCurveSummary.htm
https://19january2017snapshot.epa.gov/sites/production/files/2016-11/documents/420r16018.pdf


 

shift to introduction of a second shift at a North American truck plant.  While learning may have 
decelerated immediately after adding a second shift, we note that unit costs continued to fall as 
the organization gained experience operating with both shifts.  We recognize that disruptions are 
an essential part of the learning process and should not, in and of themselves, be discredited.  For 
this reason, the analysis uses a re-estimated average progress ratio of 85 percent from those five 
studies (equally-weighted). 

Table 2-23 – Progress Ratios from EPA’s Literature Review 

Author (Publication Date) Industry Progress Ratio (Cumulative 
Output Approach) 

Argote et al. (1997)154 Trucks 85% 
Benkard (2000)155 Aircraft (commercial) 82% 

Epple et al. (1991)156 Trucks 90% 
Epple et al. (1996)157 Trucks 85% 
Levitt et al. (2013)158 Automobiles 82% 

 
In addition to EPA’s literature review, this progress ratio estimate was informed based on 
NHTSA’s findings from automotive cost-teardown studies.  We routinely evaluate costs of 
previously issued Federal Motor Vehicle Safety Standards (FMVSS) for new motor vehicles and 
equipment.  We also engage contractors to perform detailed engineering “tear-down” analyses 
for representative samples of vehicles, to estimate how much specific FMVSS add to the weight 
and retail price of a vehicle.  As part of the effort, the agency examines cost and production 
volume for automotive safety technologies.  In particular, we estimated costs from multiple cost 
tear-down studies for technologies with actual production data from the Cost and weight added 
by the Federal Motor Vehicle Safety Standards for MY 1968-2012 passenger cars and LTVs 
(2017).159 

We chose five vehicle safety technologies with sufficient data to estimate progress ratios of each, 
because these technologies are large-volume technologies and are used by almost all vehicle 
manufacturers.  Table 2-24 includes these five technologies and yields an average progress rate 
of 92 percent. 

 
154 Argote, L., Epple, D., Rao, R. D., & Murphy, K., The acquisition and depreciation of knowledge in a 
manufacturing organization - Turnover and plant productivity, Working paper, Graduate School of Industrial 
Administration, Carnegie Mellon University (1997). 
155 Benkard, C. L., Learning and Forgetting - The Dynamics of Aircraft Production, The American Economic 
Review, Vol. 90(4), pp. 1034–54 (2000). 
156 Epple, D., Argote, L., & Devadas, R., Organizational Learning Curves - A Method for Investigating Intra-Plant 
Transfer of Knowledge Acquired through Learning by Doing, Organization Science, Vol. 2(1), pp. 58–70 (1991). 
157Epple, D., Argote, L., & Murphy, K., An Empirical Investigation of the Microstructure of Knowledge Acquisition 
and Transfer through Learning by Doing, Operations Research, Vol. 44(1), pp. 77–86 (1996). 
158 Levitt, S. D., List, J. A., & Syverson, C., Toward an Understanding of Learning by Doing - Evidence from an 
Automobile Assembly Plant, Journal of Political Economy, Vol. 121 (4), pp. 643-81 (2013). 
159 Simons, J. F., Cost and weight added by the Federal Motor Vehicle Safety Standards for MY 1968-2012 
Passenger Cars and LTVs (Report No. DOT HS 812 354).  Washington, D.C. - National Highway Traffic Safety 
Administration (November 2017), at pp. 30-33.  



 

Table 2-24 – Progress Ratios Researched by NHTSA 

Technology Progress Ratio 

Anti-lock Brake Systems 87% 
Driver Airbags 93% 
Manual 3-pt lap shoulder safety belts 96% 
Adjustable Head Restraints 91% 
Dual Master Cylinder 95% 

 
For the final progress ratio used in the CAFE Model, we averaged the five progress rates from 
EPA’s literature review and five progress rates from NHTSA’s evaluation of automotive safety 
technologies results.  This resulted in an average progress rate of approximately 89 percent.  The 
agency placed equal weight on progress ratios from all 10 sources.  More specifically, we placed 
equal weight on the Epple et al. (1991) study, because disruptions have more recently been 
recognized as an essential part in the learning process, especially in an effort to increase the rate 
of output. 

2.6.4.3 Obtaining Appropriate Baseline Years for Direct Manufacturing Costs to Create 
Learning Curves 

We obtained direct manufacturing costs for each fuel economy improving technology from 
various sources, as discussed above.  To establish a consistent basis for direct manufacturing 
costs in the rulemaking analysis, we adjusted each technology cost to MY 2018 dollars.  For each 
technology, the DMC is associated with a specific model year, and sometimes a specific 
production volume, or cumulative production volume.  The base model year is established as the 
MY in which direct manufacturing costs are assessed (with learning factor of 1.00).  With the 
aforementioned data on cumulative production volume for each technology and the assumption 
of a 0.89 progress ratio for all automotive technologies, we can solve for an implied cost for the 
first unit produced.  For some technologies, we used modestly different progress ratios to match 
detailed cost projections if available from another source (for instance, batteries for plug-in 
hybrids and battery electric vehicles). 

This approach produces reasonable estimates for technologies already in production, and some 
additional steps are required to set appropriate learning rates for technologies not yet in 
production.  Specifically, for technologies not yet in production in MY 2017, the cumulative 
production volume in MY 2017 is zero, because manufacturers have not yet produced the 
technologies.  For pre-production cost estimates in previous CAFE rulemakings, we often relied 
on confidential business information sources to predict future costs.  Many sources for pre-
production cost estimates include significant learning effects, often providing cost estimates 
assuming high volume production, and often for a timeframe late in the first production 
generation or early in the second generation of the technology.  Rapid doubling and re-doubling 
of a low cumulative volume base with Wright’s learning curves can provide unrealistic cost 
estimates.  In addition, direct manufacturing cost projections can vary depending on the initial 
production volume assumed.  Accordingly, we carefully examined direct costs with learning, and 
made adjustments to the starting point for those technologies on the learning curve to better align 
with the assumptions used for the initial direct cost estimate. 



 

2.6.4.4 Cost Learning as Applied in the CAFE Model 

For this analysis, we apply learning effects to the incremental cost over the null technology state 
on the applicable technology tree.  After this step, we calculate year-by-year incremental costs 
over preceding technologies on the tech tree to create the CAFE Model inputs.160  The shift from 
incremental cost accounting to absolute cost accounting in recent CAFE analyses made cost 
inputs more transparently relatable to detailed model output, and relevant to this discussion, 
made it easier to apply learning curves in the course of developing inputs to the CAFE Model. 

We group certain technologies, such as advanced engines, advanced transmissions, and non-
battery electric components and assigned them to the same learning schedule.  While these 
grouped technologies differ in operating characteristics and design, we chose to group them 
based on their complexity, technology integration, and economies of scale across manufacturers.  
The low volume of certain advanced technologies, such as hybrid and electric technologies, 
poses a significant issue for suppliers and prevents them from producing components needed for 
advanced transmissions and other technologies at more efficient high scale production.  The 
technology groupings consider market availability, complexity of technology integration, and 
production volume of the technologies that can be implemented by manufacturers and suppliers.  
For example, technologies like ADEAC and VCR are grouped together; these technologies were 
not in production or were only in limited introduction in MY 2017 and are planned to be 
introduced in limited production by a few manufacturers.  The details of these technologies are 
discussed in Chapter 3.1. 

In addition, we expanded model inputs to extend the explicit simulation of technology 
application through MY 2050.  Accordingly, we updated the learning curves for each technology 
group to cover MYs through 2050.  For MYs 2017-2032, we expect incremental improvements 
in all technologies, particularly in electrification technologies because of increased production 
volumes, labor efficiency, improved manufacturing methods, specialization, network building, 
and other factors.  While these and other factors contribute to continual cost learning, we believe 
that many fuel economy improving technologies considered in this rule will approach a flat 
learning level by the early 2030s.  Specifically, older and less complex internal combustion 
engine technologies and transmissions will reach a flat learning curve sooner when compared to 
electrification technologies, which have more opportunity for improvement.  For batteries and 
non-battery electrification components, we estimate a steeper learning curve that will gradually 
flatten after MY 2040.  For a more detailed discussion of the electrification learning curves, see 
Chapter 3.3.  The following Table 2-25 and Table 2-26 show the learning curve schedules for 
CAFE Model technologies for MYs 2017-2033 and MYs 2034-2050.

 
160 The Technologies file contains these CAFE Model inputs.   



 

Table 2-25 – Learning Curve Schedule for CAFE Model Technologies, MYs 2017-2033 

Technology 

Model Year 

20
17

 

20
18

 

20
19

 

20
20

 

20
21

 

20
22

 

20
23

 

20
24

 

20
25

 

20
26

 

20
27

 

20
28

 

20
29

 

20
30

 

20
31

 

20
32

 

20
33

 

MR0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ROLL0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
AERO0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ADSL, DSLI 0.91 0.89 0.88 0.87 0.85 0.84 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 
VVT, VVL, 
SGDI, DEAC 0.96 0.95 0.94 0.94 0.93 0.93 0.92 0.91 0.91 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.88 

HCR0, HCR1, 
HCR1D 0.80 0.78 0.77 0.75 0.74 0.73 0.73 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

HCR2 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 
EFR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.94 0.92 0.90 0.89 0.87 0.85 0.83 0.83 
TURBO1 0.85 0.83 0.82 0.80 0.79 0.78 0.78 0.77 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.74 0.74 
TURBO2, 
CEGR1, VTG, 
VTGE, 
DSLIAD 

1.01 1.00 0.99 0.97 0.96 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.83 0.81 0.81 0.80 0.80 

CNG 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91 0.91 0.91 
ADEAC, VCR 1.04 1.00 0.97 0.95 0.92 0.90 0.88 0.87 0.86 0.84 0.83 0.82 0.82 0.81 0.80 0.80 0.80 
MT5 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
MT6 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86 0.86 
MT7 1.06 1.00 0.96 0.89 0.84 0.78 0.75 0.72 0.70 0.68 0.65 0.63 0.62 0.61 0.59 0.58 0.58 
AT5, AT6, 
AT8, DCT6, 
DCT8 

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

AT6L2, AT7, 
AT8L2, 
AT8L3, AT9, 
AT10, AT10L2 

1.00 1.00 0.89 0.84 0.80 0.78 0.76 0.74 0.73 0.72 0.71 0.70 0.70 0.69 0.69 0.68 0.68 



 

 
Model Year 

Technology 

20
17

 

20
18

 

20
19

 

20
20

 

20
21

 

20
22

 

20
23

 

20
24

 

20
25

 

20
26

 

20
27

 

20
28

 

20
29

 

20
30

 

20
31

 

20
32

 

20
33

 

CVT, CVTL2A, 
CVTL2B 0.91 0.90 0.89 0.87 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.82 0.81 0.81 0.80 0.80 0.80 

EPS 0.93 0.91 0.89 0.88 0.86 0.85 0.84 0.82 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.75 0.75 
IACC 0.93 0.88 0.83 0.79 0.76 0.73 0.71 0.69 0.67 0.66 0.64 0.63 0.62 0.61 0.60 0.60 0.60 
SS12V 1.68 1.61 1.55 1.50 1.45 1.41 1.37 1.33 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.18 1.15 
BEV 1.00 0.93 0.87 0.83 0.77 0.72 0.69 0.64 0.61 0.59 0.56 0.55 0.53 0.52 0.52 0.51 0.49 
BISG 1.00 0.94 0.87 0.78 0.73 0.69 0.66 0.63 0.61 0.59 0.58 0.56 0.55 0.54 0.54 0.53 0.53 
SHEVPS 1.00 0.96 0.92 0.89 0.87 0.84 0.82 0.78 0.76 0.74 0.73 0.72 0.71 0.70 0.69 0.69 0.68 
SHEVP2 1.00 0.96 0.93 0.90 0.87 0.85 0.82 0.79 0.76 0.75 0.74 0.73 0.71 0.70 0.69 0.69 0.69 
PHEV20 1.00 0.96 0.92 0.88 0.85 0.81 0.78 0.76 0.73 0.70 0.69 0.67 0.66 0.66 0.65 0.64 0.60 
PHEV50 1.00 0.96 0.92 0.88 0.84 0.81 0.78 0.74 0.71 0.69 0.68 0.66 0.64 0.63 0.63 0.62 0.59 
FCV 1.71 1.64 1.57 1.50 1.43 1.37 1.31 1.25 1.19 1.14 1.09 1.04 0.99 0.95 0.90 0.86 0.83 
MR1 0.77 0.74 0.71 0.68 0.66 0.65 0.63 0.62 0.61 0.60 0.59 0.58 0.57 0.56 0.56 0.55 0.55 
MR2 0.69 0.67 0.64 0.63 0.61 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.53 0.52 0.51 0.51 0.51 
MR3 0.73 0.70 0.68 0.67 0.65 0.64 0.63 0.61 0.60 0.59 0.58 0.57 0.56 0.56 0.55 0.55 0.55 
MR4 0.87 0.82 0.79 0.75 0.70 0.67 0.64 0.63 0.61 0.59 0.57 0.56 0.55 0.54 0.53 0.53 0.53 
MR5, MR6 1.00 1.00 0.93 0.88 0.84 0.80 0.78 0.76 0.73 0.71 0.69 0.67 0.66 0.65 0.64 0.63 0.63 
ROLL10 0.88 0.85 0.82 0.80 0.78 0.76 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.68 0.67 0.66 0.66 
ROLL20 0.85 0.77 0.72 0.68 0.65 0.62 0.60 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.52 0.51 0.51 
LDB 0.93 0.91 0.89 0.87 0.85 0.84 0.82 0.80 0.79 0.77 0.76 0.75 0.74 0.73 0.72 0.72 0.72 
SAX 0.73 0.70 0.67 0.65 0.64 0.62 0.61 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.54 0.53 0.53 
AERO5, AERO10, 
AERO15, AERO20 0.87 0.84 0.81 0.79 0.77 0.75 0.73 0.72 0.70 0.69 0.68 0.67 0.66 0.66 0.65 0.64 0.64 

Batteries 1.14 1.09 1.05 1.00 0.96 0.91 0.87 0.83 0.79 0.76 0.72 0.69 0.66 0.63 0.60 0.58 0.57 
  



 

Table 2-26 – Learning Curve Schedules for CAFE Model Technologies, MYs 2034-2050 

Technology 
Model Year 

20
34

 

20
35

 

20
36

 

20
37

 

20
38

 

20
39

 

20
40

 

20
41

 

20
42

 

20
43

 

20
44

 

20
45

 

20
46

 

20
47

 

20
48

 

20
49

 

20
50

 

MR0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ROLL0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
AERO0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ADSL, DSLI 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 
VVT, VVL, 
SGDI, DEAC 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 

HCR0, HCR1, 
HCR1D 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

HCR2 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 
EFR 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 
TURBO1 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 
TURBO2, 
CEGR1, VTG, 
VTGE, DSLIAD 

0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

CNG 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 
ADEAC, VCR 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
MT5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
MT6 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 
MT7 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 
AT5, AT6, AT8, 
DCT6, DCT8 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

AT6L2, AT7, 
AT8L2, AT8L3, 
AT9, AT10, 
AT10L2 

0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

 



 

Model Year 
Technology 

20
34

 

20
35

 

20
36

 

20
37

 

20
38

 

20
39

 

20
40

 

20
41

 

20
42

 

20
43

 

20
44

 

20
45

 

20
46

 

20
47

 

20
48

 

20
49

 

20
50

 

CVT, CVTL2A, 
CVTL2B 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

EPS 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.73 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.72 
IACC 0.60 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.57 
SS12V 1.12 1.09 1.07 1.04 1.01 0.99 0.96 0.94 0.92 0.89 0.87 0.85 0.83 0.81 0.79 0.77 0.75 
BEV 0.48 0.47 0.46 0.46 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 
BISG 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 
SHEVPS 0.68 0.68 0.67 0.67 0.67 0.66 0.66 0.66 0.65 0.65 0.65 0.64 0.64 0.64 0.63 0.63 0.63 
SHEVP2 0.68 0.67 0.67 0.66 0.66 0.65 0.65 0.64 0.64 0.63 0.63 0.62 0.62 0.61 0.60 0.60 0.59 
PHEV20 0.57 0.54 0.53 0.51 0.50 0.48 0.47 0.47 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.43 
PHEV50 0.57 0.54 0.53 0.51 0.50 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.46 0.45 0.45 0.45 0.45 
FCV 0.80 0.76 0.75 0.73 0.72 0.70 0.69 0.68 0.67 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.64 
MR1 0.55 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.53 
MR2 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 
MR3 0.55 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.53 
MR4 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 
MR5, MR6 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.60 0.60 
ROLL10 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.63 0.63 0.63 
ROLL20 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 
LDB 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.70 0.70 0.70 0.70 0.70 0.70 0.69 0.69 0.69 0.69 
SAX 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 
AERO5, 
AERO10, 
AERO15, 
AERO20 

0.64 0.64 0.63 0.63 0.63 0.63 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.61 0.61 

Batteries 0.56 0.55 0.53 0.52 0.51 0.50 0.49 0.48 0.47 0.46 0.46 0.45 0.44 0.43 0.42 0.41 0.40 



 

Each technology in the CAFE Model is assigned a learning schedule developed from the 
methodology explained previously.  For example, the following chart shows learning rates for 
several technologies applicable to midsize sedans, demonstrating that while we estimate that 
such learning effects have already been almost entirely realized for engine turbocharging (a 
technology that has been in production for many years), we estimate that significant 
opportunities to reduce the cost of the greatest levels of mass reduction (e.g., MR5) remain, and 
even greater opportunities remain to reduce the cost of batteries for HEVs, PHEVs, BEVs.  In 
fact, for certain advanced technologies, we determined that the results predicted by the standard 
learning curves progress ratio was not realistic, based on unusual market price and production 
relationships.  For these technologies, we developed specific learning estimates that may diverge 
from the 0.89 progress rate.  As shown in Figure 2-9, these technologies include: turbocharging 
and downsizing level 1 (TURBO1), variable turbo geometry electric (VTGE), aerodynamic drag 
reduction by 15 percent (AERO15), mass reduction level 5 (MR5), 20 percent improvement in 
low-rolling resistance tire technology (ROLL20) over the baseline, and battery integrated 
starter/generator (BISG).  

 
Figure 2-9 – Examples of Year-by-Year Cost Learning Effects (Midsize Sedan) 

2.6.5 Cost Accounting 

To facilitate specification of detailed model inputs and review of detailed model outputs, the 
CAFE Model continues to use absolute cost inputs relative to a known base component cost, 



 

such that the estimated cost of each technology is specified relative to a common reference point 
for the relevant technology pathway.  For example, the cost of a 7-speed transmission is 
specified relative to a 5-speed transmission, as is the cost of every other transmission technology.  
Conversely, in some earlier versions of the CAFE Model, incremental cost inputs were estimated 
relative to the technology immediately preceding on the relevant technology pathway.  For our 7-
speed transmission example, the incremental cost would be relative to a 6-speed transmission.  
This change in the structure of cost inputs does not, by itself, change model results, but it does 
make the connection between these inputs and corresponding outputs more transparent.  The 
CAFE Model Documentation accompanying our analysis presents details of the structure for 
model cost inputs.161  The individual technologies sections in Chapter 3 provide a detailed 
discussion of cost accounting for each technology.  

3 Technology Pathways, Effectiveness, and Cost  

Vehicle manufacturers meet increasingly more stringent fuel economy standards by applying 
increasing levels of fuel-economy-improving technologies to their vehicles.  An appropriate 
characterization of the technologies available to manufacturers to meet fuel economy standards 
is, therefore, an important input required to assess the levels of standards that manufacturers can 
achieve.  Like previous CAFE standards analyses, this proposal considers over 50 fuel-economy-
improving technologies that manufacturers could apply to their MY 2020 fleet of vehicles to 
meet proposed levels of CAFE standards in MYs 2024-2026.  The characterization of these 
technologies, the technology effectiveness values, and technology cost assumptions build on 
work performed by DOT, EPA, the National Academy of Sciences, and other federal and state 
government agencies including the Department of Energy’s Argonne National Laboratory and 
the California Air Resources Board.   

After spending approximately a decade refining the technology pathways, effectiveness, and cost 
assumptions used in successive CAFE Model analyses, DOT has developed guiding principles to 
ensure that the CAFE Model’s simulation of manufacturer compliance pathways results in 
impacts that we would reasonably expect to see in the real world.  These guiding principles are 
as follows: 

Even though the analysis considers over 50 individual technologies, the fuel economy 
improvement from any individual technology must be considered in conjunction with the other 
fuel-economy-improving technologies applied to the vehicle.  For example, there is an obvious 
fuel economy benefit that results from converting a vehicle with a traditional internal combustion 
engine to a battery electric vehicle; however, the benefit of the electrification technology 
depends on the other road load reducing technologies (i.e., mass reduction, aerodynamic, and 
rolling resistance) on the vehicle.   

Technologies added in combination to a vehicle will not result in a simply additive fuel 
economy improvement from each individual technology.  As discussed above, full vehicle 
modeling and simulation provides the required degree of accuracy to project how different 
technologies will interact in the vehicle system.  For example, as discussed further below, a 
parallel hybrid architecture powertrain improves fuel economy, in part, by allowing the internal 

 
161 See CAFE Model Documentation S4.7 Technology Cost Tables. 



 

combustion engine to spend more time operating at efficient engine speed and load conditions.  
This reduces the advantage of adding advanced internal combustion engine technologies, which 
also improve fuel economy, by broadening the range of speed and load conditions for the engine 
to operate at high efficiency.  This redundancy in fuel savings mechanism results in a reduced 
effectiveness improvement when the technologies are added to each other. 

The effectiveness of a technology depends on the type of vehicle the technology is being 
applied to.  For example, applying mass reduction technology results in varying effectiveness as 
the absolute mass reduced is a function of the starting vehicle mass, which varies across 
technology classes. 

The cost and effectiveness values for each technology should be reasonably representative of 
what can be achieved across the entire industry.  Each technology model employed in the 
analysis is designed to be representative of a wide range of specific technology applications used 
in industry.  Some vehicle manufacturer’s systems may perform better and cost less than our 
modeled systems and some may perform worse and cost more.  However, employing this 
approach will ensure that, on balance, the analysis captures a reasonable level of costs and 
benefits that would result from any manufacturer applying the technology.   

The baseline for cost and effectiveness values must be identified before assuming that a cost or 
effectiveness value could be employed for any individual technology.  For example, as 
discussed below, this analysis uses a set of engine map models that were developed by starting 
with a small number of baseline engine configurations, and then, in a very systematic and 
controlled process, adding specific well-defined technologies to create a new map for each 
unique technology combination. 

The following sections discuss the engine, transmission, electrification, mass reduction, 
aerodynamic, tire rolling resistance, and other vehicle technologies considered in this analysis.  
Each section discusses how we define the technology in the CAFE Model,162 how we assigned 
the technology to vehicles in the MY 2020 analysis fleet used as a starting point for this analysis, 
any adoption features applied to the technology so the analysis better represents manufacturers’ 
real-world decisions, the technology effectiveness values, and technology cost.   

Please note that the following technology effectiveness sections provide examples of the range 
of effectiveness values that a technology could achieve when applied to the entire vehicle 
system, in conjunction with the other fuel-economy-improving technologies already on or also 
applied at the same time to the vehicle.  To see the incremental effectiveness values for any 
particular vehicle moving from one technology key to a more advanced technology key, see the 
FE_1 and FE_2 Adjustments files that are integrated in the CAFE Model executable file.  
Similarly, the technology costs provided in each section are examples of absolute costs seen in 
specific model years, for specific vehicle classes.  To see all absolute technology costs used in 
the analysis across all model years, see the Technologies file.   

 
162 Note, due to the diversity of definitions industry sometimes employs for technology terms, or in describing the 
specific application of technology, the terms defined here may differ from how the technology is defined in the 
industry. 



 

3.1 Engine Paths  

Internal combustion engines convert chemical energy in fuel to useful mechanical power.  The 
chemical energy is converted to mechanical power by being burned or oxidized inside the 
engine.  The air/fuel mixture entering the engine and burned fuel/exhaust by-products leaving the 
engine are the working fluids in the engine.  The engine power output is a direct result of the 
work interaction between these fluids and the mechanical components of the engine.163  The 
mechanical power generated by these engines is used to perform useful work, such as vehicle 
propulsion.   

For this analysis, the extensive variety of light duty vehicle internal combustion (IC) engine 
technologies are classified into discrete engine technology paths.  These paths are used to model 
the most representative characteristics, costs, and performance of the fuel-economy improving 
technologies most likely available during the rulemaking time frame, MYs 2024-2026.  Due to 
uncertainties in the cost and capabilities of emerging technologies, some new and pre- 
production technologies are not part of this analysis.  We did not include technologies unlikely to 
be feasible in the rulemaking timeframe, technologies unlikely to be compatible with U.S. fuels, 
or technologies for which there was not appropriate data available to allow the simulation of 
effectiveness across all vehicle technology classes in this analysis.   

The following section discusses how IC engine technologies considered in this analysis are 
defined.  We describe the CAFE Model’s general engine technology categories, and discuss the 
engine technologies’ relative effectiveness.  We also review how the categories are assigned to 
the baseline MY 2020 fleet as well as the engine paths adoptions features.  Finally, we provide 
the modeled cost for engine technology application to vehicles. 

3.1.1 Engine Modeling in the CAFE Model 

This analysis models IC engine technologies manufacturers can use to improve fuel economy.  
Some engine technologies can be incorporated into existing engines with minor or moderate 
changes to the engines, but many engine technologies require an entirely new engine 
architecture.  

For the CAFE analysis, we divide engine technologies into two categories, “basic engine 
technologies” and “advanced engine technologies.”  “Basic engine technologies” refer to 
technologies adaptable to an existing engine with minor or moderate changes to the engine.  
“Advanced engine technologies” refer to technologies that generally require significant changes 
or an entirely new engine architecture.  The words “basic” and “advanced” are not meant to 
confer any information about the level of sophistication of the technology.  Many advanced 
engine technology definitions also include some basic engine technologies, and these basic 
technologies are accounted for in the costs and effectiveness values of the advance engine.   

3.1.1.1 Basic Engines 

In the CAFE Model, basic engine technologies may be applied individually or in combination 
with other basic engine technologies.  The basic engine technologies include variable valve 

 
163 Heywood, John B. Internal Combustion Engine Fundamentals. McGraw-Hill Education, 2018.  Chapter 1. 



 

timing (VVT), variable valve lift (VVL), stoichiometric gasoline direct injection (SGDI), and 
cylinder deactivation.  Cylinder deactivation includes a basic level (DEAC) and an advanced 
level (ADEAC).   

The model applies the basic engine technologies across two engine architectures: dual over-head 
camshaft (DOHC) engine architecture and single over-head camshaft (SOHC) engine 
architecture.  A third architecture exists, over-head valves (OHV), where the camshaft is not 
mounted overhead.  We mapped engines with this architecture to SOHC engines.  Figure 3-1 
shows the basic engine technologies. 

 
Figure 3-1 – Basic Engine Technologies Path 

3.1.1.1.1 Variable Valve Timing  

Variable valve timing (VVT) is a family of valve-train designs that dynamically adjusts the 
timing of the intake valves, exhaust valves, or both, in relation to piston position.  VVT can 
reduce pumping losses, provide increased engine torque and horsepower over a broad engine 
operating range, and allow unique operating modes, such as Atkinson cycle operation, to further 
enhance efficiency.164  As discussed below, VVT is nearly universally used in the MY 2020 
fleet.  VVT enables more control of in-cylinder air flow for exhaust scavenging and combustion 
relative to fixed valve timing engines.  Engine parameters such as volumetric efficiency, 
effective compression ratio, and internal exhaust gas recirculation (iEGR) can all be enabled and 
accurately controlled by a VVT system. 

 
164 National Research Council 2015. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-
Duty Vehicles. Washington, DC: The National Academies Press. https://doi.org/10.17226/21744, at 31 [hereinafter 
2015 NAS report]. 



 

3.1.1.1.2 Variable Valve Lift  

Variable valve lift (VVL) dynamically adjusts the distance a valve travels from the valve seat.  
The dynamic adjustment can optimize airflow over a broad range of engine operating conditions.  
The technology can increase effectiveness by reducing pumping losses and by affecting the fuel 
and air mixture motion and combustion in-cylinder.165  VVL is less common in the MY 2020 
fleet than VVT, but still prevalent.  Some manufacturers have implemented a limited, discrete 
approach to VVL.  The discrete approach allows only limited (e.g., two) valve lift profiles versus 
allowing a continuous range of lift profiles. 

3.1.1.1.3 Stoichiometric Gasoline Direct Injection  

Stoichiometric gasoline direct injection (SGDI) sprays fuel at high pressure directly into the 
combustion chamber, which provides cooling of the in-cylinder charge via in-cylinder fuel 
vaporization to improve spark knock tolerance and enable an increase in compression ratio 
and/or more optimal spark timing for improved efficiency.166  SGDI is common in the MY 2020 
fleet, and many advanced engines also use the technology.  

3.1.1.1.4 Cylinder Deactivation 

Basic cylinder deactivation (DEAC) disables intake and exhaust valves and turns off fuel 
injection for the deactivated cylinders during light load operation.  DEAC is characterized by a 
small number of discrete operating configurations.167  The engine runs temporarily as though it 
were a smaller engine, reducing pumping losses and improving efficiency.  DEAC is present in 
the MY 2020 baseline fleet. 

Advanced cylinder deactivation (ADEAC) systems, also known as rolling or dynamic cylinder 
deactivation systems, allow a further degree of cylinder deactivation than the base DEAC.  
ADEAC allows the engine to vary the percentage of cylinders deactivated and the sequence in 
which cylinders are deactivated, essentially providing “displacement on demand” for low load 
operations.  A small number of vehicles have ADEAC in the MY 2020 baseline fleet. 

3.1.1.1.5 Camshafts Configuration 

For this analysis DOHC engine configurations have two camshafts per cylinder head, one 
operating the intake valves and one operating the exhaust valves.168  The basic engine 
technologies that could be applied to DOHC engines included VVT, VVL, SGDI and DEAC.  To 
represent the possible configurations of basic engine technologies in the analysis, we developed 
engine fuel map models for each of the technology combinations, as seen in Table 3-1.  Each of 
these engines incrementally added technology to Eng01, a basic VVT engine with port fuel 
injection (PFI), while holding all other assumptions constant, such as ambient temperature, 
ambient pressure, base engine geometry, and fuel type.  The approach to creating the engine map 

 
165 2015 NAS report, at 32. 
166 2015 NAS report, at 34. 
167 2015 NAS report, at 33. 
168 2015 NAS report, at 31. 



 

models is discussed in more detail in Chapter 3.1.4.1.  DOHC engines are the most common 
camshaft configuration of the baseline engine technologies in the baseline MY 2020 fleet. 

We did not create specific engine map models for the application of the ADEAC technology.  To 
simulate the application of ADEAC a net effectiveness improvement was applied to an existing 
engine technology configuration.  We developed the net effectiveness from performance reported 
in the literature,169,170,171 and CBI provided from industry.  The final effectiveness values are a 
function of engine cylinder count and are discussed in more detail in Chapter 3.1.4.   

Table 3-1 – DOHC Engine Map Models  

Engines Technologies Notes 

Eng01 DOHC VVT 
Parent NA engine, Gasoline, 2.0L, 4 
cyl, NA, PFI, DOHC, dual cam VVT, 
CR10.2 

Eng02 DOHC VVT+VVL VVL added to Eng01 

Eng03 DOHC VVT+VVL+SGDI SGDI added to Eng02, CR11 

Eng04 DOHC VVT+VVL+SGDI+DEAC Cylinder deactivation added to Eng03 

Eng18 DOHC VVT + SGDI Gasoline, 2.0L, 4 cyl, NA, SGDI, 
DOHC, dual cam VVT 

Eng19 DOHC VVT + DEAC Cylinder deactivation added to Eng01 

Eng20 DOHC VVT + VVL + DEAC Cylinder deactivation added to Eng02 

Eng21 DOHC VVT + SGDI + DEAC Cylinder deactivation added to Eng18 

 

SOHC engines are characterized by having a single camshaft in the cylinder head operating both 
the intake and exhaust valves.172  The model considers four basic engine technologies, VVT, 
VVL, SGDI, and DEAC for SOHC engines.  Like DOHC engines, engine map models for 
SOHC engines use an incremental improvement approach.  The SOHC engine maps models are 
based on Eng01, with the removal of one camshaft.  We included SOHC VVT Eng5a in previous 
analyses, but did not include it for this analysis.  We found that the Eng5a map model’s internal 
friction, inherited from the DOHC engine it was based on, was too high and artificially increased 

 
169 Wilcutts, M., Switkes, J., Shost, M., and Tripathi, A., “Design and Benefits of Dynamic Skip Fire Strategies for 
Cylinder Deactivated Engines,” SAE Int. J. Engines 6(1):278-288, 2013, available at  
https://doi.org/10.4271/2013-01-0359.   
170 Eisazadeh-Far, K. and Younkins, M., “Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition 
Engines,” SAE Technical Paper 2016-01-0672, 2016, available at  
https://doi.org/10.4271/2016-01-0672. 
171 EPA, 2018.  “Benchmarking and Characterization of a Full Continuous Cylinder Deactivation System.”  
Presented at the SAE World Congress, April 10-12, 2018.  Available at 
https://www.regulations.gov/document/EPA-HQ-OAR-2018-0283-0029. 
172 2015 NAS report, at 31. 



 

BSFC.  As a result of the issue identified with Eng5a, the model applies friction reduction of 0.1 
bar over the entire operating range for engine maps 5b, 6a, 7a, and 8a to bring performance of 
the engines in line with existing data (see Chapter 3.1.4.1 for discussion of engine map 
validation).173  SOHC engines are not common in the baseline MY 2020 fleet. 

Table 3-2 shows the SOHC engine map models, and Chapter 3.1.4.1 discusses how we modeled 
the configurations.  To represent the effectiveness of several other SOHC engine technology 
combinations, the CAFE Model uses adjustments created from existing related engine map 
models.  Table 3-3 shows the additional SOHC technology combinations with performance 
values drawn from alternative engine map models. 

Table 3-2 – SOHC Engine Map Models 

Engine Technologies Notes 

Eng5a SOHC VVT Eng01 converted to SOHC  
Reference Only 

Eng5b SOHC VVT (level 1 Engine 
Friction Reduction) 

Eng5a 2.0L, 4cyl, NA, PFI, single cam VVT with 
valvetrain friction reduction 

Eng6a SOHC VVT+VVL (level 1 Engine 
Friction Reduction) 

Eng02 converted to SOHC with valvetrain friction 
reduction 

Eng7a SOHC VVT+VVL+SGDI (level 1 
Engine Friction Reduction) 

Eng03 converted to SOHC with valvetrain friction 
reduction, addition of VVL and SGDI 

Eng8a SOHC VVT+VVL+SGDI+DEAC 
(level 1 Engine Friction Reduction) 

Eng04 converted to SOHC with valvetrain friction 
reduction, addition of DEAC 

 

Table 3-3 – SOHC Emulated Engines from Analogous Models 

Engine Performance 
is Based on Technologies  Notes 

Eng18 SOHC+VVT+SGDI See Chapter 3.1.4 for effectiveness discussion 

Eng19 SOHC VVT+DEAC See Chapter 3.1.4 for effectiveness discussion 

Eng20 SOHC VVT+VVL+DEAC See Chapter 3.1.4 for effectiveness discussion 

Eng21 SOHC VVT+SGDI+DEAC See Chapter 3.1.4 for effectiveness discussion 
 

3.1.1.2 Advanced Engines 

In the CAFE Model, advanced engine technologies generally refer to families of engine 
technology that require significant changes in engine structure, or an entirely new engine 
architecture.  The advanced engine technologies represent the application of alternate 
combustion cycles or changes in the application of forced induction to the engine. 

 
173 Note, the engine friction reduction applied to these engines is not the engine friction reduction technology 
discussed later in this chapter. 



 

 

Figure 3-2 – The Advanced Engine Technology Paths 

3.1.1.2.1 Forced Induction Engines 

Forced induction engines, or turbocharged downsized engines, are characterized by technology 
that can create greater-than-atmospheric pressure in the engine intake manifold when higher 
output is needed.  The raised pressure results in an increased amount of airflow into the cylinder 
supporting combustion, increasing the specific power of the engine.  Increased specific power 
means the engine can generate more power per unit of cylinder volume.  The higher power per 
cylinder volume allows the overall engine volume to be reduced, while maintaining performance.  
The overall engine volume decrease results in an increase in fuel efficiency by reducing parasitic 
loads associated with larger engine volumes.174   

Cooled exhaust gas recirculation is also part of the advanced forced induction technology path.  
The basic recycling of exhaust gases using VVT is called internal EGR (iEGR), and is included 
as part of the performance improvements provided by the VVT basic engine technology.  Cooled 
EGR (cEGR) is a second method for diluting the incoming air that takes exhaust gases, passes 
them through a heat exchanger to reduce their temperature, and then mixes them with incoming 
air in the intake manifold.175  Diluting the incoming air with inert exhaust gas reduces pumping 
losses, improving BSFC.  The dilution also reduces combustion rates, temperatures, and 

 
174 2015 NAS report, at 34. 
175 2015 NAS report, at 35. 



 

pressures, mitigating knock and reducing the need for fuel enrichment.  The exhaust gas 
displaces some incoming air, and heats the incoming air, lowering the air’s density.   

Five levels of turbocharged engine downsizing technologies are considered in this analysis: a 
‘basic’ level of turbocharged downsized technology (TURBO1), an advanced turbocharged 
downsized technology (TURBO2), an advanced turbocharged downsized technology with cooled 
exhaust gas recirculation applied (cEGR), a turbocharged downsized technology with basic 
cylinder deactivation applied (TURBOD), and a turbocharged downsized technology with 
advanced cylinder deactivation applied (TURBOAD).  See Table 3-4 for a list of the specific 
engine map models used to represent the technology levels. 

The baseline turbocharged downsized technology (TURBO1) engine represents a basic level of 
forced air induction technology being applied to a DOHC-based engine.  The TURBO1 engine 
category assumes application of SGDI, VVT and VVL to the engine.  The engine map model 
developed to represent the baseline turbocharged downsized engine operates with enough boost 
pressure to achieve a brake mean effective pressure (BMEP) of 18bar.  

The turbocharged engine with cylinder deactivation (TURBOD) is defined by the application of 
basic cylinder deactivation to the TURBO1 engine.  The turbocharged downsized with advanced 
cylinder deactivation (TURBOAD) engine is defined by the application of an advanced cylinder 
deactivation technology to the TURBOD engine. 

The advanced turbocharged downsized technology (TURBO2) engine category represents an 
advanced application of forced air induction.  The engine map model assumes a DOHC-based 
engine and application of SGDI, VVT and VVL.  The engine map model represents performance 
of an engine boosted to achieve a BMEP of 24bar. 

The advanced turbocharged downsized technology with exhaust gas recirculation (CEGR1) 
represents an advanced application of forced air induction coupled with cooled exhaust gas 
recirculation (cEGR).  The modeled engine map is based on the TURBO2 map with the cEGR 
technology applied.   



 

Table 3-4 – Turbocharged Engine Downsizing Technology Engine Map Models 

Engine Technology Notes 

Eng12 TURBO1 Parent Turbocharged Engine, Gasoline, 1.6L, 4 cyl, 
turbocharged, SGDI, DOHC, VVT, VVL, engine BMEP 18 bar 

Eng12DEAC 

TURBOD Eng12 with DEAC applied, engine BMEP 18bar 

TURBOAD Eng12DEAC with ADEAC, see Chapter 3.1.4 for effectiveness 
discussion 

Eng13 TURBO2 Eng12 downsized to 1.2L, Engine BMEP increased to 24 bar 

Eng14 CEGR1 Cooled external EGR added to Eng13,  
engine BMEP 24 bar 

3.1.1.2.2 Atkinson Engines 

Atkinson engines, or high compression ratio (HCR) engines, represent a class of engines that 
achieve a higher level of fuel efficiency by implementing an alternate combustion cycle.176  
Historically, the Otto combustion cycle has been used by most gasoline-based spark ignition 
engines.  Increased research into improving fuel economy has resulted in the development of 
alternate combustion cycles that allow for greater levels of thermal efficiency.  One such 
alternative combustion cycle is the Atkinson cycle.  Atkinson cycle operation is achieved by 
allowing the expansion stroke of the engine to overextend allowing the combustion products to 
achieve the lowest possible pressure before the exhaust stroke.177,178,179  Currently, there are two 
common approaches to achieving Atkinson Cycle operation: either the exhaust valve timing is 
modified or the intake valve timing is modified.  If the exhaust valve timing is modified, the 
exhaust valve will not open until enough expansion has occurred for the cylinder pressure to be 
as close to atmospheric pressure as the cylinder geometry allows.  If the intake valve timing is 
modified, the intake valve will stay open during some portion of compression stroke.  When the 
intake valve stays open, some of the fresh charge is driven back into the intake manifold by the 
rising piston, so the cylinder is never filled completely with fresh air, effectively creating a 
longer expansion stroke than compression stroke.180  It is important to note that in both cases, the 

 
176 See the 2015 NAS report, Appendix D, for a short discussion on thermodynamic engine cycles. 
177 Otto cycle is a four-stroke cycle that has four piston movements over two engine revolutions for each cycle.  First 
stroke: intake or induction; seconds stroke: compression; third stroke: expansion or power stroke; and finally, fourth 
stroke: exhaust. 
178 Compression ratio is the ratio of the maximum to minimum volume in the cylinder of an internal combustion 
engine. 
179 Expansion ratio is the ratio of maximum to minimum volume in the cylinder of an IC engine when the valves are 
closed (i.e., the piston is traveling from top to bottom to produce work). 
180 Heywood, John B. Internal Combustion Engine Fundamentals.  McGraw-Hill Education, 2018.  Chapter 5. 



 

geometric compression ratio of the engine will be different (higher) than the actual, or effective, 
compression ratio of the engine.181,182   

One major disadvantage of the Atkinson cycle is a significant reduction in power density.183,184  
The reduction in power density of the engine is a result of the decreased amount of air drawn into 
the cylinder compared to the total volume of the cylinder.  The trade-off in power density for 
thermal efficiency generally relegates these engines to lower power applications, such as in 
parallel with an electric powertrain, like in the Toyota Prius, or in conjunction with road load 
reducing technologies that reduce the need for engine power to maintain vehicle 
performance.185,186 

Descriptions of Atkinson cycle engines and Atkinson mode engine technologies have been used 
interchangeably in association with HCR engines for rulemaking analyses.  Both technologies 
achieve a higher thermal efficiency than traditional Otto cycle-only engines, however, the two 
engine types operate differently.  For purposes of this analysis, Atkinson technologies can be 
categorized into two groups: (1) Atkinson-enabled engines and (2) Atkinson engines. 

3.1.1.2.2.1 Atkinson Enabled Engines - Non-Hybrid Electric Vehicle Engines 

Atkinson-enabled engines, or high compression ratio engines (HCR), dynamically swing 
between operating closer to an Otto cycle or to an Atkinson cycle based on engine loads.  During 
high loads the engine will use the lower-efficiency, power-dense Otto cycle mode, while at low 
loads the engine will use the higher-efficiency, lower power-dense Atkinson cycle mode.  The 
hybrid combustion cycle operation is used to address the low power density issues that can limit 
the Atkinson-only engine and allow for a wider application of the technology.   

The level of efficiency improvement experienced by a vehicle using this technology is directly 
related to how much of the vehicle’s operation time is spent in Atkinson mode.  Vehicles that can 
experience operation at a high load for long portions of their operating cycle will see little to no 
benefit from this technology.  This limitation to performance results in manufacturers typically 
limiting the application of this technology to vehicles with a use profile that can take advantage 
of the technology’s behavior. 

Three HCR engines are available in the analysis: (1) the baseline Atkinson-enabled engine 
(HCR0) with VVT and PFI, (2) the enhanced Atkinson enabled engine (HCR1) with VVT and 
SGDI, and finally, (3) the enhanced Atkinson enabled engine with DEAC (HCR1D).  A 
summary of each of the engine technologies is shown in Table 3-5.  

 
181 Geometric compression ratio is the ratio of the maximum volume when a cylinder is at full expansion versus the 
minimum volume in a cylinder at full compression. 
182 Effective compression ratio is the difference in volume in a cylinder when the volume of gas is held constant to 
the volume in a cylinder at full compression.  
183 Power density is the engine power per unit of displacement (= [Engine Power]/[Engine Displacement]). 
184 Heywood, John B. Internal Combustion Engine Fundamentals.  McGraw-Hill Education, 2018.  Chapter 5. 
185 Toyota.  “Under the Hood of the All-new Toyota Prius.”  Oct. 13, 2015.  Available at 
https://global.toyota/en/detail/9827044.  Last accessed Nov. 22, 2019. 
186 Road load reducing technologies include improved efficiency accessory technologies, vehicle mass reduction and 
aerodynamic drag reduction. 



 

For this analysis, the effectiveness of HCR1D is represented by applying an offset to the HCR1 
engine.  The offset applied is the same effectiveness difference between TURBO1 technology 
and the TURBOD technology.  The details on how this is performed are discussed in Chapter 
3.1.4. 

Table 3-5 – Atkinson Enabled Engine Map Models 

3.1.1.2.2.2 Atkinson Engines - Hybrid Electric Vehicle Engines 

Atkinson engines are engines that operate full-time in the Atkinson cycle.  The most common 
method of achieving Atkinson operation is the use of late intake valve closing.  This method 
allows backflow from the combustion chamber into the intake manifold, reducing the dynamic 
compression ratio, and providing a higher expansion ratio.  The higher expansion ratio improves 
thermal efficiency but reduces power density.  The low power density generally relegates these 
engines to hybrid vehicle applications only.  Coupling the engines to electric motors and 
significantly reducing road loads can compensate for the lower power density and maintain 
desired performance levels for the vehicle.187  The Toyota Prius is an example of a vehicle that 
uses an Atkinson engine.  The 2017 Toyota Prius achieved a peak thermal efficiency of 40 
percent.188 

Table 3-6 shows the Atkinson engine map model used in this analysis.  The engine is only used 
in HEV powertrains.  

 
187 Toyota.  “Under the Hood of the All-new Toyota Prius.”  Oct. 13, 2015.  Available at 
https://global.toyota/en/detail/9827044.  Last accessed Nov. 22, 2019. 
188 Matsuo, S., Ikeda, E., Ito, Y., and Nishiura, H., “The New Toyota Inline 4 Cylinder 1.8L ESTEC 2ZR-FXE 
Gasoline Engine for Hybrid Car,” SAE Technical Paper 2016-01-0684, 2016, https://doi.org/10.4271/2016-01-0684. 

Engine Technology Notes 

Eng22b HCR0 Atkinson-enabled 2.5L DOHC, VVT, PFI, CR14 

Eng24 

HCR1 Non-HEV Atkinson mode, Gasoline, 2.0L, 4 cyl, DOHC, NA, 
SGDI, VVT, CR 13.1, 93 AKI 

HCR1D Eng24 with DEAC,  
see Chapter 3.1.4 for effectiveness discussion. 



 

Table 3-6 – Atkinson Engine Map Model 

Engine Technology Notes 

Eng26 

SHEVPS 
PHEV20 
PHEV50 

PHEV20H 
PHEV50H 

1.8L Atkinson engine 

3.1.1.2.3 Miller Cycle Engines  

The Miller cycle is another type of overexpansion combustion cycle, similar to the Atkinson 
cycle.  The Miller cycle, however, operates in combination with a forced induction system that 
helps address the impacts of reduced power density during high load operating conditions.  
Miller cycle-enabled engines use a similar technology approach as seen in Atkinson-enabled 
engines to effectively create an expanded expansion stroke of the combustion cycle.   

Miller cycle enabled engines have a similar trade-off in power density as Atkinson engines; the 
lower power density requires a larger volume engine in comparison to an Otto cycle-based 
turbocharged system, for similar applications.189  However, the forced air induction does 
mitigate power density issues, and allows for a wider application of the engine technology.  
Miller cycle enabled engines may use a variable geometry turbocharger to increase engine power 
density over a broader range of operating conditions and increase the amount of Miller cycle 
operation.  The application of an electronic assist or electronic boost system may further mitigate 
the power density reduction, particularly at low speed operating conditions. 

In the analysis, we use two engine map models to represent Miller cycle enabled engines, see 
Table 3-7.  The baseline Miller cycle-enabled engine includes the application of a variable turbo 
geometry technology (VTG).  The advanced Miller cycle enabled system includes the 
application of a 48V-based electronic boost system (VTGE).  VTG technology allows the system 
to vary boost level based on engine operational needs.  The use of a variable geometry 
turbocharger also supports the use of cooled exhaust gas recirculation.190   

An electronic boost system has an electric motor added to assist a turbocharger at low engine 
speeds.  The motor assist mitigates turbocharger lag and low boost pressure at low engine 
speeds.  The electronic assist system can provide extra boost needed to overcome the torque 
deficits at low engine speeds.191 

 
189 National Academies of Sciences, Engineering, and Medicine 2021. Assessment of Technologies for Improving 
Light-Duty Vehicle Fuel Economy 2025-2035. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/26092, Section 4 [hereinafter 2021 NAS report].  
190 2015 NAS report, at 116. 
191 2015 NAS report, at 62. 



 

Table 3-7 – Miller Cycle Engine Map Models 

Engine Technology Notes 

Eng23b VTG Miller Cycle, 2.0L DOHC, VTG, SGDI, cEGR, VVT, VVL, CR12 

Eng23c VTGE Eng23b with a 48V electronic supercharger and battery pack 

3.1.1.2.4 Variable Compression Ratio Engines 

Variable compression ratio (VCR) engines work by changing the length of the piston stroke of 
the engine to optimize the compression ratio and improve thermal efficiency over the full range 
of engine operating conditions.  Engines that use VCR technology are currently in production, 
but appear to be targeted primarily towards limited production, high performance, and very high 
BMEP (27-30 bar) applications.  Nissan is the only manufacturer to use this technology in the 
MY 2020 baseline fleet. 

One engine map model represents a VCR system.  See Table 3-8 for more information on the 
VCR technology. 

Table 3-8 – Variable Compression Ratio Engine Map Model 

Engine Technology Notes 

Eng26a VCR VVT, SGDI, Turbo, cEGR, VCR CR 9-12 

 

Few manufacturers and suppliers provided information about VCR technologies, and we 
reviewed several design concepts that could achieve a similar functional outcome.  In addition to 
design concept differences, intellectual property ownership complicates the ability to define a 
VCR hardware system that could be widely adopted across the industry.  VCR engines are 
complex, costly by design, and address many of the same efficiency losses as mainstream 
technologies like downsize turbocharging, making it unlikely that a manufacturer that has 
already started down an incongruent technology path would adopt VCR technology.  Because of 
these issues, we limited adoption of the VCR engine technology to Nissan only.   

3.1.1.2.5 Diesel Engines 

Diesel engines have several characteristics that result in superior fuel efficiency over traditional 
gasoline engines, including reduced pumping losses due to lack of (or greatly reduced) throttling, 
high pressure direct injection of fuel, a combustion cycle that operates at a higher compression 
ratio,192 and a very lean air/fuel mixture relative to an equivalent-performance gasoline 
engine.193   However, diesel technologies require additional enablers, such as a NOx adsorption 

 
192 Diesel cycle is also a four-stroke cycle like the Otto Cycle, except in the intake stroke no fuel is injected and fuel 
is injected late in the compression stroke at higher pressure and temperature. 
193 See the 2015 NAS report, Appendix D, for a short discussion on thermodynamic engine cycles. 



 

catalyst system or a urea/ammonia selective catalytic reduction system, for control of NOx 
emissions. 

For the analysis, we considered three levels of diesel engine technology (see Table 3-9).  The 
baseline diesel engine technology (ADSL) is based on a standard 2.2L turbocharged diesel 
engine.  We developed a more advanced diesel engine (DSLI) by starting with the ADSL system 
and incorporating a combination of low pressure and high pressure EGR, reduced parasitic loss, 
friction reduction, incorporating a highly-integrated exhaust catalyst with low temp light off 
temperatures, and closed loop combustion control.  We developed the most advanced diesel 
system (DSLIAD) by adding advanced cylinder deactivation technology to the DSLI system. 

Table 3-9 – Diesel Engine Map Models 

Engine Technology Notes 

Eng17 ADSL 2.2L turbocharged diesel engine, 

Eng17 DSLI Eng17 with cEGR, friction reduction, reduced parasitic loss, low temp 
catalyst, combustion control 

Eng17 DSLIAD Eng17 with DSLI modifications, advanced cylinder deactivation 

 

3.1.1.2.6 Alternative Fuel Engines 

Compressed natural gas (CNG) systems are internal combustion engines that run on natural gas 
as a fuel source.  The fuel storage and supply systems for these engines differ tremendously from 
gasoline, diesel, and flex fuel vehicles.194  CNG engines are a baseline-only technology and are 
not applied to any vehicle that did not already include a CNG engine.  The MY 2020 analysis 
fleet does not include any dedicated CNG vehicles. 

3.1.1.3 Engine Friction Reduction Technologies 

The engine friction reduction (EFR) technology is a general engine improvement that represents 
future technologies that reduce the internal friction of an engine.  EFR technology is not 
available for application until MY 2023.  The future technologies do not significantly change the 
function or operation of the engine, but reduce the energy loss due to the rotational or rubbing 
friction experienced in the bearings or cylinder during normal operation.  These technologies can 
include improved surface coatings, lower-tension piston rings, roller cam followers, optimal 
thermal management and piston surface treatments, improved bearing design, reduced inertial 
loads, improved materials, or improved geometry.   

 
194 Flexible fuel vehicles (FLEX) are designed to run on gasoline or gasoline-ethanol blends of up to 85% ethanol. 



 

3.1.2 Baseline Engine Assignments  

Manufacturers have steadily improved the fuel economy of their vehicles through 
implementation of greater levels of fuel economy improving technology in their fleets.195  To 
best capture the current level of these advances and update the market data inputs for the CAFE 
Model, DOT built a 2020 analysis fleet.  We built the fleet using mid-model year 2020 CAFE 
compliance data, press releases, vehicle benchmarking studies, technical publications, and CBI.  
We use these sources to ensure the fleet is represented as accurately as possible. 

We use data for each manufacturer to determine which platforms share engines.  Within each 
manufacturer’s fleet, we assign unique identification designations (engine codes) based on 
configuration, technologies applied, displacement, compression ratio, and power output.  We use 
power output to distinguish between engines that might have the same displacement and 
configuration but significantly different horsepower ratings.   

The CAFE Model identifies leaders and followers for a manufacturer’s vehicles that use the 
same engine, indicated by sharing the same engine code.  The model automatically determines 
which engines are leaders by using the highest sales volume row of the highest sales volume 
nameplate that is assigned an engine code.  This leader-follower relationship allows the CAFE 
Model simulation to maintain engine sharing as more technology is applied to engines.   

As an example, the 2020 Chevrolet Silverado has five different engine displacements available.  
The engines include a 2.7L turbocharged I4, a 4.3L naturally-aspirated V6, a 5.3L naturally-
aspirated V8, a 6.2L naturally-aspirated V8, and a 3.0L turbo diesel I6.  As discussed above, we 
assign each engine one unique engine code or assign one engine multiple codes if there are 
variants that use different technologies.  For example, we assign the 2020 Chevrolet Silverado 
naturally-aspirated 5.3L V8 engine one of three engine codes: 115301 (gasoline only with 
cylinder deactivation), 115302 (gasoline only with skip fire), and 115303 (flex fuel vehicle with 
cylinder deactivation).196  All Silverado trucks that use one of these engines will reference the 
same engine code.  We then assign the appropriate corresponding technology to each engine 
code, and the model can accurately account for further engine improvements at each vehicle 
redesign, and propagate them to each vehicle model that uses the engine code. 

We accurately represent each engine using engine technologies and engine technology classes.  
We assign each engine code technology that most closely corresponds to an engine map, as 
discussed in Chapter 3.1.4.  We use a single engine map model to represent each engine 
technology.  We assign each individual vehicle’s initial fuel economy value based on CAFE 
compliance data for that vehicle, and not based on these maps.  Then, the compliance modeling 
uses these engine maps to determine a percent efficiency gain from the application of a new 
technology which would be applied to that baseline value for each individual vehicle, see 
Chapter 3.1.4.   

The engine technology classes are a second identifier used in the analysis to accurately account 
for engine costs.  The engine technology class is formatted as number of cylinders followed by 

 
195 “The 2020 EPA Automotive Trends Report, Greenhouse Gas Emissions, Fuel Economy, and Technology since 
1975,” EPA-420-R-21-003, January 2021 [hereinafter 2020 EPA Automotive Trends Report]. 
196 Market Data file, ‘Vehicles’ Tab, Line 482, 484, 497, Column H. 



 

the letter C, number of banks followed by the letter B, and an engine head configuration 
designator, which is _SOHC for single overhead cam, _ohv for overhead valve, or blank for dual 
overhead cam.  Table 3-10 shows examples of observed engines with their corresponding 
assigned engine technologies as well as engine technology classes. 

Table 3-10 – Examples of Observed Engines and Their Corresponding Engine Technology Class and 
Technology Assignments 

Vehicle Engine Observed 
Engine 

Technology Class 
Assigned 

Engine 
Technology 

Assigned 

GMC Acadia Naturally Aspirated DOHC Inline 4 
cylinder 4C1B VVT, SGDI 

VW Arteon Turbocharged DOHC Inline 4 cylinder 6C2B TURBO1 

Bentley Bentayga Turbocharged DOHC W12 w/ cylinder 
deactivation 16C4B TURBOD 

Honda Passport Naturally Aspirated SOHC V6 6C2B_SOHC VVT, VVL, 
SGDI, DEAC 

Honda Civic Turbocharged DOHC Inline 4 cylinder 4C1B TURBO1 

Cadillac CT5 Turbocharged DOHC V6 w/ cylinder 
deactivation 8C2B TURBOD 

Ford Escape Turbocharged DOHC Inline 3 cylinder 4C1B_L TURBO1 

Chevrolet Silverado Naturally Aspirated OHV V8 w/ skip fire 8C2B_ohv ADEAC 

 

As discussed in the engine cost section (see Chapter 3.1.5) the cost tables for a given engine 
class include downsizing (to an engine architecture with fewer cylinders) when turbocharging 
technology is applied; therefore, the turbocharged engines observed in the 2020 fleet (that have 
already been downsized) often map to an engine class with more cylinders.  For instance, an 
observed TURBO1 V6 engine would map to an 8C2B (V8) engine class, because the turbo costs 
on the 8C2B engine class tab assume a V6 (6C2B) engine architecture.  Similarly, as indicated 
above, the TURBO1 I3 in the Ford Escape maps to the 4C1B_L (I4) engine class, because the 
turbo costs on the 4C1B_L engine class tab assume a I3 (3C1B) engine architecture.  Some 
instances can be more complex, including low horsepower variants for 4 cylinder engines, and 
are shown in Table 3-11.  Diesel engines map to engine technology classes that match the 
observed cylinder count since naturally aspirated diesel engines are not found in new light duty 
vehicles in the U.S. market.  Table 3-12 includes the full list of engine classes included in the 
CAFE Model analysis and the corresponding cylinder count that would be observed on engines 
included in that class. 



 

Table 3-11 – Engine Technology Class Assignment Logic 

Observed Gasoline 
Engine Architecture 

Observed 
Number of 
Cylinders 

Horsepower 
Naturally 

Aspirated or 
Turbo 

Engine Technology 
Class Assigned 

Inline 3 Any NA 3C1B 
Inline 3 Any Turbo 4C1B_L 
Inline 4 <=180 NA 4C1B_L 
Inline 4 <=180 Turbo 4C1B 
Boxer 4 <=180 NA 4C2B_L 
Boxer 4 <=180 Turbo 4C2B 
Inline 4 >180 NA 4C1B 
Inline 4 >180 Turbo 6C2B 
Boxer 4 >180 Turbo 6C2B 
Inline 5 Any Turbo 6C2B 

W 16 Any Turbo 16C4B 
 



 

Table 3-12 – Observed Cylinder Count by Engine Technology Class and Engine Technology 

Broad Engine 
Technology Category 

Basic 
Engine Turbocharged Advanced Naturally 

Aspirated Diesel 

Included 
Technologies 

VVT, VVL, 
SGDI, 
DEAC 

TURBO1, TURBO2, 
TURBOD, TURBOAD, 
CEGR1, VCR, VTG, 
VTGE 

ADEAC, HCR0, 
HCR1, HCR1D, 
HCR2 

ADSL, 
DSLI, 
DSLIAD 

2C1B_SOHC 2 2 2 2 
2C1B 2 - 2 2 
3C1B_SOHC 3 - 3 3 
3C1B 3 - 3 3 
4C1B_L_SOHC 4 3 4 4 
4C1B_SOHC 4 4 4 4 
4C1B_L 4 3 4 4 
4C1B 4 4 4 4 
4C2B_SOHC 4 4 4 4 
4C2B_L 4 3 4 4 
4C2B 4 4 4 4 
5C1B_SOHC 5 - 5 5 
5C1B 5 - 5 5 
6C1B_SOHC 6 - 6 6 
6C1B 6 - 6 6 
6C1B_ohv 6 - 6 6 
6C2B_SOHC 6 - 6 6 
6C2B 6 4 or 5 6 6 
6C2B_ohv 6 - 6 6 
8C2B_SOHC 8 - 8 8 
8C2B 8 6 8 8 
8C2B_ohv 8 - 8 8 
10C2B_SOHC 10 - 10 10 
10C2B 10 8 10 10 
10C2B_ohv 10 - 10 10 
12C2B_SOHC 12 - 12 12 
12C2B 12 10 12 12 
12C4B_SOHC 12 - 12 12 
12C4B 12 10 12 12 
16C4B_SOHC 16 - 16 16 
16C4B 16 12 or 16 16 16 
 

We added one new engine technology, HCR1D, to the available engine technologies in the 
analysis from the 2020 final rule.  Having a large number of technologies modeled allows us to 
accurately characterize technologies present on engines in the analysis fleet.  This collection of 
technologies represents the best available information we have, at the time of this action, 
regarding both currently available engine technologies and engine technologies that could be 
feasible for application to the U.S. fleet during the rulemaking timeframe.  We believe this effort 



 

has yielded the most technology-rich and accurate analysis fleet utilized in the CAFE Model to 
date. 

A full look at the engine technology penetration by engine technology class is detailed in Table 
3-13.  It is important to note that advanced engine technologies can include some of the basic 
engine technologies.  For example, VVT is found in virtually all engines on the market and is 
assigned to all basic engines, all advanced engines, and all strong hybrids in the CAFE Model; 
only BEVs do not have VVT since they do not have engine valves.  Further details on which 
technologies are included for each advanced engine can be found in Chapter 3.1.4.  As can be 
seen in Table 3-13, there are many engine technology classes that are not observed in the 
analysis fleet but are maintained to ensure that we can accurately classify all technologies in the 
fleet. 



 

Table 3-13 – Observed Engine Technologies by Engine Technology Class in Analysis Fleet 
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197 Note that advanced engines often include basic engine technologies as well.  Further discussion on this is found throughout Chapter 3.1. 
198 All basic engines include VVT so it is used as a proxy for all basic engine technologies.  This sum excludes VVL, SGDI, DEAC, and SHEVP2 since 
including them would only serve to double count vehicles because there are no vehicles that exclusively have these technologies. 
199 Dashes indicate no vehicles with this combination were observed while any numbers, including 0.00%, indicate that the combination was observed. 
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3.1.3 Engine Adoption Features  

Engine adoption features are defined through a combination of technology path logic, refresh and 
redesign cycles, and phase-in capacity limits.  Figure 3-3 shows the technology paths available 
for engines in the CAFE Model.  Engine technology development and application typically 
results in an engine design moving from the basic engine tree to one of the advanced engine 
trees.  Once an engine design moves to the advanced engine tree it is not allowed to move to 
alternate advanced engine trees.  Table 3-14 provides a brief description of each technology and 
details when a technology can be applied for the first time or indicates if a technology can only 
be assigned as a baseline technology.  Technologies applicable only during a platform redesign 
can be applied during a platform refresh, if another vehicle platform that shares engine codes 
(uses the same engine) has already applied the technology during a redesign, first.  For example, 
models of the GMC Acadia and the Cadillac XT4 use the same engine (represented by engine 
code 112011 in the Market Data file); if the XT4 adds a new engine technology during a 
redesign, then the Acadia may also add the same engine technology during the next refresh or 
redesign.  This allows the model to maintain engine sharing relationships while also maintaining 
refresh and redesign schedules.  See Chapter 2.2.1.7 for more discussion on platform refresh and 
redesign cycles. 

 

Diesel Eng.

DOHC SOHC OHV
(maps to SOHC)

TURBO1 HCR0

Basic Engine Path

Engine Configuration Path Turbo Eng. HCR Eng. ADEAC Eng.

 ADEAC ADSL

TURBO2 HCR1 DSLI

CEGR1 HCR1D DSLIAD
VVT

VCR Eng. VTG Eng. Adv. Turbo Alt. Fuel

CNG

VTGE TURBOAD

HCR2

VVL SGDI DEAC

VCR VTG TURBOD

Figure 3-3 – Engine Technology Paths Available 



 

Table 3-14 – Technology Application Schedule 

Technology Application 
Level 

Application 
Schedule Description 

SOHC Engine Baseline Only Single Overhead Camshaft Engine 
DOHC Engine Baseline Only Double Overhead Camshaft Engine 
OHV Engine Baseline Only Overhead Valve Engine (maps to SOHC) 
EFR Engine Redesign Only Improved Engine Friction Reduction 
VVT Engine Baseline Only Variable Valve Timing 
VVL Engine Redesign Only Variable Valve Lift 
SGDI Engine Redesign Only Stoichiometric Gasoline Direct Injection 
DEAC Engine Redesign Only Cylinder Deactivation 
TURBO1 Engine Redesign Only Turbocharging and Downsizing, Level 1 
TURBO2 Engine Redesign Only Turbocharging and Downsizing, Level 2 
CEGR1 Engine Redesign Only Cooled Exhaust Gas Recirculation, Level 1 
HCR0 Engine Redesign Only High Compression Ratio Engine, Level 0 
HCR1 Engine Redesign Only High Compression Ratio Engine, Level 1 

HCR1D Engine Redesign Only High Compression Ratio Engine, Level 1 with 
Cylinder Deactivation 

HCR2 Engine Redesign Only High Compression Ratio Engine, Level 2 
ADEAC Engine Redesign Only Advanced Cylinder Deactivation 
ADSL Engine Redesign Only Advanced Diesel 
DSLI Engine Redesign Only Diesel Engine Improvements 
DSLIAD Engine Redesign Only Diesel Engine Improvements with ADEAC 
VCR Engine Redesign Only Variable Compression Ratio Engine 
VTG Engine Redesign Only Variable Turbo Geometry 
VTGE Engine Redesign Only Variable Turbo Geometry (Electric) 
TURBOD Engine Redesign Only Turbocharging and Downsizing with DEAC 
TURBOAD Engine Redesign Only Turbocharging and Downsizing with ADEAC 
CNG Engine Baseline Only Compressed Natural Gas Engine 

 

Engine technology adoption depends on technology path and phase-in caps.  Figure 3-4 shows a 
flowchart of how engines can progress from one engine path to another.  These paths are 
primarily tied to ease of implementation of additional technology and how closely related the 
technologies are.  Table 3-15 details the phase-in caps that apply to engine technology.  Few of 
the caps in the model would restrict implementation of engine technology during the rulemaking 
timeframe.  In reality, the phase-in caps are not binding because the model has several other less 
advanced technologies available to apply first at a lower cost, as well as the redesign schedules.  
As discussed earlier in Chapter 2.2, 100% of the analysis fleet will not redesign by 2025, which 
is the last year that phase-in caps could apply to the engine technologies discussed in this section.   
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Figure 3-4 – Engine Path Flowchart 
 

Table 3-15 – Engine Technology Phase-In Caps 

Technology Technology Pathway Phase-In 
Cap 

Phase-In 
Start Year 

First Year 100% 
Phase-In Allowed 

EFR Engine Improvements 20% 2017 2021 
VVL Basic Engine 100% 2000 2000 
SGDI Basic Engine 100% 2000 2000 
DEAC Basic Engine 100% 2004 2004 
TURBO1 Turbo Engine 100% 2004 2004 
TURBO2 Turbo Engine 100% 2010 2010 
CEGR1 Turbo Engine 100% 2010 2010 
HCR0 HCR Engine 100% 2010 2010 
HCR1 HCR Engine 100% 2017 2017 
HCR1D HCR Engine 100% 2017 2017 
HCR2 HCR Engine 100% 2017 2017 
ADEAC ADEAC Engine 34% 2019 2021 
ADSL Diesel Engine 100% 2010 2010 
DSLI Diesel Engine 100% 2010 2010 
DSLIAD Diesel Engine 34% 2023 2025 
VCR VCR Engine 20% 2019 2023 
VTG VTG Engine 34% 2016 2018 
VTGE VTG Engine 20% 2016 2020 
TURBOD Advanced Turbo Engine 20% 2016 2020 
TURBOAD Advanced Turbo Engine 34% 2020 2022 



 

3.1.3.1 Basic Engines 

Basic engine technologies in the CAFE Model are represented by four technologies: VVT, VVL, 
SGDI, and DEAC.  We assume that 100% of basic engine platforms use VVT as a baseline, 
based on wide proliferation of the technology in the U.S. fleet.  The remaining three 
technologies, VVL, SGDI, and DEAC, can all be applied individually or in any combination of 
the three.  An engine can jump from the basic engines path to any other engine path except the 
Alternative Fuel Engine Path. 

3.1.3.2 Turbocharged Downsized Engines 

Turbo downsizing is a widely-observed phenomenon for automobiles worldwide.  It allows 
manufacturers to maintain vehicle performance characteristics while reducing engine 
displacement and cylinder count.  Any basic engine can adopt one of the turbo engine 
technologies (TURBO1, TURBO2 and CEGR1).  Vehicles that have turbocharged engines in the 
baseline fleet will stay on the turbo engine path to prevent unrealistic engine technology change 
in the short timeframe considered in the rulemaking analysis.  Turbo technology is a mutually 
exclusive technology in that it cannot be adopted for HCR, diesel, ADEAC, or CNG engines. 

3.1.3.3 Non-HEV Atkinson Mode Engines 

Non-HEV Atkinson mode engines are a collection of engines in the HCR engine pathway 
(HCR0, HCR1, HCR1D and HCR2).  Atkinson engines excel in lower power applications for 
lower load conditions, such as driving around a city or steady state highway driving without 
large payloads, thus their adoption is more limited than some other technologies.  We expanded 
the availability of HCR technology compared to the 2020 final rule because of new observed 
applications in the market.200  However, there are three categories of adoption features specific to 
the HCR engine pathway:201 we do not allow vehicles with 405 or more horsepower to adopt 
HCR engines due to their prescribed duty cycle being more demanding and likely not supported 
by the lower power density found in HCR-based engines.202  We also exclude pickup trucks and 
vehicles that share engines with pickup trucks from receiving HCR engines; the duty cycle for 
these heavy vehicles, particularly when hauling cargo or towing, are likely unable to take full 
advantage of Atkinson cycle use, and would ultimately spend the majority of operation as an 
Otto cycle engine, negating the benefits of HCR technology.203  Finally, we restrict HCR engine 
application for some manufacturers that are heavily performance-focused, and have 
demonstrated a significant commitment to power dense technologies such as turbocharged 
downsizing.204   

 
200 For example, the Hyundai Palisade and Kia Telluride have a 291 hp V6 HCR1 engine.  The specification sheets 
for these vehicles are located in the docket for this action. 
201 See Chapter 3.1.4.1.2 for a discussion of why HCR2 and P2HCR2 were not used in the central analysis.  “SKIP” 
logic was used to remove this engine technology from application, however as discussed below, we maintain HCR2 
and P2HCR2 in the model architecture for sensitivity analysis and for future engine map model updates. 
202 Heywood, John B. Internal Combustion Engine Fundamentals.  McGraw-Hill Education, 2018.  Chapter 5. 
203 This is based on CBI conversation with manufacturers that currently employ HCR-based technology, but saw no 
benefit when the technology was applied to truck platforms in their fleet. 
204 There are three manufactures that met the criteria (near 100% turbo downsized fleet, and future hybrid systems 
are based on turbo-downsized engines) described and were excluded: BMW, Daimler, and Jaguar Land Rover. 



 

3.1.3.4 Advanced Cylinder Deactivation Technology 

Advanced cylinder deactivation technology (ADEAC), or dynamic cylinder deactivation (e.g., 
Dynamic Skip Fire), can be applied to any engine with basic technology.  This technology 
represents a naturally aspirated engine with ADEAC.  Additional technology can be applied to 
these engines by moving to the Advanced Turbo Engine Path. 

3.1.3.5 Miller Cycle Engines 

Miller cycle (VTG and VTGe) engines can be applied to any basic and turbocharged engine.  
VTGe technology is enabled by the use of a 48V system that presents an improvement from 
traditional turbocharged engines, and accordingly VTGe includes the application of a mild 
hybrid (BISG) system. 

3.1.3.6 Variable Compression Ratio Engines 

VCR engines can be applied to basic and turbocharged engines but the technology is limited to 
Nissan and Mitsubishi.205  VCR technology requires a complete redesign of the engine, and in 
the analysis fleet, only two of Nissan’s models had incorporated this technology.  We do not 
believe any other manufacturers will invest to develop and market this technology in their fleet 
in the rulemaking time frame. 

3.1.3.7 Advanced Turbocharged Downsized Engines 

Advanced turbo engines are becoming more prevalent as the technologies mature.  TURBOD 
combines TURBO1 and DEAC technologies and represents the first advanced turbo.  
TURBOAD combines TURBO1 and ADEAC technologies and is the second and last level of 
advanced turbos.  Engines from either the Turbo Engine Path or the ADEAC Engine Path can 
adopt these technologies.   

3.1.3.8 Diesel Engines 

Any basic engine technologies (VVT, VVL, SGDI, and DEAC) can adopt ADSL and DSLI 
engine technologies.  Any basic engine and diesel engine can adopt DSLIAD technology in this 
analysis; however, we applied a phase in cap and year for this technology at 34 percent and MY 
2023, respectively.  In our engineering judgement, this is a rather complex and costly technology 
to adopt and it would take significant investment for a manufacturer to develop.  For more than a 
decade, diesel engine technologies have been used in less than one percent of the total light-duty 
fleet production and have been found mostly on medium and heavy duty vehicles. 

3.1.3.9 Alternative Fuel Engines 

Adoption features for alternative fueled compressed natural gas (CNG) engines have been 
carried over from the 2020 final rule.  Because CNG is considered an alternative fuel under 

 
205 Nissan and Mitsubishi are strategic partners and members of the Renault-Nissan-Mitsubishi Alliance. 



 

EPCA/EISA, it cannot be adopted during the rulemaking timeframe for NHTSA’s standard 
setting analysis.   

3.1.3.10 Engine Lubrication and Friction Reduction 

We allow the CAFE Model to apply EFR to any engine technology except for DSLI and 
DSLIAD.  DSLI and DSLIAD inherently have incorporated engine friction technologies from 
ADSL.  In addition, friction reduction technologies that apply to gasoline engines cannot 
necessarily be applied to diesel engines due to the higher temperature and pressure operation in 
diesel engines. 

3.1.4 Engine Effectiveness  

The CAFE Model considers both effectiveness and cost in selecting any technology changes.  
Technology effectiveness is the fuel consumption reduction achieved by changing a vehicle from 
one combination of technologies to another combination of technologies, see Chapter 2.4.   

We simulate effectiveness values for engine technologies in two ways.  We either calculate the 
value based on the difference in full vehicle simulation results created using the Autonomie 
modeling tool, or we determine the effectiveness values using an alternate calculation method, 
including analogous improvement or fuel economy improvement factors.   

The effectiveness values for the engine technologies, for all ten vehicle technology classes, are 
shown in Figure 3-5.  Each of the effectiveness values shown is representative of the 
improvements seen for upgrading only the listed engine technology for a given combination of 
other technologies.  In other words, the range of effectiveness values seen for each specific 
technology (e.g., TURBO1) represents the addition of the TURBO1 technology to every 
technology combination that could select the addition of TURBO1.  See Table 3-16 for several 
specific examples.  It must be emphasized, the change in fuel consumption values between entire 
technology keys is used,206 and not the individual technology effectiveness values.  Using the 
change between whole technology keys captures the complementary or non-complementary 
interactions among technologies. 

 
206 Technology key is the unique collection of technologies that constitutes a specific vehicle, see Chapter 2.4.7. 



 

Table 3-16 – Example of Effectiveness Calculations Shown in Figure 3-5*  

Tech Vehicle 
Tech Class Initial Technology Key 

Fuel Consumption 
Effectiveness 

(%) Initial 
(gal/mile) 

New 
(gal/mile) 

TURBO1 Medium Car DOHC;VVT;;;;;AT8L2;SS12V; 
ROLL10;AERO5;MR2 0.0282 0.0248 12.15 

TURBO1 Medium Car DOHC;VVT;;;;;AT8L2;CONV; 
ROLL10;AERO5;MR2 0.0292 0.0254 13.13 

TURBO1 Medium Car DOHC;VVT;;;;;AT8L2;BISG; 
ROLL10;AERO5;MR2 0.0275 0.0237 13.80 

TURBO1 Medium Car DOHC;VVT;;;;;AT6;SS12V; 
ROLL10;AERO5;MR2 0.0312 0.0269 13.80 

*The ‘Tech’ is added to the ‘Initial Technology Key’ replacing the existing engine technology, resulting 
in the new fuel consumption value.  The percent effectiveness is found by determining the percent 
improved fuel consumption of the new value versus the initial value.207 
 
Some of the advanced engine technologies have values that indicate seemingly low 
effectiveness.  We determined the low effectiveness resulted from the application of advanced 
engines to existing SHEVP2 architectures.  This effect is expected, and illustrates the importance 
of using the full vehicle modeling to capture interactions between technologies and capture 
instances of both complimentary technologies and non-complimentary technologies.  In this 
instance, the SHEVP2 powertrain improves fuel economy, in part, by allowing the engine to 
spend more time operating at efficient engine speed and load conditions.  This reduces the 
advantage of adding advanced engine technologies, which also improve fuel economy, by 
broadening the range of speed and load conditions for the engine to operate at high efficiency.  
This redundancy in fuel savings mechanism results in a lower effectiveness when the 
technologies are added to each other. 

 
207 The full data set we used to generate this example can be found in the FE_1 Improvements file. 



 

 

Figure 3-5 – Engine Technologies Effectiveness Values for all Vehicle Technology Classes208   

The following sections discuss how we determined the effectiveness of the engine technologies 
on the simulated vehicle system’s performance in the rulemaking analysis.  We first discuss the 
values determined directly from the Autonomie simulations, followed by the values that are 
determined using alternative modeled approaches. 

3.1.4.1 Autonomie Modeled Values 

The Autonomie model’s full vehicle simulation results provide most of the effectiveness values 
used as inputs to the CAFE Model.  For a full discussion of the Autonomie modeling see Chapter 
2.4.1.  The Autonomie modeling used engine map models as the primary inputs for simulating 
the effects of different engine technologies. 

Engine maps provide a three-dimensional representation of engine performance characteristics at 
each engine speed and load point across the operating range of the engine.  Engine maps have the 
appearance of topographical maps, typically with engine speed on the horizontal axis and engine 
torque, power, or brake mean effective pressure (BMEP)209 on the vertical axis.  A third engine 

 
208 The box shows the inner quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.  The 
blue dots show effectiveness values outside those thresholds.  The full data set we used to generate this example can 
be found in the FE_1 Improvements file. 
209 Brake mean effective pressure is an engineering measure, independent of engine displacement, that indicates the 
actual work an engine performs. 



 

characteristic, such as Brake-Specific Fuel Consumption (BSFC),210 is displayed using contours 
overlaid across the speed and load map.  The contours provide the values for the third 
characteristic in the regions of operation covered on the map.  Other characteristics typically 
overlaid on an engine map include engine emissions, engine efficiency, and engine power.  We 
refer to the engine maps developed to model the behavior of the engines in this analysis as 
engine map models. 

The engine map models we use in this analysis are representative of technologies that are 
currently in production or are expected to be available in the rulemaking timeframe, MYs 2024-
2026.  We developed the engine map models to be representative of the performance achievable 
across industry for a given technology, and they are not intended to represent the performance of 
a single manufacturer’s specific engine.  We targeted a broadly representative performance level 
because the same combination of technologies produced by different manufacturers will have 
differences in performance, due to manufacturer-specific designs for engine hardware, control 
software, and emissions calibration. 

Accordingly, we expect that the engine maps developed for this analysis will differ from engine 
maps for manufacturers’ specific engines.  However, we intend and expect that the incremental 
changes in performance modeled for this analysis, due to changes in technologies or technology 
combinations, will be similar to the incremental changes in performance observed in 
manufacturers’ engines for the same changes in technologies or technology combinations. 

Note that we never apply absolute BSFC levels from the engine maps to any vehicle model or 
configuration for the rulemaking analysis.  We only use the absolute fuel economy values from 
the full vehicle Autonomie simulations to determine incremental effectiveness for switching 
from one technology to another technology.  The incremental effectiveness is applied to the 
absolute fuel economy of vehicles in the analysis fleet, which are based on CAFE compliance 
data.  For subsequent technology changes, we apply incremental effectiveness changes to the 
absolute fuel economy level of the previous technology configuration.  Therefore, for a 
technically sound analysis, it is most important that the differences in BSFC among the engine 
maps be accurate, and not the absolute values of the individual engine maps.  However, 
achieving this can be challenging. 

For this analysis, we use a small number of baseline engine configurations with well-defined 
BSFC maps, and then, in a very systematic and controlled process, add specific well-defined 
technologies to create a BSFC map for each unique technology combination.  This could 
theoretically be done through engine or vehicle testing, but we would need to conduct tests on a 
single engine, and each configuration would require physical parts and associated engine 
calibrations to assess the impact of each technology configuration, which is impractical for the 
rulemaking analysis because of the extensive design, prototype part fabrication, development, 
and laboratory resources that are required to evaluate each unique configuration.  Both DOT and 
the automotive industry use modeling as an approach to assess an array of technologies with 
more limited testing.  Modeling offers the opportunity to isolate the effects of individual 
technologies by using a single or small number of baseline engine configurations and 
incrementally adding technologies to those baseline configurations.  This provides a consistent 

 
210 Brake-specific fuel consumption is the rate of fuel consumption divided by the power being produced. 



 

reference point for the BSFC maps for each technology and for combinations of technologies 
that enables us to carefully identify and quantify the differences in effectiveness among 
technologies.   

The Autonomie model documentation provides a detailed discussion on how the Autonomie 
model uses engine map models as inputs to the full vehicle simulations.  Additionally, the  
Autonomie model documentation contains the engine map model topographic figures, and 
additional engine map model data can be found in the Autonomie input files.211 

3.1.4.1.1 IAV Engine Map Models 

Most of the engine map models we use in this analysis were developed by IAV GmbH (IAV) 
Engineering.  IAV is one of the world’s leading automotive industry engineering service partners 
with an over 35-year history of performing research and development for powertrain 
components, electronics, and vehicle design.212  The primary outputs of IAV’s work for this 
analysis are engine maps that model the operating characteristics of engines equipped with 
specific technologies.  

IAV developed the engine map models using the GT-POWER© Modeling tool (GT-POWER).  
GT-POWER is a commercially available, industry standard, engine performance simulation tool.  
GT-POWER can be used to predict detailed engine performance characteristics such as power, 
torque, airflow, volumetric efficiency, fuel consumption, turbocharger performance and 
matching, and pumping losses.213  IAV developed the engine maps using software within the 
GT-Suite developed by Gamma Technologies.  IAV’s GT-POWER engine modeling included 
sub-models to enforce operating constraints for the engine.  The sub-models interface with base 
GT-POWER model as shown in Figure 3-6, and are listed below. 

• Heat release through a predictive combustion model 
• Knock characteristic through a kinetic fit knock model 
• Physics-based heat flow model  
• Physics based friction model  
• IAV’s proprietary Optimization Tool Box214 

 
211 ANL - All Assumptions_Summary_NPRM_022021.xlsx, ANL - Data Dictionary_January 2021.xlsx, ANL - 
Summary of Main Component Performance, Assumptions_NPRM_022021.xlsx, 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx. 
212 IAV Automotive Engineering, https://www.iav.com/en/. 
213 For additional information on the GT-POWER tool please see: https://www.gtisoft.com/gt-suite-
applications/propulsion-systems/gt-power-engine-simulation-software/. 
214 IAV’s Optimization Tool Box is a module of IAV Engine.  IAV Engine is the basic platform for designing 
engine mechanics and provides many tools that have proven their worth across the globe in several decades of 
automotive development work at IAV.  The modules help designers, computation engineers and simulation 
specialists in designing mechanical engine components—for example, in laying out valvetrains and timing gears as 
well as crankshafts. 



 

 
 

Figure 3-6 – Overview of the Engine Model and Sub-Models Used to Develop Engine Maps 

IAV used benchmark production engine test data, component test data, and manufacturers’ and 
suppliers’ technical publications to develop a one-dimensional GT-POWER engine model that 
served as the baseline, or root, engine technology configuration (Eng01).  IAV then 
incrementally added technologies to the root model to create the families of engine map models 
used for this analysis.  IAV developed each new engine model using a similar overall method.  
IAV defined the characteristics of the root engine, Eng01 in the case of basic DOHC engines, 
and optimized the root engine’s combustion parameters while minimizing fuel consumption and 
maintaining performance.  IAV then used the optimized engine model to simulate operation and 
develop a BMEP/BSFC-based engine map for the modeled engine.   

IAV then started with the root engine model (Eng01, DOHC+VVT only) and integrated a new 
technology, such as SGDI.  IAV re-optimized the new engine (Eng18, DOHC+VVT+SGDI) for 
all combustion parameters while minimizing fuel consumption and maintaining performance.  
IAV then again used the resultant new engine model to simulate operation and develop a new 
BMEP/BSFC based engine map, in this case Eng18.  The new engine map (Eng18) can then be 
directly compared to the root engine map (Eng01) and the differences in those engine maps 
specifically shows the impact of adding the SGDI technology.  IAV repeated this process starting 
from each of the root engine maps to create the engine technology groups discussed in Chapter 
3.1.1, see Table 3-17 for information about all engine maps.   



 

IAV used the following baseline engine modeling assumptions and techniques across the sub-
models to isolate the effect of adding technologies to an engine. 

• All gasoline engine optimization assumed the use of Tier 3 (E10 87 AKI)215 fuel to 
ensure the engines were capable of operating on regular gasoline (87 pump octane = 
(R+M)/2).216,217 

• Ambient conditions were fixed at 25 degrees C and 990 mbar barometric pressure. 
• Relevant engine geometries/parameters are measured and modeled with friction/flow 

losses, heat transfer, etc. and calibrated to match measurements. 
• Displacement normalized mechanical friction was modeled as a function of engine speed 

and specific load. 
• A combustion model was trained and used to predict fuel heat release rate in response to 

physical effects such as cylinder geometry, pressure, temperature, turbulence, residual 
gas concentration, etc. 

• The combustion stability model was trained using COV of IMEP218,219 data to estimate 
EGR tolerance and to identify the maximum amount of EGR that may be used without 
adversely impacting vehicle driveability, especially at low loads.   

o The knock220 correlation model based on in-cylinder conditions and fuel octane 
rating was trained and used to predict if knock occurs (and at what intensity).  
Furthermore, a COV of IMEP threshold of 3 percent or less was applied.221 

o In high load and speed engine operational regions, fuel enrichment was used to 
mitigate knock per best industry practice.  Fuel enrichment was tuned in parallel 
with cEGR addition, when cEGR was integrated on an engine.222 

• The behavior of engine air intake and exhaust systems, and fuel injection systems were 
simulated by developing load controllers for fuel/air path actuators.  Engine combustion 
control, through use of onboard sensors, was simulated by developing targeting 

 
215 Currently, throughout the United States, pump fuel is a blend of 90% gasoline and 10% ethanol. 
216 Octane rating or the Anti-Knock Index (AKI) rating of the fuel is expressed as the average of Research Octane + 
Motor Octane (R+M/2).  In the United States, typically there are three distinct grades of fuel available, each 
provides a different octane rating.  In most regions of the U.S., the lowest octane fuel is 87 AKI, midgrade typically 
89-90 AKI, and premium 91-94 AKI.  In higher altitude regions, the lowest octane fuel is typically 85 AKI.  
217 “Octane in depth” United States Energy Information Administration: 
https://www.eia.gov/energyexplained/gasoline/octane-in-depth.php (last accessed May 13, 2021). 
218 Indicated Mean Effective Pressure (IMEP) is the mean effective pressure calculated with indicated (theoretical) 
power of the engine. 
219 Industry and researchers use a measurement known as coefficient of variation of indicated mean effective 
pressure (COV of IMEP) to evaluate combustion stability. 
220 Engine knock in spark ignition engines occurs when combustion of some of the air/fuel mixture in the cylinder 
does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel 
mixture explodes outside of the envelope of the normal combustion front.  Engine knock can result in unsteady 
operation and damage to the engine. 
221 Industry commonly recognizes values of COV of IMEP greater than 3.0 percent as unacceptable because above 
those levels the combustion instability creates a noticeable and objectionable drivability problem for vehicle 
occupants, referred to as “surge.”  Surge is perceived as the vehicle accelerating and decelerating erratically, instead 
of running smoothly. 
222 Fuel enrichment is extra fuel is injected at the intake manifold port or directly into the cylinder.  Fuel 
vaporization and the fuel’s thermal mass reduces combustion and exhaust temperatures.  Changes to the air/fuel ratio 
also impact combustion speed which impacts the knock limit. 

https://www.eia.gov/energyexplained/gasoline/octane-in-depth.php


 

controllers to drive optimal combustion phasing, constrained by knock, just as in a 
physical engine. 

• Careful modeling practice was used to provide confidence that calibrations will scale and 
predict reasonable and reliable values as parameters are changed across the various 
engine technology combinations. 

 
IAV inspected the engine map models before use in the Autonomie analysis.  IAV validated the 
generated engine maps against IAV’s global database of benchmarked data, engine test data, 
single cylinder test data, prior modeling studies, technical studies, and information presented at 
conferences.223  IAV also validated the effectiveness values from the simulation results against 
detailed engine maps produced from the Argonne engine benchmarking programs, as well as 
published information from industry and academia, ensuring reasonable representation of 
simulated engine technologies.224   

IAV provided the families of engine BMEP/BSFC maps to Argonne as an input for the full 
vehicle modeling and simulation.  For a full discussion on how Argonne integrated the engine 
map models into the Autonomie simulations refer to the Autonomie model documentation.225  
The engine map models used in this analysis and their specifications are shown in Table 3-17.  

 
223 Friedrich, I., Pucher, H., and Offer, T., "Automatic Model Calibration for Engine-Process Simulation with Heat-
Release Prediction," SAE Technical Paper 2006-01-0655, 2006, https://doi.org/10.4271/2006-01-0655.   
Rezaei, R., Eckert, P., Seebode, J., and Behnk, K., "Zero-Dimensional Modeling of Combustion and Heat Release 
Rate in DI Diesel Engines," SAE Int. J. Engines 5(3):874-885, 2012, https://doi.org/10.4271/2012-01-1065. 
Multistage Supercharging for Downsizing with Reduced Compression Ratio (2015).  MTZ Rene Berndt, Rene 
Pohlke, Christopher Severin and Matthias Diezemann IAV GmbH.  Symbiosis of Energy Recovery and Downsizing 
(2014).  September 2014 MTZ Publication Heiko Neukirchner, Torsten Semper, Daniel Luederitz and Oliver Dingel 
IAV GmbH. 
224 Bottcher,. L, Grigoriadis, P. “ANL – BSFC map prediction Engines 22-26.”  IAV (April 30, 2019).  
IAV_20190430_ANL_Eng 22-26 Updated_Docket.pdf. 
225 Islam, E. S., A. Moawad, N. Kim, R. Vijayagopal, and A. Rousseau. A Detailed Vehicle Simulation Process to 
Support CAFE Standards for the MY 2024–2026 Analysis. ANL/ESD-21/9. 

https://doi.org/10.4271/2006-01-0655


 

Table 3-17 – Engine Map Models Used in This Analysis 

Engines Technologies Notes 

Eng01 DOHC+VVT Parent NA engine, Gasoline, 2.0L, 4 cyl, NA, PFI, DOHC, 
dual cam VVT, CR10.2 

Eng02 DOHC+VVT+VVL VVL added to Eng01 
Eng03 DOHC+VVT+VVL+SGDI SGDI added to Eng02, CR11 

Eng04 DOHC+VVT+VVL+SGDI 
+DEAC Cylinder deactivation added to Eng03 

Eng5a SOHC+VVT+PFI 
Eng01 converted to SOHC (gasoline, 2.0L, 4cyl, NA, PFI, 

single cam VVT) 
For Reference Only 

Eng5b SOHC+VVT (level 1 Red. 
Friction) 

Eng5a with valvetrain friction reduction (small friction 
reduction) 

Eng6a SOHC+VVT+VVL (level 1 Red. 
Friction) 

Eng02 with valvetrain friction reduction (small friction 
reduction) 

Eng7a SOHC+VVT+VVL+SGDI (level 
1 Red. Friction) 

Eng03 with valvetrain friction reduction (small friction 
reduction), addition of VVL and SGDI 

Eng8a SOHC+VVT+VVL+SGDI 
+DEAC (level 1 Red. Friction) 

Eng04 with valvetrain friction reduction (small friction 
reduction), addition of DEAC 

Eng12 DOHC Turbo 1.6l 18bar 
Parent Turbocharged Engine, Gasoline, 1.6L, 4 cyl, 
turbocharged, SGDI, DOHC, dual cam VVT, VVL 

Engine BMEP: 18 bar 
Eng12 
DEAC DOHC Turbo 1.6l 18bar Eng12 with DEAC applied, Engine BMEP 18bar 

Eng13 DOHC Turbo 1.2l 24bar Eng12 downsized to 1.2L,  
Engine BMEP 24 bar 

Eng14 DOHC Turbo 1.2l 24bar + 
Cooled EGR 

Cooled external EGR added to Eng13 
Engine BMEP 24 bar 

Eng17 Diesel Diesel, 2.2L (measured on test bed) 
Eng18 DOHC+VVT+SGDI Gasoline, 2.0L, 4 cyl, NA, SGDI, DOHC, VVT 
Eng19 DOHC+VVT+DEAC Cylinder deactivation added to Eng01 
Eng20 DOHC+VVT+VVL+DEAC Cylinder deactivation added to Eng02 
Eng21 DOHC+VVT+SGDI+DEAC Cylinder deactivation added to Eng18 

Eng22b DOHC+VVT Atkinson-enabled 2.5L DOHC, VVT, PFI, CR14 

Eng24 Current SkyActiv 2.0l 93AKI Non-HEV Atkinson mode, Gasoline, 2.0L, 4 cyl, DOHC, NA, 
SGDI, VVT, CR 13.1, 93 AKI 

Eng25 Future SkyActiv 2.0l CEGR 
93AKI+DEAC 

Non-HEV Atkinson mode, Gasoline, 2.0L, 4 cyl, DOHC, NA, 
SGDI, VVT, cEGR, DEAC CR 14.1,  

93 AKI 
For Reference Only 

Eng26 Atkinson Cycle Engine HEV and PHEV Atkinson Cycle Engine 1.8L 

Eng23b DOHC+VTG+VVT+VVL+SGDI 
+cEGR 

Miller Cycle, 2.0L DOHC, VTG, SGDI, cEGR, VVT, VVL, 
CR12 

Eng23c DOHC+VTG+VVT+SGDI 
+cEGR+Eboost Eng23b with an 48V Electronic supercharger and battery pack 

Eng26a DOHC+VCR+VVT+SGDI 
+Turbo+cEGR VVT, SGDI, Turbo, cEGR, VCR CR 9-12 

 



 

3.1.4.1.2 Non-IAV Engine Map Models 

Two engine map models shown in Table 3-17, Eng24 and Eng25, were not developed as part of 
the IAV modeling effort, and only Eng24 is used in this analysis.   

The Eng24 and Eng25 engine maps are equivalent to the ATK and ATK2 models developed for 
the 2016 Draft TAR, EPA Proposed Determination, and Final Determination.226  The ATK1 
engine model is based directly on the 2.0L 2014 Mazda SkyActiv-G (ATK) engine.  The ATK2 
represents an Atkinson engine concept based on the Mazda engine, adding cEGR, cylinder 
deactivation, and an increased compression ratio (14:1).  In this analysis, Eng24 and Eng25 
correspond to the HCR1 and HCR2 technologies. 
 
The following sections discuss the approach for inclusion of the existing HCR1 engine map, 
additional engine maps, and research underway to develop an updated family of HCR engine 
map models. 

3.1.4.1.2.1 High Compression Ratio 1 (HCR1) 

We chose to use the HCR1 engine map model despite using high octane fuel in model 
development because the performance of an existing engine (Mazda SkyActiv) on low octane 
fuel could be observed.227  We were careful to maintain vehicle performance and utility attributes 
when considering the application of Atkinson-type technologies for manufacturers that indicated 
interest in pursuing that technology pathway.  Current Atkinson-capable engines have 
incorporated other technologies to reduce load to maximize time in Atkinson operation and to 
offset the decrease in power density.  This includes improved accessories, addition of friction 
reduction technologies, and other technologies that reduce engine load.  Although modern 
improvements to engines have allowed Atkinson operation to occur more often (because of 
lower engine loads) for passenger cars, larger vehicles capable of carrying more cargo and 
occupants, and towing larger and heavier trailers, have more limited potential Atkinson 
operation.  Adoption features considered for HCR engines are discussed further in Chapter 3.1.3. 

We believe the HCR1 engine map does reflect improvements that are representative of the 
technology in the rulemaking timeframe, and the simulated effectiveness of the engine map 
model is incremental to other Atkinson-based engine technologies modeled for this analysis, see 
Figure 3-5.  We chose to use the engine map models for HCR0 and HCR1D in conjunction with 
the HCR1 map model to reflect the incremental effectiveness path for applying HCR technology, 
see Chapter 3.1.1.   

 
226 Ellies, B., Schenk, C., and Dekraker, P., "Benchmarking and Hardware-in-the-Loop Operation of a 2014 
MAZDA SkyActiv 2.0L 13:1 Compression Ratio Engine," SAE Technical Paper 2016-01-1007, 2016, 
doi:10.4271/2016-01-1007; Schenk, C. and Dekraker, P., "Potential Fuel Economy Improvements from the 
Implementation of cEGR and CDA on an Atkinson Cycle Engine," SAE Technical Paper 2017-01-1016, 2017, 
doi:10.4271/2017-01-1016. 
227 Ellies, B., Schenk, C., and Dekraker, P., "Benchmarking and Hardware-in-the-Loop Operation of a 2014 
MAZDA SkyActiv 2.0L 13:1 Compression Ratio Engine," SAE Technical Paper 2016-01-1007, 2016, 
doi:10.4271/2016-01-1007. 



 

3.1.4.1.2.2 High Compression Ratio 2 (HCR2) 

The HCR2 engine map model application in this analysis follows the approach of the 2020 final 
rule.228  The agency believes the use of HCR0, HCR1, and the new addition of HCR1D 
reasonably represents the application of Atkinson Cycle engine technologies within the current 
light-duty fleet and the anticipated applications of Atkinson Cycle technology in the MY 2024-
2026 timeframe. 
 
We are currently developing an updated family of HCR engine map models that will include 
cEGR, cylinder deactivation and a combination thereof.  The new engine map models will 
closely align with the baseline assumptions used in the other IAV-based HCR engine map 
models used for the agency's analysis.  The updated engine map models will likely not be 
available for the final rule associated with this proposal because of engine map model testing and 
validation requirements but will be available for future CAFE analyses.  We believe the timing 
for including the new engine map models is reasonable, because a manufacturer that could apply 
this technology in response to CAFE standards is likely not do so before MY 2026, as the 
application of this technology will require an engine redesign.  We also believe this is reasonable 
given manufacturer’s statements that there are diminishing returns to additional conventional 
engine technology improvements considering vehicle electrification commitments. 

3.1.4.2 Alternative Modeled Values 

For most engine technologies considered in the analysis, we derive the fuel economy 
improvements from the database of Autonomie full-vehicle simulation results.  However, the 
analysis also incorporates a handful of engine technologies not explicitly simulated in 
Autonomie.  The total effectiveness of these technologies either could not be captured on the 2-
cycle test, or there are no robust data that could be used as an input to the full-vehicle simulation.   

We used two alternate methods for modeling the effectiveness of these engine technologies.  The 
methods included application of analogous simulation results or the application of static 
improvement factors. 

3.1.4.2.1 Analogous Effectiveness Values 

For some technologies, we determined the effectiveness for applying an incremental engine 
technology by using the effectiveness values for applying the same engine technology to a 
reasonably similar base engine.  An example of this can be seen in the determination of the 
application of SGDI to the baseline SOHC engine.  Currently there is no engine map model for 
the SOHC+VVT+SGDI engine configuration.  To create the effectiveness data required as an 
input to the CAFE Model, first, we conducted a pairwise comparison between technology 
configurations that included the DOHC+VVT engine (Eng1) and the DOHC+VVT+SGDI 
(Eng18) engine.  Then, we used the results of that comparison to generate a data set of emulated 
performance values for adding the SGDI technology to the SOHC+VVT engine (Eng5b) 
systems.  

 
228 85 FR 24425-27 (April 30, 2020). 



 

The pairwise comparison is performed by finding the difference in fuel consumption 
performance between every technology configuration using the analogous base technology (e.g., 
Eng1) and every technology configuration that only changes to the analogous technology (e.g., 
Eng18).  The individual changes in performance between all the technology configurations are 
then added to the same technology configurations that use the new base technology (e.g., Eng5b) 
to create a new set of performance values for the new technology (e.g., SOHC+VVT+SGDI).  
Table 3-18 shows the engine technologies where analogous effectiveness values are used. 

Table 3-18 – Engine Technology Performance Values Determined by Analogous Effectiveness Values 

Analogous Baseline  Analogous Technology New Base Technology  New Technology 

Eng1 
DOHC+VVT 

Eng18 
DOHC+VVT+SGDI 

Eng5b 
SOHC+VVT SOHC+VVT+SGDI 

Eng1 
DOHC+VVT 

Eng19 
SOHC+VVT+DEAC 

Eng5b 
SOHC+VVT SOHC+VVT+DEAC 

Eng1 
DOHC+VVT 

Eng20 
DOHC+VVT+VVL+ 

DEAC 

Eng5b 
SOHC+VVT 

SOHC+VVT+VVL+ 
DEAC 

Eng1 
DOHC+VVT 

Eng21 
DOHC+VVT+SGDI+D

EAC 

Eng5b 
SOHC+VVT 

SOHC+VVT+SGDI+ 
DEAC 

Eng12 (TURBO1) Eng12DEAC 
(TURBOD) Eng24 (HCR1) HCR1D 

 

3.1.4.2.2 Fuel Efficiency Improvement Factors 

We developed a static fuel efficiency improvement factor to simulate applying an engine 
technology for some technologies where there was either no appropriate analogous technology or 
where there are currently not enough data to create a full engine map model.  The improvement 
factors are generally based on literature review or CBI provided by stakeholders.  Table 3-19 
provides a summary of the technology effectiveness values simulated using improvement factors, 
and the value and rules for how we applied the improvement factors.  Advanced cylinder 
deactivation (ADEAC, TURBOAD, DSLIAD), advanced diesel engines (DSLIA) and engine 
friction reduction (EFR) are the three technologies modeled using improvement factors. 

The application of the advanced cylinder deactivation is responsible for three of the five 
technologies using an improvement factor in this analysis.  The initial review of the advanced 
cylinder deactivation technology was based on a technical publication that used a MY 2010 
SOHC VVT basic engine.229  Additional information about the technology effectiveness came 

 
229 Wilcutts, M., Switkes, J., Shost, M., and Tripathi, A., "Design and Benefits of Dynamic Skip Fire Strategies for 
Cylinder Deactivated Engines," SAE Int. J. Engines 6(1):278-288, 2013, available at https://doi.org/10.4271/2013-
01-0359.  Eisazadeh-Far, K. and Younkins, M., "Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition 
Engines," SAE Technical Paper 2016-01-0672, 2016, available at https://doi.org/10.4271/2016-01-0672. 



 

from a benchmarking analysis of pre-production 8-cylinder OHV prototype systems.230  
However, at the time of the analysis no studies of production versions of the technology were 
available, and the only technology effectiveness data that could be garnered was from existing 
studies, not operational information.  Thus, only estimates of effect could be developed and not a 
full model of operation.  No engine map model could be developed, and no other technology 
pairs were analogous.   

To model the effects of advanced cylinder deactivation, we determined an improvement factor 
based on the information referenced above and applied across the engine technologies.  We 
predicted the effectiveness values for naturally aspirated engines by using full vehicle 
simulations of a basic engine with DEAC, SGDI, VVL, and VVT, and adding 3 percent or 6 
percent improvement based on engine cylinder count: 3 percent for engines with 4 cylinders or 
less and 6 percent for all other engines.  We predicted the effectiveness values for turbocharged 
engines using full vehicle simulations of the TURBOD engine and adding 1.5 percent or 3 
percent improvement based on engine cylinder count: 1.5 percent for engines with 4 cylinders or 
less and 3 percent for all other engines.  For diesel engines, we predicted effectiveness values by 
using the DSLI effectiveness values and adding 4.5 percent or 7.5 percent improvement based on 
vehicle technology class: 4.5 percent improvement was applied to small and medium non-
performance cars, small performance cars, and small non-performance SUVs.  7.5 percent 
improvement was applied to all other vehicle technology classes. 

The analysis modeled advanced engine technology application to the baseline diesel engine by 
applying an improvement factor to the ADSL engine technology combinations.  A 12.8 percent 
improvement factor was applied to the ADSL technology combinations to create the DSLI 
technology combinations.  We based the performance improvement on the application of a 
combination of low pressure and high pressure EGR, reduced parasitic loss, advanced friction 
reduction, incorporation of highly-integrated exhaust catalyst with low temp light off 
temperatures, and closed loop combustion control.231,232,233,234 

As discussed in Chapter 3.1.1.3, the application of the EFR technology does not simulate the 
application of a specific technology, but the application of an array of potential improvements to 
an engine.  All reciprocating and rotating components in the engine are potential candidates for 
friction reduction, and minute improvements in several components can add up to a measurable 

 
230 EPA, 2018.  “Benchmarking and Characterization of a Full Continuous Cylinder Deactivation System.”  
Presented at the SAE World Congress, April 10-12, 2018.  Retrieved from https://www.regulations.gov/ 
document?D=EPA-HQOAR-2018-0283-0029. 
231 NAS 2015 pg. 104. 
232 Hatano, J., Fukushima, H., Sasaki, Y., Nishimori, K., Tabuchi, T., Ishihara, Y. “The New 1.6L 2-Stage Turbo 
Diesel Engine for HONDA CR-V.” 24th Aachen Colloquium - Automobile and Engine Technology 2015.   
233 Steinparzer, F., Nefischer, P., Hiemesch, D., Kaufmann, M., Steinmayr, T.  “The New Six-Cylinder Diesel 
Engines from the BMW In-Line Engine Module.” 24th Aachen Colloquium - Automobile and Engine Technology 
2015.   
234 Eder, T., Weller, R., Spengel, C., Böhm, J., Herwig, H., Sass, H. Tiessen, J., Knauel, P. “Launch of the New 
Engine Family at Mercedes-Benz.” 24th Aachen Colloquium - Automobile and Engine Technology 2015.   



 

fuel economy improvement.235,236,237,238  Because of the incremental nature of this analysis, a 
range of 1-2 percent improvement was identified initially, and narrowed further to a specific 
1.39% improvement.  The final value is likely representative of a typical value industry may be 
able to achieve in future years. 

Table 3-19 – Engine Technologies Modeled Using Efficiency Improvement Factors 

Baseline Technology  Fuel Efficiency Improvement Factor New Technology 

DEAC 3% for ≤ 4 Cylinders 
6% for > 4 Cylinders ADEAC 

TURBOD 1.5% for ≤ 4 Cylinders 
3% for > 4Cylinders TURBOAD 

ADSL 12.8% DSLI 

DSLI 

4.5% for small and medium non-
performance cars and SUVs, and small 

performance cars.   
7.5% for all other technology classes 

DSLIAD 

All Engine Technologies 1.39% EFR 

 

3.1.5 Engine Costs 

The CAFE Model considers both cost and effectiveness in selecting any technology changes.  
We have allocated considerable resources to sponsoring research to determine direct 
manufacturing costs (DMCs) for fuel saving technologies.239  The DMC values have a learning 
factor and retail price effect (RPE) applied to determine the total overall cost of the technology 
for a given model year.  The full list of engine technology costs used in this analysis, across all 
MYs, and in 2018 dollars, can be found in the Technologies file.  How we applied the retail price 
equivalent (RPE) and cost learning to the DMCs is discussed in Chapter 2.6. 

Absolute costs of the engine technology are used in this analysis instead of relative costs, which 
were used prior to the 2020 CAFE rulemaking.  The absolute costs are used to ensure the full 

 
235 “Polyalkylene Glycol (PAG) Based Lubricant for Light- & Medium-Duty Axles,” 2017 DOE Annual Merit 
Review.  Ford Motor Company, Gangopadhyay, A., Ved, C., Jost, N. 
https://energy.gov/sites/prod/files/2017/06/f34/ft023_gangopadhyay_2017_o.pdf. 
236 “Power-Cylinder Friction Reduction through Coatings, Surface Finish, and Design,” 2017 DOE Annual Merit 
Review.  Ford Motor Company.  Gangopadhay, A. Erdemir, A.  
https://energy.gov/sites/prod/files/2017/06/f34/ft050_gangopadhyay_2017_o.pdf. 
237 “Nissan licenses energy-efficient engine technology to HELLER,” https://newsroom.nissan-
global.com/releases/170914-01-e?lang=en-US&rss&la=1&downloadUrl=%2Freleases%2F170914-01-
e%2Fdownload. Last accessed April 2018. 
238 “Infiniti’s Brilliantly Downsized V-6 Turbo Shines,” http://wardsauto.com/engines/infiniti-s-brilliantly-
downsized-v-6-turbo-shines.  Last Accessed April 2018. 
239 FEV prepared several cost analysis studies for EPA on subjects ranging from advanced 8-speed transmissions to 
belt alternator starter, or Start/Stop systems.  NHTSA contracted Electricore, EDAG, and Southwest Research for 
teardown studies evaluating mass reduction and transmissions.  The 2015 NAS report on fuel economy technologies 
for light-duty vehicles also evaluated the agencies' technology costs developed based on these teardown studies. 



 

cost of the IC engine is removed when electrification technologies are applied specifically for the 
transition to BEVs.  This analysis models the cost of adoption of BEV technology by first 
removing the costs associated with IC powertrain systems, then applying the BEV systems costs.  
Relative costs can still be determined through comparison of the absolute costs for the initial 
technology combination and the new technology combination. 

The costs used to model the application of engine technologies can be found across multiple tabs 
of the Technologies file.  Engine costs are determined based on engine size and configuration, 
instead of vehicle technology class.  The engine cost tabs in the Technologies file are designated 
based number of cylinders and number of cylinder banks.  An example of the designations used 
would be 4C1B, which is a 4-cylinder 1 bank engine; this engine configuration would be more 
commonly known as an I-4 engine.  There are also tabs for SOHC engines, OHV engines (1 
camshaft per bank) and ‘L’ designated engines.  The ‘L’ designation is new for this analysis, and 
was created to account for the cost of turbo downsizing for smaller engines, which is new for this 
analysis. 

The cost tabs use DOHC (2 camshafts per bank) architecture as the baseline, so, the SOHC (1 
camshaft per bank) engine and OHV (1 camshaft per bank) engine designations are for engines 
with a SOHC architecture or OHV architectures respectively.  However, for costing purposes, all 
engines are assumed DOHC once advanced engine technologies are applied.  Cylinder count, 
engine architecture, and configuration are determined by assignment in the MY 2020 analysis 
fleet file, see Chapter 3.1.2.  Table 3-20 gives a summary of some of the more common engine 
designations.  For a full discussion about the Technologies file, see the CAFE Model 
Documentation.  

Table 3-20 – Summary of Common Engine Configurations in CAFE Model Input File 

Engine Costing 
Designation Cylinders Camshafts Represented Cylinder 

Configurations 
2C1B 2 2 2-cylinder engine 
3C1B 3 2 ‘I’ configuration engine 
4C1B 4 2 ‘I’ configuration engine 
4C2B 4 4 ‘V’ or ‘H’ configuration engine 
5C1B 5 2 ‘I’ configuration engine 
6C1B 6 2 ‘I’ configuration engine 
6C2B 6 4 ‘V’ or ‘H’ configuration engine 
8C2B 8 4 ‘V’ or ‘H’ configuration engine 

 

When forced-induction technology is applied to a naturally aspirated engine, the engine has a 
significant boost in power density and can be reduced in size, while maintaining similar 
performance.240  This reduction in engine size, and, thus, cost, is modeled in the analysis by 
assuming a reduction in the total cylinder count when determining the absolute costs of the new 
engine in the Technologies file.  For example, the cost of forced induction-based technologies 
(e.g., TURBO1) found in the DOHC V8 naturally aspirated tab (8C2B) of the Technologies file, 
assumed only 6-cylinders when calculating costs.  Table 3-21 provides a small example set of the 

 
240 Heywood 2018, Chapter 6.2.8. 



 

configuration used for costing turbo downsized technologies versus the base engine 
configuration costing tab for this analysis. 

Table 3-21 – Examples of how Engine Configuration is Assumed to Change for Cost Purposes when Turbo-
Downsizing Technology is Applied 

Naturally Aspirated 
Costing Configurations 

Turbo Downsized 
Costing Configuration 

4C1B 4C1B* 
6C2B 4C1B 
8C2B 6C2B 

10C2B 8C2B 
* NOTE:  For this analysis, cost for turbo downsizing a low output 
4-cylinder naturally aspirated engine assumes transition to a 3-
cylinder turbocharged engine. 

 

For this analysis, we have allowed additional downsizing beyond what has been previously 
modeled.  We allow enhanced downsizing because manufacturers have downsized low output 
naturally aspirated engines to turbo engines with smaller architectures than traditionally 
observed.241,242,243  To capture this new level of turbo downsizing we created a new category of 
low output naturally aspirated engines, which is only applied to 4-cylinder engines in the MY 
2020 fleet, see Chapter 3.1.2.  These engines use the costing tabs in the Technologies file with 
the ‘L’ designation, and are allowed to downsize to turbocharged 3-cylinder engines.  

Table 3-22 shows the assumed cylinder count and camshaft count used for determining 
technology costs for each engine architecture.  The CAFE Model only uses the assumed cylinder 
count for determining technology cost, and initial cylinder count is based on the baseline fleet 
assignment, see Chapter 3.1.2.  For effectiveness, Autonomie modeling uses engine displacement 
and power only, and does not directly use cylinder count.   

  

 
241 Richard Truett,”GM Brining 3-Cylinder back to North America.” Automotive News, December 01, 2019. 
https://www.autonews.com/cars-concepts/gm-bringing-3-cylinder-back-na. 
242 Stoklosa, Alexander, “2021 Mini Cooper Hardtop.” Car and Driver, December 2, 2014. 
https://www.caranddriver.com/reviews/a15109143/2014-mini-cooper-hardtop-manual-test-review/. 
243 Leanse, Alex "2020 For Escape Options: Hybrid vs. 3-Cylinder EcoBoost vs. 4-Cylinder EcoBoost." 
MotorTrend, Sept 24, 2019.  https://www.motortrend.com/news/2020-ford-escape-engine-options-pros-and-cons-
comparison/. 



 

Table 3-22 – Assumed Cylinder and Camshaft Count Used for Costing for each Engine Architecture for Applied Technology 

Engine 
Architecture 

Basic 
Engine 

(Cyl/Cam) 

TURBO1 
(Cyl/Cam) 

TURBO2 
(Cyl/Cam) 

CEGR1 
(Cyl/Cam) 

ADEAC 
(Cyl/Cam) 

HCR0 
(Cyl/Cam) 

HCR1 
(Cyl/Cam) 

HCR1D 
(Cyl/Cam) 

VCR 
(Cyl/Cam) 

VTG 
(Cyl/Cam) 

TURBOD 
(Cyl/Cam) 

TURBOAD 
(Cyl/Cam) 

2C1B_SOHC 2/1 2/2 2/2 2/2 2/1 2/1 2/1 2/1 2/2 2/2 2/2 2/2 
2C1B 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 
3C1B_SOHC 3/1 3/2 3/2 3/2 3/1 3/1 3/1 3/1 3/2 3/2 3/2 3/2 
3C1B 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 
4C1B_L_SOHC 4/1 3/2 3/2 3/2 4/1 4/1 4/1 4/1 3/2 3/2 3/2 3/2 
4C1B_SOHC 4/1 4/2 4/2 4/2 4/1 4/1 4/1 4/1 4/2 4/2 4/2 4/2 
4C1B_L 4/2 3/2 3/2 3/2 4/2 4/2 4/2 4/2 3/1 3/1 3/1 3/1 
4C1B 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 
4C2B_SOHC 4/2 4/4 4/4 4/4 4/2 4/2 4/2 4/2 4/4 4/4 4/4 4/4 
4C2B_L 4/4 3/2 3/2 3/2 4/4 4/4 4/4 4/4 3/2 3/2 3/2 3/2 
4C2B 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 
5C1B_SOHC 5/1 4/2 4/2 4/2 5/1 5/1 5/1 5/1 4/2 4/2 4/2 4/2 
6C1B_SOHC 6/1 4/2 4/2 4/2 6/1 6/1 6/1 6/1 4/2 4/2 4/2 4/2 
6C1B 6/2 4/2 4/2 4/2 6/2 6/2 6/2 6/2 4/2 4/2 4/2 4/2 
6C1B_ohv 6/1 4/2 4/2 4/2 6/1 6/1 6/1 6/1 4/2 4/2 4/2 4/2 
6C2B_SOHC 6/2 4/2 4/2 4/2 6/2 6/2 6/2 6/2 4/2 4/2 4/2 4/2 
6C2B 6/4 4/2 4/2 4/2 6/4 6/4 6/4 6/4 4/2 4/2 4/2 4/2 
6C2B_OHV 6/2 4/2 4/2 4/2 6/2 6/2 6/2 6/2 4/2 4/2 4/2 4/2 
8C2B_SOHC 8/2 6/2 6/2 6/2 8/2 8/2 8/2 8/2 6/2 6/2 6/2 6/2 
8C2B 8/4 6/4 6/4 6/4 8/4 8/4 8/4 8/4 6/4 6/4 6/4 6/4 
8C2B_ohv 8/2 6/2 6/2 6/2 8/2 8/2 8/2 8/2 6/2 6/2 6/2 6/2 
10C2B_SOHC 10/2 8/2 8/2 8/2 10/2 10/2 10/2 10/2 8/2 8/2 8/2 8/2 
10C2B 10/4 8/4 8/4 8/4 10/4 10/4 10/4 10/4 8/4 8/4 8/4 8/4 
10C2B_ohv 10/2 8/2 8/2 8/2 10/2 10/2 10/2 10/2 8/2 8/2 8/2 8/2 
12C2B_SOHC 12/2    12/2 12/2 12/2 12/2     

12C2B 12/4    12/4 12/4 12/4 12/4     

12C4B_SOHC 12/4    12/4 12/4 12/4 12/4     

12C4B 12/8    12/8 12/8 12/8 12/8     

16C4B_SOHC 16/4    16/4 16/4 16/4 16/4     

16C4B 16/8    16/8 16/8 16/8 16/8     



 

3.1.5.1 Basic Engines 

We initially built DMCs for the basic engine technologies based on engine cylinder and bank 
count and configuration.  DMC examples are shown in Table 3-23.  The costs are in 2018 dollars 
and are sourced from publications and historical cost studies.244,245  The DMC for each 
technology is a function of unit cost times either the number of cylinders or number of banks, 
based on how the technology is applied to the system. 

Table 3-23 – Examples of Basic Engine Technology DMC Used for this Analysis in 2018$ 

Engine Technologies – Direct Manufacturer Costs (2018$) for Basic Engine 
Technologies 

Incremental 
To Tech Basis Unit 

DMC 

DMC for DMC for DMC for DMC for DMC for 
4-

Cylinder 
4-

Cylinder 
6-

Cylinder 
6-

Cylinder 
8-

Cylinder 
1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

VVT bank 81.72 81.72 163.44 81.72 163.44 163.44 Base Engine 
VVL cylinder 55.76 223.04 223.05 334.57 334.57 446.09 VVT 
SGDI cylinder 61.68 246.73 246.73 370.09 370.09 493.46 VVT 
DEAC cylinder 31.95 127.80 127.80 191.70 191.70 255.60 VVT 
ADEAC 
SOHC cylinder 45.99 183.96 183.96 275.94 275.94 367.92 VVT, SGDI, 

DEAC 
ADEAC 
DOHC cylinder 85.85 343.40 343.40 515.10 515.10 686.80 VVT, SGDI, 

DEAC 
 
The incremental DMCs are adjusted based on RPE and learning curves, see Chapter 2.6.  To 
reach an absolute cost baseline the basic engine technology costs are summed to establish an 
overall absolute cost for the technology combinations.  For a full listing of all absolute costs used 
see the Technologies file.  For the basic engines, to calculate an absolute cost, a base engine cost 
is assigned to the engine, examples are shown in Table 3-24, then an incremental cost for each 
basic engine technology is added, examples are shown in Table 3-25.  An example of a 4C1B 
DOHC engine with VVT and VVL would have an absolute cost of $5516.82 
(5,090.94+114.19+311.69) in MY 2020 in 2018$.  

Table 3-24 – Examples of Base Absolute Costs for MY 2020 Basic Engine Technologies in 2018 Dollars 

 4C1B (2018$) 6C2B (2018$) 8C2B (2018$) 
SOHC 5,013.49 5,675.87 6,306.65 
DOHC 5,090.94 5,830.76 6,461.54 
OHV NA 5,490.91 6,306.65 

 

 
244 Kolwich, Greg “Diesel Cost Analysis,” FEV, Oct. 13, 2015. FEV P311732-02 at 259. 
245 2015 NAS report, at 7. 



 

Table 3-25 – Example Incremental Costs for Adding Basic Engine Technologies for MY 2020 in 2018$. 

 4C1B (2018$) 6C2B (2018$) 8C2B (2018$) 
VVT 114.19 228.39 228.39 
VVL 311.69 467.53 623.37 
SGDI 344.78 517.17 689.55 
DEAC 177.65 209.63 236.28 

ADEAC* 564.8 879.31 753.07 
*NOTE: ADEAC costs appear as absolute cost in the Technologies file. 

3.1.5.2 Advanced Engines 

We determined the absolute costs of the advanced engine technologies by adding the lump cost 
of the advanced engine technology to the basic engine technology costs.  The advanced 
technology DMCs are established and have a RPE factor applied and learning curve factor based 
on the MY that the technology is applied.  The costs for forced induction, Atkinson engines, 
Miller engines, variable compression ratio engines, diesel engines, and alternative fuel engines 
are discussed below. 

3.1.5.2.1 Forced Induction Engines 

The absolute cost for TURBO1 is based on adding the advanced engine cost to the baseline VVT 
engine.  The TURBO2 absolute cost is based on adding the incremental cost to the TURBO1 
engine cost.  The CEGR absolute cost is based on adding the incremental cost to the TURBO2 
cost.  The cost relationship is summarized in Table 3-26. 

For TURBOD technology costs, we added the incremental cost of DEAC to the TURBO1 
technology, applying the rules for cost downsizing discussed above.  For TURBOAD costs the 
incremental cost of ADEAC was added to the TURBOD technology cost, also applying the same 
rules for cost downsizing discussed above. 

Table 3-26 below shows the DMC used for forced induction engines in this analysis, in 2018 
dollars.  Table 3-27 shows example absolute costs, from the Technologies file, used for the 4C1B 
turbo engines,246 across multiple model years, demonstrating the application of both the RPE and 
learning rates.  Table 3-28 shows example absolute costs, from the Technologies file, used for 
the 6C2B turbo engines, across multiple model years, and with RPE and learning rates applied.   

 
246 Which represent the cost for a 6C2B naturally aspirated engine to become a forced induction (turbo) engine, per 
examples discussed in Table 3-10 – Examples of Observed Engines and Their Corresponding Engine Technology 
Class and Technology Assignments. 



 

Table 3-26 – Examples of Turbocharged Downsized Engine DMC in 2018 Dollars 

Engine Technologies – Direct Manufacturer Costs (2018$) for Turbocharged 
Technologies 

Incremental 
To 

Tech Basis Unit 
DMC 

DMC for DMC for DMC for DMC for DMC for 
4-

Cylinder 
4-

Cylinder 
6-

Cylinder 
6-

Cylinder 
8-

Cylinder 
1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

TURBO1 None - 874.77 874.77 881.13 881.13 1443.80 VVT 
TURBO2 None - 241.14 241.14 241.14 241.14 406.48 TURBO1 
CEGR1 None - 288.83 288.83 288.83 288.83 288.83 TURBO2 
TURBOD - - 172.33 172.33 172.33 172.33 204.17 TURBO1 
TURBOAD - - 364.93 364.93 364.93 364.93 547.39 TURBOD 

 

Table 3-27 – Examples Absolute Costs Used for I4 Turbocharged Engines in 2018 Dollars (costs include 
DMCs, RPE and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 

TURBO1 6,264.69 6,215.86 6,173.75 6,156.88 
TURBOD 6,444.89 6,392.32 6,345.15 6,325.78 
TURBOAD 7,042.71 6,942.03 6,847.59 6,811.54 
TURBO2 6,861.47 6,772.50 6,616.76 6,554.61 
CEGR1 7,288.46 7,178.04 6,984.74 6,907.60 

 

Table 3-28 – Examples Absolute Costs used for V6 Turbocharged Engines in 2018 Dollars (costs include 
DMC, RPE and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

TURBO1 7,112.60 7,059.27 7,020.02 6,994.87 
TURBOD 7,292.80 7,235.74 7,192.35 7,163.77 
TURBOAD 7,890.63 7,785.45 7,701.57 7,649.52 
TURBO2 7,731.51 7,636.00 7,498.58 7,402.08 
CEGR1 8,158.51 8,041.54 7,873.26 7,755.08 

 

3.1.5.2.2 Atkinson Engines 

We use DMCs for HCR0 and HCR1 based on the 2015 NAS analysis, but the cost accounting is 
aggregated differently than the 2015 NAS report.  We include other types of technology present 
in the engines, like SGDI, and the configuration of the engine, such as SOHC versus DOHC in 
the cost estimates.  Finally, we determined the HCR1D technology cost by adding the DEAC 



 

cost to the HCR1 engine costs.  Examples of the DMC values used in this analysis are shown in 
Table 3-29. 

The DMC values then have an RPE factor and learning curve factor applied.  Table 3-30 and 
Table 3-31 show examples of the full absolute costs used for the engine technologies.  To see all 
costs used across all MYs, please see the Technologies file.  

Table 3-29 – Examples of HCR Technology DMC Used for the Final Rule Analysis in 2018 Dollars 

Engine Technologies – Direct Manufacturer Costs (2018$) for Atkinson Enabled 
Technologies 

Incremental 
To 

Tech Basis Unit 
DMC 

DMC 
for 

DMC 
for 

DMC 
for 

DMC 
for DMC for 

4-
Cylinder 

4-
Cylinder 

6-
Cylinder 

6-
Cylinder 8-Cylinder 

1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 2-Bank Engine 

HCR0 none - 573.61 573.61 846.07 846.07 1155.26 VVT 
HCR1 none - 618.89 618.89 891.35 891.35 1200.54 HCR0 
HCR1D - - 127.80 127.80 191.70 191.70 255.60 HCR1 
 

Table 3-30 – Examples of Absolute Costs for I4 HCR Engines (costs include DMC, RPE and learning rate 
factor) in 2018 Dollars 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 

HCR0 5,843.55 5,812.69 5,803.22 5,801.68 
HCR1 5,898.80 5,851.67 5,831.19 5,826.67 
HCR1D 6,079.00 6028.13 6,002.59 5,995.57 

 

Table 3-31 – Examples of Absolute Costs for V6 HCR Engines (costs include DMC, RPE and learning rate 
factor) in 2018 Dollars 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

HCR0 6,990.13 6,942.58 6,928.79 6,925.64 
HCR1 7,045.38 6,981.56 6,958.18 6,950.62 
HCR1D 7,258.02 7,189.79 7,161.53 7,149.92 

 



 

3.1.5.2.3 Miller Engines 

We used cost data from an FEV technology cost assessment, performed for ICCT, to estimate the 
DMC for Miller cycle engines with VTG for this analysis.247  We considered costs from the 2015 
NAS study that referenced a NESCCAF 2004 report,248 but believed the reference material from 
the FEV report had more updated cost estimates for the VTG technology. 

Despite not using the 2015 NAS report cost data, we did use the NAS 2015 methodology for 
aggregating the individual component and system costs to establish DMC for the Miller cycle 
engine for each engine configuration.  We used a value of $525 (2010$) plus cost of cEGR1, 
minus cost of VVT, VVL, and SGDI for the VTG cost estimate.  From the VTG estimate we 
built a cost for electrically-assisted variable supercharger VTGE (Eng23c) engines based on the 
2015 NAS report that uses a cost of $1050 (2010$) plus the cost of the mild hybrid battery.  
Examples of the DMC for these technologies are shown in Table 3-32.  Example costs used in 
the Technologies file, which include the application of a learning factor and RPE factor, are 
shown in Table 3-33 for 4C1B engines and Table 3-34 for 6C2B engines.  Costs used for all 
engine architectures and model years can be seen in the Technologies file. 

Table 3-32 – Examples of DMC Used for Miller Cycle Engines (VTG, VTGE) in 2018 Dollars  

Engine Technologies - Direct Manufacturer Costs (2018$) for Miller 
Technologies 

Incremental To 
Tech 

DMC for DMC for DMC for DMC for 
4-Cylinder 6-Cylinder 6-Cylinder 8-Cylinder 

1-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

VTG 
(w/cEGR) 

603.14 603.14 603.14 603.14 VVT 

VTGe 1499.78 1499.78 1499.78 1499.78 VTG 
 

 
247 Aaron Isenstadt and John German (ICCT); Mihai Dorobantu (Eaton); David Boggs (Ricardo); Tom Watson (JCI) 
“Downsized, boosted gasoline engines,” ICCT. Working Paper 2016-22, 28 October 2016. 
248 “Reducing Greenhouse Gas Emissions from Light-Duty Motor Vehicles.”  NESCCAF.  September 23, 2004 
Report.  Available at https://www.nesccaf.org/documents/rpt040923ghglightduty.pdf/.  Last accessed Dec. 22, 2019. 



 

Table 3-33 – Examples of Miller Cycle I4 Engines’ Absolute Costs Used for VTG and VTGE Technology 
(costs include DMC, RPE and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 

VTG 7,663.31 7,547.20 7,343.96 7,262.86 
VTGE 9,148.86 8,772.73 8,326.43 8,146.77 

 

Table 3-34 – Examples of Miller Cycle V6 Engines’ Absolute Costs Used for VTG and VTGE Technologies 
(costs include DMC, RPE and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

VTG 8,532.58 8,410.25 8,234.25 8,110.65 
VTGE 10,018.13 9,635.78 9,257.62 8,994.56 

 

3.1.5.2.4 Variable Compression Ratio Engines 

The base DMCs used for VCR engines are based on data from the 2015 NAS report.249  The 
2015 NAS cost for VCR in MY 2025 used a naturally aspirated engine; however, for this 
analysis, we added the cost of cEGR.  Table 3-35 shows example estimated DMC for the VCR 
technology.  Examples of the absolute costs for 4C1B and 6C2B engines, respectively, are in 
Table 3-36 and Table 3-37.  

Table 3-35 – Examples of VCR DMCs in 2018$.  

Engine Technologies - Direct Manufacturer Costs (2018$) 

Incremental 
To Tech Basis Unit 

DMC 

DMC for DMC for DMC for 
4-Cylinder 6-Cylinder 8-Cylinder 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

VCR cylinder 171.47 685.87 1028.80 1371.73 TURBO1 

 

 
249 2015 NAS report, at 7. 



 

Table 3-36 – Examples of Absolute VCR Engine Costs for I4 Engine Configuration (costs include DMC, RPE 
and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 

VCR 7,472.47 7,326.44 7,188.83 7,138.25 
 

Table 3-37 – Examples of Absolute VCR Engine Costs for V6 Engine Configuration (costs include DMC, RPE 
and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

VCR 8,320.38 8,169.86 8,048.82 7,976.24 
 

3.1.5.2.5 Diesel Engines 

Diesel engine DMCs used for this analysis are based on the baseline engine cost.  The baseline 
diesel engine (ADSL) cost is based on the cost of a modern light duty diesel engine.250  The 
second level of diesel technology (DSLI) included the cost of incorporating a combination of low 
pressure and high pressure EGR, reduced parasitic loss, advanced friction reduction, 
incorporation of highly-integrated exhaust catalyst with low temperature light-off, and closed 
loop combustion control.  In both of these packages, the analysis includes the cost of the after-
treatment systems to meet the emissions standards for criteria pollutants.251  For DSLIAD 
technologies, we added the incremental cost of ADEAC to DSLI. 

Example costs for the diesel technologies are shown in Table 3-38 and Table 3-39.  All diesel 
engine technology costs are shown in the Technologies file. 

Table 3-38 – Examples of Absolute Diesel Engine Costs for I4 Engine Configuration (costs include DMC, 
RPE and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 

ADSL 9,832.87 9,619.75 9,438.06 9,373.18 
DSLI 10,344.73 10,108.61 9,907.31 9,835.43 
DSLIAD 10,942.56 10,658.32 10,409.75 10,321.18 

 

 
250 2015 NAS report, at 104-105. 
251 2015 NAS report, at 104.  



 

Table 3-39 – Examples of Absolute Diesel Engine Costs for V6 Engine Configuration (costs include DMC, 
RPE and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

ADSL 11,512.42 11,257.06 11,065.55 10,961.64 
DSLI 12,179.07 11,893.75 11,679.77 11,563.66 
DSLIAD 13,075.80 12,718.32 12,443.61 12,292.29 

 

3.1.5.2.6 Alternative Fuel Engines 

Examples of costs used for CNG engine technologies are shown in Table 3-40 and Table 3-41. 
252  The full list of costs for CNG engine technologies can be found in the Technologies file. 

Table 3-40 – Examples of Absolute CNG Engine Costs for I4 Engine Configuration (costs include DMC, RPE 
and learning rate factor) 

 4C1B Costs (2018$) 
Technologies MY 2018 MY 2021 MY 2026 MY 2029 
CNG 11,893.10 11,752.83 11,611.72 11,541.17 

 

Table 3-41 – Examples of CNG Engine Costs for V6 Engine Configuration (costs include DMC, RPE and 
learning rate factor) 

 6C2B Costs (2018$) 
Technologies MY 2018 MY 2021 MY 2025 MY 2029 
CNG 12,748.76 12,606.09 12,462.91 12,389.57 

 

3.1.5.3 Engine Friction Reduction Technologies 

EFR costs used for this analysis are based on the 2015 NAS assessment for low friction 
lubrication and engine friction reduction level 2 (LUB2_EFR2).253  The 2015 NAS report 
provided estimates of $51 (I4 DOHC), and $72 (V6 SOHC and DOHC) for midsize cars, in 2015 
dollars, relative to level 1 engine friction reduction (EFR1), which costs about $12 per cylinder.  
For this analysis, EFR technologies DMCs are estimated to be $14.05 per cylinder in 2016 
dollars.  Table 3-42 shows the EFR DMC used for the final rule analysis in 2018 dollars.  Total 
costs are updated to reflect 2018 dollars and MY 2017 learning rate.  Examples are shown in 
Table 3-43 and Table 3-44. 

 
252 2015 NAS report, at 61. 
253 2015 NAS report, at 7. 



 

Table 3-42 – Example of EFR DMC Used in 2018 Dollars 

Engine Technologies - Direct Manufacturer Costs (2018$) for EFR 

Incremental 
To Tech Basis Unit DMC 

DMC for DMC for DMC for DMC for DMC for 
4-

Cylinder 
4-

Cylinder 
6-

Cylinder 
6-

Cylinder 
8-

Cylinder 
1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

EFR cylinder 11.10 44.40 44.40 66.61 66.61 88.81 VVT 
 

Table 3-43 – Example of EFR Costs Used for the I4 Engine in 2018 Dollars (cost includes DMC, RPE and 
learning rate factor) 

 Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

EFR 66.61 66.61 63.97 59.01 
 

Table 3-44 – Example of EFR Costs Used for V6 in 2018 Dollars (cost includes DMC, RPE and learning rate 
factor) 

 Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

EFR 99.92 99.92 95.96 88.51 
 

3.2 Transmission Paths 

Transmissions transmit torque from the engine to the wheels.  Transmissions primarily use two 
mechanisms to improve fuel efficiency: (1) a wider gear range, which allows the engine to 
operate longer at higher efficiency speed-load points; and (2) improvements in friction or 
shifting efficiency (e.g., improved gears, bearings, seals, and other components), which reduce 
parasitic losses.  

For this analysis, we classify all light duty vehicle transmission technologies into discrete 
transmission technology paths.  We use the paths to model the most representative 
characteristics, costs, and performance of the fuel-economy improving transmissions most likely 
available during the rulemaking time frame, MYs 2024-2026. 

The following sections discuss how we define the transmission technologies in this analysis, the 
CAFE Model’s general technology categories, and the transmission technologies’ relative 
effectiveness and costs.  The following sections also provide an overview of how we assign 
transmission technologies to the MY 2020 fleet, as well as the transmission paths’ adoptions 
features.   



 

3.2.1 Transmission Modeling in the CAFE Model 

We model two major categories of transmissions for this analysis: automatic and manual.  
Automatic transmissions are characterized by automatically selecting and shifting between 
transmission gears for the driver during vehicle operation.  We further subdivide automatic 
transmissions into four subcategories: traditional automatic transmissions (AT), dual clutch 
transmissions (DCT), continuously variable transmissions (CVT), and direct drive transmissions 
(DD).  Manual transmissions (MT) require direct control by the driver to select and shift between 
gears during vehicle operation. 

We also include the application of high efficiency gearbox (HEG) technology improvements as 
options to the transmission technologies.  HEG improvements for transmissions represent 
incremental advancements in technology that improve efficiency, such as reduced friction seals, 
bearings and clutches, super finishing of gearbox parts, and improved lubrication.  These 
advancements are all aimed at reducing frictional and other parasitic loads in transmissions to 
improve efficiency.  We consider three levels of HEG improvements in this analysis based on 
2015 recommendations by the National Academy of Sciences (NAS) and CBI data.254  We apply 
HEG efficiency improvements to ATs and CVTs, as those transmissions inherently have higher 
friction and parasitic loads related to hydraulic control systems and greater component 
complexity, compared to MTs and DCTs.  We identify transmissions by technology type, gear 
count, and HEG technology level using the naming conventions shown in Table 3-45, below.   

Table 3-45 – Naming Conventions used for Transmission Technology Pathways 

Transmission Name 
5-speed automatic AT5 
6-speed automatic baseline AT6 
6-speed automatic level 2 HEG AT6L2 
7-speed automatic level 2 HEG AT7L2 
8-speed automatic baseline AT8 
8-speed automatic level 2 HEG AT8L2 
8-speed automatic level 3 HEG AT8L3 
9-speed automatic level 2 HEG AT9L2 
10-speed automatic level 2 HEG AT10L2 
10-speed automatic level 3 HEG AT10L3 
6-speed dual-clutch  6DCT 
8-speed dual-clutch  8DCT 
Continuous variable transmission CVT 
Continuous variable transmission level 2HEG CVTL2 
5-speeed manual transmission MT5 
6-speed manual transmission  MT6 
7-speed manual transmission MT7 

 

 
254 2015 NAS Report, at 191.  



 

The CAFE Model pathways for transmission technologies are shown in Figure 3-7.  Baseline-
only technologies (MT5, AT5, AT7L2, AT9L2, and CVT) are grayed and can only be assigned 
as initial vehicle transmission configurations.   

 
Figure 3-7 – CAFE Model Pathways for Transmission Technologies 

3.2.1.1 Automatic Transmissions 

We separate automatic transmissions into three major ‘branches’ as shown in Figure 3-7: ATs, 
DCTs, and CVTs.   

Direct drive transmissions are not discussed in detail in this analysis and are not specifically 
shown in the technology pathways.  DD transmissions are classified as automatic transmissions, 
but have a direct connection between the wheels and a drive motor.  In a DD transmission, the 
ratio between wheel speed and motor speed remains constant.  DD transmissions are considered 
integral parts of electrified drivetrains (such as in BEVs) and are not applied as a standalone 
technology.  See Chapter 3.2.2 for a discussion of how we assign the DD transmission in the 
baseline fleet.  

3.2.1.1.1 Traditional Automatic Transmissions 

Conventional planetary gear automatic transmissions (AT) are the most popular transmission.255  
ATs typically contain three or four planetary gear sets that provide the various gear ratios.  Gear 
ratios are selected by activating solenoids which engage or release multiple clutches and brakes 

 
255  2020 EPA Automotive Trends Report, at 57-61.  



 

as needed.  DOT included ATs with gear counts ranging from five speeds to ten speeds in this 
analysis, see Figure 3-7.256 

ATs are packaged with torque converters, which provide a fluid coupling between the engine and 
the driveline and provide a significant increase in launch torque.  When transmitting torque 
through this fluid coupling, energy is lost due to the churning fluid.  These losses can be 
eliminated by engaging the torque convertor clutch to directly connect the engine and 
transmission (“lockup”). 

In general, ATs with a greater number of forward gears and with larger overall ratio spread offer 
more potential for fuel consumption reduction, but at the expense of higher control complexity.  
Transmissions with a higher number of gears typically offer a wider overall speed ratio and more 
opportunity to operate the engine near its most efficient point.  For the Draft TAR and 2020 final 
rule, EPA and DOT surveyed automatic transmissions in the market to assess trends in gear 
count and purported fuel economy improvements.257  Based on that survey, and also EPA’s more 
recent 2019 and 2020 Automotive Trends Reports,258 we concluded that modeling ATs with a 
range of 5 to 10 gears with three levels of HEG technology for this analysis was reasonable. 

3.2.1.1.2 Continuously Variable Transmissions 

Conventional continuously variable transmissions (CVT) consist of two cone-shaped pulleys, 
connected with a belt or chain.  Moving the pulley halves allows the belt to ride inward or 
outward radially on each pulley, effectively changing the speed ratio between the pulleys.  This 
ratio change is smooth and continuous, unlike the step changes of other transmission varieties.259 

One advantage of CVTs is that they continue to transmit torque during ratio changes.  In ATs 
and some DCTs, energy from the engine is wasted during a ratio change or shift.  ATs and some 
DCTs have a delay during shifts caused by the torque disruption during gear changes.  Another 
advantage of a CVT is that with its effectively “infinite” number of gear steps, within its ratio 
range, it can maintain engine operation closer to the maximum efficiency for the required power.  
AT’s efficiency peaks with 9 to 10 gears,260,261 and approaches the CVT’s ability to operate the 
engine at the most efficient operating point, therefore while a CVT can improve fuel economy 
over ATs with fewer gears, it typically provides little further improvement over 9- and 10-speed 
ATs.   

 
256 Specifically, DOT considered five-speed automatic transmissions (AT5), six-speed automatic transmissions 
(AT6), seven-speed automatic transmission (AT7), eight-speed automatic transmissions (AT8), nine-speed 
automatic transmissions (AT9), and ten-speed automatic transmissions (AT10). 
257 Draft TAR at 5-50, 5-51; Final Regulatory Impact Analysis accompanying the 2020 final rule, at 549. 
258 The 2019 EPA Automotive Trends Report, EPA-420-R-20-006, at 59 (March 2020), 
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100YVFS.pdf [hereinafter 2019 EPA Automotive Trends Report]; 
2020 EPA Automotive Trends Report, at 57. 
259 2015 NAS report, at 171. 
260  Robinette, D. & Wehrwein, D. “Automatic Transmission Technology Selection Using Energy Analysis,” 
presented at the CTI Symposium 9th International 2015 Automotive Transmissions, HEV and EV Drives.   
261 Greimel, H.  “ZF CEO - We’re not chasing 10-speeds,” Automotive News, November 23, 2014, 
http://www.autonews.com/article/20141123/OEM10/311249990/zf-ceo:-were-not-chasing-10-speeds.   



 

We model two types of CVT systems in the analysis, the baseline CVT and a CVT with HEG 
technology applied, see Figure 3-7. 

3.2.1.1.3 Dual Clutch Transmissions 

Dual clutch transmissions (DCT), like automatic transmissions, automate shift and launch 
functions.  DCTs use separate clutches for even-numbered and odd-numbered gears, allowing the 
next gear needed to be pre-selected, resulting in faster shifting.  The use of multiple clutches in 
place of a torque converter results in lower parasitic losses than ATs.262   

However, DCTs have limited penetration in the fleet.263  DCTs have encountered issues with 
customer acceptance.  Automakers, such as Honda, have tried adding additional technologies, 
such as torque converters, to the DCT to improve customer acceptance, with limited success.264  
The NAS also stated in its 2021 report, “... attempts by some automakers to introduce this 
technology to the U.S. market were met with significant customer acceptance issues; for 
instance, customers accustomed to a torque convertor based automatic transmission performance 
seem to have concerns with a start-up clutch, mostly at lower speeds. Therefore, some 
automakers have since transitioned away from DCTs, and other automakers scrapped 
introduction plans prior to launch.”265 

Generally, DCTs are very cost-effective technologies in the simulation, but consumer acceptance 
issues limit their appeal in the American market.  Because of the limited appeal, DOT constrains 
application of additional DCT technology to vehicles already using DCT technology, and only 
models two types of DCTs in the analysis, see Figure 3-7. 

3.2.1.2 Manual Transmissions 

Manual transmissions (MT) are transmissions that require direct control by the driver to operate 
the clutch and shift between gears.  In a manual transmission, gear pairs along an output shaft 
and parallel layshaft are always engaged.  Gears are selected via a shift lever, operated by the 
driver.  The lever operates synchronizers, which speed match the output shaft and the selected 
gear before engaging the gear with the shaft.  During shifting operations (and during idle), a 
clutch between the engine and transmission is disengaged to decouple engine output from the 
transmission.  

Automakers today offer a minimal selection of new vehicles with manual transmissions.266  The 
NAS also recognized in its 2021 report that “Manual transmissions have all but left the U.S. 
light-duty market except in sports performance categories.”267  As a result of reduced market 

 
262 2015 NAS report, at 170. 
263 2020 EPA Automotive Trends Report, at 57. 
264 2015 NAS report, at 170-1. 
265 National Academies of Sciences, Engineering, and Medicine 2021. Assessment of Technologies for Improving 
Light-Duty Vehicle Fuel Economy 2025-2035. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/26092, at 4-56 [hereinafter 2021 NAS report]. 
266 2020 EPA Automotive Trends Report, at 61. 
267 2021 NAS report, at 4-54. 



 

presence, DOT only includes three variants of manual transmissions in the analysis, see Figure 
3-7.   

3.2.2 Transmission Analysis Fleet Assignments 

In order to understand manufacturers’ potential pathways for compliance and the feasibility of 
different potential stringencies, it is important to first understand the baseline state of technology 
in their fleets.  The analysis fleet provides a snapshot of the U.S. vehicle market for the 2020 
model year.  It includes transmission assignments for each vehicle and the degree of transmission 
sharing among those vehicles.  Assignments map the transmissions modeled in Autonomie to the 
real-world transmissions they best represent in terms of configuration, cost, and effectiveness. 

3.2.2.1 Transmission Characteristics Considered in Baseline Fleet Assignments 

“Assignment” refers to the process of identifying which Autonomie transmission model is most 
similar to a vehicle’s real-world transmission, taking into account the transmission’s 
configuration and generic costs.  Table 3-46 lists the Autonomie transmission models and their 
acronyms used in the CAFE Model input files.  For convenience, these technologies are referred 
to by their acronyms in this section. 

We classify the wide variety of transmissions on the market into discrete transmission 
technology paths for this analysis.  We use the paths to model the most representative 
characteristics, costs, and performance of the fuel economy-improving technologies most likely 
available during the rulemaking time frame.  Due to uncertainty regarding the costs and 
capabilities of emerging technologies, some new and pre-production technologies are not a part 
of this analysis. 

In order to assess the feasibility of different stringencies, it is important to accurately establish 
the baseline technology content of the fleet.  Underestimating the amount of technology in the 
baseline would lead to overestimating the actual technology application needed for 
manufacturers to comply with standards and cause the analysis to incorrectly apply technologies 
that are already present on baseline vehicles.  Conversely, overestimating the technology present 
in the analysis fleet would artificially (and incorrectly) limit the technologies manufacturers 
might apply to meet standards.  

For the 2020 analysis fleet, we gathered data on transmissions from manufacturer mid-model 
year CAFE compliance submissions and publicly available manufacturer specification sheets.  
We used these data to assign transmissions in the analysis fleet and determine which platforms 
shared transmissions.  Common transmissions and how they are characterized are discussed in 
Chapter 3.2.2.2.   



 

Table 3-46 – Transmission Technologies 

Transmission Name 
5-speed automatic AT5 
6-speed automatic baseline AT6 
6-speed automatic level 2 high-efficiency gearbox (HEG) AT6L2 
7-speed automatic level 2 HEG AT7L2 
8-speed automatic baseline AT8 
8-speed automatic level 2 HEG AT8L2 
8-speed automatic level 3 HEG AT8L3 
9-speed automatic level 2 HEG AT9L2 
10-speed automatic level 2 HEG AT10L2 
10-speed automatic level 3 HEG AT10L3 
6-speed dual-clutch  DCT6 
8-speed dual-clutch  DCT8 
Continuously variable transmission CVT 
Continuously variable transmission level 2 HEG CVTL2 
5-speed manual transmission MT5 
6-speed manual transmission  MT6 
7-speed manual transmission MT7 
Direct drive DD 

 
We specify transmission type, number of gears, and high-efficiency gearbox (HEG) level for the 
baseline fleet assignment.  Transmission types designated in the analysis include automatic, 
manual, dual-clutch, and continuously variable, as described in Chapter 3.2.1.  HEG levels 
represent incremental improvements in transmission technology that improve efficiency for 
automatic and continuously variable transmissions.  Further discussion of HEG levels can be 
found in Chapter 3.2.1. 

The number of gears in the assignments for automatic and manual transmissions usually match 
the number of gears listed by the data sources, with some exceptions.  We did not model four-
speed transmissions in Autonomie for this analysis due to their rarity and low likelihood of being 
used in the future, so staff assigned 2020 vehicles with an AT4 or MT4 to an AT5 or MT5 
baseline, respectively.  Some dual-clutch transmissions are also an exception; dual-clutch 
transmissions with seven gears are assigned to DCT6. 

For automatic and continuously variable transmissions, the identification of the most appropriate 
transmission path model required additional steps; this is because high-efficiency gearboxes are 
considered in the analysis, but identifying HEG level from specification sheets alone was not 
always straightforward.  We conducted a review of the age of the transmission design, relative 
performance versus previous designs, and technologies incorporated and used the information 
obtained to assign an HEG level.  We determined that no automatic transmissions in the MY 
2020 analysis fleet are at HEG Level 3.  In addition, we did not assign HEG Level 2 technology 
to any six-speed automatic transmissions.  However, we found all 7-speed, all 9-speed, all 10-
speed, and some 8-speed automatic transmissions to be advanced transmissions operating at 
HEG Level 2 equivalence.  Eight-speed automatic transmissions developed after MY 2017 are 
assigned HEG Level 2.  All other transmissions are assigned to their respective transmission’s 
baseline level.  The baseline (HEG level 1) technologies available include AT6, AT8, and CVT.  



 

We assigned any vehicle in the analysis fleet with a hybrid or electric powertrain a direct drive 
(DD) transmission.  This designation is for informational purposes; if specified, the transmission 
will not be replaced or updated by the model.  For further discussion of how the model handles 
transmissions on electrified vehicles, see Chapter 3.2.1.   

Table 3-47 shows the prevalence of each technology as assigned in the baseline fleet. 

Table 3-47 – Penetration Rates of Transmission Technologies in the 2020 Baseline Fleet 

Transmission Technology Sales Volume Penetration Rate 
MT5 11,116 0.08% 
MT6 141,093 1.04% 
MT7 455 0.003% 
AT5 137,622 1.01% 
AT6 2,223,646 16.36% 
AT6L2 - 0% 
AT7L2 67,193 0.49% 
AT8 3,253,670 23.94% 
AT8L2 372,087 2.74% 
AT8L3 - 0% 
AT9L2 1,539,691 11.33% 
AT10L2 1,407,973 10.36% 
AT10L3 - 0% 
DCT6 162,334 1.19% 
DCT8 156,656 1.15% 
CVT 1,184,424 8.71% 
CVTL2 2,248,223 16.54% 
DD (Total HEV/BEV) 686,368 5.05% 
Total Automatic 9,001,882 66.23% 
Total Manual 152,664 1.12% 
Total Dual-Clutch 318,990 2.35% 
Total Continuously Variable 3,432,647 25.25% 

 

3.2.2.2 Other Transmission Characteristics Recorded and Used to Identify Common 
Transmissions 

Manufacturers often use transmissions that are the same or similar on multiple vehicles.  To 
reflect this, we consider shared transmissions for manufacturers as appropriate.  For more 
information, see Chapter 2.2.1.6. 

In addition to technology type, gear count, and HEG level, we characterize transmissions in the 
analysis fleet by drive type and vehicle architecture.  We consider front-, rear-, all-, and four-
wheel drive in the analysis.  The definition of drive types in the analysis does not always align 
with manufacturers’ drive type designations; see the end of this subsection for further discussion.  



 

These characteristics, supplemented by information such as gear ratios and production locations, 
show that manufacturers use transmissions that are the same or similar on multiple vehicle 
models.  Manufacturers have told DOT they do this to control component complexity and 
associated costs for development, manufacturing, assembly, and service.  If multiple vehicle 
models share technology type, gear count, drive configuration, internal gear rations, and 
production location, the transmissions are treated as a single group for the analysis.  Vehicles in 
the analysis fleet with the same transmission configuration adopt additional fuel-saving 
transmission technology together, as described in Chapter 2.2.1.6. 

We designate and track common transmissions in the CAFE Model input files using transmission 
codes.  Transmission codes are six-digit numbers that are assigned to each transmission and 
encode information about them.  This information includes the manufacturer, drive 
configuration, transmission type, and number of gears.  Table 3-48 lists the possible values for 
each digit in the transmission code and its meaning. 



 

Table 3-48 – Transmission Codes Guide 

Transmission Code Digit Meaning  Values Notes 

First and Second Manufacturer  

11 - General Motors 
12 - Fiat-Chrysler 
13 - Ford 
14 - Tesla 
21 - Honda 
22 - Nissan 
23 - Toyota 
24 - Mazda 
25 - Mitsubishi 
26 - Subaru 
31 - Hyundai 
32 - Kia 
41 - BMW 
42 - Volkswagen 
43 - Daimler 
44 - Jaguar-Land Rover 
45 - Volvo 

First digit indicates 
manufacturer 
heritage region: 
1 - USA 
2 - Japan 
3 - South Korea 
4 - Europe 

Third  Drive 
Configuration  

1 - Front-Wheel Drive 
2 - All-Wheel Drive 
3 - Rear-Wheel Drive 
4 - Four-Wheel Drive 

Drive configuration 
determined by 
vehicle architecture 

Fourth  Transmission 
Type  

1 - Manual 
2 - Automatic 
3 - Continuously Variable 
4 - Dual-Clutch 

   

Fifth  Number of 
Gears  

0 - 10-speed 
1 - Continuously variable 
5 - 5-speed 
6 - 6-speed 
7 - 7-speed 
8 - 8-speed 
9 - 9-speed 

  

Sixth  Transmission 
Variant  1 through 9   

 
An example of a transmission code is 132281, which corresponds to the Ford Escape’s all-wheel 
drive, 8-speed automatic transmission.  Transmission codes can be decoded by reading the code 
from left to right: “13” is the manufacturer code for Ford, “2” indicates an all-wheel drive 
vehicle, “2” indicates an automatic transmission, “8” indicates eight speeds, and “1” means this 
is the first variant of this particular transmission.   

We assign different transmission codes to variants of a transmission that may appear to be 
similar based on the characteristics considered in the analysis but are not mechanically identical.  



 

DOT staff distinguish among transmission variants by comparing their internal gear ratios and 
production locations.  For example, several Ford nameplates carry a rear-wheel drive, 10-speed 
automatic transmission.  These nameplates comprise a wide variety of body styles and use cases, 
and so the analysis assigns different transmission codes to these different nameplates.  Because 
they have different transmission codes, they are not treated as “shared” for the purposes of 
analysis in the CAFE Model and have the opportunity to adopt transmission technologies 
independently.  

Note that when determining the drive type of a transmission, the assignment of all-wheel drive 
versus four-wheel drive is determined by vehicle architecture.  This assignment does not 
necessarily match the drive type used by the manufacturer in specification sheets and marketing 
materials.  Vehicles with a powertrain capable of providing power to all wheels and a transverse 
engine (front-wheel drive architecture) are assigned all-wheel drive.  Vehicles with power to all 
four wheels and a longitudinal engine (rear-wheel drive architecture) are assigned four-wheel 
drive. 

3.2.3 Transmission Adoption Features 

When evaluating transmission technologies to improve fuel economy, the CAFE Model takes 
into account current transmission architecture.  If a manufacturer has already committed to 
advanced automatic, manual, continuously variable, or dual-clutch transmissions on a vehicle, 
the CAFE Model will consider higher-tier fuel-saving technologies along the current path.  
Transmission level technology pathways are illustrated in Figure 3-8 below.268   

Technology pathways are designed to prevent “branch hopping” – changes in transmission type 
that would correspond to significant changes in transmission architecture – for vehicles that are 
relatively advanced on a given pathway.  For example, any automatic transmission with more 
than five gears cannot move to a dual-clutch transmission.  For a more detailed discussion of 
path logic applied in the analysis, including technology supersession logic and technology 
mutual exclusivity logic, please see CAFE Model Documentation S4.5 Technology Constraints 
(Supersession and Mutual Exclusivity).269  Additionally, the CAFE Model prevents “branch 
hopping” to prevent stranded capital associated with moving from one transmission architecture 
to another.  Stranded capital is discussed in more detail in Chapter 2.6.3. 

 
268 Technologies that were not assigned in the baseline fleet include MT5, AT5, AT7L2, AT9L2, and CVT; they are 
indicated by the grey boxes. 
269 Available at https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system. 



 

 
Figure 3-3-8 – Transmission-Level Technology Pathways 

Some technologies that are modeled in the analysis are not yet in production, and therefore are 
not assigned in the baseline fleet.  Nonetheless, these technologies, which are projected to be 
available in the analysis timeframe, are available for future adoption.  For instance, an AT10L3 
is not observed in the baseline fleet, but it is plausible that manufacturers that employ AT10L2 
technology may improve the efficiency of those AT10L2s in the rulemaking timeframe.  

Note that when electrification technologies are adopted, the transmissions associated with those 
technologies will supersede the existing transmission on a vehicle.  The transmission technology 
is superseded if the model applies P2 hybrid, plug-in hybrid, or battery electric vehicle 
technologies.  For more information, see Chapter 3.3.3. 

The following sections discuss specific adoption features applied to each type of transmission 
technology.  

3.2.3.1 Automatic Transmissions (AT) 

The automatic transmission path precludes adoption of other transmission types once a platform 
progresses past an AT6.  We use this restriction to avoid the significant level of stranded capital 
loss that could result from adopting a completely different transmission type shortly after 
adopting an advanced transmission, which would occur if a different transmission type were 
adopted after AT6 in the rulemaking timeframe.   

Vehicles that did not start out with AT7L2 or AT9L2 transmissions cannot adopt those 
technologies in the model.  DOT observed that MY 2017 vehicles with those technologies were 
primarily luxury performance vehicles and concluded that other vehicles would likely not adopt 
those technologies.  We concluded that this was also a reasonable assumption for this analysis 



 

because vehicles that have moved to more advanced automatic transmissions have 
overwhelmingly moved to 8-speed and 10-speed transmissions.270 

3.2.3.2 Continuously Variable Transmissions (CVT) 

CVT adoption is limited by technology path logic.  CVTs cannot be adopted by vehicles that do 
not originate with a CVT or by vehicles with multispeed transmissions beyond AT6 in the 
baseline fleet.  Vehicles with multispeed transmissions greater than AT6 demonstrate increased 
ability to operate the engine at a highly efficient speed and load.  Once on the CVT path, the 
platform is only allowed to apply improved CVT technologies.  The analysis restricts the 
application of CVT technology on larger vehicles because of the higher torque (load) demands of 
those vehicles and CVT torque limitations based on durability constraints.  Additionally, this 
restriction is used to avoid the significant level of stranded capital.   

3.2.3.3 Dual-Clutch Transmissions (DCT) 

The analysis allows vehicles in the baseline fleet that have DCTs to apply an improved DCT and 
allows vehicles with an AT5 to consider DCTs.  Drivability and durability issues with some 
DCTs have resulted in a low relative adoption rate over the last decade; this is also broadly 
consistent with manufacturers’ technology choices.271 

3.2.3.4 Manual Transmissions (MT) 

Manual transmissions can only move to more advanced manual transmissions for this analysis 
because other transmission types do not provide a similar driver experience (utility).  Manual 
transmissions cannot adopt AT, CVT, or DCT technologies under any circumstance.  Other 
transmissions cannot move to MT because manual transmissions lack automatic shifting 
associated with the other transmission types (utility) and in recognition of the low customer 
demand for manual transmissions.272 

3.2.4 Transmission Effectiveness  

For this analysis, DOT used the Autonomie full vehicle simulation tool to understand how 
transmissions work within the full vehicle system to improve fuel economy, and how changes to 
the transmission subsystem influence the performance of the full vehicle system.  The full 
vehicle simulation approach clearly defines the contribution of individual transmission 
technologies and separates those contributions from other technologies in the full vehicle system.  
The modeling approach follows the recommendations of the National Academy of Sciences in its 
2015 light duty vehicle fuel economy technology report to use full vehicle modeling supported 
by application of collected improvements at the sub-model level.273   

The Autonomie tool models transmissions as a sequence of mechanical torque gains.  The torque 
and speed are multiplied and divided, respectively, by the current ratio for the selected operating 

 
270 2020 EPA Automotive Trends Report, at 64, figure 4.18. 
271 Ibid. 
272 Ibid. 
273 2015 NAS report, at 292. 



 

condition.  Furthermore, torque losses corresponding to the torque/speed operating point are 
subtracted from the torque input.  Torque losses are defined based on a three-dimensional 
efficiency lookup table that has the following inputs: input shaft rotational speed, input shaft 
torque, and operating condition.  A detailed discussion of the Autonomie transmission modeling 
can be found in Chapters 4 and 5 of the Autonomie model documentation. 

In the Autonomie tool, transmission template models are populated with characteristics data to 
model specific transmissions.  Characteristics data are typically provided in the form of tabulated 
data for transmission gear ratios, maps for transmission efficiency, and maps for torque converter 
performance, as applicable.  The quantity of data needed depends on the transmission technology 
being modeled.  The characteristics data for these models were collected from peer-reviewed 
sources, transmission and vehicle testing programs, results from simulating current and future 
transmission configurations, and confidential data obtained from OEMs and suppliers.274  In the 
current analysis, the efficiency curve for the 10-speed automatic transmission (AT10L2) was 
updated based on transmission efficiency data from South-West Research Institute (SWRI) for 
the 2017 Ford F-150 10R80 transmission.275,276   

The 10R80 transmission is a 10-speed, rear-wheel-drive transmission that Ford is currently using 
in both cars and trucks, including the Ford F-150, Ford Mustang, Ford Expedition, Lincoln 
Navigator, and Ford Ranger.277  Since this transmission is used in both cars and trucks, the 
SWRI data for this transmission are applicable to multiple vehicle classes.  

The level of HEG improvement applied to a given transmission was modeled by improvements 
to the efficiency map of the transmission.  As an example, the 8-speed automatic transmission 
models show how a model can be incrementally improved with the addition of the HEG 
enhancement.  The AT8 is the model of a baseline transmission developed from a transmission 
characterization study.278  The AT8L2 has the same gear ratios as the AT8, however, the gear 
efficiency map has been improved to represent application of the HEG level 2 technologies.  The 
AT8L3 models the application of HEG level 3 technologies using the same principle, further 
improving the gear efficiency map over the AT8L2 improvements. 

As discussed above, DOT determined effectiveness values for the transmission technologies 
using Autonomie modeling.  The only technology effectiveness results that were not directly 
calculated using the Autonomie simulation results were for the AT6L2.  DOT determined that 
the model for this specific technology was inconsistent with the other transmission models and 

 
274 Downloadable Dynamometer Database.: https://www.anl.gov/energy-systems/group/downloadable-
dynamometer-database, Kim, N., Rousseau, N., Lohse-Bush, H.., “Advanced Automatic Transmission Model 
Validation Using Dynamometer Test Data,” SAE 2014-01-1778, SAE World Congress, Detroit, April 2014.  Kim, 
N., Lohse-Bush, H., Rousseau, A.., “Development of a model of the dual clutch transmission in Autonomie and 
validation with dynamometer test data,” International Journal of Automotive Technologies, March 2014, Volume 
15, Issue 2, pp 263-271. 
275 Autonomie model documentation, Chapter 5.3. 
276 Wileman, C. (2021, July). Light-duty vehicle transmission benchmarking, 2017 Ford F-150 with 10R80 and 2018 
Honda Accord with Earth Dreams CVT (Report No. DOT HS 813 163). National Highway Traffic Safety 
Administration. 
277 The More You Know About The 10R80…The Better Off You Are!, Gears Magazine (September 1, 2020), 
https://gearsmagazine.com/magazine/the-more-you-know-about-the-10r80-the-better-off-you-are/. 
278 Autonomie model documentation, Chapter 5.3. 



 

overpredicted effectiveness results.  Evaluation of the AT6L2 transmission model revealed an 
overestimated efficiency map was developed for the AT6L2 model.  To address the issue, DOT 
replaced the effectiveness values of the AT6L2 model.  DOT replaced the effectiveness for the 
AT6L2 technology with analogous effectiveness values from the AT7L2 transmission model.  
For additional discussion on how analogous effectiveness values are determined please see 
Chapter 3.1.4.2.1. 

In this analysis, transmissions are grouped by technology type (AT, DCT, CVT, etc.) and gear 
count (5,6,7, etc.).  The transmission groups are further subdivided by the level of HEG 
technology applied.  The effectiveness values for the transmission technologies, for all ten 
vehicle technology classes, are shown in Figure 3-9.  Each of the effectiveness values shown is 
representative of the improvements seen for upgrading only the listed transmission technology 
for a given combination of other technologies.  In other words, the range of effectiveness values 
seen for each specific technology, e.g., AT10L3, represents the addition of the AT10L3 
technology to every technology combination that could select the addition of AT10L3.  It must 
be emphasized that the graph shows the change in fuel consumption values between entire 
technology keys,279 and not the individual technology effectiveness values.  Using the change 
between whole technology keys captures the complementary or non-complementary interactions 
among technologies.  In the graph, the box shows the inner quartile range (IQR) of the 
effectiveness values and whiskers extend out 1.5 x IQR.  The blue dots show values for 
effectiveness that are outside these bounds. 

Note that the effectiveness for the MT5, AT5 and DD technologies are not shown.  The DD 
transmission does not have a standalone effectiveness because it is only implemented as part of 
Electrification powertrains.  The MT5 and AT5 also have no effectiveness values because both 
technologies are baseline technologies against which all other technologies are compared. 

 
279 Technology key is the unique collection of technologies that constitutes a specific vehicle (see Chapter 2.4.7). 



 

 
Figure 3-9 – Transmission Technologies Effectiveness Values for all Vehicle Technology Classes280  

This analysis, using the Autonomie tool, comprehensively simulated 18 transmission 
technologies.  Each transmission was modeled with defined gear ratios, gear efficiencies, gear 
spans, and unique shift logic for the configuration.  The following sections discuss specific shift 
logic employed in the Autonomie modeling.   

3.2.4.1 Shift Logic 

Transmission shifting logic has a significant impact on vehicle energy consumption.  Argonne 
modeled shift logic in Autonomie to maximize powertrain efficiency while maintaining 
acceptable drive quality.  The logic used in the Autonomie full vehicle modeling relies on two 
components: (1) the shifting controller, which provides the logic to select appropriate gears 
during simulation; and (2) the shifting initializer, an algorithm that defines shifting maps (i.e., 
values of the parameters of the shifting controller) specific to the selected set of modeled vehicle 
characteristics and modeled powertrain components.281 

3.2.4.1.1 Shifting Controller 

The shift controller is the logic that governs shifting behavior during simulated operation.  The 
shift controller performance is informed by inputs from the model.  The inputs include the 

 
280 The data used to create this figure can be found in the FE_1 Improvements file. 
281 Autonomie model documentation, Chapter 4.4.5. 



 

specific engine and transmission used, and instantaneous conditions in the simulation.  Shifting 
logic is adjusted based on engine characteristics to maximize the advantages of the engine 
technology.  Instantaneous conditions included values such as vehicle speed, driver demand, and 
a shifting map unique to the full vehicle configuration.282   

3.2.4.1.2 Shifting Initializer 

The shifting initializer is an algorithm that defines shifting maps (i.e., values of the parameters of 
the shifting controller) specific to the selected set of modeled vehicle characteristics and modeled 
powertrain components.  The shifting initializer is run for every unique combination of vehicle 
technologies modeled in the Autonomie tool and is an input to the full vehicle simulation.  The 
shifting initializer is designed to create a shifting map that optimizes fuel economy performance 
for the powertrain and road load combination within the constraints of performance 
neutrality.283,284 

3.2.5 Transmission Costs 

The CAFE Model uses both cost and effectiveness in selecting technology updates during the 
compliance simulation.  DOT used information from sponsored research, CBI, and the National 
Academy of Sciences to determine direct manufacturing costs (DMCs) for fuel saving 
technologies.285  The DMC values have a learning factor and retail price effect (RPE) applied to 
determine the total overall cost of the technology for a given model year (i.e., an absolute cost).  
The full list of transmission technology costs used in this analysis, across all MYs, in 2018 
dollars, can be found in CAFE Model Reference Technologies input file.  Chapter 2.6 discusses 
how DOT applied the retail price equivalent (RPE) and learning curves to technology DMCs. 

In this analysis, DOT used absolute costs instead of relative costs, which were used in prior 
rulemaking analyses.  The absolute costs are used to ensure the full cost of the transmission is 
removed when electrification technologies are applied.  This analysis models the cost of adoption 
of BEV technology by first removing the costs associated with existing powertrain systems, then 
applying the BEV system costs.  Relative costs can still be determined through comparison of the 
absolute costs for the initial technology combination and the new technology combination. 

3.2.5.1 Automatic Transmissions 

DOT obtained the automatic transmission DMCs from the recommended relative costs discussed 
in the NAS 2015 report and NAS-cited studies.  Table 3-49 shows the cost for the automatic 
transmissions in the current analysis with learning curve and RPE adjustments applied. 

 
282 See Autonomie model documentation, Chapter 4.4.5, for more information on the shifting controller. 
283 See Chapter 2.4.5 for more information on performance neutrality. 
284 See Autonomie model documentation, Chapter 4.4.5.2, for more information on the shifting initializer algorithm. 
285 FEV prepared several cost analysis studies for EPA on subjects ranging from advanced 8-speed transmissions to 
belt alternator starter, or Start/Stop systems.  NHTSA contracted Electricore, EDAG, and Southwest Research for 
teardown studies evaluating mass reduction and transmissions.  The 2015 NAS report on fuel economy technologies 
for light-duty vehicles also evaluated the agencies' technology costs developed based on these teardown studies. 



 

DMC estimates for all automatic transmissions are based on cost estimates found in Table 5.7, 
Table 5.9, and Table 8A.2a of the 2015 NAS report, unless noted otherwise.286  In the cases of 
level two (L2) and level three (L3) transmissions, when not already included in the cost estimate, 
DOT added the costs for HEG level 2 or level 3 technologies to the base transmission cost. 

DOT obtained the DMC for the AT9 technology from Table 8A.2a of the 2015 NAS report.287  
The NAS-reported AT9 cost was relative to the AT8 and did not account for the cost of the HEG 
technology.  In the current analysis, the AT9 is only equipped with level 2 HEG technology.  
Therefore, DOT calculated the costs for the AT9L2 by adding the cost estimate for one 
additional gear to the AT8L2 cost.288 

For AT10 technologies, DOT obtained the DMC from Table 8A.2a of the 2015 NAS report.289  
The NAS AT10 cost was relative to the AT8 and did not account for the cost of the HEG 
technology.  For the current analysis, the AT10 is only equipped with either level 2 or level 3 
HEG technology.  The costs for the AT10L2 reflect adding two more gears to the AT8L2.  The 
costs for the AT10L3 reflect adding level 3 HEG technology to AT10L2. 

Table 3-49 – Summary of Absolute Automatic Transmission Technology Costs for Automatic Transmissions, 
including Learning Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

AT5 Automatic Transmission $ 2,085.30 $ 2,085.30 $ 2,085.30 $ 2,085.30 
AT6 Automatic Transmission $ 2,063.19 $ 2,063.19 $ 2,063.19 $ 2,063.19 

AT6L2 Automatic Transmission $ 2,397.50 $ 2,323.16 $ 2,303.65 $ 2,294.85 
AT7L2 Automatic Transmission $ 2,351.16 $ 2,292.16 $ 2,276.53 $ 2,269.53 

AT8 Automatic Transmission $ 2,195.51 $ 2,195.32 $ 2,195.18 $ 2,195.15 
AT8L2 Automatic Transmission $ 2,530.24 $ 2,431.30 $ 2,405.33 $ 2,393.61 
AT8L3 Automatic Transmission $ 2,787.99 $ 2,631.74 $ 2,590.74 $ 2,572.25 
AT9L2 Automatic Transmission $ 2,659.49 $ 2,531.80 $ 2,498.29 $ 2,483.17 
AT10L2 Automatic Transmission $ 2,659.49 $ 2,531.80 $ 2,498.29 $ 2,483.17 
AT10L3 Automatic Transmission $ 2,917.97 $ 2,737.81 $ 2,684.21 $ 2,662.29 

 

3.2.5.2 Continuously Variable Transmissions 

Table 3-50 shows the cost for the CVTs in the current analysis with learning curve and RPE 
adjustments applied.  DOT obtained the relative DMC for the CVT and CVT with HEG 
technology applied from the 2015 NAS report Table 8A.2a.290 

 
286 2015 NAS report, at 189, 298-299. 
287 2015 NAS report, at 298-299. 
288 2015 NAS report, at 298-299. 
289 2015 NAS report, at 298-299. 
290 2015 NAS report, at 298-299. 



 

Table 3-50 – Summary of Absolute Transmission Costs for Continuously Variable Transmissions, including 
Learning Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

CVT CVT $ 2,341.87 $ 2,330.48 $ 2,322.63 $ 2316.55 
CVTL2 CVT $ 2,534.64 $ 2,514.69 $ 2,500.94 $ 2,490.29 

 

3.2.5.3 Dual Clutch Transmissions 

Table 3-51 shows the absolute cost for the DCTs in the current analysis with learning curve and 
RPE adjustments applied.  DOT obtained the relative DMC for the DCTs from the 2015 NAS 
report Table 8A.2a.291 

Table 3-51 – Summary of Absolute Transmission Costs for Dual-Clutch Transmissions, including Learning 
Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

DCT6 Sequential Transmission $ 2,115.92 $ 2,115.88 $ 2,115.84 $ 2,115.84 
DCT8 Sequential Transmission $ 2,654.56 $ 2,653.75 $ 2,653.15 $ 2,653.02 

 

3.2.5.4 Manual Transmissions 

Table 3-52 shows the absolute costs for the MTs in the current analysis with learning curve and 
RPE adjustments applied.  The costs for MTs are based on previous rulemaking values that have 
seen no significant change since established.292   

Table 3-52 – Summary of Absolute Transmission Costs for Manual Transmissions, including Learning 
Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

MT5 Manual Transmission $ 1,563.97 $ 1,563.97 $ 1,563.97 $ 1,563.97 
MT6 Manual Transmission $ 1,939.24 $ 1,925.76 $ 1,917.08 $ 1,911.82 
MT7 Manual Transmission $ 2,357.13 $ 2,186.30 $ 2,100.64 $ 2,044.10 

 

3.3 Electric Paths 

The electric paths include a large set of technologies that share the common element of using 
electrical power for certain vehicle functions that were traditionally powered mechanically by 
engine power.  Electrification technologies thus can range from electrification of specific 

 
291 2015 NAS report, at 298-299. 
292 Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate 
Average Fuel Economy Standards, EPA-420-R-12-901 (August 2012), at 3-111. 



 

accessories (for example, electric power steering to reduce engine loads by eliminating parasitic 
losses) to electrification of the entire powertrain (as in the case of a battery electric vehicle). 

The electrified vehicles in this analysis have a partly or fully electrified powertrain.  Beginning 
with the fewest electrification components, mild and micro hybrids typically only provide engine 
on/off functions with minimal electrical assist.  The micro hybrid technology considered in this 
analysis is 12V start-stop (12VSS), and the mild hybrid technology considered in this analysis is 
a 48V belt integrated starter generator (BISG).   

Hybrid electric vehicles (HEVs) use electrical components and a battery to manage power flows 
and assist the engine for improved efficiency and/or performance.  In many cases, HEVs can also 
support a limited amount of all-electric propulsion.  The HEVs (also referred to as strong 
hybrids) included in this analysis include both power-split (SHEVPS) and parallel (SHEVP2) 
architectures.   

Plug-in hybrid electric vehicles (PHEVs) have a primarily electric powertrain and use a 
combination of batteries and an engine for propulsion energy.  DOT included PHEVs with an all-
electric range (AER) of 20 and 50 miles in the analysis, to encompass the range of PHEV AER 
in the market.   

Battery electric vehicles (BEVs) have an all-electric powertrain and use only batteries for 
propulsion energy.  DOT included BEVs with ranges of 200, 300, 400, and 500 miles in the 
analysis.  Finally, fuel cell electric vehicles (FCEVs) are another form of electrified vehicle that 
have a fully electric powertrain, and are distinguished by the use of a fuel cell system to convert 
the hydrogen fuel used as a fuel source into electrical energy.   

Table 3-53 below shows an overview of these electrified technologies and their designations in 
the analysis.  Like other technologies in this analysis, these technologies are not representative of 
any specific manufacturer’s design or architecture, but encompass the range of effectiveness and 
cost for these types of powertrains in the rulemaking timeframe.  For example, the BEV200 
efficiency and cost is not supposed to represent exactly a Tesla Model 3 or a Nissan Leaf. 



 

Table 3-53 – Overview of Electrification Technologies Used in This Analysis 

Electric System Technologies 

Micro-Hybrid* 12V start-stop 

Mild-Hybrid** 48V BISG  

Strong Hybrid SHEVPS and SHEVP2 

PHEV*** PHEV20, PHEV50 

BEV BEV200, BEV300, 
BEV400, and BEV500 

FCEV Fuel cell 

*This system does not have electrical assist or 
regeneration braking capabilities.   
**Mild Hybrid is a BISG in this analysis and it is 
an engine mounted belt integrated starter generator. 
***PHEVs in this analysis include both PS and P2 
hybrid architecture. 

 

The cost effectiveness of electrification technologies in this analysis is based on the effectiveness 
and cost of the battery and non-battery components.  The battery strongly influences the cost of 
electrified vehicles, particularly where the battery is the main source of energy for propulsion of 
the vehicle.  Because developments in battery technology may apply to more than one category 
of electrified vehicles, they are discussed collectively in Chapter 3.3.5.  That section details 
battery-related topics that directly affect the specification and costing of batteries for all types of 
electrified vehicles considered in this analysis. 

Non-battery electrification components also have an influence on both the effectiveness and cost 
of electrified vehicles.  In this analysis, non-battery electrification components include 
propulsion components like one or more electric machines (an umbrella term that includes what 
are commonly known as motors, generators, and motor/generators).  Depending on how they are 
employed in the design of a vehicle, electric machines commonly act as motors to provide 
propulsion, and/or act as generators to enable regenerative braking and the conversion of 
mechanical energy to electrical energy for storage in the battery.   

Non-battery electrification components also include power electronics that process and route 
electric power between the energy storage and propulsion components.  More specifically, power 
electronics included in this analysis are motor controllers, which issue complex commands to 
control torque and speed of the propulsion components precisely; inverters and rectifiers, which 
convert and manage DC and AC power flows between the battery and the propulsion 
components; onboard battery chargers, for charging the BEV or PHEV battery from AC line 
power; and DC-to-DC converters that are sometimes needed to allow DC components of 
different voltages to work together. 



 

In addition, onboard chargers are charging devices installed on-board electrified vehicles to 
allow charging from grid electrical power.  Onboard chargers travel with the vehicle and are 
distinct from stationary charging equipment.  Level 1 charging refers to charging powered by a 
standard household 110-120V AC power outlet.  Level 2 charging refers to charging at 220-
240V AC power.  Direct-current (DC) fast charging refers to systems that charge at rapid rate 
beyond Level 2.  As discussed further below, the analysis assumes that BEVs are capable of up 
to 50kW charging, and the cost of an onboard charger is included in the vehicle cost. 

Each electrified vehicle architecture includes different non-battery components, in addition to 
different conventional vehicle technologies (e.g., internal combustion engines or transmissions in 
the case of micro, mild, and strong hybrids and PHEVs), that influence the total cost of the 
vehicle.  The process by which the CAFE Model prices non-battery components and adds or 
subtracts components as necessary to complete the powertrain architecture is discussed in 
Chapter 3.3.5. 

The following subsections discuss how each electrification technology is defined in the CAFE 
Model and the electrification pathways down which a vehicle can travel in the compliance 
simulation.  The subsections also discuss how the agency assigned electrified vehicle 
technologies to vehicles in the MY 2020 analysis fleet, any limitations on electrification 
technology adoption, and the specific effectiveness and cost assumptions used in the Autonomie 
and CAFE Model analysis. 

3.3.1 Electrification Modeling in the CAFE Model 

As explained before, the CAFE modeling system defines technology pathways for grouping and 
establishing a logical progression of technologies on a vehicle.  Technologies that share similar 
characteristics form cohorts that can be represented and interpreted within the CAFE Model as 
discrete entities.  These entities are then laid out into pathways (or paths), which the system uses 
to define relations of mutual exclusivity between conflicting sets of technologies.   

The technologies that are included on the three vehicle-level paths pertaining to the 
electrification and electric improvements defined within the modeling system are illustrated in 
Figure 3-10 below.  As shown in the Electrification path, the baseline-only CONV technology is 
grayed out.  This technology is used to denote whether a vehicle comes in with a conventional 
powertrain (i.e., a vehicle that does not include any level of hybridization) and to allow the 
model to properly map to the Autonomie vehicle simulation database results.  If multiple 
branches converge on a single technology, the subset of technologies that will be disabled from 
further adoption is extended only up the point of convergence. 
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Figure 3-10 – Electrification Paths in the CAFE Model  

The CAFE Model defines the technology pathway for each type of electrification grouping in a 
logical progression.  Whenever the CAFE Model converts a vehicle model to one of the available 
electrified systems, both effectiveness and costs are updated according to the specific 
components’ modeling algorithms.  Additionally, all technologies on the different electrification 
paths are mutually exclusive and are evaluated in parallel.  For example, the model may evaluate 
PHEV20 technology prior to having to apply SS12V or strong hybrid technology.  The specific 
set of algorithms and rules are discussed further in the sections below, and more detailed 
discussions are included in the CAFE Model Documentation.  The following sections discuss the 
specifications of each electrification technology used in the analysis. 



 

3.3.1.1 Micro-Hybrids 

12-volt stop-start (SS12V), sometimes referred to as start-stop, idle-stop, or a 12-volt micro 
hybrid system, is the most basic hybrid system that facilitates idle-stop capability.  In this 
system, the integrated starter generator is coupled to the internal combustion (IC) engine.  When 
the vehicle comes to an idle-stop the IC engine completely shuts off, and, with the help of the 12-
volt battery, the engine cranks and starts again in response to throttle application or release of the 
brake pedal to move the vehicle.  The 12-volt battery used for the start-stop system is an 
improved unit compared to a traditional 12-volt battery, and is capable of higher power, 
increased life cycle, and capable of minimizing voltage drop on restart.  This technology is 
beneficial to reduce fuel consumption and emissions when the vehicle frequently stops, such as 
in city driving conditions or in stop and go traffic.  12VSS can be applied to all vehicle 
technology classes.   

3.3.1.2 Mild Hybrids 

The belt integrated starter generator (BISG), sometimes referred to as a mild hybrid system or P0 
hybrid, provides idle-stop capability and uses a higher voltage battery with increased energy 
capacity over conventional automotive batteries.  These higher voltages allow the use of a 
smaller, more powerful and efficient electric motor/generator, which replaces the standard 
alternator.  In BISG systems, the motor/generator is coupled to the engine via belt (similar to a 
standard alternator).  In addition, these motor/generators can assist vehicle braking and recover 
braking energy while the vehicle slows down (regenerative braking) and in turn can propel the 
vehicle at the beginning of launch, allowing the engine to be restarted later.  Some limited 
electric assist is also provided during acceleration to improve engine efficiency.  Like the micro 
hybrids, BISG can be applied to all vehicles in the analysis.  We assume all mild hybrids are 48 
Volt systems with engine belt-driven motor/generators.   

This analysis did not include crank integrated starter generator (CISG) systems, sometimes 
referred to as a P1 hybrids.293  A CISG typically has a 48 Volt motor/generator that is mounted 
between the engine and the transmission in a custom housing.  CISG systems avoid losses 
associated with BISG belt slipping, however they increase the weight of the powertrain and 
require more significant changes to the powertrain architecture than BISG systems.  The size of 
the motor/generator increases the overall length of the powertrain, often causing packaging and 
integration issues, and making it difficult for most vehicles to adopt CISG technology.  In some 
cases, the increased length powertrain may not fit in an existing vehicle design.  In other cases 
the increased size of the powertrain may interfere with other critical powertrain components such 
as exhaust and air inlet piping systems that must also be housed in the same space. 

In the CAFE Model, mild hybrid technology can be applied to all vehicle technology classes and 
all conventional engine technologies except for Engine 26a (VCR).  Details of the technology 
specification and effectiveness are discussed further below in Chapter 3.3.4. 

 
293 Past CAFE analyses included a CISG system that was similar to the BISG system effectiveness but was more 
expensive (similar to the cost presented for the system in the 2015 NAS report).  The 2021 NAS report refers to all 
mild hybrid systems as BISG systems. 



 

3.3.1.3 Strong Hybrids 

A strong hybrid vehicle is a vehicle that combines two or more propulsion systems, where one 
uses gasoline (or diesel), and the other captures energy from the vehicle during deceleration or 
braking, or from engine and stores that energy so it may be used by the vehicle.  Strong hybrids 
reduce fuel consumption through three major mechanisms, including (1) capturing energy during 
braking and some decelerations that might otherwise be lost to the braking system, and using the 
stored energy to provide launch assist, coasting, and propulsion during stop and go traffic 
conditions, (2) capturing energy from the engine under some conditions to enable the engine to 
operate at a more efficient operating point and by storing the energy such as by charging the 
battery, and (3) potentially enabling engine downsizing.  The effectiveness of the strong hybrid 
system for improving fuel economy depends on how the above factors are balanced, and the 
stored energy is applied.  For example, the captured energy may be used primarily to allow 
longer periods with the internal combustion engine off or supplement engine power to allow the 
engine to operate at more efficient conditions, potentially in combination with a downsized 
engine.  Conversely, for some performance vehicles, hybrid technologies may be applied 
primarily for acceleration performance improvement without engine downsizing. 

This analysis evaluated the following strong hybrid systems: hybrids with “P2” parallel 
drivetrain architectures (SHEVP2),294 and hybrids with power-split architectures (SHEVPS).   

P2 parallel hybrids (SHEVP2) are a type of hybrid vehicle that use a transmission-integrated 
electric motor placed between the engine and a gearbox or CVT, with a clutch that allows 
decoupling of the motor/transmission from the engine.  Figure 3-11 below shows the SHEVP2 
configuration.  Although similar to the configuration of the CISG system discussed previously, a 
P2 hybrid would typically be equipped with a larger electric motor and battery in comparison to 
the CISG.  Disengaging the clutch allows all-electric operation and more efficient brake-energy 
recovery.  Engaging the clutch allows coupling of the engine and electric motor and, when 
combined with a transmission, reduces gear-train losses relative to power-split or 2-mode hybrid 
systems.  P2 hybrid systems typically rely on the internal combustion engine to deliver high, 
sustained power levels.  Electric-only mode is used when power demands are low or moderate. 

 
294 Depending on the location of electric machine (motor with or without inverter), the parallel hybrid technologies 
are classified as P0–motor located at the primary side of the engine, P1–motor located at the flywheel side of the 
engine, P2–motor located between engine and transmission, P3–motor located at the transmission output, and P4–
motor located on the axle.   



 

 

Figure 3-11 – P2 Strong Hybrid Architecture Showing the Motor/Generator Coupled to the Engine through a 
Clutch295 

An important feature of the SHEVP2 system is that it can be applied in conjunction with most 
engine technologies.  Accordingly, once a vehicle is converted to a SHEVP2 powertrain in the 
compliance simulation, the CAFE Model allows the vehicle to adopt the most conventional 
engine technology that is cost effective, regardless of whether that conventional engine 
technology is less advanced than the conventional engine technology that the vehicle started 
with.  For example, a vehicle in the MY 2020 analysis fleet that starts with a TURBO2 engine 
could adopt a TURBO1 engine with the SHEVP2 system, if that TURBO1 engine allows the 
vehicle to meet its fuel economy goal cost effectively.  This is based in part on comments to past 
analyses that asserted that although manufacturers could adopt SHEVP2 systems into existing 
powertrain architectures, adopting the SHEVP2 system afforded the opportunity for the 
manufacturer to incorporate a less expensive conventional engine technology alongside it.   

In addition, as discussed in Chapter 3.1.4, the SHEVP2 powertrain improves fuel economy, in 
part, by allowing the engine to spend more time operating at engine speed and load conditions 
that have high efficiency.  The effectiveness improvement for SHEVP2 is reduced when 
combined with advanced engine technologies, which also improve fuel economy, by broadening 
the range of engine speed and load conditions where the engine operates at high efficiency.  In 
other words, there is only a minimal additional effectiveness improvement if a SHEVP2 
powertrain is combined with an advanced engine, making SHEVP2 less cost effective in those 
cases.  Including a less advanced engine technology with the SHEVP2 powertrain allows a 
similar efficiency improvement at a lower cost.  This is also discussed in Chapter 3.3.3 and 
details of how the model handles this are discussed in the CAFE Model Documentation S4. 

The power-split hybrid (SHEVPS) is a hybrid electric drive system that replaces the traditional 
transmission with a single planetary gear set (the power-split device) and a motor/generator.  
This motor/generator uses the engine either to charge the battery or to supply additional power to 

 
295 2015 NAS report, at 133. 



 

the drive motor.  A second, more powerful motor/generator is connected to the vehicle’s final 
drive and always turns with the wheels.  The planetary gear splits engine power between the first 
motor/generator and the drive motor either to charge the battery or to supply power to the 
wheels.  During vehicle launch, or when the battery state of charge (SOC) is high, the engine, 
which is not as efficient as the electric drive, is turned off and the electric motor propels the 
vehicle.296  During normal driving, the engine output is used both to propel the vehicle and to 
generate electricity.  The electricity generated can be stored in the battery and/or used to drive 
the electric motor.  During heavy acceleration, both the engine and electric motor (by consuming 
battery energy) work together to propel the vehicle.  When braking, the electric motor acts as a 
generator to convert the kinetic energy of the vehicle into electricity to charge the battery. 

Figure 3-12 below shows the SHEVPS architecture with the two motor/generator design.  The 
two motor/generators in this architecture are separated in this analysis to appropriately size each 
to maintain performance, and to capture the associated costs.  The SHEVPS motor effectiveness 
and cost are further discussed in Chapter 3.3.4 and Chapter 3.3.5.2.  

 

 

Figure 3-12 – Power Split (PS) Strong Hybrid Architecture with the Separate Generator and Motor 
Electrically Connected via the Battery and also via a Planetary Gear Set297 

The parallel hybrid drivetrain, although enhanced by the electrification components, remains 
fundamentally similar to a conventional powertrain.  In contrast, the power-split hybrid 
drivetrain is novel and considerably different than a conventional powertrain.  Although these 
hybrid architectures are quite different, both types provide start-stop or idle-stop functionality, 
regenerative braking capability, and vehicle launch assist.  A SHEVPS has a higher potential for 
fuel economy improvement than a SHEVP2, although its cost is also higher and engine power 
density is lower.298 

 
296 Autonomie model documentation, Chapter 4.13.2. 
297 2015 NAS report, at 133. 
298 Kapadia, J., Kok, D., Jennings, M., Kuang, M. et al., "Powersplit or Parallel - Selecting the Right Hybrid 
Architecture," SAE Int. J. Alt. Power. 6(1):2017, doi:10.4271/2017-01-1154. 



 

To expand on the hybrid powertrain configurations, Table 3-54 below shows the configuration of 
conventional engines and transmissions used with strong hybrids for this analysis.  The SHEVPS 
powertrain configuration was paired with a planetary transmission (eCVT) and Atkinson engine 
(Eng26).  This configuration was designed to maximize efficiency at the cost of reduced towing 
capability and real-world acceleration performance.299  In contrast, the SHEVP2 powertrains 
were paired with an advanced 8-speed automatic transmissions (AT8L2) and could be paired 
with most conventional engines,300 as discussed above.   

Table 3-54 – Configuration of Strong Hybrid Architectures with Transmissions and Engines 

CAFE Model 
Technologies 

Transmission 
Options 

Engine 
Options 

(PC/SUV) 

Engine 
Options 

(LT) 

SHEVPS Planetary - eCVT Eng 26 - 
Atkinson N/A 

SHEVP2301 AT8L2 

All Engines 
except for 
VTGe and 

VCR 

All 
Engines 

except for 
VTGe and 

VCR 
See further details in Chapter 3.3.4 Electrification Effectiveness 

 

3.3.1.4 Plug-In Hybrids 

Plug-in hybrid electric vehicles (PHEV) are hybrid electric vehicles with the means to charge 
their battery packs from an outside source of electricity (usually the electric grid).  These 
vehicles have larger battery packs with more energy storage and a greater capability to be 
discharged than other non-plug-in hybrid electric vehicles.  PHEVs also generally use a control 
system that allows the battery pack to be substantially depleted under electric-only or blended 
mechanical/electric operation and batteries that can be cycled in charge-sustaining operation at a 
lower state of charge than non-plug-in hybrid electric vehicles.  These vehicles generally have a 
greater all-electric range than typical strong HEVs. 

Unlike the micro, mild, and strong hybrids, PHEVs utilize two different types of fuels for energy 
of propulsion system; one, an onboard battery, charged by plugging the vehicle into the electrical 
grid, and two, a conventional engine with fuel tank for gasoline (or diesel).  Depending on how 
these vehicles are operated, they could, in any particular mode of operation, use electricity 
exclusively, operate like a conventional hybrid, or operate in some combination of these two 
modes.   

 
299 Kapadia, J., D, Kok, M. Jennings, M. Kuang, B. Masterson, R. Isaacs, A. Dona. 2017. Powersplit or Parallel - 
Selecting the Right Hybrid Architecture. SAE International Journal of Alternative Powertrains 6 (1): 68–76. 
https://doi.org/10.4271/2017-01-1154. 
300 We did not model SHEVP2s with VTGe (Eng23c) and VCR (Eng26a).  
301 Engine 01, 02, 03, 04, 5b, 6a, 7a, 8a, 12, 12-DEAC, 13, 14, 17, 18, 19, 20, 21, 22b, 23b, 24, 24-Deac.  See 
Chapter 3.1 for these engine specifications.  



 

For CAFE compliance, PHEV gasoline equivalent fuel economy is measured two ways per EPA 
regulations: first in a “charge depleting mode” with the vehicle operating on electricity with a 
fully charged battery, and second with the battery depleted and in a “charge sustaining mode” 
and the vehicle operating on gasoline.  The overall fuel economy is calculated by weighting the 
two measured values.  Through MY 2015, these two measured values were weighted equally to 
calculate overall PHEV fuel economy.  Optionally beginning in MY 2016, and mandatory 
beginning in MY 2020, manufacturers use the EPA “utility factor” method for weighting the two 
measured values for calculating PHEV fuel economy.  The “utility factor” weighting is based on 
the vehicle’s all electric range (AER).  The utility factor method follows Society of Automotive 
Engineers (SAE) recommend practice J1711.302,303,304,305  As discussed in Chapter 2.4, the 
Autonomie full vehicle model simulates powertrains accounting for these compliance 
procedures.   

 

 

Figure 3-13 – Fuel Economy Label for the 2020 BMW 530e Plug-in Showing the Electricity and Gasoline 
MPGe306 

 
302 Guidance Document. “EPA Test Procedure for Electric Vehicles and Plug-in Hybrids.” 
https://fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf. November 
14, 2017. Lass Accessed May 3, 2021. 
303 76 FR 39477, 39504-39505 (July 6, 2011). 
304 40 CFR 600.116-12(b). 
305 For more detailed information on the development of this SAE utility factor approach, see http:// www.SAE.org, 
specifically SAE J2841 ‘‘Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey 
Data,’’ September 2010. 
306 Fueleconomy.gov. https://www.fueleconomy.gov/feg/UsedCarLabel.jsp. Last Accessed May 3, 2021. 

https://www.fueleconomy.gov/feg/UsedCarLabel.jsp


 

The methodology used to assign fuel economy values to the PHEVs in the analysis fleet also 
accounts for the changes in the regulations and these procedures and is further discussed in 
Chapter 2.2 and Chapter 3.3.2.   

There are four PHEV architectures included in this analysis that reflect combinations of two 
levels of all-electric range (AER) and two engine types.  DOT selected 20 miles AER and 50 
miles AER to reasonably span the various AER in the market, and their effectiveness and cost.  
DOT selected an Atkinson engine and a turbocharged downsized engine to span the variety of 
engines in the market.  

PHEV20/PHEV20H and PHEV50/PHEV50H are essentially a SHEVPS with a larger battery 
and the ability to drive with the engine turned off.  In the CAFE Model, the designation for “H” 
in PHEVxH could represent another type of engine configuration, but for this analysis DOT used 
the same effectiveness values as PHEV20 and PHEV50 to represent PHEV20H and PHEV50H, 
respectively.  The PHEV20/PHEV20H represents a “blended-type” plug-in hybrid, which can 
operate in all-electric (engine off) mode only at light loads and low speeds, and must blend 
electric motor and engine power together to propel the vehicle at medium or high loads and 
speeds.  The PHEV50/PHEV50H represents an extended range electric vehicle (EREV), which 
can travel in all-electric mode even at higher speeds and loads.  Further discussion of engine 
sizing, batteries, and motors for these PHEVs is discussed in Chapter 3.3.4.   

PHEV20T and PHEV50T are 20 mile and 50 mile AER vehicles based on the SHEVP2 engine 
architecture.  The PHEV versions of these architectures include larger batteries and motors to 
meet performance in charge sustaining mode at higher speeds and loads as well as similar 
performance and range in all electric mode in city driving, at higher speeds and loads.  For this 
analysis, the CAFE Model considers these PHEVs to have an advanced 8-speed automatic 
transmission (AT8L2) and TURBO1 (Eng12) in the powertrain configuration.  Further 
discussion of engine sizing, batteries, and motors for these PHEVs is discussed in Chapter 3.3.4. 

Table 3-55 below shows the different PHEV configurations used in this analysis.   



 

Table 3-55 – Configuration of Plug-in Hybrid Architectures with Transmissions and Engines 

CAFE Model 
Technologies 

Transmission 
Options 

Engine 
Options 

(PC/SUV) 

Engine 
Options 

(LT) 

PHEV20/PHEV20H Planetary - 
eCVT 

Eng 26 – 
Atkinson 
Engine 

N/A 

PHEV20T AT8L2 Eng 12 - 
Turbo1 

Eng 12 - 
Turbo1 

PHEV50/PHEV50H Planetary - 
eCVT 

Eng 26 - 
Atkinson N/A 

PHEV50T AT8L2 Eng 12 - 
Turbo1 

Eng 12 - 
Turbo1 

See further details in Chapter 3.3.4 Electrification Effectiveness 

 

3.3.1.5 Battery Electric Vehicles 

Battery electric vehicles (BEVs) are equipped with all-electric drive systems powered by energy-
optimized batteries charged primarily by electricity from the grid.  BEVs do not have a 
combustion engine or traditional transmission.  Instead, BEVs rely on all electric powertrains, 
with an advanced transmission packaged with the powertrain.  The range of battery electric 
vehicles vary by vehicle and battery pack size. 

DOT simulated BEVs with ranges of 200, 300, 400 and 500 miles in the CAFE Model.  BEV 
range is measured pursuant to EPA test procedures and guidance.307  The CAFE Model assumes 
that BEVs transmissions are unique to each vehicle (i.e., the transmissions are not shared by any 
other vehicle) and that no further improvements are available.   

A key note about the BEVs offered in this analysis is that the CAFE Model does not account for 
vehicle range when considering additional BEV technology adoption.  That is, the CAFE Model 
does not have an incentive to build BEV300, 400, and 500s, because the BEV200 is just as 
efficient as those vehicles and counts the same toward compliance, but at a significantly lower 
cost because of the smaller battery.  While manufacturers have been building 200-mile range 
BEVs, those vehicles have generally been passenger cars.  Manufacturers have told DOT that 
greater range is important for meeting the needs of broader range of consumers and to increase 
consumer demand.  More recently, there has been a trend towards manufacturers building higher 
range BEVs in the market, and manufacturers building CUV/SUV and pickup truck BEVs.  To 
simulate the potential relationship of BEV range to consumer demand, DOT has included several 
adoption features for BEVs.  These are discussed further in Chapter 3.3.3. 

 
307 BEV electric ranges are determined per EPA guidance Document. “EPA Test Procedure for Electric Vehicles and 
Plug-in Hybrids.” https://fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-
2017.pdf. November 14, 2017. Last Accessed May 3, 2021. 

https://fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf
https://fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf


 

In Chapter 3.3.2 and 3.3.3 we discuss the analysis fleet assignments and adoption features for 
BEVs, how we relied on Argonne’s expertise and other sources to evaluate effectiveness and 
performance, and how we determine costs for both the battery and non-battery components. 

3.3.1.6 Fuel Cell Electric Vehicles 

Similar to BEVs, fuel cell electric vehicles (FCEVs) are equipped with an all-electric drivetrain, 
but unlike BEVs, FCEVs do not solely rely on batteries; rather, electricity to run the FCEV 
electric motor is mainly generated by an onboard fuel cell system.  FCEV architectures are 
similar to series hybrids,308 but with the engine and generator replaced by a fuel cell.  
Commercially available FCEVs consume hydrogen to generate electricity for the fuel cell 
system, with most automakers using high pressure gaseous hydrogen storage tanks.  FCEVs are 
currently produced in limited numbers and are available in limited geographic areas where 
hydrogen refueling stations are accessible.  For reference, in MY 2020, only four FCEV models 
were offered for sale, and since 2014 only 9,975 FCEVs have been sold.309,310 

For this analysis, the CAFE Model simulates a FCEV with a range of 320 miles.  Any type of 
powertrain could adopt a FCEV powertrain; however, to account for limited market penetration 
and unlikely increased adoption in the rulemaking timeframe, technology phase in caps were 
used to control how many FCEVs a manufacturer could build.  The details of this concept are 
further discussed in Chapter 3.3.3.   

3.3.2 Electrification Analysis Fleet Assignments  

DOT staff identified electrification technologies present in the baseline fleet and used these as 
the starting point for the regulatory analysis.  These assignments were based on manufacturer-
submitted CAFE compliance information, publicly available technical specifications, marketing 
brochures, articles from reputable media outlets, and data from Wards Intelligence.311   

Table 3-56 lists every electrification technology considered in the analysis, including the 
acronym used in the documentation and input files as well as a brief description.  For brevity, 
technologies will be referred to by their acronyms in this section.  Note that some electrification 
technologies were not eligible for assignment in the baseline; they are indicated by the gray rows 
in Table 3-56 and do not appear in Table 3-57. 

 
308 Series hybrid architecture is a strong hybrid that has the engine, electric motor and transmission in series.  The 
engine in a series hybrid drives a generator that charges the battery.  
309 Argonne National Lab. “Light Duty Electric Drive Vehicles Monthly Sales Update.” Energy Systems Division. 
Light Duty Electric Drive Vehicles Monthly Sales Updates | Argonne National Laboratory (anl.gov). Light Duty 
Electric Drive Vehicles Monthly Sales Updates _ ANL.pdf. Last Accessed May 4, 2021.  
310 Market Data file: Honda Clarity, Hyundai Nexo and Nexo Blue, and Toyota Mirai. 
311 “U.S. Car and Light Truck Specifications and Prices, '20 Model Year.” Wards Intelligence, 3 Aug. 2020, 
wardsintelligence.informa.com/WI964244/US-Car-and-Light-Truck-Specifications-and-Prices-20-Model-Year.  
 

https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates


 

Table 3-56 – CAFE Model Electric Paths Technologies 

Technology Description 
SS12V 12-Volt Stop-Start (Micro Hybrid) 
BISG 48V Belt Mounted Integrated Starter/Generator (Mild Hybrid) 
SHEVP2 P2 (Parallel) Strong Hybrid/Electric Vehicle 
SHEVPS Power Split Strong Hybrid/Electric Vehicle 
P2HCR0 SHEVP2 with Level 0 High Compression Ratio Engine 
P2HCR1 SHEVP2 with Level 1 High Compression Ratio Engine 
P2HCR1D SHEVP2 with Level 1 High Compression Ratio Engine with Cylinder Deactivation 
P2HCR2 SHEVP2 with Level 2 High Compression Ratio Engine 
PHEV20 Plug-In Hybrid with 20-mile Range 
PHEV50 Plug-In Hybrid with 50-mile Range 
PHEV20T PHEV20 with Turbo Engine 
PHEV50T PHEV50 with Turbo Engine 
PHEV20H PHEV20 with High Compression Ratio Engine  
PHEV50H PHEV50 with High Compression Ratio Engine 
BEV200 200-mile Battery Electric Vehicle 
BEV300 300-mile Battery Electric Vehicle 
BEV400 400-mile Battery Electric Vehicle 
BEV500 500-mile Battery Electric Vehicle 
FCV Fuel Cell Electric Vehicle 

 

Table 3-57 gives the baseline fleet penetration rates of electrification technologies eligible to be 
assigned in the baseline fleet.  Over half the fleet had some level of electrification, with the vast 
majority of these being micro hybrids.  BEVs represented less than 2% of MY 2020 baseline 
fleet; BEV300 was the most common BEV technology, while no BEV500s were observed.  



 

Table 3-57 – Penetration Rate of Electrification Technologies in the MY 2020 Fleet 

Electrification 
Technology 

 Sales Volume with this 
technology  

Penetration Rate in 
2020 Baseline Fleet 

None                                  5,791,220  42.61% 
SS12V                                  6,837,257  50.30% 
BISG                                    258,629  1.90% 
SHEVP2                                        6,409  0.05% 
SHEVPS                                    378,523  2.78% 
PHEV20                                      46,393  0.34% 
PHEV20T                                      18,943  0.14% 
PHEV50                                        2,392  0.02% 
PHEV50T                                            18  0.0001% 
BEV200                                      72,123  0.53% 
BEV300                                    145,900  1.07% 
BEV400                                      34,000  0.25% 
BEV500                                            0    0% 
FCV                                          744  0.005% 

 

3.3.2.1 Micro and Mild Hybrids 

Micro and mild hybrids refer to the presence of SS12V and BISG, respectively.  The data 
sources discussed above were used to identify the presence of these technologies on vehicles in 
the fleet.  Vehicles were assigned one of these technologies only if its presence could be 
confirmed with manufacturer brochures or technical specifications. 

3.3.2.2 Strong Hybrids 

Strong hybrid technologies included SHEVPS and SHEVP2.  For a discussion of differences in 
architecture between these technologies, see Chapter 3.3.1.3.  Note that P2HCR0, P2HCR1, 
P2HCR1D, and P2HCR2 are not assigned in the fleet and are only available to be applied by the 
model.  When possible, manufacturer specifications were used to identify the strong hybrid 
architecture type.  In the absence of more sophisticated information, hybrid architecture was 
determined by number of motors.  Hybrids with one electric motor were assigned P2, and those 
with two were assigned PS. 

3.3.2.3 Plug-In Hybrids 

Plug-in hybrid technologies assigned in the baseline fleet included PHEV20/20T and 
PHEV50/50T; PHEV20H and PHEV50H are not assigned in the fleet and are only available to 
be applied by the model.  Vehicles with an electric-only range of 40 miles or less were assigned 
PHEV20; those with a range above 40 miles were assigned PHEV50.  They were respectively 



 

assigned PHEV20T/50T if the engine was turbocharged (i.e., if it would qualify for one of 
technologies on the turbo engine technology pathway).312  

As part of characterizing PHEVs in the baseline fleet, DOT staff calculated individual gasoline 
and electric fuel economy values.  This was necessary because the certification fuel economies 
for PHEVs reported in compliance data were a single value that combined both types of fuel 
economies.  To calculate each PHEV’s gas fuel economy, DOT staff scaled values derived from 
fueleconomy.gov by a factor of 1.3.313  The scaled gas fuel economy became the final value used 
in the Market Data file.   

To compute electric fuel economy, DOT staff calculated utility factors, which define the 
proportion of miles traveled by PHEVs using electricity, according to mathematical curves 
defined by the Society of Automotive Engineers.314  These curves used each vehicle’s all-electric 
range as the input; range values were derived from the same source as the baseline gas fuel 
economy values and were also scaled by a factor of 1.3.  Analyst-defined utility factors or a 
default value of 0.5315 were also considered for each PHEV.  Of the three possible utility 
factors—the calculated value, the analyst-defined value, or 0.5—the greatest value was used.   

DOT staff then followed the SAE standard for calculating the utility factor-weighted electric fuel 
economy316 while defining a functional relationship to calculate it from known values, which is 
given in Equation 3-9.  Note that the equation is divided by 2.1897, the petroleum equivalency 
factor, because this factor is later accounted for in the model. 

𝑇𝑇𝑖𝑖𝑒𝑒𝑐𝑐𝑃𝑃𝑢𝑢𝑢𝑢𝑐𝑐 𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖 𝑇𝑇𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 =  (𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟𝐶𝐶𝑟𝑟𝑖𝑖𝑆𝑆𝐹𝐹𝑟𝑟𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹) × (𝑆𝑆𝑖𝑖𝑆𝑆𝐹𝐹𝑟𝑟𝑟𝑟 𝐺𝐺𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹) × (𝑈𝑈𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑡𝑡 𝐹𝐹𝑆𝑆𝑖𝑖𝐹𝐹𝑃𝑃𝑟𝑟)
(𝑆𝑆𝑖𝑖𝑆𝑆𝐹𝐹𝑟𝑟𝑟𝑟 𝐺𝐺𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹 −𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹𝑟𝑟𝐶𝐶𝑟𝑟𝑖𝑖𝑆𝑆𝐹𝐹𝑟𝑟𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹) × (1 − 𝑈𝑈𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑡𝑡 𝐹𝐹𝑆𝑆𝑖𝑖𝐹𝐹𝑃𝑃𝑟𝑟)

×  1
2.1897

   

Equation 3-9 – Electric Fuel Economy 

 
This approach had some limitations.  In some cases, the electric fuel economy values or utility 
factors appeared unrealistic.  This is due to the certification fuel economy values reported in 
compliance data, which often already include a petroleum equivalency factor and air 
conditioning or off-cycle adjustment provisions.  DOT will consider how to better collect these 
data moving forward. 

 
312 See Chapter 3.1 for more information on turbocharged engines in the analysis. 
313 The 1.3 scalar value accounts for the adjustment procedure used by EPA when deriving fuel economy label 
(“window sticker”) values, which are calculated by multiplying measured fuel economies by a factor of 0.7. More 
information can be found at https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-
PHEVs-11-14-2017.pdf. 
314 J2841: Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data. SAE 
International, 21 Sept. 2010, www.sae.org/standards/content/j2841_201009/.  
315 A utility factor of 0.5 indicates that exactly half of a PHEV’s miles traveled are on gas fuel, while the other half 
are on electric power. 
316 J1711: Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric 
Vehicles, Including Plug-in Hybrid Vehicles. SAE International, 8 June 2010, 
www.sae.org/standards/content/j1711_201006/.  
 



 

3.3.2.4 Fuel Cell and Battery Electric Vehicles 

Fuel cell and battery electric vehicle technologies included BEV200/300/400/500 and FCV.  
Vehicles with all-electric powertrains that used hydrogen fuel were assigned FCEV.  The BEV 
technologies were assigned to vehicles based on range according to the thresholds listed in Table 
3-58.  These range thresholds best account for vehicles’ existing range capabilities while 
allowing room for the model to potentially apply more advanced electrification technologies. 

Table 3-58 – Range Thresholds for Assigning BEV Technologies 

Vehicle Electric 
Range [miles] Technology Assigned 

<250 BEV200 
250 to 349 BEV300 
350 to 449 BEV400 

>450 BEV500 
 

3.3.3 Electrification Adoption Features  

Multiple types of adoption features applied to the electrification technologies.  The 
hybrid/electric technology path logic dictated how vehicles could adopt different levels of 
electrification technology.  Figure 3-14 shows the electrification technology pathways; these will 
be discussed in detail in each technologies’ section below.  Broadly speaking, more advanced 
levels of hybridization or electrification superseded all prior levels, with certain technologies 
within each level being mutually exclusive.  The analysis modeled (from least to most 
electrified) micro hybrids, mild hybrids, strong hybrids, plug-in hybrids, and fully electric 
vehicles. 

As discussed further below, SKIP logic—restrictions on the adoption of certain technologies—
applied to plug-in (PHEV) and strong hybrid vehicles (SHEV).  Some technologies on these 
pathways were “skipped” if a vehicle was high performance, required high towing capabilities as 
a pickup truck, or belonged to certain manufacturers who have demonstrated that their future 
product plans will more than likely not include the technology.  The specific criteria for SKIP 
logic for each applicable electrification technology will be expanded on later in this section.   

This section also discusses the supersession of engines and transmissions on vehicles that adopt 
SHEV or PHEV powertrains.  To manage the complexity of the analysis, these types of hybrid 
powertrains were modeled with several specific engines and transmissions, rather than in 
multiple configurations.  Therefore, the cost and effectiveness values SHEV and PHEV 
technologies take into account these specific engines and transmissions.   

Finally, phase-in caps limited the adoption rates of battery electric (BEV) and fuel cell vehicles 
(FCV).  These phase-in caps were set by DOT, taking into account current market share, 
scalability, and reasonable consumer adoption rates of each technology.  Chapter 3.3.3.4 
discusses phase-in caps and the reasoning behind them in detail.   

 



 

 

Elec. Path

CONV

SS12V

BISG

Hybrid/Electric Path

SHEVP2 SHEVPS P2HCR0

PHEV50H

BEV200 FCV

P2HCR1

P2HCR2

PHEV20 PHEV20T PHEV20H

P2HCR1D

BEV300

BEV400

BEV500

PHEV50 PHEV50T

 

Figure 3-3-14 – Electrification Technology Pathways 

The following sections discuss the adoption features applied to each type of electrification 
technology. 

3.3.3.1 Micro and Mild Hybrids 

In the NPRM analysis, micro and mild hybridization refers to the presence of SS12V and BISG 
on a vehicle, respectively.  The only adoption feature for these technologies was path logic, as 
illustrated in the lower left corner of Figure 3-14.  The pathway consists of a linear progression 
starting with a conventional powertrain with no electrification at all, which is superseded by 
SS12V, which in turn is superseded by BISG.  Vehicles could only adopt micro and mild hybrid 
technology if the vehicle did not already have a more advanced level of electrification.   

 

 

 

 



 

3.3.3.2 Strong Hybrids 

The strong hybrid technologies covered in this subsection include SHEVP2, SHEVPS, P2HCR0, 
P2HCR1, P2HCR1D, and P2HCR2.  The adoption features applied to strong hybrid technologies 
included path logic, powertrain substitution, and vehicle class restrictions.  Per the defined 
technology pathways, SHEVPS, SHEVP2, and the P2HCR technologies were considered 
mutually exclusive.  In other words, when the model applies one of these technologies, the others 
are immediately disabled from future application.  However, all vehicles on the strong hybrid 
pathways could still advance to one or more of the plug-in hybrid technologies.   

When the model applied any strong hybrid technology to a vehicle, the transmission technology 
on the vehicle was superseded.  Regardless of the transmission originally present, P2 hybrids 
adopt an 8-speed automatic transmission (AT8L2), and PS hybrids adopt a continuously variable 
transmission (eCVT).  When the model applies the SHEVP2 technology, the model can consider 
various engine options to pair with the SHEVP2 architecture according to existing engine path 
constraints, taking into account relative cost effectiveness.  For SHEVPS technology, the 
existing engine was replaced with a full Atkinson cycle engine.317 

SKIP logic was also used to constrain adoption for SHEVPS, P2HCR0, P2HCR1, and 
P2HCR1D.  (No SKIP logic applied to SHEVP2; P2HCR2 was restricted from all vehicles in the 
2020 fleet, as discussed further in Chapter 3.1)  These technologies were “skipped” for vehicles 
with engines318 that met one of the following conditions: 

• The engine belonged to an excluded manufacturer;319 

• The engine belonged to a pickup truck (i.e., the engine was on a vehicle assigned the 
“pickup” body style); 

• The engine’s peak horsepower was more than 405 HP; or if  

• The engine was on a non-pickup vehicle, but was shared with a pickup. 

The reasons for these conditions are similar to those for the SKIP logic applied to HCR engine 
technologies, discussed in more detail in Chapter 3.1.3.  In the real world, pickups and 
performance vehicles with certain powertrain configurations cannot adopt the technologies listed 
above and maintain vehicle performance without redesigning the entire powertrain.  SKIP logic 
was put in place to prevent the model from pursuing compliance pathways that are ultimately 
unrealistic. 

3.3.3.3 Plug-In Hybrids 

Plug-in hybrid (PHEV) technologies included PHEV20/20H/20T and PHEV50/50H/50T.  They 
superseded the micro, mild, and strong hybrids, and could only be replaced by full electric 

 
317 Designated Eng26 in the list of engine map models used in the analysis.  See Chapter 3.1 for more information. 
318 This refers to the engine assigned to the vehicle in the 2020 baseline fleet. 
319 Excluded manufacturers included BMW, Daimler, and Jaguar Land Rover. 



 

technologies.  Plug-in hybrid technology paths were also mutually exclusive, with the PHEV20 
technologies able to progress to the PHEV50 technologies. 

The engine and transmission technologies on a vehicle were superseded when PHEV 
technologies were applied to a vehicle.  For all plug-in technologies, the model applied an 
AT8L2 transmission.  For PHEV20/50 and PHEV20H/50H, the vehicle received a full Atkinson 
cycle engine.320  For PHEV20T/50T, the vehicle received a TURBO1 engine.321 

SKIP logic applied to PHEV20/20H and PHEV50/50H under the same four conditions listed for 
the strong hybrid technologies in the previous section, for the same reasons previously discussed.   

3.3.3.4 Fuel Cell and Battery Electric Vehicles 

For the analysis, the adoption of BEVs and FCEVs was limited by both path logic and phase in 
caps.  BEV200/300/400/500 and FCEV were applied as end-of-path technologies that superseded 
previous levels of electrification.   

The main adoption feature applicable to BEVs and FCEVs is phase-in caps, which are defined in 
the CAFE Model input files as percentages that represent the maximum rate of increase in 
penetration rate for a given technology.  They are accompanied by a phase-in start year, which 
determines the first year the phase-in cap applies.  Together, the phase-in cap and start year 
determine the maximum penetration rate for a given technology in a given year; the maximum 
penetration rate equals the phase-in cap times the number of years elapsed since the phase-in 
start year.  Note that phase-in caps do not inherently dictate how much a technology is applied by 
the model.  Rather, they represent how much of the fleet could have a given technology by a 
given year.  Because BEV200 costs less and has higher effectiveness values322 than other 
advanced electrification technologies, the model will have vehicles adopt it first, until it is 
restricted by the phase-in cap.   

Table 3-59 shows the phase-in caps, phase-in year, and maximum penetration rate through 2050 
for BEV and FCEV technologies.  For comparison, the actual penetration rate of each technology 
in the 2020 baseline fleet is also listed in the fourth column from the left.   

 
320 Designated Eng26 in the list of engine map models used in the analysis.  See Chapter 3.1 for more information. 
321 Designated Eng12 in the list of engine map models used in the analysis.  See Chapter 3.1 for more information. 
322 This is because BEV200 uses fewer batteries and weighs less than BEVs with greater ranges. 



 

Table 3-59 – Phase-In Caps for Fuel Cell and Battery Electric Vehicle Technologies 
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BEV200 0.09% 1998 0.53% 1.98% 2.43% 2.88% 3.33% 3.78% 4.23% 4.68% 
BEV300 0.70% 2009 1.07% 7.70% 11.20% 14.70% 18.20% 21.70% 25.20% 28.70% 
BEV400 1.25% 2016 0.25% 5.00% 11.25% 17.50% 23.75% 30.00% 36.25% 42.50% 
BEV500 4.25% 2021 - - 17.00% 38.25% 59.50% 80.75% 102.00% 123.25% 
FCV 0.018% 2016 0.005% 0.072% 0.162% 0.252% 0.342% 0.432% 0.522% 0.612% 

 

The BEV200 phase-in cap was informed by manufacturers’ tendency to move away from low-
range vehicle offerings, in part because of consumer hesitancy to adopt this technology.  The 
advertised range on most electric vehicles does not reflect the actual real world range in cold and 
hot ambient conditions real-world driving conditions, affecting the utility of already low-range 
vehicles.323  Many manufacturers have told DOT that the portion of consumers willing to accept 
a vehicle with less than 300 miles of electric range is extremely small, and many manufacturers 
do not plan to offer vehicles with less than 300 miles of electric range.  For example, in February 
2021, Tesla, the U.S.’ highest-selling BEV manufacturer, discontinued the Standard Range 
Model Y because its range did not meet the company’s “standard of excellence.”324  Tesla does 
sell long-range versions of many of its vehicles. 

Furthermore, the average BEV range has steadily increased over the past decade,325 perhaps in 
part as batteries become more cost effective.  EPA observed in its 2020 Automotive Trends 
Report that “the average range of new EVs has climbed substantially.  In model year 2019 the 
average new EV is projected to have a 252-mile range, or about three and a half times the range 
of an average EV in 2011.  This difference is largely attributable to higher production of new 
EVs with much longer ranges.”326  The maximum growth rate for BEV200 in the model was set 
accordingly low to less than 0.1% per year.  While this rate is significantly lower than that of the 
other BEV technologies, the BEV200 phase-in cap allows the penetration rate of low-range 
BEVs to grow by a multiple of what is currently observed in the market. 

For BEV300, 400, and 500, phase-in caps are largely a reflection of the challenges facing the 
scalability of BEV manufacturing, and implementing BEV technology on many vehicle 
configurations, including larger vehicles.  In the short term, the penetration of BEVs is largely 

 
323 AAA. “AAA Electric Vehicle Range Testing.” February 2019. 
https://www.aaa.com/AAA/common/AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf . 
324 Baldwin, Roberto.  “Tesla Model Y Standard Range Discontinued; CEO Musk Tweets Explanation.”  Car and 
Driver, 30 Apr. 2021, www.caranddriver.com/news/a35602581/elon-musk-model-y-discontinued-explanation/.  
Accessed May 20, 2020. 
325 2020 EPA Automotive Trends Report, at 53, figure 4.14. 
326 2020 EPA Automotive Trends Report, at 53. 

https://www.aaa.com/AAA/common/AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf
http://www.caranddriver.com/news/a35602581/elon-musk-model-y-discontinued-explanation/


 

limited by battery availability.327  For example, Tesla has struggled to scale production of new 
cells for its vehicles, and it remains a bottleneck in the company’s production capability.328  The 
Director of Energy and Environmental Research at Toyota acknowledged in March 2021 that 
BEV adoption faces many challenges beyond battery availability, including “the cost of batteries, 
the need for national infrastructure, long recharging times, limited driving range and the need for 
consumer behavioral change.”329  Incorporating battery packs that provide greater amounts of 
electric range into vehicles also poses its own engineering challenges.  Heavy batteries and large 
packs may be difficult to integrate for many vehicle configurations.  Pickup trucks and large 
SUVs in particular require higher levels of energy as the number of passengers and/or payload 
increases, for towing and other high-torque applications.  DOT selected the BEV400 and 500 
phase-in caps to reflect these concerns. 

The phase-in cap for FCEVs was assigned based on existing market share as well as historical 
trends in FCEV production.  FCEV production share in the past five years has been extremely 
low, and DOT set the phase-in cap accordingly.330  As with BEV200, however, the phase-in cap 
still allows for the market share of FCEVs to grow several times over.   

3.3.4 Electrification Effectiveness 

For this analysis, DOT considers a range of electrification technologies which, when modeled, 
result in varying levels of effectiveness at reducing fuel consumption.  As discussed above, the 
modeled electrification technologies include micro hybrids, mild hybrids, two different strong 
hybrids, two different plug-in hybrids with two separate all electric ranges, full electric vehicles 
and FCEVs.  Each electrification technology consists of many complex sub-systems with unique 
component characteristics and operational modes.  As discussed further below, the systems that 
contribute to the effectiveness of an electrified powertrain in the analysis include the vehicle’s 
battery, electric motors, power electronics, and accessory loads.  Procedures for modeling each 
of these sub-systems are broadly discussed below, and in Chapter 2.4, and the Autonomie model 
documentation.  

Argonne used data from their Advanced Mobility Technology Laboratory (AMTL) to develop 
Autonomie’s electrified powertrain models.  The modeled powertrains are not intended to 
represent any specific manufacturer’s architecture but are intended to act as surrogates predicting 
representative levels of effectiveness for each electrification technology. 

DOT also discussed, in Chapter 2.4, that certain technologies’ effectiveness for reducing fuel 
consumption requires optimization through the appropriate sizing of the powertrain.  Autonomie 
uses sizing control algorithms based on data collected from vehicle benchmarking,331 and sized 
the modeled electrification components based on the performance neutrality considerations 

 
327 See, e.g., Cohen, Ariel. “Manufacturers Are Struggling To Supply Electric Vehicles With Batteries.” Forbes, 
Forbes Magazine, 25 March 2020, www.forbes.com/sites/arielcohen/2020/03/25/manufacturers-are-struggling-to-
supply-electric-vehicles-with-batteries.  Accessed May 20, 2021. 
328 Hyatt, Kyle.  “Tesla Will Build an Electric Van Eventually, Elon Musk Says.”  Roadshow, CNET, 28 Jan. 2021, 
www.cnet.com/roadshow/news/tesla-electric-van-elon-musk/.  Accessed May 20, 2021. 
329 https://www.energy.senate.gov/services/files/E2EA0E4F-BAD9-452D-99CC-35BC204DE6F0. 
330 2020 EPA Automotive Trends Report, at 52, figure 4.13. 
331 Autonomie model documentation, Chapter 8.3. 

http://www.forbes.com/sites/arielcohen/2020/03/25/manufacturers-are-struggling-to-supply-electric-vehicles-with-batteries
http://www.forbes.com/sites/arielcohen/2020/03/25/manufacturers-are-struggling-to-supply-electric-vehicles-with-batteries
https://www.energy.senate.gov/services/files/E2EA0E4F-BAD9-452D-99CC-35BC204DE6F0


 

discussed above.  This analysis iteratively minimizes the size of the powertrain components to 
maximize efficiency while enabling the vehicle to meet multiple performance criteria.  The 
Autonomie simulations use a series of resizing algorithms that contain “loops,” such as the 
acceleration performance loop (0-60 mph), which automatically adjust the size of certain 
powertrain components until a criterion, like the 0-60 mph acceleration time, is met.  As the 
algorithms examine different performance or operational criteria that must be met, no single 
criterion can degrade; once a resizing algorithm completes, all criteria will be met, and some 
may be exceeded as a necessary consequence of meeting others.   

As discussed in Chapter 2.4, Autonomie applies different powertrain sizing algorithms 
depending on the type of vehicle considered because different types of vehicles not only contain 
different powertrain components to be optimized, but they must also operate in different driving 
modes.  While the conventional powertrain sizing algorithm must consider only the power of the 
engine, the more complex algorithm for electrified powertrains must simultaneously consider 
multiple factors, which could include the engine power, electric machine power, battery power, 
and battery capacity.  Also, while the resizing algorithm for all vehicles must satisfy the same 
performance criteria, the algorithm for some electric powertrains must also allow those 
electrified vehicles to operate in certain driving cycles, like the US06 cycle, without assistance of 
the combustion engine, and ensure the electric motor/generator and battery can handle the 
vehicle’s regenerative braking power, all-electric mode operation, and intended range of travel.   

To establish the effectiveness of the technology packages, Autonomie simulates the vehicles’ 
performance on compliance test cycles, as discussed in Chapter 2.4.332,333,334  For vehicles with 
conventional powertrains and micro hybrids, Autonomie simulates the vehicles using the 2-cycle 
test procedures and guidelines.335  For mild HEVs, strong HEVs, and FCEVs, Autonomie 
simulates the same 2-cycle test, with the addition of repeating the drive cycles until the final state 
of charge is approximately the same as the initial state of charge, a process described in SAE 
J1711.  For PHEVs, Autonomie simulates vehicles performing the test cycles per guidance 
provided in SAE J1711.336  For BEVs and FCEVs, Autonomie simulates vehicles performing the 
test cycles per guidance provided in SAE J1634.337 

The range of effectiveness for the electrification technologies in this analysis is a result of the 
interactions between the components listed above and how the modeled vehicle operates on its 
respective test cycle.  This range of values will result in some modeled effectiveness values 
being close to real-world measured values, and some modeled values that will depart from 
measured values, depending on the level of similarity between the modeled hardware 
configuration and the real-world hardware and software configurations.  This modeling approach 
comports with the National Academy of Science 2015 recommendation to use full vehicle 

 
332 EPA, “How Vehicles are Tested.”  https://www.fueleconomy.gov/feg/how_tested.shtml.  Last accessed May 6, 
2021. 
333 Autonomie model documentation, Chapter 6. 
334 EPA Guidance Letter.  “EPA Test Procedures for Electric Vehicles and Plug-in Hybrids.”  Nov.  14, 2017.  
https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf.  Last 
accessed May 6, 2021. 
335 40 CFR part 600. 
336 PHEV testing is broken into several phases based on SAE J1711.  charge-sustaining on the city and HWFET 
cycle, and charge-depleting on the city and HWFET cycles.   
337 SAE J1634.  “Battery Electric Vehicle Energy Consumption and Range Test Procedure.”  July 12, 2017.   

https://www.fueleconomy.gov/feg/how_tested.shtml
https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf


 

modeling supported by application of lumped improvements at the sub-model level.338  The 
approach allows the isolation of technology effects in the analysis supporting an accurate 
assessment. 

The range of effectiveness values for the electrification technologies, for all ten vehicle 
technology classes, is shown in Figure 3-15 below.  In the graph, the box shows the inner 
quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.339  The blue 
dots show values outside these bounds. 

 

  

Figure 3-15 – Electrification Technology Effectiveness Values for All the Vehicle Technology Classes340 

The following sections discuss the data used to model each electrification component, including 
the batteries, electric motors, power electronics, and accessories, and the Autonomie models used 
to simulate the effectiveness of each electrified powertrain technology on its respective test 
cycle. 

 
338 2015 NAS report, at 292. 
339 The IQR is the interquartile range – the difference between the upper quartile and the lower quartile.  Each 
whisker shows the data points between that range. 
340 The data used to create this figure can be found the FE_1 Improvements file. 



 

3.3.4.1 Batteries, Electric Motors, Power Electronics, and Accessories 

Autonomie determines the effectiveness of each electrified powertrain type by modeling the 
basic components, or building blocks, for each powertrain, and then combining the components 
modularly to determine the overall efficiency of the entire powertrain.  The basic building blocks 
that comprise an electrified powertrain in the analysis include the battery, electric motors, power 
electronics, and accessory loads.  Autonomie identifies components for each electrified 
powertrain type, and then interlinks those components to create a powertrain architecture.  
Autonomie then models each electrified powertrain architecture and provides an effectiveness 
value for each architecture.  For example, Autonomie determines a BEV’s overall efficiency by 
considering the efficiencies of the battery, the electric traction drive system (the electric machine 
and power electronics) and mechanical power transmission devices.  Or, for a SHEVP2, 
Autonomie combines a very similar set of components to model the electric portion of the hybrid 
powertrain, and then also includes the combustion engine and related power for transmission 
components.   

For this analysis, Autonomie employed a set of electric motor efficiency maps created by Oak 
Ridge National Laboratory (ORNL): one for a traction motor and an inverter, the other for a 
motor/generator and inverter.341  Autonomie also used test data validations from technical 
publications to determine the peak efficiency of BEVs and FCEVs.  The electric motor 
efficiency maps, created from production vehicles as shown in Table 3-60 below, represent 
electric motor efficiency as a function of torque and motor RPM.  These efficiency maps provide 
nominal and maximum speeds, as well as maximum torque curve.  Argonne used the maps to 
determine the efficiency characteristics of the motors, but scaled them such that their peak 
efficiency value corresponded to the latest state of the art technologies for different electrified 
powertrains.  Specifically, Argonne scaled the maps to have total system peak efficiencies 
ranging from 96-98 percent depending on the powertrain type.342  The maps also included some 
of the losses due to power transfer through the electric machine.343  Table 3-60 shows the electric 
machine efficiency map sources for the different powertrain configurations used in this analysis.   

 
341 Oak Ridge National Laboratory (2008).  Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System. 
Submitted to the U.S. Department of Energy; Oak Ridge National Laboratory (2011).  Annual Progress Report for 
the Power Electronics and Electric Machinery Program. 
342 See Autonomie model documentation, Chapter 5.6.2. 
343 See Autonomie model documentation, Chapters 4.7 and 5.6. 



 

Table 3-60 – NPRM Electric Machine Efficiency Map Sources for Different Powertrain Configurations 

Powertrain Type Source of Efficiency Map for Motor1 
(Traction Motor) + Inverter 

Source of Efficiency Map for 
Motor2 (Motor/Generator) + 

Inverter 

SS12V, BISG Camry EM1 data from ORNL   
SHEVP2  Sonata HEV data from ORNL    
SHEVPS, PHEV20 Camry EM1 data from ORNL  Camry EM2 Data from ORNL  
PHEV50 Camry EM1 data from ORNL  Sonata HEV Data from ORNL  

BEV and FCEV344 Chevrolet Bolt EM data from SAE paper   
 
Beyond the powertrain components, Autonomie also considers electric accessory devices that 
consume energy and affect overall vehicle effectiveness, such as headlights, radiator fans, wiper 
motors, engine control units (ECU), transmission control unit (TCU), cooling systems, and safety 
systems.  In real-world driving, the electrical accessory load on the powertrain varies depending 
on the how features are used and the condition in which the vehicle is operating, such as for 
night driving or hot weather driving.  However, for regulatory test cycles related to fuel 
economy, the electrical load is repeatable because the fuel economy regulations control for these 
factors, as discussed in Chapter 2.4.345  Accessory loads during test cycles do vary by powertrain 
type and vehicle technology class, since distinctly different powertrain components and vehicle 
masses will consume different amounts of energy. 

The baseline fleet consists of different vehicle types with varying accessory electrical power 
demand.  For instance, vehicles with different motor and battery sizes will require different 
capacities of electric cooling pumps and fans to manage component temperatures.  Autonomie 
has built-in models that can simulate these varying sub-system electrical loads.  However, for 
this analysis, DOT uses a fixed (by vehicle technology class and powertrain type), constant 
power draw to represent the effect of these accessory loads on the powertrain on the 2-cycle test.  
DOT intends and expects that fixed accessory load values will, on average, have similar impacts 
on effectiveness as found on actual manufacturers’ systems.  This process is in line with the past 
analyses.346,347  For this analysis, DOT aggregated electrical accessory load modeling 
assumptions for the different powertrain types and classes from data from the Draft TAR, EPA 
Proposed Determination,348 CBI from manufacturers,349 research and development data from 

 
344 Burak Ozpineci, Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric 
Motors Program, ORNL/SPR-2014/532, https://info.ornl.gov/sites/publications/Files/Pub52422.pdf, November 
2014.  (For FCVs, DOT used data from the Nissan Leaf). 
345 NHTSA Benchmarking, “Laboratory Testing of a 2017 Ford F-150 3.5 V6 EcoBoost with a 10-speed 
transmission.”  DOT HS 812 520. 
346 Draft Technical Assessment Report (July 2016), Chapter 5. 
347 EPA Proposed Determination TSD (November 2016), at 2-270. 
348 EPA Proposed Determination TSD (November 2016), at 2-270. 
349 Alliance of Automobile Manufacturers Comments on Draft TAR, at 30. 



 

DOE’s Vehicle Technologies Office,350,351,352 and DOT-sponsored vehicle benchmarking studies 
completed by Argonne’s AMTL.353  These assumptions are provided below in Table 3-61.354 

Table 3-61 – Accessory Load Assumptions in Watts by Vehicle Class and Powertrain Type 

Vehicle Class Performance Category 

Accessory Load (Watts) by Vehicle 
Powertrain Type 

Conventional HEVs 
PHEVs 

and 
BEVs 

Compact Base 250 275 375 
Compact Premium 300 375 475 
Midsize Base 250 275 375 
Midsize Premium 300 375 475 
Small SUV Base 300 325 425 
Small SUV Premium 300 375 475 
Midsize SUV Base 300 325 425 
Midsize SUV Premium 350 375 475 
Pickup Base 300 325 425 
Pickup Premium 300 375 475 

 
The following sections discuss how the assumptions for each powertrain type are simulated 
across the test cycle to meet modeling and performance requirements. 

 
350 DOE VTO Power Electronics Research and Development. https://www.energy.gov/eere/vehicles/vehicle-
technologies-office-electric-drive-systems.  Last Accessed May 21, 2021. 
351 Argonne National Laboratory, Advanced Mobility Technology Laboratory (AMTL).  
https://www.anl.gov/es/advanced-mobility-technology-laboratory.  Last Accessed May 21, 2021. 
352 DOE’s lab years are ten years ahead of manufacturers’ potential production intent (e.g., 2020 Lab Year is MY 
2030).   
353  Stutenberg, K., Kim, N., Russo, D. M., Islam, E., Kim, K., Lohse-Busch, H., Rousseau, A., Vijayagopal, R. 
(2021, July). Vehicle technology assessment, model development, and validation of a 2018 Honda Accord LX with 
a 1.5L I4 and continuously variable transmission (Report No. DOT HS 813 159). National Highway Traffic Safety 
Administration., Stutenberg, K., Kim, N., Russo, D. M., Islam, E., Kim, K., Lohse-Busch, H., Rousseau, A., & 
Vijayagopal, R. (2021, July). Vehicle technology assessment, model development and validation of a 2018 Toyota 
Camry XLE with a 2.5L I4 and 8-speed automatic transmission (Report No. DOT HS 813 160). National Highway 
Traffic Safety Administration., Stutenberg, K., Kim, N., Russo, D. M., Islam, E., Lohse-Busch, H., Rousseau, A., & 
Vijayagopal, R. (2021, July). Vehicle technology assessment, model development, and validation of a 2019 Acura 
MDX Sport Hybrid (Report No. DOT HS 813 161). National Highway Traffic Safety Administration., Jehlik, F., 
Kim, N., Islam, E., Lohse-Busch, H., Rousseau, A., Stutenberg, K., & Vijayagopal, R. (2021, July). Vehicle 
technology assessment, model development, and validation of a 2019 Infiniti QX50 (Report No. DOT HS 813 162). 
National Highway Traffic Safety Administration., Lohse-Busch, H., Stutenberg, K., Ilieve, S., & Duoba, M. (2018, 
July). Laboratory testing of a 2017 Ford F-150 3.5L V6 EcoBoost with a 10-speed transmission (Report No. DOT 
HS 812 520). Washington, DC: National Highway Traffic Safety Administration., Lohse-Busch, H., Stutenberg, K., 
Ilieve, S., & Duoba, M. (2018, July). Laboratory testing of a 2017 Ford F-150 3.5L V6 EcoBoost with a 10-speed 
transmission (Report No. DOT HS 812 520). Washington, DC: National Highway Traffic Safety Administration. 
354 See ANL - Summary of Main Component Performance Assumptions_NPRM_022021, ANL - All 
Assumptions_Summary_NPRM_022021.xlsx. 

https://www.energy.gov/eere/vehicles/vehicle-technologies-office-electric-drive-systems
https://www.energy.gov/eere/vehicles/vehicle-technologies-office-electric-drive-systems


 

3.3.4.2 Micro Hybrids 

Autonomie represents a micro hybrid system using SS12V technology.  The SS12V system in 
this analysis does not provide any brake energy recovery.  The effectiveness improvement from 
SS12V systems is attributable to the amount of fuel saved during the engine idling period on the 
2-cycle test.  Although the SS12V system only provides minimal benefit on the 2-cycle test,355 
the fuel economy improvement from SS12V systems are also credited in the analysis through the 
application of off-cycle FCIVs.  For further discussion of the SS12V system models, see the 
Autonomie model documentation.356  

Micro hybrid systems normally do not provide propulsion assist, so this technology has little to 
no impact on the vehicle performance metrics.  Thus, in this analysis, Autonomie did not resize 
the powertrain when a vehicle adopted a micro hybrid system because with or without the micro 
hybrid system, the combustion engine size must be retained to maintain performance metrics 
such as acceleration. 

3.3.4.3 Mild Hybrids 

The mild hybrid system in Autonomie is a 48V BISG.357  The main focus of mild hybrid vehicles 
is to provide idle-stop and capture some regenerative braking energy, and although they also can 
provide some assistance to the engine during the initial propelling of the vehicle, this is done to 
improve efficiency and does not significantly improve the acceleration performance of the 
vehicle.  With BISG mild hybrids, the electric machine is linked to the engine through a belt, and 
thus the potential power assistance is usually limited.  In this analysis a BISG used a ten kW 
motor/generator paired with a 403 Watt-hour battery pack to better align with BISG systems 
emerging in the marketplace.358  The specification of this system is provided in the Autonomie 
summary assumptions files.359 

Like the modeled micro hybrid system, the effectiveness improvement from the mild hybrid 
system is attributable to the amount of fuel saved during the engine idling period on the 2-cycle 
test, and additional fuel economy benefits are credited through the application of off-cycle 
FCIVs.  Also similar to the mild hybrid system, Autonomie does not resize the vehicle 
powertrain with the addition of the 48V BISG technology.  However, the BISG system model 
allows limited assist to propel the vehicle and limited regenerative braking.   

 
355 The regulatory two-cycle test only contains 18% vehicle idling, which is not always representative of real-world 
operation.  See EPA Detailed Test Information, https://www.fueleconomy.gov/feg/fe_test_schedules.shtml.  Last 
Accessed May 7, 2021. 
356 See Autonomie model documentation, Chapters 4.6, 4.7 and 4.13. 
357 These systems are 48V Direct Current (DC) electrical systems.  
358 See, e.g., Bosch 48V battery, https://www.bosch-mobility-solutions.com/en/solutions/batteries/48v-battery/; 
A123 Systems 48V battery, http://www.a123systems.com/automotive/products/systems/48v-battery/; K.C. Colwell, 
The 2019 Ram 1500 eTorque Brings Some Hybrid Tech, If Little Performance Gain, to Pickups, Car and Driver 
(March 14, 2019), https://www.caranddriver.com/reviews/a22815325/2019-ram-1500-etorque-hybrid-pickup-drive/. 
359 See ANL - Summary of Main Component Performance Assumptions_NPRM_022021, ANL - All 
Assumptions_Summary_NPRM_022021.xlsx, and ANL_BatPac_Lookup_tables_Feb2021v2.xlsx. 



 

3.3.4.4 Strong Hybrids  

As discussed earlier, this analysis considers two types of strong hybrid technology, a power-split 
hybrid (SHEVPS) architecture and a P2 hybrid (SHEVP2) architecture.  The SHEVPS model in 
Autonomie included a power-split device, two electric machines, and an engine, and allowed 
various interactions between these components.  The SHEVP2 model in Autonomie is based on 
the pre-transmission (P2) configuration where the electric motor is placed between the engine 
and transmission for direct flow of power to the wheels.  The vehicle can be propelled either by 
the combustion engine, electric motor, or both simultaneously, but the speed/efficiency region of 
operation for SHEVP2s under any engine/motor combination is ultimately dictated by the 
transmission gearing and speed.  A detailed discussion of the SHEVPS and SHEVP2 modeling 
and validation are provided in the Autonomie model documentation.360  Autonomie full vehicle 
models representing the strong hybrids are based on vehicle test data from vehicle 
benchmarking.   

As discussed previously in this section, power-split hybrids utilize a full-time Atkinson mode 
engine, two electric machines, and a planetary gear set transmission along with a battery pack to 
propel the vehicle.  The smaller motor/generator (EM1) is used to control the engine speed and 
the engine is used to either charge the battery or to supply additional electric power to the second 
“drive” motor.  The more powerful drive motor/generator (EM2) is permanently connected to the 
vehicle’s final drive and always turns with the wheels.  The Autonomie SHEVPS model and 
controls are based on a few high-level characteristics of real-world strong hybrid power-split 
systems that drive how the components are sized to meet performance metrics.  For example: 

• In the initial vehicle launch, when SOC is stable, the electric motor is the only propulsion 
system; and 

• In normal city driving, the engine could both propel the vehicle and through the 
generator/motor charge the battery. 

The SHEVPS resizing algorithm makes an initial estimate of the size of the engine, battery, and 
electric motors.  The initial estimates for the combustion engine and EM2 sizes are based on the 
peak power required for acceleration performance and the continuous power required for 
gradeability performance.  The initial estimates for the battery and EM1 power are based the 
maximum regenerative braking power.  With these initial size estimates, the algorithm computes 
the vehicle mass, and runs simulations to determine if 0-60 and 50-80 mph acceleration 
performance is acceptable.  If acceleration is not satisfactory (too fast or too slow), the algorithm 
iteratively adjusts the sizes of the engine, motors, and battery, and runs simulations until a 
minimum powertrain size is found that meets all performance requirements.  With each iteration, 
the engine, battery, and motor characteristics are also updated for gradeability performance and 
regeneration, if necessary.  Figure 3-16 below shows the general steps of the SHEVPS sizing 
algorithm.  Detailed descriptions are available in the Autonomie model documentation. 

 
360 Autonomie model documentation, Chapters 4.13, 4.16, and 6. 



 

 

Figure 3-16 – Simplified SHEVPS Sizing Algorithm in Autonomie 

The SHEVP2 uses a combustion engine and a multi-speed transmission-integrated electric motor 
(EM1).  As discussed earlier, this SHEVP2 allows most engines and an advanced eight speed 
transmission to integrate with an electric motor.  To minimize the number of Autonomie 
simulations for combinations of engines and transmissions for all ten vehicle classes,361 DOT 
and Argonne used the AT8L2 as the only transmission that could be integrated with SHEVP2.  
As manufacturers continue to increase gear counts from the common five and six speed gears 
and improve transmission internals, this improvement is carried into the SHEVP2 architecture.  
In MY 2020, about 50% of the fleet had transmissions with seven gears or higher.362  
Additionally, the higher-geared eight speed automatic transmission enables the maximization of 
engine efficiency by allowing the engine to operate in the more efficient region as compared to a 
lower geared transmission.  These benefits are further discussed in Chapter 3.2.  

As with SHEVPS, the SHEVP2 resizing algorithm starts by estimating the size of the engine, 
battery, and electric motor based on performance criteria or an estimated regenerative braking 
power, and then by calculating the associated vehicle mass.  The algorithm then uses a 
simulation loop to find a more precise value of regenerative braking power generated in the 
UDDS “city driving” cycle, and adjusts the electric motor size and vehicle mass accordingly.  
Next, the algorithm uses simulation loops to optimize the engine, motor, and battery sizes in 
relation to acceleration performance criteria.  If the acceleration criteria require downsizing the 
powertrain, the electric motor size is not reduced as this would not be suitable to handle 
regenerative braking power.  If the acceleration criteria cause the electric motor to increase in 
size, the algorithm then returns to the regenerative braking loop and subsequently all other loops 
until all components are optimized.  Figure 3-17 below shows a simplified sizing algorithm for 
SHEVP2s.   

 
361 For this analysis, there are 1,103,760 simulation results for all ten vehicles classes.  That number does not include 
the simulations associated with sizing of components for different powertrains. 
362 See Chapter 3.2 for a more detailed breakdown of transmission penetration rates.  



 

 

Figure 3-17 – Simplified SHEVP2 Sizing Algorithm in Autonomie 

To maintain performance neutrality, the acceleration optimization loops in the SHEVP2 
algorithm differed between the non-performance vehicle class and the performance class.  For 
performance classes, Autonomie does not resize the powertrain to avoid reducing the 
performance in SHEVP2 hybrids compared to the same vehicle with a conventional powertrain.  
This mimicked the observed marketplace trend in which parallel hybrid models tend to retain a 
similar engine size as the non-hybrid models bearing the same nameplate.  For non-performance 
classes, SHEVP2 powertrains are resized to allow engine downsizing.  This algorithm is 
discussed in the Autonomie model documentation with a more detailed flow chart of the closed 
loop design.363 

In addition, DOT limited adoption of some advanced engine technologies with strong hybrids in 
cases where the electrification technology would have little effectiveness benefit beyond the 
benefit of the advanced engine system, but would substantially increase costs.  Specifically, DOT 
did not model strong hybrid technologies with VCR engines (eng26a) and eBoost engines 
(eng23c).  DOT believes that manufacturers would not consider these combinations because the 
combination of electrification and advanced engine technologies are not as cost-effective as other 
technologies.   

 
363 Autonomie model documentation, Chapter 8.3.3. 



 

3.3.4.5 Plug-in Hybrids 

The effectiveness of the PHEV systems used in the analysis is dependent on both the vehicle’s 
battery pack size and range, in addition to the other fuel economy-improving technologies on the 
vehicle (e.g., aerodynamic and mass reduction technologies).   

As discussed earlier in Chapter 3.3.1, Autonomie follows EPA regulatory guidance using the 
SAE J1711 test procedure to model the incremental effectiveness of adding PHEV technology to 
a vehicle.  The procedure from this guidance is divided into several phases that model charge 
sustaining, charge depleting, and cold weighting calculations for different test cycles.  This is 
described in detail in the Autonomie model documentation.364 

The resizing algorithm for PHEVs, similar to strong HEVs, considers the power needed for 
acceleration performance and all-electric mode operation (compared to regenerative braking for 
strong HEVs); the PHEV resizing algorithms use these metrics for an initial estimation of 
engine, motor(s) and battery powers, and battery capacity.  The initial mass of the vehicle is then 
computed, including the weight for a larger battery pack and charging components.365  However, 
since PHEVs offer expanded electric driving capacity, their resizing algorithm must also yield a 
powertrain with the ability to achieve certain driving cycles and range in electric only mode, in 
which the engine remains off for all or most the operation.  The analysis sized the PHEV electric 
motor and battery power so that the vehicle can complete either the city cycle (UDDS) or US06 
(aggressive, high speed) driving cycle in electric mode, and the battery energy storage capacity 
to achieve the specified all-electric range on the 2-cycle tests on the basis of adjusted energy 
values.366,367   

For this analysis, DOT classified PHEVs into four technology levels, as discussed previously: (1) 
PHEV20 indicating a vehicle with an AER of 20 miles and powertrain system based on SHEVPS 
hybrid architecture; (2) PHEV50 indicating a vehicle with an AER of 50 miles and powertrain 
system based on SHEVPS hybrid architecture; (3) PHEV20T indicating a vehicle with an AER 
of 20 miles and powertrain system based on SHEVP2 hybrid architecture; and (4) PHEV50T 
indicating a vehicle with AER of 50 miles and powertrain system based on SHEVP2 hybrid 
architecture.   

The PHEV20, PHEV20T, PHEV50, and PHVE50T resizing algorithms are functionally equal, 
and differ only in the type of electric mode driving cycle simulated in each (UDDS for 
PHEV20/20T, or US06 for PHEV50/50T).  These algorithms simulated the driving cycles in an 
iterative loop to determine the size of the electric motors and the battery required to complete the 
cycles.  In the case of PHEV20 and PHEV20T, the power of the electric motors and battery must 
be sized to propel the vehicle through the UDDS cycle in “charge-depleting (CD) mode”; in this 
mode, the electric machine alone propels the vehicle except during high power demands, at 
which point the engine may turn on and provide propulsion assistance.  The PHEV50 and 

 
364 Autonomie model documentation, Chapter 6.  
365 Autonomie model documentation, Chapter 8.3. 
366 Battery sizing and the definition of the combined 2-cycle test’s all-electric range is discussed in detail in Chapter 
6 of the Autonomie model documentation.   
367 Argonne has incorporated SAE J1711, Recommend Practice for Measuring Exhaust Emissions and Fuel 
Economy of Hybrid-Electric Vehicles, Including Plug-In Hybrid Vehicles, into the Autonomie modeling. 



 

PHEV50T motor(s) and battery must be sized to power the vehicle through the US06 cycle in 
“electric vehicle (EV) mode,” where the engine is always off.  Then, all PHEV algorithms 
adjusted the battery capacity, or vehicle range, by ensuring the battery energy content was 
sufficient to complete a simulated UDDS+HWFET combined driving cycle, based on EPA-
adjusted energy consumption.  Finally, the engine, electric motor(s), and battery powers are sized 
accordingly to meet 0-60 and 50-80 mph acceleration targets.  All loops are repeated until the 
acceleration targets are met without needing to resize the electric motors, at which point the 
resizing algorithm finished.  Figure 3-18 below shows the general steps of the PHEV sizing 
algorithm.  Detailed steps can be seen in the Autonomie model documentation.368 

 

Figure 3-18 – Simplified PHEV Sizing Algorithm in Autonomie 

Table 3-62 below shows a summary of PHEV components and denotes if they are eligible to be 
resized in the Autonomie sizing algorithm.  As discussed earlier, the Autonomie sizing algorithm 
is automated and any change in one of the component checks in the steps shown in Figure 3-18 
requires the components to be revaluated and sized appropriately.   

 
368 Autonomie model documentation, Chapter 8.3.4-8.3.6. 



 

Table 3-62 – Summary of Components that Could Resize as Part of PHEV Sizing Algorithm 

  IC Engine Electric 
Motor 

Battery 
Power 

Battery 
Capacity 

PHEV20 
Inherited from sized 
conventional vehicle 

and resized 
Resized Resized Resized 

PHEV50 
Inherited from sized 
conventional vehicle 

and resized 
Resized Resized Resized 

PHEV20T 
Inherited from sized 
conventional vehicle 

and not resized 
Resized Resized Resized 

PHEV50T 
Inherited from sized 
conventional vehicle 

and not resized 
Resized Resized Resized 

 

3.3.4.6 Battery Electric Vehicles 

The effectiveness of BEVs is dependent on the efficiency of the components that transfer power 
from the battery to the driven wheels.  These components include the battery, electric machine, 
power electronics, and mechanical gearing.  For this analysis, DOT used efficiency maps from 
production vehicles to calculate electric machine efficiency, and scaled the electric machine 
efficiency such that the peak efficiency value corresponded to the latest state-of-the-art 
technologies.  The range of a BEV in the analysis depends on the vehicle’s class and the battery 
pack size. 

An important note about Autonomie’s BEV model is that it does not simulate any one 
manufacturer’s technology, architecture, battery pack, thermal, or SOC control strategies.  Those 
BEV characteristics are unique for each manufacturer’s vehicle models.  And, like many other 
parts of this analysis, these technology models in Autonomie are discrete representative designs.  
Accordingly, the absolute MPGe from Autonomie could vary significantly compared to 
production vehicles in the market in the rulemaking time frame.369   

Another important note about BEVs in this analysis is that the effectiveness of a BEV built in the 
CAFE Model is independent of the effectiveness of the conventional powertrain it replaces.  As 
BEV technology is adopted by vehicles, the CAFE Model uses the Autonomie databases to 
determine the added incremental efficiency that will bring a specific vehicle up to the appropriate 
fuel economy level that allows the manufacturer’s fleet to achieve compliance.  Since the CAFE 
Model considers a variety of vehicle types with differing powertrain types, vehicle technology 
classes, performance criteria, and physical properties (curb weight, etc.), each with a different 
overall effectiveness, the efficiency increment needed to achieve BEV effectiveness will vary 
with each case.  The effectiveness used in the CAFE Model represents the difference between the 
performance of the full vehicle models’ simulations—the full vehicle model representing the 

 
369 Paul Seredynski (2010-12-21). "Decoding Electric Car MPG: With Kilowatt-Hours, Small Is Beautiful". 
Edmunds.com. Retrieved 2011-02-17. https://www.edmunds.com/fuel-economy/decoding-electric-car-mpg.html. 
Last accessed June 2, 2021. 

https://www.edmunds.com/fuel-economy/decoding-electric-car-mpg.html


 

baseline vehicle and the full vehicle model representing the end-state—with all additional fuel 
economy improving technology applied, as discussed in Chapter 2.4. 

As discussed in Chapter 3.3.1, Autonomie follows EPA regulatory guidance using the SAE 
J1634 test procedure to determine incremental effectiveness for BEVs in the CAFE Model 
analysis.  The procedure from this guidance uses the multi-cycle test (MCT) method from SAE 
J1634.  Autonomie’s BEV model starts with the battery at full charge or maximum SOC, and 
simulates the vehicle on the MCT until the battery is empty or has reached a minimum SOC.370   

The resizing algorithm for BEVs is functionally the same as the PHEV algorithm, however, 
BEVs do not use a combustion engine, and thus this component is not included in the BEV 
algorithm.  Initial estimates of motor and battery powers are calculated based on acceleration 
performance, gradeability performance, and vehicle range.  Then, the algorithm successively 
runs four simulation loops to finetune the powertrain size to ensure that all performance and 
operational criteria are maintained.  First, the BEV motor and battery are sized to power the 
vehicle through the US06 cycle.  Next, the battery capacity is adjusted to ensure the energy 
content is sufficient to complete a simulated UDDS+HWFET combined driving cycle, based on 
EPA adjustment factors to represent sticker values, and to meet the vehicle range requirement.  
Finally, the electric motor and battery powers are sized to meet 0-60 and 50-80 mph acceleration 
targets.  If either acceleration simulation loop results in a change to the electric motor size, the 
algorithm repeats all simulation loops.  The algorithm finishes once the acceleration targets are 
met without resizing the electric motors.  Figure 3-19 below shows a simplified sizing algorithm 
for BEVs.  

 
370 The minimum and maximum SOC for BEVs in this analysis is 5% to 95%.  



 

 

Figure 3-19 – Simplified BEV Sizing Algorithm in Autonomie 

For further detailed discussion of how Autonomie simulates BEVs, see the Autonomie model 
documentation.371 

3.3.4.7 Fuel Cell Electric Vehicles 

The fuel-cell system in the analysis is modeled to represent hydrogen consumption as a function 
of the produced power, assuming normal-temperature operating conditions with a peak system 
efficiency of 64 percent.  The system’s specific power is 860 W/kg.  The hydrogen storage 
technology selected is a high-pressure tank with a specific weight of 0.04 kg H2/kg, sized to 
provide a 320-mile range on the 2-cycle tests on the basis of adjusted energy values. 

The sizing algorithm for FCEVs is similar to PHEVs and BEVs, but adapted for the specific 
components of a FCEV powertrain: the electric motor, fuel-cell, hydrogen (H2) fuel tank, and 
battery pack.  During very low power operation, the battery pack alone powers the motor/wheels, 
depleting the battery charge.  At moderate driving loads, the fuel cell provides electrical power 
(generated by consuming stored H2) to the motor and also to charge the battery.  Under heavy 
loads, both the fuel cell and battery deliver electric power to the motor.   

To begin the FCEV sizing algorithm, initial estimates of motor, fuel cell, and battery powers are 
calculated based on criteria for acceleration, gradeability, and vehicle range.  The algorithm 
successively runs four simulation loops to finetune powertrain size, ensuring that all performance 
and operational criteria are maintained.  First, the FCV motor and battery are sized to power the 

 
371 Autonomie model documentation, Chapters 4.6, 4.7, 4.13, 4.14, and 5.8. 



 

vehicle through the US06 cycle.  Next, the on-board mass of H2 fuel, as well as the fuel tank 
mass, are adjusted to ensure the vehicle can complete a simulated 2-cycle test and meet the range 
requirement.  Finally, the electric motor and fuel cell powers are sized accordingly to meet 0-60 
and 50-80 mph acceleration targets.  If either acceleration simulation loop results in a change to 
the electric motor size, the algorithm repeats all simulation loops.  Once the acceleration targets 
are met without resizing the electric motor, the algorithm completes.  Figure 3-20 below shows a 
simplified sizing algorithm for FCVs. 

 

Figure 3-20 – Simplified Fuel Cell Vehicle Sizing Algorithm 

3.3.5 Electrification Costs  

The total cost to electrify a vehicle in this analysis is based on the battery the vehicle requires, 
the non-battery electrification component costs the vehicle requires, and the traditional 
powertrain components that must be added or removed from the vehicle to build the electrified 
powertrain. 

3.3.5.1 Battery Pack Modeling 

We work collaboratively with the experts at Argonne National Laboratory to generate battery 
costs using BatPaC, which is a model designed to calculate the cost of a vehicle battery for a 
specified battery power, energy, and type.  Argonne uses BatPaC to create lookup tables for 
battery cost and mass that the Autonomie simulations reference when a vehicle received an 
electrified powertrain.  The BatPaC battery cost estimates are generated for a base year, in this 
case for MY 2020.  Accordingly, the BatPaC inputs fairly characterize the state of the market in 
MY 2020, including with a widely-utilized cell chemistry, average estimated battery pack 



 

production volume per plant, and plant efficiency (i.e., plant cell yield).  For two specific 
electrified vehicle applications, BEV400 and BEV500, we do not use BatPaC to generate battery 
pack costs.  Rather, we scale the BatPaC-generated BEV300 costs to match the range of BEV400 
and BEV500 vehicles to compute a direct manufacturing cost for those vehicles’ batteries.  

To reflect how we expect batteries could lower in cost over the timeframe considered in the 
analysis, we apply a learning rate to the direct manufacturing cost.  Broadly, the learning rate 
applied in this analysis reflects middle-of-the-road year-over-year improvements until MY 2032, 
and then the learning rates incrementally become shallower as battery technology is expected to 
mature in MY 2033 and beyond.  DOT performed additional analysis with BatPaC to confirm 
that these learning rates are reasonable for this analysis, and this is described in detail below.   

The following sections discuss Argonne’s process for generating battery pack direct 
manufacturing costs, DOT’s scaling for BEV400 and BEV500 costs, and the learning rate for 
battery pack costs. 

3.3.5.1.1 Battery Pack Costs from BatPaC  

BatPaC is a software designed for policymakers and researchers interested in estimating the 
manufacturing cost of lithium-ion batteries for electric drive vehicles.372  The data needed to 
design and build a battery pack, such as dimensions of the cell, estimate of materials, and 
manufacturing cost, are provided in the model, with the manufacturing costs for the designed 
battery based on a “baseline plant” designed for a battery of intermediate size and production 
scale.  BatPaC can be configured with alternative chemistries, charging constraints, battery 
configurations, production volumes, and cost factors for other battery designs by customizing 
these parameters in the modeling tool.  BatPaC calculations are based on a generic pack design 
that reasonably represents the weight and manufacturing cost of batteries deployed 
commercially.  The advantage of using this approach is the ability to model a wide range of 
commercial design specifications for various classes of vehicles. 

For this analysis, we use BatPaC version 4.0 (October 2020 release) to estimate the battery cost 
for electrification technologies.373  Similar to past rulemaking analyses, running individual 
BatPaC simulations for each full vehicle simulation requiring an electrified powertrain would 
have been computationally intensive and impractical, given that approximately 750,000 
simulated vehicles out of the 1.1 million total simulated vehicles have an electrified powertrain.  
Accordingly, Argonne staff built “lookup tables” with BatPaC to provide battery pack 
manufacturing costs, battery pack weights, and battery pack cell capacities for vehicles modeled 
in the large-scale simulation runs. 

Figure 3-21 illustrates the inputs generated in Autonomie to create the BatPaC-based lookup 
tables, and the outputs characterized in the BatPaC-based lookup tables that are used to provide 

 
372 BatPaC: Battery Manufacturing Cost Estimation, Argonne National Laboratory, https://www.anl.gov/tcp/batpac-
battery-manufacturing-cost-estimation. 
373 Nelson, Paul A., Ahmed, Shabbir, Gallagher, Kevin G., and Dees, Dennis W.  Modeling the Performance and 
Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, Third Edition (ANL/CSE-19/2), available at 
https://publications.anl.gov/anlpubs/2019/03/150624.pdf.  To request the BatPaC model used in this analysis, submit 
the request using the instructions at https://www.anl.gov/cse/batpac-model-software. 

https://publications.anl.gov/anlpubs/2019/03/150624.pdf
https://www.anl.gov/cse/batpac-model-software


 

estimates referenced in this NPRM analysis.  The peak power requirement or total energy 
requirement from the Autonomie simulations is used as an input to the BatPaC model, and 
outputs from the model include cost, mass, pack capacity, and voltage.  

 

 

 

BatPaC 
Lookup 
Tables 

Inputs from Autonomie to 
BatPaC: 
Battery total energy (kWhr)
Battery pack peak power 
(kW)  

 

Outputs from BatPaC: 
Battery pack manufacturing cost ($)
Battery pack mass (kg) 
Battery pack capacity (Ah)  
Nominal battery system voltage 
(V) 

 

Figure 3-21 – Flowchart Showing How Autonomie Calls BatPaC Look-up Tables 

While manufacturers’ battery pack specifications are highly heterogeneous in the real world, 
DOT endeavored to develop battery pack costs that fairly encompassed the cost of battery packs 
for vehicles in each technology class with a direct manufacturing cost (DMC) base year of MY 
2020.  As detailed in the BatPaC model documentation, the costs of materials, labor, and capital 
equipment in the model are based upon Argonne’s estimates of 2018 values, “[t]hus, if BatPaC is 
used to calculate the current costs of batteries at current production levels (say 30,000 all-electric 
(BEV) packs per year) we expect it to provide good estimates of current battery prices to OEMs.  
Estimates done for ten years in the future should be at production levels of 100,000 to 500,000 
units per year, which will result in lower pack prices because of the assumed increase in the 
degree of plant automation.”374   

DOT and Argonne looked at vehicle teardown reports to determine commonly-utilized battery 
pack chemistries for each modeled electrification technology.  In addition, we looked at vehicle 
sales volumes in MY 2020 to determine a reasonable base production volume assumption.  The 
Autonomie model documentation details other specific assumptions that Argonne used to 
simulate battery packs and their associated costs for the full vehicle simulation modeling, 
including updates to the battery management unit costs used for this NPRM, and the range of 
power and energy requirements used to bound the lookup tables.375  We discuss specific 
considerations for three notable BatPaC specifications – battery cell chemistry, plant production 
volume, and cell yield – in turn, below. 

Applying learning curves to the battery pack DMC in subsequent analysis years lowers the cost 
such that the cost of a battery pack in any future model year could be representative of the cost to 
manufacture a battery pack, regardless of potentially diverse parameters such as cell chemistry, 
cell format (e.g., cylindrical, prismatic, or pouch), or production volume.  Our assumptions for 
battery pack learning curves are discussed in detail following the discussion of BatPaC inputs 
and assumptions. 

374 Id. at 1-2. 
375 Autonomie model documentation, Chapter 5.9. 



 

3.3.5.1.1.1 Battery Cell Chemistry 

DOT uses two different cell chemistries for this analysis to establish initial battery pack costs.376  
The cell chemistries are selected based on the type of electrified powertrain.  To determine which 
chemistries reasonably represent manufacturer’s packs for different vehicle types in MY 2020, 
DOT and Argonne researched industry trends, surveyed current and future battery cell chemistry, 
and reviewed vehicles in the A2Mac1 database, a widely-used industry database that has 
component level information of the vehicles in the marketplace,377 in addition to other reports.  
The Autonomie model documentation includes more detail about the reports referenced for this 
analysis.378  Table 3-63 shows the initial battery chemistries selected by electrification 
technology for this NPRM analysis.   

Table 3-63 – Battery Chemistries Assumed by Applications for the NPRM Analysis 

Electrification 
Technology 

Battery 
Chemistry 

Micro HEV LFP 
Mild HEV LFP 

HEV NMC622 
PHEV NMC622 
BEV NMC622 

 
DOT selected LFP-G for micro and mild hybrid systems for initial battery pack cost 
calculations.379  We selected the LFP-G chemistry because power and energy requirements for 
micro and mild hybrids are very low, the charge and discharge cycles are high, and the battery 
raw materials are much less expensive than an NMC-based cell chemistry.  

DOT selected NMC622-G for all other electrified vehicle technologies initial battery pack cost 
calculations.380  We recognize there is ongoing research and development in several battery 
chemistry options that may have the potential to reduce costs and increase battery capacity.  
However, in this analysis, the potential cost savings for future battery cell chemistries is 
accounted for in the learning rate cost reduction.  As discussed above, the battery chemistry we 
selected is intended to reasonably represent what is in use in MY 2020, the DMC base year for 
our BatPaC calculations.  As discussed further in the Autonomie model documentation, Argonne 
looked at battery cell teardown analysis reports from the A2Mac1 database and Total Battery 
Consulting (TBS) to evaluate different assumptions for the different modeled electrification 
technologies.  Of the five fully electrified vehicles surveyed for this analysis, four of those 
vehicles used NMC622, and one used NMC532-G.381   

 
376 As discussed below, a cost reduction is built into the battery pack learning curve that assumes potential changes 
to battery chemistry in later years.   
377 A2Mac1:  Automotive Benchmarking.  (Proprietary data).  Retrieved from https://a2mac1.com. 
378 Autonomie model documentation, Chapter 5.9. 
379 Lithium Iron Phosphate (LiFePO4). 
380 Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2). 
381 Autonomie model documentation, Chapter 5.9.2.3. 

https://a2mac1.com/


 

Stakeholders had commented to the 2020 final rule that batteries using NMC811 chemistry had 
either recently come into the market or was imminently coming into the market, and therefore 
DOT should have selected NMC811 as the appropriate chemistry for modeling battery pack 
costs.  Similar to the other technologies considered in this analysis, DOT endeavors to use 
technology that is a reasonable representation of what the industry could achieve in the model 
year or years under consideration, in this case the base DMC year of 2020, as discussed above.  
At the time of this current analysis, the referenced A2Mac1 teardown reports and other reports 
provided the best available information about the range of battery chemistry actually employed 
in the industry.  At the time of writing, DOT still has not found examples of NMC811 in 
commercial application across the industry in a way that DOT believes selecting NMC811 would 
have represented industry average performance in MY 2020.  As discussed in Chapter 3.3.5.1.4, 
DOT did analyze the potential future cost of NMC811 in the composite learning curve generated 
to ensure the battery learning curve projections are reasonable. 

3.3.5.1.1.2 Battery Plant Production Volume 

In practice, a single battery plant can produce different battery packs with either different cell 
chemistries or with the same cell chemistries with different power, energy and thermal strategies 
(for example, with the Hyundai Kona and Hyundai Ioniq, see Table 3-65 below).  However, in 
BatPaC, a battery plant is assumed to manufacture and assemble a specific battery pack design, 
and all cost estimates are based on one single battery plant manufacturing only that specific 
battery pack.  For example, if a manufacturer has more than one EV and each uses a specific 
battery pack design, a BatPaC user would include manufacturing volume assumptions for each 
design separately to represent each plant producing each specific battery pack.  As a 
consequence, we examined battery pack designs for vehicles sold in MY 2020 to determine a 
reasonable manufacturing plant production volume assumption.  We considered each assembly 
line and material processing designed for a specific battery pack and for a specific EV as an 
individual battery plant.  Since battery technologies are still evolving, it will be some time before 
battery cells can be treated as commodity where in the specific numbers of cells are used for 
varying battery pack requirements and everything else remains the same.  Table 3-64 shows the 
assumed baseline battery manufacturing plant production volume for this analysis.  

Table 3-64 – Battery Manufacturing Plant Production Volume Assumption for Different Electrification 
Technologies 

Technology Production 
Volume 

Micro Hybrid 100,000 
Mild Hybrid 100,000 

HEV 100,000 
PHEV20 25,000 
PHEV50 25,000 
BEV200 25,000 
BEV300 25,000 

 



 

Similar to the 2020 final rule, we used BEV sales as a starting point to analyze potential base 
modeled battery manufacturing plant production volume assumptions, as actual production data 
for specific battery manufacturing plants are extremely hard to obtain.  We associate the 
production volume of individual battery packs designed for specific BEVs to the sales volume of 
that specific BEVs because, as explained above, BatPaC assumes that each battery plant 
produces a specific battery pack design.   

We observed battery pack designs for BEVs sold both in the U.S and globally.  Manufacturers 
design BEVs to suit local or regional duty cycles, customer preferences, affordability, supply 
constraints, and local laws.  As a consequence, BEVs sold in the U.S may have different 
performance metrics and battery technology compared to same BEV sold in other parts of the 
world.  For example, the U.S. Tesla Model 3 and Model Y battery packs use an NCA-based 
cell,382 and the same vehicles for sale in China use LFP-G-based cell chemistry packs.383  Even 
though the battery packs are built for the same vehicle model, the battery packs will likely have 
different costs due to the different cell chemistries.384  In addition to cost differences due to 
different chemistries, the total battery capacity, battery pack design, vehicle range, battery pack 
mass, charge and discharge cycles, end of life, and other parameters differ across markets.  As a 
result, we considered U.S. sales and not global sales when estimating battery pack production 
volume. 

Table 3-65 shows the production volume, cell size, cell format and available battery pack 
information for MY 2020 EVs sold in the U.S., using sales volume data from the MY 2020 
Market Data file used in this analysis (sales volumes for all models aggregated by nameplate).  
Review of Table 3-65 shows there is no standardization of the cell size, total energy or the pack 
size across different vehicle manufacturers, or even between different BEVs under the same 
manufacturer.385  Each battery pack is custom designed and sized to account for vehicle 
performance, vehicle class, and packaging space.  Therefore, to align with the BatPaC 
assumption that a plant would only produce battery packs of one specific design, using sales 
volume data for each nameplate, because each nameplate uses a different battery pack design, 
provided a reasonable baseline.  As seen in Table 3-65, averaging MY 2020 BEV production 
volume results in an average production volume of 16,995, which is lower than our assumption 
of 25,000 units for the plant. 

 
382 Nickel Manganese Cobalt Aluminum. 
383 See Electric Vehicle Database, Tesla Model 3 Standard Range Plus LFP, https://ev-database.uk/car/1320/Tesla-
Model-3-Standard-Range-Plus-LFP.   
384 For example, BatPaC estimates the cost of LFP-G to be 15 to 20% cheaper than a similarly sized NCA-based cell 
chemistry battery pack. 
385 See Gustavo Henrique Ruffo, Tesla Model Y Battery Pack Is Different From Model 3: Check Out How It Differs, 
Inside EVs (April 23, 2020), https://insideevs.com/news/414440/tesla-model-y-battery-different-model-3s/; Kyle 
Field, Tesla Model 3 Battery Pack & Battery Cell Teardown Highlights Performance Improvements, Clean Technica 
(January 28, 2019), https://cleantechnica.com/2019/01/28/tesla-model-3-battery-pack-cell-teardown-highlights-
performance-improvements/.  For example, while both the Tesla Model 3 and Model Y use the same cylindrical cell 
format 2170, the battery pack is not identical.  There are a number of differences in the battery pack used in the 
Model Y, such as a protective cover for fuses, caps on the safety switch for high voltage terminals, foam pack 
around outside edge of battery pack, among other differences.  Similarly, in the Model S/X, the battery pack uses a 
serpentine cooling system that routes cooling fluids through the battery pack, whereas in the Model 3, the cooling 
system is a manifold base that has dedicated cooling channels between each row of cells.  Model X has dual motors 
as standard equipment and hence energy (kWh) unlocked from the battery pack is more than Model S. 

https://ev-database.uk/car/1320/Tesla-Model-3-Standard-Range-Plus-LFP
https://ev-database.uk/car/1320/Tesla-Model-3-Standard-Range-Plus-LFP
https://insideevs.com/news/414440/tesla-model-y-battery-different-model-3s/
https://cleantechnica.com/2019/01/28/tesla-model-3-battery-pack-cell-teardown-highlights-performance-improvements/
https://cleantechnica.com/2019/01/28/tesla-model-3-battery-pack-cell-teardown-highlights-performance-improvements/


 

In selecting a battery pack manufacturing volume estimate that will be representative for an 
industry-wide assessment, we sought to accurately account for both the production volumes and 
representative practices of the industry.  Ongoing reductions in battery cost based on increasing 
manufacturing volumes in future model years is discussed in Chapter 3.3.5.1.4.  

Table 3-65 – MY 2020 BEVs by Cell Type and Production Volume 

Vehicle Cell Type 
MY 2020 

Production 
Volume 

Number 
of cells in 
battery 

pack 

No. of cells in 
each module 

Total 
no. of 

modules 

Cell size 
(mm) 

Total 
Energy 
(kWh) 

Porsche Taycan Pouch 4,394 396 12 33  79.2 
Audi e-tron Pouch 793 432 12 36 326 x 96 x 11 95 

Chevrolet Bolt Pouch 28,197 288 24 (2 modules) + 
30 (8 modules) 10 261 x 97 x 13 60 

Hyundai Kona Pouch 6,003 288 180 (5modlues) + 
30 (8 modules) 10 263 x 93 x 14 64 

Hyundai Ioniq  Pouch 2,300 180 30 6  39 
Jaguar I-Pace Pouch 1,858 432 12 36 286 x 98 x 11.4 90 
Nissan Leaf Pouch 11,558 196 8 24 261 x 216 x 7.91 40 
Daimler EQC Pouch 258 384 48, 72 2, 6  80 
BMW i3 Prismatic 1,529 96 12 8 174 x 45 x 126 40 
Mini Cooper Pouch 468     42 

Kia Niro Pouch 965 294 27 (2 modules) + 
30 (8 modules) 10 98 x 301 x 14.7 39 

Tesla Model S Cylindrical 
18650 14,000 6,216 84 74 18 diameter x 65 60 

Tesla Model X Cylindrical 
18650 20,000 6,216 84 74 18 diameter x 65 70 

Tesla Model 3 Cylindrical 
2170 106,000 2,976 96 31 21 diameter x 65 50 

Tesla Model Y Cylindrical 
2170 56,000 2,976 96 31 21 diameter x 65 75 

Total  254,323      

Average  16,955      

 

3.3.5.1.1.3 Cell Yield Assumptions 

Manufacturing plant efficiency is another parameter important to estimate battery pack costs.  
BatPaC version 4.0 defines manufacturing plant efficiency in terms of cell yield, or the number 
of cells that are usable out of the total number of cells that the plant produced.386  An advanced 

 
386 Cells might not be usable because of, for example, manufacturing defects, among other reasons.   



 

and mature battery manufacturing plant can be expected to produce greater than 95% good cells, 
and a cell yield of 95% is suggested as a default value in BatPaC as a forward-looking estimate.  
Because battery pack technology and battery pack manufacturing processes are proprietary, 
however, the data on plant efficiencies are not widely reported.   

In the 2020 final rule, DOT relied on annual cell and pack cost estimates that Argonne conducts 
for the U.S. Department of Energy’s Vehicle Technologies Office (VTO), based on the 
information received from their research projects and sources.  For the years 2019 and 2020, 
Argonne used values of 85% and 87%, respectively for the cell yield.  However, as mentioned 
above, this parameter can vary widely between battery manufacturing plants and values between 
70% and 90% have been reported from a 2016 survey.387  The electrode thicknesses can also 
affect the cell yields – very thin cells or thick cells are difficult to manufacture.388  For this 
NPRM analysis, DOT and Argonne retained the BatPaC default cell yield value of 95%.  DOT 
will consider additional information received between this NPRM and final rule that 
demonstrates a different cell yield value is more representative of the average industry 
performance, if we receive such information. 

3.3.5.1.2 BEV400 and 500 Battery Pack Costs  

New for this analysis are the BEV400 and BEV500 technologies.  We initially examined using 
BatPaC to model the cost and weight of battery packs for BEV400 and BEV500s, however, 
initial values from the model could not be validated and were based on assumptions for smaller 
sized battery packs.  The initial results provided cost and weight estimates for BEV400 battery 
packs out of alignment with current examples of BEV400s in the market, and there are currently 
no examples of BEV500 battery packs in the market against which to validate the pack results.   

As a result, we use a modified form of an analogous estimate to determine the longer range 
battery pack costs.  To generate the costs for BEV400 and BEV500 battery packs, DOT scaled 
the BatPaC-generated costs for BEV300s proportional to the range for BEV400 and BEV500 
vehicles.  Simply put, the initial costs for the BEV400 battery pack equaled 4/3 times the cost of 
the BEV300 battery, and the initial costs for a BEV500 battery pack equaled 5/3 times the cost of 
the BEV300 battery.  The analogous initial costs then had the same learning curve applied, as 
discussed in Chapter 3.3.5.1.4, to determine costs in future model years.   

3.3.5.1.3 Battery Pack Direct Manufacturing Costs 

The following tables show battery pack costs used in this NPRM for HEV, PHEV20, PHEV50, 
BEV200 and BEV300 for all vehicle technology classes.  The tables shown here demonstrate 
how the cost per kWh varies with the size of the battery pack.  While the overall cost of a battery 
pack will go up for higher kWh battery packs, the cost per kWh goes down.  This represents the 

 
387 Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations, D 
Chung, E Elgqvist, and S Santhanagopalan, Report No. NREL/TP-6A20-66086 (April 2016), 
https://www.nrel.gov/docs/fy16osti/66086.pdf. 
388 Apurba Sakti, Jeremy J. Michalek, Erica R.H. Fuchs, Jay F. Whitacre, A techno-economic analysis and 
optimization of Li-ion batteries for light-duty passenger vehicle electrification, Journal of Power Sources, Volume 
273, Pages 966-980 (2015). 



 

cost of hardware that is needed in all battery packs, but is deferred across more kWh in larger 
packs, which reduces the per kWh cost.   

The full range of BatPaC-generated battery direct manufacturing costs is located in 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx.  Note that these charts represent the direct 
manufacturing cost using a dollar per kWh metric; battery absolute costs used in the analysis by 
technology key can be found in the Battery Cost file.   

Table 3-66 – HEV Battery Pack Costs - Compact to Midsize 

$/kW at Pack Level (Total Energy) for Compact to Midsize Vehicle Technology Class 

HEV Energy, kWh 
0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Po
w

er
, k

W
 

10.0 $105 $106 $108 $110 $112 $114 $116 $117 $119 $121 $123 $124 
20.0 $55 $56 $57 $58 $59 $59 $60 $61 $62 $63 $64 $65 
30.0 $39 $39 $39 $40 $41 $41 $42 $42 $43 $44 $44 $45 
40.0 $31 $31 $31 $31 $32 $32 $33 $33 $34 $34 $34 $35 
60.0    $23 $23 $23 $24 $24 $24 $24 $25 $25 
80.0      $19 $19 $19 $19 $20 $20 $20 

100.0        $17 $17 $17 $17 $17 
 

Table 3-67 – HEV Battery Pack Costs - SUV to Pickup 

$/kW at Pack Level (Total Energy) for SUV to Pickup Vehicle Technology Class 

HEV 
Energy, kWh 

0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Po
w

er
, k

W
 

10.0 $123 $124 $126 $128 $130 $132 $134 $135 $137 $139 $141 $142 
20.0 $64 $64 $65 $66 $67 $68 $69 $70 $71 $71 $72 $73 
30.0 $44 $44 $45 $45 $46 $47 $47 $48 $48 $49 $50 $50 
40.0 $34 $35 $35 $35 $36 $36 $37 $37 $37 $38 $38 $39 
60.0   $25 $25 $25 $26 $26 $26 $26 $27 $27 $27 
80.0      $20 $21 $21 $21 $21 $21 $21 

100.0        $18 $18 $18 $18 $18 
 



 

Table 3-68 – Battery Costs for PHEV20 – Compact to Midsize  

$/kW at Pack Level (Total Energy) for Compact to 
Midsize Vehicle Technology Class 

PHEV20 
Energy, kWh 

5.0 10.0 20.0 

Po
w

er
, k

W
 

30.0 $518 $321 $219 
40.0 $522 $323 $219 
60.0 $531 $326 $221 
80.0 $560 $329 $222 
100.0 $574 $334 $224 
120.0 $589 $340 $226 
140.0 $614 $352 $227 
160.0 $641 $362 $229 
200.0  $383 $233 
240.0  $402 $242 
280.0  $427 $250 

 

Table 3-69 – Battery Packs costs for PHEV20 – SUV to Pickup  

$/kWh at Pack Level (Total Energy) for SUV to 
Pickup Vehicle Technology Class 

PHEV20 
Energy, kWh 

5.0 10.0 20.0 

Po
w

er
, k

W
 

30.0 $562 $339 $228 
40.0 $565 $340 $228 
60.0 $573 $343 $230 
80.0 $592 $346 $231 
100.0 $605 $349 $232 
120.0 $619 $361 $234 
140.0 $642 $366 $235 
160.0 $668 $375 $237 
200.0  $395 $240 
240.0  $413 $248 
280.0  $437 $255 

 



 

Table 3-70 – Battery Pack Costs for PHEV50 – Compact to Midsize 

$/kWh at Pack Level (Total Energy) for Compact to Midsize Vehicle 
Technology Class 

PHEV50 
Energy, kWh 

10.0 20.0 30.0 40.0 50.0 60.0 
Po

w
er

, k
W

 
60.0 $419 $266 $213 $186 $169 $158 
80.0 $423 $268 $214 $187 $170 $158 
100.0 $426 $269 $215 $187 $170 $159 
120.0 $431 $271 $216 $188 $171 $159 
140.0 $437 $272 $216 $189 $171 $160 
160.0 $446 $274 $217 $189 $172 $160 
200.0 $467 $278 $220 $191 $173 $161 
240.0 $485 $284 $222 $192 $174 $162 
280.0 $508 $291 $224 $194 $175 $163 

 

Table 3-71 – Battery Packs Costs for PHEV50 – SUV to Pickup 

$/kWh at Pack Level (Total Energy) for SUV to Pickup Vehicle 
Technology Class 

PHEV50 
Energy, kWh 

10.0 20.0 30.0 40.0 50.0 60.0 

Po
w

er
, k

W
 

60.0 $425 $269 $215 $187 $170 $159 
80.0 $428 $271 $216 $188 $171 $159 
100.0 $431 $272 $216 $189 $171 $160 
120.0 $436 $273 $217 $189 $172 $160 
140.0 $442 $275 $218 $190 $172 $161 
160.0 $451 $276 $219 $191 $173 $161 
200.0 $471 $280 $221 $192 $174 $162 
240.0 $489 $286 $223 $193 $175 $163 
280.0 $512 $293 $226 $195 $176 $164 

 



 

Table 3-72 – Battery Packs Costs for BEV200 – Compact to Midsize 

$/kWh at Pack Level (Total Energy) for Compact to 
Midsize Vehicle Technology Class 

BEV200 
Energy, kWh 

30.0 50.0 70.0 90.0 

Po
w

er
, k

W
 

20.0 $231 $178 $155 $140 
40.0 $233 $179 $155 $141 
60.0 $234 $180 $156 $141 
80.0 $235 $181 $156 $142 
100.0 $237 $182 $157 $142 
120.0 $238 $182 $157 $143 
140.0 $240 $183 $158 $143 
160.0 $241 $184 $159 $143 
180.0 $243 $185 $159 $144 
200.0 $244 $186 $160 $144 
240.0 $248 $188 $161 $145 

 

Table 3-73 – Battery Packs Costs for BEV200 – SUV to Pickup 

$/kWh at Pack Level (Total Energy) for SUV to Pick up 
Vehicle Technology Class 

BEV200 
Energy, kWh 

30.0 50.0 70.0 90.0 120.0 

Po
w

er
, k

W
 

20.0 $244 $186 $160 $145 $131 
40.0 $245 $187 $161 $145 $132 
60.0 $246 $188 $161 $146 $132 
80.0 $248 $188 $162 $146 $132 
100.0 $249 $189 $162 $146 $132 
120.0 $250 $190 $163 $147 $133 
140.0 $251 $190 $163 $147 $133 
160.0 $252 $191 $164 $147 $133 
180.0 $254 $192 $164 $148 $134 
200.0 $255 $193 $165 $148 $134 
240.0 $258 $194 $166 $149 $134 
280.0 $261 $196 $167 $150 $135 
320.0 $267 $197 $168 $151 $136 
400.0 $280 $201 $170 $152 $137 

 



 

Table 3-74 – Battery Packs Costs for BEV300 – Compact to Midsize Vehicle Technology Class 

$/kWh at Pack Level (Total Energy) for Compact to 
Midsize Vehicle Technology Class 

BEV300 
Energy, kWh 

30.0 50.0 70.0 90.0 120.0 

Po
w

er
, k

W
 

20.0 $244 $186 $160 $145 $131 
40.0 $245 $187 $161 $145 $132 
60.0 $246 $188 $161 $146 $132 
80.0 $248 $188 $162 $146 $132 
100.0 $249 $189 $162 $146 $132 
120.0 $250 $190 $163 $147 $133 
140.0 $251 $190 $163 $147 $133 
160.0 $252 $191 $164 $147 $133 
180.0 $254 $192 $164 $148 $134 
200.0 $255 $193 $165 $148 $134 
240.0 $258 $194 $166 $149 $134 

 

Table 3-75 – Battery Packs Costs for BEV300 – SUV to Pickup 

$/kWh at Pack Level (Total Energy) for SUV to Pickup Vehicle Technology 
Class 

BEV300 
Energy, kWh 

30.0 50.0 70.0 90.0 120.0 140.0 160.0 

Po
w

er
, k

W
 

20.0 $252 $191 $164 $148 $133 $127 $122 
40.0 $253 $192 $164 $148 $133 $127 $122 
60.0 $254 $193 $165 $148 $134 $127 $122 
80.0 $255 $193 $165 $149 $134 $127 $122 
100.0 $257 $194 $166 $149 $134 $128 $122 
120.0 $258 $194 $166 $149 $134 $128 $123 
140.0 $259 $195 $167 $150 $135 $128 $123 
160.0 $260 $196 $167 $150 $135 $128 $123 
180.0 $261 $196 $167 $151 $135 $129 $123 
200.0 $262 $197 $168 $151 $135 $129 $123 
240.0 $265 $198 $169 $152 $136 $129 $124 
280.0 $268 $200 $170 $152 $136 $130 $124 
320.0 $273 $201 $171 $153 $137 $130 $125 
400.0 $286 $204 $173 $155 $138 $131 $125 

 



 

3.3.5.1.4 Battery Pack Learning Curves 

A battery pack constitutes 20 percent to 30 percent of the vehicle curb weight and up to one third 
the cost of battery electric vehicles.389  As a consequence of the rapid changes in battery 
materials, production, and other factors, there is inherent uncertainty in estimating the cost of 
future battery packs.  

DOT continues to use the battery learning curves developed using BatPaC for the 2018 NPRM 
and 2020 final rule.390  For the 2018 NPRM, DOT had used BatPaC v3.0 to model costs for a 
range of battery production volume inputs.  The range of production volumes were selected to 
represent estimated volumes of production for MY 2015, MY 2020, MY 2025.  DOT identified 
the change in cost for the estimated changes in production volumes linked to model years and 
used this rate to develop the learning curves used out to MY 2032.  For MYs 2033 to 2050, DOT 
scaled down the learning rate in steps based on literature values and market research.  DOT 
discussed in the 2020 final rule that this learning curve was intended to be agnostic to future 
advances in battery chemistry, production volume necessary to achieve economies of scale, or 
energy density of the battery pack.391 

DOT determined this approach was a reasonable method for determining representative learning 
curves for manufacturing technologies that are currently rapidly changing and uncertain.  
However, based on stakeholder feedback to the 2020 final rule, DOT reexamined these learning 
curves.  The learning curve analysis performed here uses a similar approach as the previous 
learning curve analysis but uses updated modeling tools and inputs.  The learning curve analysis 
generates a composite learning curve using BatPaC v4.0 (October 2020 release) and accounts for 
a range of potential parameters.  The analysis discussed in this section did not result in a change 
to the existing values, but confirmed that the ~4.5% year over year reduction in battery costs 
calculated for the 2018 NPRM and 2020 final rule for model years through 2032 reasonably 
represented a potential future pathway for electric vehicle battery development. 

For the current analysis, we use BatPaC to model the input parameters described above – plant 
production volume, battery chemistry, and cell yield – and their effect on battery cost.  While 
there are a range of parameters that can ultimately influence battery manufacturing cost, 
including other vehicle improvements (e.g., mass reduction technology, aerodynamic 
improvements, or tire rolling resistance improvements all effect the size and energy of a battery 
required to propel a vehicle where all else is equal) and the availability of materials required to 
manufacture the battery,392 we believe these parameters have a meaningful influence on the total 
cost of a battery pack.  

 
389 Based on NHTSA review of BEV vehicle curb weight, battery pack mass, and cost information from the A2Mac1 
database.  
390 See 85 FR 24174, 24510 (April 30, 2020). 
391 Id. 
392 The cost of raw material also has a meaningful influence on the future cost of the battery pack.  As the production 
volume goes up, the demand for battery critical raw materials also goes up, which has an offsetting impact on the 
efficiency gains achieved through economies of scale, improved plant efficiency, and advanced battery cell 
chemistries.  We do not consider future battery raw material price fluctuations for this analysis, however that may be 
an area for further exploration in future analyses. 



 

DOT uses these parameters to determine a composite learning curve.  The composite learning 
curve here is a blended learning curve that accounts for our best estimate of changes, over time, 
in production volume, cell chemistry, and plant efficiency.  We use the composite learning curve 
developed here to estimate future battery pack direct manufacturing costs and compare those 
future costs to estimated future costs from various other sources.   

We use the following assumptions as a base for the composite battery learning curve analysis.  
These assumptions are selected based on existing commercially available technologies and 
anticipated increases in production volume, and serve as a data “snapshot” representative of the 
battery technology advancements anticipated rulemaking timeframe: 

1. The base year production volume assumption is 25,000 battery pack units manufactured 
in a plant.  As explained in Chapter 3.3.5.1.1.2, DOT selected a production volume of 
25,000 units in the base year 2020 based on BEV sales in MY 2020.  DOT determined it 
is reasonable to use sales as a proxy for production volume, as battery packs are generally 
uniquely designed for each vehicle and likely need unique production lines for each 
design.   

2. Production volume increases linearly in steps of 25,000 units per battery pack design per 
year per plant.  This assumption is based on an analysis of Tesla’s historical ramp up of 
battery pack production.  We looked at Tesla's U.S. sales volume data for MYs 2012-
2017 to determine the rate of increase that a manufacturer could achieve for battery 
manufacturing year over year.393  Although Tesla's sales data for MYs 2012-2017 does 
not increase in a linear fashion, linearizing the data shows an approximately 25,000 unit 
year over year increase. 

3. The cost reduction that results from a production volume increase is only relative to the 
previous production volume. 

4. The ~4.5% year over year learning rate is applicable until MY 2032.  The learning rates 
for post-MY 2033 are the same as those used in the 2020 final rule.394   

5. DOT anticipates cell chemistry improvements will happen sometime during the middle or 
later part of this decade.  For this analysis we limited the battery cell chemistry selection 
to NMC622-G and NMC811-G.  We acknowledge there are cell chemistries currently 
being researched that reduce or eliminate cobalt, or change the electrolyte from liquid to 
solid, however, at this time we do not have sufficient data to estimate cost for those 
advanced battery cell chemistries.  Therefore, we assume that for near term (2024-2027) 
and midterm (2027-2032) cost projection, lithium ion NMC will continue to be the 
predominant battery cell chemistry. 

 
393 See CAFE Public Information Center, Tesla Manufacturer Performance Report, 
https://one.nhtsa.gov/cafe_pic/cafe_pic_home.htm. 
394 For MY 2033 - MY 2035, the learning rate slows from 4.5 percent per year to 4.0 percent per year as production 
volume reaches 200,000 plus units per year.  For MY 2036 - MY 2039, we anticipate a much lower learning rate of 
2.0 percent per year as battery technology starts to approach some level of maturity and cost stability and for MY 
2039 - MY 2044, the learning rate further slows down to 1.5 percent per year, and finally for MY 2044 - MY 2050, 
the learning rate is just around 0.3 percent.  The rate of reduction in learning rate for the out years from MY 2036 is 
based on similar learning rate reduction for other commodity fuel saving technology components such as automatic 
transmissions. 



 

6. We limited maximum production to 200,000 units per battery pack design, per year, per 
plant.  This assumption is based on the Tesla Gigafactory theoretical maximum capacity 
of 35 GWh, where there are 2 production lines running for 2 different types of BEVs: one 
production line of 200,000 units manufacturing 75 kWh battery pack (similar Model 3 
with 200 plus range) and second production line of 200,000 units manufacturing 85 kWh 
battery pack (similar to Model Y with 300 plus range).  The total capacity of the plant 
would be 32 GWh. 

7. DOT assumes a high level of uncertainty in this learning curve analysis and characterizes 
the uncertainties with a sensitivity analysis. 

The learning curve analysis started by comparing the DMC of battery packs for each of the 
battery cell chemistry as a function of production volume for BEV 200 vehicles. 395  A 
production volume of 25,000 units is assumed as the baseline production volume and successive 
production volume increases were modeled in 25,000 unit increments.  The increase in 
production volumes represent expected increases in production volume each year beyond the 
base year.  See Table 3-76 for the total battery pack costs as a function of production volume for 
battery packs using NMC622-G cell chemistry.  Table 3-77 shows the percentage cost reduction 
as a function of production volume for battery packs using NMC622-G cell chemistry.  The 
DMCs shows that as production volume increases, there is a decrease in battery pack cost.   

We assume, across industry, different battery manufacturing plants are functioning at unique 
points within the production volume range considered in this learning curve analysis, and each 
plant is increasing the production volume in subsequent years.  In Table 3-77, we calculate the 
average cost reduction across all vehicle classes to be 3.3 percent year over year as a function of 
production volume.  The averaging is performed to linearize the cost reduction across all 
manufacturers, and create a value representative of cost reduction for the whole industry which 
includes plants first starting at ~25,000 battery packs per year and plants that are already near 
~200,000 battery packs per year.  For example, battery manufacturing plant A is producing 
50,000 units per year and increases production to 75,000 units, achieving a 4.7 percent reduction 
in cost.  Similarly, battery plant B goes from producing 125,000 units to 150,000 units per year, 
achieving a 1.9 percent reduction in cost.  The industry average in this example (considering 
only 2 plants) would be 3.3 percent.  In reality, there are many more plants with different rates of 
production, however we believe that the resulting overall average cost decrease based on 
production volume alone of 3.3 percent is reasonable.  

The same production volume analysis was repeated using the NMC811-G battery chemistry.  
The analysis with the new chemistry also shows an overall average cost reduction of 3.3 percent 
year over year, based on increased production volume.  The BatPaC simulation results are shown 
in Table 3-78 and Table 3-79.  

In the second step, the cost reductions when battery cell chemistry changes from NMC622-G to 
NMC811-G for different levels of production volume are determined and shown in Table 3-80.  
The change in chemistry resulted in an average of 5.2 percent cost reduction. 

 
395 Battery sizes vary based on the other technologies on the vehicle; the tables below assume a vehicle with MR0, 
ROLL0, and AERO0.  



 

Table 3-76 – Proposed Battery Pack Direct Manufacturing Cost (DMC) as a Function of Production Volume for BEV200, Non-performance Vehicles, 
Using NMC622-G as Battery Cell Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC622-G, Cell Yield 95%396 

Year Production 
Volume 

Compact Car 
60 kWh Battery Pack 

Medium Car 
65 kWh Battery Pack 

Medium SUV 
82 kWh Battery Pack 

Pickup 
95 kWh Battery Pack 

Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh 

Base Year 25,000 $10,060 $167397 $10,581 $163 $12,509 $153 $13,862 $146 
Base year +1 50,000 $9,188 $153 $9,683 $149 $11,475 $140 $12,759 $134 
Base year + 2 75,000 $8,756 $146 $9,237 $142 $10,959 $134 $12,207 $128 
Base year + 3 100,000 $8,478 $141 $8,949 $138 $10,626 $130 $11,850 $125 
Base year + 4 125,000 $8,276 $138 $8,742 $134 $10,385 $127 $11,591 $122 
Base year + 5 150,000 $8,121 $135 $8,581 $132 $10,198 $124 $11,391 $120 
Base year + 6 175,000 $7,995 $133 $8,451 $130 $10,047 $123 $11,228 $118 
Base year + 7 200,000 $7,890 $132 $8,342 $128 $9,920 $121 $11,092 $117 

 

 
396 The numbers here reflect $/kWh at the pack level and not at the cell level.  The total cost of the pack for pickups is higher relative to another vehicle class.  
Since bigger packs have more cells, the number of cells in production have to increase in proportion to the number of packs, and due to economies of scale 
achieved for higher number of battery packs, cell cost as measured in $/kWh. 
397 Battery Pack cost in $/kWh, Total Cost/Battery Energy Rating, $10,060/60 = $168/kWh for NMC622-G, Cell Yield 95% and Production Volume=25,000. 



 

Table 3-77 – Percentage Cost Reduction as a Function of Production Volume for BEV200, Non-performance Vehicles, Using NMC622-G as Battery Cell 
Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC622-G, Cell Yield 95% 

Year Production 
Volume 

Compact Car 
60 kWh Battery 

Pack 

Medium Car 
65 kWh Battery 

Pack 

Medium SUV 
82 kWh Battery 

Pack 

Pickup 
95 kWh Battery 

Pack 
Base year 25,000 - - - - 

Base Year + 1 50,000 -8.7% -8.5% -8.3% -8.0% 
Base Year + 2 75,000 -4.7% -4.6% -4.5% -4.3% 
Base Year + 3 100,000 -3.2% -3.1% -3.0% -2.9% 
Base Year + 4 125,000 -2.4% -2.3% -2.3% -2.2% 
Base Year + 5 150,000 -1.9% -1.8% -1.8% -1.7% 
Base Year + 6 175,000 -1.6% -1.5% -1.5% -1.4% 
Base Year + 7 200,000 -1.3% -1.3% -1.3% -1.2% 

Average -3.4% -3.3% -3.2% -3.1% 
Average across all vehicle 

technology class -3.3% 

 



 

Table 3-78 – Battery Pack DMC as a Function of Production Volume for BEV200, Non-performance Using NMC811-G as Battery Cell Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC811-G, Cell Yield 95% 

Year Production 
Volume 

Compact Car 
60 kWh Battery Pack 

Medium Car 
65 kWh Battery Pack 

Medium SUV 
82 kWh Battery Pack 

Pickup 
95 kWh Battery Pack 

Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh 

Base year 25,000 $9,595 $160 $10,062 $155 $11,899 $145 $13,165 $139 
Base year + 1 50,000 $8,749 $146 $9,191 $141 $10,896 $133 $12,098 $127 
Base year + 2 75,000 $8,329 $139 $8,758 $135 $10,396 $127 $11,565 $122 
Base year + 3 100,000 $8,060 $134 $8,480 $130 $10,074 $123 $11,220 $118 
Base year + 4 125,000 $7,865 $131 $8,279 $127 $9,841 $120 $10,970 $115 
Base year + 5 150,000 $7,714 $129 $8,123 $125 $9,661 $118 $10,777 $113 
Base year + 6 175,000 $7,593 $127 $7,998 $123 $9,515 $116 $10,620 $112 
Base year +7 200,000 $7,491 $125 $7,893 $121 $9,392 $115 $10,489 $110 

 



 

Table 3-79 – Percentage Cost Reduction as a Function of Production Volume for BEV200, Non-performance Using NMC811-G as Battery Cell 
Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC811-G, Cell Yield 95% 

 Production 
Volume 

Compact Car 
60 kWh Battery 

Pack 

Medium Car 
65 kWh Battery 

Pack 

Medium SUV 
82 kWh Battery 

Pack 

Pickup 
95 kWh Battery 

Pack 
Base Year 25,000 - - - - 

Base Year + 1 50,000 -8.8% -8.7% -8.4% -8.1% 
Base Year + 2 75,000 -4.8% -4.7% -4.6% -4.4% 
Base Year + 3 100,000 -3.2% -3.2% -3.1% -3.0% 
Base Year + 4 125,000 -2.4% -2.4% -2.3% -2.2% 
Base Year + 5 150,000 -1.9% -1.9% -1.8% -1.8% 
Base Year + 6 175,000 -1.6% -1.5% -1.5% -1.5% 
Base Year + 7 200,000 -1.3% -1.3% -1.3% -1.2% 

Average -3.4% -3.4% -3.3% -3.2% 
Average across vehicle Technology 

class -3.3% 

 



 

Table 3-80 – Percentage Cost Reduction due to Change in Battery Cell Chemistry (NMC622-G to NMC811-G) 

BEV200 (Non-Performance), Cell Chemistry NMC622-G to NMC811-G, Cell Yield 95% 

 Production 
Volume 

Compact Car 
60 kWh Battery 

Pack 

Medium Car 
65 kWh Battery 

Pack 

Medium SUV 
82 kWh Battery 

Pack 

Pickup 
95 kWh Battery 

Pack 
Base Year 25,000 -4.6% -4.9% -4.9% -5.0% 

Base Year + 1 50,000 -4.8% -5.1% -5.0% -5.2% 
Base Year + 2 75,000 -4.9% -5.2% -5.1% -5.3% 
Base Year + 3 100,000 -4.9% -5.2% -5.2% -5.3% 
Base Year + 4 125,000 -5.0% -5.3% -5.2% -5.4% 
Base Year + 5 150,000 -5.0% -5.3% -5.3% -5.4% 
Base Year + 6 175,000 -5.0% -5.4% -5.3% -5.4% 
Base Year + 7 200,000 -5.1% -5.4% -5.3% -5.4% 

Average -4.9% -5.2% -5.2% -5.3% 
Average across vehicle Technology 

classes -5.2% 

 

 



 

After considering cell chemistry, we computed the total cost of the battery pack as a function of 
manufacturing cell yield values.  Cell yield is a measure of plant efficiency for manufacturing 
battery packs.  A higher cell yield means more efficient use of raw materials, processing of raw 
materials, energy, floor space, machinery, labor, and other inputs, which results in lower cost.  A 
lower cell yield means some of the inputs are not efficiently used, which means more raw 
materials, energy, labor, and other inputs are used to produce same number of battery packs, 
resulting in higher battery pack costs.  In the past rulemakings, we used a cell yield value of 85 
percent, however, the default value in BatPaC is 95 percent.  Table 3-76 above shows battery 
pack costs for NMC622-G with cell yield of 95 percent, and Table 3-81 and Table 3-82 shows 
total cost of battery pack for cell yield of 90 percent and 85 percent, respectively, for NMC622-
G.   

Table 3-81 – Total Battery Pack Cost for Cell Yield of 90 Percent 

90% Cell Yield; BEV 200 Non-Performance, Cell Chemistry NMC622-G 

Production 
Volume 

Compact Car 
(60 kwh) 

Medium Car 
(65 kwh)  Medium SUV 

(82 kwh) 
Pickup 

(95 kwh) 
Total 
Cost $/kWh Total 

Cost $/kWh Total 
Cost $/kWh Total 

Cost $/kWh 

25,000 $10,389 $173 $10,929 $168 $12,933 $158 $14,339 $151 
50,000 $9,492 $158 $10,005 $154 $11,868 $145 $13,202 $139 
75,000 $9,046 $151 $9,544 $147 $11,335 $138 $12,632 $133 

100,000 $8,759 $146 $9,248 $142 $10,992 $134 $12,264 $129 
125,000 $8,551 $143 $9,034 $139 $10,743 $131 $11,997 $126 
150,000 $8,391 $140 $8,868 $136 $10,550 $129 $11,789 $124 
175,000 $8,261 $138 $8,773 $135 $10,393 $127 $11,621 $122 
200,000 $8,153 $136 $8,621 $133 $10,263 $125 $11,480 $121 

 

Table 3-82 – Total Battery Pack Cost for Cell Yield of 85 Percent 

85% Cell Yield; BEV 200 Non-Performance, Cell Chemistry NMC622-G 
 Compact Car 

(60 kwh) 
Medium Car 

(65 kwh) 
Medium SUV 

(82 kwh) 
Pickup 

(95 kwh) 
Production 

Volume 
Total 
Cost $/kWh Total 

Cost $/kWh Total 
Cost $/kWh Total 

Cost $/kWh 

25,000 $10,755 $179 $11,317 $174 $13,405 $163 $14,869 $157 
50,000 $9,828 $164 $10,362 $159 $12,304 $150 $13,694 $144 
75,000 $9,368 $156 $9,887 $152 $11,753 $143 $13,105 $138 

100,000 $9,071 $151 $9,580 $147 $11,398 $139 $12,724 $134 
125,000 $8,857 $148 $9,359 $144 $11,141 $136 $12,447 $131 
150,000 $8,691 $145 $9,187 $141 $10,941 $133 $12,223 $129 
175,000 $8,556 $143 $9,048 $139 $10,779 $131 $12,058 $127 
200,000 $8,444 $141 $8,932 $137 $10,644 $130 $11,913 $125 

 



 

When comparing the total cost of battery pack for a cell yield of 95 percent to a cell yield of 90 
percent, there is on average an increase in cost by 3.4 percent.  Similarly, when comparing the 
total cost of a battery pack produced in a plant with a cell yield of 90 percent to a pack produced 
in a plant with a cell yield of 85 percent, there is an average 3.6 percent increase in cost.  This 
demonstrates that for every 5 percent decrease in cell yield, there is approximately a 3.5 percent 
increase in battery pack cost.   

Table 3-83 summarizes the individual effects of factors affecting cost of battery packs: (a) production 
volume, (b) battery cell chemistry and (c) cell yield considered for developing a composite learning 
curve.  The individual values determined provide an indication of the possible range a composite learning 
curve should fall within.  

Table 3-83 – Summary List of Factors Affecting Battery Pack Cost Considered for Developing Learning 
Curve 

Factors which Influence the Battery Cost Learning Curve 
Average cost reduction from increasing production volume -3.26% 
Average cost reduction due to change in battery chemistry -5.15% 
Average cost reduction due improved plant efficiency (cell yield) -3.5% 

 
Table 3-84 shows the factor values used to estimate an average battery pack composite cost 
reduction, over time.  The table includes cost reductions due to changes in cell chemistry and an 
increase in production volume over time.  We believe that during the proposed rulemaking time 
frame, the industry will continue to use NMC622-G as the predominant battery cell chemistry 
but will transition to more advanced cell chemistries like NMC811-G.  Actual cell yield in the 
industry may be lower, but we have assumed a cell yield of 95 percent regardless of cell 
chemistry.  Table 3-85 shows the progressive percent battery pack cost reduction for the costs 
shown in Table 3-84 as the simulated factors change across model years.  Averaging the percent 
cost reduction across the simulated model years and vehicle technology classes results in a 4.49 
percent year over year reduction in costs.   



 

Table 3-84 – Values Used to Estimate Battery Cost Reduction Over Time 

BEV200 (Non-Performance) 

Model Year Battery 
Chemistry 

Cell 
Yield 

Production 
Volume 

Compact Car 
60 kWh Battery 

Medium Car 
65 kWh Battery 

Medium SUV 
82 kWh Battery 

Pickup 
95 kWh Battery 

Total 
Cost $/kWh Total Cost $/kWh Total 

Cost $/kWh Total 
Cost $/kWh 

Base Year NMC622 95% 25,000 $10,060 $168 $10,581 $163 $12,509 $153 $13,862 $146 
Base Year + 1 NMC622 95% 75,000 $8,756 $146 $9,237 $142 $10,959 $134 $12,207 $128 
Base Year + 2 NMC622 95% 100,000 $8,478 $141 $8,949 $138 $10,626 $130 $11,850 $125 
Base Year + 3 NMC811 95% 100,000 $8,060 $139 $8,480 $135 $10,074 $127 $11,220 $122 
Base Year + 4 NMC811 95% 125,000 $7,865 $131 $8,279 $127 $9,841 $120 $10,970 $115 
Base Year + 5 NMC811 95% 150,000 $7,714 $129 $8,123 $125 $9,661 $118 $10,777 $113 
Base Year + 6 NMC811 95% 175,000  $7,571 $126 $7,975 $123 $9,488 $116 $10,592 $111 

 



 

Table 3-85 – Percentage Reduction in Battery Costs from Composite Values Used to Estimate Battery Cost Reduction Over Time 

BEV200 (Non-Performance) 

Model 
Year 

Battery 
Chemistry 

Cell 
Yield 

Production 
Volume 

Compact Car 
60 kWh 
Battery 

Medium Car 
65 kWh 
Battery 

Medium SUV 
82 kWh 
Battery 

Pickup 
95 kWh 
Battery 

Base Year NMC622-G 95% 25000 - - - - 
Base Year 

+ 1 NMC622-G 95% 75000 -12.96% -12.70% -12.39% -11.94% 

Base Year 
+ 2 NMC622-G 95% 100000 -3.17% -3.12% -3.04% -2.92% 

Base Year 
+ 3 NMC811-G 95% 100000 -4.93% -5.24% -5.19% -5.32% 

Base Year 
+ 4 NMC811-G 95% 125000 -2.42% -2.37% -2.31% -2.23% 

Base Year 
+ 5 NMC811-G 95% 150000 -1.92% -1.88% -1.83% -1.76% 

Base Year 
+ 6 NMC811-G 95% 175,000 -2.89% -1.82% -1.79% -1.72% 

Average -4.72% -4.52% -4.43% -4.31% 
Average Across all Tech Vehicle Classes -4.49% 

 



 

 
Using the calculated 4.49 percent average annual cost reduction, we constructed a linearized 
battery pack cost reduction curve, shown in Figure 3-22, showing the cost reduction year over 
year.  The costs shown in Figure 3-22 is a $/kWh direct manufacturing cost estimate for a 
compact vehicle with a 60 kWh battery pack with no road load technology applied (i.e., MR0, 
ROLL0, and AERO0).  

 

 
Figure 3-22 – Battery Learning Curve 

Using the cost estimates from the learning curve, we compared the cost estimates from other 
sources.  Table 3-86 below shows a comparison of battery cost estimates from this analysis and 
other sources.  Note that the costs presented in this table represent the cost to manufacture the 
battery pack, i.e., the direct manufacturing cost, and not the cost of the pack to the OEM.  The 
sources used to create this table did not uniformly distinguish a DMC source year, so some 
values vary slightly based on inflation.  



 

Table 3-86 – Battery Cost Estimates from Other Sources ($/kWh) 

 2018-2020398 2025 2030 2045 

UBS399 $188 $136   

BCG400  $137 $117  

ICCT401 $175-177 $104 $64-73  

BNEF EV Outlook 2019402 $176403 $87 $62  

MIT404 $193 $146 $127405  

DOE VTO406 – based on usable energy  $170 $125 $98 $80 
2021 NAS Report  $130 $80  
NHTSA Estimate  
from BatPaC version 4.0 (Oct 2020) $167407 $132 $106 $77 

 
Each individual report uses a certain set of assumptions to arrive at a rate of cost reduction.  
Among all the different cost estimates, Bloomberg New Energy Finance (BNEF) has the most 
aggressive year-over-year cost reductions, based on the historical battery cost learning rate of 
18% and their battery demand forecast.408  Similar to other sources of cost estimates BNEF 
assumes improved battery chemistry and battery density increasing greater than 200Wh/kg by 
2030.  In order for the battery manufacturer to achieve economies of scale, BNEF assumes a 
global battery manufacturing facility capable of producing battery packs for both stationary 
energy storage and vehicle applications.  

 
398 Sources generally provided estimates for 2018 or 2020. 
399 Hummel et al., UBS Evidence Lab Electric Car Teardown – Disruption Ahead?, UBS (May 18, 2017), 
https://neo.ubs.com/shared/d1ZTxnvF2k/. 
400 Mosquet et al., The Electric Car Tipping Point, BCG (Jan. 11, 2018), 
https://www.bcg.com/publications/2018/electric-car-tipping-point.aspx.  This study provided cell cost estimates that 
the agencies converted to pack cost estimates using a multiplier of 1.3, as outlined in the Draft TAR at 5-124. 
401 Nic Lutsey and Michael Nicholas, Update on electric vehicle costs in the United States through 2030, ICCT 
(April 2, 2019), available at https://theicct.org/publications/update-US-2030-electric-vehicle-cost.  The presented 
values are $/kWh pack costs for mid-range electric cars/crossovers and SUVs. 
402 McKerracher et al., Electric Vehicle Outlook 2019 – Free Interactive Report, Bloomberg New Energy Finance 
(May 2019), https://about.bnef.com/electric-vehicle-outlook/.   
403 Logan Goldie-Scot, A Behind the Scenes Take on Lithium-ion Battery Prices, Bloomberg New Energy Finance 
(March 5, 2019), https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/.  BNEF projected the 
pack costs in 2018$ for 2018 as $176, and used the same value in the Electric Vehicle Outlook 2019 to describe 
pack cost levels “today.”   
404 MIT Energy Initiative.  2019.  Insights into Future Mobility.  Cambridge, MA: MIT Energy Initiative.  Available 
at http://energy.mit.edu/insightsintofuturemobility.  
405 Id, at 78.  MIT estimates $124/kWh in 2030 in 2019$. Converting $124/kWh results in $127/kWh in 2030 in 
2018$. 
406 Islam, E., Kim, N., Moawad, A., Rousseau, A., “A Large-Scale Vehicle Simulation Study To Quantify Benefits 
& Analysis of U.S. Department of Energy VTO & FCTO R&D Goals.”  Report to U.S. Department of Energy.  
Contract ANL/ESD-19/10 (forthcoming). 
407 The $/kWh direct manufacturing cost estimate presented here is for a compact vehicle with a 60 kWh battery 
pack with no road load technology applied (MR0, ROLLl0, AERO0). 
408 Logan Goldie-Scot, A Behind the Scenes Take on Lithium-ion Battery Prices, Bloomberg New Energy Finance 
(March 5, 2019), https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/. 



 

In the MIT report, the authors use a two-stage method to develop composite battery learning 
curves, (1) production of active materials by mining companies and materials producers, and (2) 
fabrication of the battery packs by integrated battery-automotive corporations.409  The authors 
state that, according to two-stage learning curve model, the rate of price reductions slows 
significantly between 2025–2030 as a consequence of higher contribution of active materials 
(NMC) costs.  As the cost of active material go up, it will account for a larger share of the total 
battery price, and this in turn will further slowdown the learning rate of 3.5 percent for the 
materials synthesis.  This study also assumes NMC811 will be available by 2030.  The National 
Academy of Sciences (NAS) in its 2021 report assumes a battery learning rate of 5 percent per 
year, but does not disclose the methodology for determining this assumed learning rate.410  The 
learning rate we assume for MYs through 2032 is slightly more optimistic than the MIT report 
learning rate, and slightly less optimistic than the 2021 NAS committee’s learning rate.  

The MIT report has the most conservative estimate among all the cost sources referenced in 
Table 3-86.  The cost estimates from other sources referenced above also include assumptions 
about higher levels of battery pack production and higher density battery cells.  Most cost 
estimates assume improved battery chemistry over time, such as NMC811.  As discussed earlier, 
we determined that assuming NMC622 as the predominant battery chemistry in MY 2020, the 
DMC source year, was a reasonable assumption; however, the composite learning curve 
generated for this analysis shows that a potential shift to NMC811 in the later half of this decade 
makes our direct manufacturing costs fall squarely in the middle of the range of future battery 
cost estimates.   

Note that the BNEF and MIT assumptions represent a lower and upper bound of potential future 
costs in later years.  Using the same approach as the rest of our analysis, that our costs should 
represent an average achievable performance across the industry, we believe that the battery 
DMCs with the learning curve applied provide a reasonable representation of potential costs 
across the industry.  Figure 3-23 shows how the linearized battery pack composite learning cost 
reduction compares to the other battery pack cost estimates from sources listed in Table 3-86, 
with our projected costs falling fairly well in the middle of the range of potential costs in future 
years.  

 
409 Insights into Future Mobility, at 78. 
410 2021 NAS report, at 4-67. 
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Figure 3-23 – Comparing Battery Pack Cost Estimates from Multiple Sources 

As discussed above, there are inherent uncertainties in projecting future battery pack cost due to 
several factors.  One way to bound the uncertainty in projecting battery pack cost is to perform a 
sensitivity analysis.  For this NPRM, DOT performed a sensitivity analysis for both the battery 
learning rate and battery DMC by varying the learning rate by plus and minus 20% from the 
reference case, and by varying the battery DMC by plus and minus 20% from the reference case.  
These results are discussed in the PRIA.   



 

3.3.5.2 Non-Battery Electrification Component Costs 

Battery components are the biggest driver of the cost of electrification; however, non-battery 
electrification components also add to the total cost required to electrify a vehicle.  Different 
vehicle types have different non-battery electrification components and configurations, for 
instance some BEVs may have one electric motor and some BEVs may have two electric motors.  
In addition, some electrified vehicle types also include conventional powertrain components, like 
an internal combustion engine and transmission.  Chapter 3.3.5.3 below discusses how the 
battery costs, non-battery electrification component costs, and other conventional powertrain 
technology costs come together to create a total vehicle cost for electrified vehicles.   

Beginning with the least complex electrification systems, the SS12V micro hybrid system cost in 
this analysis is based on one small motor and battery, and the motor is a fixed cost regardless of 
the engine type the system is paired with (e.g., turbocharged or naturally aspirated), however the 
cost varies by vehicle class.  DOT derived the cost of the motor from the 2016 Draft TAR and 
updated the cost to 2018$.411  The DMC for the SS12V motor for the small car, medium car, and 
small SUV classes is $159.  The DMC for the SS12V motor for the medium SUV and pickup 
truck classes is $213.  As discussed below, DOT developed the SS12V battery cost using BatPaC 
to account for a more robust battery than the batteries used in traditional automotive applications.   

Similar to the SS12V system, the 48V mild hybrid non-battery electrification component costs 
are fixed for all technology classes.  DOT and Argonne used the A2Mac1 database to develop a 
bill of materials for the BISG system, and costed the components using two sources, as explained 
further below.  Table 3-87 below lists the components that comprise the mild hybrid system, 
including the battery pack, and the cost of those components in the analysis.   

 
411 Draft TAR, at 5-453. 



 

Table 3-87 – Cost Estimate of BISG Components in 2018$ 

Components DMC in 
2017 RPE 

Motor, Inverter & Cooling system (10kW) $184 $276 
DC to DC converter (2kW) $184 $276 
Water Pump $43 $65 
Wiring harness $29 $44 
Connecters $10 $15 
Belt pulley modifications to A/C compressor $10 $15 
Auxiliary electric oil pump to transmission $46 $69 
Modifications to auxiliary brake pump $43 $65 
Brackets for motor and battery attachment $15 $23 
Total non-battery component cost $564 $848 
Battery Pack Cost (0.43kWh)412 $405 $608 
Total system cost with battery $969 $1,456 

 

DOT derived a dollar per kilowatt hour metric from the 2017 Electrical and Electronics 
Technical Team Roadmap report, discussed further below, for the motor, inverter, and cooling 
system, and DC-DC converter costs.413  DOT used BatPaC version 4.0 (October 2020) to 
determine the cost of a battery pack for the 48V system.414,415  For all other BISG component 
costs shown in Table 3-87, DOT relied on an EPA-sponsored FEV teardown of a 2013 Chevrolet 
Malibu ECO with eAssist.416  FEV estimated the direct manufacturing cost of the BISG system 
(without batteries) to be $1,045 in 2013 dollars.  This included a cost adjustment for reduced 
voltage insulation.  Even though the 2013 Chevrolet Malibu considered in the study used a 115V 
system, DOT determined that structural components like the motor and battery attachment 
brackets would translate fairly across BISG systems, regardless of voltage. 

To validate these costs, DOT considered the 2019 Dodge Ram eTorque system retail price.  
Using the publicly available retail price,417 DOT estimated the normalized cost of the system at 
$1,195 for the water-cooled system and $1,450 for the air-cooled system in 2018 dollars after the 
removal of an estimated RPE and learning factor.  In addition, the 2015 NAS report estimated 

 
412 See battery_costs.csv in the docket for this action. 
413 U.S. DRIVE, Electrical and Electronics Technical Team Roadmap (October 2017), 
https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Roadmap%2010-27-17.pdf. 
414  Autonomie model documentation, Chapter 5.9.4. 
415 Nelson. P. A., Ahmed. S., Gallagher. K. G., Dees. D. W. EESD. CSED, ANL. Modeling the performance and 
Cost of Lithium-Ion Batteries for Electric-Drive Vehicles. Third Edition. ANL/CSE-19/2. https://doi.org BatPac 
Model Documentation Third Edition150624.pdf; Argonne. Summary of Updates/Changes in Batpac 4.0. Summary 
of Updates and Changes in BatPaC 4 (Oct 2020).pdf . 
416 Light Duty Vehicle Technology Cost Analysis 2013 Chevrolet Malibu ECO with eAssist BAS Technology 
Study, FEV P311264 (Contract no. EP-C-12-014, WA 1-9). 
417 “2019 Ram 1500 eTorque Pairs Pickup with Hybrid”. Car and Driver (March 14, 2019), 
https://www.caranddriver.com/reviews/a22815325/2019-ram-1500-etorque-hybrid-pickup-drive/. Last Accessed 
June 9, 2021.  



 

the cost range of BISG technology at $888 to $1,164 in 2010 dollars in 2025.418  This is 
equivalent to a range of $1,020 to $1,337.27 in 2018 dollars in 2025.  Broadly, DOT’s total 
BISG system cost including the battery fairly matches these estimates.   

For all other electrified vehicle powertrain types, DOT groups non-battery electrification 
components into four major categories: electric motors (or e-motors), power electronics 
(generally including the DC/DC converter, bi-directional DC/DC converter, inverter, and power 
distribution module), charging components (charger, charging cable, and high voltage cables), 
and thermal management system(s). 

DOT further groups the components into those comprising the electric traction drive (ETD) 
system, and all other components.  Although each manufacturer’s ETD and power electronics 
vary between the same electrified vehicle types and between different electrified vehicle types, 
DOT considered the ETD for this analysis to be comprised of the e-motor and inverter, power 
electronics, and thermal system.  Table 3-88 shows DOT’s assignments for each of the non-
battery electrification components to HEVs, PHEVs, BEVs, and FCEVs in the analysis.   

Table 3-88 – Non-Battery Electrification Component and Vehicle Assignment 

Major Non-
Battery 

Electrification 
Components 

HEV PHEV BEV FCEV 

Electric Motor X X X X 
*Electric 
Generator X X   

Power 
Electronics X X X X 

DC/DC 
Converter X X X X 

Charging Port 
& High 
Voltage cable 

N/A X X N/A 

On-board 
Charger N/A X X N/A 

Thermal 
System X X X X 

Fuel Cell 
Stack N/A N/A N/A X 

*only for PS strong hybrids and PS PHEVs 
 
When researching costs for different non-battery electrification components, DOT found that 
different reports vary in components considered and cost breakdown.  This is not surprising, as 
vehicle manufacturers use different non-battery electrification components in different vehicle’s 

 
418 2015 NAS report, at 305. 



 

systems, or even in the same vehicle type, depending the application.419,420  As detailed below, 
DOT developed costs for the major non-battery electrification components on a dollar per 
kilowatt hour basis using the costs presented in two reports.  DOT used a $/kW cost metric for 
non-battery components to align with the normalized costs for a system’s peak power rating as 
presented in U.S. DRIVE’s Electrical and Electronics Technical Team Roadmap report,421 one of 
the sources DOT used for non-battery electrification component costs.  This approach captures 
components in some manufacturer’s systems, but not all systems; however, DOT believes this is 
a reasonable metric and approach to use for this analysis given the differences in non-battery 
electrification component systems. 

As discussed above, to estimate the cost of the ETD, DOT used U.S. DRIVE’s report, Electrical 
and Electronics Technical Team (EETT) Roadmap.  The EETT Roadmap report reflected 
considerable work by the DOE VTO collaboratively with U.S. DRIVE, a government-industry 
partnership.  The EETT Roadmap report estimated the 2017 manufacturing cost of a commercial 
on-road 100kW ETD system consisting of a single electric traction motor and inverter.  The 
reported costs were approximately $1,800, with the cost of the electric motor accounting for 
$800, and approximately $1,000 for the inverter, equaling $18/kW for the ETD system.  DOT 
compared these costs with the UBS MY 2016 Chevy Bolt teardown.422  In the UBS report, the 
cost of the electrical components in the ETD system summed up to $2,619 for a 150 kW (2016 
Chevy Bolt nominal power) ETD system.  Normalizing this cost resulted in $17.76/kW, which is 
in good agreement with the cost calculated from U.S. DRIVE’s EETT Roadmap report.423  

The EETT Roadmap report did not explicitly estimate the cost of other electrical equipment 
present in PHEVs and BEVs, such as on-board chargers, DC to DC converters, and charging 
cables.  Thus, DOT relied on the UBS MY 2016 Chevy Bolt teardown report to estimate those 
individual costs.  Table 3-89 shows the cost estimate for the ETD from the EETT Roadmap 
report and from the UBS MY 2016 Chevy Bolt teardown report, and the cost estimate for other 
electrical equipment from the same UBS report.  

 
419 For example, the MY 2020 Nissan Leaf does not have an active cooling system whereas Chevy Bolt uses an 
active cooling system. 
420 Argonne AMTL D3. Electric Vehicle Testing. 2021. https://www.anl.gov/es/electric-vehicle-testing. Last 
Accessed July 14, 2021.  
421 U.S. DRIVE, Electrical and Electronics Technical Team Roadmap (Oct. 2017), available at 
https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Roadmap%2010-27-17.pdf . 
422 Hummel et al., UBS Evidence Lab Electric Car Teardown – Disruption Ahead?, UBS (May 18, 2017), 
https://neo.ubs.com/shared/d1wkuDlEbYPjF/ . 
423 DOT normalized the cost of the ETD for the 2016 Chevy Bolt by summing the ETD components costs and 
dividing by e-motor power rating (150 kW).  

https://www.anl.gov/es/electric-vehicle-testing
https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Roadmap%2010-27-17.pdf
https://neo.ubs.com/shared/d1wkuDlEbYPjF/


 

Table 3-89 – Cost Estimates from the EETT Roadmap Report and UBS MY 2016 Chevy Bolt Teardown 

Non-Battery Electrical 
Components 

EETT 
Roadmap 

Report 
(2017$ in 

DMC Year 
2017) 

UBS MY 2016 
Chevy Bolt 
Teardown 
(2017$ in 

DMC Year 
2017) 

Assumptions 

Updated 
2018$ for this 

NPRM 
Analysis 

ETD system $18/kW $17.76/kW Based on e-motor 
peak power $18.41/kW 

On-Board Charger - $85/kW 

Based on vehicle 
requirement 

(7kW for BEV, 2 
kW for PHEV) 

$86.96/kW 

DC to DC Converter - $90/kW 
Based on 

converter rated 
power (2kW) 

$93.84/kW 

High Voltage Cables - $450 Fixed cost rated 
for 360V $460.39 

 

For this analysis, DOT converted the costs in Table 3-89 to 2018$ to align the dollar year with 
other costs in this analysis, as shown in the right-hand column.  Accordingly, the overall cost for 
non-battery electrification components in this analysis is an aggregate of the four line items in 
Table 3-89.  

As an example, for a BEV with a 150kW motor, 7kW on-board charger, 2kW DC to DC 
converter, and high voltage cables, the cost can be calculated as:  

Total Non-Battery Electrification Component DMC = 150 kW*18.41 $/kW + 7kW*86.96 $/kW 
+ 2kW*93.84 $/kW + $460.39 = $4018.29 

Another example is a PHEV50 with 94 kW motor, 35 kW generator, 2kW on board charger, 
2kW DC to DC Converter, and high voltage cables configuration: 

Total Non-Battery Component DMC = 94 kW*18.41 $/kW + 35kw *18.41 $/kW + 2kW*86.96 
$/kW + 2kW*93.84 $/kW + $460.39 = $3196.88 

As discussed in Chapter 2.6, DOT adjusts costs in the Technologies file to account for three 
variables: retail price equivalent (RPE), which is 1.5 times the direct manufacturing cost (DMC), 
the technology learning curve, and the adjustment of the dollar value to 2018$ for this analysis.   

To develop the learning curves for non-battery electrification components, DOT used cost 
information from Argonne’s 2016 Assessment of Vehicle Sizing, Energy Consumption, and Cost 
through Large-Scale Simulation of Advanced Vehicle Technologies report.424  The report 

 
424 Moawad, Ayman, Kim, Namdoo, Shidore, Neeraj, and Rousseau, Aymeric.  Assessment of Vehicle Sizing, 
Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies (ANL/ESD-
15/28). United States (2016).  Available at https://www.autonomie.net/pdfs/Report%20ANL%20ESD-1528%20-
 

https://www.autonomie.net/pdfs/Report%20ANL%20ESD-1528%20-%20Assessment%20of%20Vehicle%20Sizing,%20Energy%20Consumption%20and%20Cost%20through%20Large%20Scale%20Simulation%20of%20Advanced%20Vehicle%20Technologies%20-%201603.pdf


 

provided estimated cost projections from the 2010 lab year to the 2045 lab year for individual 
vehicle components.425,426  DOT considered the component costs used in electrified vehicles, and 
determined the learning curve by evaluating the year over year cost change for those 
components.  Argonne recently published a 2020 version of the same report that included high 
and low cost estimates for many of the same components, that also included a learning rate.427  
DOT’s learning estimates generated using the 2016 report fall fairly well in the middle of these 
two ranges, and therefore staff decided that continuing to apply the learning curve estimates 
based on the 2016 report was reasonable.  There are many sources that DOT staff could have 
picked to develop learning curves for non-battery electrification component costs, however given 
the uncertainty surrounding extrapolating costs out to MY 2050, DOT believes these learning 
curves provide a reasonable estimate.  

Figure 3-24, Table 3-90 and Table 3-91 show the learning rate factors for non-battery 
electrification components for different electrified powertrains.   

 
%20Assessment%20of%20Vehicle%20Sizing,%20Energy%20Consumption%20and%20Cost%20through%20Large
%20Scale%20Simulation%20of%20Advanced%20Vehicle%20Technologies%20-%201603.pdf .   
425 ANL/ESD-15/28 at 116. 
426 DOE’s lab year equates to five years after a model year, e.g., DOE’s 2010 lab year equates to MY 2015.  
427 Islam, E., Kim, N., Moawad, A., Rousseau, A.“Energy Consumption and Cost Reduction of Future Light-Duty 
Vehicles through Advanced Vehicle Technologies: A Modeling Simulation Study Through 2050”, Report to the US 
Department of Energy, Contract ANL/ESD-19/10, June 2020 https://www.autonomie.net/pdfs/ANL%20-
%20Islam%20-%202020%20-
%20Energy%20Consumption%20and%20Cost%20Reduction%20of%20Future%20Light-
Duty%20Vehicles%20through%20Advanced%20Vehicle%20Technologies%20A%20Modeling%20Simulation%20
Study%20Through%202050.pdf . 

https://www.autonomie.net/pdfs/Report%20ANL%20ESD-1528%20-%20Assessment%20of%20Vehicle%20Sizing,%20Energy%20Consumption%20and%20Cost%20through%20Large%20Scale%20Simulation%20of%20Advanced%20Vehicle%20Technologies%20-%201603.pdf
https://www.autonomie.net/pdfs/Report%20ANL%20ESD-1528%20-%20Assessment%20of%20Vehicle%20Sizing,%20Energy%20Consumption%20and%20Cost%20through%20Large%20Scale%20Simulation%20of%20Advanced%20Vehicle%20Technologies%20-%201603.pdf
https://www.autonomie.net/pdfs/ANL%20-%20Islam%20-%202020%20-%20Energy%20Consumption%20and%20Cost%20Reduction%20of%20Future%20Light-Duty%20Vehicles%20through%20Advanced%20Vehicle%20Technologies%20A%20Modeling%20Simulation%20Study%20Through%202050.pdf
https://www.autonomie.net/pdfs/ANL%20-%20Islam%20-%202020%20-%20Energy%20Consumption%20and%20Cost%20Reduction%20of%20Future%20Light-Duty%20Vehicles%20through%20Advanced%20Vehicle%20Technologies%20A%20Modeling%20Simulation%20Study%20Through%202050.pdf
https://www.autonomie.net/pdfs/ANL%20-%20Islam%20-%202020%20-%20Energy%20Consumption%20and%20Cost%20Reduction%20of%20Future%20Light-Duty%20Vehicles%20through%20Advanced%20Vehicle%20Technologies%20A%20Modeling%20Simulation%20Study%20Through%202050.pdf
https://www.autonomie.net/pdfs/ANL%20-%20Islam%20-%202020%20-%20Energy%20Consumption%20and%20Cost%20Reduction%20of%20Future%20Light-Duty%20Vehicles%20through%20Advanced%20Vehicle%20Technologies%20A%20Modeling%20Simulation%20Study%20Through%202050.pdf
https://www.autonomie.net/pdfs/ANL%20-%20Islam%20-%202020%20-%20Energy%20Consumption%20and%20Cost%20Reduction%20of%20Future%20Light-Duty%20Vehicles%20through%20Advanced%20Vehicle%20Technologies%20A%20Modeling%20Simulation%20Study%20Through%202050.pdf


 

 

Figure 3-24 – Learning Rate Factor Used for Non-Battery Electrification Components for Electrified 
Powertrains 

 



 

Table 3-90 – Learning Rate Factor Used for Non-Battery Electrification Components for Electrified Powertrains (MYs 2015-2032) 

 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 
BEV 1.14 1.07 1 0.93 0.87 0.83 0.77 0.72 0.69 0.64 0.61 0.59 0.56 0.55 0.53 0.52 0.52 0.51 
SS12V 1.12 1.07 1.03 1.00 0.97 0.94 0.91 0.89 0.87 0.85 0.83 0.82 0.81 0.79 0.79 0.79 1.12 1.07 
BISG 1.11 1.05 1 0.94 0.87 0.78 0.73 0.69 0.66 0.63 0.61 0.59 0.58 0.56 0.55 0.54 0.54 0.53 
SHEVPS 1.06 1.03 1 0.96 0.92 0.89 0.87 0.84 0.82 0.78 0.76 0.74 0.73 0.72 0.71 0.7 0.69 0.69 
SHEVP2 1.07 1.04 1 0.96 0.93 0.9 0.87 0.85 0.82 0.79 0.76 0.75 0.74 0.73 0.71 0.7 0.69 0.69 
PHEV20 1.09 1.04 1 0.96 0.92 0.88 0.85 0.81 0.78 0.76 0.73 0.7 0.69 0.67 0.66 0.66 0.65 0.64 
PHEV50 1.11 1.06 1 0.96 0.92 0.88 0.84 0.81 0.78 0.74 0.71 0.69 0.68 0.66 0.64 0.63 0.63 0.62 
FCV 1.71 1.64 1.57 1.50 1.43 1.37 1.31 1.25 1.19 1.14 1.09 1.04 0.99 0.95 0.90 0.86 0.83 1.71 
 

Table 3-91 – Learning Rate Factor Used for Non-Battery Electrification Components for Electrified Powertrains (MYs 2034-2050) 

  2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
BEV 0.48 0.47 0.46 0.46 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 
SS12V 1.14 1.09 1.05 1.00 0.95 0.91 0.87 0.83 0.79 0.76 0.73 0.69 0.66 0.63 0.60 0.57 1.14 
BISG 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.5 0.5 
SHEVPS 0.68 0.68 0.67 0.67 0.67 0.66 0.66 0.66 0.65 0.65 0.65 0.64 0.64 0.64 0.63 0.63 0.63 
SHEVP2 0.68 0.67 0.67 0.66 0.66 0.65 0.65 0.64 0.64 0.63 0.63 0.62 0.62 0.61 0.6 0.6 0.59 
PHEV20 0.57 0.54 0.53 0.51 0.5 0.48 0.47 0.47 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.43 
PHEV50 0.57 0.54 0.53 0.51 0.5 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.46 0.45 0.45 0.45 0.45 
FCV 0.80 0.76 0.75 0.73 0.72 0.70 0.69 0.68 0.67 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.64 



 

3.3.5.3 Total Electrified Powertrain Costs 

For this analysis, DOT developed total electrified powertrain costs by summing individual 
component costs, which ensured that all technologies in an electrified powertrain appropriately 
contributed to the total system cost.  DOT combined the costs associated with the internal 
combustion (IC) engine, transmission, electric machine(s), non-battery electrification 
components, and battery pack to create a full-system cost.  The following sections describe how 
the aggregated cost of each electrified powertrain is calculated based on the detailed component 
costs presented in the earlier sections. 

The application of the electrification costs to an existing platform follows the same basic process 
for each technology on the electrification path.  All technology costs used are for the model year 
of the electrification technology application.  The first step in the process is the removal of the 
costs associated with reference powertrain technologies.  The next step is the application of the 
costs associated with the electrification technology.  The costs include the cost of the engine, if 
applicable, transmission, electric machine(s), non-battery electrification components, and the 
battery pack.   

The incremental costs for these electrification technologies can be found in three places: the 
“Engines” tab and “Vehicles” tab of the Technologies file, and the “battery_costs.csv” file, 
which is the database of battery costs (DMC) created using the BatPaC model.  Table 3-92 
shows a summary of the general components considered for each electrification technology, and 
where the costs of those components can be found in the CAFE Model input and executable 
files. 



 

Table 3-92 – Breakdown of the Component Costs Considered in the CAFE Analysis 

Electrification 
Technology Type 

Technologies File 
Vehicle Tabs 

Technologies File  
Engine Tabs 

Battery 
Cost 

File428 

Micro Hybrid Motor/generator -N/A Battery 
Pack 

Mild Hybrid Motor/generator, DC/DC converter, other 
components -N/A Battery 

Pack 

Strong Hybrid – P2 
DC/DC converter, on-board charger, 
high voltage cables, e-motor, AT8L2 
transmission, and power electronics 

IC engine* Battery 
Pack 

Strong Hybrid – PS 
DC/DC converter, on-board charger, 
high voltage cables, e-motor, CVTL2 
transmission, and power electronics 

IC engine Battery 
Pack 

Plug-in Hybrid (PHEV 
20T/50T) 

DC/DC converter, on-board charger, 
high voltage cables, e-motor, AT8L2 
transmission, and power electronics 

IC engine Battery 
Pack 

Plug-in Hybrid (PHEV 
20/50 and 20H/50H) 

DC/DC converter, on-board charger, 
high voltage cables, e-motor, CVTL2 
transmission, and power electronics 

IC engine Battery 
Pack 

BEVs DC/DC converter, on-board charger, 
high voltage cables, e-motor 

ETD System, see 
Table 3-99 for detail 

Battery 
Pack 

FCEVs Fuel cell system, e-motor, H2 Tank, 
transmission, and power electronics -N/A N/A 

*The engine cost for a P2 Hybrid is based on engine technology used in the conventional powertrain. 
The following sections discuss how the costs of each component are aggregated to create a total 
electrified powertrain cost. 

3.3.5.3.1 Micro Hybrid Cost 

As described earlier in Chapter 3.3.4, SS12V technology does not provide any propulsion 
assistance to the vehicle, thus there is no cost associated with the SS12V system under the engine 
tabs of the Technologies file.  In the vehicle class tabs in the Technologies file, there is a fixed 
cost listed for SS12V that covers the cost of the starter generator used in the micro hybrid 
system.  The battery cost for the micro hybrid system is a fixed cost for all technology classes 
developed using BatPaC.429  Unlike the rest of the electrification technologies, the micro hybrid 
system uses a shallower learning curve, as shown in Chapter 3.3.5.2.  This shallow curve reflects 
the maturity of the technology; as discussed in Chapter 3.3.2, 50% of the MY 2020 fleet utilizes 
a SS12V micro hybrid system.  Table 3-93 lists the cost of the SS12V system and battery for 
different vehicle classes in this analysis.  For the SS12V electrified powertrain, the Technologies 
file contains the cost of the non-battery components with RPE and learning, as well as learning 
for the battery for each vehicle class.  The Battery Costs file contains the DMC for the battery, 
which was sized through the Autonomie modeling. 

 
428 Battery_costs.csv file located in the docket for this action. 
429 Batpac Input and Output summary. Docket File ANL_BatPac_Lookup_tables_Feb2021v2.xlsx.  



 

Table 3-93 – SS12V Total Cost in All Vehicle Classes in 2018$ 

 Small 
Car 

Medium 
Car 

Small 
SUV 

Medium 
SUV Pickup 

Non-battery Component DMC in 
2017 $159 $159 $159 $213 $213 

Non-battery Component Cost in 
2020 with RPE and Learning $213 $213 $213 $285 $285 

Battery Pack DMC in 2020 $237 $237 $237 $237 $237 
Battery Pack Cost in 2020 with 
RPE and Learning $356 $356 $356 $356 $356 

Total System Cost in 2020 $569 $569 $569 $641 $641 
 

3.3.5.3.2 Mild Hybrid Cost 

For this analysis, DOT used a fixed cost for a BISG system to represent mild hybrid technology.  
The total cost for the BISG system is the sum of non-battery component costs from the 
Technologies file and the batteries from the Battery Cost file.  The vehicle class tabs in the 
Technologies file provide a non-battery component cost that includes the DMC, RPE, and a 
learning factor, and a battery cost with a learning factor applied.  Note that the Technologies file 
includes the battery cost with the learning rate applied, while the Battery Costs file provides only 
the battery DMC in 2020.  To determine the total cost of the system for a vehicle, the vehicle 
technology class’ technology key must align between the two files.   

Table 3-94 below shows how costs are added to create the total BISG system cost.  As an 
example, the medium car cost of $665 is from the ‘MedCar’ tab in 2020 in the Technologies file 
and includes a learning rate specific to the non-battery components, as well as RPE.  The $342 is 
from the Battery Cost file for the same vehicle class technology key.  This $342 is a DMC and is 
multiplied by 1.50 from the Battery Cost Learning Rates Table (columns ‘AW’ and onward on 
the ‘MedCar’ tab), which is the product of 1.5 RPE and a learning factor of 1 (because the base 
learning rate year for batteries is 2020), and that results in the total of $513.  These two costs, 
which are both for 2020, sum to $1,178.   

Table 3-94 – Example of Mild Hybrid Total Cost for Different Vehicle Classes in 2018$ 

 Small 
Car 

Medium 
Car 

Small 
SUV 

Medium 
SUV Pickup 

Non-battery Component DMC 
in 2017 $565 $565 $565 $565 $565 

Cost in 2020 with RPE and 
Learning $665 $665 $665 $665 $665 

Battery Pack DMC in 2020 $342 $342 $342 $342 $342 
Battery Pack Cost in 2020 
with RPE and Learning $513 $513 $513 $513 $513 

Total System Cost in 2020 $1,178 $1,178 $1,178 $1,178 $1,178 
 



 

3.3.5.3.3 Strong Hybrid and Plug-in Hybrid Electric Vehicle Costs 

In this analysis, the total cost for strong hybrids included the electric machine, battery pack, IC 
engine, and transmission.  Each strong hybrid powertrain is optimized for the given vehicle class 
by appropriately sizing each of those components. 

SHEVP2 and SHEVPS have different architectures and characteristics, and in turn have different 
costs.  The cost of SHEVP2 engines and transmissions are based on estimates discussed further 
in Chapter 3.1 and Chapter 3.2, respectively.  The cost for SHEVP2 electric machines and 
battery packs are based on their sizes, and were optimized by the Autonomie sizing algorithm 
discussed broadly in Chapter 3.3.4 and in detail in the Autonomie model documentation.430  
SHEVPS total powertrain costs includes the optimized battery pack, electric machine, a HCR1 
engine, and e-CVT (CVTL2).  Similar to SHEVP2, electric machine and battery pack costs were 
dependent on their optimized size from Autonomie for different vehicle classes. 

As described in Chapter 3.3.5.2, the cost of non-battery hybrid system components also includes 
the cost of the traction motor, motor/generators, high voltage cables and connectors, charging 
cord, and on-board chargers.  DOT used the cost of the AT8L2 transmission as a cost proxy for 
the hybrid transmission architecture in P2 hybrid systems and used the cost of CVTL2 
transmission as a cost proxy for hybrid transmission architecture for PS hybrid systems.  The 
costs shown here do not include the cost of the IC engine coupled to the hybrid system. 

Since motor sizing varies based on road load levels, the average motor sizes acted as a mid-range 
representation for motor ratings across all road load combinations.  DOT used Autonomie 
simulations to compute the average rating for traction and generator motors across all road load 
combinations for SHEVPS and SHEVP2 vehicles.  After calculating the average motor size, 
DOT multiplied the motor size by the unit cost ($/kW) to get the overall DMC for both traction 
motors and generator motors as explained in Chapter 3.3.5.2.  The costs shown in the following 
tables have been updated to 2018$ dollars.   

DOT developed the cost of the plug-in hybrid vehicles similar to strong hybrids.  DOT used 
Autonomie to optimize plug-in-hybrid system components as explained in Chapter 3.3.4.  These 
modeling results are used to determine costs as described in Chapters 3.3.5.1 and 3.3.5.2.  As 
described in Chapter 3.3.4, one engine technology and one transmission technology per plug-in 
hybrid architecture type are used.   

For PHEVs that follow SHEVP2 on the hybrid/electric architecture path as shown in Chapter 
3.3.1, the total costs are based on the PHEV system paired with a TURBO1 engine.  The total 
cost for the powertrain is calculated by summing the costs of TURBO1 engine, an AT8L2 
transmission, and the battery and non-battery electrification technology components.  The total 
cost for PHEVs that follow SHEVPS in the hybrid/electric architecture path is determined by 
summing the costs of the HCR1 engine, the CVTL2 transmission, and the sized battery pack and 
non-battery electrification technology components.   

Table 3-95 and Table 3-96 show the overall cost of electrified powertrains for strong hybrids and 
PHEVs.  Note that the battery cost is not broken out in a separate column in this table; however, 

 
430 Autonomie model documentation, Chapter 8.3.3. 



 

the total electrification cost includes the cost of the battery.  The total DMC of non-battery 
electrification components includes the costs of motor and motor/generator (when applicable), 
DC/DC converter, cables, and on-board charger (for PHEV only).  For more details of these 
costs refer to Chapter 3.3.5.2. 

 



 

Table 3-95 – Cost Estimation for Hybrid and Plug-in Hybrid Electric Drivetrain for all Non Performance Vehicle Technology Classes in 2020 (in 2018$) 
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Small Car– Non-Performance 
Par HEV (SHEVP2) 23.45 0 $432  $184  $0  $460  $1,076  $1,453.01  $1,655  $2,473  $2,731  $3,892  
Par PHEV20 (PHEV20T) 33.89 0 $624  $184  $174  $460  $1,442  $1,904.05  $1,655  $2,473  $3,097  $4,334  
Par PHEV50 (PHEV50T) 84.89 0 $1,563  $184  $174  $460  $2,382  $3,143.68  $1,655  $2,473  $4,037  $5,567  
Split HEV (SHEVPS) 57.18 30.13 $1,608  $184  $0  $460  $2,252  $3,006.73  $1,686  $2,518  $3,938  $5,523  
Split PHEV20 (PHEV20) 58.87 31.21 $1,659  $184  $174  $460  $2,477  $3,269.83  $1,686  $2,518  $4,163  $5,775  

Medium Car– Non-Performance 
Par HEV (SHEVP2) 28.01 0 $516  $184  $0  $460  $1,160  $1,566.37  $1,655  $2,473  $2,815  $4,006  
Par PHEV20 (PHEV20T) 38.95 0 $717  $184  $174  $460  $1,536  $2,027.04  $1,655  $2,473  $3,191  $4,457  
Par PHEV50 (PHEV50T) 95.21 0 $1,753  $184  $174  $460  $2,572  $3,394.53  $1,655  $2,473  $4,227  $5,817  
Split HEV (SHEVPS) 72.62 37.61 $2,030  $184  $0  $460  $2,674  $3,570.16  $1,686  $2,518  $4,360  $6,088  
Split PHEV20 (PHEV20) 74.66 38.92 $2,091  $184  $174  $460  $2,910  $3,841.04  $1,686  $2,518  $4,596  $6,345  

Small SUV– Non-Performance 
Par HEV (SHEVP2) 27.34 0 $503  $184  $0  $460  $1,148  $1,549.71  $1,655  $2,473  $2,803  $3,989  
Par PHEV20 (PHEV20T) 40.25 0 $741  $184  $174  $460  $1,560  $2,058.64  $1,655  $2,473  $3,215  $4,488  
Par PHEV50 (PHEV50T) 102.41 0 $1,886  $184  $174  $460  $2,704  $3,569.54  $1,655  $2,473  $4,359  $5,992  
Split HEV (SHEVPS) 80.07 40.68 $2,224  $184  $0  $460  $2,868  $3,828.78  $1,686  $2,518  $4,554  $6,347  
Split PHEV20 (PHEV20) 83.15 42.15 $2,307  $184  $174  $460  $3,126  $4,125.91  $1,686  $2,518  $4,811  $6,630  
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Medium SUV– Non-Performance 
Par HEV (SHEVP2) 29.14 0 $537  $184  $0  $460  $1,181  $1,594.46  $1,655  $2,473  $2,836  $4,034  
Par PHEV20 (PHEV20T) 43.32 0 $798  $184  $174  $460  $1,616  $2,133.26  $1,655  $2,473  $3,271  $4,563  
Par PHEV50 (PHEV50T) 110.72 0 $2,039  $184  $174  $460  $2,857  $3,771.52  $1,655  $2,473  $4,512  $6,194  
Split HEV (SHEVPS) 79.32 41.74 $2,229  $184  $0  $460  $2,874  $3,836.40  $1,686  $2,518  $4,559  $6,355  
Split PHEV20 (PHEV20) 81.81 43.01 $2,298  $184  $174  $460  $3,117  $4,114.25  $1,686  $2,518  $4,803  $6,618  

Pickup – Non-Performance 
Par HEV (SHEVP2) 32.59 0 $600  $184  $0  $460  $1,245  $1,680.22  $1,655  $2,473  $2,900  $4,120  
Par PHEV20 (PHEV20T) 51.68 0 $952  $184  $174  $460  $1,770  $2,336.46  $1,655  $2,473  $3,425  $4,766  
Par PHEV50 (PHEV50T) 127.92 0 $2,356  $184  $174  $460  $3,174  $4,189.60  $1,655  $2,473  $4,829  $6,611  



 

Table 3-96 – Cost Estimation for Hybrid and Plug-in Hybrid Electric Drivetrain for all Performance Vehicle Technology Class in 2020 (in 2018$) 
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Small Car– Performance 
Par HEV (SHEVP2) 25.03 0 $461  $184  $0  $460  $1,105  $1,492.29  $1,655  $2,473  $2,760  $3,931  
Par PHEV20 (PHEV20T) 36 0 $663  $184  $174  $460  $1,481  $1,955.33  $1,655  $2,473  $3,136  $4,385  
Par PHEV50 (PHEV50T) 89.03 0 $1,639  $184  $174  $460  $2,458  $3,244.31  $1,655  $2,473  $4,113  $5,668  
Split HEV (SHEVPS) 74.95 38.75 $2,094  $184  $0  $460  $2,738  $3,655.47  $1,686  $2,518  $4,424  $6,174  
Split PHEV20 (PHEV20) 76.51 40.15 $2,148  $184  $174  $460  $2,967  $3,915.90  $1,686  $2,518  $4,652  $6,420  

Medium Car– Performance 
Par HEV (SHEVP2) 29.2 0 $538  $184  $0  $460  $1,182  $1,595.95  $1,655  $2,473  $2,837  $4,036  
Par PHEV20 (PHEV20T) 41.5 0 $764  $184  $174  $460  $1,583  $2,089.02  $1,655  $2,473  $3,238  $4,519  
Par PHEV50 (PHEV50T) 100.23 0 $1,846  $184  $174  $460  $2,664  $3,516.55  $1,655  $2,473  $4,319  $5,939  
Split HEV (SHEVPS) 112.45 58.4 $3,146  $184  $0  $460  $3,791  $5,060.38  $1,686  $2,518  $5,476  $7,582  
Split PHEV20 (PHEV20) 122.77 60.41 $3,373  $184  $174  $460  $4,192  $5,532.78  $1,686  $2,518  $5,877  $8,035  

Small SUV– Performance 
Par HEV (SHEVP2) 29.54 0 $544  $184  $0  $460  $1,188  $1,604.40  $1,655  $2,473  $2,843  $4,044  
Par PHEV20 (PHEV20T) 43.25 0 $796  $184  $174  $460  $1,615  $2,131.56  $1,655  $2,473  $3,270  $4,561  
Par PHEV50 (PHEV50T) 108.23 0 $1,993  $184  $174  $460  $2,811  $3,711.00  $1,655  $2,473  $4,466  $6,133  
Split HEV (SHEVPS) 108.91 54.25 $3,004  $184  $0  $460  $3,649  $4,871.33  $1,686  $2,518  $5,335  $7,393  
Split PHEV20 (PHEV20) 118.09 56.21 $3,210  $184  $174  $460  $4,028  $5,316.94  $1,686  $2,518  $5,714  $7,820  

Medium SUV– Performance 
Par HEV (SHEVP2) 33.22 0 $612  $184  $0  $460  $1,256  $1,695.88  $1,655  $2,473  $2,911  $4,136  
Par PHEV20 (PHEV20T) 48.92 0 $901  $184  $174  $460  $1,719  $2,269.37  $1,655  $2,473  $3,374  $4,699  
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Par PHEV50 (PHEV50T) 121.62 0 $2,240  $184  $174  $460  $3,058  $4,036.47  $1,655  $2,473  $4,713  $6,458  
Split HEV (SHEVPS) 124.62 61.59 $3,429  $184  $0  $460  $4,073  $5,437.97  $1,686  $2,518  $5,759  $7,961  
Split PHEV20 (PHEV20) 134.67 63.71 $3,653  $184  $174  $460  $4,471  $5,902.24  $1,686  $2,518  $6,157  $8,404  

Pickup – Performance 
Par HEV (SHEVP2) 36.96 0 $681  $184  $0  $460  $1,325  $1,788.86  $1,655  $2,473  $2,980  $4,229  
Par PHEV20 (PHEV20T) 58.26 0 $1,073  $184  $174  $460  $1,891  $2,496.40  $1,655  $2,473  $3,546  $4,925  
Par PHEV50 (PHEV50T) 140.04 0 $2,579  $184  $174  $460  $3,397  $4,484.19  $1,655  $2,473  $5,052  $6,904  
 



 

In its 2021 report, NAS provided estimated hybrid system costs for different conventional 
vehicle powertrains converting to hybrid powertrains.  NAS noted that the costs provided in the 
2020 final rule were significantly higher than what NAS estimated in the 2021 report.   

To compare the costs in this NPRM to the 2021 NAS report hybrid costs, DOT compared the 
NAS Medium Car Naturally Aspirated to PS Hybrid technology costs431 with the costs of 
upgrading a Ford Fusion from a conventional powertrain to a PS powertrain in the CAFE Model 
in MY 2025.  As expected, the components considered, component sizes, and component costs 
are not identical between the NAS analysis and this NPRM analysis.  Table 3-97 shows the 
components considered in this analysis and in the 2021 NAS analysis. 

 
431 2021 NAS report, Table 4.6 Projected Costs and Effectiveness of Representative PS Hybrid Technology 
Packages, 2025-2035. 



 

Table 3-97 – Components Considered in Upgrading from Conventional Powertrain to SHEVPS in MY 2025 
in the CAFE Model and NAS 2021 Analysis 

Part Removed Parts added CAFE Analysis NAS 

IC Engine  (Naturally Aspirated 
DOHC+VVT+SGDI) not changed432 

Transmission  AT6 AT8 

 IC engine for SHEV SHEVPS not changed 

 Motor+ inverter 73 kW Size not mentioned 
(approx. 74 kW433) 

 Generator+ Regen brake 37 kW Size not mentioned 
(approx. 28 kW434) 

 Transmission eCVT435 eCVT 

 Battery + BMU436 1.7 kWh 1 kWh 

 High voltage cable Yes Yes 

 DC/DC converter 1.1 kW 2 kW 

 Power electronics or 
ECU437 Considered Considered 

 A/C modification Assumed as part of the  
thermal management system Considered 

 Water pump Assumed as part of the  
thermal management system Considered 

 Thermal management 
system Considered A/C modification and 

water pump upgrades 

 
As mentioned in Chapter 3.3.5.2, we used the UBS study to estimate the cost of the ETDS, 
which includes the motor, inverter, power electronics and thermal management system.  For the 
sake of this comparison we separate the motor and inverter cost to be more consistent with the 
NAS report.  Based on the UBS report, about 72% of the ETDS’ cost comes from the e-motor 
and inverter, which means for year 2025 and based on 2018$, the cost of the e-motor and 
inverter is $10.08/kW.  This leaves $3.92/kW for the power electronics and thermal management 
system, summing up the whole ETDS to $14/kW. 

One of the biggest differences in components considered between the two studies is the internal 
combustion engine; the 2021 NAS study does not consider the IC engine upgrade costs whereas 
the CAFE analysis does.  Other differences between the studies include the component sizes, 
even though DOT endeavored to compare an equivalent vehicle class, a midsize passenger car.  

 
432 NAS committee’s vehicle of choice (Toyota Camry 2021) has no engine upgrade when advancing from 
conventional to PS hybrid. 
433 Based on NAS assumption of 10% decrease on cost of motor + inverter from 2010 cost of $15/kW, the cost for 
2025 will be $10.935/kW.  The overall cost of motor+inverter reported $810 ($320+$490) which results in 74 kW. 
434 With the same analysis of motor+inverter. 
435 In this analysis, the performance and cost of eCVT is the same as CVTL2.  
436 Includes battery + battery management unit + battery thermal management. 
437 Assumed NAS referred to power electronics as ECU. 



 

Other small differences include the minor components considered in each study.  For the 
following cost comparison, DOT compares the costs of the components that the NAS study and 
this NPRM have in common.  Table 3-98 shows the cost differences for the components included 
in both analyses. 

Table 3-98 – Comparison of Components Included in this CAFE Model Analysis and 2021 NAS Study 

Component CAFE Analysis 
CAFE 

Net 
Cost 

NAS Analysis 
NAS 
Net 
Cost 

CAFE Net Cost if 
NAS assumptions 

were used438 

IC engine  
Naturally Aspirated 
DOHC+VVT+SGDI 

to SHEVPS 
$178  0 

 $178 

Transmission  AT6 to eCVT $292 AT8 to eCVT ($435) $292 

Motor+ inverter 73 kW $732 Size not mentioned 
(approx. 74 kW) $810 $746 

Generator+ Regen brake 37 kW $379 Size not mentioned 
(approx. 28 kW) $310 $282 

Battery + BMU 1.7 kWh $1,013 1 kWh $880 $596 
High voltage cable Yes $350 Yes $130 $350 
DC/DC converter 2 kW $140 1.1 kW $90 $77 
ECU    $45  
A/C modification    $170  
Water pump    $55  
Power electronics and 
thermal management 
system 

 $432   $400 

Total  $3,516  $2,055 $2,920 
 
There are three important observations in this cost comparison.  First, in the NAS study, moving 
from an AT8 to an eCVT results in a cost savings of $435, whereas in the CAFE analysis 
moving from an AT6 to a CVTL2 results in a $292 cost addition.  Due to the differences 
between a CVTL2 transmission and the power split eCVT transmission, DOT may reconsider the 
assumption of a CVTL2 transmission cost being used for the power split strong hybrid 
transmission.  Second, there is a notable difference in the high voltage cable cost between NAS 
and DOT.  As discussed in Chapter 3.3.5.2, DOT used the estimated high voltage cable costs 
from a 2016 Chevrolet Bolt teardown report.  DOT may consider other sources for high voltage 
cable costs for the final rule.  Third, the difference in component sizing contributes to other cost 
differences.  Accordingly, the ”CAFE Net Cost if NAS assumptions were used” column of Table 
3-98 presents costs from the CAFE analysis if they are resized based on the power rating used 

 
438 Instead of AT8 to eCVT, DOT used AT6 to eCVT; DOT used the same $/kW metric for motor-inverter and 
generator+regen braking and DC/DC converter, DOT used the same $/kWh for battery and BMU; DOT used the 
same costs for high voltage cables; DOT used CAFE analysis cost of Power electronics and thermal management 
system.  



 

for the components in the 2021 NAS report.  While the total 2021 NAS costs are appreciably 
lower than the total costs for a similar vehicle powertrain conversion in the CAFE analysis, when 
the component sizes are normalized the net costs from both analyses are much more similar.  
While our costs differ from those in the 2021 NAS report, we believe that the estimated costs in 
this rulemaking analysis appropriately consider all of the component costs that must be 
subtracted and added to implement a strong hybrid powertrain system. 

3.3.5.3.4 BEV Cost 

For this analysis, the total costs of BEVs includes the optimized battery pack and electric 
machine costs.  Like the other electrified powertrains, Autonomie optimized both the size of the 
battery pack and electric machine to fulfill the performance neutrality requirements for each 
vehicle.  Further discussion of electrification technology component sizing and optimization is 
provided in Chapter 3.3.4.  Electrification component costing is discussed in Chapter 3.3.5.1 and 
3.3.5.2. 

The model calculates the total cost of a BEV by first removing the cost of the IC engine and 
transmission associated with the conventional or hybridized powertrain and replacing that cost 
with the cost of an ETD system (i.e., the motor and inverter).  It is important to accurately 
estimate the motor size (rating), because the cost of the ETD accounts for a significant portion of 
the total cost of electrifying a vehicle.  DOT used the MY 2017 Market Data file (originally used 
for the 2020 final rule) to compute the average engine power for each technology class.  Table 
3-99 shows the steps taken to calculate the equivalent electric motor power required to replace 
each engine technology, derived from the MY 2017 Market Data file.  These power ratings can 
be found under appropriate engine tabs in the Technologies file.  The cost of the rest of the non-
battery electrification components can be found under vehicle tabs of the Technologies file.  
Summing these two cost leads to the total BEV electrified powertrain cost shown in the final 
column of the Table 3-99.  The values in this table are for DMC year 2017 in 2018$.   



 

Table 3-99 – Cost of ETD System for BEVs in 2020 (in 2018$) 

Technology 
Class 

HP 
Estimate 

Power 
in kW 

ETDS 
DMC 

ETDS with 
RPE 

Cost of Other 
Electric 

Components439  

Cost of Other 
Electrical Components 

with RPE 

Total BEV 
Electrification 
Cost with RPE 

2C1B_SOHC 38.00 28.33 $521.72  $782.58  $1,244.99  $1,867.49  $2,650.07  
2C1B 38.00 28.33 $521.72  $782.58  $1,244.99  $1,867.49  $2,650.07  
3C1B_SOHC 122.06 91.01 $1,675.77  $2,513.65  $1,244.99  $1,867.49  $4,381.14  
3C1B 122.06 91.01 $1,675.77  $2,513.65  $1,244.99  $1,867.49  $4,381.14  
4C1B_SOHC 175.05 130.51 $2,403.30  $3,604.95  $1,244.99  $1,867.49  $5,472.44  
4C1B 197.81 147.49 $2,715.87  $4,073.81  $1,244.99  $1,867.49  $5,941.30  
4C2B_SOHC 180.51 134.59 $2,478.34  $3,717.51  $1,244.99  $1,867.49  $5,585.00  
4C2B 180.51 134.59 $2,478.34  $3,717.51  $1,244.99  $1,867.49  $5,585.00  
5C1B_SOHC 226.86 169.14 $3,114.61  $4,671.92  $1,244.99  $1,867.49  $6,539.41  
5C1B 226.86 169.14 $3,114.61  $4,671.92  $1,244.99  $1,867.49  $6,539.41  
6C1B_SOHC 255.00 190.13 $3,501.02  $5,251.52  $1,244.99  $1,867.49  $7,119.01  
6C1B 255.00 190.13 $3,501.02  $5,251.52  $1,244.99  $1,867.49  $7,119.01  
6C1B_OHV 255.00 190.13 $3,501.02  $5,251.52  $1,244.99  $1,867.49  $7,119.01  
6C2B_SOHC 285.48 212.86 $3,919.52  $5,879.28  $1,244.99  $1,867.49  $7,746.77  
6C2B 285.48 212.86 $3,919.52  $5,879.28  $1,244.99  $1,867.49  $7,746.77  
6C2B_OHV 285.48 212.86 $3,919.52  $5,879.28  $1,244.99  $1,867.49  $7,746.77  
8C2B_SOHC 328.70 245.08 $4,512.85  $6,769.28  $1,244.99  $1,867.49  $8,636.77  
8C2B 369.40 275.43 $5,071.70  $7,607.55  $1,244.99  $1,867.49  $9,475.04  
8C2B_OHV 401.34 299.24 $5,510.15  $8,265.23  $1,244.99  $1,867.49  $10,132.72  
10C2B 497.94 371.26 $6,836.41  $10,254.62  $1,244.99  $1,867.49  $12,122.11  
10C2B_OHV 665.67 496.32 $9,139.25  $13,708.88  $1,244.99  $1,867.49  $15,576.37  
12C2B_SOHC 558.86 416.68 $7,672.82  $11,509.22  $1,244.99  $1,867.49  $13,376.71  
12C2B 558.86 416.68 $7,672.82  $11,509.22  $1,244.99  $1,867.49  $13,376.71  
12C4B_SOHC 558.86 416.68 $7,672.82  $11,509.22  $1,244.99  $1,867.49  $13,376.71  
12C4B 558.86 416.68 $7,672.82  $11,509.22  $1,244.99  $1,867.49  $13,376.71  
16C4B_SOHC 621.00 463.02 $8,526.00  $12,789.01  $1,244.99  $1,867.49  $14,656.50  
16C4B 601.31 448.33 $8,255.64  $12,383.46  $1,244.99  $1,867.49  $14,250.95  

 
439 Other electric components in BEVs are charger, DC/DC converter, and electrical cables.  



 

3.3.5.3.5 FCEV Cost 

For this analysis, DOT considered technology advancements in fuel cell systems, hydrogen 
storage tanks and hydrogen delivery systems, sensors and control systems, and market 
penetration.  DOT updated the cost of hydrogen storage tanks and fuel cells based on a cost 
analysis from Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy 
(EERE), Fuel Cell Technologies Office.  In these studies, DOE estimated the cost for 10,000 
units per year production of a compressed gas storage system at around $26/kWh (2016$, 
equivalent to $27.11 in $2018$), and the cost of the fuel cell system at about $85/kW (2017$, 
equivalent to $86.96 in $2018$).440,441  The DMC for FCEVs used for this analysis is $12,082.67 
in DMC year 2020 in 2018$.  After RPE, the cost is $13,804.13 in 2020 in 2018$.  

The total cost of a FCEV includes the fuel cell, control systems, motors, inverters, hydrogen 
storage tanks, wiring harness, hydrogen fuel delivery lines, sensors and hardware.  The cost of 
the battery pack and battery management system is not included in the cost of the fuel cell 
vehicle.  The total cost of the FCEV in this analysis can be found under the vehicle tabs of the 
technologies file.  

3.3.5.3.6 Example of Electrification Cost Technology Walk 

This section shows how the costs are computed for a vehicle that progresses from a lower level 
to a higher level of electrified powertrain.  DOT picked a GMC Acadia AWD as an example to 
walk through costs incurred during the progress from a vehicle with a mild hybrid SS12V system 
to a full BEV300 powertrain.  The same methodology could be used for any other technology 
advancement in the electric technology tree path.  

The platform data were used from the reference run CAFE Model standard setting 
vehicle_report.csv results file.  As seen in the vehicle_report.csv file, the MY 2024 GMC Acadia 
AWD SLT with a SS12V system adopts a BEV300 powertrain in MY 2025.  The change in 
technology and associated incremental technology cost from MY 2024 to MY 2025 are shown in 
Table 3-100. 

Table 3-100 – Cost and Technology Difference Between MY 2024 and MY 2025 for GMC Acadia AWD 
Simulated Platform 

MY Tech Key 
Tech Cost 

(2018$) 

2024 
DOHC; VVT; SGDI; DEAC; AT9L2; EPS; SS12V; LDB; SAX; ROLL20; 

AERO0; MR3 
$348.56 

2025 IACC; BEV300; LDB; SAX; ROLL20; AERO20; MR3 $13,562.71 

Cost Difference $13,214.15 

 
 

440 James et al., Final Report: Hydrogen Storage System Cost Analysis (September 2016), available at 
https://www.osti.gov/servlets/purl/1343975.  Page 20 -Table 6. 
441 James et al., Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing 
description, validation, and outlook, https://www.osti.gov/pages/biblio/1489250. Page 8 – Fig. 6. 

https://www.osti.gov/servlets/purl/1343975
https://www.osti.gov/pages/biblio/1489250


 

As seen in Table 3-100, the MY 2024 GMC Acadia AWD begins with the following technology 
key: DOHC; VVT; SGDI; DEAC; AT9L2; EPS; SS12V; LDB; SAX; ROLL20; AERO0; MR3.  
To progress to the BEV300 configuration, the following technologies need to be removed: 
DOHC, VVT, SGDI, DEAC, AT9L2, EPS, SS12V, and AERO0; and the following technologies 
need to be added: IACC, BEV300, and LDB, and AERO20.   

Table 3-101 shows the costs associated with the drivetrain and other components that must be 
removed from MY 2024 GMC Acadia AWD, and where to find them.  To properly cost the 
engine, it is important to note the engine is designated as a 6C2B engine (6 cylinders, 2 banks).  
For more information about engine geometry designation in the Technologies file please see 
Chapter 2.2 and Chapter 3.1.2. 

Table 3-101 – Costs Removed during Electrification Cost Integration for GMC Acadia Example 

Technology Location of Data in Technologies Input File and 
Battery Input File 

MY 2025 Value 
(2018$) 

DOHC Engine ‘6C2B’ Tab and ‘DOHC’ row $5,830.76 
AT9L2 Transmission ‘MedSUVPerf’ Tab and ‘AT9L2’ row $2,498.29 

VVT ‘6C2B’ Tab and ‘VVT’ row $221.54 
SGDI ‘6C2B’ Tab and ‘SGDI’ row $501.67 
DEAC ‘6C2B’ Tab and ‘DEAC’ row $203.35 
EPS ‘MedSUVPerf’ Tab, and ‘EPS’ row $117.28 

SS12V  ‘MedSUVPerf’ Tab, ‘SS12V’ Row $247.43 
SS12V Battery CAFE Model Battery Cost Input File442 $308.44 

AERO0  ‘MedSUVPerf’ Tab, ‘AERO0’ Row 0 
 
The SS12V battery pack cost is determined by multiplying the baseline battery pack cost by the 
learning curve factor.  The baseline battery costs are determined per discussions in Chapter 
3.3.5.1, and the cost are taken from the battery_cost.csv file.  The learning factor is taken from 
the Technologies file.  Table 3-104 shows the calculation of the battery pack cost. 

Table 3-102 – Battery Pack Cost for GMC Acadia Example 

Base Cost (2018) 
Battery_Costs.csv File 

Learning for MY 2025 
Technologies Input File 

‘MedSUVPer’ Tab, ‘SS12V’ Row 

MY 2025 Battery 
Cost (2018$) 

$237 1.3 $308.44 
 
After removing the conventional powertrain component costs, the costs for the new 
electrification technology must be added.  In this example the simulated vehicle platform is 
converted to a BEV300 powertrain.  For all the technologies in the electrification path two major 
component groups are always added, the battery pack and the non-battery electrification 
components.  Hybrid electric technologies will also include the cost for an engine and in some 
cases a change in cost for the transmission.  Table 3-103 shows the added cost for the non-

 
442 Note that this is only DMC.  RPE and Learning rate needs to apply to align with MY 2025 values in 2018$.  So, 
in this case it’s $237 battery DMC times 1.5 PRE times 0.9 learning rate. 



 

battery pack electrification technology components for the MY 2025 GMC Acadia AWD, and 
where those data can be found.  

Table 3-103 – Costs Added for the Non-Battery Pack Electrification Technology Components for GMC 
Acadia Example 

Technology Location of Data in Technologies Input File and 
Battery Input File 

MY 2025 Value 
(2018$) 

BEV300 Engine ‘6C2B Tab’, ‘BEV300’ row $3,581.65 
IACC ‘MedSUVPerf’ Tab, ‘IACC’ row $146.68 

BEV300 non-battery 
components  ‘MedSUVPerf’ Tab, ‘BEV300’ row $1,137.67 

BEV300 battery cost CAFE Model Battery Cost Input File443 $17,955.29 
AERO20 ‘MedSUVPerf’ Tab, ‘AERO20’ row $248.9 

 
The battery pack is cost is determined by multiplying the baseline battery pack cost by the 
learning curve factor.  The baseline battery costs are determined per discussions in Chapter 
3.3.5.1, and the cost are taken from the battery_cost.csv file.  The learning factor is taken from 
the Technologies file.  Table 3-104 shows the calculation of the battery pack costs. 

Table 3-104 – Battery Pack Cost for GMC Acadia Example 

Base Cost (2020 DMC in 2018$) 
Battery_Costs.csv file 

Learning for MY 2025 
Technologies Input File 

‘MedSUVPer’ Tab, ‘BEV300’ 
Row 

MY 2025 Battery Cost 
(2018$) 

$15,069 1.1915 $17,955.29 
 
Combining the reduction and addition of these technologies costs will result in a net added cost 
for the progression of a MY 2024 GMC Acadia mild hybrid to a MY 2025 Acadia BEV300.  
Table 3-105 shows a summary of the total cost application for this technology transition.   

 
443 Note that this is only DMC.  RPE and Learning rate needs to apply to align with MY 2025 values in 2018$.  So, 
in this case it’s $15,069 DMC for batteries times 1.5 RPE times 0.79 learning rate.  



 

Table 3-105 – Summary of Technology Cost Change for GMC Acadia Example 

 Technology 
Removed  

Technology 
Added 

MY 2025 Cost 
of Technology 

(2018$) 

MY 2025 
Overall 

Technology 
Cost (2018$) 

MY 2024    888.7 

Removed 
Technologies 

Engine (DOHC)  (5830.76) (5482.2) 
VVT  (221.54) (5703.74) 
SGDI  (501.67) (6205.41) 
DEAC  (203.35) (6408.76) 

Transmission 
(AT9L2)  (2498.29) (8907.05) 

EPS  (117.28) (9024.33) 
SS12V  (247.43) (9271.76) 

SS12V battery  (308.44) (9580.2) 
AERO0  (0) (9580.2) 

Added 
Technologies 

 BEV300 - ETDS 3581.65 (5998.55) 
 IACC 146.68 (5851.87) 

 Non-battery 
components 1137.67 (4714.2) 

 Battery Pack Cost 17955.29 13241.09 
 AERO20 248.9 13489.99 

  Total AC/OC 
Adjustments 72.71 13562.7 

MY 2025    13562.7 
 
Please note that in this calculation the CAFE Model accounts for the air conditioning and off-
cycle technologies (g/mile) applied to each vehicle model.  The cost for the AC/OC adjustments 
are located in the CAFE Model Scenarios File.  The air conditioning and off-cycle cost values 
are discussed further in Chapter 3.8. 

The methodology shown above can be used to walk through other electrification advancements 
in any other vehicle models. 

3.4 Mass Reduction 

Mass reduction is a relatively cost-effective means of improving fuel economy, and vehicle 
manufacturers are expected to apply various mass reduction technologies to meet fuel economy 
standards.  Reducing vehicle mass can be accomplished through several different techniques, 
such as modifying and optimizing vehicle component and system designs, part consolidation, 
and adopting lighter weight materials (advanced high strength steel, aluminum, magnesium, and 
plastics including carbon fiber reinforced plastics).   

The cost for mass reduction depends on the type and amount of materials used, the 
manufacturing and assembly processes required, and the degree to which changes to plants and 



 

new manufacturing and assembly equipment is needed.  In addition, manufacturers may develop 
expertise and invest in certain mass reduction strategies that may affect the approaches for mass 
reduction they consider and the associated costs.  Manufacturers may also consider vehicle 
attributes like noise-vibration-harshness (NVH), ride quality, handling, crash safety and various 
acceleration metrics when considering how to implement any mass reduction strategy.  These are 
considered to be aspects of performance, and for this analysis any identified pathways to 
compliance are intended to maintain performance neutrality.  Therefore, mass reduction via 
elimination of, for example, luxury items such as climate control, or interior vanity mirrors, 
leather padding, etc., is not considered in the mass reduction pathways for this analysis. 

The automotive industry uses different metrics to measure vehicle weight.  Some commonly 
used measurements are vehicle curb weight,444 gross vehicle weight (GVW),445 gross vehicle 
weight rating (GVWR),446 gross combined weight (GCVW),447 and equivalent test weight 
(ETW),448 among others.  The vehicle curb weight is the most commonly used measurement 
when comparing vehicles.  A vehicle’s curb weight is the weight of the vehicle including fluids, 
but without a driver, passengers, and cargo.  A vehicle’s glider weight, which is vehicle curb 
weight minus the powertrain weight, is used to track the potential opportunities for weight 
reduction not including the powertrain.  A glider’s subsystems may consist of the vehicle body, 
chassis, interior, steering, electrical accessory, brake, and wheels systems.  The percentage of 
weight assigned to the glider will remain constant for any given final rule but that percentage 
will most likely change in subsequent final rules.  For example, as electric powertrains including 
motors, batteries, inverters, etc. become a greater percent of the fleet, glider weight percentage 
will change compared to earlier fleets which had higher dominance of ICE powertrains.  
Therefore, in going from fleets dominated by ICEs to subsequent fleets dominated by battery 
electric powertrain, the glider percent share will decrease because BEV powertrains weight more 
than ICE powertrains.  

For this analysis, DOT considered six levels of mass reduction technology that include 
increasing amounts of advanced materials and mass reduction techniques applied to the glider.  
The mass change associated with powertrain changes is accounted for separately.  Mass 
reduction of the glider can sometimes enable a smaller engine while maintaining performance 
neutrality.  Smaller engines typically weight less than bigger ones.  Any changes in the resultant 
fuel savings associated with powertrain mass reduction and downsizing are captured via the 
Autonomie simulation.  Autonomie calculates a hypothetical vehicle’s theoretical fuel mileage 
using a mass reduction to the vehicle curb weight equal to the sum of mass savings to the glider 
plus the mass savings associated with the downsized powertrain.  

 
444 This is the weight of the vehicle with all fluids and components but without the drivers, passengers, and cargo. 
445 This weight includes all cargo, extra added equipment, and passengers aboard. 
446 This is the maximum total weight of the vehicle, passengers, and cargo to avoid damaging the vehicle or 
compromising safety. 
447 This weight includes the vehicle and a trailer attached to the vehicle, if used.  
448 For the EPA two-cycle regulatory test on a dynamometer, an additional weight of 300 lbs is added to the vehicle 
curb weight.  This additional 300 lbs represents the weight of the driver, passenger, and luggage.  Depending on the 
final test weight of the vehicle (vehicle curb weight plus 300 lbs), a test weight category is identified using the table 
published by EPA according to 40 CFR 1066.805.  This test weight category is called “Equivalent Test Weight” 
(ETW). 



 

Cost for the first four levels of mass reduction are the same as those used in the SAFE Rule.  The 
costs for each of the top two of the six levels of mass reduction technology are based on vehicle 
mass reduction design concept studies, teardown studies and the recently-issued NAS 2021 
report.  The incremental increase in price is not linear going from MR1 to MR6.  Rather the costs 
increase in a quasi-exponential fashion.  This is because as more and more mass is removed, 
there is a necessity to employ more and more expensive materials and processes.  These costs 
consider both primary and secondary mass reduction opportunities and mass reduction of 
primary versus secondary structure, all of which are discussed further later in this Chapter.  In 
addition, the following sections discuss the assumptions for the six mass reduction technology 
levels, the process used to assign initial analysis fleet mass reduction assignments, the 
effectiveness for applying mass reduction technology, and mass reduction costs.   

3.4.1 Mass Reduction in the CAFE Model 

The CAFE Model considers six levels of mass reduction technologies that manufacturers could 
use to comply with CAFE standards.  The magnitude of mass reduction in percent for each of 
these levels is shown in Table 3-106 for mass reductions for light trucks, passenger cars and for 
gliders.  

Table 3-106 – Mass Reduction Technology Level and Associated Glider and Curb Mass Reduction 

MR 
Level 

Percent Glider 
Weight 

Percent Vehicle Curb 
Weight (Passenger Cars) 

Percent Vehicle Curb 
Weight (Light Trucks) 

MR0 0% 0.00% 0.00% 
MR1 5% 3.55% 3.55% 
MR2 7.5% 5.33% 5.33% 
MR3 10% 7.10% 7.10% 
MR4 15% 10.65% 10.65% 
MR5 20% 14.20% 14.20% 
MR6 28% 20.00% 20.00% 

 
For this analysis, DOT staff consider mass reduction opportunities from the glider subsystems of 
a vehicle first, and then consider associated opportunities to downsize the powertrain, which are 
accounted for separately.449  As explained below, in the Autonomie simulations, the glider 
system includes both primary and secondary systems from which a percentage of mass is 
reduced for different glider weight reduction levels; specifically, the glider includes the body, 
chassis, interior, electrical accessories, steering, brakes and wheels.  In this analysis, DOT staff 
assumed the glider share is 71% of vehicle curb weight.  The Autonomie model sizes the 
powertrain based on the glider weight and the mass of some of the powertrain components in an 
iterative process.  The mass of the powertrain depends on the powertrain size.  Therefore, the 
weight of the glider impacts the weight of the powertrain.450   

 
449 When the mass of the vehicle is reduced by an appropriate amount, the engine may be downsized to maintain 
performance.  See Chapter 2.4.5 for more details.   
450 Since powertrains are sized based on the glider weight for the analysis, glider weight reduction beyond a 
threshold amount during a redesign will lead to re-sizing of the powertrain.  For the analysis, the glider was used as 
a base for the application of any type of powertrain.  A conventional powertrain consists of an engine, transmission, 
 



 

DOT staff use glider weight to apply non-powertrain mass reduction technology in the CAFE 
Model and use Autonomie simulations to determine the size of the powertrain and corresponding 
powertrain weight for the respective glider weight.  The combination of glider weight (after mass 
reduction) and re-sized powertrain weight equal the vehicle curb weight.  See Chapter 3.4.4 for 
more detail on glider mass and glider mass reduction.  The cost and fuel savings effectiveness 
calculation for curb weight mass reduction (described in a subsequent section) occurs within 
Autonomie.  The Autonomie simulation takes into account both glider mass reduction and 
powertrain mass reduction in its calculations of a vehicle’s fuel mileage. 

3.4.1.1 Assumptions Behind the Mass Reduction Levels  

While there are a range of specific mass reduction technologies that may be applied to vehicles 
to achieve each of the six mass reduction levels, there are some general trends that are helpful to 
illustrate some of the more widely used approaches.  Typically, MR0 reflects vehicles with 
widespread use of mild steel structures and body panels, and very little or no use of high strength 
steel or aluminum.  MR0 reflects materials applied to average vehicles in the MY 2008 
timeframe.  MR1-MR3 can be achieved with a steel body structure.  In going from MR1 to MR3, 
expect that mild steel to be replaced by high strength and then advanced high strength steels.  In 
going from MR3 to MR4 aluminum is required.  This will start at using aluminum closure panels 
and then to get to MR4 the vehicle’s primary structure will need to be mostly made from 
aluminum.  In the majority of cases, carbon fiber technology is necessary to reach MR5, perhaps 
with a mix of some aluminum.  MR6 can really only be attained in anything resembling a 
passenger car by making nearly every structural component from carbon fiber.  This means the 
body structure and closure panels like hoods and door skins are wholly made from carbon fiber.  
There may be some use of aluminum in the suspension.   

As discussed further in Chapter 3.4.5, the cost studies used to generate the cost curves assume 
mass can be reduced in levels that require different materials and different components to be 
utilized, in a specific order.  DOT’s mass reduction levels are loosely based on what materials 
and components that would be required to be used for each percent of mass reduction, based on 
the conclusions of those studies. 

3.4.1.1.1 Traditional Mass Reduction Materials Used to Achieve MR1 through MR4 

Advanced high strength steel (AHSS) and aluminum (AL) have played a major role in recent 
years as materials used to reduce vehicle mass.  The penetration rate of AHSS or AL depends on 
a number of factors such as vehicle redesign cycle timing, material availability, accompanying 
changes in manufacturing equipment, and changes in joining methods, among other things.  A 
study conducted for the American Iron and Steel Institute shows the application of AHSS in 
vehicles has increased from 81 lbs on average in 2006 to 254 lbs in 2015.451 

 
exhaust system, fuel tank, radiator and associated components.  A hybrid powertrain also includes a battery pack, 
electric motor(s), generator, high voltage wiring harness, high voltage connectors, inverter, battery management 
system(s), battery pack thermal system, and electric motor thermal system.  
451 Abey Abraham, Metallic Material Trends in the North American Light Vehicle (May 2015), available online at - 
http://www.steelsustainability.org/~/media/Files/Autosteel/Great%20Designs%20in%20Steel/GDIS%202015/Track
%202%20-%20Abraham.pdf. 

http://www.steelsustainability.org/%7E/media/Files/Autosteel/Great%20Designs%20in%20Steel/GDIS%202015/Track%202%20-%20Abraham.pdf
http://www.steelsustainability.org/%7E/media/Files/Autosteel/Great%20Designs%20in%20Steel/GDIS%202015/Track%202%20-%20Abraham.pdf


 

 
Figure 3-25 – Penetration of AL in Hoods and Sub-Frames/Cradles from 2009 to 2015 

According to a study conducted for the Aluminum Association, aluminum content in vehicles 
has increased from nearly 300 lbs in 2005, to 394 lbs in 2015, up from roughly 80 lbs in 1975, 
and a little more than 150 lbs in 1990.452  Since the 1980s, many castings have migrated from 
steel to aluminum.453  Figure 3-25 shows AL replacing steel in greater percentages in vehicle 
hoods, and AL beginning to penetrate sub-frames/engine cradles in small percentages.454 

A 2017 report published by American Chemistry Council (ACC) shows that while the overall 
share of plastics and polymer composites in vehicles have decreased by 0.1% in the last 10 
years,455 the share of AL has increased by 2.3%.456  The report also published data on material 
content in vehicles as shown in Table 3-107 and Table 3-108.   

 
452 Available online at - http://www.autonews.com/assets/PDF/CA95065611.PDF.  
453 For instance, engine blocks and transmission cases are nearly universally aluminum in the MY 2016 fleet, but 
aluminum was rarely used in these applications prior to the 1990’s. 
454 Id. 
455 After rapidly increasing in the 1960’s through the 1990’s. 
456 American Chemistry Council Economics & Statistics Department, Plastics and Polymer Composites in Light 
Vehicles (November 2017), available at https://plastics-car.com/lightvehiclereport (last accessed May 2018). 

http://www.autonews.com/assets/PDF/CA95065611.PDF


 

Table 3-107 – Average Materials Content of US/Canada Light Vehicles (lbs/vehicle) 
 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Average Weight 4,081 4,103 4,046 3,953 3,960 4,007 3,896 3,900 3,928 3,991 4,026 

Regular Steel 1,622 1,644 1,627 1,501 1,458 1,439 1,368 1,354 1,342 1,330 1,335 
High- & 
Medium-  
Strength457 

502 518 523 524 555 608 619 627 649 701 742 

Stainless Steel 73 75 75 69 72 73 68 74 73 75 74 
Other Steels 34 34 33 31 32 32 30 32 32 32 32 
Iron Castings 331 322 253 206 242 261 270 271 278 268 249 
Aluminum 323 319 316 324 338 344 349 355 368 395 410 
Magnesium 10 10 11 11 11 12 10 10 10 10 11 
Copper and 
Brass 67 66 71 71 74 73 71 70 68 67 66 

Lead 39 41 44 42 41 39 35 35 36 35 35 
Zinc Castings 10 9 9 9 9 9 8 8 8 8 8 
Powder Metal 42 43 43 41 41 42 44 45 46 45 44 
Other Metals458 5 5 5 5 5 5 5 5 4 5 5 
Plastics/Polymer 
Composites 342 339 348 384 359 353 332 328 329 334 332 

Rubber 198 192 204 245 228 223 205 198 196 198 199 
Coatings 30 30 31 36 36 33 28 28 28 28 28 
Textiles 47 46 48 58 56 50 49 50 49 45 44 
Fluids and 
Lubricants 211 215 214 217 219 221 219 222 224 225 226 

Glass 105 103 99 88 92 98 95 96 96 95 93 
Other 89 92 91 90 92 93 91 92 93 95 92 

 
457 Despite long lead times for material qualification of new metal alloys, medium and high strength steels have been 
and continue to be widely adopted in the automotive industry at a rapid pace.  Advanced steel materials typically 
replace regular steel, and often compete with aluminum and composites in body systems. 
458 “Other Metals” are typically used sparingly in specialty applications in the auto industry, and these metals make 
up a small portion of total vehicle weight. 



 

Table 3-108 – Average Materials Content of US/Canada Light Vehicles (Percentage of Total Weight per 
Vehicle) 

 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Regular Steel 39.7% 40.1% 40.2% 38.0% 36.8% 35.9% 35.1% 34.7% 34.2% 33.3% 33.2% 
High- & 
Medium-
Strength 

12.3% 12.6% 12.9% 13.3% 14.0% 15.2% 15.9% 16.1% 16.5% 17.6% 18.4% 

Stainless Steel 1.8% 1.8% 1.9% 1.7% 1.8% 1.8% 1.7% 1.9% 1.9% 1.9% 1.8% 

Other Steels 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 

Iron Castings 8.1% 7.8% 6.3% 5.2% 6.1% 6.5% 6.9% 6.9% 7.1% 6.7% 6.2% 

Aluminum 7.9% 7.8% 7.8% 8.2% 8.5% 8.6% 9.0% 9.1% 9.4% 9.9% 10.2% 

Magnesium 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.3% 
Copper and 

Brass 1.6% 1.6% 1.7% 1.8% 1.9% 1.8% 1.8% 1.8% 1.7% 1.7% 1.6% 

Lead 1.0% 1.0% 1.1% 1.1% 1.0% 1.0% 0.9% 0.9% 0.9% 0.9% 0.9% 

Zinc Castings 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 

Powder Metal 1.0% 1.0% 1.1% 1.0% 1.0% 1.0% 1.1% 1.2% 1.2% 1.1% 1.1% 

Other Metals 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 
Plastics/Polymer 

Composites 8.4% 8.3% 8.6% 9.7% 9.1% 8.8% 8.5% 8.4% 8.4% 8.4% 8.3% 

Rubber 4.8% 4.7% 5.1% 6.2% 5.8% 5.6% 5.3% 5.1% 5.0% 5.0% 4.9% 

Coatings 0.7% 0.7% 0.8% 0.9% 0.9% 0.8% 0.7% 0.7% 0.7% 0.7% 0.7% 

Textiles 1.2% 1.1% 1.2% 1.5% 1.4% 1.3% 1.3% 1.3% 1.2% 1.1% 1.1% 
Fluids and 
Lubricants 5.2% 5.2% 5.3% 5.5% 5.5% 5.5% 5.6% 5.7% 5.7% 5.6% 5.6% 

Glass 2.6% 2.5% 2.4% 2.2% 2.3% 2.4% 2.4% 2.5% 2.4% 2.4% 2.3% 

Other 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.4% 2.4% 2.4% 2.3% 
 

Adding aluminum to a vehicle’s structure, both primary and secondary, is useful in reaching 
higher levels of mass reduction.  To reach MR5 or MR6, extensive application of carbon fiber 
technology is typically needed.  

3.4.1.1.2 Requirements for Achieving MR5 and MR6 

Manufacturers have begun to experiment with advanced composites, such as carbon fiber, to 
achieve mass reduction.  Carbon fiber reinforced plastic (CFRP) composite materials offer many 
opportunities for meaningful mass reduction in automotive applications.  Components made 
from CFRP can typically be engineered to be 30 to 50% lighter than components made from 
conventional materials.  An individual carbon fiber can have up to nearly three times the stiffness 



 

of steel.  Some aerospace grade individual carbon fibers can be up to seven times stronger than 
even advanced high-strength steels used in passenger cars.459   

When automotive grade carbon fibers are incorporated with a plastic resin, such as epoxy, the 
density normalized strength (i.e., specific strength) of the composite can be well over seven 
times that of automotive advanced high strength steel.  The density normalized stiffness (i.e., 
specific stiffness) of the composite can be nearly two and half times that of steel.  These 
properties, for a highly-idealized carbon fiber composite structural member, can translate to 
anywhere between an 88% to a 78% mass savings depending on the mode of loading (tensile, 
compression, bending torsion, etc.) to which the structural member is subject.460  Manufacturers 
have used carbon fiber technology not only to reduce mass, but also to change the vehicle’s 
center of gravity and improve the vehicle’s weight distribution. 

However, mass production and vehicle packaging related design limitations preclude achieving 
these levels of mass reduction on real automotive structures.  Challenges to using CFRP include 
high cost of materials, failure mode unpredictability in crashes, longer lead time and cycle time 
to manufacture, and special tools required to assemble, join components with other metallic 
components and stranded capital for manufacturing equipment.  

When estimating the mass savings potential of carbon fiber technology applied to passenger 
automobiles, it is important to note that carbon fibers come in a broad spectrum of grades.  The 
highest grades, with the highest strength and stiffness can be hundreds of dollars per pound.  
They are consequently not realistic for use in high volume road vehicles.  The only grades that 
may be practicably affordable for mainstream automotive applications, are the lowest ones.  
They also offer the least potential for meaningful mass savings.  Therefore, it should not be 
assumed that mass savings achieved in aerospace applications should translate to road vehicle 
applications.  It should also not be assumed that carbon fiber technology affords the same mass 
saving potential to automotive structures that it does to upper echelon sporting goods.  For 
example, professional racing bicycles are often made from aerospace grade fiber, as are 
Wimbledon-level tennis rackets.  

Regardless, the auto industry has used carbon fiber successfully for lightweighting automotive 
primary and secondary structure for nearly five decades.  Formula One Grand Prix teams used 
the material for small components like wing supports starting in the mid-1970s.  In 1981, British 
Grand Prix team McLaren built the MP4/1 which was the first racing car, and also the first 
automobile, with a primary structure made wholly from carbon fiber.  Today, carbon fiber 
primary structure is the standard construction method from which F1 Grand Prix, Indy Car and 
Le Mans series racing cars are built.  There are few other lower racing series that can justify the 
extreme cost of full carbon fiber composite primary structure.  

Note that primary and secondary structure is different than primary and secondary mass 
reduction.  A car’s or truck’s primary structure reacts the main loads fed into the vehicle from its 
suspension.  It also reacts impact loads and protects passengers from injury.  Examples include 
unit bodies, suspension sub-frames, bumper beams, side intrusion beams, etc.  However, for 
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most passenger cars, the term primary structure refers to the unit body.  This is different to 
secondary structure, which only reacts lower magnitude inputs such as aero loads or loads from 
ancillary equipment like interior trim, radio antennae, lighting components, etc.  Examples of 
secondary structure includes items like bolt-on fenders, side mirrors, deck lids, front and rear 
fascia, etc.  The loads reacted by primary structure are nearly always higher in magnitude than 
that of those reacted by secondary structure.  As a further clarification, a vehicle with all 
secondary structure removed would be functional and safe, but may look unfinished or be 
uncomfortable to driver and passengers.   

Application of carbon fiber technology to road vehicles has been sparse and intermittent.  Most 
applications have been to secondary structure that offer limited mass reduction.  Today, General 
Motors offers pick-up trucks with pick-up boxes made from carbon fiber composite material.  
But the material used in that application does not have sufficient mechanical properties to 
support a safe and stiff primary structure.  BMW offers a few high-end vehicles with carbon 
fiber roof panels, side view mirrors, rear wings and other hang-on components.  Nissan offers a 
select few aero-surface components on their GTR Model.  None of these vehicles is considered 
below average in mass by any reasonable metric. 

Far fewer road cars possess primary structure wholly made from carbon fiber.  Some examples in 
recent U.S. fleets include the Alfa Romeo 4C, Bugatti Chiron, and the Lamborghini Aventador.  
In every one of these vehicles, the primary structure looks much like that of at least a Le Mans 
racing car with a central carbon fiber passenger cell and fore and aft structures supporting the 
powertrain and suspension.  In most every way, these vehicles are more racecars for the road 
than affordable car for the everyman.  They are far too expensive for high volume cars sales.  
Although the Alfa 4C may approach affordability at $75,000, the other vehicles mentioned are 
all above $300,000 and go into the millions of dollars for the Bugatti. 

The exception is the BMW i3.  It is the first and only mass-volume vehicle to have the majority 
of its primary structure made from carbon fiber composites.  Its primary structure is split into 
two main modules.  The base of the vehicle, which contains the battery pack, motor and all the 
suspension mounting points is made from aluminum castings, extrusions and sheet materials.  
This structure is sometimes referred to as having a “skateboard” architecture.461  The upper 
section of the i3’s primary structure, including body-side assemblies, roof assembly, floor pan 
assemblies and front and rear clip are made from carbon fiber reinforced polymer materials.  The 
manufacturing methods used to make these carbon fiber reinforced plastic structures took 
decades to develop and represent intellectual property, closely held trade secrets, and tacit secrets 
held tightly by assembly line-workers.  A teardown study by Munro & Associates showed the 
BMW i3 cab structure plus the aluminum skateboard is 68 kg lighter than a comparable steel 
structure.462  This study also estimated the upfront investment and resulting part cost to 
manufacture CFRP components. 

In addition to solving the many technical challenges associated with mass-volume carbon fiber 
component manufacture, BMW also addressed the many challenging supply chain issues with 
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carbon fiber component production.  BMW went as far as setting up purpose-built carbon fiber 
processing plants using hydro-electric energy in Washington state.  BMW also set up their own 
facility in Wackersdorf, Germany to weave the dry fiber into useable matte materials.  At this 
same facility, the matte material is pressed into a fiber pre-form using a light press and then 
made into useable panels using a liquid resin infiltration process (i.e. RIM).  

Any manufacturer considering carbon fiber technologies would most likely require a decade or 
two of time and extensive financial resources to develop a carbon-fiber program for high volume 
vehicle application.  

The high cost of carbon fiber composite lightweighting technology is a result of many factors.  
First, most carbon fiber is made from a polymer fiber known as polyacrylonitrile (PAN).  A 
similar fiber is typically used to make gym socks.  Because this fiber is made from petroleum 
products, it is an expensive pre-cursor.  The conversion of the PAN to carbon fiber is also quite 
expensive.  This is because it involves stretching strands of PAN fibers under intense heat to 
burn-off any non-carbon elements in their composition and to straighten carbon chain structures 
in the fiber.  This requires a lot of energy which is typically supplied from burning fossil fuels.  
In addition, the process takes hours because the fiber material must traverse literally miles of 
serpentine distance within a pyrolization furnace.  It therefore takes a formidable amount of time 
and energy to convert the PAN fiber to carbon fiber yarn, or “tows.”  

Second, incorporating these tows into a polymer matrix material (such as epoxy) with sufficient 
fiber content and lack of voids is no trivial matter.  A reasonable description of the various 
methods of manufacturing carbon fiber reinforced plastic composites is out of the scope of this 
document.  None of them approach the ultra-low costs of the stamped sheet metal paradigm in 
which the mainstream automotive industry lives today.  For example, the composite industry has 
struggled to reduce the cycle time to produce a carbon body panel down to one minute.  A 
similar steel body panel can go from raw sheet to a finished panel in seconds.  Time is money in 
manufacturing environments.  So, from a manufacturing perspective the source of the added cost 
belongs to the extra time required to incorporate the carbon fibers into finished components.  

Another impediment to deployment of carbon fiber technology into the mainstream automotive 
industry is limited global supply of the raw carbon fibers.  It is reported by composite materials 
industry publications463 that in 2019, the sum total of worldwide carbon pyrolization facilities 
produced 161,200 metric tons of dry carbon fiber (just the fiber).  Most of this dry fiber material 
is made by Toray of Japan.  The next largest producer is Hexcel in the U.S.  Of the material that 
is produced, little is currently allocated to the automotive industry.  About half of this carbon 
fiber dry tow material goes to industrial applications.  About 15 percent goes to aerospace 
applications and about 10 percent goes to sporting goods manufacturers.  Finally, another 10 
percent goes to the automotive industry.  

Lightweighting studies completed by the engineering consultancy EDAG464 estimate that 
effective weight reduction results when approximately 400 kg of carbon fiber composite material 
is used per vehicle on average.  Assuming a fiber volume fraction of 60 percent and accounting 
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for the density differences between dry carbon fiber and epoxy, about 232 kg of the 400 kg is dry 
fiber material.  This means that in 2019, there would have been enough carbon fiber available to 
make almost 70,000 vehicles.  Although global dry carbon fiber output is projected to increase 
by 10.2 percent compound annual growth rate out until 2029,465 this still will not be enough to 
supply the full number of vehicles sold in the U.S. each year, which is approximately 17 million 
vehicles.   

As a final point for this section, a recent National Academies study assessing technologies for 
improving the fuel economy of light-duty vehicles, included a section on the potential to reduce 
vehicle mass using carbon fiber technology.  The NAS study mentioned that the current state of 
the art methods for producing structural carbon fiber automotive components including resin 
transfer molding (RTM), are prone to generating a lot of scrap fiber material.  This of course 
adds to the cost of the vehicle and deducts from the limited amount of fiber material available to 
the auto industry.  The study also notes that alternate methods of constructing carbon fiber 
structural members such as pultrusion methods, are much more efficient from a materials 
scrappage perspective.  Indeed, pultrusions made from carbon fibers are under continuing 
development for application in primary automotive structures.  They have potential to improve 
the affordability of applying carbon fiber technology to high volume automotive manufacture.   

Carbon fiber is particularly relevant to this analysis as higher levels of stringency require higher 
levels of mass reduction technology be applied to vehicles.  As discussed above, the highest 
levels of mass reduction technology considered in this analysis (MR5 and MR6) include an 
assumption that a significant amount of carbon fiber will be required for the vehicle’s body 
structure.  If made mostly from carbon fiber, vehicles sold in high volumes (hundreds of 
thousands of cars) might demand so much material that it would outstrip global carbon fiber 
supply.  Accordingly, as discussed in Chapter 3.4.3, DOT has limited the amount of MR5 and 
MR6 that can be applied to vehicles in the analysis.  This technology will continue to be 
monitored by DOT.  Any additional feedback on developing carbon fiber manufacturing 
technologies that have potential to increase the affordability of this technology for mass 
application is encouraged. 

3.4.1.1.3 Primary and Secondary Mass Reduction  

Each of the subsystems in a vehicle presents an opportunity for weight reduction; however, some 
weight reduction is dependent on the weight reduction of other subsystems.  Mass reduction is 
often characterized as either primary mass reduction or secondary mass reduction.  Primary mass 
reduction involves reducing mass of components that can occur independent from the mass of 
other components.  For example, reducing the mass of a hood (e.g., replacing a steel hood with 
an aluminum hood) or reducing the mass of a seat, are examples of primary mass reduction 
because each can be implemented independently.  Other components and systems that may 
contribute to primary mass reduction include the vehicle body, chassis, and interior components. 

When significant primary mass reduction occurs, other components designed based on the mass 
of primary components may be redesigned as well.  An example of a subsystem where secondary 
mass reduction can be applied is the brake system.  If the mass of primary components is reduced 
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sufficiently, the resulting lighter weight vehicle could safely maintain braking performance and 
attributes with a lighter weight brake system.  Other examples of components where secondary 
mass reduction can be applied are wheels and tires. 

DOT’s mass reduction levels implicitly assume primary and secondary mass reduction happens 
in a specific order, to apply technologies in the order of cost effectiveness while ensuring that 
secondary mass reduction is applied after sufficient primary mass reduction has been applied to 
enable the secondary mass reduction.   

Some mass reduction is more valuable to fuel savings than other mass reduction.  All mass on a 
vehicle contributes to the translating (vehicle reference frames moves relative to its 
surroundings) mass of the vehicle.  However, some mass on a vehicle is simultaneously 
translating and rotating (rotates relative to the reference frame of the vehicle.)  For example, 
wheels, brake rotors, and hub flanges fall into this category.  This is in contrast to components 
like fuel tanks, windshields, rear seats, etc. that only translate with the vehicle.  Weight reduction 
of components that are rotating and translating offer greater fuel savings.  This is because when a 
vehicle accelerates not only the translational inertia must be overcome, but additionally the 
rotational moment of inertia must be overcome for these components as well.  This requires more 
energy than if they were just translating.  Therefore, reducing the mass of these components 
provides an increased benefit. 

As discussed further in Chapter 3.4.5, DOT developed the cost curves used in this analysis by 
sequencing the lightweighted components from the MY 2011 Honda Accord and MY 2014 
Chevrolet Silverado studies based on cost effectiveness.  They assumed the vehicle body, 
chassis, interior, and other primary components were lightweighted first, followed then by 
lightweighting powertrain components and other secondary systems after there is sufficient 
primary mass reduction.  Following the publication of NHTSA’s lightweighting studies, peer 
reviewers and manufacturers commented that many common components that are shared across 
all of the powertrains and vehicle models, such as drive axles, engine cradles, and radiator engine 
support that are considered to be non-powertrain secondary mass reduction opportunities cannot 
be downsized.  This is because the same components are used across many vehicles with 
different powertrain options.  Even though some of these components may provide opportunities 
for additional mass reduction, NHTSA agreed with peer reviewers and manufacturers that 
retaining a common design for all powertrain options avoids the proliferation of complexity to 
maintain economies of scale. 

The cost curves based on the NHTSA studies reflect that, returning to this example, secondary 
mass reduction for the brake system is only applied after there has been sufficient primary mass 
reduction to allow the smaller brake system to provide safe braking performance and to maintain 
mechanical functionality.  This allowed DOT staff to estimate the cost of mass reduction 
independently of the cost associated with downsized advanced engines and advanced 
transmissions, as the cost of downsized advanced engines and transmissions are accounted for 
separately in the CAFE Model.  Therefore, the six mass reduction levels included in this analysis 
appropriately reflect both primary and secondary mass reduction opportunities.   



 

3.4.2 Mass Reduction Analysis Fleet Assignments 

To assign baseline mass reduction levels (MR0 through MR6) for vehicles in the MY 2020 
analysis fleet, DOT staff used previously-developed regression models that were used for the 
2015 rulemaking analysis to estimate curb weight for each vehicle based on observable vehicle 
attributes.  DOT staff originally developed the mass reduction regression models using MY 2015 
fleet data; for this NPRM analysis, DOT used MY 2016 and 2017 analysis fleet data to update 
the models.   

To develop the original curb weight regressions, DOT grouped vehicles into three separate body 
design categories: 3-box, 2-box, and pickup, as seen in Table 3-109.  A 3-box can be explained 
as having a box in the middle for the passenger compartment, a box in the front for the engine 
and a box in the rear for the luggage compartment.  A 2-box has a box in front for the engine and 
then the passenger and luggage box are combined into a single box.   

Table 3-109 – Mass Reduction Body Style Sets 

3-BOX 2-BOX PICK-UP 
Coupe 
Sedan 
Convertible 

Hatchback 
Wagon 
Sport Utility 
Minivan 
Van 

Pick-up 

 
For 2020 rulemaking and this analysis, DOT staff retained the MY 2015 regressions for 3-Box 
and 2-Box vehicles.  While many of the vehicles share the same powertrain for passenger cars 
and SUVs or for cars and pickup trucks, the utility and functionality of the vehicle in SUVs and 
pickup trucks (2-box) is different than passenger cars (3-box).  The presence of additional 
structure for towing or higher capacity towing, rear cross member, higher capacity suspension, 
and other differences, enable SUVs and pickup trucks to have towing and heavier payload 
capability.  For example, Ford uses the nearly similar displacement and horsepower engines in 
Mustang Ecoboost Coupe and in F150 2WD XL, Regular Cab, Long Box.  However, the curb 
weight for the pickup truck is higher than the Mustang.  Directionally, this suggests that the 2-
box weight per horsepower coefficient should be greater than the 3-box coefficient, just as it is in 
the regression.  The coefficient for passenger cars and SUVs has not changed since the MY 2015 
vehicle fleet analysis.   

For 2020 rulemaking and this analysis, DOT staff upgraded the pickup category regression in 
response to comments on the 2016 Draft TAR.  DOT staff estimated a new regression with EPA 
MY 2014 CAFE compliance data and added pick-up bed length as an independent variable.  As a 
result of stepping back to MY 2014 data for the pick-up regression, the dataset did not include 
the all-aluminum body Ford F-150 in the calculation of the baseline.  The advanced F-150 in the 
MY 2015 pick-up regression meaningfully affected Draft TAR regression statistics because the 
F-150 accounted for a large portion of observations in the analysis fleet, and the F-150 included 
advanced weight savings technology. 

DOT staff leveraged many documented variables in the analysis fleet as independent variables in 
the regressions.  Continuous independent variables included footprint (wheelbase x track width) 



 

and powertrain peak power.  Binary independent variables included strong HEV (yes or no), 
PHEV (yes or no), BEV or FCV (yes or no), all-wheel drive (yes or no), rear-wheel drive (yes or 
no), pick-up bed length (for the pick-up truck regression only) and convertible (yes or no).  In 
addition, for PHEV and BEV/FCV vehicles, the capacity of the battery pack was included in the 
regression as a continuous independent variable.  In some body design categories, the analysis 
fleet did not cover the full spectrum of independent variables.  For instance, in the pickup body 
style regression, there were no front-wheel drive vehicles in the analysis fleet, so the regression 
defaulted to all-wheel drive and left an independent variable for rear-wheel drive. 

Previously, DOT staff evaluated alternative regression variables.  We evaluated regressions 
including overall dimensions of vehicles, such as height, width, and length, instead of and in 
addition to just wheelbase and track width.  The experimental regression variables only 
marginally changed predicted curb weight residuals as a percentage of predicted curb weight, at 
an industry level and for most manufacturers.  The results were not significantly different, and 
therefore we opted not to add these variables to regressions or replace independent variables 
presented in this analysis. 

The Regression results for 3-Box, 2-Box and Pickup trucks are shown in Table 3-110, Table 
3-111, and Table 3-112.  

Table 3-110 – Regression Statistics for Curb Weight (lbs) for 3-Box Vehicles 

Observations 822 
Adjusted R Square 0.87 

Standard Error 228.70 

Regression Statistics Coefficients Standard 
Error t Stat P-value Lower 

95% 
Upper 
95% 

Intercept -1581.63 98.50 -16.06 0.00 -1775.00 -1388.30 
Footprint (sqft) 100.5 2.2 44.79 0 69.1 104.9 
Power (hp) 1.22 0.1 14.85 0 1.1 1.4 
Bed length (inches) - - - - - - 
Strong HEV (1,0) 200.36 46.3 4.33 0 109.5 291.2 
PHEV (1,0) 259.28 96.8 2.68 0.0075 69.3 449.2 
BEV or FCV (1,0) 602.33 215 2.8 0.0052 180.3 1024.3 
Battery pack size 
(kWh) -2.48 4.1 -0.6 0.5461 -10.6 5.6 

AWD (1,0) 294.51 24.5 12.03 0 246.4 342.6 
RWD (1,0) 117.2 23.7 4.94 0 70.6 163.8 
Convertible (1,0) 273.65 25.3 10.84 0 224.1 323.2 

 



 

Table 3-111 – Regression Statistics for Curb Weight (lbs) for Pick-up Vehicles 

Observations 312 
Adjusted R Square 0.84 

Standard Error 206.80 

Regression Statistics Coefficients Standard 
Error t Stat P-value Lower 

95% 
Upper 
95% 

Intercept 1062.21 130.23 8.16 0.00 805.95 1318.48 
Footprint (sqft) 58.31 2.37 24.96 0 53.72 62.91 
Power (hp) 2.5 0.21 11.79 0 2.08 2.92 
Bed length (inches) -9.57 1.14 -8.4 0 -11.81 -7.32 
Strong HEV (1,0) - - - - - - 
PHEV (1,0) - - - - - - 
BEV or FCV (1,0) - - - - - - 
Battery pack size 
(kWh) - - - - - - 

AWD (1,0) 260.91 23.62 11.05 0 214.43 307.38 
RWD (1,0) - - - - - - 
Convertible (1,0) - - - - - - 

 

Table 3-112 – Regression Statistics for Curb Weight (lbs) for 2-Box Vehicles 

Observations 584 
Adjusted R Square 0.88 

Standard Error 332.80 
Regression 
Statistics Coefficients Standard 

Error t Stat P-value Lower 
95% 

Upper 
95% 

Intercept -1930.09 142.50 -13.54 0.00 -2210.00 -1650.20 
Footprint (sqft) 104.72 3.6 28.69 0 97.5 111.9 
Power (hp) 3.09 0.2 13.42 0 2.6 3.5 
Bed length (inches) - - - - - - 
Strong HEV (1,0) 358.97 80.3 4.47 0 201.3 516.6 
PHEV (1,0) 462.9 169.7 2.73 0.01 129.5 796.3 
BEV or FCV (1,0) 374.24 152.1 2.46 0.01 75.5 673 

Battery pack size 
(kWh) -1.32 3.7 -0.36 0.72 -8.5 5.9 

AWD (1,0) 353.91 33.4 10.59 0 288.3 419.5 
RWD (1,0) 208.02 54.1 3.84 0 101.7 314.3 
Convertible (1,0) - - - - - - 

 



 

Each of the three regressions produced outputs effective for identifying vehicles with a 
significant amount of mass reduction technology in the analysis fleet.  Many coefficients for 
independent variables provided clear insight into the average weight penalty for the utility 
feature.  In some cases, like battery size, the relatively small sub-sample size and high 
collinearity with other variables confounded coefficient estimates. 

By design, no independent variable directly accounted for the degree of weight savings 
technology applied to the vehicle.  Residuals of the regression captured weight reduction efforts 
and noise from other sources. 

As a practical matter, DOT staff cannot conduct a tear down study and detailed cost assessment 
for every vehicle in every model year.  However, upon review of many vehicles and their 
subsystems, review of fleet assignments in the 2020 final rule identified a few vehicles with 
MR0 or MR1 assignments where the vehicles contained some advanced weight savings 
technologies, yet they and their platforms still produced small residuals.  Engineers from 
industry confirmed that important factors other than glider weight savings and the independent 
variables considered in the regressions might factor into the use of lightweight technologies.  
Such factors included the desire to lower the center of gravity of a vehicle, improve the vehicle 
weight distribution for handling, optimize noise-vibration-and-harshness, increase torsional 
rigidity of the platform, offset increased vehicle content, and many other factors.  In addition, 
engineers highlighted the importance of sizing shared components for the most demanding 
applications on the vehicle platform; optimum weight savings for one platform application may 
not be suitable for all platform applications.  For future analysis, we will continue to look for 
practical ways to improve the assessment of mass reduction content and the forecast of 
incremental mass reduction costs for each vehicle. 

Figure 3-26 shows results from the pickup truck regression on predicted curb weight versus 
actual curb weight.  Points above the solid regression line represent vehicles heavier than 
predicted (with lower mass reduction technology levels); points below the solid regression line 
represent vehicles lighter than predicted (with higher mass reduction technology levels).  The 
dashed lines in Figure 3-26 show the thresholds (5, 7.5, 10, 15, 20 and 28 percent of glider 
weight).  Again, this analysis assumes the glider weight is 71 percent of vehicle curb weight. 



 

 

Figure 3-26 – Predicted Curb Weight vs. Actual Curb Weight for the MY 2020 Analysis Fleet for 71 Percent 
Glider Share 

For points with actual curb weight below the predicted curb weight, DOT staff used the residual 
as a percent of predicted weight to get a sense for the level of current mass reduction technology 
used in the vehicle.  Notably, vehicles approaching -20% curb weight widely use advanced 
composites throughout major vehicle systems, and few examples exist in the MY 2020 fleet.466 
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defined with this methodology is extremely challenging, and requires advanced materials and disciplined design.  



 

Generally, residuals of regressions as a percent of predicted weight appropriately stratified 
vehicles by mass reduction level.  Most vehicles showed near zero residuals or had actual curb 
weights close to the predicted curb weight.  Few vehicles in the analysis fleet achieve the highest 
levels of mass reduction.  Most vehicles with the largest negative residuals have demonstrably 
adopted advanced weight savings technologies at the most expensive end of the cost curve. 

To validate the residuals, DOT staff estimated the mass reduction technology level for several 
vehicle models in the analysis fleet and compared those estimates to the numerical results from 
the regression analysis.  To estimate the mass reduction technology level for the selected 
vehicles, DOT staff conducted an in-depth review of available information on the materials, 
design, and last redesign year for those vehicle models.  Staff then compared that information 
with the designs and materials used in the mass reduction feasibility and cost studies summarized 
in Chapter 3.4.5.  That comparison showed consistent agreement with the technology levels 
derived from the regression analysis. 

DOT staff believe the regression methodology is a technically sound approach for estimating 
mass reduction levels in the analysis fleet.  

Manufacturers generally apply mass reduction technology at a vehicle platform level (i.e., using 
the same components across multiple vehicle models that share a common platform) to leverage 
economies of scale and to manage component and manufacturing complexity, so conducting the 
regression analysis at the platform level leads to more accurate estimates for the real-world 
vehicle platform mass reduction levels.  The platform approach also addresses the impact of 
potential weight variations that might exist for specific vehicle models, as all the individual 
vehicle models are aggregated into the platform group, and are effectively averaged using sales 
weighting, which minimizes the impact of any outlier vehicle configurations. 

Table 3-113 shows the results of the regression for a few select vehicles. 



 

Table 3-113 – Mass Reduction Technology Levels for the MY 2020 Analysis Fleet for 71% Glider Share of 
Curb Weight 

CAFE Model Platform 
Code Example Code Mass Reduction 

Residual (%) 

Mass Reduction 
Level for 71% 
Glider Weight 

Lamborghini-A Aventador -28.2% MR6 
Alfa Alfa Romeo 4C -23.0% MR6 
Li8 BMW i8 -21.7% MR6 

Lamborghini-H Huracan -17.5% MR5 
MB.SmallVan Mercedes Metris -15.1% MR5 

Li8 BMW i3 94 R19 -14.9% MR5 
44.D7a Jaguar XF -14.1% MR4 

MB.Gtsegment Mercedes AMG GT Roadster -13.8% MR4 
12M2 Chrysler Pacifica -13.5% MR4 

MAZDA.ND Mazda Miata MX5 -12.9% MR4 
T3 Ford F-150 -12.0% MR4 

RamVan Ram ProMaster -11.6% MR4 
Y-CAR/Y1XX Chevrolet Corvette -11.5% MR4 
HK.DE.Ecocar Kia Niro -10.7% MR4 

NBC(2) Toyota Prius C -10.2% MR3 
Global Epsilon/E2XX Chevrolet Malibu -9.6 MR3 

II Honda Civic -8.8 MR3 
MODEL 3 Tesla Model 3 -7.3% MR3 

MAZDA.BPDM Mazda 3 -7.3% MR3 
V Nissan Versa -7.2% MR3 

Excellence Lotus Evora -7.0% MR2 
MODEL S Tesla Model S -6.4% MR2 

44-D6a Jaguar F-Type -5.7% MR2 
   

3.4.3 Mass Reduction Adoption Features 

Given the degree of commonality among the vehicle models built on a single platform, 
manufacturers do not have complete freedom to apply unique technologies to each vehicle that 
shares the platform.  While some technologies (e.g., low rolling resistance tires) are very nearly 
“bolt-on” technologies, others involve substantial changes to the structure and design of the 
vehicle, and therefore often necessarily affect all vehicle models that share that platform.  In 
most cases, mass reduction technologies are applied to platform level components and therefore 
the same design and components are used on all vehicle models that share the platform. 

Each vehicle in the analysis fleet is associated with a specific platform.  Similar to the 
application of engine and transmission technologies, the CAFE Model defines a platform 
“leader” as the vehicle variant of a given platform that has the highest level of observed mass 



 

reduction present in the analysis fleet.  If there is a tie, the CAFE Model begins mass reduction 
technology on the vehicle with the highest sales in model year 2020.  If there remains a tie, the 
model begins by choosing the vehicle with the highest manufacturer suggested retail price 
(MSRP) in MY 2020.  As the model applies technologies, it effectively levels up all variants on a 
platform to the highest level of mass reduction technology on the platform.  So, if the platform 
leader is already at MR3 in MY 2020, and a “follower” starts at MR0 in MY 2020, the follower 
will get MR3 at its next redesign (unless the leader is redesigned again before that time, and 
further increases the mass reduction level associated with that platform, then the follower would 
receive the new mass reduction level). 

Important for analysis fleet mass reduction assignments, and for understanding adoption features 
as well, is DOT staff’s handling of vehicles that traditionally operated on the same platform but 
had a mix of old and new platforms in production at the time DOT staff created the analysis 
fleet.  For example, the Honda Civic and Honda CR-V traditionally share the same platform.  In 
MY 2016, Honda redesigned the Civic and updated the platform to include many mass reduction 
technologies.  Also in MY 2016, Honda continued to build the CR-V on the previous generation 
platform that did not include many of the mass reduction technologies on the all new MY 2016 
Civic.  In MY 2017, Honda launched the new CR-V that incorporated changes to the Civic 
platform, and the Civic and CR-V again shared the same platform with common mass reduction 
technologies.  This analysis treats the old and new platforms separately to assign technology 
levels in the baseline, and the CAFE Model brings vehicles on the old platform up to the level of 
mass reduction technology on the new shared platform at the first available redesign year. 

In addition to the platform-sharing logic employed in the model, DOT applied phase-in caps for 
MR5 and MR6 (15 percent and 20 percent reduction of a vehicle’s curb weight, respectively), 
based on the current state of mass reduction technology.  As discussed above, for nearly every 
type of vehicle, with the exception of the smallest sports cars, an auto manufacturer’s strategy to 
achieve mass reduction consistent with MR5 and MR6 will require extensive use of carbon fiber 
technologies in the vehicles’ primary structures.  For example, one way of using carbon fiber 
technology to achieve MR6 is to develop a carbon fiber monocoque structure.  A monocoque 
structure is one where the outer most skins support the primary loads of the vehicle.  For 
example, they do not have separate non-load bearing aero surfaces.  All of the vehicle’s primary 
loads are supported by the monocoque.  In the most structurally efficient automotive versions, 
the monocoque is made from multiple well-consolidated plies of carbon fiber infused with resin.  
Such structures can require low hundreds of pounds of carbon fiber for most passenger vehicles.  
Add to this another roughly equivalent mass of petroleum-derived resins and even at aspirational 
prices for dry carbon fiber of $10-20 per pound it is easy to see how direct materials alone can 
easily climb into the five-figure dollar range per vehicle.   

High CAFE stringency levels will push the CAFE Model to select compliance pathways that 
include these higher levels of mass reduction for vehicles produced in the mid and high hundreds 
of thousands of vehicles per year.  DOT staff assume, based on material costs and availability, 
that achieving MR6 levels of mass reduction will cost tens of thousands of dollars per car.  
Therefore, application of such technology to high volume vehicles is unrealistic today and will, 
with certainty, remain so for the next several years.   



 

The CAFE Model applies technologies to vehicles that provide a cost-effective pathway to 
compliance.  In some cases, the direct manufacturing cost, indirect costs, and applied learning 
factor do not capture all the considerations that make a technology more or less costly for 
manufacturers to apply in the real world.  For example, there are direct labor, R&D overhead, 
manufacturing overhead, and amortized tooling costs that will likely be higher for carbon fiber 
production than current automotive steel production, due to fiber handling complexities.  In 
addition, R&D overhead will also increase because of the knowledge base for composite 
materials in automotive applications is simply not as deep as it is for steel and aluminum.  
Indeed, the intrinsic anisotropic mechanical properties of composite materials compared to the 
isotropic properties of metals complicates the design process.  Added testing of these novel 
anisotropic structures and their associated costs will be necessary for decades.  

In addition, the CAFE Model does not currently enable direct accounting for the stranded capital 
associated with a transition away from stamped sheet metal construction to molded composite 
materials construction.  For decades, or in some cases half-centuries, car manufacturers have 
invested billions of dollars in capital for equipment that supports the industry’s sheet metal 
forming paradigm.  A paradigm change to tooling and equipment developed to support molding 
carbon fiber panels and monocoque chassis structures would leave that capital stranded in 
equipment that would be rendered obsolete.  Doing this is possible, but the financial 
ramifications are not currently reflected in the CAFE Model for MR5 and MR6 compliance 
pathways.  

Financial matters aside, carbon fiber technology and how it is best used to produce lightweight 
primary automotive structures is far from mature.  In fact, no car company knows for sure the 
best way to use carbon fiber to make a passenger car’s primary structure.  Using this technology 
in passenger cars is far more complex than using it in racing cars where passenger egress, 
longevity, corrosion protection, crash protection, etc. are lower on the list of priorities for the 
design team.  BMW may be the manufacturer most able to accurately opine on the viability of 
carbon fiber technology for primary structure on high-volume passenger cars, and even it 
decided to use a mixed materials solution for their next generation of EVs (the iX and i4) after 
the i3, thus eschewing a wholly carbon fiber monocoque structure.  

Another factor limiting the application of carbon fiber technology to mass volume passenger 
vehicles is indeed the availability of dry carbon fibers.  There is high global demand from a 
variety of industries for a limited supply of carbon fibers.  Aerospace, military/defense, and 
industrial applications demand most of the carbon fiber currently produced.  Today, only roughly 
10% of the global dry fiber supply goes to the automotive industry, which translates to the global 
supply base only being able to support approximately 70k cars.467 

To account for these cost and production considerations, including the limited global supply of 
dry carbon fiber, DOT applied phase-in caps that limited the number of vehicles that can achieve 
MR5 and M6 levels of mass reduction in the CAFE Model.  DOT staff applied a phase-in cap for 
MR5 level technology so that 75 percent of the vehicle fleet starting in 2020 could employ the 
technology, and the technology could be applied to 100 percent of the fleet by MY 2022.  DOT 

 
467 J. Sloan, “Carbon Fiber Suppliers Gear up for Next Generation Growth,” compositesworld.com, February 11, 
2020. 



 

staff also applied a phase-in cap for MR6 technology so that five percent of the vehicle fleet 
starting in MY 2020 could employ the technology, and the technology could be applied to 10 
percent of the fleet by MY 2025.   

To develop these phase-in caps, DOT staff chose a 40,000 unit thresholds for both MR5 and 
MR6 technology (80,000 units total), because it roughly reflects the number of BMW i3 cars 
produced per year worldwide.468  As discussed above, the BMW i3 is the only high-volume 
vehicle currently produced with a primary structure mostly made from carbon fiber (except the 
skateboard, which is aluminum).  Because mass reduction is applied at the platform level 
(meaning that every car of a given platform would receive the technology, not just special low 
volume versions of that platform), only platforms representing 40,000 vehicles or less are 
eligible to apply MR5 and MR6 toward CAFE compliance.  Platforms representing high volume 
sales, like a Chevrolet Traverse, for example, where hundreds of thousands are sold per year, are 
therefore blocked from access to MR5 and MR6 technology.  There are no phase in caps for 
mass reduction levels MR1, MR2, MR3 or MR4. 

In addition to determining that the caps were reasonable based on current global carbon fiber 
production, DOT determined that the MR5 phase-in cap is consistent with the NHTSA 
lightweighting study that found that a 15 percent curb weight reduction for the fleet is possible 
within the rulemaking timeframe.469   

These phase-in caps appropriately function as a proxy for the cost and complexity currently 
required (and that likely will continue to be required until manufacturing processes evolve) to 
produce carbon fiber components.  Again, MR6 technology in this analysis reflects the use of a 
significant share of carbon fiber content, as seen through the BMW i3 and Alfa Romeo 4c as 
discussed above. 

3.4.4 Mass Reduction Effectiveness  

As discussed in Chapter 2.4, Argonne developed a database of vehicle attributes and 
characteristics for each vehicle technology class that included over 100 different attributes.  
Some examples from these 100 attributes include frontal area, drag coefficient, fuel tank weight, 
transmission housing weight, transmission clutch weight, hybrid vehicle components, and 
weights for components that comprise engines and electric machines, tire rolling resistance, 
transmission gear ratios, and final drive ratio.  Argonne used these attributes to “build” each 
vehicle that it used for the effectiveness modeling and simulation.  Important for precisely 
estimating the effectiveness of different levels of mass reduction is an accurate list of initial 
component weights that make up each vehicle subsystem, from which Autonomie considered 
potential mass reduction opportunities. 

 
468 However, even this number is optimistic because only a small fraction of i3 cars are sold in the U.S. market, and 
combining MR5 and MR6 allocations equates to 80k vehicles, not 40k.  Regardless, if the auto industry ever 
seriously committed to using carbon fiber in mainstream high-volume vehicles, competition with the other industries 
would rapidly result in a dramatic increase in price for dry fiber.  This would further stymie the deployment of this 
technology in the automotive industry. 
469 DOT HS 811 666: Mass Reduction for Light Duty Vehicles for Model Years 2017-2025: Figure 397 at page 356. 



 

As stated above, glider weight, or the vehicle curb weight minus the powertrain weight, is used 
to determine the potential opportunities for weight reduction irrespective of the type of 
powertrain.470  This is because weight reduction can vary depending on the type of powertrain.  
For example, an 8-speed transmission may weigh more than a 6-speed transmission, and a basic 
engine without variable valve timing may weigh more than an advanced engine with variable 
valve timing.  Autonomie simulations account for the weight of the powertrain system inherently 
as part of the analysis, and the powertrain mass accounting is separate from the application and 
accounting for mass reduction technology levels (MR0-MR6) that are applied to the glider in the 
simulations.  Similarly, Autonomie also accounts for battery and motor mass used in hybrid and 
electric vehicles separately.  This secondary mass reduction is discussed further below. 

Accordingly, in the Autonomie simulations, mass reduction technology is simulated as a 
percentage of mass removed from the specific subsystems that make up the glider, as defined for 
that set of simulations (including the non-powertrain secondary mass systems such as the brake 
system). 

3.4.4.1 Glider Mass and Mass Reduction  

Autonomie accounts for the mass of each subsystem that comprises the glider.  For the purposes 
of determining a reasonable percentage for the glider, DOT in consultation with Argonne 
examined glider weight data available in the A2Mac1 database.471  The A2Mac1 database tool is 
widely used by industry and academia to determine the bill of materials and mass of each 
component in the vehicle system.472  DOT and Argonne analyzed a total of 147 MY 2014 to 
2016 vehicles, covering 35 vehicle brands with different powertrain options representing a wide 
array of vehicle classes to determine the percentage of the vehicle comprised by the glider.473   

DOT also considered that the NHTSA passenger car and light truck lightweighting studies 
examined mass reduction in the body, chassis, interior, brakes, steering, electrical accessory, and 
wheels subsystems and had developed costs for lightweighted components in those subsystems.  
As a result, DOT determined it is appropriate to include all of those subsystems as available for 
mass reduction as part of the glider.  Therefore, all of these systems were included for the 
analysis of glider weight using the A2Mac1 database.  Table 3-114 shows the average mass for 
each subsystem and the glider share for each of the vehicle classes for all powertrain 
combinations.  

 
470 Depending on the powertrain combination, the total curb weight of the vehicle includes glider, engine, 
transmission and/or battery pack and motor(s). 
471 A2Mac1: Automotive Benchmarking.  (n.d.).  Retrieved from https://a2mac1.com.  
472 Bill of material (BOM) is a list of the raw materials, sub-assemblies, parts and quantities needed to manufacture 
an end-product. 
473 Docket No. NHTSA-2018-0067-1490. 



 

Table 3-114 – Glider Mass Share Assessment using A2Mac1 Data 

 1 2 3 4 5 6 7 8 9 10 

Vehicle 
Class 

Avg. 
Body 
Mass 

[kg] 

Avg. 
Chassis 
Mass 

[kg] 

Avg. 
Interior 

Mass 

[kg] 

Avg. 
Brakes 
Mass 

[kg] 

Avg. 
Steering 

Mass 
[kg] 

Avg. 
Electrical 
Accessory 

Mass 
[kg] 

Avg. 
Wheels 
Mass 

[kg] 

Avg. 
Glider 
Mass 

(Sum of 
1 to 7) 
[kg] 

Avg. 
Curb 

Weight 

[kg] 

% 
Glider 
Share 

Compact 
Non-

Performance 
525.00 160.00 150.00 50.13 20.00 30.26 42.00 977.40 1338.71 73.01% 

Compact 
Performance 525.00 160.00 200.00 55.12 22.00 35.25 45.00 1042.37 1455.85 71.60% 

Midsize 
Non-

Performance 
650.00 200.00 175.00 60.13 25.00 30.26 54.00 1194.40 1611.24 74.13% 

Midsize 
Performance 650.00 200.00 200.00 65.12 28.00 40.25 57.00 1240.37 1734.89 71.50% 

Small SUV 
Non-

Performance 
650.00 200.00 180.00 60.13 25.00 30.26 60.00 1205.40 1651.09 73.01% 

Small SUV 
Performance 650.00 200.00 220.00 75.12 28.00 40.25 66.00 1279.37 1792.46 71.38% 

Midsize 
SUV Non-

Performance 
650.00 200.00 200.00 70.13 30.00 30.26 66.00 1246.40 1754.57 71.04% 

Midsize 
SUV 

Performance 
750.00 225.00 240.00 75.12 30.00 50.25 78.00 1448.37 2045.42 70.81% 

Pickup Non-
Performance 650.00 300.00 160.00 90.12 30.00 80.47 78.00 1388.58 2020.13 68.74% 

Pickup 
Performance 800.00 350.00 200.00 95.11 30.00 100.44 90.00 1665.55 2345.18 71.02% 

Average 71.62% 

 
These data were also compared with the glider weight measured in the NHTSA MY 2014 
Chevrolet Silverado lightweighting study474 (discussed further below), and the glider weight data 
range was similar to the analysis results.  Accordingly, DOT assumed that the glider weight 
comprised 71 percent of the vehicle curb weight. 

3.4.4.2 Powertrain Mass Reduction 

Any mass reduction due to powertrain improvements is accounted for separately from glider 
mass reduction.  Autonomie considers several components for powertrain mass reduction, 

 
474 DOT HS 812 487: Mass Reduction for Light-Duty Vehicles for Model Years 2017–2025. 



 

including engine downsizing, and transmission, fuel tank, exhaust systems, and cooling system 
lightweighting. 

The 2015 NAS report suggested an engine downsizing opportunity exists when the glider mass is 
lightweighted by at least 10%.  The 2015 NAS report also suggested that 10% lightweighting of 
the glider mass alone would boost fuel economy by 3% and any engine downsizing following the 
10% glider mass reduction would provide an additional 3% increase in fuel economy.475  The 
NHTSA lightweighting studies applied engine downsizing (for some vehicle types but not all) 
when the glider weight was reduced by 10 percent.  Accordingly, the NPRM analysis limited 
engine resizing to several specific incremental technology steps; important for this discussion, 
engines in the analysis were only resized when mass reduction of 10% or greater was applied to 
the glider mass, or when one powertrain architecture was replaced with another architecture. 

Argonne performed a regression analysis of engine peak power versus weight for a previous 
analysis based on attribute data taken from the A2Mac1 benchmarking database, to account for 
the difference in weight for different engine types.  For example, to account for weight of 
different engine sizes like 4-cylinder versus 8-cylinder, Argonne developed a relationship curve 
between peak power and engine weight based on the A2Mac1 benchmarking data.  For the 
NPRM analysis, DOT staff used this relationship to estimate mass for all engine types regardless 
of technology type (e.g., variable valve lift and direct injection).  DOT staff applied weight 
associated with changes in engine technology by using this linear relationship between engine 
power and engine weight from the A2Mac1 benchmarking database.  When a vehicle in the 
analysis fleet with an 8-cylinder engine adopted a more fuel-efficient 6-cylinder engine, the total 
vehicle weight would reflect the updated engine weight with two less cylinders based on the 
peak power versus engine weight relationship. 

When Autonomie selects a powertrain combination for a lightweighted glider, the engine and 
transmission are selected such that there is no degradation in the performance of the vehicle 
relative to the baseline vehicle.  The resulting curb weight is a combination of the lightweighted 
glider with the resized and potentially new engine and transmission.  This methodology also 
helps in accurately accounting for the cost of the glider and cost of the engine and transmission 
in the CAFE Model.   

Secondary mass reduction is possible from some of the components in the glider after mass 
reduction has been incorporated in primary subsystems (body, chassis, and interior).  Similarly, 
engine downsizing and powertrain secondary mass reduction is possible after certain level of 
mass reduction is incorporated in the glider.  For the analysis, the agencies include both primary 
mass reduction, and when there is sufficient primary mass reduction, additional secondary mass 
reduction.  The Autonomie simulations account for the aggregate of both primary and secondary 
glider mass reduction, and separately for powertrain mass.  

Note that secondary mass reduction is integrated into the mass reduction cost curves.  
Specifically, the NHTSA studies, upon which the cost curves depend, first generated costs for 
lightweighting the vehicle body, chassis, interior, and other primary components, and then 

 
475 National Research Council.  2015.  Cost, Effectiveness, and Deployment of Fuel Economy Technologies for 
Light-Duty Vehicles.  Washington, D.C. - The National Academies Press.  https://doi.org/10.17226/21744. 



 

calculated costs for lightweighting secondary components.  Accordingly, the cost curves reflect 
that, for example, secondary mass reduction for the brake system is only applied after there has 
been sufficient primary mass reduction to allow the smaller brake system to provide safe braking 
performance and to maintain mechanical functionality. 

DOT staff enhanced the accuracy of estimated engine weights by creating two curves to 
represent separately naturally aspirated engine designs and turbocharged engine designs.476  This 
achieves two benefits.  First, small naturally aspirated 4-cylinder engines that adopted 
turbocharging technology reflected the increased weight of associated components like ducting, 
clamps, the turbocharger itself, a charged air cooler, wiring, fasteners, and a modified exhaust 
manifold.  Second, larger cylinder count engines like naturally aspirated 8-cylinder and 6-
cylinder engines that adopted turbocharging and downsized technologies would have lower 
weight due to having fewer engine cylinders.  For this analysis, a naturally aspirated 8-cylinder 
engine that adopts turbocharging technology and is downsized to a 6-cylinder turbocharged 
engine appropriately reflects the added weight of the turbocharging components, and the lower 
weight of fewer cylinders.   

DOT staff decided it is reasonable to allow engine resizing upon adoption of 7.1%, 10.7%, 
14.2%, and 20% curb weight reduction, but not at 3.6% and 5.3%.477  Resizing is also allowed 
upon changes in powertrain type or the inheritance of a powertrain from another vehicle in the 
same platform.  The increments of these higher levels of mass reduction, or complete powertrain 
changes, more appropriately match the typical engine displacement increments that are available 
in a manufacturer’s engine portfolio. 

3.4.4.3 The Summary of Mass Reduction Technology Effectiveness  

The range of effectiveness values for the mass reduction technologies, for all ten vehicle 
technology classes are shown in Figure 3-27.  In the graph, the box shows the inner quartile 
range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.478  The blue dots 
show a few values outside these ranges.  As discussed earlier, Autonomie Full Vehicle Model 
simulates all possible combinations of technologies for fuel consumption improvements.  For a 
few technology combinations mass reduction has minimal impact on effectiveness on the 
regulatory 2-cycle test.  For example, if an engine is operating in an efficient region of the fuel 
map on the 2-cycle test further reduction of mass may have smaller improvement on the 
regulatory cycles.  And so, the Figure 3-27 shows the range improvements based on the full 
range of other technology combinations.  

 

 
476 Autonomie model documentation, Chapter 5.2.9. 
477 These curb weight reductions equate to the following levels of mass reduction as defined in the analysis: MR3, 
MR4, MR5 and MR6, but not MR1 and MR2; additional discussion of engine resizing for mass reduction can be 
found in Chapter 2.4. 
478 The IQR is the interquartile range – the difference between the upper quartile and the lower quartile.  Each 
whisker shows the data points between that range. 



 

 

Figure 3-27 – Mass Reduction Technologies Effectiveness Values for all the Vehicle Technology Classes 
 

3.4.5 Mass Reduction Costs  

The CAFE Model uses cost information collected from various studies and industry data to 
determine which pathways to compliance are most financially efficient.  This cost information 
does not come in the form of a single cost point for a given piece of technology.  Rather, it 
comes in the form of a cost curve that shows how the cost of a technology is estimated to change 
with time.  This approach better reflects reality because technology tends to become less 
expensive with time as people and companies learn how to produce it more efficiently.  
Including the estimated cost over time of a technology also allows the CAFE Model to determine 
cost effective pathways to compliance that may shift based on the changes in cost effectiveness 
over time.  

Several mass reduction studies have used either a mid-size passenger car or a full-size pickup 
truck as an exemplar vehicle to demonstrate the technical and cost feasibility of mass reduction.  
While the findings of these studies may not apply directly to different vehicle classes, the cost 
estimates derived for the mass reduction technologies identified in these studies can be useful for 
formulating general estimates of costs.  As discussed further below, the mass reduction cost 
curves developed for this analysis were based on two previous NHTSA lightweighting studies, 



 

and were updated based on more recent studies to better account for the cost of carbon fiber 
needed for the highest levels of mass reduction technology.  The two NHTSA-sponsored studies 
used for MR1 through MR4 costs included the teardown of a MY 2011 Honda Accord and a MY 
2014 Chevrolet Silverado pickup truck, and the carbon fiber costs required for MR5 and MR6 
were updated based on the 2021 NAS report.479     

Both NHTSA-sponsored teardown studies are structured to derive the estimated cost for each of 
the mass reduction technology levels.  DOT staff relied on the results of those studies because 
they considered an extensive range of material types, material gauge, and component redesign 
while taking into account real world constraints such as manufacturing and assembly methods 
and complexity, platform-sharing, and maintaining vehicle utility, functionality and attributes, 
including safety, performance, payload capacity, towing capacity, handling, NVH, and other 
characteristics.  In addition, DOT has determined that the baseline vehicles and mass reduction 
technologies assessed in the NHTSA-sponsored studies are still reasonably representative of the 
technologies that may be applied to vehicles in the MY 2020 analysis fleet to achieve up to MR4 
level mass reduction in the rulemaking timeframe.  DOT staff adjusted the cost estimates derived 
from the two NHTSA lightweighting studies to reflect the assumption that a vehicle’s glider 
weight consisted of 71% of the vehicle’s curb weight, and mass reduction as it pertains to 
achieving MR0-MR6 levels would only come from the glider.   

DOT decided to rely on these studies after reviewing other agency, CARB, ICCT and industry 
studies.480  The other studies often did not prioritize factors in an order that DOT agrees with, 
made assumptions about key vehicle systems that DOT believed to be inaccurate, and/or applied 
secondary mass reduction before adequate primary mass reduction was applied to enable the 
secondary mass reduction, resulting in unrealistically low costs.  Specifically, in regards to 
safety, DOT used studies that considered small overlap impact tests conducted by the Insurance 
Institute for Highway Safety (IIHS) and not all studies took that test into account.  In addition to 
considering platform-sharing constraints, the NHTSA pickup truck study accounted for vehicle 
functional performance for attributes including towing, noise and vibration, and gradeability.  
This is consistent with the objective to maintain vehicle functionality throughout technology 
application in the analysis.   

Note that the mass reduction studies provide mass reduction costs for the glider, and this enables 
more direct use of cost curve data from the studies in the CAFE Model.  This change also allows 
Autonomie to account for powertrain mass, which enables the CAFE Model to account more 
accurately for the unique mass of each of the powertrains that are available in each vehicle 
model.  The cost of the engine, transmission, and electrification are accounted for separately 
from the glider in the CAFE Model. 

DOT calculated the costs of mass reduction as an average cost per pound over the baseline 
(MR0) for the vehicle’s glider weight.  While the definitions of glider may vary from study to 

 
479 This analysis applied the cost estimates per pound derived from passenger cars to all passenger car segments, and 
the cost estimates per pound derived from full-size pickup trucks to all light-duty truck and SUV segments.  The 
cost estimates per pound for carbon fiber (MR5 and MR6) were the same for all segments. 
480 As for past rulemaking analyses, studies by EPA, CARB, Transport Canada, the American Iron and Steel 
Institute (AISI), the Aluminum Association, and the American Chemistry Council were all reviewed for potential 
incorporation into the analysis. 



 

study, the DOT referenced the same dollar per pound of curb weight to develop costs for 
different glider definitions.  In translating these values, DOT took care to track units ($/kg vs. 
$/lb) and the reference for percentage improvements (glider vs. curb weight). 

DOT staff calculated the cost of mass reduction on a glider weight basis so that the weight of 
each powertrain configuration could be directly and separately accounted for.  This approach 
provides the true cost of mass reduction without conflating the mass change and costs associated 
with downsizing a powertrain or adding additional advanced powertrain technologies.  Hence, 
the mass reduction costs in this NPRM reflect the cost of mass reduction in the glider and do not 
include the mass reduction associated with engine downsizing.  The mass reduction and costs 
associated with engine downsizing are accounted for separately. 

A second reason for using glider share instead of curb weight is that it affects the absolute 
amount of curb weight reduction applied, and therefore cost per pound for the mass reduction 
changes with the change in the glider share.  The cost for removing 20 percent of the glider 
weight when the glider represents 75 percent of a vehicle’s curb weight is not the same as the 
cost for removing 20 percent of the glider weight when the glider represents 50 percent of the 
vehicle’s curb weight.  For example, the glider share of 79 percent of a 3,000-pound curb weight 
vehicle is 2,370 lbs, while the glider share of 50 percent of a 3,000-pound curb weight vehicle is 
1,500 lbs, and the glider share of 71 percent of a 3,000-pound curb weight vehicle is 2,130 lbs.  
The mass change associated with 20 percent mass reduction is 474 lbs for 79 percent glider share 
(=[3,000 lbs x 79% x 20%]), 300 lbs for 50 percent glider share (=[3,000 lbs x 50% x 20%]), and 
426 lbs for 71 percent glider share (=[3,000 lbs x 71% x 20%]).  The mass reduction cost studies 
that DOT relied on to develop mass reduction costs for this analysis show that the cost for mass 
reduction varies with the amount of mass reduction.  Therefore, for a fixed glider mass reduction 
percentage, different glider share assumptions will have different costs. 

The following sections discuss the lightweighting studies DOT used to create the passenger car 
and light truck cost curves, including new studies referenced to update the cost curves to better 
reflect the cost of carbon fiber required for the highest levels of mass reduction technology. 

3.4.5.1 MY 2011 Honda Accord Teardown Study 

NHTSA relied on a MY 2011 Honda Accord lightweighting study to develop the passenger cost 
curve used for MR1-MR4 in this analysis.  The NHTSA-funded study, performed by Electricore, 
Inc., George Washington University, and EDAG, Inc, was completed in 2012 and the final report 
peer reviewed by industry experts and Honda Motor Company.  EDAG and Electricore 
conducted further work to consider and make changes to the lightweighted model based on the 
feedback from Honda, and continued to make additional changes to the design concept to 
address the IIHS small overlap impact test.  The investigators listed previously completed the 
study in February 2016.481   

The curb weight of MY 2011 Honda Accord used in the lightweighting study is approximately 
1480kg.  The glider weight of the MY 2011 Honda Accord is approximately 1165kg.  In this 

 
481 Singh, H., Kan, C-D., Marzougui, D., & Quong, S. (2016, February). Update to future midsize lightweight 
vehicle findings in response to manufacturer review and IIHS small-overlap testing (Report No. DOT HS 812 237). 
Washington, DC: National Highway Traffic Safety Administration. 



 

case, the glider represents 79% of curb weight.482,483  As shown in Table 3-115, approximately 
4.67% of the glider mass is lightweighted by substituting mild steel with AHSS in body-in-white 
(BIW) structure.  3.39% of the glider mass is lightweighted by substituting mild steel with AL in 
closures (closures include hood, front door, rear door and deck lid).  Between BIW and closures, 
approximately 8.06% of glider mass is lightweighted by substituting mild steel with AL.  The 
additional lightweighting was achieved by using advanced plastics for door trims, switching 
copper wiring harness to aluminum wiring harness, using AHSS for seat frames, using AHSS 
and optimizing design for parking brakes, among other substitutions.  As shown in Table 3-115, 
a total of 13.65% of glider mass was lightweighted.  This translates to 10.74% mass reduction at 
the curb weight level.  The lightweighting report noted that follow-on mass reduction can be 
achieved by downsizing the engine and optimizing the powertrain components, while 
maintaining the same level of performance.  The report shows powertrain downsizing translates 
to some cost savings as well (the cost savings comes from manufacturers selecting downsized 
engines from the inventory of engines used in other product lines through economies of scale and 
common parts). 

Table 3-115 shows the list of components identified in the MY 2011 Honda Accord 
lightweighting study and the corresponding direct manufacturing cost (DMC) estimated to 
lightweight those components.  Cost estimates include consideration of advanced materials, 
redesign, tooling changes, and manufacturing setup changes.  Figure 3-28 shows the cost curve 
derived from the list of components in Table 3-115.  Figure 3-29 shows the direct manufacturing 
cost (DMC) at different levels of mass reduction for the passenger car.  The DMC shown in 
Figure 3-29 is the average DMC and not the marginal cost for each additional mass reduction 
level.  As the average cost per pound over baseline increases, the marginal cost per pound may 
increase dramatically.

 
482 Glider weight is typically all components of the vehicle except the powertrain components such as engines, 
transmissions, radiator, fuel tank and exhaust systems.  
483 Not all subsystems considered in the lightweighting study were considered in the Autonomie simulations and 
CAFE Model. 



 

Table 3-115 – List of Components Lightweighted in the Lightweighted Concept Study based on the MY 2011 Honda Accord ($/kg) 

# Vehicle 
Component/System 

Baseline 
Mass Substitution 

Material 

Light-
weighted 

Mass 

Mass 
Saving Δ Cost Δ 

Cost 

Cumulative 
Mass 

Saving 

Cumulative 
MR 

Cumulative 
Cost 

Cumulative 
Cost 

(kg) (kg) (kg) ($) ($/kg) (kg) (%) ($) ($/kg) 
1 Front Bumper 7.96 AHSS 4.37 3.59 -0.88 -0.25 3.59 0.31% -0.88 -0.25 
2 Front Door Trim 5.38 MuCell 4.04 1.34 0.00 0 4.93 0.42% -0.88 -0.18 

3 Front Door Wiring 
Harness 0.87 Al 0.57 0.3 0.00 0 5.23 0.45% -0.88 -0.17 

4 Head Lamps 6.86 MuCell 5.15 1.71 0.00 0 6.94 0.60% -0.88 -0.13 
5 HVAC 10.3 MuCell 7.7 2.6 0.00 0 9.54 0.82% -0.88 -0.09 

6 Insulation 9.35 Thinsulate & 
Quietblend 6.15 3.2 0.00 0 12.74 1.09% -0.88 -0.07 

7 Interior Trim 26.26 MuCell 23.23 3.03 0.00 0 15.77 1.35% -0.88 -0.06 
8 Parking Brake 3.31 Electronic 2.32 0.99 0.00 0 16.76 1.44% -0.88 -0.05 
9 Rear Door Trim 4.53 MuCell 3.4 1.13 0.00 0 17.89 1.54% -0.88 -0.05 

10 Rear Door Wiring Harness 0.33 Al 0.22 0.11 0.00 0 18 1.55% -0.88 -0.05 
11 Tail Lamps 2.54 MuCell 1.91 0.63 0.00 0 18.63 1.60% -0.88 -0.05 
12 Tires 37.1 Goodyear 32.65 4.45 0.00 0 23.08 1.98% -0.88 -0.04 
13 Wiring and Harness 21.7 Al 17.4 4.3 0.00 0 27.38 2.35% -0.88 -0.03 
14 Wheels 40.1 AHSS 38.66 1.44 0.00 0 28.82 2.47% -0.88 -0.03 
15 Rear Bumper 7.84 AHSS 4.33 3.51 2.10 0.6 32.33 2.78% 1.22 0.04 
16 Instrument Panel 31.9 Mg 22.45 9.45 15.43 1.63 41.78 3.59% 16.65 0.40 
17 Body Structure 328 AHSS 273.6 54.4 160.47 2.95 96.18 8.26% 177.12 1.84 
18 Decklid 9.95 Al 4.74 5.21 17.04 3.27 101.39 8.70% 194.16 1.91 
19 Hood 15.2 Al 7.73 7.47 24.61 3.29 108.86 9.34% 218.77 2.01 
20 Front Door Frames 32.78 Al 17.38 15.4 56.30 3.66 124.26 10.67% 275.07 2.21 
21 Fenders 7.35 Al 4.08 3.27 12.60 3.85 127.53 10.95% 287.67 2.26 

22 Seats 66.77 Composite + Al + 
GFRP 46.74 20.03 96.84 4.83 147.56 12.67% 384.51 2.61 

23 Rear Door Frames 26.8 Al 15.34 11.46 59.90 5.23 159.02 13.65% 444.41 2.79 



 

 

Figure 3-28 – Passenger Car Glider Cost Curve based on MY 2011 Honda Accord Light Weight Vehicle 
(79% of the Curb Weight) 

 

 

Figure 3-29 – Cumulative Direct Manufacturing Cost for Passenger Car Glider Mass Reduction (Glider - 
79% of Curb Weight) 

 

Table 3-116 shows the cost per kilogram ($/kg) and estimated costs at discrete levels of mass 
reduction for a passenger car derived from lightweighting the MY 2011 Honda Accord.  DOT 
staff used these costs to develop the mass reduction costs for mass reduction levels 1-4 in this 
analysis. 



 

 

Table 3-116 – Cost Numbers Derived from Passenger Car Lightweighting Study 

Curb Weight 1480 kg 
PC Glider (79% of 

Curb Weight) 1165 kg 

MR% (of glider in 
PC lightweighting 

study) 
MR (kg) $/kg 

Estimated DMC 
on MY 2011 

Honda Accord 

New Curb 
Weight after 
Glider Mass 

Reduction (kg) 

Percentage 
Mass 

Reduction at 
Curb Weight 

Level 
5.0% 58.25 $0.84 $48.93 1,421 4.0% 
7.5% 87.38 $1.61 $140.67 1,392 5.9% 

10.0% 116.50 $2.12 $246.98 1,363 7.9% 
15.0% 174.75 $3.37 $535.90 1,320 10.8% 
20.0% 233.00 $5.50 $3,611.50 1,247 15.7% 

 

3.4.5.2 MY 2014 Chevrolet Silverado Teardown Study 

NHTSA’s original cost curve for light trucks was developed through an agency-funded 
lightweighting study on a MY 2014 Chevrolet Silverado 1500 full-size pickup truck.  This study 
considered lessons learned during the MY 2011 Honda Accord lightweighting study, and 
included requirements that the vehicle meet the IIHS small overlap performance test.  EDAG 
completed this project in 2016 and the final report is available on NHTSA’s website.484 

Table 3-117 shows the list of components lightweighted in the MY 2014 Chevrolet Silverado 
1500 full-size pickup truck.  Figure 3-30 shows the cost curve generated from the list of the 
lightweighted components, and Figure 3-31 shows the DMC at different levels of mass 
reduction.

 
484 Singh, H., Davies, J., Kramer, D., Fisher, A., Paramasuwom, M., Mogal, V., ... and Ganesan, V. (2018, January). 
Mass reduction for light-duty vehicles for model years 2017-2025 (Report No. DOT HS 812 487). Washington, DC: 
National Highway Traffic Safety Administration. 



 

 Table 3-117 – List of Components Lightweighted in the MY 2014 Chevrolet Silverado 1500 

# 
Vehicle 
Component/ 
System 

Baseline 
Mass Substitution 

Material 

Light-
weighted 
Mass 

Mass 
Saving Δ Cost Δ Cost 

Cumulative 
Mass 
Saving 

Cumulative 
MR 

Cumulative 
Cost 

Cumulative 
Cost 

(kg) (kg) (kg) ($) ($/kg) (kg) (%) ($) ($/kg) 

1 
Interior 
Electrical 
Wiring 

6.9 
Copper Clad 
Aluminum (CCA) 5.52 1.38 -28.07 -20.34 1.38 0.08% -28.07 -20.34 

2 Headliner 3.63 Cellmould 3.45 0.18 -0.93 -5.17 1.56 0.09% -29 -18.59 

3 Trim - Plastic 20.68 Cellmould 19.65 1.03 -5.3 -5.15 2.59 0.14% -34.3 -13.24 

4 Trim - misc. 34.67 Cellmould 32.94 1.73 -8.89 -5.14 4.32 0.24% -43.19 -10.00 

5 Floor Covering 9.75 Cellmould 9.26 0.49 -2.5 -5.10 4.81 0.27% -45.69 -9.50 

6 Headlamps 7.68 Mucell Housings 6.14 1.54 0 0.00 6.35 0.35% -45.69 -7.20 

7 HVAC System 25.88 MuCell & Cellmould 24.17 1.71 0 0.00 8.06 0.45% -45.69 -5.67 

8 Tail Lamps 2 Mucell Housings 1.6 0.4 0 0.00 8.46 0.47% -45.69 -5.40 

9 Chassis Frame 243.97 AHSS 197.61 46.36 48.26 1.04 54.82 3.06% 2.57 0.05 

10 Front Bumper 25.55 AHSS 20.44 5.11 5.32 1.04 59.93 3.35% 7.89 0.13 

11 Rear Bumper 15.14 AHSS 12.11 3.03 3.15 1.04 62.96 3.52% 11.04 0.18 

12 Towing Hitch 16.56 AHSS 13.59 2.97 3.09 1.04 65.93 3.68% 14.13 0.21 

13 Rear Doors 38.1 AHSS + Al 27.03 11.07 13.96 1.26 77 4.30% 28.09 0.36 

14 Wheels 158.96 eVOLVE 133.71 25.25 40.8 1.62 102.25 5.71% 68.89 0.67 

15 Front Doors 45.46 AHSS + Al 31.05 14.41 23.64 1.64 116.66 6.52% 92.53 0.79 

16 Fenders 25.91 Al 14.25 11.66 42.34 3.63 128.32 7.17% 134.87 1.05 



 

# 
Vehicle 
Component/ 
System 

Baseline 
Mass Substitution 

Material 

Light-
weighted 
Mass 

Mass 
Saving Δ Cost Δ Cost 

Cumulative 
Mass 
Saving 

Cumulative 
MR 

Cumulative 
Cost 

Cumulative 
Cost 

(kg) (kg) (kg) ($) ($/kg) (kg) (%) ($) ($/kg) 

17 Front/Rear Seat 
& Console 97.45 Composite + Al + 

GFRP 68.21 29.24 137.7 4.71 157.56 8.80% 272.57 1.73 

18 Steering Column 
Assy 9.21 Mg 5.99 3.22 15.33 4.76 160.78 8.98% 287.9 1.79 

19 Pickup Box 109.9 Al 65.94 43.96 210.45 4.79 204.74 11.44% 498.35 2.43 

20 Tailgate 20.99 Al 12.59 8.4 40.2 4.79 213.14 11.91% 538.55 2.53 

21 Instrument Panel 12.27 Mg 6.75 5.52 26.51 4.80 218.66 12.22% 565.06 2.58 

22 
Instrument Panel 
Skin, Cover, 
Plastic  

17.36 Low Density Foam + 
MuCell + Cellmould 14.45 2.91 15.43 5.30 221.57 12.38% 580.49 2.62 

23 Cab 
(+Insulation) 259.92 Al 176.52 83.4 466.86 5.60 304.97 17.04% 1047.35 3.43 

24 Radiator Support 20 Al + Mg 14.1 5.9 47.99 8.13 310.87 17.37% 1095.34 3.52 



 

 

Figure 3-30 – Cost Curve for Glider Mass Reduction on Lightweighted Truck Based on MY 2014 Chevrolet 
Silverado 1500 Full Size Pickup (Glider Representing 73.6% of Curb Weight) 

 

 

Figure 3-31 – DMC for Light Truck Glider Mass Reduction on MY 2014 Chevrolet Silverado Lightweighted 
Pickup (Glider - 73.6% of Curb Weight) 

Table 3-118 shows the $/kg and cost associated at discrete mass reduction levels applicable to a 
lightweighted truck, per the MY 2014 Chevrolet Silverado study.  These cost values were 
partially carried through to the cost values used in this analysis, i.e., for mass reduction levels 1-
4. 



 

Table 3-118 – Cost Numbers Derived from Light Truck Lightweighting Study 

Curb Weight 2432 kg 

Glider (73.60% of Curb Weight) 1790 kg 

MR% (of 
glider in LT 

lightweighting 
study) 

MR 
(kg) $/kg 

Estimated DMC 
on MY 2014 

Chevrolet 
Silverado 

New Curb 
Weight after 
Glider Mass 

Reduction (kg) 

Percentage 
Mass 

Reduction at 
Curb Weight 

Level 
5.0% 89.50 $0.50 $44.93 2,343 3.7% 

7.5% 134.25 $1.20 $161.10 2,298 5.5% 

10.0% 179.00 $2.09 $374.11 2,253 7.4% 

15.0% 268.50 $3.09 $829.67 2,164 11.0% 

 

3.4.5.3 Updates to MR5 and MR6 Costs based on Updated Carbon Fiber Studies  

As discussed above, achieving the highest levels of mass reduction often necessitates extensive 
use of advanced materials like higher grades of aluminum, magnesium, or carbon fiber.  For the 
2020 final rule, DOT provided a survey of information available regarding carbon fiber costs 
compared to the costs DOT presented in the final rule based on NHTSA’s two teardown studies.  
In the MY 2011 Honda Accord lightweighting study, the estimated cost of carbon fiber was 
$5.37/kg and the cost of carbon fiber used in the MY 2014 Chevy Silverado lightweighting study 
was $15.50/kg.  The $15.50 estimate closely matched the cost estimates from a BMW i3 
teardown analysis,485 the cost figures provided by Oak Ridge National Laboratory for a study 
from the IACMI Composites Institute,486 and from a Ducker Worldwide presentation at the CAR 
Management Briefing Seminar.487   

For this analysis, DOT relied on the cost estimates for carbon fiber construction that the National 
Academies detailed in the 2021 Assessment of Technologies for Improving Fuel Economy of 
Light-Duty Vehicles – Phase 3.488  The study indicates that the sum of direct materials costs plus 
manufacturing costs for carbon fiber composite automotive components is $25.97 per pound in 
high volume production.  In order to use this cost in the CAFE Model it must be put in terms of 
dollars per pound saved.  Using an average vehicle curb weight of 4000 lbs, a 71% glider share 
and the percent mass savings associated with MR5 and MR6, it is possible to calculate the 
number of pounds to be removed to attain MR5 and MR6.  Also taken from the NAS study is the 
assertion that carbon fiber substitution for steel in an automotive component results in a 50% 
mass reduction.  Combining all this together, carbon fiber technology offers weight savings at 

 
485 Singh, Harry, FSV Body Structure Comparison with 2014 BMW i3, Munro and Associates for World Auto Steel 
(June 3, 2015). 
486 IACMI Baseline Cost and Energy Metrics (March 2017), available at https://iacmi.org/wp-
content/uploads/2017/12/IACMI-Baseline-Cost-and-Energy-Metrics-March-2017.pdf. 
487 Ducker Worldwide, The Road Ahead – Automotive Materials (2016), 
https://societyofautomotiveanalysts.wildapricot.org/resources/Pictures/SAA%20Sumit%20slides%20for%20Abey%
20Abraham%20of%20Ducker.pdf. 
488 2021 NAS report, at 7-242-3. 

https://iacmi.org/wp-content/uploads/2017/12/IACMI-Baseline-Cost-and-Energy-Metrics-March-2017.pdf
https://iacmi.org/wp-content/uploads/2017/12/IACMI-Baseline-Cost-and-Energy-Metrics-March-2017.pdf


 

$24.60 per pound saved.  This dollar per pound savings figure must also be converted to a retail 
price equivalent (RPE) to account for various commercial costs associated with all automotive 
components.  This is accomplished by multiplying $24.60 by the factor 1.5.  This brings the cost 
per pound saved for using carbon fiber to $36.90 per pound saved.489  The analysis uses this cost 
for achieving MR5 and MR6.   

Table 3-119 and Table 3-120 show the cost values used in the CAFE Model with MR1-4 costs 
based on the cost curves developed from the MY 2011 Honda Accord and MY 2014 Chevrolet 
Silverado studies, and the updated MR5 and MR6 values that account for the updated carbon 
fiber costs from the 2021 NAS report.  Both tables assume a 71% glider share. 

Table 3-119 – Mass Reduction Costs for MY 2020 in CAFE Model for Small Car, Small Car Performance, 
Medium Car, Medium Car Performance, Small SUV, Small SUV Performance 

 
Percentage 

Reduction in 
Glider Weight 

Percentage 
Reduction in 
Curb Weight 

Cost of Mass 
Reduction 

($/lbs) 
MR0 0.00% 0.00% 0.00 
MR1 5.00% 3.55% 0.46 
MR2 7.50% 5.33% 0.86 
MR3 10.00% 7.10% 1.22 
MR4 15.00% 10.65% 1.59 
MR5 20.00% 14.20% 36.90 
MR6 28.00% 20% 36.90 

 

Table 3-120 – Mass Reduction Costs for MY 2020 in CAFE Model for Medium SUV, Medium SUV 
Performance, Pickup, Pickup HT  

 
Percentage 

Reduction in 
Glider Weight 

Percentage 
Reduction in 
Curb Weight 

Cost of Mass 
Reduction 

($/lbs) 
MR0 0 0.00% 0.00 
MR1 5.00% 3.55% 0.30 
MR2 7.50% 5.33% 0.70 
MR3 10.00% 7.10% 1.25 
MR4 15.00% 10.65% 1.70 
MR5 20.00% 14.20% 36.90 
MR6 27.25% 19.35% 36.90 

 
There is a dramatic increase in cost going from MR4 to MR5 and MR6 for all classes of 
vehicles.  However, while the increase in cost going from MR4 to MR5 and MR6 is dramatic, 
the MY 2011 Honda Accord study, the MY 2014 Chevrolet Silverado study, and the 2021 NAS 
report all included a steep increase to achieve the highest levels of mass reduction technology, as 
seen in Figure 3-31.  Figure 3-32 shows the cost per pound for various materials used for 
lightweighting from 2021 NAS, the NHTSA Accord study, and the NHTSA Silverado study.  
Again, based on studies such as the NHTSA Accord and Silverado studies, enough mass 

 
489 See MR5 and MR6 CFRP Cost Increase Calculator.xlsx in the docket for this action. 



 

reduction to reach MR5 will require a majority of secondary structure and some primary 
structure be made from carbon fiber.  Reaching MR6 will require a primary structure made 
almost entirely from carbon fiber.  This is true for nearly every vehicle except for the smallest 
sports cars with minimal interior luxury, like the Lotus Elise.  The increase in cost in going from 
MR5 to MR6 can be justified by considering the dollar amount to purchase a pound of fully 
laminated and manufactured carbon fiber reinforced plastic compared to the dollar amount to 
purchase a pound of aluminum, magnesium or steel as shown in Figure 3-32.   

 
Figure 3-32 – Cost per Kilogram Including Manufacturing for Various Materials Used for Lightweighting 

from NAS,490 the NHTSA Accord Study,491 and the NHTSA Silverado Study492  

3.5 Aerodynamics 

The energy required to overcome aerodynamic drag accounts for a significant portion of the 
energy consumed by a vehicle and can become the dominant factor for a vehicle’s energy 
consumption at high speeds.  The power needed to propel a vehicle increases as the cube of the 
velocity.  For example, doubling of velocity with a given amount of power to overcome 
aerodynamic drag would require eight times that power to overcome drag at the higher velocity.  
Reducing aerodynamic drag can, therefore, be an effective way to reduce fuel consumption and 
emissions. 

 
490 2021 NAS report, at 7-242-3. 
491 DOT HS 811 666, at 145, Figure 138. 
492 DOT HS 812 487, at 102, Figure 113. 



 

Aerodynamic drag is proportional to the frontal area (A) of the vehicle and coefficient of drag 
(Cd), such that aerodynamic performance is often expressed as the product of the two values, 
CdA, which is also known as the drag area of a vehicle.  The coefficient of drag (Cd) is a 
dimensionless value that essentially represents the aerodynamic efficiency of the vehicle shape.  
The frontal area (A) is the cross-sectional area of the vehicle as viewed from the front.  It acts 
with the coefficient of drag as a sort of scaling factor, representing the relative size of the vehicle 
shape that the coefficient of drag describes.  The force imposed by aerodynamic drag increases 
with the square of vehicle velocity, accounting for the largest contribution to road loads at higher 
speeds. 

Aerodynamic drag reduction can be achieved via two approaches, either by reducing the drag 
coefficient or reducing vehicle frontal area, with two different categories of technologies, passive 
and active aerodynamic technologies.  Passive aerodynamics refers to aerodynamic attributes 
that are inherent to the shape and size of the vehicle, including any components of a fixed nature.  
Active aerodynamics refers to technologies that variably deploy in response to driving 
conditions.  These include technologies such as active grille shutters, active air dams, and active 
ride height adjustment.  It is important to note that manufacturers may employ both passive and 
active aerodynamic technologies to improve aerodynamic drag values. 

The greatest opportunity for improving aerodynamic performance is during a vehicle redesign 
cycle when significant changes to the shape and size of the vehicle can be made.  Incremental 
improvements may also be achieved during mid-cycle vehicle refresh using restyled exterior 
components and add-on devices.  Some examples of potential technologies applied during mid-
cycle refresh are restyled front and rear fascia, modified front air dams and rear valances, 
addition of rear deck lips and underbody panels, and low-drag exterior mirrors.  While 
manufacturers may nudge the frontal area of the vehicle during redesigns, large changes in 
frontal area are typically not possible without impacting the utility and interior space of the 
vehicle.  Similarly, manufacturers may improve Cd by changing the frontal shape of the vehicle 
or lowering the height of the vehicle, among other approaches, but the form drag of certain body 
styles and airflow needs for engine cooling often limit how much Cd may be improved. 

The following sections discuss the four levels of aerodynamic improvements considered in the 
CAFE Model, how the agency assigned baseline aerodynamic technology levels to vehicles in 
the MY 2020 fleet (i.e., on a relative basis based on Cd reduction), the effectiveness 
improvements for the addition of aerodynamic technologies to vehicles provided by the 
Autonomie simulations, and the costs for adding that aerodynamic technology. 

3.5.1 Aerodynamics in the CAFE Model 

The agency bins aerodynamic improvements into four levels – 5%, 10%, 15% and 20% 
aerodynamic drag improvement values over a baseline computed for each vehicle body style – 
which correspond to AERO5, AERO10, AERO15, and AERO20, respectively.   

Technology pathway logic for levels of aerodynamic improvement consists of a linear 
progression, with each level superseding all previous levels.  Technology paths for AERO are 
illustrated in Figure 3-33. 



 

 
Figure 3-33 – Technology Pathway for Levels of Aerodynamic Drag Reduction  

While the four levels of aerodynamic improvements are technology-agnostic, DOT built a 
pathway to compliance for each level based on aerodynamic data from a National Research 
Council (NRC) of Canada-sponsored wind tunnel testing program.  The program included an 
extensive review of production vehicles utilizing these technologies, and industry 
comments.493,494  Again, these technology combinations are intended to show a potential way for 
a manufacturer to achieve each aerodynamic improvement level; however, in the real world, 
manufacturers may implement different combinations of aerodynamic technologies to achieve a 
percentage improvement over their baseline vehicles.  Table 3-121 and Table 3-122 shows the 
aerodynamic technologies that could be used to achieve 5%, 10%, 15% and 20% improvements 
in passenger cars, SUVs, and pickup trucks. 

As discussed further in Chapter 3.5.3, AERO20 cannot be applied to pickup trucks in the model, 
which is why there is no pathway to AERO20 shown in Table 3-122.  While some aerodynamic 
improvement technologies can be applied across vehicle classes, like active grille shutters (used 
in the 2015 Chevrolet Colorado),495 DOT determined that there are limitations that make it 
infeasible for vehicles with some body styles to achieve a 20% reduction in the coefficient of 
drag from their baseline.  This technology path is an example of how a manufacturer could reach 
each AERO level, but they would not necessarily be required to use the technologies.   

 
493 Larose, G., Belluz, L., Whittal, I., Belzile, M. et al., "Evaluation of the Aerodynamics of Drag Reduction 
Technologies for Light-duty Vehicles - a Comprehensive Wind Tunnel Study," SAE Int. J. Passeng. Cars - Mech. 
Syst. 9(2):772-784, 2016, https://doi.org/10.4271/2016-01-1613. 
494 Larose, Guy & Belluz, Leanna & Whittal, Ian & Belzile, Marc & Klomp, Ryan & Schmitt, Andreas.  (2016).  
Evaluation of the Aerodynamics of Drag Reduction Technologies for Light-duty Vehicles - a Comprehensive Wind 
Tunnel Study.  SAE International Journal of Passenger Cars - Mechanical Systems.  9. 10.4271/2016-01-1613. 
495 Chevrolet Product Information, available at 
https://media.chevrolet.com/content/media/us/en/chevrolet/vehicles/colorado/2015/_jcr_content/iconrow/textfile/file
.res/15-PG-Chevrolet-Colorado-082218.pdf. 



 

Table 3-121 – Combinations of Technologies That Could Achieve Aerodynamic Improvements Used in the 
Current Analyses for Passenger Cars and SUVs 

Aero Improvement 
Level Components Effectiveness (%) 

AERO5 

Front Styling 2.0% 
Roof Line raised at forward of B-pillar 0.5% 
Faster A pillar rake angle 0.5% 
Shorter C pillar 1.0% 
Low drag wheels 1.0% 

AERO10 

Rear Spoiler 1.0% 
Wheel Deflector / Air outlet inside wheel housing 1.0% 
Bumper Lip 1.0% 
Rear Diffuser 2.0% 

AERO15 Underbody Cover Incl. Rear axle cladding) 3.0% 
Lowering ride height by 10mm 2.0% 

AERO20 Active Grill Shutters 3.0% 
Extend Air dam 2.0% 

 

Table 3-122 – Combinations of Technologies That Could Achieve Aerodynamic Improvements Used in the 
Current Analyses for Pickup Trucks 

Aero Improvements Components Effectiveness (%) 

AERO5 

Whole Body Styling (Shape Optimization) 1.5% 
Faster A pillar rake angle 0.5% 
Rear Spoiler 1.0% 
Wheel Deflector / Air outlet inside wheel housing 1.0% 
Bumper Lip 1.0% 

AERO10 
Rear Diffuser 2.0% 
Underbody Cover Incl. Rear axle cladding) 3.0% 

AERO15 
Active Grill Shutters 3.0% 
Extend Air dam 2.0% 

 
As discussed further in Chapter 3.8, this analysis assumes manufacturers apply off-cycle 
technology at rates defined in the Market Data file.  While the AERO levels in the analysis are 
technology-agnostic, achieving AERO20 improvements does assume the use of active grille 
shutters, which are an off-cycle technology. 

3.5.2 Aerodynamics Analysis Fleet Assignments 

DOT engineers use a relative performance approach to assign an initial level of aerodynamic 
drag reduction (AERO) technology to each vehicle.  Each AERO level represents a percent 
reduction in a vehicle’s aerodynamic drag coefficient (Cd) from a baseline value for its body 
style.  AERO technologies and their definitions, as well as their prevalence in the 2020 fleet, are 



 

given in Table 3-123.  For a vehicle to achieve AERO5, the Cd must be at least 5% below the 
baseline for the body style; for AERO10, 10% below the baseline, and so on.   

Table 3-123 – Penetration Rates of Aerodynamic Drag Reduction Levels in the 2020 Fleet 

Technology Technology Description Sales 
Volume 

Penetration 
Rate 

AERO0 Baseline aero 3,199,634 24% 

AERO5 Aero drag reduction, level 1 (5% reduction) 4,839,840 36% 

AERO10 Aero drag reduction, level 2 (10% reduction) 3,866,017 28% 

AERO15 Aero drag reduction, level 3 (15% reduction) 1,233,140 9% 

AERO20 Aero drag reduction, level 4 (20% reduction) 453,920 3% 

 
Every vehicle in the fleet is assigned a body style; available body styles included convertible, 
coupe, sedan, hatchback, wagon, SUV, pickup, minivan, and van.  These assignments do not 
necessarily match the body styles used by manufacturers for marketing purposes.  Instead, they 
are assigned based on engineering judgement, taking into account how a vehicle’s AERO and 
vehicle technology class assignments are affected.  Different body styles offer different utility 
and have varying levels of baseline form drag.  In addition, frontal area is a major factor in 
aerodynamic forces, and the frontal area varies by vehicle.  This analysis considers both frontal 
area and body style as utility factors affecting aerodynamic forces; therefore, the analysis 
assumes all reduction in aerodynamic drag forces come from improvement in the drag 
coefficient. 

Average drag coefficients for each body style are computed using the MY 2015 drag coefficients 
published by manufacturers, which were used as the baseline values in the analysis.  Table 3-124 
lists the baseline drag coefficients by body style for all levels of AERO used in the analysis for 
fleet assignments.  We harmonize the Autonomie simulation baselines with the analysis fleet 
assignment baselines to the fullest extent possible.496   

 
The drag coefficients used for each vehicle in the analysis fleet are sourced from manufacturer 
specification sheets, when possible.  However, drag coefficients for the MY 2020 vehicles were 
not consistently reported publicly.  If no drag coefficient was reported, engineering judgment is 
sometimes used to assign an AERO level.  If no level can be manually assigned, we use the drag 
coefficient obtained from manufacturers to build the MY 2016 fleet,497 if available.  The MY 
2016 drag coefficient values may not accurately reflect the current technology content of newer 
vehicles but are, in many cases, the most recent data available.  The AERO technology 
penetration values for the analysis fleet are detailed in Table 3-125 and likely include higher 

 
496 See Table 2-19 in Chapter 2.4.2 for the table of vehicle attributes used to build the Autonomie baseline vehicle 
models.  That table includes a drag coefficient for each vehicle class. 
497 See 83 FR 42986 (Aug. 24, 2018).  The MY 2016 fleet was built to support the 2018 NPRM. 



 

levels of AERO0 that we are unable to account for due to lack of drag coefficients, resulting in 
some understatement of the actual aerodynamic technology applied in the MY 2020 fleet. 

Table 3-124 – Baseline AERO Technologies and Technology Steps by Body Style 

 Body 
Style 

 Aero Level & MY 2020 Volume Distribution 

 Labels  AERO0 AERO5 AERO10 AERO15 AERO20 

Convertible 
 Volume Share  75.4% 14.9% 9.6% 0.0% 0.0% 

Cd 0.334 0.317 0.301 0.284 0.267 

Coupe 
 Volume Share  50.9% 44.8% 3.4% 1.0% 0.0% 

 Cd 0.319 0.303 0.287 0.271 0.255 

Hatchback 
 Volume Share  49.1% 17.9% 15.6% 4.5% 13.0% 

 Cd 0.333 0.316 0.3 0.283 0.266 

Minivan 
 Volume Share  14.4% 60.1% 25.5% 0.0% 0.0% 

 Cd 0.326 0.31 0.293 0.277 0.261 

Pickup 
 Volume Share  10.3% 46.5% 5.6% 37.5% 0.0% 

 Cd 0.42 0.399 0.378 0.357 0.336 

Sedan 
 Volume Share  25.2% 35.9% 28.4% 5.7% 4.8% 

 Cd 0.302 0.287 0.272 0.257 0.242 

Sport 
Utility 

 Volume Share  24.0% 33.7% 36.7% 3.4% 2.2% 
 Cd 0.363 0.345 0.327 0.309 0.29 

Van 
 Volume Share  9.5% 0.0% 16.3% 52.0% 22.2% 

 Cd 0.389 0.37 0.35 0.331 0.311 

Wagon 
 Volume Share  7.2% 1.8% 0.4% 10.8% 79.8% 

 Cd 0.342 0.325 0.308 0.291 0.274 
 
Baseline drag coefficients are also utilized in the final assignment of aerodynamic improvement 
levels.  The drag coefficient of each vehicle is compared to the baseline average drag coefficient 
value for the vehicle’s body style to perform the assignment.  Note that the highest AERO levels, 
AERO15 and AERO20, are not considered for certain body styles; see Chapter 3.5.3 for more 
detail. 



 

Table 3-125 – Aerodynamic Application by Manufacturer as a Percent of MY 2020 Sales 

Manufacturer AERO0 AERO5 AERO10 AERO15 AERO20 
BMW 50% 15% 35% 0% 0% 
Daimler 38% 4% 29% 0% 29% 
Fiat-Chrysler 61% 20% 1% 18% 0% 
Ford 8% 7% 34% 52% 0% 
General Motors 16% 46% 38% 0% 0% 
Honda 8% 52% 35% 2% 2% 
Hyundai 2% 52% 42% 0% 3% 
Kia 25% 50% 24% 1% 0% 
Jaguar Land Rover 53% 44% 2% 0% 1% 
Mazda 16% 63% 7% 13% 0% 
Mitsubishi 35% 0% 65% 0% 0% 
Nissan 13% 38% 46% 1% 2% 
Subaru 31% 43% 26% 0% 0% 
Tesla 0% 0% 0% 0% 100% 
Toyota 27% 50% 20% 0% 3% 
Volvo 2% 20% 40% 7% 32% 
Volkswagen 50% 20% 28% 1% 1% 

 

3.5.3 Aerodynamics Adoption Features 

As already discussed, DOT engineers use a relative performance approach to assign current 
aerodynamic technology (AERO) level to a vehicle.  For some body styles with different utility, 
such as pickup trucks, SUVs and minivans, frontal area can vary, and this can affect the overall 
aerodynamic drag forces.  In order to maintain vehicle utility and functionality related to 
passenger space and cargo space, we assume all technologies that improve aerodynamic drag 
forces do so by reducing Cd while maintaining frontal area. 

Technology pathway logic for levels of aerodynamic improvement consists of a linear 
progression, with each level superseding all previous ones.  Technology paths for AERO are 
illustrated in Figure 3-33, above. 

The highest levels of AERO are not considered for certain body styles.  In these cases, this 
means that AERO20, and sometimes AERO15, can neither be assigned in the baseline fleet nor 
adopted by the model.  For these body styles, there are no commercial examples of drag 
coefficients that demonstrate the required AERO15 or AERO20 improvement over baseline 
levels.  DOT engineers also deem the most advanced levels of aerodynamic drag simulated as 
not technically practicable given the form drag of the body style and costed technology, 
especially given the need to maintain vehicle functionality and utility, such as interior volume, 
cargo area, and ground clearance.  (As seen in Table 3-121, example technologies that may be 
used to achieve high AERO levels include lowered ride height, active grill shutters, and extended 
air dams.)  Therefore, the analysis does not consider the highest levels of drag improvement for 
convertibles, minivans, pickups, and wagons as a potential pathway to compliance in response to 



 

regulatory alternatives.  The SKIP logic used to implement these restrictions is given in Table 
3-126. 

Table 3-126 – SKIP Logic Based on Body Style 

Body Style AERO15 AERO20 

Convertible  SKIP 

Coupe    

Hatchback    

Minivan SKIP SKIP 

Pickup  SKIP 

Sedan    

Sport Utility    

Van    

Wagon  SKIP 

 
DOT also does not allow application of AERO15 and AERO20 technology to vehicles with more 
than 780 horsepower.  There are two main types of vehicles that informed this threshold: 
performance internal combustion engine (ICE) vehicles and high-power battery electric vehicles 
(BEVs).  In the case of the former, the agency recognizes that manufacturers tune aerodynamic 
features on these vehicles to provide desirable downforce at high speeds and to provide sufficient 
cooling for the powertrain, rather than reducing drag, resulting in middling drag coefficients 
despite advanced aerodynamic features.  Therefore, manufacturers may have limited ability to 
improve aerodynamic drag coefficients for high performance vehicles with internal combustion 
engines without reducing horsepower.  1,655 units of sales volume in the baseline fleet include 
limited application of aerodynamic technologies because of ICE vehicle performance.498 

In the case of high-power battery electric vehicles, the 780 horsepower threshold is set above the 
highest peak system horsepower present on a BEV in the 2020 fleet.  BEVs have different 
aerodynamic behavior and considerations than ICE vehicles, allowing for features such as flat 
underbodies that significantly reduce drag.499  BEVs are therefore more likely to achieve higher 
AERO levels, so the horsepower threshold is set high enough that it does not restrict AERO15 
and AERO20 application.  Note that the CAFE Model does not force high levels of AERO 
adoption; rather, higher AERO levels are usually adopted organically by BEVs because 

 
498 See the Market Data file. 
499 2020 EPA Automotive Trends Report, at 227. 



 

significant drag reduction allows for smaller batteries and, by extension, cost savings.  BEVs 
represent 252,023 units of sales volume in the baseline fleet.500 

Note that, while many aerodynamic features that contribute to drag reduction (e.g., active grill 
shutters) are considered off-cycle technologies, AERO levels and the off-cycle program are 
modeled separately for the analysis.  For further discussion of off-cycle technologies, see 
Chapter 3.8. 

3.5.4 Aerodynamics Effectiveness  

To determine aerodynamic effectiveness, the CAFE Model and Autonomie used individually 
assigned road load technologies for each vehicle to appropriately assign initial road load levels 
and appropriately capture benefits of subsequent individual road load improving technologies. 

The current analysis included four levels of aerodynamic improvements, AERO5, AERO10, 
AERO15, and AERO20, representing 5, 10, 15, and 20 percent reduction in drag coefficient (Cd), 
respectively.  See Chapter 3.5.1 for a list of aerodynamic improving features and components 
that manufacturers could apply to achieve these levels.  The analysis assumed that aerodynamic 
drag reduction could only come from reduction in Cd and not from reduction of frontal area, to 
maintain vehicle functionality and utility, such as passenger space, ingress/egress ergonomics, 
and cargo space. 

The effectiveness values for the aerodynamic improvement levels relative to AERO0, for all ten 
vehicle technology classes, are shown in Figure 3-34.  Each of the effectiveness values shown is 
representative of the improvements seen for upgrading only the listed aerodynamic technology 
level for a given combination of other technologies.  In other words, the range of effectiveness 
values seen for each specific technology (e.g., AERO 15) represents the addition of AERO15 
technology (relative to AERO0 level) for every technology combination that could select the 
addition of AERO15.  Here, we use the change in fuel consumption values between entire 
technology keys,501 and not the individual technology effectiveness values.  Using the change 
between whole technology keys captures the complementary or non-complementary interactions 
among technologies. 

 
500 See the Market Data file. 
501 Technology key is the unique collection of technologies that constitutes a specific vehicle (see Chapter 2.4). 



 

 

Figure 3-34 – AERO Technology Effectiveness502 
 

3.5.5 Aerodynamics Costs 

This analysis uses the AERO technology costs established in the 2020 CAFE final rule.503  The 
cost estimates are based on confidential business information submitted by the automotive 
industry in advance of the 2018 CAFE NPRM, and on our assessment of manufacturing costs for 
specific aerodynamic technologies.  See the 2018 PRIA for discussion of the cost estimates.504  
DOT received no additional comments from stakeholders regarding the costs established in the 
2018 PRIA and continues to use the established costs for this analysis, as shown in Table 3-127 
and Table 3-128.   

The cost to achieve AERO5 is relatively low, as most of the improvements can be made through 
body styling changes.  The cost to achieve AERO10 is higher than AERO5, due to the addition 

 
502 The box shows the inner quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.  The 
blue dots show effectiveness values outside those thresholds.  The data used to create this figure can be found in the 
FE_1 Improvements file . 
503 See the FRIA accompanying the 2020 final rule, Chapter VI.C.5.e.  
504 See the PRIA accompanying the 2018 NPRM, Chapter 6.3.10.1.2.1.2 for a discussion of these cost estimates. 



 

of several passive aerodynamic technologies, and the cost to achieve AERO15 and AERO20 is 
higher than AERO10 due to use of both passive and active aerodynamic technologies. 

Table 3-127 and Table 3-128 show the initial DMC values determined for aerodynamic 
improvement technologies in the MY 2017 and reported in 2018$.  The tables also show the total 
costs for the technologies across multiple model years also in 2018$.  The total cost includes the 
application of RPE and learning factors.  See the Technologies file for all costs across all model 
years. 

Table 3-127 – DMC and Total Costs of Aerodynamic Improvement Technology for Passenger Cars and SUVs 
(in 2018$) - Includes RPE and Learning Effects 

Aero Improvements 
for Passenger Cars 

and SUV 

DMC 
(2018$) 

Total Cost: Including RPE and Learning Factors 
(2018$) 

MY 2017 MY 2020 MY 2022 MY 2024 MY 2030 
0% $0.00 $0.00 $0.00 $0.00 $0.00 
5% $39.38 $53.96 $51.41 $49.50 $45.73 

10% $80.51 $110.32 $105.11 $101.19 $93.49 
15% $113.76 $155.88 $148.53 $142.99 $132.10 
20% $201.27 $275.80 $262.78 $245.24 $233.72 

 

Table 3-128 – DMC and Total Costs of Aerodynamic Improvement Technology for Pickup Trucks (in 2018$) 
- Includes RPE and Learning Effects 

Aero Improvements 
for Pickups 

DMC 
(2018$) 

Total Cost: Including RPE and Learning Factors 
(2018$) 

MY 2017 MY 2020 MY 2022 MY 2024 MY 2030 
0% $0.00 $0.00 $0.00 $0.00 $0.00 
5% $39.38 $53.96 $51.41 $49.50 $45.73 

10% $80.51 $110.32 $105.11 $101.19 $93.49 
15% $201.27 $275.80 $262.78 $252.98 $233.72 

 

3.6 Tire Rolling Resistance 

Tire rolling resistance is a road load force that arises primarily from the energy dissipated by 
elastic deformation of the tires as they roll.  Tire design characteristics (for example, materials, 
construction, and tread design) have a strong influence on the amount and type of deformation 
and the energy it dissipates.  Designers can select these characteristics to minimize rolling 
resistance.  However, these characteristics may also influence other performance attributes, such 
as durability, wet and dry traction, handling, and ride comfort. 

Lower-rolling-resistance tires have characteristics that reduce frictional losses associated with 
the energy dissipated mainly in the deformation of the tires under load, thereby improving fuel 
economy.  Low rolling resistance tires are increasingly specified by OEMs in new vehicles and 



 

are also increasingly available from aftermarket tire vendors.  They commonly include attributes 
such as higher inflation pressure, material changes, tire construction optimized for lower 
hysteresis, geometry changes (e.g., reduced aspect ratios), and reduced sidewall and tread 
deflection.  These changes are commonly accompanied by additional changes to vehicle 
suspension tuning and/or suspension design to mitigate any potential impact on other 
performance attributes of the vehicle. 

DOT continues to assess the potential impact of tire rolling resistance changes on vehicle safety.  
DOT has been following the industry developments and trends in application of rolling 
resistance technologies to light duty vehicles.  As stated in the NAS special report on Tires and 
Passenger Vehicle Fuel Economy,505 national crash data does not provide data about tire 
structural failures specifically related to tire rolling resistance, because the rolling resistance of a 
tire at a crash scene cannot be determined.  However, other metrics like brake performance 
compliance test data are helpful to show trends like that stopping distance has not changed in the 
last ten years,506 during which time many manufacturers have installed low rolling resistance 
tires in their fleet—meaning that manufacturers were successful in improving rolling resistance 
while maintaining stopping distances through tire design, tire materials, and/or braking system 
improvements.  In addition, NHTSA has addressed other tire-related issues through 
rulemaking,507 and continues to research tire problems such as blowouts, flat tires, tire or wheel 
deficiency, tire or wheel failure, and tire degradation.508  However, there are currently no data 
connecting low rolling resistance tires to accident or fatality rates.   

DOT conducted tire rolling resistance tests and wet grip index tests on original equipment tires 
installed on new vehicles.  From the tests, we observed that there is no degradation in wet grip 
index values (no degradation in traction) for tires with improved rolling resistance technology.  
With better tire design, tire compound formulations and improved tread design, tire 
manufacturers have tools to balance stopping distance and reduced rolling resistance.  Tire 
manufacturers can use “higher performance materials in the tread compound, more silica as 
reinforcing fillers and advanced tread design features” to mitigate issues related to stopping 
distance.509 

The following sections discuss levels of tire rolling resistance technology considered in the 
CAFE Model, how the technology was assigned in the analysis fleet, adoption features specified 
to maintain performance, effectiveness, and cost. 

 
505 Tires and Passenger Vehicle Fuel Economy: Informing Consumers, Improving Performance - - Special Report 
286 (2006), available at https://www.nap.edu/read/11620/chapter/6. 
506 See, e.g., NHTSA Office of Vehicle Safety Compliance, Compliance Database, 
https://one.nhtsa.gov/cars/problems/comply/index.cfm. 
507 49 CFR 571.138, Tire pressure monitoring systems. 
508 Tire-Related Factors in the Pre-Crash Phase, DOT HS 811 617 (April 2012), available at 
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811617. 
509 Jesse Snyder, A big fuel saver: Easy-rolling tires (but watch braking) (July 21, 2008), 
https://www.autonews.com/article/20080721/OEM01/307219960/a-big-fuel-saver-easy-rolling-tires-but-watch-
braking.  Last visited December 3, 2019. 



 

3.6.1 Tire Rolling Resistance in the CAFE Model 

DOT continues to consider two levels of improvement for low rolling resistance tires in the 
analysis: the first level of low rolling resistance tires considered reduced rolling resistance 10 
percent from an industry-average baseline rolling resistance coefficient (RRC) value, while the 
second level reduced rolling resistance 20 percent from the baseline.510   

DOT selected the industry-average RRC baseline of 0.009 based on a CONTROLTEC study 
prepared for the California Air Resources Board,511 in addition to confidential business 
information submitted by manufacturers prior to the 2018 NPRM analysis.  The average RRC 
from the CONTROLTEC study, which surveyed 1,358 vehicle models,512 was 0.009.  
CONTROLTEC also compared the findings of their survey with values provided by Rubber 
Manufacturers Association (renamed as USTMA-U.S. Tire Manufacturers Association) for 
original equipment tires.  The average RRC from the data provided by RMA is 0.0092,513 
compared to average of 0.009 from CONTROLTEC. 

In past agency actions, commenters have argued that based on available data on current vehicle 
models and the likely possibility that there would be additional tire improvements over the next 
decade, DOT should consider ROLL30 technology, or a 30 percent reduction of tire rolling 
resistance over the baseline.514 

As stated in Joint TSD for the 2017-2025 final rule and 2020 final rule, tire technologies that 
enable rolling resistance improvements of 10 and 20 percent have been in existence for many 
years.515  Achieving improvements of up to 20 percent involves optimizing and integrating 
multiple technologies, with a primary contributor being the adoption of a silica tread technology.  
Tire suppliers have indicated that additional innovations are necessary to achieve the next level 
of low rolling resistance technology on a commercial basis, such as improvements in material to 
retain tire pressure, tread design to manage both stopping distance and wet traction, and 
development of carbon black material for low rolling resistance without the use of silica to 
reduce cost and weight.516   

The agency believes that the tire industry is in the process of moving automotive manufacturers 
towards higher levels of rolling resistance technology in the vehicle fleet.  Importantly, as shown 
below, the MY 2020 fleet does include a higher percentage of vehicles with ROLL20 technology 
than the MY 2017 fleet.  However, DOT believes that at this time, the emerging tire technologies 
that would achieve 30 percent improvement in rolling resistance, like changing tire profile, 

 
510 To achieve ROLL10, the tire rolling resistance must be at least 10 percent better than baseline (.0081 or better).  
To achieve ROLL20, the tire rolling resistance must be at least 20 percent better than baseline (.0072 or better). 
511 Technical Analysis of Vehicle Load Reduction by CONTROLTEC for California Air Resources Board (April 29, 
2015). 
512 The RRC values used in this study were a combination of manufacturer information, estimates from coast down 
tests for some vehicles, and application of tire RRC values across other vehicles on the same platform. 
513 Technical Analysis of Vehicle Load Reduction by CONTROLTEC for California Air Resources Board (April 29, 
2015), at 40. 
514 NHTSA-2018-0067-11985. 
515 EPA-420-R-12-901, at 3-210. 
516 2011 NAS report, at 103. 



 

stiffening tire walls, or adopting improved tires along with active chassis control,517  among other 
technologies, will not be available for widespread commercial adoption in the fleet during the 
rulemaking timeframe.  As a result, the agency continues to not to incorporate 30 percent 
reduction in rolling resistance technology. 

3.6.2 Tire Rolling Resistance Analysis Fleet Assignments 

Tire rolling resistance is not a part of tire manufacturers’ publicly released specifications and 
thus it is difficult to assign this technology to the analysis fleet.  Manufacturers also often offer 
multiple wheel and tire packages for the same nameplates, further increasing the complexity of 
this assignment.  DOT employed an approach consistent with previous rulemaking in assigning 
this technology.  DOT relied on previously submitted rolling resistance values that were supplied 
by manufacturers in the process of building older fleets and bolstered it with an agency-
sponsored tire rolling resistance study by Smithers.518   

DOT carried over rolling resistance assignments for nameplates where manufacturers had 
submitted data on the vehicles’ rolling resistance values, even if the vehicle was redesigned.  If 
Smithers data were available, DOT replaced any older or missing values with that updated data.  
Those vehicles for which no information was available from either previous manufacturer 
submission or Smithers data were assigned to ROLL0.  All vehicles under the same nameplate 
were assigned the same rolling resistance technology level even if manufacturers do outfit 
different trim levels with different wheels and tires. 

Table 3-129 shows the distribution of ROLL technology for the 2017 and 2020 fleets.  This table 
illustrates that the majority of the fleet has now adopted some form of improved rolling 
resistance technology.  The majority of the change has been in implementing ROLL20 
technology.  There is likely more proliferation of rolling resistance technology, but we would 
need further information from manufacturers in order to account for it.  If manufacturers submit 
updated information on baseline rolling resistance assignments DOT may update those 
assignments for the final rule. 

 
517 Mohammad Mehdi Davari, Rolling resistance and energy loss in tyres (May 20, 2015), available at 
https://www.sveafordon.com/media/42060/SVEA-Presentation_Davari_public.pdf.  Last visited December 30, 
2019. 
518 “Evaluation of Rolling Resistance and Wet Grip Performance of OEM Stock Tires Obtained from NCAP Crash 
Tested Vehicles Phase One and Two” (NHTSA-2021-0053). 

https://www.sveafordon.com/media/42060/SVEA-Presentation_Davari_public.pdf


 

Table 3-129 – Distribution of Tire Rolling Resistance Technology for the MY 2017 and MY 2020 Fleets 

Technology MY 2017 Fleet MY 2020 Fleet 

ROLL0 59% 44% 
ROLL10 21% 20% 
ROLL20 20% 36% 

3.6.3 Tire Rolling Resistance Adoption Features 

Rolling resistance technology can be adopted with either vehicle refresh or redesign.  In some 
cases, low rolling resistance tires can affect traction, which may adversely impact acceleration, 
braking, and handling characteristics for some high-performance vehicles.  Similar to past 
rulemakings, the agency recognizes that to maintain performance, braking, and handling 
functionality, some high-performance vehicles would not adopt low rolling resistance tire 
technology.  For cars and SUVs with more than 405 horsepower (hp), the agency restricted the 
application of ROLL20.  For cars and SUVs with more than 500 hp, the agency restricted the 
application of any additional rolling resistance technology (ROLL10 or ROLL20).  The agency 
developed these cutoffs based on a review of confidential business information and the 
distribution of rolling resistance values in the fleet. 

3.6.4 Tire Rolling Resistance Effectiveness  

As discussed above, the baseline rolling resistance value from which rolling resistance 
improvements are measured is 0.009, based on a thorough review of confidential business 
information submitted by industry, and a review of other literature.  To achieve ROLL10, the tire 
rolling resistance must be at least 10 percent better than baseline (.0081 or better).  To achieve 
ROLL20, the tire rolling resistance must be at least 20 percent better than baseline (.0072 or 
better). 

DOT determined effectiveness values for rolling resistance technology adoption using 
Autonomie modeling.  Figure 3-35 below shows the range of effectiveness values used for 
adding tire rolling resistance technology to a vehicle in the NPRM analysis.  The graph shows 
the change in fuel consumption values between entire technology keys,519 and not the individual 
technology effectiveness values.  Using the change between whole technology keys captures the 
complementary or non-complementary interactions among technologies.  In the graph, the box 
shows the inter quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x 
IQR.  The blue dots show values for effectiveness that are outside these bounds.   

The data points with the highest effectiveness values are almost all exclusively BEV and FCV 
technology combinations for medium sized nonperformance cars.  The effectiveness for these 
vehicles, when the low rolling resistance technology is applied, is amplified by a complementary 
effect, where the lower rolling resistance reduces road load and allows a smaller battery pack to 
be used (and still meet range requirements).  The smaller battery pack reduces the overall weight 
of the vehicle, further reducing road load, and improving fuel efficiency.  This complementary 
effect is experienced by all the vehicle technology classes, but the strongest effect is on the 

 
519 Technology key is the unique collection of technologies that constitutes a specific vehicle (see Chapter 2.4.7). 



 

midsized vehicle non-performance classes and is only captured in the analysis through the use of 
full vehicle simulations, demonstrating the full interactions of the technologies. 

 

Figure 3-35 – NPRM Analysis ROLL Technology Effectiveness  

3.6.5 Tire Rolling Resistance Costs 

For the NPRM, the analysis used the same DMC values for ROLL technology that were used for 
the 2020 CAFE final rule.  The costs are in 2018$ dollars.  Table 3-130 shows the different 
levels of tire rolling resistance technology cost. 
 

Table 3-130 – Cost for Tire Rolling Resistance Technologies Relative to ROLL0 

Technology 
Tire Rolling Resistance Technology Costs for MY 2020 (2018$) 

Direct 
Manufacturing Cost 

Total Cost (includes 
RPE and Learning) Incremental to 

ROLL0 $0.00 $0.00 Base V 
ROLL10 $5.186 $7.78 Base V 
ROLL20 $40.54 $60.81 Base V 

 



 

3.7 Other Vehicle Technologies 

Four other vehicle technologies were included in the analysis—electric power steering (EPS), 
improved accessory devices (IACC), low drag brakes (LDB), and secondary axle disconnect 
(SAX) (which may only be applied to vehicles with all-wheel-drive or four-wheel-drive).  The 
effectiveness of these technologies was applied directly by the CAFE Model, with unique 
effectiveness values for each technology and for each technology class.  This methodology was 
used in these four cases because the effectiveness of these technologies varies little with 
combinations of other technologies.  Also, applying these technologies directly in the CAFE 
Model significantly reduces the number of Autonomie simulations that are needed. 

3.7.1 Electric Power Steering 

Electric power steering reduces fuel consumption by reducing load on the engine.  Specifically, it 
reduces or eliminates the parasitic losses associated with engine-driven power steering pumps, 
which pump hydraulic fluid continuously through the steering actuation system even when no 
steering input is present.  By selectively powering the electric assist only when steering input is 
applied, the power consumption of the system is reduced in comparison to the traditional 
“always-on” hydraulic steering system.  Power steering may be electrified on light duty vehicles 
with standard 12V electrical systems and is also an enabler for vehicle electrification because it 
provides power steering when the engine is off (or when no combustion engine is present). 

Power steering systems can be electrified in two ways.  Manufacturers may choose to eliminate 
the hydraulic portion of the steering system and provide electric-only power steering (EPS) 
driven by an independent electric motor, or they may choose to move the hydraulic pump from a 
belt-driven configuration to a stand-alone electrically driven hydraulic pump.  The latter system 
is commonly referred to as electro-hydraulic power steering (EHPS).  As discussed in the past 
rulemakings, manufacturers have informed the agencies that full EPS systems are being 
developed for all types of light-duty vehicles, including large trucks. 

3.7.1.1 Electric Power Steering Technology Fleet Assignments 

DOT described in past rulemakings that, like low drag brakes, EPS can be difficult to observe 
and assign to the analysis fleet, however, it is found more frequently in publicly available 
information than low drag brakes.  Based on comments received during the 2020 rulemaking, the 
agency increased EPS application rate to nearly 90 percent for the 2020 final rule.  The agency is 
maintaining this level of EPS fleet penetration for the NPRM analysis, recognizing that some 
specialized, unique vehicle types or configurations still implement hydraulically actuated power 
steering systems for the baseline fleet model year. 

3.7.1.2 Electric Power Steering Technology Adoption Features 

When not already applied, the agency believes EPS would primarily be applied during a redesign 
where extensive architecture revisions are implemented.  In addition, the agency believes there 
are much longer implementation lead times that involve extensive validation efforts based on the 
close relationship of steering to vehicle control and safety.  However, the OEMs may still be 
able, and choose, to apply EPS at a vehicle refresh as its implementation may be tied to strategic 



 

powertrain-related upgrades that include the elimination of the engine driven power steering 
pump.  

3.7.1.3 Electric Power Steering Technology Effectiveness Values 

The effectiveness of both EPS and EHPS is derived from the decoupling of the pump from the 
crankshaft and is considered to be practically the same for both.  Thus, a single effectiveness 
value is used for both EPS and EHPS.  As indicated in the following table, the effectiveness of 
EPS and EHPS varies based on the vehicle technology class it is being applied to.  This variance 
is a direct result of vehicle size and the amount of energy required to turn the vehicle's two front 
wheels about their vertical axis.  More simply put, more energy is required for vehicles that 
weigh more and, typically, have larger tire contact patches.   

Table 3-131 – Fuel Consumption Improvement Values for Electric Power Steering 

Tech Class EPS 
SmallCar 

1.50% 
SmallCarPerf 

MedCar 
1.30% 

MedCarPerf 
SmallSUV 

1.20% 
SmallSUVPerf 

MedSUV 
1.00% 

MedSUVPerf 
Pickup 

0.80% 
PickupHT 

 

3.7.1.4 Electric Power Steering Technology Costs 

The cost estimates for EPS relies on previous work published as part of the rulemaking 
processes, for the 2012 rule and the Draft TAR.  The cost values are the same values that were 
used for the Draft TAR and 2020 final rule, updated to 2018 dollars.  Learning rates for these 
technologies can be seen in Chapter 2.6.4. 

Table 3-132 below shows the absolute costs for EPS for select model years.  The Technologies 
file shows the costs for all model years. 

Table 3-132 – Proposed Absolute Costs for Electric Power Steering, Including Learning Effects and Retail 
Price Equivalent (2018$) 

Technology 2017 2021 2025 2029 
EPS $133.23 $124.42 $117.28 $111.97 

 



 

3.7.2 Improved Accessories (IACC) 

Engine accessories typically include the alternator, coolant pump, cooling fan, and oil pump, and 
are traditionally driven mechanically via belts, gears, or directly by other rotating engine 
components such as camshafts or the crankshaft.  These can be replaced with improved 
accessories (IACC), which may include high efficiency alternators, electrically driven (i.e., on-
demand) coolant pumps, electric cooling fans, variable geometry oil pumps, and a mild 
regeneration strategy.520  Replacing lower-efficiency and/or mechanically-driven components 
with these improved accessories results in a reduction in fuel consumption, as the improved 
accessories can conserve energy by being turned on/off “on demand” in some cases, driven at 
partial load as needed, or by operating more efficiently. 

For example, electric coolant pumps and electric powertrain cooling fans provide better control 
of engine cooling.  Flow from an electric coolant pump can be varied, and the cooling fan can be 
shut off during engine warm-up or cold ambient temperature conditions, reducing warm-up time, 
fuel enrichment requirements, and, ultimately reducing parasitic losses. 

3.7.2.1 Improved Accessories Technology Fleet Assignments 

IACC technology is difficult to observe and therefore there is uncertainty in assigning it to the 
analysis fleet.  As in the past, DOT relies on industry-provided information and comments to 
assess the level of IACC technology applied in the fleet.  DOT believes there continues to be 
opportunity for further implementation of IACC.  The MY 2020 analysis fleet has an IACC fleet 
penetration of approximately eight percent compared to the six percent value in the MY 2017 
analysis fleet used for the 2020 final rule analysis. 

3.7.2.2 Improved Accessories Technology Adoption Features 

The agency believes improved accessories may be incorporated in coordination with powertrain 
related changes occurring at either a vehicle refresh or vehicle redesign.  This coordination with 
powertrain changes enables related design and tooling changes to be implemented and systems 
development, functionality, and durability testing to be conducted in a single product change 
program to efficiently manage resources and costs.   

3.7.2.3 Improved Accessories Technology Effectiveness Values 

This analysis carries forward work on the effectiveness of IACC systems conducted in the Draft 
TAR and EPA Proposed Determination.  This work involved gathering information by 
monitoring press reports, holding meetings with suppliers and OEMs, and attending industry 
technical conferences.  The resulting effectiveness estimates used in this NPRM are shown 
below.  As indicated in the following table, the effectiveness of IACC is simulated with differing 
values based on the vehicle technology class it is being applied to.  This variance, like EPS, is a 
direct result of vehicle size and the amount of energy required perform the work necessary for 
the vehicle to operate as expected.  This variance is related to the amount energy generated by 
the alternator, the size of the coolant pump to the cool the necessary systems, the size of the 

 
520 IACC in this analysis excludes other electrical accessories such as electric oil pumps and electrically driven air 
conditioner compressors. 



 

cooling fan required, among other characteristics and it directed related to a vehicle size and 
mass. 

Table 3-133 – Fuel Consumption Improvement Values for Improved Accessories 

Tech Class IACC 
SmallCar 

1.85% 
SmallCarPerf 

MedCar 
2.36% 

MedCarPerf 
SmallSUV 

1.74% 
SmallSUVPerf 

MedSUV 
2.34% 

MedSUVPerf 
Pickup 

2.15% 
PickupHT 

3.7.2.4 Improved Accessories Technology Costs 

The cost estimates for IACC rely on previous work published as part of the rulemaking 
processes, for the 2012 rule and the 2016 Draft TAR.  The cost estimates for IACC for this 
analysis are the same values that were used for the 2016 Draft TAR and 2020 final rule, updated 
to 2018 dollars.  Learning rates for these technologies can be seen in Chapter 2.6.4. 

Table 3-134 shows the absolute costs for IACC for select model years.  The Technologies file 
shows costs for all model years. 

Table 3-134 – Proposed Absolute Costs for Improved Accessories, Including Learning Effects and Retail 
Price Equivalent (2018$) 

Technology 2017 2021 2025 2029 
IACC $196.39 $163.40 $146.67 $136.96 

3.7.3 Low Drag Brakes (LDB) 

Since 2009, for the MY 2011 CAFE rule, DOT has defined low drag brakes (LDB) as brakes that 
reduce the sliding friction of disc brake pads on rotors when the brakes are not engaged because 
the brake pads are pulled away from the rotating disc either by mechanical or electric 
methods.521  DOT estimated the effectiveness of LDB technology to be a range from 0.5-1.0 
percent, based on CBI data.  DOT applied a learning curve to the estimated cost for LDB, but 
noted that the technology was considered high volume, mature, and stable.  DOT explained that 
confidential manufacturer comments in response to the NPRM for MY 2011 indicated that most 
passenger cars have already adopted LDB technology, but ladder frame trucks have not.   

 
521 Final Regulatory Impact Analysis, Corporate Average Fuel Economy for MY 2011 Passenger Cars and Light 
Trucks (March 2009), at V-135.  



 

DOT and EPA continued to use the same definition for LDB in the MY 2012-2016 rule, with an 
estimated effectiveness of up to 1 percent based on CBI data.522  DOT only allowed LDB 
technology to be applied to large car, minivan, medium and large truck, and SUV classes 
because the agency determined the technology was already largely utilized in most other 
subclasses.  The 2011 NAS committee also utilized DOT and EPA’s definition for LDB and 
added that most new vehicles have low-drag brakes.523  The committee confirmed that the 
impact over conventional brakes may be about a 1 percent reduction of fuel consumption. 

For the MY 2017-2025 rule, however, DOT and EPA updated the effectiveness estimate for 
LDB to 0.8 percent based on a 2011 Ricardo study and updated lumped-parameter model.524  
The agencies considered LDB technology to be off the learning curve (i.e., the DMC does not 
change year-over-year).  The 2015 NAS report continued to use the agencies’ definition for LDB 
and commented that the 0.8 percent effectiveness estimate is a reasonable estimate.525  The 2015 
NAS committee did not opine on the application of LDB technology in the fleet.  The agencies 
used the same definition, cost, and effectiveness estimates for LDB in the Draft TAR, but also 
noted the existence of zero drag brake systems which use electrical actuators that allow brake 
pads to move farther away from the rotor.526  However, the agencies did not include zero drag 
brake technology in either compliance simulation.  EPA continued with this approach in its first 
2017 Proposed Determination that the standards through 2025 were appropriate.527 

In the 2020 final rule, the agencies applied LDB sparingly in the MY 2017 analysis fleet using 
the same cost and effectiveness estimates from the 2011 Ricardo study, with approximately less 
than 15% of vehicles being assigned the technology.  In addition, DOT noted the existence of 
zero drag brakes in production for some BEVs, similar to the summary in the Draft TAR, but did 
not opine on the existence of zero drag brakes in the fleet.  Some stakeholders commented to the 
2020 rule that other vehicle technologies, including LDB, were actually overapplied in the 
analysis fleet. 

For this action, DOT considered the conflicting statements that LDB were both universally 
applied in new vehicles and that the new vehicle fleet still had space to improve LDB 
technology.  DOT determined that LDB technology as previously defined going back to the MY 
2011 rule was universally applied in the MY 2020 fleet.  However, DOT determined that zero 
drag brakes, the next level of brake technology, was sparingly applied in the MY 2020 analysis 
fleet.  Currently, DOT does not believe that zero drag brake systems will be available for wide 
scale application in the rulemaking timeframe and did not include it as a technology for this 
analysis.  DOT will consider how to define a new level of low drag brake technology that either 
encompasses the definition of zero drag brakes or similar technology in future rulemakings. 

 
522 Final Regulatory Impact Analysis, Corporate Average Fuel Economy for MY 2012 - MY 2016 Passenger Cars 
and Light Trucks (March 2010), at 249. 
523 2011 NAS report, at 104. 
524 Joint Technical Support Document: Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas 
Emission Standards and Corporate Average Fuel Economy Standards (August 2012), at 3-211. 
525 2015 NAS report, at 231. 
526 Draft TAR at 5-207.   
527 EPA Proposed Determination TSD, at 2-422. 



 

3.7.4 Secondary Axle Disconnect (SAX) 

All-wheel drive (AWD) and four-wheel drive (4WD) vehicles provide improved traction by 
delivering torque to the front and rear axles, rather than just one axle.  When a second axle is 
rotating, it tends to consume more energy because of additional losses related to lubricant 
churning, seal friction, bearing friction, and gear train inefficiencies.528  Some of these losses 
may be reduced by providing a secondary axle disconnect function that disconnects one of the 
axles when driving conditions do not call for torque to be delivered to both. 

The terms AWD and 4WD are often used interchangeably, although they have also developed a 
colloquial distinction, and are two separate systems.  The term AWD has come to be associated 
with light-duty passenger vehicles providing variable operation of one or both axles on ordinary 
roads.  The term 4WD is often associated with larger truck-based vehicle platforms providing a 
locked driveline configuration and/or a low range gearing meant primarily for off-road use. 

Many 4WD vehicles provide for a single-axle (or two-wheel) drive mode that may be manually 
selected by the user.  In this mode, a primary axle (usually the rear axle) will be powered, while 
the other axle (known as the secondary axle) is not.  However, even though the secondary axle 
and associated driveline components are not receiving engine power, they are still connected to 
the non-driven wheels and will rotate when the vehicle is in motion.  This unnecessary rotation 
consumes energy,529 and leads to increased fuel consumption that could be avoided if the 
secondary axle components were completely disconnected and not rotating. 

Light-duty AWD systems are often designed to divide variably torque between the front and rear 
axles in normal driving to optimize traction and handling in response to driving conditions.  
However, even when the secondary axle is not necessary for enhanced traction or handling, in 
traditional AWD systems it typically remains engaged with the driveline and continues to 
generate losses that could be avoided if the axle was instead disconnected.  The SAX technology 
observed in the marketplace disengages one axle (typically the rear axle) for 2WD operation but 
detects changes in driving conditions and automatically engages AWD mode when it is 
necessary.  The operation in 2WD can result in reduced fuel consumption.  For example, 
Chrysler has estimated the secondary axle disconnect feature in the Jeep Cherokee reduces 
friction and drag attributable to the secondary axle by 80% when in disconnect mode.530 

3.7.4.1 Secondary Axle Disconnect Technology Fleet Assignments 

Observing SAX technology on actual vehicles is very difficult.  Manufacturers do not typically 
identify the technology on technical specifications or other widely available information.  The 
agency employed an approach consistent with previous rulemaking in assigning this technology.  
Specifically, the agency assigned SAX technology based on a combination of publicly available 
information and previously submitted confidential information.  In the analysis fleet, 38% of the 
vehicles that had AWD or 4WD are determined to have SAX technology.  All vehicles in the 
analysis fleet with FWD or RWD have SAX skipped since SAX technology is a way to emulate 

 
528 Pilot Systems, “AWD Component Analysis”, Project Report, performed for Transport Canada, Contract T8080- 
150132, May 31, 2016. 
529 Any time a drivetrain component spins it consumes some energy, primarily to overcome frictional forces. 
530 Brooke, L. “Systems Engineering a new 4x4 benchmark”, SAE Automotive Engineering, June 2, 2014. 



 

FWD or RWD in AWD and 4WD vehicles, respectively.  The agency does not allow for the 
application of SAX technology to FWD or RWD vehicles because they do not have a secondary 
driven axle to disconnect. 

3.7.4.2 Secondary Axle Disconnect Technology Adoption Features 

SAX technology can be adopted by any vehicle in the analysis fleet, including those with a HEV 
or BEV powertrain,531 which was identified as having AWD or 4WD.  It does not supersede any 
technology or result in any other technology being excluded for future implementation for that 
vehicle.  SAX technology can be applied during any refresh or redesign.   

3.7.4.3 Secondary Axle Disconnect Technology Effectiveness Values 

The NPRM analysis carries forward work on the effectiveness of SAX systems conducted in the 
Draft TAR and EPA Proposed Determination.532  This work involved gathering information by 
monitoring press reports, holding meetings with suppliers and OEMs, and attending industry 
technical conferences.  We do not simulate SAX effectiveness in the Autonomie modeling 
because, similar to LDB, IACC, and EFR, the fuel economy benefits from the technology are not 
fully captured on the two-cycle test.  The secondary axle disconnect effectiveness values, for the 
most part, have been accepted as plausible based on the rulemaking record and absence of 
contrary comments.  As such, the agency has prioritized its extensive Autonomie vehicle 
simulation work toward other technologies that are emerging or considered more critical for total 
system effectiveness.  The resulting effectiveness estimates used in this NPRM are shown below. 

Table 3-135 – Fuel Consumption Improvement Values for Secondary Axle Disconnect 

Tech Class SAX 
SmallCar 

1.40% 
SmallCarPerf 

MedCar 
1.40% 

MedCarPerf 
SmallSUV 

1.40% 
SmallSUVPerf 

MedSUV 
1.30% 

MedSUVPerf 
Pickup 

1.60% 
PickupHT 

 

 
531 The inefficiencies addressed on ICEs by SAX technology may not be similar enough, or even present, in HEVs 
or BEVs. 
532 Draft TAR, at 5-412; Proposed Determination TSD, at 2-422. 



 

3.7.4.4 Secondary Axle Disconnect Technology Costs 

The cost estimates for SAX rely on previous work published as part of the rulemaking process, 
going back to the 2002 NAS report,533 and carried through to the Draft TAR 208 NPRM, and 
2020 final rule.  The cost values were updated to 2018 dollars for this analysis.  The learning 
rates for these technologies can be seen in Chapter 2.6.4. 

Table 3-136 below shows the absolute costs for SAX for select model years.   

Table 3-136 – Proposed Absolute Costs for Secondary Axle Disconnect, including Learning Effects and Retail 
Price Equivalent (2018$) 

Technology 2017 2021 2025 2029 
SAX $97.41 $86.69 $80.34 $75.98 

 

3.8 Simulating Off-Cycle and A/C Efficiency Technologies  

Off-cycle and air conditioning (A/C) efficiency technologies can provide fuel economy benefits 
in real-world vehicle operation, but those benefits cannot be fully captured by the traditional 2-
cycle test procedures used to measure fuel economy.534  Off-cycle technologies include 
technologies like high efficiency alternators and high efficiency exterior lighting.535  A/C 
efficiency technologies are technologies that reduce the operation of or the loads on the 
compressor, which pressurizes A/C refrigerant.  The less the compressor operates or the more 
efficiently it operates, the less load the compressor places on the engine, resulting in better fuel 
efficiency. 

Vehicle manufacturers have the option to generate credits for off-cycle technologies and 
improved A/C systems under the EPA’s CO2 program and receive a fuel consumption 
improvement value (FCIV) equal to the value of the benefit not captured on the 2-cycle test 
under NHTSA’s CAFE program.  The FCIV is not a “credit” in the NHTSA CAFE program,536 
but the FCIVs increase the reported fuel economy of a manufacturer’s fleet, which is used to 
determine compliance.  EPA applies FCIVs during determination of a fleet’s final average fuel 
economy reported to NHTSA.537  FCIVs are only calculated and applied at a fleet level for a 
manufacturer and are based on the volume of the manufacturer’s fleet that contain qualifying 
technologies.538 

 
533 National Research Council 2002. Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) 
Standards. Washington, DC: The National Academies Press. https://doi.org/10.17226/10172. 
534 See 49 U.S.C 32904(c) (“The Administrator shall measure fuel economy for each model and calculate average 
fuel economy for a manufacturer under testing and calculation procedures prescribed by the Administrator. . . . the 
Administrator shall use the same procedures for passenger automobiles the Administrator used for model year 1975 
(weighted 55 percent urban cycle and 45 percent highway cycle), or procedures that give comparable results.”). 
535 40 CFR 86.1869-12(b) - Credit available for certain off-cycle technologies. 
536 Unlike, for example, the statutory overcompliance credits prescribed in 49 U.S.C. 32903. 
537 49 U.S.C. 32904(c)-(e).  EPCA granted EPA authority to establish fuel economy testing and calculation 
procedures.  See Preamble Section VII for more information. 
538 40 CFR 600.510-12(c). 



 

There are three pathways that can be used to determine the value of A/C efficiency and off-cycle 
adjustments.  First, manufacturers can use a predetermined list or “menu” of g/mi values that 
EPA established for specific off-cycle technologies.539  Second, manufacturers can use 5-cycle 
testing to demonstrate off-cycle CO2 benefit;540 the additional tests allow emissions benefits to be 
demonstrated over some elements of real-world driving not captured by the 2-cycle compliance 
tests, including high speeds, rapid accelerations, hot temperatures, and cold temperatures.  Third, 
manufacturers can seek EPA approval, through a notice and comment process, to use an 
alternative methodology other than the menu or 5-cycle methodology for determining the off-
cycle technology improvement values.541  For further discussion of the A/C and off-cycle 
compliance and application process, see the Preamble Section VII. 

DOT and EPA have been collecting data on the application of these technologies since 
implementing the A/C and off-cycle programs.542,543  Most manufacturers are applying A/C 
efficiency and off-cycle technologies; in MY 2019, 17 manufacturers employed A/C efficiency 
technologies and 20 manufacturers employed off-cycle technologies, though the level of 
deployment varies by manufacturer.544    

Manufacturers have only recently begun including detailed information on off-cycle and A/C 
efficiency technologies equipped on vehicles in compliance reporting data.  For today’s analysis, 
though, such information was not sufficiently complete to support a detailed representation of the 
application of off-cycle technology to specific vehicle model/configurations in the MY 2020 
fleet.  To account for the A/C and off-cycle technologies equipped on vehicles and the potential 
that manufacturers will apply additional A/C and off-cycle technologies in the rulemaking 
timeframe, DOT specified model inputs for A/C efficiency and off-cycle fuel consumption 
improvement values in grams/mile for each manufacturer’s fleet in each model year.  DOT 
estimated future values based on an expectation that manufacturers already relying heavily on 
these adjustments would continue do so, and that other manufacturers would, over time, also 
approach the limits on adjustments allowed for such improvements. 

The next sections discuss how the CAFE Model simulates the effectiveness and cost for A/C 
efficiency and off-cycle technology adjustments.  

 
539 See 40 CFR 86.1869-12(b).  The TSD for the 2012 final rule for MYs 2017 and beyond provides technology 
examples and guidance with respect to the potential pathways to achieve the desired physical impact of a specific 
off-cycle technology from the menu and provides the foundation for the analysis justifying the credits provided by 
the menu.  The expectation is that manufacturers will use the information in the TSD to design and implement off-
cycle technologies that meet or exceed those expectations in order to achieve the real-world benefits of off-cycle 
technologies from the menu. 
540 See 40 CFR 86.1869-12(c).  EPA proposed a correction for the 5-cycle pathway in a separate technical 
amendments rulemaking.  See 83 FR 49344 (Oct. 1, 2019).  EPA is not approving credits based on the 5-cycle 
pathway pending the finalization of the technical amendments rule. 
541 See 40 CFR 86.1869-12(d). 
542 See 77 FR at 62832, 62839 (Oct. 15, 2012).  EPA introduced A/C and off-cycle technology credits for the CO2 
program in the MYs 2012-2016 rule and revised the program in the MY 2017-2025 rule and NHTSA adopted 
equivalent provisions for MYs 2017 and later in the MY 2017-2025 rule. 
543 Vehicle and Engine Certification. Compliance Information for Light-Duty Gas (GHG) Standards, 
https://www.epa.gov/ve-certification/compliance-information-light-duty-greenhouse-gas-ghg-standards.  Last 
Accessed May 24, 2021.  
544 2020 Automotive Trends Report., at 205.  



 

3.8.1 A/C and Off-Cycle Effectiveness Modeling in the CAFE Model 

In this analysis, the CAFE Model applies A/C and off-cycle flexibilities to manufactures’ CAFE 
regulatory fleet performance in a similar way to the regulation.545  In the analysis and after the 
first MY, A/C efficiency and off-cycle FCIVs apply to each manufacturer’s regulatory fleet after 
the CAFE Model applies conventional technologies for a given standard.  That is, conventional 
technologies are applied to each manufacturers’ vehicles in each MY to assess the 2-cycle sales 
weighted harmonic average CAFE rating.  Then, the CAFE Model assesses the CAFE rating to 
use for a manufacturer’s compliance value after applying the A/C efficiency and off-cycle FCIVs 
designated in the Market Data file.  This assessment of adoption of conventional technology and 
the A/C efficiency and off-cycle technology occurs on a year-by-year basis in the CAFE Model.  
The CAFE Model attempts to apply technologies and flexibilities in a way that both minimizes 
cost and allows the manufacturer to meet their standards without over or under complying.   

To determine how manufacturers might adopt A/C efficiency and off-cycle technologies in the 
rulemaking timeframe, DOT began with data from EPA’s 2020 Trends Report and CBI 
compliance material from manufacturers.546,547  DOT used manufacturer’s MY 2020 A/C 
efficiency and off-cycle FCIVs as a starting point, and then extrapolated values in to each MY 
until MY 2026, for light trucks to the proposed regulatory cap, for each manufacturer’s fleets by 
regulatory class. 

To determine the rate at which to extrapolate the addition of A/C and off-cycle technology 
adoption for each manufacturer, DOT reviewed historical A/C and off-cycle technology 
applications, each manufacturer’s fleet composition (i.e., breakdown between passenger cars 
(PCs) and light trucks (LTs)), availability of A/C and off-cycle technologies that manufacturers 
could still use, and CBI compliance data.  Different manufacturers showed different levels of 
historical A/C efficiency and off-cycle technology adoption; therefore, different manufacturers 
hit the proposed regulatory caps for A/C efficiency technology for both their PC and LT fleets, 
and different manufacturers hit caps for off-cycle technologies in the LT regulatory class.  DOT 
declined to extrapolate off-cycle technology adoption for PCs to the proposed regulatory cap for 
a few reasons.  First, past EPA Trends Reports showed that many manufacturers did not adopt 
off-cycle technology to their passenger car fleets.  Next, manufacturers limited PC offerings in 
MY 2020 as compared to historical trends.  Last, CBI compliance data available to DOT 
indicated a lower adoption of menu item off-cycle technologies to PCs compared to LTs.  DOT 
accordingly limited the application of off-cycle FCIVs to 10 g/mi for PCs but allowed LTs to 
apply 15 g/mi of off-cycle FCIVs.  The inputs for A/C efficiency technologies were set to 5 g/mi 
and 7.2 g/mi for PCs and LTs, respectively.  DOT allowed A/C efficiency technologies to reach 
the regulatory caps by MY 2024, which is the first year of standards assessed in this analysis. 

 
545 49 CFR 531.6 and 49 CFR 533.6 Measurement and Calculation procedures.  
546 Vehicle and Engine Certification. Compliance Information for Light-Duty Gas (GHG) Standards, 
https://www.epa.gov/ve-certification/compliance-information-light-duty-greenhouse-gas-ghg-standards. Last 
Accessed May 24, 2021. 
547 49 U.S.C. 32907. 



 

DOT decided to apply the FCIVs in this way because the A/C and off-cycle technologies are 
generally more cost-effective than other technologies.  The details of this assessment (and the 
calculation) are further discussed in the CAFE Model Documentation.548 

Table 3-137 and Table 3-138 below shows the summary of adjustments for A/C efficiency and 
off-cycle FCIVs used for this analysis.   

Table 3-137 – A/C Efficiency and Off-Cycle Adjustments Used for Passenger Car Regulatory Class (g/mi) 

Manufacturer Adjustment Type 
Passenger Car MY 

2020 2021 2022 2023 2024 2025 2026 

BMW 
AC Efficiency 4.9 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 13.6 13.8 13.8 13.8 13.8 13.8 13.8 
Off-Cycle Credits 7.2 7.6 8.3 9.0 10.0 10.0 10.0 

Daimler 
AC Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 6.1 7.2 8.3 9.4 10.5 11.6 12.7 
Off-Cycle Credits 1.7 1.2 2.0 2.5 3.0 4.0 5.0 

FCA 
AC Efficiency 4.6 4.7 4.9 5.0 5.0 5.0 5.0 

AC Leakage 13.4 13.4 13.6 13.8 13.8 13.8 13.8 
Off-Cycle Credits 5.2 5.3 6.0 6.5 7.0 7.5 7.5 

Ford 
AC Efficiency 4.5 4.6 4.7 5.0 5.0 5.0 5.0 

AC Leakage 12.7 13.1 13.4 13.8 13.8 13.8 13.8 
Off-Cycle Credits 8.1 8.0 9.0 10.0 10.0 10.0 10.0 

GM 
AC Efficiency 3.9 4.3 4.8 5.0 5.0 5.0 5.0 

AC Leakage 11.7 12.2 13.0 13.8 13.8 13.8 13.8 
Off-Cycle Credits 5.1 7.9 8.5 9.0 9.5 10.0 10.0 

 
548 CAFE Model Documentation, S5. 



 

Manufacturer Adjustment Type 
Passenger Car MY 

2020 2021 2022 2023 2024 2025 2026 

Honda 
AC Efficiency 3.8 3.8 4.0 4.5 5.0 5.0 5.0 

AC Leakage 13.1 13.5 13.8 13.8 13.8 13.8 13.8 
Off-Cycle Credits 4.5 5.7 6.0 6.5 7.0 10.0 10.0 

Hyundai Kia-H 
AC Efficiency 3.3 3.3 4.0 4.5 5.0 5.0 5.0 

AC Leakage 11.0 12.0 13.0 13.8 13.8 13.8 13.8 
Off-Cycle Credits 2.7 3.3 4.0 4.5 5.0 5.5 6.0 

Hyundai Kia-K 
AC Efficiency 3.3 3.3 4.0 4.5 5.0 5.0 5.0 

AC Leakage 13.3 13.5 13.8 13.8 13.8 13.8 13.8 
Off-Cycle Credits 2.2 2.8 3.0 3.5 4.0 4.5 5.0 

JLR 
AC Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 13.7 13.8 13.8 13.8 13.8 13.8 13.8 
Off-Cycle Credits 6.9 6.4 7.0 7.0 8.0 8.0 8.0 

Mazda 
AC Efficiency -  2.0 3.0 4.0 5.0 5.0 5.0 

AC Leakage 1.8 3.8 5.0 7.0 9.0 11.0 12.0 
Off-Cycle Credits 2.7 3.0 4.0 4.5 5.0 5.5 6.0 

Mitsubishi 
AC Efficiency 4.3 4.3 4.7 5.0 5.0 5.0 5.0 

AC Leakage 1.6 4.0 7.0 10.0 12.0 13.8 13.8 
Off-Cycle Credits 0.6 1.4 2.0 2.3 2.7 3.0 3.2 

Nissan 
AC Efficiency 3.8 4.4 4.7 5.0 5.0 5.0 5.0 

AC Leakage 7.2 8.5 9.8 11.1 12.4 13.8 13.8 
Off-Cycle Credits 2.7 3.2 3.5 4.0 4.5 5.5 6.0 

Subaru 
AC Efficiency 3.8 4.2 4.6 5.0 5.0 5.0 5.0 

AC Leakage 5.0 7.0 9.0 11.0 13.0 13.8 13.8 
Off-Cycle Credits 2.8 3.3 3.6 4.1 4.4 5.6 6.2 

Tesla 
AC Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 11.9 12.0 13.5 13.5 13.5 13.8 13.8 
Off-Cycle Credits 4.6 5.0 5.0 5.0 5.0 5.0 5.0 

Toyota 
AC Efficiency 4.8 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 9.6 10.3 12.0 13.8 13.8 13.8 13.8 
Off-Cycle Credits 5.1 5.6 6.0 7.0 8.5 9.0 10.0 

Volvo 
AC Efficiency 4.2 4.2 4.2 4.5 5.0 5.0 5.0 

AC Leakage 5.5 7.5 9.5 11.5 13.5 13.8 13.8 
Off-Cycle Credits 4.8 4.6 4.6 5.0 6.0 6.5 7.0 

VWA 
AC Efficiency 3.9 3.9 4.5 5.0 5.0 5.0 5.0 

AC Leakage 13.8 13.8 13.8 13.8 13.8 13.8 13.8 
Off-Cycle Credits 2.9 5.7 6.0 6.5 7.0 7.5 8.0 



 

Table 3-138 – A/C Efficiency and Off-Cycle Adjustments Used for Light Truck Regulatory Class (g/mi) 

Manufacturer Adjustment Type 
Light Truck MY 

2020 2021 2022 2023 2024 2025 2026 

BMW 
AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 
AC Leakage 16.9 17.2 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 13.0 13.2 13.2 13.5 14.0 15.0 15.0 

Daimler 
AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 
AC Leakage 7.0 8.5 10.0 11.5 13.0 14.5 16.0 

Off-Cycle Credits 1.7 1.2 2.0 3.5 4.0 5.5 6.5 

FCA 
AC Efficiency 6.5 6.5 7.0 7.2 7.2 7.2 7.2 
AC Leakage 16.5 17.0 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.8 13.8 14.5 15.0 15.0 15.0 15.0 

Ford 
AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 
AC Leakage 14.8 16.0 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 11.8 12.3 13.0 14.0 15.0 15.0 15.0 

GM 
AC Efficiency 6.7 7.0 7.1 7.2 7.2 7.2 7.2 
AC Leakage 16.3 16.8 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 9.7 11.8 12.0 13.0 14.0 15.0 15.0 

Honda 
AC Efficiency 6.5 6.5 7.2 7.2 7.2 7.2 7.2 
AC Leakage 17.0 17.2 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 11.3 11.9 13.0 14.0 15.0 15.0 15.0 

Hyundai Kia-H 
AC Efficiency 4.3 4.4 4.8 5.0 5.5 6.0 7.0 
AC Leakage 3.2 3.9 5.0 6.0 7.0 8.0 10.0 

Off-Cycle Credits 5.5 6.9 7.0 8.0 9.0 10.0 11.0 

Hyundai Kia-K 
AC Efficiency 4.3 5.4 6.0 6.5 7.0 7.2 7.2 
AC Leakage 15.2 16.0 17.0 17.2 17.2 17.2 17.2 

Off-Cycle Credits 5.4 6.0 6.5 7.0 8.0 9.0 10.0 

JLR 
AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 
AC Leakage 17.2 17.2 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.1 10.2 11.0 12.0 13.0 14.0 15.0 

Mazda 
AC Efficiency -  2.0 3.0 4.0 5.0 6.0 7.0 
AC Leakage 4.8 6.0 7.2 8.4 9.6 10.8 11.0 

Off-Cycle Credits 5.7 6.0 7.0 8.0 9.0 10.0 11.0 

Mitsubishi 
AC Efficiency 6.0 6.0 6.5 7.2 7.2 7.2 7.2 
AC Leakage 12.3 13.6 14.9 15.2 16.5 17.2 17.2 

Off-Cycle Credits 1.4 2.0 2.3 2.7 3.0 3.2 3.2 

Nissan 
AC Efficiency 4.4 5.8 6.5 7.2 7.2 7.2 7.2 
AC Leakage 5.1 5.1 7.1 9.1 11.1 13.1 15.1 

Off-Cycle Credits 6.1 7.1 8.0 8.5 9.0 10.0 11.0 



 

Manufacturer Adjustment Type 
Light Truck MY 

2020 2021 2022 2023 2024 2025 2026 

Subaru 
AC Efficiency 5.0 6.4 6.8 7.2 7.2 7.2 7.2 
AC Leakage 10.1 11.5 12.9 13.3 14.7 16.1 17.2 

Off-Cycle Credits 5.5 7.2 8.2 9.0 10.0 11.0 12.0 

Tesla 
AC Efficiency 5.0 5.0 5.0 7.2 7.2 7.2 7.2 
AC Leakage 15.5 16.0 16.5 17.2 17.2 17.2 17.2 

Off-Cycle Credits 8.3 9.0 9.0 9.0 9.0 9.0 9.0 

Toyota 
AC Efficiency 6.1 7.1 7.2 7.2 7.2 7.2 7.2 
AC Leakage 8.8 10.0 11.2 12.4 13.6 14.8 16.0 

Off-Cycle Credits 8.1 9.5 10.0 10.0 12.0 13.0 15.0 

Volvo 
AC Efficiency 6.1 6.4 7.0 7.2 7.2 7.2 7.2 
AC Leakage 6.5 8.0 9.5 11.0 12.5 13.0 14.5 

Off-Cycle Credits 8.3 9.0 9.3 10.0 11.0 12.0 13.0 

VWA 
AC Efficiency 6.2 6.2 6.6 7.2 7.2 7.2 7.2 
AC Leakage 15.5 16.0 16.5 17.2 17.2 17.2 17.2 

Off-Cycle Credits 8.4 12.7 13.0 13.5 14.0 14.5 15.0 
  

3.8.2 A/C Efficiency and Off-Cycle Costs 

For this analysis, A/C and off-cycle technologies are applied independently of the decision trees 
using the extrapolated values shown above, so it is necessary to account for the costs of those 
technologies independently.  Table 3-139 shows the costs used for A/C and off-cycle FCIVs in 
this analysis.  The costs are shown in dollars per gram of CO2 per mile ($ per g/mile).  The A/C 
efficiency and off-cycle technology costs are the same costs used in the EPA Proposed 
Determination and described in the EPA Proposed Determination TSD.549  

To develop these costs, DOT selected the 2nd generic 3 gram/mile package estimated to cost 
$170 (in 2015$) to apply in this analysis in $ per gram/mile.  DOT updated the costs used in the 
Proposed Determination TSD from 2015$ to 2018$, adjusted the costs for RPE, and applied a 
relatively flat learning rate. 

Similar to off-cycle technology costs, DOT used the cost estimates from EPA Proposed 
Determination TSD for A/C efficiency technologies that relied on the 2012 rulemaking TSD.550  
DOT updated these costs to 2018$ and adjusted for RPE for this analysis, and applied the same 
mature learning rate that DOT applied for off-cycle technologies.   

 
549 EPA PD TSD.  EPA-420-R-16-021.  November 2016. At 2-423 – 2-245.  
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100Q3L4.pdf.  Last accessed May 24, 2021.  
550 Joint NHTSA and EPA 2012 TSD, Chapter 5.1.  



 

Table 3-139 – A/C and Off-Cycle FCIV Costs for this Analysis in Dollars per Gram of CO2 per Mile (2018$) 

Reg Class Cost Type 2020 2021 2022 2023 2024 2025 2026 

Passenger Car 
A/C Efficiency Costs  4.30 4.22 4.13 4.05 3.97 3.89 3.81 
AC Leakage Costs 10.76 10.54 10.33 10.12 9.92 9.72 9.53 
Off-Cycle Costs  83.79 82.21 81.16 79.58 78.52 77.47 76.31 

Light Truck 
A/C Efficiency Costs  4.30 4.22 4.13 4.05 3.97 3.89 3.81 
AC Leakage Costs 10.76 10.54 10.33 10.12 9.92 9.72 9.53 
Off-Cycle Costs  83.79 82.21 81.16 79.58 78.52 77.47 76.31 

 

4 Consumer Response to Manufacturer Compliance Strategies 

4.1 Macroeconomic Assumptions that Affect and Describe Consumer Behavior 

The comprehensive economic analysis of CAFE standards included in this proposed rulemaking 
requires a detailed and explicit explanation of the macroeconomic context in which regulatory 
alternatives are evaluated.  NHTSA continues to rely on projections of future fuel prices to 
evaluate manufacturers’ use of fuel-saving technologies, the resulting changes in fuel 
consumption, and various other benefits.  Furthermore, the analysis includes modules projecting 
future aggregate travel demand (for light-duty vehicles), sales of new cars and light trucks, and 
the retirement of used vehicles under each regulatory alternative.  Constructing these forecasts 
requires explicit projections of macroeconomic variables, including real U.S. Gross Domestic 
Product (GDP), consumer confidence, U.S. population, and real disposable personal income. 

4.1.1 Gross Domestic Product and Other Macroeconomic Assumptions 

In order to ensure internal consistency with the fuel price forecasts used in this analysis, other 
relevant economic assumptions are derived from the same source.  The analysis presented in this 
analysis employs forecasts of future fuel prices developed by NHTSA using the U.S. Energy 
Information Administration’s (EIA’s) National Energy Model System (NEMS).  An agency 
within the U.S. Department of Energy (DOE), EIA collects, analyzes, and disseminates 
independent and impartial energy information to promote sound policymaking, efficient markets, 
and public understanding of energy and its interaction with the economy and the environment.  
EIA uses NEMS to produce its Annual Energy Outlook (AEO), which presents forecasts of 
future fuel prices, among many other energy-related variables.  AEO projections of energy prices 
and other variables are not intended as predictions of what will happen; rather, they are 
projections of the likely course of these variables that reflect their past relationships, specific 
assumptions about future developments in global energy markets, and the forecasting 
methodologies incorporated in NEMS.  Each AEO includes a “Reference Case” as well as a 
range of alternative scenarios that each incorporate somewhat different assumptions from those 
underlying the Reference Case. 

The AEO Reference Case contains a number of assumptions about the economic context in 
which energy production and consumption will occur in the United States during the next three 



 

decades.  The analysis in this RIA employs forecasts of real U.S. GDP, real disposable personal 
income, and U.S. population from the Annual Energy Outlook 2021 Reference Case.   

The other forecast in Table 4-1, consumer confidence over time, is taken from the IHS Markit 
Global Insight long-term macroeconomic forecasting model, which also informs the 
macroeconomic assumptions in the Annual Energy Outlook.  As discussed in greater detail in 
Chapter 4.2, the CAFE Model relies on the forecast of U.S. GDP to simulate both new vehicle 
sales in each year and retirement rates for used vehicles.  Consumer sentiment is used to simulate 
both new vehicle sales and (along with real disposable personal income) aggregate demand for 
light-duty VMT.   

 



 

Table 4-1 – Macroeconomic Assumptions 

Year 
GDP 

(Billion 
$2018) 

Consumer 
Sentiment 

U.S. Population 
(Millions) 

Real Disposable 
Personal Income 
(Billion $2012) 

2019 21,062 96.0 328.7 14,883 
2020 20,047 78.4 330.4 15,994 
2021 20,673 80.4 332.7 14,988 
2022 21,551 87.6 335.0 15,452 
2023 22,252 90.0 337.3 15,917 
2024 22,818 90.2 339.6 16,294 
2025 23,380 89.9 341.8 16,721 
2026 23,889 89.7 344.0 17,119 
2027 24,357 89.5 346.2 17,525 
2028 24,797 89.4 348.4 17,941 
2029 25,217 89.2 350.5 18,369 
2030 25,693 89.1 352.6 18,826 
2031 26,212 90.5 354.6 19,266 
2032 26,761 91.5 356.6 19,706 
2033 27,326 92.4 358.5 20,153 
2034 27,923 93.1 360.4 20,597 
2035 28,509 93.6 362.3 21,038 
2036 29,050 93.6 364.1 21,475 
2037 29,576 92.8 365.8 21,904 
2038 30,126 92.1 367.5 22,330 
2039 30,699 91.7 369.2 22,760 
2040 31,299 91.3 370.9 23,184 
2041 31,911 90.7 372.5 23,618 
2042 32,555 90.2 374.1 24,069 
2043 33,224 89.6 375.6 24,521 
2044 33,894 89.1 377.2 24,971 
2045 34,550 88.7 378.7 25,427 
2046 35,202 88.2 380.2 25,888 
2047 35,857 87.8 381.7 26,362 
2048 36,539 87.3 383.2 26,851 
2049 37,229 86.8 384.7 27,336 
2050 37,912 86.5 386.2 27,813 

 
As can be seen from an inspection of the forecasts in Table 4-1, 2020 was an unusual year.  The 
table shows significant decreases in both real GDP and consumer confidence between 2019 and 
2020, but an increase in real disposable personal income (RDPI).  The latter is a consequence of 
large-scale transfers from the U.S. government to households coping with the consequences of 



 

the pandemic.  And while both real GDP and consumer confidence begin to climb again in 2021, 
RDPI actually decreases in that year in response to the cessation of programs designed to boost 
household spending and support unemployed workers during the pandemic.  While the decline 
from 2020 levels is significant, the absolute level in 2021 still represents a small increase relative 
to 2019.  However, the economic context for 2021 still reflects a country where GDP and 
consumer confidence are starting their rise back to 2019 levels but RDPI is actually falling 
relative to the previous year.  The first year simulated in this analysis is 2020, though it is based 
on observational data (rather than forecasts) to the greatest extent possible.  The elements of the 
analysis that rely most heavily on the macroeconomic inputs – aggregate demand for VMT, new 
vehicle sales, used vehicle retirement rates – all reflect the relatively rapid climb back to pre-
pandemic growth rates (in all the regulatory alternatives). 

4.1.2 Fuel Prices 

Fuel prices influence a number of critical elements of the analysis.  In particular, fuel prices 
determine the degree to which consumers demand additional fuel economy in the absence of 
regulatory pressure, influence the relative ranking of technologies (which consider the value of 
fuel savings to buyers of new cars and trucks), the amount of travel in which all users engage, 
and the value of each gallon saved from higher CAFE standards.  In this analysis, NHTSA relies 
on the Reference Case fuel price forecast in AEO 2021, for all fuel types except hydrogen.  
While fuel prices are one of the most critical inputs to the analysis, they are also one of the least 
certain – particularly over the full lifetimes of the vehicles affected by this proposed rule.   

NHTSA has actively engaged in CAFE rulemakings over the last decade, and in each of these 
actions, the forecasted fuel prices have borne little resemblance to observed fuel prices over the 
same period.  As Figure 4-1 illustrates, fuel price forecasts have generally declined in each 
successive rulemaking analysis, but have still consistently overestimated the trajectory of real 
prices over the observed period.  This is not a prediction that the current forecast will 
overestimate prices, merely an indication that the results of CAFE analyses are vulnerable to 
uncertainty where future fuel prices are concerned.  EIA regularly produces a retrospective 
analysis that evaluates the performance of fuel price projections over time, measuring the degree 
of both under and over prediction and absolute prediction error.551  The Congressional Budget 
Office recently compared the performance of various oil price forecasts and found, 
unsurprisingly, that most forecasts performed better over shorter periods of time.552  In addition, 
the author found that assuming a fixed real price performed as well as EIA’s reference case 
projections.  However, this analysis requires fuel price projections that cover several decades and 
the agency the EIA generally recognized as an authoritative source for regulatory analysis.  
While we continue to use EIA’s projections in this analysis, we recognize that future fuel prices 
may look different than assumed here, and account for this possibility through sensitivity 
analysis.  

 
 

 
551 The most recent EIA retrospective analysis is available at 
https://www.eia.gov/outlooks/aeo/retrospective/pdf/retrospective.pdf. 
552 Gecan, Ron, “CBO’s Oil Price Forecasting Record,” May 2020, Working Paper 2020-03, 
www.cbo.gov/publication/56356. 
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Figure 4-1 – Real Gasoline Price Forecasts in CAFE Rulemakings and Observed Prices 

Figure 4-2 displays the High, Low, and Reference fuel price projections from AEO 2021 in the 
context of real gasoline prices dating back to the inception of the CAFE program.  The analysis 
supporting the proposal uses the AEO 2021 Reference Case fuel price projections (for all fuel 
types except hydrogen), but we consider the AEO Low and High Oil price cases as bounding 
cases for sensitivity analyses.  The purpose of the sensitivity analyses, discussed in greater detail 
in PRIA Chapters 6 and 7, is not to posit a more credible future state of the world than the central 
case assumes – we assume the central case is the most likely future state of the world – but rather 
to measure the degree to which important outcomes change under different assumptions about 
fuel prices. 
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Figure 4-2 – Real Fuel Price Assumptions in Historical Context 

4.2 Fleet Composition 

The on-road fleet is a critical element of the analysis that is dynamically simulated within the 
CAFE Model, and responds to regulatory alternatives, fuel prices, and macroeconomic 
conditions that determine its size, composition, and usage.   

Until recently, all previous CAFE rulemaking analyses used static fleet forecasts that were based 
on a combination of manufacturer compliance data, public data sources, and proprietary forecasts 
(or product plans submitted by manufacturers).  When simulating compliance with regulatory 
alternatives, those analyses assumed identical sales projections across the alternatives, for each 
manufacturer down to the make/model level—where the exact same number of each model 
variant was assumed to be sold in a given model year under both the least stringent alternative 
(typically the baseline) and the most stringent alternative considered (intended to represent 
“maximum technology application” scenarios in some cases), and that the rate of vehicle 
retirements, otherwise referred to as scrappage, would continue unabated.  To the extent that an 
alternative matched the assumptions made in the production of the proprietary forecast, using a 
static fleet based upon those assumptions may have been warranted.  However, a fleet forecast is 
unlikely to be representative of a broad set of regulatory alternatives that produces significant 
variation in the cost and fuel economy of new vehicles.  A number of commenters on previous 
regulatory actions encouraged consideration of the potential impact of fuel efficiency standards 
on new vehicle prices and sales, changes to compliance strategies that those shifts could 
necessitate, and the downstream impacts on vehicle retirement.  In particular, the continued 
growth of the utility vehicle segment creates compliance challenges within some manufacturers’ 
fleets:  sometimes this growth shows up as higher sales of smaller- or larger-footprint vehicles, 
and sometimes it shows up as vehicles shifting from the passenger car to the light truck fleet but 



 

at the same footprint.  These shifts, to the extent manufacturers have not anticipated them, create 
compliance uncertainties.  Furthermore, under higher fuel prices, the new vehicle market trends 
toward cars (and away from trucks), which has implications for aggregate VMT and the 
longevity of specific body-styles and model-year cohorts within the registered vehicle 
population.  Logically, however, the stringency of fuel economy standards (and other 
regulations, such as CO2 standards and ZEV mandates) could affect new sales and, 
consequentially, the retirement of older vehicles.  In the peer review of the 2018 release of the 
CAFE Model, all reviewers encouraged the inclusion of a sales response to fuel economy 
regulations (albeit not necessarily the version of the response model that appeared in the CAFE 
Model at that time). 

The following sections discuss how new vehicle sales – the flow of new vehicles into the 
registered population – changes in response to regulatory alternatives, the influence of economic 
and regulatory factors on vehicle retirement, and the usage of the fleet to satisfy travel demand. 

4.2.1 Changes in New Vehicle Sales 

The CAFE Model currently operates as if all costs incurred by the manufacturer as a 
consequence of meeting regulatory requirements, whether those are the cost of additional 
technology applied to vehicles in order to improve fleetwide fuel economy or civil penalties paid 
when fleets fail to achieve their standard, are “passed through” to buyers of new vehicles in the 
form of price increases.  The question of cost pass-through is one that academic and industry 
researchers have considered for decades—and two of the agencies’ most recent peer reviewers 
addressed this issue in their comments.  One of those recent peer reviewers argued that the 
assumption of complete cost pass through is defensible, and more likely in the short run than the 
long run.553  Another reviewer suggested that costs would pass through to new vehicle buyers to 
different degrees, depending upon the stringency of the standards.554  It is possible that more 
stringent standards, which result in larger increases to the cost of production, are likely to induce 
greater degrees of pass-through than less stringent standards, which automakers may, as some 
commenters have suggested in the past, be able to absorb in the form of lost profit.  If the degree 
of cost pass-through should vary by the stringency of the alternative, the current version of the 
CAFE Model will systematically underestimate the difference in price between the baseline and 
more stringent alternatives considered—which would underestimate the magnitude of sales 
changes for alternatives with more stringent CAFE standards.  This would have corresponding 
effects on the estimates of both costs and benefits.   

Over the course of the last several rulemakings, some commenters have argued that 
manufacturers are able to compensate fully for the costs of fuel economy standards by increasing 
the prices of luxury vehicles—which would increase the average new vehicle price, but leave 
large sections of the market unaffected by the increased cost of producing fleets that comply with 
the standards.  While it seems likely that manufacturers employ pricing strategies that push 

 
553 CAFE Model Peer Review, DOT HS 812 590, Revised (July 2019), pp. B31-B33, available at 
https://www.regulations.gov/contentStreamer?documentId=NHTSA-2018-0067-
0055&attachmentNumber=2&contentType=pdf. 
554 CAFE Model Peer Review, DOT HS 812 590, Revised (July 2019), pp. B54-B75, available at 
https://www.regulations.gov/contentStreamer?documentId=NHTSA-2018-0067-
0055&attachmentNumber=2&contentType=pdf. 



 

regulatory costs (as well as increases in costs like pension obligations and health care costs for 
employees) into the prices of models and segments with less elastic demand, the extent to which 
any OEM is able to succeed at this is unknown by NHTSA.  At some point, however, price 
increases on even luxury models will merely price more and more purchasers out of the new 
vehicle market (or shift them to downmarket models), and make competition with other 
manufacturers and market segments that much more difficult.  The more that lower ends of the 
vehicle market are subsidized by luxury vehicles, the more either prices for luxury models would 
need to be increased, or (if moderately increasing prices) more of those luxury models would 
need to be sold in order to maintain historical profit levels.  It is worth noting that luxury 
vehicles have tended to be more powerful and content-rich, and often have fuel economy levels 
belowtheir targets on the curves (though the extent to which luxury vehicles adopt hybrid or 
electric technologies may shift this effect)—so that selling more of them to compensate for lost 
profit elsewhere further erodes the compliance levels of the fleets in which they reside.   

While manufacturers could conceivably push some small cost increases into the prices of their 
vehicle segments that have less elastic demand to cover accordingly small increases in 
stringency, larger stringency increases would likely exhaust the ability of such segments to 
absorb additional costs.  In addition, the analysis does not attempt to adjust the mix of vehicle 
models or footprints based on their own price elasticity of demand; doing so would require a 
pricing model that takes the compliance cost for each manufacturer (estimated in the CAFE 
Model) and apportions that cost to the prices of individual nameplates and trim levels.  NHTSA 
has experimented with pricing models (when integrating vehicle choice models, pricing models 
are a necessity), but each manufacturer almost certainly has a unique pricing strategy that is 
unknown to NHTSA, and involves both strategic decisions about competitive position within a 
segment and the volumes needed fully to amortize fixed costs associated with production.  To the 
extent that we assume all regulatory costs are passed through and affect the average regulatory 
cost of each vehicle (which we believe is a more conservative approach) instead of being priced 
in a fashion to minimize the impact on aggregate sales (which we are concerned would be 
speculative without more information about manufacturers’ private business models), we note 
that more stringent alternatives are provided an artificial analytical advantage because 
manufacturers are better positioned to incorporate smaller price adjustments into their current 
strategic pricing models. 

Finally, some commenters have argued that, even if regulations do increase the cost of producing 
vehicles and those costs are passed on to new vehicle buyers, it does not matter because sales 
have increased subsequent to the Great Recession – in a period characterized by both rising 
prices and rising standards.  However, that argument assumes correlation means causation and 
ignores the counterfactual case.  NHTSA contends that sales increased over that period, in large 
part, as a result of economic expansion following the great recession.555  The counterfactual case 
that is relevant for regulatory analysis would attempt to answer the question, “would sales have 
been even higher if average prices had been lower?”  The extent to which higher prices as a 
result of greater CAFE stringency suppresses sales that otherwise would have occurred is not 
settled in the literature, as described below.  While higher prices in general would lead to fewer 
sales in theory, purchasers of new vehicles receive the benefit of greater fuel savings and lower 
total cost of ownership.  For the purposes of today’s analysis of sales effects, we conservatively 

 
555 Table 4-3 shows a large and statistically significant effect of GDP on sales.  



 

assume that purchasers value only the first 30 months of fuel savings.  For purposes of 
calculating benefits of standards, we assume that lifetime fuel savings are fully valued by 
society. 

In order to isolate the impact of the standards, the CAFE Model breaks the sales response 
module into three discrete components.  The first captures the effects of broader economic forces 
such as GDP growth.  The second measures how changes in vehicle prices (and fuel economies) 
influence sales across regulatory alternatives.  By modeling sales in the first step as a function of 
macroeconomic conditions, and then applying an independent own-price elasticity to estimate 
the change in sales across alternatives, the model is able to more clearly distinguish between 
absolute sales (in any given year) and incremental sales changes between alternatives.  The third 
step determines how the change of vehicle sales influences the proportional market share of light 
trucks and passenger cars. 

4.2.1.1 How do Fuel Economy Standards Impact Vehicle Sales? 

How potential buyers value improvements in the fuel economy of new cars and light trucks is an 
important issue in assessing the benefits and costs of government regulation.  If buyers fully 
value the savings in fuel costs that result from higher fuel economy, in a perfect market, 
manufacturers will presumably supply any improvements that buyers demand, and vehicle prices 
will fully reflect future fuel cost savings consumers would realize from owning—and potentially 
re-selling—more fuel-efficient models.  Traditional economic theory implies that if consumers 
internalize fuel savings, more stringent fuel economy standards will impose net costs on vehicle 
owners and can only result in social benefits through correcting externalities, because consumers 
would already fully incorporate private savings into their purchase decisions, as discussed further 
below.  If instead, consumers systematically undervalue future fuel savings because some market 
failure, such as an information asymmetry, or other differences between actual consumer 
decision making and theoretically rational decision making leads to an underinvestment in fuel-
saving technology, more stringent fuel economy standards will also lead manufacturers to adopt 
improvements in fuel economy that buyers might not choose despite the cost savings they offer 
and improve consumer welfare.  

The potential for car buyers voluntarily to forego improvements in fuel economy that offer 
savings exceeding their initial costs is one example of what is often termed the “energy-
efficiency gap.”  This appearance of such a gap, between the level of energy efficiency that 
would minimize consumers’ overall expenses and what they actually purchase, is frequently 
based on engineering calculations that compare the initial cost for providing higher energy 
efficiency to the discounted present value of the resulting savings in future energy costs.  
However, the econometric literature is divided between support for full internalization of energy 
savings and substantial undervaluing, and manufacturers have consistently told NHTSA as well 
as National Academies committees that their customers severely undervalue expected fuel 
savings. 

There has long been an active debate about why such a gap might arise and whether it actually 
exists.  Economic theory predicts that, in a perfect market, individuals will purchase more 
energy-efficient products only if the savings in future energy costs they offer promise to offset 
their higher initial costs.  However, the additional up-front cost of a more energy-efficient 



 

product includes more than just the cost of the technology necessary to improve its efficiency; 
because consumers have a scarcity of resources, it also includes the opportunity cost of any other 
desirable features that consumers give up when they choose the more efficient alternative.  In the 
context of vehicles, whether the expected fuel savings outweigh the opportunity cost of 
purchasing a model offering higher fuel economy will depend, among other things, on how much 
its buyer expects to drive; his or her expectations about future fuel prices; financing options 
available as studies suggest that consumers consider increases in monthly payments rather than 
total car price – which will be quite small for added fuel economy technology, and offset by 
lower fuel costs; the discount rate he or she uses to value future expenses; the expected effect on 
resale value; and whether more efficient models offer equivalent attributes such as performance, 
carrying capacity, reliability, quality, or other characteristics.  Importantly, consumer 
information through window stickers, education by dealers or other sources of information may 
cause a consumer to place greater value on the benefit of fuel savings at the time of purchase.  
Likewise, advertising, financing options and incentives will also impact vehicle choice and a 
consumer’s willingness to purchase. 

Published literature has offered little consensus about consumers’ willingness-to-pay for greater 
fuel economy, and whether it implies over-, under- or full-valuation of the expected discounted 
fuel savings from purchasing a model with higher fuel economy.  Most studies have relied on car 
buyers’ purchasing behavior to estimate their willingness-to-pay for future fuel savings; a typical 
approach has been to use “discrete choice” models that relate individual buyers’ choices among 
competing vehicles to their purchase prices, fuel economy, and other attributes (such as 
performance, carrying capacity, and reliability), and to infer buyers’ valuation of higher fuel 
economy from the relative importance of purchase prices and fuel economy.556  Empirical 
estimates using this approach span a wide range, extending from substantial undervaluation of 
fuel savings to significant overvaluation, thus making it difficult to draw solid conclusions about 
the influence of fuel economy on vehicle buyers’ choices.557  Because a vehicle’s price is often 
correlated with its other attributes (both measured and unobserved), analysts have often used 
instrumental variables or other approaches to address endogeneity and other resulting 
concerns.558   

Despite these efforts, more recent research has criticized these cross-sectional studies; some have 
questioned the effectiveness of the instruments they use,559 while others have observed that 
coefficients estimated using non-linear statistical methods can be sensitive to the optimization 
algorithm and starting values.560  Collinearity (i.e., high correlations) among vehicle attributes—
most notably among fuel economy, performance or power, and vehicle size—and between 
vehicles’ measured and unobserved features also raises questions about the reliability and 
interpretation of coefficients that may conflate the value of fuel economy with other attributes 

 
556 In a typical vehicle choice model, the ratio of estimated coefficients on fuel economy — or more commonly, fuel 
cost per mile driven — and purchase price is used to infer the dollar value buyers attach to slightly higher fuel 
economy.  
557 See Greene et al. (2018), Helfand & Wolverton (2011) and Greene (2010) for detailed reviews of these cross-
sectional studies. 
558 See, e.g., Barry, et al. (1995). 
559 See Allcott & Greenstone (2012). 
560 See Knittel & Metaxoglou (2014).  



 

(Sallee, et al., 2016; Busse, et al., 2013; Allcott & Wozny, 2014; Allcott & Greenstone, 2012; 
Helfand & Wolverton, 2011).  

In an effort to overcome shortcomings of past analyses, three studies published fairly recently 
rely on panel data from sales of individual vehicle models to improve their reliability in 
identifying the association between vehicles’ prices and their fuel economy (Sallee, et al. 2016; 
Allcott & Wozny, 2014; Busse, et al., 2013).  Although they differ in certain details, each of 
these analyses relates changes over time in individual models’ selling prices to fluctuations in 
fuel prices, differences in their fuel economy, and increases in their age and accumulated use, 
which affects their expected remaining life, and thus their market value.  Because a vehicle’s 
future fuel costs are a function of both its fuel economy and expected gasoline prices, changes in 
fuel prices have different effects on the market values of vehicles with different fuel economy; 
comparing these effects over time and among vehicle models reveals the fraction of changes in 
fuel costs that is reflected in changes in their selling prices (Allcott & Wozny, 2014).  Using very 
large samples of sales enables these studies to define vehicle models at an extremely 
disaggregated level, which enables their authors to isolate differences in their fuel economy from 
the many other attributes, including those that are difficult to observe or measure, that affect their 
sale prices.561  

These studies point to a somewhat narrower range of estimates than suggested by previous cross-
sectional studies; more importantly, they consistently suggest that buyers value a large 
proportion—and perhaps even all—of the future savings that models with higher fuel economy 
offer.562  Because they rely on estimates of fuel costs over vehicles’ expected remaining 
lifetimes, these studies’ estimates of how buyers value fuel economy are sensitive to the 
strategies they use to isolate differences among individual models’ fuel economy, as well as to 
their assumptions about buyers’ discount rates and gasoline price expectations, among others.  
Since Anderson et al. (2013) found evidence that consumers expect future gasoline prices to 
resemble current prices, the agency uses this assumption to compare the findings of the three 
studies and examine how their findings vary with the discount rates buyers apply to future fuel 
savings.563  

 
561 These studies rely on individual vehicle transaction data from dealer sales and wholesale auctions, which 
includes actual sale prices and allows their authors to define vehicle models at a highly disaggregated level.  For 
instance, Allcott & Wozny (2014) differentiate vehicles by manufacturer, model or nameplate, trim level, body type, 
fuel economy, engine displacement, number of cylinders, and “generation” (a group of successive model years 
during which a model’s design remains largely unchanged).  All three studies include transactions only through mid-
2008 to limit the effect of the recession on vehicle prices.  To ensure that the vehicle choice set consists of true 
substitutes, Allcott & Wozny (2014) define the choice set as all gasoline-fueled light-duty cars, trucks, SUVs, and 
minivans that are less than 25 years old (i.e., they exclude vehicles where the substitution elasticity is expected to be 
small).  Sallee et al. (2016) exclude diesels, hybrids, and used vehicles with less than 10,000 or more than 100,000 
miles. 
562 Killian & Sims (2006) and Sawhill (2008) rely on similar longitudinal approaches to examine consumer valuation 
of fuel economy except that they use average values or list prices instead of actual transaction prices.  Since these 
studies remain unpublished, their empirical results are subject to change, and they are excluded from this discussion. 
563 Each of the studies makes slightly different assumptions about appropriate discount rates.  Sallee et al. (2016) use 
five percent in their base specification, while Allcott & Wozny (2014) rely on six percent.  As some authors note, a 
five to six percent discount rate is consistent with current interest rates on car loans, but they also acknowledge that 
borrowing rates could be higher in some cases, which could be used to justify higher discount rates.  Rather than 
 



 

As Table 4-2 indicates, Allcott & Wozny (2014) found that consumers incorporate 55% percent 
of future fuel costs into vehicle purchase decisions at a six percent discount rate, when their 
expectations for future gasoline prices are assumed to reflect prevailing prices at the time of their 
purchases.  With the same expectation about future fuel prices, the authors report that consumers 
would fully value fuel costs only if they apply discount rates of 24 percent or higher.  However, 
these authors’ estimates are closer to full valuation when using gasoline price forecasts that 
mirror oil futures markets, because the petroleum market expected prices to fall during this 
period (this outlook reduces the discounted value of a vehicle’s expected remaining lifetime fuel 
costs).  With this expectation, Allcott & Wozny (2014) find that buyers value 76 percent of 
future cost savings (discounted at six percent) from choosing a model that offers higher fuel 
economy, and that a discount rate of 15 percent would imply that they fully value future cost 
savings.  Sallee et al. (2016) begin with the perspective that buyers fully internalize future fuel 
costs into vehicles’ purchase prices and cannot reliably reject that hypothesis; their base 
specification suggests that changes in vehicle prices incorporate slightly more than 100 percent 
of changes in future fuel costs.  For discount rates of five to six percent, the Busse et al. (2013) 
results imply that vehicle prices reflect 60 to 100 percent of future fuel costs.  As Table 4-2 
suggests, higher private discount rates move all of the estimates closer to full valuation or to 
over-valuation, while lower discount rates imply less complete valuation in all three studies. 

Table 4-2 – Percent of Future Fuels Costs Internalized in Used Vehicle Purchase Price using Current 
Gasoline Prices to Reflect Expectations (for Base Case Assumptions) 

Authors (Pub. Date) Discount rate 
3% 5% 6% 10% 

Busse, et al. (2013)* 54%-87% 60%-96% 62%-100% 73%-117% 
Allcott & Wozny (2014) 48%  55% 65% 
Sallee, et al. (2016)  101%  142% 

*Note: The ranges in the Busse et al. estimates depend on which quartiles of the fuel economy distribution are compared.  With 
no prior on which quartile comparison to use, this analysis presents the full quartile comparison range. 

 
The studies also explore the sensitivity of the results to other parameters that could influence 
their results.  Busse et al. (2013) and Allcott & Wozny (2014) find that relying on data that 
suggest lower annual vehicle use or survival probabilities, which imply that vehicles will not last 
as long, moves their estimates closer to full valuation, an unsurprising result because both reduce 
the changes in expected future fuel costs caused by fuel price fluctuations.  Allcott & Wozny’s 
(2014) base results rely on an instrumental variables estimator that groups miles-per-gallon 
(MPG) into two quantiles to mitigate potential attenuation bias due to measurement error in fuel 
economy, but they find that greater disaggregation of the MPG groups implies greater 
undervaluation (for example, it reduces the 55 percent estimated reported in Table 4-2 to 49 

 
assuming a specific discount rate, Busse et al. (2013) directly estimate implicit discount rates at which future fuel 
costs would be fully internalized; they find discount rates of six to 21 percent% for used cars and one to 13 percent% 
for new cars at assumed demand elasticities ranging from -2 to -3.  Their estimates can be translated into the percent 
of fuel costs internalized by consumers, assuming a particular discount rate.  To make these results more directly 
comparable to the other two studies, we assume a range of discount rates and uses the authors’ spreadsheet tool to 
translate their results into the percent of fuel costs internalized into the purchase price at each rate.  Because Busse et 
al. (2013) estimate the effects of future fuel costs on vehicle prices separately by fuel economy quartile, these results 
depend on which quartiles of the fuel economy distribution are compared; our summary shows results using the full 
range of quartile comparisons.  



 

percent).  Busse et al. (2013) allow gasoline prices to vary across local markets in their main 
specification; using national average gasoline prices, an approach more directly comparable to 
the other studies, results in estimates that are closer to or above full valuation.  Sallee et al. 
(2016) find modest undervaluation by vehicle fleet operators or manufacturers making large-
scale purchases, compared to retail dealer sales (i.e., 70 to 86 percent). 

Since they rely predominantly on changes in vehicles’ prices between repeat sales, most of the 
valuation estimates reported in these studies apply most directly to buyers of used vehicles.  Only 
Busse et al. (2013) examine new vehicle sales; they find that consumers value between 75 to 133 
% of future fuel costs for new vehicles, a higher range than they estimate for used vehicles.  
Allcott & Wozny (2014) examine how their estimates vary by vehicle age and find that 
fluctuations in purchase prices of younger vehicles imply that buyers whose fuel price 
expectations mirror the petroleum futures market value a higher fraction of future fuel costs: 93 
% for one- to three-year-old vehicles, compared to their estimate of 76 % for all used vehicles 
assuming the same price expectation.564   

Accounting for differences in their data and estimation procedures, the three studies described 
here suggest that car buyers who use discount rates of five to six percent value at least half—and 
perhaps all—of the savings in future fuel costs they expect from choosing models that offer 
higher fuel economy.  Perhaps more important, one study (Busse et al., 2013) suggests that 
buyers of new cars and light trucks value three-quarters or more of the savings in future fuel 
costs they anticipate from purchasing higher-mpg models, although this result is based on more 
limited information.   

Based on a meta-analysis of the literature from 1995-2015, including the papers discussed above, 
Greene et al. (2018) concluded that the economic literature over that period did not support a 
consensus estimate of consumers’ willingness to pay for fuel economy.  The National Academies 
(NASEM, 2021) fuel economy committee agreed, observing that, “Many papers found 
undervaluation, and many have found full or even overvaluation.  Both earlier studies and more 
recent ones have found undervaluation.  Studies using both methodologies (discrete choice or 
otherwise) have found undervaluation.” (NASEM, 2021, p. 11-351).  More recently, Gillingham 
et al. (2021) analyzed the effects of changes in fuel economy ratings of 1.6 million vehicles and 
concluded that consumers were willing to pay only 16-39 cents per dollar of fuel savings, 
assuming an annual discount rate of 4%.565  Analyzing a data set of more than half a million 
vehicles purchased by households between 2009 and 2014, Leard et al. (2021) found a 
willingness to pay for $1 of discounted expected fuel savings of $0.54.566   

 
564 Allcott & Wozny (2014) and Sallee, et al. (2016) also find that future fuel costs for older vehicles are 
substantially undervalued (26-30% ).  The pattern of Allcott and Wozny’s results for different vehicle ages is similar 
when they use retail transaction prices (adjusted for customer cash rebates and trade-in values) instead of wholesale 
auction prices, although the degree of valuation falls substantially in all age cohorts with the smaller, retail price 
based sample.  
565 Gillingham, K., S. Houde and A. van Benthem, 2020. “Consumer Myopia in Vehicle Purchases: Evidence from a 
Natural Experiment”, American Economic Journal: Economic Policy, forthcoming, available at 
https://iaee2021online.org/download/contribution/fullpaper/1338/1338_fullpaper_20210403_051944.pdf . 
566 Leard, B., J. Linn and Y. Zhou, 2021. “How Much Do Consumers Value Fuel Economy and Performance? 
Evidence from Technology Adoption”, Review of Economics and Statistics, forthcoming and available online early 
at https://direct.mit.edu/rest/issue/103/2. 

https://iaee2021online.org/download/contribution/fullpaper/1338/1338_fullpaper_20210403_051944.pdf


 

What analysts assume about consumers’ vehicle purchasing behavior, particularly about 
potential buyers’ perspectives on the value of increased fuel economy, clearly matters a great 
deal in the context of benefit-cost analysis for fuel economy regulation.  One possible approach 
would be to use a baseline scenario where fuel economy levels of new cars and light trucks 
reflected full (or nearly so) valuation of fuel savings by potential buyers in order to reveal 
whether setting fuel economy standards above market-determined levels could produce net social 
benefits.  Another might be to assume that, unlike previous analyses where buyers were assumed 
to greatly undervalue higher fuel economy under the baseline but to value it fully under the 
proposed standards, buyers value improved fuel economy identically under both the baseline 
scenario and with stricter CAFE standards in place.  Behavioral economics offers yet another 
possible explanation, namely that consumers’ decision making about fuel economy is affected by 
the context of the choice.  Choices framed in terms of paying more or not paying more for 
uncertain future fuel savings may be viewed as a risky bet and induce a response that severely 
undervalues future fuel savings (e.g., Greene, 2019).  On the other hand, when the fuel economy 
of all new vehicles is increasing as a consequence of fuel economy standards, consumers might 
approximately fully value expected fuel savings (see, e.g., NASEM, 2021, Ch. 11.3.4).  Of 
course, given that CAFE standards apply to manufacturers’ overall new vehicle fleets rather than 
to specific vehicle models, nothing guarantees that manufacturers will distribute fuel economy 
improvements evenly across their respective product lines.  One thing is clear—the analysis must 
include some estimate of consumers’ valuation of fuel economy, in part because fuel prices are 
uncertain, and buyers and manufacturers would certainly make different decisions if future fuel 
prices are very low than if future fuel prices are very high.  While we acknowledge the 
uncertainty around the estimates in the literature, zero is not supported by the literature and we 
believe that assuming a value between zero and full valuation is better than omitting consumers’ 
willingness to pay for fuel economy from our analysis. 

The analysis supporting this proposal accounts for the value of fuel economy in several places, 
though it uses a more conservative value than is suggested by the majority of the literature 
summarized above.  Manufacturers have consistently told the agencies that new vehicle buyers 
will pay for about 2 or 3 years’ worth of anticipated fuel savings before the price increase 
associated with providing those improvements begins to impact affect sales.  It is, of course, 
possible that manufacturers are incorrect in their assumptions; the same manufacturers, for 
example, long assumed that consumers would not pay extra for safety features.  And 
manufacturers play a role in shaping consumer preferences.  Otherwise they would not spend 
large sums on advertising.  

Nevertheless, in this NPRM NHTSA assumes the same valuation, 2.5 years (i.e., 30 months) of 
undiscounted fuel savings, in all components of the analysis that reflect consumer decisions 
regarding vehicle purchases and retirements.567  This analysis explicitly assumes that: 1) 
consumers are willing to pay for fuel economy improvements that pay back within the first 2.5 
years of vehicle ownership (at average usage rates); 2) manufacturers know this and will provide 
these improvements even in the absence of regulatory pressure; 3) the amount of technology for 
which buyers will pay rises (or falls) with rising (or falling) fuel prices; 4) consumer willingness 

 
567 When accounting for social benefits and costs associated with an alternative, the full lifetime value of 
(discounted) fuel savings is included. 



 

to pay is the same with or without higher fuel economy standards; and 5) these fuel savings are 
considered when evaluating the impact of new vehicle prices on vehicle retirement decisions.   

The agency’s analysis assumes that potential car and light truck buyers value only the savings in 
fuel costs from purchasing a higher-mpg model they expect to realize over the first 30 months 
they own it.  Depending on the discount rate buyers are assumed to apply, this amounts to 25-
30% of the expected savings in fuel costs over its entire lifetime.  These savings would offset 
only a fraction of the expected increase in new car and light truck prices that the agency 
estimates will be required for manufacturers to recover their increased costs for making required 
improvements to fuel economy.  If this is the case, sales of new cars and light trucks will decline, 
prices for used vehicles are likely to increase, and the retirement of older cars and light trucks 
and their replacement by newer models will slow.  Because we assume, 1) that consumers are 
willing to pay for only 30 months of expected fuel savings and 2) that in all regulatory 
alternatives manufacturers will voluntarily adopt fuel economy technologies that pay for 
themselves in 30 months, our model will necessarily predict that fuel economy standards will 
decrease vehicle sales somewhat and slow down stock turnover.  As discussed above, there is a 
high degree of both empirical and theoretical uncertainty about how consumers do value fuel 
economy in their car buying decisions.  We are aware that the future magnitude of such sales and 
scrappage effects is highly uncertain, and we are seeking ways to improve the state of knowledge 
and more fully represent the uncertainties in our assessments.  We are also aware that assuming 
full valuation of future fuel savings could lead to the conclusion that fuel economy regulations 
would increase sales and accelerate stock turnover in cases where the fuel value of fuel savings 
exceeded the increased vehicle cost.568 

One explanation for such “undervaluation” of the savings from purchasing higher-mpg models is 
that potential buyers view the prospect of the future savings those models appear to offer as 
uncertain, in contrast to the more immediate and certain increase in the prices buyers face for 
purchasing them.  This situation could arise because they are unsure of the fuel economy the 
vehicle will achieve on the road under their driving conditions, how long they will own a new 
vehicle, whether they will drive it enough to realize the promised savings, or have difficulty 
predicting the future course of fuel prices.  As a consequence, they may view choosing a more 
fuel-efficient model as a risky purchase; widespread aversion to the prospect of financial losses 
may lead many to view the already uncertain future savings even more skeptically, and thus to 
choose more modest levels of fuel economy.  For these same reasons, car and light truck 
producers may be unwilling to improve their models’ fuel economy, because they believe few 
consumers will be likely to purchase them.  We note that an individual’s purchase decision, that 
is whether they purchase a marginally more expensive vehicle with lifetime fuel savings that 
exceeds the cost, is different than collective consumer purchases of a fleet of more efficient 
vehicles.  It is the latter that drives analysis of regulatory impacts.   

From this perspective, it is possible that requiring manufacturers to improve the fuel economy of 
most or all of their models by raising CAFE standards will change the way potential buyers 
assess future savings from choosing models with higher fuel economy.  It is also possible that 

 
568 There is the additional question of whether consumers’ willingness to pay for other vehicles attributes that could 
have been produced by technologies used to increase fuel economy might be greater than the full present value of 
fuel savings.   



 

when all models are required to provide higher fuel economy as a result of regulation, consumer 
choice is affected differently.  It would effectively require producers to offer higher-mpg cars 
and light trucks and consumers to experience first-hand the benefits from owning them.  This 
would change the context of consumers’ fuel economy choices from buy or do not buy a fuel 
economy technology to one in which the fuel economy of virtually all new vehicles increased.  
Over time, this might reduce buyers’ uncertainty about the prospect of future savings and soften 
(or even eliminate) their usual aversion to potential losses from investing in higher fuel 
economy.569  By doing so, raising standards could increase potential buyers’ valuation of 
improved fuel economy to the point where it offsets the accompanying increases in new car and 
light truck prices, thus raising their sales and hastening the retirement of older cars and light 
trucks as newer models gradually replaced them.  Of course, CAFE standards apply to 
manufacturers’ overall fleets, such that it is not obvious how NHTSA could actually require that 
manufacturers apply fuel economy improvements evenly throughout their respective product 
lines.  Nevertheless, NHTSA has been steadily increasing CAFE standards for passenger cars for 
the last decade, and light trucks for almost 15 years, so data are accumulating that will help us 
evaluate this perspective.  We will continue to monitor the market and assess the evolving nature 
of consumer demand for fuel economy in the new vehicle market. 

4.2.1.2 Modeling the Sales Response 

For the purposes of regulatory evaluation, the relevant sales metric is the difference between 
alternatives rather than the absolute number of sales in any of the alternatives.  As such, the sales 
response model currently contains three parts: a nominal forecast that provides the level of sales 
in the baseline (based upon macroeconomic inputs, exclusively), a price elasticity that creates 
sales differences relative to that baseline in each year, and a fleet share model that produces 
differences in the passenger car and light truck market share in each alternative.  The nominal 
forecast does not include price and is merely a (continuous) function of several macroeconomic 
variables that are provided to the model as inputs.  The price elasticity is also specified as an 
input, but this analysis assumes a unit elastic response of -1.0—meaning that a one percent 
increase in the average price of a new vehicle produces a one percent decrease in total sales.570  
Unlike a conventional price elasticity, the price change on which the elasticity acts is calculated 
net of some portion of the future fuel savings that accrue to new vehicle buyers (2.5 years’ 
worth, in this analysis, as discussed in the previous section).  

The current sales module reflects the idea that total new vehicle sales are primarily driven by 
conditions in the economy that are exogenous to the automobile industry.  Over time, new 
vehicle sales have been cyclic – rising when prevailing economic conditions are positive (periods 
of growth) and falling during periods of economic contraction.  While the kinds of changes to 
vehicle offerings that occur as a result of manufacturers’ compliance actions exert some 
influence on the total volume of new vehicle sales, they are not determinative.  Instead, they 
drive the kinds of marginal differences between regulatory alternatives that the current sales 
module is designed to simulate – more expensive vehicles, generally, reduce total sales but only 
marginally.  Greater availability of fuel efficient light truck body styles increases their share of 

 
569 If buyers primarily learn about the benefits of improved fuel economy through vehicle ownership, it does raise 
the question of the utility of the fuel economy label, but such questions are beyond the scope of this proposal. 
570 The “price increase” in this case represents the new vehicle price net of a portion of fuel savings, described 
further in this section. 



 

the new vehicle market, but only on the margin – and does so in the context of the current market 
shares prior to that model year’s changes. 

The first component of the sales response model is the nominal forecast, which is a function 
(with a small set of inputs) that determines the size of the new vehicle market in each calendar 
year in the analysis for the baseline.  It is of some relevance that this statistical model is intended 
only as a means to project a baseline sales series.  Past peer reviewers expressed concerns about 
the possibility of econometrically estimating an industry average price elasticity in a way that 
isolates the causal effect of new vehicle prices on new vehicle sales (and properly addresses the 
issue of endogeneity between sales and price).  The nominal forecast model does not include 
prices and is not intended for statistical inference around the question of price response in the 
new vehicle market.  

The forecast is derived from a statistical model (described in Equation 4-1) that accounts for a set 
of exogenous factors related to new light-duty vehicle sales.  In particular, the model accounts 
for the number of households in the U.S., recent number of new vehicles sold, GDP, and 
consumer confidence.  The structure of the forecast model is a time series autoregressive 
distributed lag (ARDL) specification.  To reflect the fact that households are the primary unit of 
demand for new vehicles, the dependent variable is defined as new vehicles sold per 
household.571  While this variable still exhibits the cyclic behavior that new vehicle sales exhibit 
over time, the trend shows the number of new vehicles sold per household declining since the 
1970’s, as shown in Figure 4-3, where the dotted line is the trend over time.  As this time series 
is non-stationary,572 a lagged variable (the value in the previous year) is included on the right-
hand side of the regression equation.  In addition, the model includes a lagged variable that 
represents the three-year running sum of new vehicle sales, divided by the number of households 
in the previous year.  This variable represents the saturation effect, where the existing number of 
households can only buy so many new vehicles before a significant number of households 
already have one (and do not need to buy another).  As vehicle durability and cost has increased 
over time, and average length of initial ownership has increased similarly, this variable acts to 
put downward pressure on sales after successive years of high sales (particularly during 
extrapolation).  

 
571 Number of U.S. households is taken from Federal Reserve Economic data, 
https://fred.stlouisfed.org/series/TTLHH. 
572 The series contains a unit root (i.e., it is integrated of order one), based on the augmented Dickey-Fuller test. 



 

 
Figure 4-3 – New Light-Duty Vehicle Sales per Household in the United States, 1970 – 2016 

The forecast model includes the natural logarithm of real U.S. GDP and consumer sentiment, as 
measured by the University of Michigan survey of consumers.573  As both of these series are 
non-stationary (determined by applying augmented Dickey-Fuller unit root tests to the time 
series), lagged versions of the variables are included to ensure stationarity in the residuals.  The 
functional form appears below in Equation 4-1.  

𝑀𝑀𝑒𝑒𝑤𝑤_𝑉𝑉𝑒𝑒ℎ_𝐹𝐹𝑒𝑒𝑢𝑢_𝐻𝐻𝐻𝐻𝐹𝐹
=   𝐶𝐶 +  𝛽𝛽1𝑀𝑀𝑒𝑒𝑤𝑤_𝑉𝑉𝑒𝑒ℎ_𝐹𝐹𝑒𝑒𝑢𝑢_𝐻𝐻𝐻𝐻𝐹𝐹−1 + 𝛽𝛽23𝑌𝑌𝑢𝑢𝑆𝑆𝑢𝑢𝑃𝑃𝐹𝐹𝑒𝑒𝑢𝑢𝐻𝐻𝐻𝐻𝐹𝐹−1  + 𝛽𝛽3𝐿𝐿𝑀𝑀(𝑇𝑇𝑃𝑃𝐹𝐹𝐹𝐹)
+ 𝛽𝛽4𝐿𝐿𝑀𝑀(𝑇𝑇𝑃𝑃𝐹𝐹𝐹𝐹−1) +  𝛽𝛽5 𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑢𝑢𝑃𝑃𝑒𝑒𝑢𝑢_𝐶𝐶𝑒𝑒𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝐹𝐹 +   𝛽𝛽6𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑢𝑢𝑃𝑃𝑒𝑒𝑢𝑢_𝐶𝐶𝑒𝑒𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝐹𝐹−1 
Equation 4-1 – Statistical Model Used to Generate Nominal Forecast 

The model fit is described in Table 4-3.  The included lag term of the dependent variable and 
both GDP variables are statistically significant at nearly zero, while both the lagged three year 
sum term and consumer sentiment are both marginally significant.  Being a time series model, 
the Breusch-Godfrey test for serial correlation is (0.65) at order 1.  The signs of the coefficients 
are all correct, in the sense that they are consistent with expectations. 

 
573 http://www.sca.isr.umich.edu/tables.html. 



 

Table 4-3 – Summary of Forecast Regression Function 

Predictors Estimates CI p 

(Intercept) 0.21 0.10 – 0.32 <0.001 
lag(new.veh.per.HH) 0.70 0.45 – 0.95 <0.001 
lag(3yrSum.per.HH) -0.08 -0.16 – 0.01 0.070 
LN.Real.GDP 0.44 0.25 – 0.62 <0.001 

lag(LN.Real.GDP) -0.45 -0.63 – -0.28 <0.001 
Cons.sentiment 0.0003 -0.00 – 0.00 0.136 
lag(Cons.sentiment) 0.00001 -0.00 – 0.00 0.948 
Observations 47 
R2 / R2 adjusted 0.919 / 0.907 

 
Because the dependent variable is the number of new vehicles sold per household, it is necessary 
to multiply by the number of households to produce an estimate of new vehicle sales.  This 
model is used to produce a forecast of new vehicle sales out to 2050, so it is necessary to have 
projections of each variable used in Equation 4-1 through calendar year 2050.  In the supporting 
analysis, the GDP series represents a forecast included as part of the macroeconomic outputs of 
AEO 2021.  The forecast of households in this analysis comes from the Harvard Joint Center for 
Housing Studies 2018 Household projections.574  The consumer confidence forecast is taken 
directly from the University of Michigan index through 2020, and from the Global Insight 
forecast of consumer confidence for all subsequent years. 

While the analysis could have relied on a forecast of new vehicle sales taken from a published 
source (AEO 2021, for example), using a function is an attractive option because it allows the 
CAFE Model to dynamically adjust the forecast in response to input changes.  If a sensitivity 
case requires a forecast that is consistent with a set of specific, possibly unlikely, assumptions, a 
forecast of new vehicle sales that is consistent with those assumptions may not exist in the public 
domain.  Using a functional form also allows the user to vary some of the assumptions to the 
analysis without creating inconsistencies with other elements of the analysis.  However, it is 
incumbent upon the user to ensure that any set of assumptions is logically consistent.   

This function, and the set of assumptions contained in the central analysis supporting this 
proposal, produces a projection that is comparable in magnitude to the forecast in AEO 2021’s 
Reference case, though there are differences.  The two forecasts, as well as the AEO 2020 
Reference case forecast, which is included for context, project new light vehicle sales to be 
relatively flat over the coming decades.  However, the baseline forecast in this analysis projects a 
temporary increase in new sales occurring as the economy recovers from the COVID-19 
pandemic.  Prior to the pandemic, some recent model years had new light vehicle sales in excess 
of 17 million units.  The baseline forecast shows a brief return to that level before returning to 
the long-run average, which is closer to 15 million units per year.  As the AEO 2020 forecast 

 
574 
https://www.jchs.harvard.edu/sites/default/files/media/imp/Harvard_JCHS_McCue_Household_Projections_Rev010
319.pdf, last accessed 06.2021. 

https://www.jchs.harvard.edu/sites/default/files/media/imp/Harvard_JCHS_McCue_Household_Projections_Rev010319.pdf
https://www.jchs.harvard.edu/sites/default/files/media/imp/Harvard_JCHS_McCue_Household_Projections_Rev010319.pdf


 

illustrates, the pandemic has had a significant influence on sales projections through the 2020’s.  
The baseline forecast, which uses manufacturer compliance data to measure MY 2020 
production (and, thus, sales in this analysis) introduces a discrepancy with the projection in AEO 
2021.  However, we treat the compliance data as an authoritative source.  After the effects of the 
pandemic recede toward the end of the 2020’s, differences between all three forecasts shrink to 
about 5 percent (or less) in most years.  Obviously, the economic response to the pandemic has 
created uncertainty, particularly in the near-term, around pace at which the market for 
automobiles will recover – and  the scale and timing of the recovery’s peak – before returning to 
its long-term trend.  DOT will continue to monitor macroeconomic data and new vehicle sales 
and update its baseline forecast as appropriate. 
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Figure 4-4 – Comparison of Projected New Vehicle Sales with Annual Energy Outlook 

Although the forecast produces the total number of new vehicle sales in the baseline, an elasticity 
is imposed on price differences to produce sales changes between alternatives.   

In previous rules, while the agency produced analyses that qualitatively considered sales and 
employment impacts, the agency acknowledged that fuel economy standards were likely to 
increase vehicle prices, while simultaneously reducing operating costs, and that estimating how 
consumers would choose to balance those two factors in the new vehicle market was 
challenging.575  Furthermore, the agency recognized that there is some degree of consensus in the 

 
575 Final Regulatory Impact Analysis, Corporate Average Fuel Economy for MY 2017-MY 2025 Passenger Cars and 
Light Trucks, August 2012, at 821. 



 

economic literature that the price elasticity of demand for automobiles is approximately –1.0.576  
Based upon the literature, a unit elasticity of -1.0 is a reasonable estimate.577  

Because the elasticity assumes no perceived change in the quality of the product, and the 
vehicles produced under different regulatory scenarios have inherently different operating costs, 
the price metric must account for this difference.  The price to which the unit elasticity is applied 
in this analysis represents the residual price change between scenarios after accounting for 2.5 
years’ worth of fuel savings to the new vehicle buyer.  Like that applied in the 2020 FRIA, this 
approach is consistent with the 2012 FRIA analysis of sales impacts, which considered several 
payback periods over which the value of fuel savings was subtracted from the change in average 
new vehicle price.   

The price elasticity is applied to the percentage change in average price (in each year).  As 
discussed below the price change does not represent an increase/decrease over the last observed 
year, but rather the percentage change relative to the baseline.  In the baseline, the average price 
is defined as the observed new vehicle price in 2019 (the last historical year before the 
simulation begins) plus the average regulatory cost associated with the baseline.  The central 
analysis in this proposal simulates multiple programs simultaneously (CAFE final standards, 
EPA final greenhouse gas standards, ZEV, and the California Framework Agreement), and the 
regulatory cost includes both technology costs and civil penalties paid for non-compliance (with 
CAFE standards) in a model year.578  So the change in sales for alternative a in year y is: 

∆𝑆𝑆𝑎𝑎𝑖𝑖𝑒𝑒𝐶𝐶𝑡𝑡,𝑆𝑆 =
(∆𝑇𝑇𝑒𝑒𝑔𝑔𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑡𝑡,𝑆𝑆−0 −  ∆𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝐹𝐹,𝑆𝑆−0)

𝑀𝑀𝑆𝑆𝑇𝑇𝐹𝐹2019 + 𝑇𝑇𝑒𝑒𝑔𝑔𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑡𝑡,0
 ∙ 𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒𝑇𝑇𝑖𝑖𝑎𝑎𝐶𝐶𝑃𝑃𝑢𝑢𝑐𝑐𝑢𝑢𝑃𝑃𝑐𝑐 ∙ 𝑀𝑀𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃𝑎𝑎𝑖𝑖𝑆𝑆𝑎𝑎𝑖𝑖𝑒𝑒𝐶𝐶𝑡𝑡 

Equation 4-2 – Calculation of Change in Sales 

ΔRegCost is the difference in average regulatory cost between alternative a and the baseline 
scenario in year y to make a vehicle compliant with the standards, MRSP2019 is the average 
transaction price of a new vehicle in 2019, NominalSales is the forecasted sales (in the baseline) 

 
576 See, e.g., Kleit, A.N., “The Effect of Annual Changes in Automobile Fuel Economy Standards,” Journal of 
Regulatory Economics, Vol. 2 (1990), at pp 151-72; Bordley, R., “An Overlapping Choice Set Model of Automotive 
Price Elasticities,” Transportation Research B, Vol. 28B no. 6 (1994), at pp 401-408; and McCarthy, P.S. “Market 
Price and Income Elasticities of New Vehicle Demands,” The Review of Economics and Statistics, Vol. LXXVII 
no. 3 (1996), at pp. 543-547. 
577 For example, a recent review of 12 studies examining vehicle price elasticities conducted by the Center of 
Automotive Research (“CAR”) found an “average short-run elasticity of -1.09” and focusing “only those models 
which also employ time series methods, the average short-run own-price elasticity is higher yet, at -1.25.” CAR’s 
own analysis found a -.79 short-run elasticity.  Appendix II of the CAR report shows that the long-run elasticities 
ranged from -.46 and -1.2 with an average of -.72.  In sum, a -1.0 elasticity is well-aligned with the totality of 
research.  McAlinden Ph.D, Sean P., Chen, Yen, Schultz, Michael, Andrea, David J., The Potential Effects of the 
2017-2025 EPA/NHTSA GHG/Fuel Economy Mandates of the US Economy, Center for Automotive Research, Ann 
Arbor, MI (Sept. 2016), available at https://www.cargroup.org/wp-content/uploads/2017/02/The-Potential-Effects-
of-the-2017_2025-EPANHTSA-GHGFuel-Economy-Mandates-on-the-US-Economy.pdf.  
578 The baseline regulatory costs include all of the costs associated with fuel economy technology assumed to be 
applied to vehicles in the baseline scenario.  If a technology is estimated to have a payback period within 30 months, 
the model will apply it within the baseline and that cost would be incorporated into the baseline’s regulatory cost. 

https://www.cargroup.org/wp-content/uploads/2017/02/The-Potential-Effects-of-the-2017_2025-EPANHTSA-GHGFuel-Economy-Mandates-on-the-US-Economy.pdf
https://www.cargroup.org/wp-content/uploads/2017/02/The-Potential-Effects-of-the-2017_2025-EPANHTSA-GHGFuel-Economy-Mandates-on-the-US-Economy.pdf


 

in year y, ΔFuelCosts is the change in average fuel costs over 2.5 years relative to the baseline in 
year y and PriceElasticity is -1.0. 

∆𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝐹𝐹,𝑆𝑆−0 =  �
𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖𝐹𝐹𝑢𝑢i𝑐𝑐𝑒𝑒𝐹𝐹
𝑀𝑀𝑒𝑒𝑤𝑤𝑉𝑉𝑒𝑒ℎ𝐹𝐹𝑇𝑇𝐹𝐹,𝑆𝑆

−  
𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒𝐹𝐹
𝑀𝑀𝑒𝑒𝑤𝑤𝑉𝑉𝑒𝑒ℎ𝐹𝐹𝑇𝑇𝐹𝐹,0

� ∗ 35000 

Equation 4-3 – Change in Fuel Costs Used to Compute Sales Differences 

Where 35,000 miles is assumed to be equivalent to 2.5 years of vehicle usage.579   

NHTSA assumes that consumers behave as if the fuel price faced at the time of purchase is the 
fuel price that they will face over the first 2.5 years of ownership and usage.  Essentially, 
consumers behave as if fuel prices follow a random walk, where the best prediction of (near) 
future prices is the price today.  Scrappage rates in the first few years of ownership are close to 
zero, so buyers can reasonably expect to travel the full annual mileage in each of the first three 
years of ownership.  Total sales in each alternative (that is not the baseline) will equal 
NominalSalesy + ΔSalesa,y for alternative a in year y.  

This implementation produces a range of differences in total sales, both between alternatives and 
over time.  Figure 4-5 shows the range of differences in the proposal at the industry level across 
alternatives between 2020 and 2050.  In the simulations, the largest differences in technology 
costs occur during the years covered by the proposal, peaking in 2026 and then beginning a 
gradual (or in some instances, rapid) decline as cost learning erodes technology cost differences 
between the alternatives – causing absolute technology costs, and thus sales, to converge in later 
years.  Removing the value of fuel savings from the price change limits the sales decrease in the 
alternatives by reducing the absolute difference in price if only the regulatory costs were 
considered, where the most stringent alternative (Alternative 3) has annual sales differences that 
peak at about 3.5 percent, but a little over one percent of total sales between 2020 and 2050.  
Alternative 1 differs from the baseline by less than 0.5 percent over the entire period, and 
Alternative 2 by 1 percent. 

 
579 Based on odometer data, 35,000 miles is a good representation of typical new vehicle usage in the first 2.5 years 
of ownership and use—though the distribution of usage is large. 
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Figure 4-5 – Percentage Change in Baseline Sales, by Alternative 

4.2.1.3 Dynamically Modeling Changes in Fleet Mix 

The first two modules described above (the forecast function and applied elasticity) determine 
the total industry sales in each model year from 2021 (in this analysis, 2020 is based on certified 
compliance data) to 2050.  A third module, the dynamic fleet share, acts to distribute the total 
industry sales across two different body-types: “cars” and “light trucks.”  While there are 
specific definitions of “passenger cars” and “light trucks” that determine a vehicle’s regulatory 
class, the distinction used in this phase of the analysis is more simplistic.  All body-styles that are 
obviously cars—sedans, coupes, convertibles, hatchbacks, and station wagons—are defined as 
“cars” for the purpose of determining fleet share.  Everything else—SUVs, smaller SUVs 
(crossovers), vans, and pickup trucks—are defined as “light trucks”—even though they may not 
be treated as such for compliance purposes.  In the case of SUVs, in particular, many models 
may have sales volumes that reside in both the passenger car and light fleets for regulatory 
purposes, but the dynamic fleet share does not make this distinction.  All crossovers are 
considered light trucks for the purposes of fleet share, even though they may be 2WD crossovers 
treated as passenger cars for compliance purposes.  So, while the number may increase overall 
for a given scenario, the proportion of crossovers sold as 4WD, rather than 2WD, does not.  This 
means that the number of vehicles regulated as passenger cars is less affected by changes in fleet 
share because many SUVs are regulated as cars – and the portion of a given SUV nameplate that 
is regulated as a passenger car in the MY 2020 fleet is carried forward into future years. 

Even if the fleet share model (described in greater detail below) increases the share of light 
trucks (for example), the inherent price difference between passenger cars and light trucks does 
not pass through to the average price—only the relative difference in compliance costs 
associated with the vehicle types.  Despite the fact that light trucks have generally higher 
transaction prices than passenger cars, there is no guarantee that regulatory costs will be higher 
for light-trucks than for cars (which depend upon the mix of footprints, their distance from the 
relevant curve, and the technology cost needed to bring each fleet into compliance).  Thus, the 



 

average price differences used in the sales calculations are relatively unaffected by the fleet share 
model. 

The dynamic fleet share (DFS) represents two different equations that independently estimate the 
share of passenger cars and light trucks, respectively, given average new market attributes (fuel 
economy, horsepower, and curb weight) for each group and current fuel prices, as well as the 
prior year’s market share and prior year’s attributes.  The two independently estimated shares are 
then normalized to ensure that they sum to one.  As with the Sales Response model, the DFS 
utilizes values from one and two years preceding the analysis year when estimating the share of 
the fleet during the model year being evaluated.  For the horsepower, curb weight, and fuel 
economy values occurring in the model years before the start of analysis, the DFS model uses the 
observed values from prior model years.  After the first model year is evaluated, the DFS model 
relies on values calculated during analysis by the CAFE Model.  The DFS model begins by 
calculating the natural log of the new shares during each model year, independently for each 
vehicle class, as specified by Equation 4-4. 

ln�𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀� =

⎝

⎜
⎜
⎜
⎜
⎛

𝛽𝛽𝐶𝐶 × (1 − 𝛽𝛽𝑀𝑀ℎ𝑃𝑃) + 𝛽𝛽𝑀𝑀ℎ𝑃𝑃 × ln�𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀−1�
+𝛽𝛽𝐹𝐹𝑃𝑃 × �ln�𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒𝐺𝐺𝑆𝑆𝑆𝑆,𝑂𝑂𝑀𝑀� − 𝛽𝛽𝑀𝑀ℎ𝑃𝑃 × ln�𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒𝐺𝐺𝑆𝑆𝑆𝑆,𝑂𝑂𝑀𝑀−1��
+𝛽𝛽𝐻𝐻𝑃𝑃 × �ln�𝐻𝐻𝐹𝐹𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀−1� − 𝛽𝛽𝑀𝑀ℎ𝑃𝑃 × ln�𝐻𝐻𝐹𝐹𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀−2��
+𝛽𝛽𝐶𝐶𝑊𝑊 × �ln�𝐶𝐶𝑘𝑘𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀−1� − 𝛽𝛽𝑀𝑀ℎ𝑃𝑃 × ln�𝐶𝐶𝑘𝑘𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀−2��
+𝛽𝛽𝑂𝑂𝑃𝑃𝐺𝐺 × �ln�𝐹𝐹𝑇𝑇𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀−1� − 𝛽𝛽𝑀𝑀ℎ𝑃𝑃 × ln�𝐹𝐹𝑇𝑇𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀−2��
+𝛽𝛽𝐷𝐷𝑟𝑟𝑁𝑁𝑁𝑁𝑡𝑡 × (ln(0.423453) − 𝛽𝛽𝑀𝑀ℎ𝑃𝑃 × ln(0.423453)) ⎠

⎟
⎟
⎟
⎟
⎞

 

Equation 4-4 – Dynamic Fleet Share 

Where: 

βC – βDummy : set of beta coefficients, as defined by Table 4-4 below, used for 
tuning the Dynamic Fleet Share model, 

ShareVC,MY-1 : the share of the total industry new sales classified as vehicle class 
VC, in the year immediately preceding model year MY, 

PriceGas,MY : the fuel price of gasoline fuel, in cents per gallon, in model year 
MY,580 

PriceGas,MY-1 : the fuel price of gasoline fuel, in cents per gallon, in the year 
immediately preceding model year MY, 

HPVC,MY-1 : the average horsepower of all vehicle models belonging to vehicle 
class VC, in the year immediately preceding model year MY, 

 
580 Model year and calendar year are assumed to be equivalent in the simulation—as they always have been in all 
prior rulemaking analyses. 



 

HPVC,MY-2 : the average horsepower of all vehicle models belonging to vehicle 
class VC, in the year preceding model year MY by two years, 

CWVC,MY-1 : the average curb weight of all vehicle models belonging to vehicle 
class VC, in the year immediately preceding model year MY, 

CWVC,MY-2 : the average curb weight of all vehicle models belonging to vehicle 
class VC, in the year preceding model year MY by two years, 

FEVC,MY-1 : the average on-road fuel economy rating of all vehicle models 
(excluding credits, adjustments, and petroleum equivalency factors) belonging to vehicle 
class VC, in the year immediately preceding model year MY, 

FEVC,MY-2 : the average on-road fuel economy rating of all vehicle models 
(excluding credits, adjustments, and petroleum equivalency factors) belonging to vehicle 
class VC, in the year preceding model year MY by two years, 

0.423453 : a dummy coefficient, and 

ln(ShareVC,MY) : the natural log of the calculated share of the total industry fleet 
classified as vehicle class VC, in model year MY. 

In the equation above, the beta coefficients, βC through βDummy, are provided in the following 
table.  The beta coefficients differ depending on the vehicle class for which the fleet share is 
being calculated. 

Table 4-4 – DFS Coefficients for Cars and Light Trucks 

Coefficient Car Value Light Truck Value 
βC 3.4468 7.8932 

βRho 0.8903 0.3482 
ΒFP 0.1441 0.4690 

ΒHW -0.4436 1.3607 
ΒCW -0.0994 1.5664 

ΒMPG -0.5452 0.0813 
ΒDummy -0.1174 0.6192 

 
Once the initial car and light truck fleet shares are calculated (as a natural log), obtaining the 
final shares for a specific vehicle class is simply a matter of taking the exponent of the initial 
value, and normalizing the result at one (or 100 percent).  This calculation is demonstrated by the 
following: 

𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝑉𝑉𝐶𝐶,𝑂𝑂𝑀𝑀 =
𝑒𝑒ln�𝑆𝑆ℎ𝑆𝑆𝑟𝑟𝑟𝑟𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀�

𝑒𝑒ln�𝑆𝑆ℎ𝑆𝑆𝑟𝑟𝑟𝑟𝐿𝐿𝐿𝐿𝑉𝑉,𝑀𝑀𝑀𝑀� + 𝑒𝑒ln�𝑆𝑆ℎ𝑆𝑆𝑟𝑟𝑟𝑟𝐿𝐿𝐿𝐿𝑇𝑇1/2𝑎𝑎,𝑀𝑀𝑀𝑀�
 

Equation 4-5 – Normalizing Individual Fleet Shares 



 

Where: 

ln(ShareVC,MY) : the natural log of the calculated share of the total industry fleet 
classified as vehicle class VC, in model year MY, 

ln(ShareLDV,MY) : the natural log of the calculated share of the total industry 
fleet classified as light duty passenger vehicles (LDV), in model year MY, 

ln(ShareLDT1/2a,MY) : the natural log of the calculated share of the total industry 
fleet classified as class 1/2a light duty truck (LDT1/2a), in model year MY, and 

ShareVC,MY : the calculated share of the total industry fleet classified as vehicle 
class VC, in model year MY. 

These shares are applied to the total industry sales derived in the first stage of the sales response.  
This produces total industry volumes of car and light truck body styles.  Individual model sales 
are then determined from there based on the following sequence: 1) individual manufacturer 
shares of each body style (either car or light truck) times the total industry sales of that body 
style, then 2) each vehicle within a manufacturer’s volume of that body-style is given the same 
percentage of sales as appear in the 2020 fleet.  This implicitly assumes that consumer 
preferences for particular styles of vehicles are determined in the aggregate (at the industry 
level), but that manufacturers’ sales shares of those body styles are consistent with MY 2020 
sales.  Within a given body style, a manufacturer’s sales shares of individual models are also 
assumed to be constant over time.  This approach implicitly assumes that manufacturers are 
currently pricing individual vehicle models within market segments in a way that maximizes 
their profit.  Without more information about each OEM’s true cost of production and operation, 
fixed and variables costs, and both desired and achievable profit margins on individual vehicle 
models, there is no basis to assume that strategic shifts within a manufacturer’s portfolio will 
occur in response to standards.   

Some commenters to previous rules have noted that the market share of SUVs continues to grow, 
while conventional passenger car body-styles continue to lose market share.  The CAFE Model 
includes the DFS model in an attempt to address these market realities.  In the 2012 final rule, 
the agencies projected fleet shares based on the continuation of the baseline standards (MY 
2012-2016) and a fuel price forecast that was much higher than the realized prices since that 
time.  As a result, that analysis assumed passenger car body-styles comprising about 70 percent 
of the new vehicle market by 2025, which was internally consistent.  The reality, however, has 
been quite different.   

The coefficients of the DFS model show passenger car styles gaining share with higher fuel 
prices and losing them when prices are decline.  Similarly, as fuel economy increases in light 
truck models, which offer consumers other desirable attributes beyond fuel economy (ride height 
or interior volume, for example) their relative share increases.  However, this approach does not 
suggest that consumers dislike fuel economy in passenger cars, but merely recognizes the fact 
that fuel economy has diminishing returns to consumers.  As the fuel economy of light trucks 
increases, the tradeoff between passenger car and light truck purchases increasingly involves a 
consideration of other attributes.  The coefficients also show a relatively stronger preference for 



 

power improvements in cars than light trucks because that is an attribute where trucks have 
typically outperformed cars, like cars have outperformed trucks for fuel economy. 

Rather than estimate new functions to determine relative market shares of cars and light trucks, 
the CAFE Model applied existing functions from the transportation module of the National 
Energy Modeling System (NEMS) that was used to produce the 2017 Annual Energy Outlook.581  
The functions above appear in the “tran.f” input file to that version of NEMS, and were 
embedded (in their entirety) in the CAFE Model.  NEMS uses the functions to estimate the 
percent of total light vehicles less 8,500 GVW that are cars/trucks.  In addition to better 
reflecting market shifts over time, this approach also enables consistent sensitivity cases—where 
higher fuel prices produce fleets with more traditional passenger car body styles, for example—
and ensures that the starting point (MY 2020) evolves in response to both fuel economy 
improvements and fuel prices in a way that is internally consistent. 

While NEMS intended the fleet shares to be defined by regulatory classes, vehicles are defined 
much more coarsely in NEMS than in the CAFE Model, and manufacturers are not differentiated 
at all.  In order to produce well-behaved fleet share projections with this model, the CAFE Model 
applies the share functions to body-styles rather than regulatory classes.  For many years, there 
was little overlap between nameplates in a manufacturer’s passenger car regulatory class and its 
light truck regulatory class.  However, with the recent emergence of smaller FWD SUVs and 
crossovers, it is increasingly common to have nameplates with model variants in both the 
passenger car and light truck regulatory classes, and it is also common for there to be only minor 
differences (like the presence of 4WD or AWD) between versions regulated as cars and versions 
regulated as light trucks.  NHTSA is not proposing in this rule to revise the classification 
between passenger cars and light trucks.  Thus, the CAFE Model applies the fleet share 
equations to focus on body-style, rather than regulatory class, in recognition of the increased 
ambiguity between the regulatory class distinction for popular models like the Honda CR-V and 
Toyota RAV4, that sell more than 100K units in each regulatory class (typically using the same 
powertrain configuration).  The Nissan Rogue sold more than 400K units in MY 2017, and 
almost exactly half of them were in the light truck (LT) regulatory class.  This trend has only 
continued in recent years under favorable fuel prices and improving fuel economy among light 
truck offerings.  Applying the fleet share at the body-style level preserves the existing regulatory 
class splits for nameplates that straddle the class definitions.  It also serves to minimize the 
deviation from the observed MY 2020 regulatory class shares over time.  Our implementation 
allows the passenger car regulatory class to continue evolving toward crossover-type cars, if that 
is what economic and policy conditions favor. 

4.2.1.4 Using Vehicle Choice Models in Rulemaking Analysis 

For years, some commenters encouraged DOT to consider vehicle attributes beyond price and 
fuel economy when estimating a sales response to fuel economy standards, and suggested that a 
more detailed representation of the new vehicle market would allow the agency to simulate 

 
581 The share equation is described in the 2016 NEMS model documentation (see Equation 82), available at:  
https://www.eia.gov/outlooks/aeo/nems/documentation/archive/pdf/m070(2016).pdf. 



 

strategic mix shifting responses from manufacturers and diverse attribute preferences among 
consumers.  Doing so would require a discrete choice model (at some level). 

There are a number of practical challenges to using estimates of consumer attribute preferences 
to simulate market responses.  Discrete choice models typically rely on fixed effects (or 
alternative-specific constant terms) to account for the unobserved characteristics of a given 
model that influence purchasing decisions, such as styling,582 but are not captured by 
independent variables that represent specific vehicle attributes (horsepower, interior volume, or 
safety rating, for example).  Ideally, these constant terms would contribute relatively little to the 
fit and performance of the model, assuming that the most salient characteristics are accounted for 
explicitly.  In practice, this is seldom the case.  While the fixed effects at the model level are 
statistically sound estimates of consumer preferences for the unobserved vehicle characteristics 
of the individual models, the estimates are inherently historical—based on observed versions of 
the specific vehicle models to which they belong.  However, once the simulation starts, and new 
technologies are added to each manufacturer’s product portfolio over successive generations, it is 
no longer obvious that those constant terms would still be valid in the context of those changes.   

Another complication is that discrete choice models are highly dependent on their inputs and are 
unable to account for future market changes.  For example, the Draft TAR relied on a MY 2014 
market (for EPA’s analysis) and a MY 2015 market (for NHTSA’s analysis), while the 2020 
final rule used a MY 2017 fleet, and this proposal uses a characterization of the MY 2020 fleet.  
A discrete choice model estimated on any of those model years would probably produce different 
fixed effects estimates for each model variant in the fleet.  Even assuming that no new variants of 
a given model are offered over time, new nameplates emerge as others are retired—and for those 
new nameplates and all of their model variants, no constant terms would exist.  They would have 
to be imputed (either from comparable vehicles in the market, some combination of their 
attributes, or both).  Some studies have attempted to estimate fixed effects for a single new 
entrant to the market,583 but none have attempted to do so at the scale required to migrate a 
discrete choice model operating at the vehicle level that was fit on an earlier model year to a 
newer model year for simulation.   

Figure 4-6 shows the cumulative percentage of nameplates in the 2017 new vehicle market by 
year of introduction.  About ten percent of nameplates in 2017 have been around since the 1970s, 
but another ten percent have only existed since about 2010.  This fact illustrates the likely 
necessity of constructing vehicle model fixed effects for the inevitable new entrants between the 
estimating fleet and the rulemaking fleet.  But it also suggests another challenge.  New model 
entrants are driven by the dynamics of the market, where some vehicle models succeed and 
others fail, but a simulated market with a discrete choice model can only simulate failure—where 
consumer demand for specific nameplates erode to the point that the nameplate volumes trend 
toward zero.  It has no mechanism to generate new nameplates to replace those nameplates 
whose sales it estimates will erode beyond some minimal practical level of production.  Even if 
the CAFE Model can generate sufficiently different technology content that modified variants 

 
582 Aesthetics such as styling are difficult, if it not impossible, to define in a manner that allows meaningful 
comparison between choices.  
583 Berry, Steven, James Levinsohn, and Ariel Pakes (2004).  Differentiated products demand systems from a 
combination of micro and macro data: The new car market.  Journal of Political Economy 112(1): 68-105. 



 

could be thought of as “new” market entrants, there would be no way to associate valid fixed 
effects with these vehicles in the discrete choice model. 

Consumer choice models are typically fit on a single year of data (a cross-section of vehicles and 
buyers), but this approach misses relevant trends that build over time, such as rising GDP or 
shifting consumer sentiment toward emerging technologies.  If such a model is used to estimate 
total sales, but lacks trends in GDP growth or employment, etc., it will have the wrong set (likely 
a smaller set) of new vehicle buyers and exaggerate price responses and attribute preferences.  
Consumer preferences change over time in response to any number of factors—given 
manufacturers’ recent investments in electric powertrains, they are counting on this fact.  But a 
choice model estimated on observed consumer preferences for EVs—or other vehicle attributes 
with comparatively little experience in the market—would necessarily disadvantage a technology 
that is currently (or only recently) unpopular, but gaining popularity.  While these are problems 
that may not matter in the estimation process, where a researcher is attempting to measure 
revealed consumer preference for given attributes at a single point in time, they become material 
once that model is integrated into the simulation and dynamically carried forward for three 
decades.  We note that models that examine aggregate trends, such as the one utilized in this 
analysis, are able to side-step this issue by not placing a value on unique vehicle attributes. 

 
Figure 4-6 – Nameplate Introduction and Attrition; Cumulative Portion of MY 2017 Nameplate Count and 

Sales by Year of Introduction to the U.S. Market 

DOT’s compliance simulation model estimates the additional cost of technology required to 
achieve compliance, or to satisfy market demand for additional fuel economy.  While it 
necessarily calculates these costs on a per-vehicle basis, estimating the cost of additional 
technologies as they are applied to each specific model in order to bring an entire fleet into 
compliance, it is agnostic about how these costs are distributed to buyers.  Manufacturers have 
strategic, complex pricing models that rely on extensive market research and reflect each 
company’s strategic interests in each market segment.  Automobile companies attempt to 
maximize profit from the sale of their vehicles, rather than solely focusing on minimizing the 



 

cost of compliance, as the CAFE Model simulates.  Lacking reliable data for each manufacturer 
on production costs and profit margins for each vehicle model in their portfolios, the most 
reasonable course of action is to simulate compliance as if OEMs are attempting to minimize 
costs, and, worth noting, this approach is also the one NHTSA takes in its rulemakings related to 
the FMVSS.   

However, it is obvious that some market segments and individual models are much less elastic 
than others.584  As reflected in the prices of those models, consumers are able to bear a greater 
share of the total cost of compliance before negatively affecting sales and manufacturer profits.   

Several recent commenters on CAFE rules have suggested that the agency should employ a 
pricing model that allows manufacturers to vary prices in response to heterogeneous consumer 
preferences and different levels of willingness to pay for fuel economy, and other attributes, in 
the new vehicle market.  Fundamentally, this would require the agency to model strategic pricing 
for each manufacturer individually—no single pricing model would be appropriate for every 
manufacturer.  There is no reasonable expectation that the agency could embed and utilize each 
manufacturer’s pricing strategy, as this is an essential feature of competitive corporate behavior 
and automakers closely hold pricing strategy information.  Furthermore, models in the academic 
literature that commenters to past rules have suggested are superior because they allow prices to 
adjust, merely demonstrate that the mechanics of those adjustments work; they do not imply that 
the resulting prices are reasonable or realistic.  Given the burden to estimate each manufacturer’s 
standard under the attribute-based system, where the mix of vehicles sold defines not only the 
achieved fuel economy of each fleet but also the standard to which it is compared, NHTSA is 
understandably reluctant to implement models that might drastically shift a manufacturer’s mix 
of vehicles sold within a market segment. 

Some past commenters have also suggested that the agency should use a joint model of 
household vehicle holdings and sales that encompasses decisions to purchase new vehicles, 
retain existing ones, or reduce or augment current holdings of vehicles of all types and vintages 
in each period.  Manufacturers would modify either new vehicle content, prices, or both to 
produce a supply of new vehicles that allowed them each to comply with standards.  And, 
subsequently, households and manufacturers would iteratively interact until the market reached 
equilibrium.  Such a model would face many of the same issues outlined above.  There are 
significant econometric challenges associated with estimating a household’s decision to buy a 
new vehicle instead of a used vehicle (of some vintage), or to maintain its current set.  And 
integrating such a model would require the agency to simulate the dynamics of the used vehicle 
market—hundreds of unique nameplates for each of dozens of vintages—in order to provide the 
correct choice set in each simulated year.  Such a model is beyond the scope of the current 
analysis. 

While the agency believes that these challenges provide a reasonable basis for not employing a 
discrete choice model in the current CAFE Model, the agency also believes these challenges are 
not insurmountable, and that some suitable variant of such models may yet be developed for use 
in future fuel economy rulemakings.  The agency has not abandoned the idea and plans to 

 
584 See, for example, Kleit, A.N. (2004), Impacts of Long‐Range Increases in the Fuel Economy (CAFE) Standard.  
Economic Inquiry, 42: 279-294.  doi:10.1093/ei/cbh060. 



 

continue experimenting with econometric specifications that address heterogeneous consumer 
preferences in the new vehicle market as they further refine the analytical tools used for 
regulatory analysis.   

Operating at the level of individual auto and light truck model variants—the same level at which 
compliance is, necessarily, simulated—may not be tractable for rulemaking analyses.  However, 
market shares for brands and manufacturers within market segments are more stable over time—
even if the volumes of segments across the industry fluctuate.  In the 2012 final rule, the analysis 
showed a new vehicle market where the share of passenger car body styles—sedans, coupes, 
hatchbacks—reached about 70 percent of the new vehicle market by 2025, while light trucks, 
including many crossovers, accounted for the remaining 30 percent.  Those results were 
consistent with the assumptions made in 2012, but the combination of low fuel prices and 
decreasing differences in fuel consumption between body styles has instead reduced the market 
share of those body styles significantly, and, thus eroded the value of the 2012 analysis to inform 
current decisions.  Including a choice model that operated on existing market shares, albeit at a 
higher level of aggregation than specific nameplates, such as brand/segment/powertrain, may be 
able to improve internal consistency with the interaction of assumptions about fuel prices and 
regulatory alternatives.  DOT will continue to engage with the academic community and other 
stakeholders to ensure that future work on this question improves our analysis of regulatory 
alternatives. 

4.2.2 Modeling Changes in Vehicle Retirement Rates 

The effects of the proposed action on the fuel economy, prices, and other features of new cars 
and light trucks will affect not only their sales, but also the demand for used vehicles.  This is 
because used cars and light trucks—especially those produced more recently—are a close 
substitute for new models, so changes in prices and other attributes of new cars and light trucks 
will affect demand for used models.  In turn, this will affect their market value as well as the 
number of used vehicles remaining in service.   

Changes in the number of used vehicles in service, and by extension how much they are driven, 
have important consequences for fuel consumption, emissions of CO2 and criteria air pollutants, 
and safety.  The average age of a registered light-duty vehicle in the U.S. has already risen by 
more than 40 percent since 1995, and topped 12 years old for the first time this year (see Figure 
4-7, from IHS Markit).585  In light of this trend, it is important to capture the changes to vehicle 
usage and retirement in the used market that may be caused by regulation of the new vehicle 
market. 

 
585 https://ihsmarkit.com/research-analysis/average-age-of-cars-and-light-trucks-in-the-us-rises.html. 



 

 
Figure 4-7 – Average Age of a Registered Light-Duty Vehicle in U.S. 

This section discusses the basis for the scrappage effect of higher CAFE standards and traces 
each of those effects in detail, and explains how the likely magnitude of this effect is estimated 
for the proposed action.  Like many of the effects estimated by today’s proposal, the magnitude 
of impact CAFE standards have on scrappage rates is subject to uncertainty.  As a consequence 
of our assumptions about how consumers value fuel economy and when manufacturers will 
voluntarily adopt fuel economy technology, the direction of the scrappage effect is unambiguous. 

4.2.2.1 Foundation of the Scrappage Effect 

Fuel economy standards increase the cost of acquiring new vehicles, but also improve the quality 
of those vehicles by increasing their fuel economy.  The CAFE analysis assumes that consumers 
value the first 30 months of fuel savings at the time of purchase, so that the quality-adjusted 
change in new vehicle prices is the increase in regulatory costs less 30 months of fuel savings.  
Because the CAFE analysis also assumes that in the No-Action Alternative manufacturers will 
adopt fuel economy technologies with a payback period of 30 months or less, it follows that 
there will be net price increases in any regulatory scenario.  Higher CAFE standards make it 
costlier for manufacturers to produce vehicles and, as a result, prices of new vehicles increase.  
As long as the quality-adjusted price increases,586 sales of new vehicles are likely to decline, on 
the margin.  From a supply and demand perspective, this equates to the supply curve for new 
vehicles moving inwards or to the left and a corresponding increase in the equilibrium price and 
decrease in the equilibrium quantity of new vehicles purchased.  

 
586 The quality adjusted price is considered higher when regulatory compliance costs exceed 30 months of fuel 
savings.  



 

New and used vehicles are substitutes.  When the price of a good’s substitute increases, the 
demand curve for that good shifts upward and the equilibrium price and quantity supplied also 
increases.  Thus, increasing the quality-adjusted price of new vehicles will result in an increase 
in equilibrium price and quantity of used vehicles.  Since, by definition, used vehicles are not 
being “produced” but rather “supplied” from the existing fleet, the increase in quantity must 
come via a reduction in their retirement rates.  Practically, when new vehicles become more 
expensive, demand for used vehicles increases (and they become more expensive).  Because 
used vehicles are more valuable in such circumstances, they are scrapped at a lower rate, and just 
as rising new vehicle prices push marginal prospective buyers into the used vehicle market, 
rising used vehicle prices force marginal prospective buyers of used vehicles to acquire older 
vehicles or vehicles with fewer desired attributes.   

See PRIA Chapter 4.5 for a more detailed theoretical discussion of the effects of higher CAFE 
standards on the used car market. 

4.2.2.2 Model Development 

The unintended consequence of emissions standards on scrappage rates was first observed by 
Gruenspecht shortly after the inaugural CAFE standards were promulgated in 1978.587  
Gruenspecht identified criteria pollutant standards as a form of differentiated regulation; a 
regulation that affected some vehicles but not others – in this case, new vehicles but not used 
vehicles.  CAFE standards are another form of differentiated regulation, regulating the fuel 
economy of new, but not used, vehicles and so may produce the same kind of scrappage effect in 
the used vehicle population.  Since then, the relationship between fuel economy standards and 
scrappage has been a growing topic of academic literature.  In preparation of the previous rule—
which marked the first CAFE rulemaking to dynamically model scrappage—the agency 
performed a detailed review of literature.588  The principal conclusion from the literature review 
was that, among the studies that have attempted to estimate this effect directly, there is consensus 
about both its existence and direction (i.e., higher used vehicle prices lead to slower retirement 
rates) but estimates of the magnitude of the effect vary.  The agency used the literature and other 
regulatory scrappage models—mainly CARB’s 2004 CARBITS vehicle transaction choice 
model589—as a springboard to create a scrappage model that would be internally consistent with 
the broader CAFE Model.590  

While the agency did not use any particular model from the literature, the agency retained the 
framework outlined by Greenspan and Cohen to construct the CAFE Model’s scrappage model.  
Greenspan and Cohen identified two types of scrappage - engineering scrappage and cyclical 
scrappage.591  Engineering scrappage represents the physical wear on vehicles which results in 
their being scrapped.  Cyclical scrappage represents the effects of macroeconomic conditions on 

 
587 Gruenspecht, H. “Differentiated Regulation: The Case of Auto Emissions Standards.” American Economic 
Review, Vol. 72(2), pp. 328-331 (1982). 
588 See 83 FR 43093-94. 
589 Id.  
590 There were four elements identified as being necessary.  The agency noted that none of the existing scrappage 
models in literature met all four criteria.   
591 Greenspan, A. & Cohen, D. “Motor Vehicle Stocks, Scrappage, and Sales.” Review of Economics and Statistics, 
vol. 81, no. 3, 1999, pp. 369–383., doi:10.1162/003465399558300. 



 

the relative value of new and used vehicles—under economic growth the demand for new 
vehicles increases and the value of used vehicles declines, resulting in increased scrappage and 
more rapid fleet turnover.  In addition to allowing new vehicle prices to affect cyclical vehicle 
scrappage à la the Gruenspecht effect, Greenspan and Cohen also note that engineering 
scrappage seemed to increase where EPA vehicular-criteria pollutant emissions standards also 
increased; as more costs went towards compliance technologies, scrappage increased.  In this 
way, Greenspan and Cohen identify two ways that fuel economy standards could affect vehicle 
scrappage: 1) through increasing new vehicle prices, thereby increasing used vehicle prices, and 
finally, reducing on-road vehicle scrappage, and 2) by shifting resources towards fuel-saving 
technologies—potentially reducing the durability of new vehicles.  Under this framework, CAFE 
standards influence only engineering scrappage, but do so in the context of macroeconomic 
conditions that influence cyclical scrappage.  Today’s scrappage model is relatively unchanged 
from the scrappage model used in the 2020 final rule, which had made a variety of improvements 
as compared to the model used for the prior NPRM and addressed other substantive comments.  

4.2.2.2.1 Variables and Data Used to Estimate Scrappage  

Many competing factors influence the decision to scrap a vehicle, including the cost to maintain 
and operate it, the household’s demand for VMT, the cost of alternative means of transportation, 
and the value that be attained through reselling or scrapping the vehicle for parts.  A car owner 
will decide to scrap a vehicle when the value of the vehicle is less than the value of the vehicle as 
scrap metal, plus the cost to maintain or repair the vehicle.  In other words, the owner gets more 
value from scrapping the vehicle than continuing to drive it, or from selling it.  Typically, the 
owner that scraps the vehicle is not the first owner.  For the purposes of this exercise, any vehicle 
that disappears from the U.S. population is considered to be retired or “scrapped,” despite the 
fact that many of them are neither dismantled nor actually retired from service.  Many vehicles, 
whose value has declined to a point where continuing to operate and maintain them in the U.S. 
no longer makes economic sense, are merely exported to other countries (typically sold at 
auction) where they continue their lives for some number of years.  Others disappear as a result 
of collisions or irreparable mechanical failures, but present the same way for our purposes here – 
they fail to appear in the registration roles and, for our purposes, are assumed to be scrapped.   

While scrappage decisions are made at the household level, the agency is unaware of sufficient 
household data to capture scrappage at that level.  Instead, NHTSA uses aggregate data measures 
which capture broader market behavior.   

The agency is interested in how changes in new vehicle prices and fuel economy impact the 
retirement rate of the on-road fleet over time.  In order to isolate this effect, NHTSA needed 
multi-period data on the scrappage rates of used vehicles and prices of new vehicles.  Scrappage, 
itself, is a phenomenon inherently defined over multiple time periods; it represents a change in a 
vehicle (or model year cohort’s) registration status between one period and the next.  As such, 
the potential scrappage effect can only be measured through time series data.  The data contain 
information about national vehicle registrations in each calendar year from 1975 to 2017.  1975 
was the earliest year where all data were available.   



 

4.2.2.2.1.1 Age and Durability 

The most predictive element of vehicle’s scrappage in a given year is the influence of 
‘engineering scrappage.’  This source of scrappage is largely determined by the age of a vehicle 
and the durability of a specific model year vintage.  For a model year cohort, vehicle scrappage 
typically follows a roughly logistic function with age — that is, instantaneous scrappage 
increases to some peak, and then declines, with vehicle age until all (or nearly all) of the vehicles 
produced in a given year have been retired (which is illustrated in Figure 4-8). 

 

 

Figure 4-8 – Cumulative Scrappage for a Model Year Cohort 

NHTSA uses proprietary vehicle registration data from IHS-Polk, the National Vehicle 
Population Profile (NVPP), to collect vehicle age and estimate durability.  While the agency 
gives preference to publicly accessible data whenever possible, the NVPP represents the most 
comprehensive and complete source of vehicle registration information the agency has identified 
to date.   

The data cover the following regulatory classes as defined by NHTSA - passenger cars, light 
trucks (classes 1 and 2a), and medium and heavy-duty trucks (classes 2b and 3).  Polk separates 
these vehicles into finer market segments based on body style and gross vehicle weight rating.  
In order to build scrappage models to support the proposal, it was important to aggregate these 
vehicle types in a way that is compatible with the existing CAFE Model.   

Since for the purposes of this analysis, vans/SUVs are sometimes classified as passenger cars 
and sometimes as light trucks for regulatory purposes, survival schedules were developed to vary 
by body style.  Separate models were developed for cars, vans/SUVs, and pickup trucks.  This 
approach is preferable alternative methods—such as dividing vehicles by regulatory class—
because VMT schedules are calculated based on body style in the analysis.  Furthermore, these 



 

vehicle body styles are assumed to serve different purposes and, as a consequence, likely result 
in different lifetime scrappage patterns.   

Once stratified into body style buckets, the data are aggregated into population counts by vintage 
(model year) and age.  These counts represent the population of vehicles of a given body style 
and vintage in a given calendar year.  How many vehicles remaining in the fleet can be viewed 
as the durability of a particular model and the difference between the counts of a given vintage 
and body style from one calendar year to the next is assumed to represent the number of vehicles 
of that vintage and style scrapped in a given year.   

One issue with using snapshots of registration databases as the basis for computing scrappage 
rates is that vehicles are not removed from registration databases until the last valid registration 
expires.  For example, if registrations are valid for a year, vehicles will still appear to be 
registered in the calendar year in which they are scrapped.  To correct for the scrappage that 
occurs during a calendar year, a similar correction as that in Greenspan and Cohen (1996) is 
applied to the Polk registration data.  We assume that the real on-road count of vehicles of a 
given MY registered in a given CY is best represented by the Polk count of the vehicles of that 
model year in the succeeding calendar year (𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀+1).  For example, the vehicles scrapped 
between CY2000 and CY2001 will still remain in the Polk snapshot from CY2000 (𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2000), 
as they will have been registered at some point in that calendar year, and therefore exist in the 
database.  Using a simplifying assumption that all States have annual registration 
requirements,592 vehicles scrapped between July 1st, 1999 and July 1st, 2000 will not have 
renewed registration between July 1st, 2000 and July 1st, 2001, and will not show up in 
𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2001.  The vehicles scrapped during CY2000 are therefore represented by the difference in 
count from the CY2000 and CY2001 Polk datasets: 𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2001 - 𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2000.   

For new vehicles (vehicles where MY is greater than or equal to CY), the count of vehicles will 
be smaller than the count in the following year—not all of the model year cohort will have been 
sold and registered.  For these new model years, Greenspan and Cohen assume that the Polk 
counts will capture all vehicles which were present in the given calendar year and that 
approximately one percent of those vehicles will be scrapped during the year.  Importantly, this 
analysis begins modeling the scrappage of a given model year cohort in: 𝐶𝐶𝑌𝑌 = 𝑀𝑀𝑌𝑌 + 2,593 so 
that the adjustment to new vehicles is not relevant in the modeling because it only considers 
scrappage after the point where the on-road count of a given MY vintage has reached its 
maximum.   

 
592 In future analysis, it may be possible to work with State-level information and incorporate State-specific 
registration requirements in the calculation of scrappage, but this correction is beyond the initial scope of this 
rulemaking analysis.  Such an approach would be extraordinarily complicated as States can have very different 
registration schemes, and, further, the approach would also require estimates of the interstate and international 
migration of registered vehicles. 
593 Calculating scrappage could begin at CY=MY+1, as for most model year the vast majority of the fleet will have 
been sold by July 1st of the succeeding CY, but for some exceptional model years, the maximum count of vehicles 
for a vintage in the Polk data set occurs at age 2. 



 

 

Figure 4-9 – Visualization of Greenspan-Cohen Adjustment and Polk Data Collection Change 

There is a discontinuity between 2001 and 2002 data due a change in data collection.594  
Scrappage computed for calendar year 2001 represents the difference between the vehicle count 
reported in 𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2002 and 𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2001.  𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2001 represents all vehicles on the road as of July 
1st, 2000, and 𝐹𝐹𝑃𝑃𝑖𝑖𝑘𝑘𝐶𝐶𝑀𝑀2002 represents all vehicles on the road as of December 31, 2001.  For this 
one timespan, the scrappage will represent vehicles scrapped over a 17-month time period, rather 
than a year.  For this reason, the CY2001 scrappage data point is dropped, and because of the 
difference in the time period of vehicles scrapped under the old and new collection schemes, an 
indicator for scrappage measured before and after CY2001 was considered; however, this 
indicator is not statistically significant, and is dropped from the preferred model.  Variations in 
the resolution of state registration data over time have caused some calendar years to contain a 
larger number of vintages than others – the trend being that the oldest calendar years contain the 
fewest ages.  The number of observations for each range of vehicle ages (across the set of 
calendar year snapshots) is summarized in Table 4-5. 

 
594 Prior to calendar year 2002, Polk vehicle registration data were collected as a single snapshot on July 1st of every 
calendar year.  For calendar years 2002 and later, Polk changed the timing of the data collection process to a rolling 
collection ending on December 31.  That is, they consider information from other data sources to remove vehicles 
from the database that have been totaled in crashes before December 31st, but may still be active in State 
registration records.  The switch to a partially rolling dataset means that some of the vehicles scrapped in a calendar 
year will not appear in the dataset and their scrappage will wrongly be attributed to the year prior to when the 
vehicle is scrapped.  While this is less than ideal, these records represent only some of the vehicles scrapped during 
crashes and scrappage rates due to crashes should be relatively constant over the 2001 to 2002-time period.  For 
these reasons, NHTSA expects the potential bias from the switch to a partially rolling dataset to be limited.  Thus, 
the Greenspan and Cohen adjustment applied does not change for the dataset complied from Polk’s new collection 
procedures.   



 

Table 4-5 – Summary Vehicle Age and Vintage 

Ages Calendar 
Years Count 

0-15 1975-2017 43 
16 1994-2017 24 
17 1995-2017 23 
18 1996-2017 22 
19 1997-2017 21 
20 1998-2017 20 
21 1999-2017 19 
22 2000-2017 18 
23 2001-2017 17 
24 2001-2017 17 
25 2001-2017 17 
26 2001-2017 17 

27-39 2001-2017 17 

4.2.2.2.1.2 New Vehicle Prices  

As discussed earlier, new and used vehicles are substitutes.  Therefore the price of new vehicles 
will have a strong effect on the value of used vehicles and, thus, their scrappage rates.  This is the 
primary mechanism by which higher CAFE standards affect retirement rates of used vehicles.  
For historical data on new vehicle transaction prices, NHTSA uses data from the National 
Automobile Dealers Association (NADA).595  The data consist of the average transaction price 
of all light-duty vehicles; since the transaction prices are not broken-down by body style, the 
model may miss unique trends within a particular vehicle body style.  The transaction prices are 
the amount consumers paid for new vehicles, and exclude any trade-in value credited towards the 
purchase.  This may be particularly relevant for pickup trucks, which have experienced 
considerable changes in average price as luxury and high-end options entered the market over the 
past decade.  Future models will further consider incorporating price series that consider the 
price trends for cars, SUVs and vans, and pickups separately. 

NHTSA considered using the Bureau of Labor Statistics (BLS) New Vehicle Consumer Price 
Index (CPI).  The purpose of BLS data is to show how prices of similar goods and services 
change over time.  As such, the BLS New Vehicle CPI adjusts prices based on vehicle features—
such as safety and fuel economy improvements.  While this is good for some purposes, it 
incorporates into the price assumptions that are controlled for elsewhere in today’s analysis. 

As further justification, Park (1977) cites a discontinuity found in the amount of quality 
adjustments made to the series so that more adjustments are made over time.596  This could 
further limit the ability for the BLS New Vehicle CPI to predict changes in vehicle scrappage. 

 
595 The data can be obtained from NADA.  For reference, the data for MY 2020 may be found at 
https://www.nada.org/nadadata/.  
596 Parks, R. W. “Determinants of Scrapping Rates for Postwar Vintage Automobiles.” Econometrica, vol. 45, no. 5, 
1977, at 1099. 

https://www.nada.org/nadadata/


 

However, in order to ensure consistency with the sales response mechanism in the CAFE Model, 
the observed transaction prices have been modified for estimation (and subsequent simulation 
inside the CAFE Model).  In the tables that follow, New Price - FS represents the average price 
of new vehicles minus 30 months of fuel savings for all body styles.  The final specification 
treats the coefficient on the age interactions for this term as zero for all body styles, but 
alternative specifications were tested that allow the elasticity of scrappage to vary with age. 

4.2.2.2.1.3 Fuel Prices, Fuel Economy, and Cost Per Mile 

Instantaneous vehicle scrappage rates are also influenced by fuel economy and fuel prices.  
Historical data on the fuel economy by vehicle style from model years 1979-2016 was obtained 
from the 2016 EPA Fuel Economy Trends Report.597  The van/SUV fuel economy values 
represent a sales-weighted harmonic average of the individual body styles.  Fuel prices were 
obtained from Department of Energy (DOE) historical values, and future fuel prices within the 
CAFE Model use the Annual Energy Outlook (AEO 2021) Reference Case fuel price 
projections.598  Fuel price assumptions in this analysis are described further in Chapter 4.1.2.  
From these values the average cost per 100 miles of travel for the cohort of new vehicles in a 
given calendar year and the average cost per 100 miles of travel for each used model year cohort 
in that same calendar year are computed.599  The agency expects that as the new vehicle fleet 
becomes more efficient (holding all other attributes constant),  it will be more desirable, and the 
demand for used vehicles should decrease (increasing their scrappage).  As a given model year 
cohort becomes more expensive to operate due to increases in fuel prices, it is expected the 
scrappage rate of vehicles from that model year will increase.  It is perhaps worth noting that 
more efficient model year vintages will be less susceptible to changes in fuel prices, as absolute 
changes in their cost per mile will be smaller.  The functional forms of the cost per mile 
measures are further discussed in the model specification section below. 

4.2.2.2.1.4 Macroeconomic Data  

To capture the cyclical effects of scrappage, the model must include a variable accounting for 
economic conditions.  The agency uses the growth rate of real GDP for the analysis.  GDP 
growth rates are sourced from AEO 2021 through 2050, and extrapolated at the final (stable) 
growth rate through 2090.  Because the purpose of building this scrappage model is to project 
vehicle survival rates under different fuel economy alternatives, and the current fuel economy 

 
597 Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel 
Economy Trends - 1975 through 2016, EPA-420-R-16-010, November 2016.  
598 Note - The central analysis uses the AEO reference fuel price case, but sensitivity analysis also considers the 
possibility of AEO’s low and high fuel price cases.  
599 Work by Jacobsen & van Bentham suggests that these initial average fuel economy values may not represent the 
average fuel economy of a model year cohort as it ages — mainly, they find that the most fuel efficient vehicles 
scrap earlier than the least fuel efficient models in a given cohort.  This may be an important consideration in future 
endeavors that work to link fuel economy, vehicle miles travelled (VMT), and scrappage.  Studies on “the rebound 
effect” suggest that lowering the fuel cost per driven mile increases the demand for VMT.  With more miles, a 
vehicle will be worth less as its perceived remaining life will be shorter; this will result in the vehicle being more 
likely to be scrapped.  A rebound effect is included in this analysis, but expected lifetime VMT is not included 
within the current dynamic scrappage model. 



 

projections go as far forward as calendar year 2050, using a data set that encompasses 
projections at least through 2050 is essential. 

NHTSA considered using U.S. unemployment rate and per capita personal disposable income as 
alternatives to GDP growth rate to capture the cyclical component of the macro-economy.  Since 
these three variables are highly-correlated, the model may only contain one of these indicators.  
The agency tested the scrappage model with unemployment and per capita personal disposable 
income data, gathered from BEA.  The results showed evidence of autocorrelation in the error 
terms that is absent when GDP is used instead.  

4.2.2.2.1.5 Cash for Clunkers  

On June 14, 2009, the Car Allowance Rebate System (CARS) became law, with the intent to 
stimulate the economy through automobile sales and accelerate the retirement of older, less fuel 
efficient and less safe vehicles.  The program offered a $3,500 to $4,500 rebate for vehicles 
traded-in for the purchase of a new vehicle.  Vehicles were subject to several program eligibility 
criteria: first, the vehicle had to be drivable and continuously registered and insured by the same 
owner for at least one year; second, the vehicle had to be less than 25 years old; third, the MSRP 
had to be less than $45,000; and finally, the new vehicle purchased had to be more efficient than 
the trade-in vehicle by a specified margin.  The fuel economy improvement requirements by 
body style for specific rebates are presented in Table 4-6. 

Table 4-6 – CARS Fuel Economy Improvement Required for Rebates by Regulatory Class 

 
$3,500 
Rebate 

Eligibility 

$4,500 
Rebate 

Eligibility 
Passenger 
Car 

4-9 MPG 
Improvement 

10+ MPG 
Improvement 

Light 
Truck 

2-5 MPG 
Improvement 

5+ MPG 
Improvement 

 
By August 25, 2009, the program spent its $2.85 billion budget on 678,359 eligible transactions.  
As a condition of the program, the vehicles were scrapped at the point of trade-in by destroying 
the engine.  The CARS program arguably had two transitory effects on scrappage.  First, some 
vehicles may have been prematurely scrapped in exchange for the trade-in credit.  Second, the 
trade-in incentive likely increased demand for new vehicles, which in-turn increased new vehicle 
prices.  Both of these effects would accelerate scrappage for the duration of the program.  The 
Polk data support this hypothesis as vehicle scrappage rates spiked in 2009.  Figure 4-10 shows 
the impact of the program from another perspective.  It shows the observed instantaneous 
scrappage rate of MYs 1977-2015 by age for CYs 1980-2015.  The black stars represent 
observed scrappage rates for calendar years where the CARS program was not in effect, the red 
stars represent CY 2009 when the CARS program was in effect, and the blue dots represent the 
mean value of the scrappage when CARS was not in effect. 
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Figure 4-10 – Impacts of the 2009 CARS by Body Style 

Li, Linn, and Spiller (2010) used Canada as a counterfactual example to identify the portion of 
CARS trade-ins attributable to the policy, i.e., trade-ins that would not have happened anywhere 
if the program were not in place.600  They argued that the Canadian market is largely similar to 
the U.S. market, in part based upon the fact that 13 to 14 percent of households purchased new 
vehicles one year pre-recession in both countries.  They also argued that the economic crisis 
affected the Canadian economy in a similar manner as it affected the U.S. economy.  They noted 
that when Canada offered a small rebate of $300 to vehicles traded in during January, 2009, only 
60,000 vehicles were traded in under that program.  Using those assumptions, Li, et al., applied a 
difference-in-difference methodology to isolate the effect of the CARS program on the scrappage 
of eligible vehicles.  Li, et al., found a significant increase in the scrappage only for eligible U.S. 
vehicles, suggesting they isolated the effect of the policy.  They conclude that of the 678,359 
trade-ins made under the program, 370,000 of those would not have happened during July and 
August 2009.   

The agency finds the evidence from Li, et al., persuasive toward the inclusion of a control for the 
CARS program during calendar year 2009.  Notable from Figure 4-10 is that the effect of CARS 
on instantaneous scrappage is largest around the point that the average scrappage peaks for all 
other calendar years for each body style.  For cars the effect of the program increases until 
around age 20 and then decreases, for vans/SUVs the effect increases until just after age 15 and 
then decreases at a much slower rate, and finally, for trucks the effect increases steadily until 
around age 17 and then nearly levels off for all observed ages.  For this reason, a dummy 
variable for CY 2009 was interacted with linear and non-linear age variables to represent the 
effect of the CARS program.  The analysis confirmed that modeling as a constant dummy 
variable is sufficient to capture the nonlinear effect and accurately predict the spikes in scrappage 
under the CARS program. 

 
600 Li, S. et al. “Evaluating Cash-for-Clunkers - Program Effects on Auto Sales and the Environment.” Journal of 
Environmental Economics and Management, vol. 65, no. 2, 2013, pp. 175–193., doi:10.1016/j.jeem.2012.07.004. 



 

4.2.2.3 Model Specification 

4.2.2.3.1 Stationary Testing  

As discussed earlier, the scrappage model utilizes panel data.  Panel data observe multiple 
individuals or cohorts over time.  The data employed by the scrappage model observes the 
scrappage rates of individual model year cohorts between successive calendar years.  The model 
allows for the isolation of trends over time and across individuals.601  Since the scrappage model 
uses aggregate model year cohorts to estimate scrappage rates by age and time-dependent 
variables (new vehicle prices, fuel prices, GDP growth rate, etc.), panel data are necessary to 
estimate the model.  A major challenge to using panel data is that the data structure requires 
consideration of potential violations of econometric assumptions necessary for consistent and 
unbiased estimates of coefficients both across the cross-section and along the time dimension.  
The cross-section of the scrappage data introduces potential heterogeneity bias—where model 
year cohorts may have cohort-specific scrappage patterns.602  Stated differently, each model year 
may have its own inherent durability.  The time dimension of a panel introduces a set of potential 
econometric concerns present in time series analysis.   

As such, before devising the scrappage model, the agency needs to determine which, if any, of 
the variables are non-stationary.  The agency uses the Augmented Dickey-Fuller (ADF) test to 
test the variables.603  The logistic form of the instantaneous scrappage rate is stationary in levels.  
As such, there are no long-term trends within the scrappage rates that need to be captured and the 
scrappage model does not require lagged dependent variables to produce stationary residuals.  
However, to estimate unbiased estimators, the independent variables must also be stationary.  
The following table summarizes the order of integration of each of the considered regressions; 
the regression forms represent the form of the variable that is included in the considered models.  
All the variables considered are either I(0) or I(1), meaning that they should be run in either 
levels or first differences, respectively.  This significantly simplifies the regressions.   

 
601 Cambridge University Press. (1989). Analysis of Panel Data. New York, NY. 
602 Cambridge University Press. (1989). Analysis of Panel Data. New York, NY. 
603 Lupi, Claudio (2019, September 7). Package ‘CAFtest.’ Retrieved from https://cran.r-
project.org/web/packages/CADFtest/CADFtest.pdf. 

https://cran.r-project.org/web/packages/CADFtest/CADFtest.pdf
https://cran.r-project.org/web/packages/CADFtest/CADFtest.pdf


 

Table 4-7 – Summary of Order of Integration of Considered Scrappage Variables 

Scrappage Factor Considered Measure Source Integration 
Order 

Regression 
Form 

Expected 
Sign 

Scrappage Rate 

Logistic of inter-
annual scrappage rate 
for a model year/body 
style cohort 

NVPP 
(IHS/Polk) I(0) Levels N/A 

Age 
Age defined by the 
Greenspan and Cohen 
adjustment 

NVPP 
(IHS/Polk) N/A Levels Polynomial604 

Model year Model year as defined 
from dataset 

NVPP 
(IHS/Polk) N/A Levels See MY 

Projections605 

Business cycle 
indicator 

Growth in GDP from 
previous year (annual, 
%) 

BEA I(0) Levels (+) 

Prices of purchase 
Average used vehicle 
prices by age in 
current year 

No source; 
endogenous N/A N/A (-) 

Maintenance/repair 
costs 

Maintenance/repair 
CPI  
(fixed to 2016) 

BLS I(1) Difference (+) 

Prices supply of 
substitutes 

Average new vehicle 
prices less 30 months 
fuel savings in current 
year ($2018) 

NADA, 
EIA, EPA 
trends 

I(1) Difference (-) 

Prices of usage 

Cost-per-mile of 
model year/body style 
cohort in current year 
($2018/100 mile) 

EIA, EPA 
trends I(1) Difference (+) 

Prices of usage 

Fuel share weighted 
fuel prices for model 
year/body style cohort 
in current year 
($2018) 

EIA, EPA 
trends I(1) Difference (-)606 

4.2.2.3.2 Modeling Durability of Model Year Cohorts Over Time 

As explained in Chapter 4.2.2.2.1.1, engineering scrappage is largely determined by the age of a 
vehicle and the durability of a specific model year vintage.  Because vehicle scrappage typically 
follows a roughly logistic function with age, the analysis uses a logistic function to capture the 
trend of vehicle scrappage with age, but allows non-linear terms to capture any skew to the 

 
604 The effect of age on scrappage is an ‘inverted-U’ shape; the scrappage rate increases with age up to some age, 
after which the scrappage rate declines with age. 
605 See the section on modeling durability trends over time.  Generally, scrappage rates will decrease with successive 
model years. 
606 Since we include the cost-per-mile, we would expect that the change in fuel prices should capture only a capital 
constraint where increasing fuel prices will result in less capital to scrap a used vehicle and replace it. 



 

logistic relationship.  The durability of successive model years generally increases over time.  
However, this trend is not constant with vehicle age—the instantaneous scrappage rate of 
vehicles is generally lower for later vintages up to a certain age, but increases thereafter so that 
the final share of vehicles remaining converges to a similar share remaining for historically 
observed vintages.  Figure 4-11 to Figure 4-13 shows the survival and scrappage patterns of 
different vintages with vehicle age for cars, SUVs/vans and pickups, respectively.  Cars have the 
most pronounced durability pattern.  Figure 4-11 shows that newer vintages scrap slower at first, 
but then scrap more heavily so that the final share remaining of cars is relatively constant by age 
25 for all vintages.  

 

Figure 4-11 – Survival and Scrappage Patterns of Cars by Greenspan Age 

SUVs/vans have a less pronounced durability pattern.  Model year 1980 actually lives longer 
than model years 1985 and 1990.  This is likely due to a switch of SUVs/vans to be based on car 
chassis rather than pickup chasses over time.  However, through the later model years, the 
durability trend is more like that of cars.  The lack of a continuous trend in durability of 
SUVs/vans makes the way this trend is captured particularly important.   



 

 

Figure 4-12 – Survival of Scrappage Patterns of SUVs/Vans by Greenspan Age 

There is no clear trend in durability for pickups.  Like SUVs/vans, this makes parameterizing by 
using a form of vintage as a continuous variable problematic.  Such a parametric form does not 
allow for each model year to have its own durability pattern. 

 

Figure 4-13 – Survival and Scrappage Patterns of Pickups by Greenspan Age 

NHTSA attempted to model the natural log of model year as a continuous variable interacted 
with age to capture an increasing but diminishing trend of vehicle durability for the younger 
ages.  However, enforcing a parametric form on a continuous model year excluded the possibility 
of including model year specific fixed effects and required that durability to have a parametric 
trend with successive vintages.  As seen above, SUVs/vans and pickups certainly do not follow 
such a trend, so that this constraint was too restrictive, at least for these body styles.   

Instead of regressing the natural log of the vintage share in the remaining models, the agency 
tried several forms of the share remaining from the previous period as an independent variable, 



 

as seen in Table 4-8 through Table 4-10, below.  Since the logistic instantaneous scrappage rate 
is stationary (it is independent of the previous periods’ logistic instantaneous scrappage rate), the 
share remaining should not be endogenous.  The specifications that include variables for the 
share remaining also include model year specific fixed effects, as well as the additional variables 
that were selected to capture the effect of economic cycles, changes in average new vehicle 
prices, and other non-engineering considerations on instantaneous scrappage rates.  

4.2.2.3.3 Estimating the Scrappage Models 

Below is the logistic scrappage equation used for the proposal.  

ln�
𝑆𝑆𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀

1 − 𝑆𝑆𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀
� = 𝛽𝛽0 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 + 𝛽𝛽1 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒2𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 + 𝛽𝛽2 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒3𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 + 

𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒 𝑇𝑇𝑒𝑒𝑃𝑃𝑎𝑎𝑢𝑢𝑃𝑃𝑢𝑢𝑃𝑃𝑔𝑔𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 ∗ (𝛽𝛽3 + 𝛽𝛽4 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀)+ 
𝑃𝑃𝑢𝑢𝑓𝑓𝑓𝑓(𝑀𝑀𝑒𝑒𝑤𝑤 𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒 − 𝐹𝐹𝑆𝑆)𝐶𝐶𝑀𝑀 ∗ (𝛽𝛽5 + 𝛽𝛽6 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒𝑂𝑂𝑀𝑀.𝐶𝐶𝑀𝑀 + 𝛽𝛽7 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒2𝑂𝑂𝑀𝑀.𝐶𝐶𝑀𝑀 + 𝛽𝛽8 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒3𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀)+ 
𝛽𝛽9 ∗ 𝑃𝑃𝑢𝑢𝑓𝑓𝑓𝑓(𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖 𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒)𝐶𝐶𝑀𝑀+ 𝛽𝛽10 ∗ 𝑃𝑃𝑢𝑢𝑓𝑓𝑓𝑓(𝐶𝐶𝐹𝐹𝑀𝑀𝑂𝑂𝑀𝑀)𝐶𝐶𝑀𝑀+ 𝛽𝛽11 ∗ 𝑇𝑇𝑃𝑃𝐹𝐹 𝑇𝑇𝑢𝑢𝑃𝑃𝑤𝑤𝑃𝑃ℎ𝐶𝐶𝑀𝑀 + 
(𝛽𝛽12 + 𝛽𝛽13 ∗ [𝑇𝑇𝑔𝑔𝑒𝑒 ≥ 25]) ∗ 𝐶𝐶𝑌𝑌2009 + (𝛽𝛽14 + 𝛽𝛽15 ∗ [𝑇𝑇𝑔𝑔𝑒𝑒 ≥ 25]) ∗ 𝐶𝐶𝑌𝑌2010

+ 𝐹𝐹𝑢𝑢𝐹𝐹𝑒𝑒𝑑𝑑𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑃𝑃𝐶𝐶𝑂𝑂𝑀𝑀 

Equation 4-6 – Scrappage Logistic Form 

S represents the instantaneous scrappage rate in a period, so that the dependent variable is the 
logit form of the scrappage rates.  Throughout the equation, Diff refers to the first difference of a 
given variable.  As discussed in Chapter 4.2.2.3.1, above, it is important to ensure that the 
statistical properties of a variable do not change with time or else the variable will introduce 
statistical bias into the analysis.  Because several of the variables considered in Table 4-7 were 
integrated of order 1, it is necessary to use the first difference (the calculated difference in its 
observed value from time t to time t + 1) in order to ensure stationarity.  

Age represents the age of the model year cohort in a specific calendar year.  The coefficient on 
the cubic age term is assumed to be zero for the van/SUV and pickup specifications as this term 
is not necessary to capture the general scrappage trend for these body styles.  Share Remaining 
represents the share of the original cohort remaining in that calendar year.  These two 
components represent the engineering portion of scrappage—the inherent durability of a model 
year and the natural life cycle of how vehicles scrap out of a model year cohort as the cohort 
increases in age.   

New Price—FS represents the average price of new vehicles minus 30 months of undiscounted 
fuel savings for all body styles.  The central analysis assumes the coefficient on the age 
interactions for this term are zero for all body styles, but NHTSA considered alternative 
specifications that allow the elasticity of scrappage to vary with age.  Fuel Price is the real fuel 
prices, weighted by fuel share (across all fuel types, but is overwhelming skewed toward 
gasoline in the historical data) of the model year cohort being scrapped.  CPM represents the cost 
per 100 miles of travel for the specific body style of the model year cohort being scrapped under 
the current period fuel prices and using fuel shares for that model year cohort.  These measures 
capture the response of scrappage rates to new vehicle prices, fuel savings, and to changes in fuel 
prices that make the used model year cohort more or less expensive to operate.  Because these 



 

measures are all I(1), as discussed above in Table 4-7, the first difference of all of these variables 
is used in modelling.   

GDP Growth represents the (real) GDP growth rate for the period.  This captures the cyclical 
components of the macro-economy.  Chapter 4.2.2.2.1.4, above, discusses how this specific 
measure was chosen, and what other measures were considered as alternative or additional 
independent variables.   

CY2009 and CY2010 represent calendar year dummies for 2009 and 2010 when the CARS 
program was in effect; this controls for the impact of the program.   

[Age ≥ 25] represents an indicator for vehicles 25 years and older.  The interaction of the 
calendar year dummies with this indicator allows for the effect of the CARS program to be 
different for vehicles under 25 versus vehicles 25 and older.  Since only vehicles under 25 were 
eligible for the program, this flexibility is important to correctly control for the program.  

FixedEffects represents a set of model year fixed effects used to control for heterogeneity across 
different model years.  This is related to the durability and engineering scrappage. 

Solving for instantaneous scrappage yields the following: 

𝑆𝑆 =
𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖

1 + 𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖
 

Equation 4-7 – Instantaneous Scrappage  

In the equation above, ∑𝛽𝛽𝑟𝑟 𝑀𝑀𝑟𝑟 represents the right-hand side of the above model specification.   

𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀+1 = 𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 ∗ (1 − 𝐶𝐶𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀). 
Equation 4-8 – Remaining Used Vehicle Population  

 



 

Table 4-8 – Car Specifications with Alternative Durability Constructions 

Variable 
Share 

Remaining, 
Quadratic 

Preferred Share 
Remaining, 

Linear 

Share 
Remaining, 

Constant 
Diff(New Price - Fuel 
Savings) 

-0.0000951*** 
(0.0000013) 

-0.0001009*** 
(0.0000014) 

-0.0000912*** 
(0.0000020) 

GDP Growth Rate 0.0456642*** 
(0.0008774) 

0.0469495*** 
(0.0010729) 

0.0563901*** 
(0.0010643) 

Diff(Real Gas Price) -0.4458118*** 
(0.0200234) 

-0.5176484*** 
(0.0166983) 

-0.6428521*** 
(0.0220153) 

Diff(Used Cost Per 100 
miles) 

0.0524257*** 
(0.0038726) 

0.0620020*** 
(0.0034245) 

0.0714549*** 
(0.0045965) 

Share Remaining -3.1435300*** 
(0.0414626) 

-3.4186938*** 
(0.0343009) 

-1.4338395*** 
(0.0256165) 

Share Remaining*Age 0.3120942*** 
(0.0072003) 

0.1806424*** 
(0.0026794)  

Share Remaining*Age2 -0.0121010*** 
(0.0005793)   

Age 0.0578317*** 
(0.0070468) 

0.0951732*** 
(0.0058835) 

0.4360045*** 
(0.0021804) 

Age2 -0.0019635*** 
(0.0003689) 

-0.0063290*** 
(0.0002880) 

-0.0205609*** 
(0.0001130) 

Age3 -0.0000414*** 
(0.0000061) 

0.0000472*** 
(0.0000047) 

0.0002313*** 
(0.0000025) 

CY2009, Ages 25+ 0.4512855*** 
(0.0314314) 

0.4920502*** 
(0.0218911) 

0.4029622*** 
(0.0252641) 

CY2010, Ages 25+ 0.2995697*** 
(0.0238203) 

0.2372077*** 
(0.0122188) 

0.1398496*** 
(0.0233336) 

CY2009 0.0732048*** 
(0.0190192) 

0.2075985*** 
(0.0094498) 

0.0839103*** 
(0.0121392) 

CY2010 0.2273621*** 
(0.0135031) 

0.3150729*** 
(0.0089111) 

0.4052745*** 
(0.0169191) 

Adj-R2 0.8989188 0.9001046 0.8957709 
AIC 213 201 231 
Woodridge AC P-Value607 0.0026154 0.0145811 0.0010401 

*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 

 
607 Note: Wooldridge Test For AR(1) Errors In FE Panel Models implemented as ‘pwartest’ from the R Package 
‘plm’.  The null hypothesis is that there is serial correlation in the errors, so that a p-value<0.05 suggests that the 
errors are not serially correlated. 



 

Table 4-9 – SUVs/Vans Specifications with Alternative Durability Constructions 

Variable 
Share 

Remaining, 
Quadratic 

Preferred Share 
Remaining, 

Linear 

Share 
Remaining, 

Constant 

Diff(New Price - Fuel 
Savings) 

-0.0000228*** 
(0.0000013) 

-0.0000356*** 
(0.0000013) 

-0.0000299*** 
(0.0000011) 

GDP Growth Rate 0.0695386*** 
(0.0012301) 

0.0657111*** 
(0.0009900) 

0.0795823*** 
(0.0010000) 

Diff(Real Gas Price) -0.2764171*** 
(0.0257452) 

-0.4362834*** 
(0.0278925) 

-0.2895806*** 
(0.0231274) 

Diff(Used Cost per 100 
Miles) 

0.0524134*** 
(0.0043595) 

0.0717750*** 
(0.0043034) 

0.0531272*** 
(0.0034518) 

Share Remaining 0.0297029 
(0.0901657) 

-3.3452757*** 
(0.0554430) 

0.7119660*** 
(0.0222985) 

Share Remaining*Age -0.0621384*** 
(0.0073936) 

0.1825513*** 
(0.0030923)  

Share Remaining* Age2 0.0112131*** 
(0.0003223)   

Age 0.2466527*** 
(0.0063507) 

0.0460123*** 
(0.0055806) 

0.4015673*** 
(0.0015458) 

Age2 -0.0065623*** 
(0.0001252) 

-0.0029204*** 
(0.0001212) 

-0.0095063*** 
(0.0000358) 

CY2009, Ages 25+ 0.3581448*** 
(0.0206753) 

0.6247703*** 
(0.0191476) 

0.3282078*** 
(0.0248535) 

CY2010, Ages 25+ 0.3022435*** 
(0.0215352) 

0.1385811*** 
(0.0298242) 

-0.0734390** 
(0.0223489) 

CY2009 0.4353784*** 
(0.0155607) 

0.1828926*** 
(0.0129064) 

0.6678445*** 
(0.0236451) 

CY2010 0.0924318*** 
(0.0167183) 

0.2424634*** 
(0.0126816) 

0.3936159*** 
(0.0158770) 

R2 0.9033051 0.9049046 0.8845334 
AIC 173 160 288 
Woodridge AC P-Value608 0.0035220 0.0486846 0.0000051 

*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 

 
608 Note: Wooldridge Test For AR(1) Errors In FE Panel Models implemented as ‘pwartest’ from the R Package 
‘plm’.  The null hypothesis is that there is serial correlation in the errors, so that a p-value<0.05 suggests that the 
errors are not serially correlated. 



 

 

Table 4-10 – Pickup Specifications with Alternative Durability Constructions 

Variable 
Share 

Remaining, 
Quadratic 

Preferred 
Share 

Remaining, 
Linear 

Share 
Remaining, 

Constant 

Diff(New Price - Fuel Savings) -0.0000674*** 
(0.0000019) 

-0.0000816*** 
(0.0000018) 

-0.0000581*** 
(0.0000017) 

GDP Growth Rate 0.0736057*** 
(0.0011368) 

0.0582337*** 
(0.0012998) 

0.0602333*** 
(0.0009533) 

Diff(Real Gas Price) -0.2864880*** 
(0.0334947) 

-0.5001835*** 
(0.0334884) 

0.0798291** 
(0.0299877) 

Diff(Used Cost per 100 Miles) 0.0441250*** 
(0.0056864) 

0.0646677*** 
(0.0057105) 

-0.0097471 
(0.0052524) 

Share Remaining -1.5573629*** 
(0.1003296) 

-1.9174078*** 
(0.0731793) 

0.5012308*** 
(0.0306657) 

Share Remaining*Age 0.1049521*** 
(0.0054214) 

0.1310775*** 
(0.0034927)  

Share Remaining* Age2 0.0012152*** 
(0.0002025)   

Age 0.0776425*** 
(0.0064930) 

0.0528728*** 
(0.0055778) 

0.2629608*** 
(0.0015738) 

Age2 -0.0023773*** 
(0.0001126) 

-0.0018482*** 
(0.0000995) 

-0.0057176*** 
(0.0000225) 

CY2009, Ages 25+ 0.0705278* 
(0.0354674) 

-0.0770359* 
(0.0343983) 

0.1636518*** 
(0.0337895) 

CY2010, Ages 25+ 0.3659284*** 
(0.0136404) 

0.4057619*** 
(0.0129972) 

0.2123575*** 
(0.0153148) 

CY2009 0.5757490*** 
(0.0170277) 

0.5752367*** 
(0.0170742) 

0.5852774*** 
(0.0205956) 

CY2010 0.1908829*** 
(0.0074929) 

0.2808360*** 
(0.0070026) 

0.2236518*** 
(0.0129120) 

R2 0.9228605 0.9193500 0.9170718 
AIC -45 -48 -32 
Woodridge AC P-Value609 0.6073232 0.6683055 0.0516705 

*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 
 

As Table 4-8 shows, the linear form of the interaction of age and share remaining does not show 
evidence of autocorrelation and also has the lowest AIC (Akaike Information Criterion – an 
estimator of prediction error and measure of model quality) and highest adjusted R-squared.  For 
these reasons, this is the preferred specification of the durability effect.  Since the share 

 
609 Note: Wooldridge Test For AR(1) Errors In FE Panel Models implemented as ‘pwartest’ from the R Package 
‘plm’.  The null hypothesis is that there is serial correlation in the errors, so that a p-value<0.05 suggests that the 
errors are not serially correlated. 



 

remaining coefficient is negative and larger than the positive coefficient on the share remaining 
interacted with age, a cohort that has a higher share remaining at an early age will have a lower 
instantaneous scrappage rate in this period until a certain age and then a higher scrappage rate 
after that age.  To find the age where the sign of the share remaining coefficient will switch from 
predicting a lower instantaneous scrappage rate to a higher one, one must take the ratio of the 
coefficient on the share remaining variable to the share remaining interacted with age—this 
suggests that at age 19, the sign of the share remaining variable flips.  That is, the instantaneous 
scrappage rate of cars is predicted to be lower if the share remaining is higher until age 18, after 
which a higher share remaining predicts a higher instantaneous scrappage rate. 

Table 4-9 shows, the linear interaction of age and share remaining is the only specification of the 
durability effect for SUVs/vans that do not show autocorrelation in the error structure.  The 
linear interaction of age and share remaining has the lowest AIC and highest R-squared; for this 
reason, this is the preferred specification of the durability effect for SUVs/vans.  The signs for 
share remaining and share remaining interacted with age show a similar trend as that to cars.  
Taking the ratio again of the share remaining to the share remaining interacted with age, for ages 
0 to 18 a higher share remaining predicts lower instantaneous scrappage, and for ages beyond 18 
it predicts a higher instantaneous scrappage rate. 

Table 4-10 shows, all specifications of the durability effect for pickups do not show 
autocorrelation in the error structures.  However, similar to cars and SUVs/vans, the linear 
interaction of age and share remaining has the lowest AIC and highest adjusted R-squared.  For 
this reason, this is the preferred specification for all body styles.  Taking the ratio of the 
coefficient on share remaining to share remaining interacted with age shows that a higher share 
remaining will predict a lower instantaneous scrappage rate in the next period for ages 0 through 
14, but a higher instantaneous scrappage rate for ages 15 and older. 

4.2.2.3.3.1 Projecting Durability in the CAFE Model 

The left graphs in Figure 4-14 through Figure 4-16 show the fixed effects for the preferred 
scrappage specifications for cars, vans/SUVs, and pickups, respectively.  For all body styles 
there is a general downward trend in the fixed effects.  This suggests an increase in the durability 
over successive model years.  However, since the panel datasets are unbalanced, there is likely 
potential bias for the fixed effects that include only certain ages.  This makes projecting the 
durability increase from the fixed effects a little more complicated than merely fitting to all fixed 
effects.  First, NHTSA determined what part of this trend is likely due to increases in vehicle 
durability (and should be projected forward) and which part of the trend may conflate other 
factors. 

The right graphs in Figure 4-14 through Figure 4-16 show the average observed logistic 
scrappage rates by model year for all ages where data exist.  As can be seen, the average 
observed scrappage rates decline dramatically for model years after 1996 for all body styles.  
There are two reasons this trend exists.  First, as the figures show, the instantaneous scrappage 
rate generally follows an inverted u-shape with respect to vehicle age.  The instantaneous 
scrappage rates generally peak between ages 15 and 20 for all body styles.  Model year 1996 is 
the first model year which will be at least age 20 at the most recent year of data used to estimate 
the scrappage models(calendar year 2016).  This means that all model years newer than 1996 



 

have likely not yet reached the age where the instantaneous scrappage rate will be the highest for 
the cohort.  Accordingly, the fixed effects could be biased downwards (consistent with the 
sharper downward slope in the fixed effects for most body styles for model years beyond 1996) 
because of the unbalanced nature of the panel, and not because of an actual increase in inherent 
vehicle durability for those model years.  

The second reason the average logistic scrappage rates for model years before 1996 is more 
stable is because each data point in the average has increasingly less effect on the average as 
more data exist.  For model years 1996 and older there are at least 18 data points (we start the 
scrappage at age 2, by which point effectively all of a model year has been sold), and each will 
have a smaller effect on the average than for newer model years with fewer observations.  For 
these reasons, the average observed logistic scrappage rate is more constant for model years 
before 1996.  As a result, we do not consider the trend in fixed effects after model year 1996 to 
rely on enough historical data to represent a trend in vehicle durability, as opposed to a trend in 
the scrappage rate with vehicle age.  

In considering which model year fixed effects should be considered in projecting durability 
trends forward, another important factor is whether there are discrete shifts in the types of 
vehicles that are in the market or category of each body style over time.  For cars, an increasing 
market share of Japanese automakers which tend to be more durable over time might result in 
fixed effects for earlier model years being higher.  This trend is shown in the fixed effects in  
Figure 4-14, which follow a steeper trend before model year 1980. 

 
Figure 4-14 – Trends in Fixed Effects for Preferred Car Specification 

For vans/SUVs, earlier model years are more likely to be built on truck chassis (body-on-frame 
construction) instead of car chassis (unibody construction).  Since pickups tend to be more 
durable, the earlier fixed effects are likely to be lower for vans/SUVs for earlier model years.  
The 1984 Jeep Cherokee was the first unibody construction SUV.610  As Figure 4-15 shows, the 
fixed effects before 1986 show inconsistent trends; these are likely due to changes in what was 

 
610 https://www.autoguide.com/auto-news/2018/01/10-interesting-facts-from-the-history-of-the-jeep-cherokee.html. 

https://www.autoguide.com/auto-news/2018/01/10-interesting-facts-from-the-history-of-the-jeep-cherokee.html


 

considered a van/SUV over time.  For this reason, NHTSA builds the trend of fixed effects from 
model years 1986 to 1996. 

 
Figure 4-15 – Trends in Fixed Effects for Preferred Van/SUV Specification 

 
Figure 4-16 – Trends in Fixed Effects for Preferred Pickup Specification 

While the trend for pickups and cars could be extrapolated before 1986, NHTSA opted to keep 
the fixed effects included constant for all body styles.  Thus, the projections are built from model 
year 1986 to model year 1996 fixed effects.  Table 4-11 below shows the linear regressions 
shown as the line on the left side of Figure 4-14 through Figure 4-16.  The durability cap 
represents the last model year where the durability trend is assumed to persist.  The agency caps 
the durability impacts at model year 2005, as data beyond this point do not exist for enough ages 
to determine if durability has continued to increase since this point.  The implication of this cap, 
is that model years after 2005 are assumed to have the same initial durability as model year 2005 
vehicles.  Since there is a limit to the potential durability of vehicles, this acts as a bound on this 
portion of the scrappage model (which, in turn impacts simulated fleet size and average age). 



 

Table 4-11 – Durability Inputs in the CAFE Model 

Beta Coefficients Inputs Cars Vans/SUVs Pickups 

𝛽𝛽12 Intercept 21.13195 25.488 54.52891 

𝛽𝛽13 MY -0.01141 -0.01364 -0.02879 

𝛽𝛽14 MY Durability 
Cap 2005 2005 2005 

 
The durability projections enter the scrappage equation in the CAFE Model simulations in 
accordance to the following equation: 

ln�
𝑆𝑆𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀

1 − 𝑆𝑆𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀
� = 𝛽𝛽0 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 + 𝛽𝛽1 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒2𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 + 𝛽𝛽2 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒3𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 + 

𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒 𝑇𝑇𝑒𝑒𝑃𝑃𝑎𝑎𝑢𝑢𝑃𝑃𝑢𝑢𝑃𝑃𝑔𝑔𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 ∗ (𝛽𝛽3 + 𝛽𝛽4 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀)+ 

𝑃𝑃𝑢𝑢𝑓𝑓𝑓𝑓(𝑀𝑀𝑒𝑒𝑤𝑤 𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒 − 𝐹𝐹𝑆𝑆)𝐶𝐶𝑀𝑀 ∗ (𝛽𝛽5 + 𝛽𝛽6 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒𝑂𝑂𝑀𝑀.𝐶𝐶𝑀𝑀 + 𝛽𝛽7 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒2𝑂𝑂𝑀𝑀.𝐶𝐶𝑀𝑀 + 𝛽𝛽8 ∗ 𝑇𝑇𝑔𝑔𝑒𝑒3𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀)+ 

𝛽𝛽9 ∗ 𝑃𝑃𝑢𝑢𝑓𝑓𝑓𝑓(𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖 𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑒𝑒)𝐶𝐶𝑀𝑀+ 𝛽𝛽10 ∗ 𝑃𝑃𝑢𝑢𝑓𝑓𝑓𝑓(𝐶𝐶𝐹𝐹100𝑀𝑀𝑂𝑂𝑀𝑀)𝐶𝐶𝑀𝑀+  

𝛽𝛽11 ∗ 𝑇𝑇𝑃𝑃𝐹𝐹 𝑇𝑇𝑢𝑢𝑃𝑃𝑤𝑤𝑃𝑃ℎ𝐶𝐶𝑀𝑀 + 𝛽𝛽12+𝛽𝛽13 ∗ 𝑀𝑀𝑌𝑌𝑂𝑂𝑀𝑀 - ifelse(𝑀𝑀𝑌𝑌𝑂𝑂𝑀𝑀>𝛽𝛽14, 𝛽𝛽13 ∗ (𝑀𝑀𝑌𝑌𝑂𝑂𝑀𝑀 − 𝛽𝛽14), 0) 

Equation 4-9 – Durability Projections and Scrappage Equation 

The intercept enters as a constant added to the predicted logistic of the instantaneous scrappage 
rate.  The model year slope enters as the model year for all model years older than 2005 and 
enters as 2005 for all model years 2005 and newer. 

Once the predicted logistic scrappage rate is calculated in the CAFE Model (including the 
projections of the fixed effect portion of the equation), the future population of model year 
cohorts can be predicted.  The instantaneous scrappage can be calculated directly from S.  It 
identifies the share of remaining vehicles in each calendar year that are scrapped in the next year.  
The population of vehicles in the next calendar year can be calculated as follows: 

𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀+1 = 𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 ∗ (1 − 𝐶𝐶𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀) 

Equation 4-10 – Calculation of Population of Vehicles in the Next Calendar Year 

This process is iteratively calculated at the end of the CAFE Model simulation to determine the 
projected population of each model year in each future calendar year.  This allows the calculation 
of vehicle miles travelled, fuel usage, pollutant and CO2 emissions, and associated costs and 
benefits.  The CAFE Model documentation released with this proposal further details how the 
scrappage model is projected within the simulations. 



 

4.2.2.3.3.2 Decay Function for Oldest Ages 

Nearly six percent of the MY 2015 van/SUV fleet and eight percent of the pickup fleet is 
projected to persist until age 40.  This is unrealistic, and likely due to the fact that the agency 
does not observe enough model years for those ages and over-predict the impact of durability 
increases for those ages.  For this reason, the agency uses a scrappage curve with an accelerated 
decay function to predict instantaneous scrappage beyond age 30 for all classes.  Table 4-12 
below, shows the inputs used for this analysis. 

Table 4-12 – Decay Function Inputs 

Beta Coefficients Inputs Cars Vans/SUVs Pickups 
𝛽𝛽15 Decay Age 30 30 30 
𝛽𝛽16 Final Survival Rate 0.01 0.025 0.025 

 
The agency selected to have the decay function begin operating at age 30 as the observed 
historical trends run through age 30.   

The decay function is implemented in the model using the following conditions for the 
coefficients in Table 4-12: 

If (age<𝛽𝛽15), 

𝑆𝑆 =
𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)

1 + 𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)
 

And: 

𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀+1 = 𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 ∗ (1 − 𝑆𝑆𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀). 
If (age>=𝛽𝛽15), 

𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀+1 = 𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀=𝛽𝛽15 ∗ 𝑒𝑒𝐹𝐹𝐹𝐹
𝑟𝑟𝑆𝑆𝐹𝐹𝑟𝑟∗𝐹𝐹 

Where: 

 
𝑃𝑃 = (𝑎𝑎𝑔𝑔𝑒𝑒 + 1 − 𝛽𝛽15) 

 
And: 

𝑢𝑢𝑎𝑎𝑃𝑃𝑒𝑒 =
𝑖𝑖𝑃𝑃 � (𝛽𝛽16)

𝐹𝐹𝑃𝑃𝐹𝐹𝑢𝑢𝑖𝑖𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀=𝛽𝛽15
�

40 − 𝛽𝛽15
 

Here, the population for ages beyond the start age of the decay function depends on the 
population of the cohort at that start age and the final share expected for that body style at age 
40.  Then the model calculates and applies the rate of decay necessary to make the final 
population count equal that observed in the historical data. 



 

4.2.2.3.4 Other Variables Considered  

In addition to the variables included in the scrappage model, the agency considered several other 
variables that likely either directly or indirectly influence scrappage in the real world.  As 
explained in more detail in the forthcoming paragraphs, these variables were excluded from the 
model either because of a lack of underlying data or modeling constraints.  Their exclusion from 
the model is not intended to diminish their importance, but rather highlights the practical 
constraints of modeling intricate decisions like scrappage in both an econometric and 
(subsequently) simulation context.  

As noted earlier, households will retire used vehicles when their market value drops below the 
cost of maintenance necessary to keep them in service longer.  As such, maintenance costs play a 
critical role in determining when vehicles are scrapped.  The agency encountered several issues 
when attempting to incorporate maintenance into the analysis.  First, there is a lack of 
comprehensive data sources for used vehicle maintenance.  By far the most comprehensive and 
complete data set is the BLS maintenance and repair data.  However, the BLS data do not 
measure the cost of maintenance for individual model year cohorts, but instead measures average 
maintenance cost per calendar year, which limits the usefulness of the data in a panel model.  
Despite this inherent shortcoming, the agency tried including maintenance as a calendar year 
effect, but the variable decreased the fit of the model.  For these reasons the agency excluded 
maintenance from the model.  If model year specific repair costs become available, the agency 
will reconsider including maintenance in future model specifications.   

The market value of a vehicle at the time of scrappage is equal to a combination of the price of 
the parts that can be salvaged and the value of the recoverable scrapped metal.  The agency 
considered including the value of steel and iron to capture the scrappage value of vehicles.  
However, the material composition and mass of vehicles has changed over time meaning that the 
absolute amount of recoverable scrap steel is not constant.  To appropriately estimate the value to 
scrap a vehicle, the agency would need to know the average weight of recoverable steel by 
vintage and the quantity and value of other recoverable materials.  The agency is unaware of any 
data granular enough to provide estimates of these values.  Further, projecting the future value of 
the recoverable scrap metal would involve computing the amount of recoverable steel under all 
scenarios of fuel economy standards, where mass and material composition are assumed to vary 
across all alternatives.  The agency attempted to use a coarse approximation of scrappage value 
by using the BLS scrap steel CPI; similar to maintenance, including the variable diminished the 
fit of the model.  It is also a consideration that, over time, vehicles leave U.S. registration rolls 
for reasons other than true scrappage (typically export to less wealthy nations where the vehicle 
still represents a positive value proposition to potential buyers), which would not be as strongly 
affected by the price of scrap steel. 

The scrappage model controls for vehicle characteristics across model years through fixed 
effects.  As an alternative, the agency considered a more granular approach of estimating the 
impact of discrete vehicle traits, such as horsepower to weight, zero to sixty acceleration time, 
and average curb weight.  However, including these individual traits produced a poorer fit than 
the model with fixed effects, and showed evidence of autocorrelation in the errors.  Similarly, the 
agency considered using terms that would more directly capture the value of improved fuel 
economy in newer vehicles, such as the cpm of new vintages, than subtracting the first 30 



 

months of undiscounted fuel prices from the price of new vehicles.611  These variables did not 
improve the fit of the model and would be inconsistent with how the agency approaches 
consumer valuation of fuel economy throughout the rest of the analysis.  

The quantity of new vehicles purchased and scrappage rates seem intuitively interconnected; 
when new vehicle sales increase, demand for older vehicles decreases, leading to higher 
scrappage rates.  When the agency tested new vehicle sales in the model, the model’s fit 
decreased and the direction of the coefficient was counterintuitive.  It also introduced evidence 
of autocorrelation in the error structure for cars and reduced the effect of the change in fuel 
prices by two orders of magnitude for vans/SUVs.  It seems quite unlikely that fuel price 
sensitivities would differ so vastly between model types.  For these reasons, the scrappage model 
excludes the change in new vehicles sales.  The agencies also considered including changes in 
vehicle stock, but this similarly did not improve the fit of the scrappage models—and doing so 
limited the ability to link the sales and scrappage models in future versions of the model. 

Higher interest rates increase the cost to purchase new vehicles, which should increase the 
incentive for households to hold onto existing vehicles.  For some households, higher interest 
rates could act as a barrier to entry; however, the households excluded from the new vehicle 
market because of a modest change in interest rates are much more likely to be in the market for 
a used vehicle and their purchasing decision is unlikely to be heavily influenced by interest rates.  
The agency tested interest rates in the model using the average real interest rate on social security 
trust public-debt obligations.  While this is not a perfect measure of auto loan interest rates, the 
two are correlated so that that most of the effect of auto loan rates should be captured by using 
the interest rate facing the federal government.  For vans/SUVs the model with interest rates had 
a poorer fit and showed evidence of autocorrelation in the error structures.  For pickups, 
including interest rates changed the sign on CPM.  Interest rates do not affect CPM as CPM 
measures only the post-sale operating cost.   

4.3 Changes in Vehicle Miles Traveled (VMT) 

VMT directly influences many of the various effects of fuel economy standards that decision-
makers consider in determining what levels of standards to set.  For example, the value of fuel 
savings is a function of a vehicle’s efficiency, miles driven, and fuel price.  Similarly, factors like 
criteria pollutant emissions, congestion, and fatalities are direct functions of VMT.  In the CAFE 
Model, VMT is the product of average usage per vehicle in the fleet and fleet composition, 
which is itself a function of new vehicle sales and vehicle retirement decisions, otherwise known 
as scrappage.  These three components—average vehicle usage, new vehicle sales, and older 
vehicle scrappage—jointly determine total VMT projections for each alternative. 

CAFE Model simulations provide aggregate estimates of light-duty VMT comparable to other 
well-regarded VMT estimates.  However, because decisions about alternative stringencies look 
at the incremental costs and benefits across alternatives, it is more important that the analysis 
capture the variation of VMT across alternatives than to accurately predict total VMT within a 
scenario.  To accomplish this, the CAFE Model begins with a model of aggregate VMT 

 
611 The scrappage model cannot include both independent variables on the fuel economy and cost-per-mile of new 
vehicles, and adjust the new vehicle prices by the value of fuel savings considered at the time of purchase, which 
would account for the improvement of the fuel economy of new vehicles twice.  



 

developed by FHWA, that is used to produce their official annual VMT forecasts.  The CAFE 
Model restricts “non-rebound” VMT to be constant across regulatory alternatives, making the 
only differences in VMT among alternatives (in a given year) a consequence of the rebound 
effect associated with improving fuel economy (but not changes in fuel prices or used vehicle 
fleet composition). 

The approach in the model is a combination of top-down (relying on the FHWA forecasting 
model to determine total light-duty VMT in a given calendar year), and bottom-up (where the 
composition and utilization of the on-road fleet determines a base level of VMT in a calendar 
year, which is constrained to match the FHWA model).  While NHTSA and the model 
developers agree that a joint household consumer choice model—if one could be developed 
adequately and reliably to capture the myriad circumstances under which families and 
individuals make decisions relating to vehicle purchase, use, and disposal—would reflect 
decisions that are made at the household level, it is not obvious, or necessarily appropriate, to 
model the national program at that scale in order to produce meaningful results that can be used 
to inform policy decisions.  

The most useful information for policymakers relates to national impacts of potential policy 
choices.  No other element of the rulemaking analysis occurs at the household level, and the error 
associated with allocating specific vehicles to specific households over the course of three 
decades would easily dwarf any error associated with the estimation of these effects in aggregate.  
We have attempted to incorporate estimates of changes to the new and used vehicle markets at 
the highest practical levels of aggregation, and worked to ensure that these effects produce 
fleetwide VMT estimates that are consistent with the best, current projections given our 
economic assumptions.  While future work will always continue to explore approaches to 
improve the realism of CAFE and GHG policy simulation, there are important differences 
between small-scale econometric studies and the kind of flexibility that is required to assess the 
impacts of a broad range of regulatory alternatives over multiple decades. 

4.3.1 The Mileage Accumulation Schedule 

To account properly for the average value of consumer and societal costs and benefits associated 
with vehicle usage under various CAFE alternatives, it is necessary to estimate the portion of 
these costs and benefits that will occur each calendar year for each model year cohort.  Doing so 
requires some estimate of how many miles the average vehicle of each body type is expected to 
drive at each age throughout its life.  We refer to these as “mileage accumulation schedules.”  As 
described in greater detail below, these mileage accumulation schedules are an initial estimate 
that is modified in each calendar year based on forecasted fuel prices and the aggregate travel 
demand determined by a separate forecasting model.  For this analysis, NHTSA is relying on a 
set of mileage accumulation schedules that were constructed from a statistical analysis of 
millions of unique vehicles, followed over their lives, during which odometer readings were 
recorded at uneven intervals.  

4.3.1.1 Data Used to Develop the Schedules 

Unlike cross-sectional data, which is a “snapshot” of usage at a single point in time, panel data 
includes a temporal element.  The temporal dimension resolves many of the limitations imposed 



 

by cross-sectional data.  The data source used for the current mileage accumulation schedules 
contains sequential readings of individual vehicles over time, and the vehicles are tracked at the 
VIN level.  The data vendor, IHS Markit – Polk, accumulates readings about individual vehicles 
through state inspection programs, title changes, and maintenance events, among other sources.  
The IHS-Polk dataset includes observations of a specific vehicle’s odometer readings over the 
course of many years, capturing the accumulated lifetime mileage at multiple ages.  By using the 
observation date and accumulated miles (represented by the odometer reading), NHTSA 
computed the rate of driving (miles per year, or month) between observations for each vehicle.  
This is a superior method to assuming that the rate of accumulation, over all ages, is simply the 
ratio of odometer reading to age, as schedules built from cross-sectional data assumed.612  In 
particular, calculating the rates of mileage accumulation using successive observations of the 
same vehicle explicitly resolves the attrition bias (where some vehicles disappear from a cross-
sectional data sample because of the intensity with which they were used) and matches the 
approach to estimating driving rates with panel data in other studies.  

The panel dataset has another advantage over other sources: because it tracks individual vehicles 
over time, the agencies have more precise information about each vehicle’s age.  In previous 
analyses, we were forced to assume that “age” was simply equal to the calendar year minus the 
model year in which the vehicle was produced.  For example, a MY 2010 vehicle was assumed 
to be five years old in calendar year 2015.  It is common for vehicles produced in a given model 
year to be sold and registered over the course of multiple calendar years.  Thus, a MY 2010 
vehicle assumed to be five years old in 2015, could have been registered for the first time in 
CY2012 and might have a real driving age of three years, rather than five, simply because it sat 
on a dealership lot for a couple of years before being purchased.  The IHS-Polk data allows us to 
identify the first registration date of each vehicle in the sample and compute its true driving age 
at each point in time.  This not only improves the precision of the mileage accumulation rate in 
the first year, but in subsequent years as well.   

While the IHS-Polk data are a proprietary source, it has been common practice to use proprietary 
data in CAFE rulemakings, and, specifically, data purchased from IHS Markit - Polk has been 
used for CAFE and GHG rulemaking analyses on multiple occasions.  For the 2016 final 
medium- and heavy-duty rule and Draft TAR, the agencies used cross-sectional Polk odometer 
data to develop the vehicle mileage accumulation schedules.  Further, the specific data set was 
cited and is available for acquisition through IHS Markit-Polk, as is the set of odometer data 
used to support the VMT module in this proposal.613   

The agency considered using the 2017 National Household Travel Survey to develop mileage 
accumulation schedules.  However, it suffers from the same flaws as data sources used to 
develop previous schedules.  In particular, it represents a cross section of odometer readings at a 
single point in time, requiring the assumption that the rate of usage is simply the reported 
odometer divided by the vehicle’s age, or an extrapolation of respondents’ daily travel behavior 
into representative annual schedules, which is likely a poor assumption.  By contract, the IHS-
Polk dataset contains at least two readings (and frequently several) for over 70 percent of the 

 
612 Lu, S., “Vehicle Survivability and Travel Mileage Schedules”, DOT HS 809 952, January 2006. 
613 IHS-Polk labeled the file “DOT_VEH_ALL_MILES_US_201701” and can reproduce the data product for 
interested parties. 



 

registered light duty vehicle population in 2016.  Additionally, all of the odometers in the newest 
NHTS are self-reported, leading to questionable reliability of the individual data points (and 
notably round numbers in many cases).  Finally, the NHTS is intended to be a representative 
sample of households, but not a representative sample of vehicles.  Research has found that 
creating a representative sample of households can represent a significant challenge, as past 
iterations of the NHTS have systematically oversampled high income households.614  The nature 
of the sample also explicitly excludes vehicles used for commercial purposes, which nonetheless 
compose a meaningful portion of the new vehicle market, accumulate miles of travel, and 
consume fuel.   

4.3.1.2 Methodology 

The data used to construct the schedules initially included between two and fifty odometer 
readings from each of over 251 million unique vehicles within the dataset.  While most of the 
readings had plausible reading dates, odometer counts, and implied usage rates, some of the 
readings appeared unrealistic and received additional scrutiny.  We used a set of criteria to 
identify and remove readings that were likely record errors.  For example, odometer readings 
predating the commercial release of the vehicle, showing negative VMT accumulation over time, 
or taken too closely together to provide meaningful insight into annual vehicle usage were 
removed from the analysis.  Such sanitization of real datasets is typically necessary, and each 
step in the process was recorded and described in conformity with standard econometric practice.  
Table 4-13 shows the number of VINs, reading pairs, and average readings per VIN by body 
style. 

Table 4-13 – Summary of IHS Polk VMT VIN and Reading Data by Body Style 

Body Style Number of VIN’s 
Included 

Number of Reading 
Pairs 

Mean Readings per 
VIN 

Car 92,016,334 287,512,165 4.1 
SUVs/vans 66,857,117 212,656,710 4.2 
Pickups 29,926,984 83,208,986 3.8 

MDHD pickups/vans* 10,515,168 27,418,353 3.6 

Chassis* 486,471 1,186,653 3.4 
Total 199,802,074 611,982,867 4.1 

 
Once the dataset was cleaned, we created a random sample of one million reading pairs, where 
each pair represented an initial odometer/date reading and a subsequent odometer/date reading 
from the same vehicle.  Analysis of the entire dataset was too computationally demanding and 
statistically unnecessary.  Two conditions were created for sampling.  The first controlled for 
IHS-Polk’s censoring in the odometer readings recorded in the dataset (described below), and the 
second ensured the usage data were not biased by survival and that it represented usage rates 
over a relatively short period of time.  Further analysis suggests that shorter periods between 
readings is still correlated with higher usage rates so that further filtering of the data sample was 
considered in the regression analysis.  Once these filters were applied, we considered several 

 
614 Lave, C. (1994).  State and National VMT Estimates: It Ain't Necessarily So. UC Berkeley: University of 
California Transportation Center.  Retrieved from https://escholarship.org/uc/item/5527j8dj. 



 

polynomial fits to the average odometer readings by age and body style.  These fits were used to 
construct the mileage accumulation schedules used in this analysis.  The details are further 
described below. 

The odometer readings recorded are censored at 250k miles.  For this reason, we excluded 
readings recorded exactly as 250k miles.  The censoring could bias estimates of usage rates if 
odometer readings and future usage rates are correlated, which they likely are.  Vehicles with 
odometer readings of exactly 250K miles (in the dataset) almost certainly have higher true 
odometer readings.  While we intend to reconcile this limitation of the dataset in future work, the 
benefits of observing actual usage through 30 years of a vehicle’s life more than compensate for 
the limitation.   

The IHS-Polk dataset is conditional on survival, so it represents the usage of vehicles on the road 
at the time of the sample (the end of the first quarter of 2017).  In this way, it captures the actual 
observed usage rates of vehicles surviving to their current age in the dataset.  This raises an 
issue: if usage rates from earlier ages and survival are correlated, which they likely are, then 
including the readings for a 30-year-old vehicle when it was 10 years old will bias the estimated 
usage rates of 10-year-old vehicles downward because vehicles that survive to advanced ages 
tend to be used less than vehicles that are retired at earlier ages for the same model year.  To 
mitigate this issue, we applied a second filter when sampling the data set: we only included 
readings where the reading date of the second reading in the pair is January 2015 or later.  This 
reduces the potential bias from the joint probability of usage and survival to only those vehicles 
scrapped between January 2015 and the first quarter of 2017.  This balances losing information 
for older, less represented ages by excluding too much data on these vehicles and severely 
biasing the estimates of usage by age. 

The distribution of usage rates by age can be wide but compresses over time (as even the best-
preserved old vehicles can only be driven so much).  Figure 4-17 illustrates the distribution of 
observed VMT, by age, for SUVs (figures constructed for cars and pickup trucks showed similar 
patterns) across a 10 million record random sample of the IHS-Polk odometer data.  As the 
figure shows, the distribution of observed annual usage can be large – particularly for early 
vehicle ages – but both the mean annual VMT and the range of observations decrease as age 
increases. 

 



 

 

Figure 4-17 – Distribution of SUV Usage Rates by Age 

Figure 4-17 also shows that average VMT fluctuates across ages.  This is likely attributable to 
changes in ownership.  For example, around age 3, usage is at a local minimum (likely a 
consequence of vehicles coming off 3-year leases), and then climbs over few years.  The data are 
likely picking up the transfer of vehicles from their original owners to new households with 
higher demand for the vehicles.  The agency tested several relationships between age and 
mileage accumulation.  Because the CAFE Model carries no disaggregated representation of 
vehicle ownership or usage that would capture the variation in usage shown in Figure 4-17, using 
the average use at each age for the regression allows the CAFE Model to capture the total VMT 
attributable to a model year cohort, and to benchmark against other annual observed light-duty 
VMT.  Figure 4-18 shows the average usage rates for cars by age (as black triangles) as well as 



 

linear, quadratic, and cubic polynomial fits of age on these points.615  The average usage rates 
follow a relatively smooth pattern, but appear to decline at an accelerating rate for the oldest 
ages.  The linear equation captures this trend for older vehicles but underestimates early ages.  
The quadratic fit shows a diminishing decrease in the usage of older vehicles which may 
overestimate their use.  The cubic fit captures the early age usage trends and the accelerating 
decrease in the usage of older ages.  For this reason, NHTSA used the cubic curve as the basis 
for the car VMT schedules by age.  While the cubic fit performed the best for cars, SUVs were 
best fit by a quadratic polynomial, and pickup trucks by a cubic polynomial.  The resulting 
annual VMT schedules based on these functions are shown in Table 4-14. 

 

 

Figure 4-18 – Polynomial Fits for Average Car VMT 

As Table 4-14 illustrates, passenger cars are driven (on average) a little less than either SUVs or 
pickup trucks.616  Importantly, these annual driving rates represent the estimated annual mileage 
accumulation of a vehicle, of a given body style, that survives to that age.  While vehicle 
retirement rates are generally low across all body styles in the early years of ownership, rates 
accelerate with age and most of a model year cohort will be retired by age 20.  Using the average 

 
615 In general, the objective of a polynomial regression is to capture the nonlinear relationship between two 
variables.  While the fit produces a nonlinear curve, it is linear in the coefficients.  Choosing the lowest degree of the 
polynomial function that captures the inflection points in the data preserves the degrees of freedom and ensures that 
applying the polynomial function to observations outside the range of data (as done here for ages beyond 30) is well 
behaved. 
616 These same mileage accumulation schedules can also be found in the CAFE Model input file “parameters,” on 
the “Vehicle Age Data” tab. 



 

construction effectively shifts some accumulated miles within the cohort – vehicle owners who 
drive more than the average will benefit more than we estimate from improved fuel economy, 
while drivers who use their vehicles less intensively will benefit less.  However, because the 
benefit-cost analysis does not distinguish to whom the benefits occur, it is sufficient to merely 
capture the total benefits (which is accomplished adequately by using the average VMT 
construction).  It is also generally true that the vehicles that survive to advanced ages are not the 
same vehicles that were used most intensively early in their lives.  Future iterations of this work 
will continue to improve the CAFE Model’s representation of the joint relationship between 
utilization and retirement beyond the cohort-specific representation in this analysis.  

Table 4-14 – VMT Schedule by Body Style and Age 

Vehicle Age 
Mileage Accumulation 

Cars Vans/SUVs Pickups 

0 15,922 16,234 18,964 
1 15,379 15,805 17,986 
2 14,864 15,383 17,076 
3 14,378 14,966 16,231 
4 13,917 14,557 15,449 
5 13,481 14,153 14,726 
6 13,068 13,756 14,060 
7 12,677 13,366 13,448 
8 12,305 12,982 12,886 
9 11,952 12,605 12,372 
10 11,615 12,234 11,903 
11 11,294 11,870 11,476 
12 10,986 11,512 11,088 
13 10,690 11,161 10,737 
14 10,405 10,816 10,418 
15 10,129 10,477 10,131 
16 9,860 10,146 9,871 
17 9,597 9,820 9,635 
18 9,338 9,501 9,421 
19 9,081 9,189 9,226 
20 8,826 8,883 9,047 
21 8,570 8,583 8,882 
22 8,313 8,290 8,726 
23 8,051 8,004 8,577 
24 7,785 7,724 8,433 
25 7,511 7,450 8,290 
26 7,229 7,183 8,146 
27 6,938 6,923 7,998 



 

Vehicle Age 
Mileage Accumulation 

Cars Vans/SUVs Pickups 

28 6,635 6,669 7,842 
29 6,319 6,421 7,676 
30 5,988 6,180 7,497 
31 5,641 5,946 7,302 
32 5,277 5,718 7,089 
33 4,893 5,496 6,853 
34 4,488 5,281 6,593 
35 4,061 5,072 6,305 
36 3,610 4,870 5,987 
37 3,133 4,674 5,635 
38 2,629 4,485 5,248 
39 2,096 4,303 4,821 

 

4.3.2 Constraining VMT 

It is NHTSA’s perspective that the total demand for VMT should not vary excessively across 
alternatives; the basic travel needs for an average household are unlikely to be influenced heavily 
by the stringency of the CAFE standards, as the daily need for a vehicle will remain the same.  
That said, it is reasonable to assume that fleets with differing age distributions and inherent cost 
of operation will have slightly different annual VMT (even without considering VMT associated 
with rebound miles); however, the difference could conceivably be small.  Based on the structure 
of the CAFE Model, the combined effect of the sales and scrappage responses can create small 
percentage differences in total VMT across the range of regulatory alternatives if steps are not 
taken to constrain VMT.  Because VMT is related to many of the costs and benefits of the 
program, even small magnitude differences in VMT across alternatives can have meaningful 
impacts on the incremental net benefit analysis.  To enforce this perspective, to the CAFE Model 
constrains “non-rebound” VMT (defined more explicitly below) to be identical across regulatory 
alternatives, using the FHWA VMT demand model to determine the constraint in each simulated 
calendar year.  Therefore, the only difference in total VMT between regulatory alternatives is the 
rebound miles attributable to differences in fuel economy resulting from the regulatory 
alternatives.   

To constrain non-rebound VMT for the benefit-cost analysis, it is necessary to first define “non-
rebound” VMT and a method for calculating it.  The CAFE Model uses the FHWA VMT 
forecasting model to produce a forecast of non-rebound VMT, to which total non-rebound VMT 
in every regulatory alternative is constrained in each year, regardless of the fleet size or 
distribution of ages in the fleet.  In calendar years where total non-rebound VMT determined by 
the size of the fleet and assumed usage of each vehicle (based on the mileage accumulation 
schedule) is lower than the constraint produced from the FHWA model, VMT is added to that 
total and allocated across vehicles to match the non-rebound forecast (preserving the constraint).  



 

These additional miles are then carried throughout the analysis as vehicles accrue costs and 
benefits.   

4.3.2.1 Defining Non-Rebound VMT 

In order to constrain non-rebound VMT, it is first necessary to define “non-rebound” VMT more 
precisely.  There are a number of reasons that a vehicle’s usage could differ from our last 
measurement of usage (based on odometer data): fuel prices could change, economic growth 
could spur additional demand for travel, or the fuel efficiency of the vehicles being used to meet 
travel demand could increase – either in the new vehicle market or in the used population, as a 
consequence of fleet turnover.  In the CAFE Model, the overall elasticity of travel applies to 
changes in the cost per mile (CPM) of travel for vehicles at each age.  CPM has two components.  
The first component of CPM is fuel price—vehicles are driven less if fuel prices go up, all else 
equal.  The second component of CPM is fuel economy.  Therefore, the percentage change in 
CPM, for a given scenario, model year, and calendar year, is: 

%∆𝐶𝐶𝐹𝐹𝑀𝑀𝑆𝑆𝑁𝑁,𝑂𝑂𝑀𝑀,𝐶𝐶𝑀𝑀 =  
� 𝐹𝐹𝐹𝐹𝐶𝐶𝑀𝑀
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Equation 4-11 – Full Change in Cost-Per-Mile of Travel 

Where FP is fuel price, FE is fuel economy, and REF refers to the reference FE value of a given 
age (in particular, FE 2016 – (CY – MY), which is the fuel economy of the MY cohort that was age CY 
– MY in CY 2016).  In the equation above, FESN,MY,CY refers to the observed fuel economy of 
the MY cohort (typically applied at the vehicle level) for a given scenario (SN) in calendar year 
CY. 

Previous versions of the CAFE Model, before the agency modeled fleet turnover, used a single 
value, the rebound effect, to measure CPM elasticity.  Naturally, this implies that the CAFE 
Model produced the same magnitude of change in travel for equivalent changes in fuel prices 
and fuel economy.  However, the fleetwide elasticity of travel with respect to cost of operation is 
already present in the FHWA forecasting model.  The coefficient implies a rebound effect of 
about 15%, which the CAFE Model now uses to construct the annual VMT constraint, to ensure 
consistency with FHWA estimates.  While the user can still define a value for the rebound effect 
that differs from this value, it will not influence the VMT constraint that is defined by the FHWA 
model.  The user-defined rebound effect only induces additional travel based on increases in fuel 
efficiency relative to the average fuel economy of a new vehicle in MY 2016 (explained further 
below).  Choosing a value for the rebound effect that differs from the 15% in the FHWA model 
also creates an asymmetry between responses to fuel price and changes in fuel economy.  But 
that decision is left to the user.  This analysis assumes a symmetrical response, using 15% for the 
rebound effect as well. 

Constructing a projection of future VMT (from 2020 to 2050) that sets aside the rebound effect 
requires constructing inputs that are consistent with that perspective.  In particular, it is necessary 
to separate the price response associated with the change in fuel prices (relative to the year on 



 

which the mileage accumulation schedule is based, CY 2016), and the change in VMT associated 
with only the improvements in fuel economy, relative to MY 2016, that occur for future model 
years at the forecasted fuel price. 

The VMT of an older vehicle decreases in the presence of a non-zero elasticity if rising fuel 
prices increase the per-mile cost of travel, and the elasticity represents the degree to which their 
travel is reduced for a percentage change increase in operating cost.  It is intuitive that, as the 
cost of fuel rises over time, a vehicle with a fixed fuel economy would be driven less if gasoline 
costs $3.50/gallon than it would be if gasoline costs $2.50/gallon.  Such a response is also 
consistent with economic principles (and literature),617 and so it is included in the “non-rebound” 
VMT that the CAFE Model constrains across alternatives in each calendar year. 

Similarly, the annual mileage accumulation of cohorts in the legacy fleet (vehicles in the on-road 
fleet built before MY 2020) are clearly affected by fuel price, but also by evolution.  Setting 
aside any fuel economy improvements in vehicles sold and entering the on-road fleet between 
2020 and 2050, the average fuel economy of each age cohort is going to improve over that period 
as the fleet turns over.  Put another way, a vehicle that is 10 years old today will be less efficient 
than a vehicle that is 10 years old in 2031.  The travel behavior of the on-road fleet was last 
observed through calendar year 2016 in the IHS-Polk data (described in Chapter 4.3.1.1), when a 
20-year-old car was part of the model year 1997 cohort and had an average fuel economy of 23.4 
MPG.  However, the fleet continually turns over.  In 2035, the 20-year-old car will be a member 
of the model year 2016 cohort, and have an average fuel economy of 29.2 MPG (assumed to be 
the average fuel economy of MY 2016 vehicles when they were new).618  If, for example, real 
fuel prices were to persist at 2016 levels, then that 25 percent improvement in fuel economy 
would reduce the cost per mile of travel for 20-year-old vehicles relative to the observed values 
in calendar year 2016, and lead to an increase in travel demand for vehicles of that age.  
Importantly, this transition to more efficient age cohorts occurs in all of the regulatory 
alternatives.  Considering only the fuel economy levels of vehicles that exist prior to the first 
year of simulation (2020, based on current market inputs), a secular improvement in the fuel 
economy of the on-road fleet would occur with no further improvements in fuel economy from 
new vehicles in model years 2020 to 2050.  As the fleet turns over, its fuel efficiency will 
gradually resemble that of the model year 2020 cohort, up to the point at which each age cohort 
is as efficient as the model year 2020 cohort.619  And because newer vehicles are driven much 
more than older ones, this happens on a VMT-weighted basis much more quickly than on vehicle 
population-weighted basis. 

The notion of “non-rebound” VMT is merely a construct, necessary to support regulatory 
analysis by controlling for VMT attributable to reasons other than rebound driving, but present 

 
617 See, e.g.,Goodwin, P., J. Dargay, and M. Hanly.  Elasticities of road traffic and fuel consumption with respect to 
price and income: a review.  Transport Reviews, 24:275-292, 2004. 
618 In practice, vehicles will scrap at different rates over time, even within a body-style.  Some nameplates and 
manufacturers have reputations for longevity and individual vehicle models with different fuel economies may seem 
like better candidates for repairs under particular fuel price scenarios.  In light of this, the fuel economy for a given 
body-style will likely differ from the sales-weighted average fuel economy when the cohort was new, even without 
accounting for degradation and changes to the on-road gap over time.   
619 Vehicles scrap at different rates over time, and there are important differences by body style for both scrappage 
rates and mileage accumulation.  This discussion is intended to provide intuition, without all of the computational 
nuance that exists in the model’s implementation.  



 

only in theory.  The symmetrical definition of rebound represents the expected response to 
changes in CPM, regardless of whether those changes occur as a result of changes in fuel price or 
fuel economy, and it is well established that demand for VMT responds to the cost of travel.  To 
isolate the change in VMT for which the regulatory alternatives are responsible, we have also 
included the VMT attributable to secular fleet turnover (through MY 2016, to be consistent with 
the Polk odometer readings that inform our VMT estimates) in the total “non-rebound” VMT 
projection.  In particular, this means that the conventional elasticity definition is replaced in the 
“non-rebound” VMT estimation with a more limited definition: 
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Equation 4-12 – Fuel Price and Secular Improvement Component of Elasticity 

In Equation 4-12, FP is fuel price, FE is fuel economy, and REF refers to the reference FE value 
of a given age (in particular, FEREF =  FE 2016 – (CY – MY), which is the average FE of the MY 
cohort that was age (CY – MY) in CY 2016).  In the equation, FEMIN(2016,MY) refers to the 
observed fuel economy of the model year being evaluated up to and including the 2016 MY 
cohort.  This construction explicitly accounts for the improvement in fuel economy between MY 
2016 and all the historical ages (through MY1981) with respect to the change in (real) fuel price 
relative to calendar year 2016.  Thus, the VMT associated with the rebound effect in the CAFE 
Model only accounts for changes to CPM that result from the amount of fuel economy 
improvement that occurs relative to MY 2016 vehicles.620  The full elasticity definition (in 
Equation 4-11) differs from that in Equation 4-12 in only one way; the fuel economy in the 
denominator of the first term is the fuel economy of the model year being evaluated, rather than 
being the minimum of the actual model year and model year 2016. 

Combining this demand elasticity with the dynamically simulated vehicle population and the 
mileage accumulation schedule (by body style and age) provides the initial estimate of non-
rebound VMT described in Equation 4-13. 
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Equation 4-13 – Unadjusted Total Non-Rebound VMT in a Calendar Year 

In Equation 4-13, VMT represents the mileage accumulation schedule (by age, A, and body style, 
S), Population is the on-road vehicle population simulated by the CAFE Model (in calendar year 
CY, for each age, A, and body style, S), ε is the elasticity of demand for travel (sourced from the 
coefficients of FHWA’s VMT forecasting model, about -0.15). 

 
620 NHTSA intends to update this reference year the next time the agency acquires an update to the database of 
odometer readings. 



 

However, there are factors beyond the CPM that affect light-duty demand for VMT.  The FHWA 
VMT forecasting model includes additional parameters that can mitigate or increase the 
magnitude of the effect of fuel price changes on demand for VMT.  In particular, the model 
accounts for changes to per-capita personal disposable income (and U.S. population), and 
consumer confidence over time.  This means that even if fuel prices are increasing over the study 
period, and fleetwide fuel economy improves only through fleet turnover (as it does in the 
simulated “non-rebound” case), total demand for VMT can still grow as a result of increases in 
these other relevant factors.  Not only could the forecast of non-rebound VMT continue to grow, 
it could do so at a faster rate than Equation 4-13 produces.  Alternatively, a recession could 
depress VMT below levels produced by the unadjusted VMT estimate in Equation 4-13 (the 
Great Recession in 2008-2009, for example).  Thus, in order to preserve non-rebound VMT in a 
way that represents expected VMT demand in the future, the CAFE Model constrains non-
rebound VMT in each alternative to match the forecast produced by the FHWA model using the 
model inputs for the required variables and fleetwide fuel economy values produced by 
simulating the effect of fleet turnover (only) in the CAFE Model.  

4.3.2.2 Constraining Non-Rebound VMT in the CAFE Model 

In the CAFE Model, total ‘non-rebound’ VMT is calculated for each future calendar year, and 
represents the results of using the FHWA VMT forecasting model with the inputs specified in 
the parameters file (and the “non-rebound” fleetwide fuel economy averages discussed above).  
The FHWA VMT forecasting model is an auto-regressive distributed lag (ARDL) specification 
with error correction.  While this version of the FHWA model has been fully integrated into the 
CAFE Model, FHWA is likely to continually improve and revise it.  The full documentation of 
the forecasting model is available from FHWA, and the model is described briefly here only for 
the sake of completeness.621  

 
621 See “FHWA Travel Analysis Framework: Development of VMT Forecasting Models for Use by the Federal 
Highway Administration,” Volpe, available at 
https://www.fhwa.dot.gov/policyinformation/tables/vmt/vmt_model_dev.pdf. 



 

Table 4-15 – FHWA VMT Forecasting Model 

Adjustment Variable 
LD VMT PC (-1) -0.211 (0.048) *** 
Long-Run Variables 
Personal Disposable Income PC 3.437 (1.124)** 
Personal Disposable Income PC Sq. -0.454 (0.168)** 
Fuel Cost per Mile -0.146 (0.041)*** 
Short-Run Variables (First Differenced) 
Personal Disposable Income PC 2.472 (1.025)* 
Personal Disposable Income PC (-1) -0.325 (0.094)*** 
Personal Disposable Income PC (-2) -0.180 (0.086)* 
Personal Disposable Income PC Sq. -0.363 (0.157)* 
Consumer Confidence 0.074 (0.017)*** 
Constant 0.163 (0.329) 
Observations 47 
Adj. R2 0.82 
RMSE 0.01 
Cumby-Huizinga Test for Autocorrelation (P-Value (One Lag)) 0.455 
Bounds F-Stat. 9.73*** 
Bounds T-Stat. -4.43*** 
In-Sample MAPE (1970-2016) 0.67% 
Out-of-Sample MAPE (2006-2016) 3.64% 
Bounds T-Stat. -4.43*** 
In-Sample MAPE (1970-2016) 0.67% 
Out-of-Sample MAPE (2006-2016) 3.64% 
Out-of-Sample MAPE (2011-2016) 0.79% 
Out-of-Sample MAPE (2011-2016) 0.79% 
Notes: Suffixes on the variable names indicate the values of a variable from the 
previous year (-1) period two years previous (-2).  Critical values for the bounds test 
are taken from Pesaran et al. (2001) for case 3.  Model lag lengths were based on best 
BIC statistic. 

Standard errors in parentheses: † p<0.1 * p<0.05 ** p<0.01 *** p<0.001 

 
The non-rebound VMT constraint is produced endogenously by the model in each run based on 
the estimated VMT under the set of “non-rebound” assumptions that are used as inputs to the 
FHWA model.  In order to constrain non-rebound VMT to be identical in each year across 
regulatory alternatives, it is necessary to add (or subtract) VMT to the unadjusted total, 
endogenously calculated by the CAFE Model in each calendar year.  These additional miles, 
denoted Δmiles for this discussion, represent the simple difference between the annual VMT 
constraint based on the FHWA model and the unadjusted VMT defined in Equation 4-13 (above) 
in each calendar year.   
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Equation 4-14 – Difference between VMT Constraint and Unadjusted Non-Rebound VMT 

Because each regulatory scenario produces a unique on-road fleet (in terms of the number of 
vehicles, the distribution of ages among them, and the resulting distribution of fuel economies), 
the total unadjusted VMT in each calendar year (given by Equation 4-13) will be unique to each 
regulatory scenario.  As a corollary, Δmilescy will also be unique to each regulatory scenario.  By 
distributing Δmilescy across the vehicle fleet in each calendar year, the CAFE Model scales the 
unadjusted non-rebound VMT to equal the non-rebound VMT constraint in each calendar year, 
for each regulatory alternative.  While there are a number of ways to reallocate Δmilescy across 
the on-road fleet in order to match the non-rebound VMT constraint, the CAFE Model applies 
the simplest.  Lacking empirical evidence about how these additional miles should be distributed 
across the registered vehicle population (which would, at a minimum require evidence about how 
the distribution of VMT has shifted across the styles and ages of the on-road fleet over time), a 
simple approach was the most sensible.  It is worth noting that under reasonable assumptions for 
model inputs, the magnitude of DeltaMiles is relatively small for most vehicles and ages once the 
VMT has been distributed to preserve the constraint (typically within a couple of hundred miles 
per year for vehicles that travel 10K miles or more).622   

The primary goal of reallocation is to adjust total non-rebound VMT so that it is identically equal 
to the VMT constraint in every calendar year for each regulatory alternative, while conserving 
the general trends of the mileage accumulation schedule—which represents a good estimate of 
observed usage at the start of the simulation.  In particular, the reallocation approach preserves 
the basic ideas that annual mileage decreases with vehicle age because newer (and more 
efficient) vehicles are more likely to be driven additional miles than their older counterparts, and 
mileage accumulation varies by body style.  To accomplish the reallocation, the CAFE Model 
computes a simple ratio that varies by calendar year and regulatory alternative.  The resulting 
ratio is then used to scale the unadjusted miles from Equation 4-13, so that the new sum of 
annual (non-rebound) VMT across all of the vehicles in the on-road fleet equals the constraint.  
For a single calendar year, CY, and a single body style, S, the scaling ratio, R, is computed as: 

𝑇𝑇𝐶𝐶𝑀𝑀,𝑆𝑆 =
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Equation 4-15 – Calculating the scaling factor to reallocate non-rebound VMT 

In Equation 4-15 ∆𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶𝐶𝐶𝑀𝑀,𝑆𝑆 is calculated from Equation 4-14 and NonReboundVMT from 
Equation 4-13.  In particular, the total adjusted non-rebound VMT is then calculated as: 

 
622 A notable exception to this is the impact of the Covid pandemic on total light-duty VMT, which dropped 
precipitously during 2020 in response to both economic distress and mandated travel restrictions. 
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Equation 4-16 – Total adjusted Non-Rebound VMT That Preserves Non-Rebound VMT Constraint 

While there exist other possible schemes to reallocate VMT across the on-road population (for 
example, a uniform approach that either adds or removes the same number of miles from each 
age cohort), the scaling approach described here has several advantages.  Aside from its relative 
simplicity, the approach is stable.  The newest model years (lowest ages) are affected the most by 
the constraint – all the ages scale proportionally to their unadjusted VMT and the CAFE Model 
can neither add, nor remove, large quantities of VMT in age cohorts with either small numbers of 
vehicles or small quantities of VMT.  By employing the scaling ratio as we have, we ensure that 
the model is robust to the widest possible array of input assumptions.   

To make each alternative match the VMT constraint, Equation 4-16 allocates miles to each 
vehicle in a calendar year by multiplying the product of the mileage accumulation schedule (for 
that style vehicle, at that age), the %ΔNrbdCPM (described in Equation 4-12), and the elasticity 
taken from the FHWA forecasting model, rather than the user-defined input for the rebound 
effect) with the appropriate scaling ratio (defined in Equation 4-15).   

Unlike much of the CAFE Model’s accounting, which focuses on the impacts to a model year 
cohort of vehicles over the course of its life, the rebound constraint and reallocation are 
inherently calendar year concepts.  The constraint represents demand for VMT absent “rebound 
miles” (defined as any additional VMT that occurs as a result of fuel economy improvements 
beyond the MY 2016 average) in a specific calendar year.  Thus, this reallocation occurs in every 
calendar year, and a vehicle of a model year cohort will likely experience many of these 
reallocation events during its simulated life.   

As this analysis shows, there are two primary reasons why the standards cause travel demand to 
be redistributed across the on-road fleet.  The first is that different alternatives create different 
on-road fleets, and the constraint guarantees that changing fleet size does not unduly influence 
aggregate demand for travel.  Each alternative has a fleet with a specific size (i.e., total number 
of vehicles), a specific age distribution, and a specific cost of travel that varies by the age, and 
body-style, of the vehicles in it.  All of these factors are a direct consequence of differences in 
CAFE stringency that logically influences the number of new vehicles sold each year, the portion 
of them sold as truck body styles, the propensity of used vehicles to be retired in a given year, 
and the fuel efficiency of each cohort in the on-road fleet.  However, these factors do not 
influence aggregate demand for VMT in the model (aside from the rebound effect). 

We determine aggregate demand for light-duty VMT (without rebound, so “non-rebound” VMT) 
in each year with the FHWA VMT forecasting model, which is a function of U.S. population, 
growth in real disposable personal income, fleetwide average fuel economy, fuel prices, 
consumer confidence, and the recent observed demand for VMT.  To derive the average fuel 
economy in the constraint, we conduct a run that simply turns over the fleet, holding constant the 
fuel economy of the new vehicle fleet to some recent year (MY 2016, in this case).  As the fleet 
turns over, the fuel economy of the on-road fleet gradually improves – asymptotically 



 

approaching the fuel economy of the new vehicle fleet in MY 2016.  In this way, fuel economy 
improvements in the new vehicle market that occur subsequent to MY 2016 are excluded from 
the projection of non-rebound VMT.  This isolates the effects of fleet turnover (if no new 
standards had been proposed) and fuel price changes on projected demand for VMT, and 
relegates fuel economy improvements in the new vehicle market (above and beyond MY 2016 
levels) to rebound miles.  While this implies that “rebound” miles occur even in the no-action 
alternative (as a consequence of more stringent standards across multiple programs), those 
programs are present in all of the action alternatives as well, and the rebound miles attributable 
to them net out across the alternatives.  The aggregate VMT demand is constant across scenarios 
until we account for rebound travel, and that demand must be met by the on-road fleet.  But the 
vehicles in the on-road fleet aren’t interchangeable; newer vehicles are driven more than older 
vehicles, and much more than much older vehicles.  And the CAFE Model simulates (slightly) 
different on-road fleets in each regulatory alternative over time.  These fleets may differ in both 
total size and in the age distribution of registered vehicles – each of which has implications for 
the intensity of usage (of each age cohort) required to satisfy estimated demand for travel.  A 
large enough population of relatively new vehicles can compensate for a smaller fleet size 
because new vehicles are driven more intensively than older ones.  However, a fleet that is both 
older and smaller will likely require higher annual driving rates of all cohorts in order to satisfy 
the same demand for travel. 

The second reason why the model redistributes VMT across the on-road fleet is a discrepancy 
between unadjusted VMT (the product of average use and on-road population) and forecasted 
non-rebound VMT.  In most cases, this redistribution is small in scale and varies between adding 
and removing miles in any given year.  However, in this analysis, the constrained annual VMT is 
strongly affected by the COVID pandemic, especially in the early years of the simulation.  As a 
consequence, the redistribution function is more often removing miles from the unadjusted 
annual VMT than adding them in order to preserve the non-rebound VMT constraint.  As Figure 
4-19 shows, the unadjusted VMT – based on the simple product of the VMT schedule (by body 
style and age) and the on-road vehicle population – is consistently higher than the VMT 
constraint through CY 2029.  (Note that the scale on the y-axis has been truncated to exaggerate 
the magnitude of the discrepancies between the curves.)  Had growth continued normally from 
CY 2019 forward, it possible, and even likely, that the redistribution function would be adding 
VMT rather than removing them in order to preserve the constraint.  

 



 

 

Figure 4-19 – Comparison of Unadjusted and Constrained VMT in the CAFE Model 

As a consequence of the discrepancy between the VMT constraint and unadjusted VMT in the 
early years of the analysis, the redistribution function must aggressively remove miles from the 
on-road fleet, relative to the unadjusted VMT estimate.  While the earliest years (especially 
2020) reflect the depth and recovery related to the pandemic, the two estimates converge around 
2030 and the adjustments to individual vehicles become insignificant.  Figure 4-20 illustrates the 
VMT adjustments necessary to enforce the VMT constraint in 2022 and 2029 and for Alternative 
0 and Alternative 3 (the other two alternatives look similar, but these two represent the bounding 
cases).  The CAFE Model distinguishes between car body-styles, SUVs, and pickup trucks for 
the purposes of simulating usage and the VMT adjustments occur at that level as well.  As the 
top panel shows, VMT adjustments are identical for both alternatives in 2022 – but represent 
significant per-vehicle reductions in VMT.  Across each body style, the reduction represents 
about 10 percent of VMT estimated in the schedule.  However, this still represents an 
improvement from 2020 levels, where the per-vehicle reductions were likely closer to 15 
percent.  Consistent with the objective of the reallocation function, the largest absolute 
adjustments (in miles per year) are concentrated in age cohorts with higher populations and 
higher average usage.  



 

As the bottom panel of Figure 4-20 illustrates, by 2029 the unadjusted VMT and the VMT 
constraint have nearly converged.  By 2029, there are also large enough differences in the sizes 
and compositions of the on-road fleets between Alternative 0 and Alternative 3 to create 
observable differences in the VMT adjustments required to preserve the VMT constraint.  The 
model is still removing VMT in both alternatives, but only about 1 percent of expected average 
VMT in Alternative 3 and around 2 percent in Alternative 0.  As implied by Figure 4-19, there 
are several years where the CAFE Model is forced to add miles to the unadjusted VMT in 
Alternative 3 in order to preserve the VMT constraint.  However, those additions are similarly 
small.  The model repeats this process in each calendar year to ensure identical “non-rebound” 
VMT across the alternatives. 

 



 

 

Figure 4-20 – Enforcing the VMT Constraint by Adjusting Vehicle Miles Traveled 

 



 

4.3.3 Rebound Effect 

The fuel economy rebound effect—a specific example of the well-documented energy efficiency 
rebound effect for energy-consuming capital goods—refers to the tendency of motor vehicles’ 
use (as measured by VMT) to increase when their fuel economy is improved and, as a result, the 
cost per mile (CPM) of driving declines.  Establishing more stringent CAFE standards than the 
baseline level will lead to comparatively higher fuel economy for new cars and light trucks, thus 
decreasing the amount of fuel consumed and increasing the amount of travel in which new car 
and truck buyers engage.   

NHTSA recognizes that the value selected for the rebound effect influences overall costs and 
benefits associated with the regulatory alternatives under consideration as well as the estimates 
of lives saved under various regulatory alternatives, and that the rebound estimate, along with 
fuel prices, technology costs, and other analytical inputs, is part of the body of information that 
agency decision-makers have considered in determining the appropriate levels of the CAFE 
standards in this proposal.  We also note that the rebound effect diminishes the economic and 
environmental benefits associated with increased fuel efficiency.  

NHTSA conducted a review of the literature related to the fuel economy rebound effect, which is 
extensive and covers multiple decades and geographic regions.  As evidenced in Table 4-16, 
studies continue to have a wide range of estimates.  The newer studies suggest that a plausible 
range for the rebound effect is 10-50 percent.  The central tendency of this range appears to be 
roughly 30 percent.  In earlier rulemakings, some commenters suggested that a more appropriate 
set of studies would only include studies based on U.S. data.  Considering only studies based on 
national-scale U.S. data yields a central tendency of about 19 percent.  However, using only the 
studies based on large data samples of specific U.S. states, which are typically also more recent, 
produces a central tendency of 15 percent. 

Table 4-16 – Recent Estimates of the Rebound Effect for Light-Duty Vehicles 
 

Authors (Date) Nation Time Period Data Range of 
Estimates 

Barla et al. (2009) Canada 1990-2004 10 Canadian provinces 8-20% 
Bento (2009) U.S. 2001 150,000 household vehicles 21-38% 
Waddud (2009) U.S. 1984-2003 U.S income quintiles 1-25% 
Hymel et al. (2010) U.S. 1966-2004  50 U.S. states 16-24% 
Gillingham (2011) California 2001-09 1 million vehicles 1% 
Anjovic and Haas (2012) E.U. 1970-2007 6 E.U. nations 44% 
Greene (2012) U.S. 1966-2007 annual aggregate values 8-12% 
Su (2012) U.S. 2009 45,000 households  11-19% 
Wang et al. (2012) Hong Kong 1993-2009 annual aggregate values 45% 
Linn (2013) U.S. 2009 230,000 household vehicles 20-40% 
Frondel and Vance (2013) Germany 1997-2009 2,165 households 46-70% 
Liu (2014) U.S. 2009 1,420 households 39-40% 
Gillingham (2014) California 2001-09 5 million vehicles 22-23% 
Weber and Farsi (2014) Switzerland 2010 8,000 household vehicles 19-81% 
Gillingham et al. (2015) Pennsylvania 2000-2010 7 million vehicles 8-22% 
Hymel & Small (2015) U.S. 2003-09  50 U.S. states 4-18% 



 

Authors (Date) Nation Time Period Data Range of 
Estimates 

West et al. (2015) U.S. 2009 166,000 new vehicles 0% 
DeBorger et al. (2016) Denmark 2001-11 23,000 households 8-10% 
Stapleton et al. (2016) Great Britain 1970-2011 annual aggregate values 13-23% 
Langer et al. (2017) Ohio 2009-13 229,000 driver-months 12% 
Stapleton et al. (2017) Great Britain 1970-2012 annual aggregate values 22-30% 
Wenzel and Fujita (2018) Texas 2005-2010 32 million vehicles 7-40% 
Knittel and Sandler (2018) California 1996-2010 36 million vehicles 5-27% 
 
After reviewing the evidence on the rebound effect, a reasonable case can be made to support 
values of the rebound effect at least as high as 30 percent or as low as 5%.  The totality of 
evidence, without categorically excluding studies on grounds that they fail to meet certain 
criteria, and evaluating individual studies based on their particular strengths, suggests that a 
plausible range for the rebound effect is 10-50 percent.  The central tendency of this range 
appears to be at or slightly above its midpoint, which is 30 percent.  Considering only those 
studies that NHTSA believes are derived from extremely robust and reliable data, employ 
identification strategies that are likely to prove effective at isolating the rebound effect, and 
apply rigorous estimation methods suggests a range of approximately 10-45 percent, with most 
of their estimates falling in the 15-30 percent range.623   

A reasonable case can also be made to support values of the rebound effect falling in the 5-15 
percent range as well.  This argument relies on restricting the studies considered to include 
recently published analyses using U.S. data, and to accord the most weight to research that relies 
on measures of vehicle use derived from odometer readings, controls for the potential 
endogeneity of fuel economy, and estimates the response of vehicle use to variation in fuel 
economy itself, rather than to fuel cost per distance driven or fuel prices.  This approach suggests 
that the rebound effect is likely in the range from 5-15 percent and is more likely to lie toward 
the lower end of that range.   

This chapter discusses the way we estimate VMT, both in aggregate and per-vehicle, and the 
changes to VMT across alternatives.  The forecasting model that establishes the constraint to 
which “non-rebound” VMT is held (described in Table 4-15) contains a term that represents the 
price elasticity of demand for VMT.  As the table shows, the estimated value of that parameter is  
-0.146.  While this parameter estimates the response to changes in the cost per mile of travel 
(from all sources), included in that response are changes in fuel economy of the on-road vehicle 
fleet.  Therefore, if the literature supports using that value for the rebound effect, doing so here 
improves the internal consistency of the analysis – and asserts that changes in fuel prices and fuel 
economy have symmetrical effects.  Based on the preceding discussion of the literature, a 15% 
rebound effect is well within the bounds suggested by the literature and close to the central 
tendency of both studies based on U.S. data, and more recent studies based on large samples of 

 
623 As indicated previously, these are the selection criteria proposed by commenters to previous rulemakings.  In 
chronological order, the studies the agency feel best meet those criteria include Greene et al. (1997), Small and Van 
Dender (2007) and subsequent updates by Hymel, Small, and Van Dender (2010,2015), Linn (2016), Anjovic and 
Haas (2012), Gillingham (2014), and DeBorger et al. (2016).  Other studies the agency believes warrant serious 
consideration because they offer some or most of these same advantages include those by Liu et al. (2014), Knittel 
and Sandler (2018), and Wenzel and Fujita (2018).  



 

specific U.S. state data.  However, recognizing the uncertainty surrounding the rebound value, 
the we also examine the sensitivity of estimated impacts to values of the rebound ranging from 
10 percent to 20 percent.   

Finally, because there is not a clear consensus around a single rebound estimate within the 
literature, NHTSA believes it is important to benchmark their analysis with other large-scale 
surveys of the literature published by neutral observers.  In one early survey, Greening, Greene, 
and Difiglio (2000) reviewed studies that estimated the rebound effect for light-duty vehicles in 
the U.S., concluding that those relying on aggregate time-series data found it was likely to range 
from 10-30 percent, while those using cross-sectional analysis of household vehicle use 
suggested a larger rebound effect, in the range of 25-50 percent.624  Sorrell et al. (2009) found 
that the magnitude of the rebound effect for personal automobile travel is likely to fall in the 10-
30 percent range, with some evidence suggesting that the lower end of that range might be most 
appropriate.625   

Most recently, a meta-analysis of 74 published studies of the rebound effect conducted by 
Dimitropoulos et al. (2018) estimated that the long-run rebound effect ranges from 22-29 percent 
when measured by the response of vehicle use to variation in fuel efficiency (the authors’ 
preferred measure), from 21-41 percent when it is measured using the variation fuel cost per unit 
distance, and from 25-39 percent using fuel price per gallon.626  The authors concluded that “the 
magnitude of the rebound effect in road transport can be considered to be, on average, in the area 
of 20%,” but noted that the long-run estimate was about 32 percent.627  A subsequent study by 
these same authors  concludes that the most likely estimate of the long-run rebound effect is in 
the range of 26-29 percent, but could range from as low as 15 percent to as high as 49 percent at 
income levels, development densities, and fuel prices that are currently representative of the 
U.S.628 

The findings from these survey reviews have remained surprisingly consistent over time, despite 
a rapidly expanding universe of empirical evidence that includes estimates drawn from more 
diverse settings, and reflects continuing improvements in the data they rely upon, an expanding 
range of strategies for identifying the rebound effect and distinguishing it from other influences 
on vehicle use, and advances in the econometric procedures analysts use to estimate its 
magnitude.  

 
624 Greening, L.A., Greene, D.L. and Difiglio, C., “Energy efficiency and consumption—the rebound effect—a 
survey.” Energy Policy, Vol. 28 (2000), at 389-401. 
625 Sorrell, Steve, John Dimitropoulos, and Matt Sommerville, “Empirical Estimates of the Direct Rebound Effect: A 
Review,” Energy Policy 37(2009), at 1356–71.  
626 Dimitropoulos, Alexandros, Walid Oueslati, and Christina Sintek, “The rebound effect in road transport: a 
meta-analysis of empirical studies,” Paris, OECD Environment Working Papers, No. 113; see esat Table 5, at 25 
(and accompanying discussion).   
627 Id. at 28. 
628 Dimitropoulos, Alexandros, Walid Oueslati, and Christina Sintek, “The Rebound Effect in Road Transport: A 
Meta-Analysis of Empirical Studies,” Energy Economics 75 (2018), at 163-79; see esat Table 4, at 170, Table 5, at 
172 (and accompanying discussion), and Appendix B, Table B.V., at 177.  



 

4.3.4 VMT Resulting from Simulation 

Lifetime mileage accumulation is now a function of new vehicle sales, annual rates of retirement 
for used vehicles, mileage accumulation schedules (described in Table 4-14), the redistribution 
of VMT across the age distribution of registered vehicles in each calendar year to preserve the 
non-rebound VMT constraint, and any additional mile attributable to the rebound effect. 

The definition of “non-rebound” VMT in this analysis determines the additional miles associated 
with secular fleet turnover and fuel price changes.  Conversely, rebound miles measure the VMT 
difference due to fuel economy improvements relative to MY 2016 (independent of changes in 
fuel price, or secular fleetwide fuel economy improvement resulting from the continued 
retirement of older vehicles and their replacement with newer ones).  In order to calculate total 
VMT with rebound, the CAFE Model applies the price elasticity of VMT (taken from the FHWA 
forecasting model) to the full change in CPM and the initial VMT schedule, but applies the (user 
defined) rebound parameter to the incremental percentage change in CPM between the non-
rebound and full CPM calculations to the miles applied to each vehicle during the reallocation 
step that ensured adjusted non-rebound VMT matched the non-rebound VMT constraint.  
Equation 4-17 clarifies the calculation.  
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Equation 4-17 – Total Calendar Year VMT with Rebound Miles 

In the equation, VMTA,S is the initial VMT schedule by age and body-style, %ΔNonReboundCPM 
and %ΔCPM are defined in Equation 4-12 and Equation 4-11, respectively, and ΔMilesA,S,CY is 
the per-vehicle miles added by the reallocation described in Equation 4-16.  The additional miles 
that are added to each vehicle in the reallocation step (ΔMilesA,S,CY) are multiplied by the 
difference between the percentage changes in full CPM and non-rebound CPM, respectively, 
because the %ΔNonRbdCPM was used to derive the allocated miles and using the full CPM 
change to scale the allocated miles would count that change twice.  Taking the difference avoids 
overestimating the total mileage in the presence of the rebound effect.  And the presence of both 
the elasticity from the FHWA model that was applied to the non-rebound VMT constraint, 
𝜺𝜺𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭, and the user-defined elasticity of travel,  𝜺𝜺𝑵𝑵𝑵𝑵𝑵𝑵, ensure consistency with the constraint 
even if the user defines a value of rebound that does not equal the value in the FHWA model.  
The “rebound miles” will be the difference between Equation 4-17 and Equation 4-16 for each 
alternative.  To the extent that regulatory scenarios produce comparable numbers of rebound 
miles in early calendar years, the impacts associated with those miles net out across the 
alternatives in the benefit cost analysis. 

4.3.5 Benchmarking VMT in the CAFE Model and Accounting for COVID-19 

In order to assess the fuel consumption and environmental impacts of regulatory alternatives, it is 
desirable to have a representation of aggregate travel and fuel consumption that is both 
reasonable compared to other well recognized estimates and consistent with our own 



 

assumptions about fuel prices and economic growth, as well as simulated improvements in the 
fuel economy of the registered vehicle population. 

The Federal Highway Administration (FHWA) publishes annual VMT estimates for the light-
duty vehicle fleet.  In the last development cycle, the most recent FHWA estimate was calendar 
year 2017.  The FHWA estimate for light duty VMT in 2016 was 2.85 trillion miles.629  While 
the FHWA definition of light-duty is not identical to the definition in the CAFE program (where 
FHWA excludes trucks with 10,000 lbs. GVW, the CAFE program excludes trucks with GVW 
greater than 8,500 lbs. from its light duty definition), that definitional discrepancy is not 
significant enough to create meaningful differences in total VMT. 

Using the current mileage accumulation schedules and the observed calendar year 2016 on-road 
fleet (the VMT schedules are based on odometer readings through 2016),  produces an estimate 
of total light duty VMT in 2016 that is about 2.85 trillion miles—nearly identical to the FHWA 
estimate for 2016, despite the use of different estimation methods and data sources.  FHWA’s 
estimate of total light-duty VMT in 2017 was 2.88 trillion miles,630 while the estimate produced 
by the simple product of the mileage accumulation schedule on the estimated on-road fleet is 
2.94 trillion miles, a difference of about two percent.  While not as close as the estimate for 
calendar year 2016, the discrepancy is still small considering that the estimates are obtained 
through entirely different methods.  One important source of discrepancy with FHWA’s 2017 
VMT estimate is the fact that the CAFE Model simulation assumes all of the vehicles produced 
in a given model year are driven for the entire calendar year matching the vintage.631  This 
means, for calendar year 2017, the initial year of the simulation when using a Market Data file 
based on the MY 2017 vehicle market, MY 2017 vehicles are assumed to have been both 
registered and driven for the entirety of CY2017.  As a result, it naturally overestimates the true 
VMT for calendar year 2017.  Imposing the VMT constraint, discussed above, alleviates this 
discrepancy.  The “bottom-up” approach consistently produces estimates of total VMT that 
match the official FHWA estimates for recent years.  The inclusion of the FHWA forecasting 
model, itself, ensures consistent forecasts as well. 

This consistent agreement with FHWA measurements of light-duty VMT held throughout CY 
2019.  However, in 2020 the effects of the COVID pandemic – a combination of demand 
destruction and mandated travel restrictions – eroded aggregate VMT relative to 2019.  At the 
time of the analysis, FHWA estimates of 2020 VMT were still preliminary.  However, the 
FHWA Traffic Volume Trends Report, from December 2020, estimated that cumulative VMT 

 
629 See Highway Statistics 2017, Table VM-1, available at 
https://www.fhwa.dot.gov/policyinformation/statistics/2017/vm1.cfm. 
630 Id.  
631 The CAFE Model uses an annual timestep, meaning that each time period represents one year.  Because calendar 
years are (obviously) years, and all of the other inputs (discounting and inflation, macroeconomic variables, fuel 
prices, VMT, etc.) represent annual values, the timestep in the CAFE Model is a calendar year.  However, model 
years start prior to the calendar year for which they are named, and new model year sales continue (albeit only 
slightly) after their calendar year ends.  In order to account for model year sales on their true timing relative to 
calendar years, the model would need to be restructured to use a quarterly timestep.  While this would improve the 
fidelity between calendar year and model year for sales, obtaining quarterly projections of nearly every other 
variable in the analysis would be complicated (if not impossible).  For this reason, the model conflates “model year” 
and “calendar year” for the analysis, even though it is a simplification. 



 

decreased by about 13% relative to 2019.632  It seems plausible, even likely, that light-duty VMT 
would have been affected by the consequences of the pandemic more than commercial and heavy 
truck travel.  In the absence of data that supports separate estimates of light-duty VMT during 
2020, we have assumed that the 13% average reduction from 2019 was a reasonable estimate of 
2020 light-duty VMT.  The inclusion of the FHWA forecasting model improved the ease of this 
task, but still required some modifications.  While the model accounts for economic growth 
factors and consumer confidence, no credible model had a way to account for mandated travel 
restrictions or entire sectors of the economy shifting to remote work.  However, the FHWA 
model does use (one) previous year’s VMT to help project future VMT.   

In order to create a forecast of light-duty VMT that was consistent with both macroeconomic 
forecasts and the limited data from the pandemic in 2020, we modified the observed VMT in 
2019 (a year we don’t simulate) so that it appeared a VMT shock comparable to the decline 
caused by the pandemic occurred in 2019.  Then the forecasting model was able to start from the 
modified reference point in 2019 and, using observed and forecasted macroeconomic series, 
project a reasonable path for VMT growth relative to pandemic levels that eventually returns to a 
growth trend similar to before the pandemic, but at a lower level of total VMT.   

5 Simulating Emissions Impacts of Regulatory Alternatives 

This proposal includes the adoption of electric vehicles and other fuel-saving technologies, 
which produce additional co-benefits.  These co-benefits include reduced vehicle tailpipe 
emissions during operation as well as reduced upstream emissions during petroleum extraction, 
transportation, refining, and finally fuel transportation, storage, and distribution.  This chapter 
has a detailed discussion on the development and evolution of input parameters for criteria 
pollutants, greenhouse gases, and air toxics emitted, in particular for the reference case. 

The rule implements an emissions inventory methodology for estimating impacts.  Vehicle 
emissions inventories are often described as three-legged stools, comprised of activity (i.e., miles 
traveled, hours operated, or gallons of fuel burned), population (or number of vehicles), and 
emission factors.  An emissions factor is a representative rate that attempts to relate the quantity 
of a pollutant released to the atmosphere per unit of activity.633   

In this rulemaking, upstream emission factors are on a fuel volume basis and tailpipe emission 
factors are on a distance basis.  Simply stated, the rule’s upstream emission inventory is the 
product of the per-gallon emission factor and the corresponding number of gallons of gasoline or 
diesel consumed.  Similarly, the tailpipe emission inventory is the product of the per-mile 
emission factor and the appropriate miles traveled estimate.  The only exceptions are that tailpipe 
sulfur oxides (SOx) and carbon dioxide (CO2) also use a per-gallon emission factor in the CAFE 
Model.  The activity levels—both miles traveled and fuel consumption—are generated by the 
CAFE Model while the emission factors have been incorporated from other federal models. 

 
632 Available at, https://www.fhwa.dot.gov/policyinformation/travel_monitoring/20dectvt/20dectvt.pdf. 
633 US Environmental Protection Agency, Basics Information of Air Emissions Factors and Quantification, 
https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-
quantification. 

https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification
https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification


 

For this rule, vehicle tailpipe (downstream) and upstream emission factors and subsequent 
inventories were developed independently from separate data sources.  Upstream emission 
factors are estimated from a lifecycle emissions model developed by the U.S. Department of 
Energy’s (DOE) Argonne National Laboratory.  Tailpipe emission factors are estimated from the 
regulatory highway emissions inventory model developed by the U.S. Environmental Protection 
Agency’s (EPA) National Vehicle and Fuel Emissions Laboratory.  Data from the latest EPA and 
DOE models have been utilized to update the CAFE Model for this rulemaking. 

This chapter also details how these emissions will adversely affect human health, particularly 
from criteria pollutants known to cause poor air quality and damage human health, particularly 
when inhaled.  Further description on how the health impacts of upstream and tailpipe criteria 
pollutant emissions can vary and how these emission damages have been monetized and 
incorporated into the rule can be found in Chapter 6.2.2 and the Draft Environmental Impact 
Statement accompanying this analysis. 

5.1 Activity Levels Used to Calculate Emissions Impacts  

Emission inventories in this rule vary by several key activity parameters, especially relating to 
the vehicle’s model year and relative age.  Most importantly, the CAFE Model accounts for 
vehicle sales, turnover, and scrappage as well as travel demands over its lifetime.  Like other 
models, the CAFE Model includes procedures to estimate annual rates at which new vehicles are 
purchased, driven, and subsequently scrapped.  Together, these procedures result in, for each 
vehicle model in each model year, estimates of the number remaining in service in each calendar 
year, as well as the annual mileage accumulation (i.e. VMT) at each age.  Inventories by model 
year are derived from the annual mileage accumulation rates and corresponding emission factors.   

As discussed in Chapter 2.1, for each vehicle model/configuration in each model year from 2020 
to 2050 for upstream estimates and 2060 for tailpipe estimates, the CAFE Model estimates and 
records the fuel type (e.g., gasoline, diesel, electricity), fuel economy, and number of units sold 
in the U.S.  The model also makes use of an aggregated representation of vehicles sold in the 
U.S. during 1975-2019.  The model estimates the numbers of each cohort of vehicles remaining 
in service in each calendar year, and the amount of driving accumulated by each such cohort in 
each calendar year.   

The CAFE Model estimates annual vehicle-miles of travel (VMT) for each individual car and 
light truck model produced in each model year at each age of their lifetimes, which extend for a 
maximum of 40 years.634  Since a vehicle’s age is equal to the current calendar year minus the 
model year in which it was originally produced, the age span of each vehicle model’s lifetime 
corresponds to a sequence of 40 calendar years beginning in the calendar year corresponding to 
the model year it was produced.635  These estimates reflect the gradual decline in the fraction of 

 
634 Registration data indicate that survival rates for 39-year old vehicles have tended to fall between 1% and 2.5%, 
and odometer reading data indicate that 39-year old vehicles have tended to be driven far less intensively than newer 
vehicles.  Uncertainties tend to increase for the oldest vehicles, and accounting for vehicle survival and mileage 
accumulation over a 40-year span has also proven analytically practicable. 
635 In practice, many vehicle models bearing a given model year designation become available for sale in the 
preceding calendar year, and their sales can extend through the following calendar year as well.  However, the 
 



 

each car and light truck model’s original model year production volume that is expected to 
remain in service during each year of its lifetime, as well as the well-documented decline in their 
typical use as they age.  Using this relationship, the CAFE Model calculates fleet-wide VMT for 
cars and light trucks in service during each calendar year spanned by this analysis. 

Based on these estimates, the model also calculates quantities of each type of fuel or energy, 
including gasoline, diesel, and electricity, consumed in each calendar year.  By combining these 
with estimates of each model’s fuel or energy efficiency, the model also estimates the quantity 
and energy content of each type of fuel consumed by cars and light trucks at each age, or viewed 
another way, during each calendar year of their lifetimes.  As with the accounting of VMT, these 
estimates of annual fuel or energy consumption for each vehicle model and model year 
combination are combined to calculate the total volume of each type of fuel or energy consumed 
during each calendar year, as well as its aggregate energy content. 

The procedures the CAFE Model uses to estimate annual VMT for individual car and light truck 
models produced during each model year over their lifetimes and to combine these into estimates 
of annual fleet-wide travel during each future calendar year, together with the sources of its 
estimates of their survival rates and average use at each age, are described in detail in Chapters 
4.2 and 4.3.  The data and procedures it employs to convert these estimates of VMT to fuel and 
energy consumption by individual model, and to aggregate the results to calculate total 
consumption and energy content of each fuel type during future calendar years, are also 
described in detail in that same section.   

The model documentation accompanying today’s notice describes these procedures in detail.636  
The quantities of travel and fuel consumption estimated for the cross section of model years and 
calendar years constitutes a set of “activity levels” based on which the model calculates 
emissions.  The model does so by multiplying activity levels by emission factors.  As indicated 
in the previous section, the resulting estimates of vehicle use (VMT), fuel consumption, and fuel 
energy content are combined with emission factors drawn from various sources to estimate 
emissions of GHGs, criteria air pollutants, and airborne toxic compounds that occur throughout 
the fuel supply and distribution process, as well as during vehicle operation, storage, and 
refueling.  Emission factors measure the mass of each GHG or criteria pollutant emitted per 
vehicle-mile of travel, gallon of fuel consumed, or unit of fuel energy content.  The following 
sections identifies the sources of these emission factors and explains in detail how the CAFE 
Model applies them to its estimates of vehicle travel, fuel use, and fuel energy consumption to 
estimate total annual emissions of each GHG, criteria pollutant, and airborne toxic. 

5.2 Simulating Upstream Emissions Impacts 

The proposed CAFE standards consider both tailpipe and upstream emissions in the cost-benefit 
analysis and proposed rulemaking.  Early CAFE rulemakings utilized upstream emission factors 
from the U.S. Department of Energy’s previous releases of the Greenhouse gases, Regulated 

 
CAFE Model does not attempt to distinguish between model years and calendar years; vehicles bearing a model year 
designation are assumed to be produced and sold in that same calendar year.  
636 CAFE Model documentation is available at https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-
and-effects-modeling-system. 

https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system
https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system


 

Emissions, and Energy use in Transportation (GREET) Model.637  This rule includes data from 
GREET 2020 and additionally uses a Python script to manipulate data formats, allowing for 
quicker, easier replication.  Rulemaking updates to upstream emissions were made for certain 
fuel types: 

• Gasoline,  
• Diesel, and 
• Electricity. 

 
This chapter provides the calculation methodology of these updated upstream emission factors 
(in g/mmBTU) for the following regulated criteria pollutants as well as greenhouse gases derived 
from GREET 2018 and more recently GREET 2020: 

• Regulated criteria pollutants 
o carbon monoxide (CO), 
o volatile organic compounds (VOCs), 
o nitrogen oxides (NOx), 
o sulfur oxides (SOx), and 
o particulate matter with 2.5-micron (µm) diameters or less (PM2.5); 

•  Greenhouse gases 
o carbon dioxide (CO2), 
o methane (CH4), and 
o nitrous oxide (N2O). 

 
Emission factors for air toxics and diesel particulate matter of 10 µm or less (PM10) were 
unchanged from the 2018 NPRM and 2020 final rule.   

Each analysis year has emission factors of the four upstream emission processes for gasoline and 
diesel:  

• Petroleum Extraction, 
• Petroleum Transportation, 
• Petroleum Refining, and 
• Fuel Transportation, Storage, and Distribution (TS&D). 

 
By contrast, electricity only has a single value per analysis year.  In the sections below, the 
specific emission calculations for each upstream process are described.  For this rulemaking, 
analysis years of 2015 and earlier were removed from the proposal.  The upstream CAFE 
parameters for this rule include 2020 through 2050 in five-year intervals: 

• 2020, 2025, 2030, 2035, 2040, 2045, 2050 

 
637 U.S. Department of Energy, Argonne National Laboratory, Greenhouse gases, Regulated Emissions, and Energy 
use in Transportation (GREET) Model, Last Update: 9 Oct. 2020, https://greet.es.anl.gov/.  

https://greet.es.anl.gov/


 

5.2.1 Petroleum Extraction 

The first step in the process for calculating upstream emissions includes any emissions related to 
the extraction, recovery, and production of petroleum-based feedstocks, namely conventional 
crude oil, oil sands, and shale oils.  This methodology was initially implemented by Volpe with 
example guidance from the Department of Energy’s Argonne National Laboratory.  The 
Petroleum Extraction calculation began by summing all of the emission factors by extraction 
subprocess from the GREET 2020 Petroleum tab.  For example, the emission factor 𝑇𝑇𝐹𝐹 of oil 
sands surface mining for diluted bitumen (dilbit) production is the sum of each extraction 
subprocess 𝑇𝑇𝐹𝐹: bitumen extraction and separation, on-site H2 production, co-produced electricity 
credit, flaring emissions, and bitumen extraction and separation non-combustion emissions.   

Each extraction 𝑇𝑇𝐹𝐹 is then multiplied by the associated loss factors—or process inefficiencies—
and energy share for the following combinations of feedstock and primary extraction process: 

• Crude Oil 
o Recovery 

• Oil Sands 
o Surface Mining + Dilbit 
 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

o Surface Mining + Synthetic Crude Oil (SCO) 
 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

o In-Situ Production + Dilbit 
 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

o In-Situ Production + SCO 
 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

• Shale Oil (Bakken) 
o Recovery 

• Shale Oil (Eagle Ford) 
o Recovery 

 



 

These seven upstream feedstock/extraction process combinations produce identical estimates for 
both gasoline and diesel; differences by fuel type only occur during and after the refining 
process.  The extraction calculation includes the two associated loss factors, that are constant 
across all analysis years and both fuel types, and energy share (rather than the volumetric share) 
for each combination above: 

• Loss Factors 
o Transportation to U.S. Refineries 
o Storage 

• Energy Share of Crude Feedstocks to U.S. Refinery 
 
In mathematical terms, the Petroleum Extraction calculation for the emission factor 𝑇𝑇𝐹𝐹 
dependent on the energy share 𝑒𝑒𝐶𝐶 (from the GREET Petroleum tab), fuel type 𝑓𝑓 (either gasoline 
or diesel), analysis year 𝑐𝑐, and pollutant 𝐹𝐹 can be expressed as shown in Equation 5-1. 

𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑒𝑒𝐹𝐹𝑟𝑟𝑆𝑆𝑖𝑖𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝

= �𝑇𝑇𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹𝑃𝑃𝑟𝑟𝑆𝑆𝑊𝑊𝑟𝑟 ∙ 𝑒𝑒𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝐹𝐹𝑡𝑡�

+ �𝑇𝑇𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶𝑆𝑆𝑖𝑖𝑟𝑟 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹𝑃𝑃𝑟𝑟𝑆𝑆𝑊𝑊𝑟𝑟 ∙ 𝑒𝑒𝐶𝐶𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶𝑆𝑆𝑖𝑖𝑟𝑟 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑡𝑡
�

+ �𝑇𝑇𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶𝑆𝑆𝑖𝑖𝑟𝑟 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑆𝑆𝐶𝐶𝑂𝑂𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹𝑃𝑃𝑟𝑟𝑆𝑆𝑊𝑊𝑟𝑟 ∙ 𝑒𝑒𝐶𝐶𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶𝑆𝑆𝑖𝑖𝑟𝑟 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑆𝑆𝐶𝐶𝑂𝑂𝑦𝑦�

+ �𝑇𝑇𝐹𝐹𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹𝑃𝑃𝑟𝑟𝑆𝑆𝑊𝑊𝑟𝑟 ∙ 𝑒𝑒𝐶𝐶𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑡𝑡�

+ �𝑇𝑇𝐹𝐹𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑆𝑆𝐶𝐶𝑂𝑂𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹𝑃𝑃𝑟𝑟𝑆𝑆𝑊𝑊𝑟𝑟 ∙ 𝑒𝑒𝐶𝐶𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑆𝑆𝐶𝐶𝑂𝑂𝑦𝑦�

+ �𝑇𝑇𝐹𝐹𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝑟𝑟𝑃𝑃 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹𝑃𝑃𝑟𝑟𝑆𝑆𝑊𝑊𝑟𝑟 ∙ 𝑒𝑒𝐶𝐶𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝑟𝑟𝑃𝑃 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑡𝑡�

+ �𝑇𝑇𝐹𝐹𝐹𝐹𝑆𝑆𝑊𝑊𝐹𝐹𝑟𝑟 𝐹𝐹𝑃𝑃𝑟𝑟𝑟𝑟 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆 ∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹𝑃𝑃𝑟𝑟𝑆𝑆𝑊𝑊𝑟𝑟 ∙ 𝑒𝑒𝐶𝐶𝐹𝐹𝑆𝑆𝑊𝑊𝐹𝐹𝑟𝑟 𝐹𝐹𝑃𝑃𝑟𝑟𝑟𝑟 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑡𝑡
� 

Equation 5-1 – Yearly Gasoline Petroleum Extraction Emission Factor 

For every year in the series of analysis years 𝑐𝑐 ∈ 𝑌𝑌 (note that the year evaluated must be changed 
in the GREET Inputs tab) and every pollutant in the full set of pollutants 𝐹𝐹 ∈ 𝐹𝐹 mentioned 
above, the final gasoline Petroleum Extraction 𝑇𝑇𝐹𝐹 is multiplied by the percent non-ethanol 
remainder of the standard E10 blend currently distributed at fuel pumps across the U.S. (also 
found in the GREET Petroleum tab), simply 1 – pure ethanol energy content (𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %) while 
the final diesel 𝑇𝑇𝐹𝐹 is assumed to have no ethanol content, such that: 

 
𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑒𝑒𝐹𝐹𝑟𝑟𝑆𝑆𝑖𝑖𝐹𝐹𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑒𝑒𝐹𝐹𝑟𝑟𝑆𝑆𝑖𝑖𝐹𝐹𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %)  

and 
𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑒𝑒𝐹𝐹𝑟𝑟𝑆𝑆𝑖𝑖𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑒𝑒𝐹𝐹𝑟𝑟𝑆𝑆𝑖𝑖𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃. 

Equation 5-2 – Total Gasoline Petroleum Extraction Emission Factor 



 

There are a few notable pollutant exceptions that have been originally separated out in GREET 
by their sources and were later combined in the extraction calculation: 

• 𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑖𝑖 𝑉𝑉𝐹𝐹𝐶𝐶 = 𝑉𝑉𝐹𝐹𝐶𝐶 + 𝑉𝑉𝐹𝐹𝐶𝐶 𝑓𝑓𝑢𝑢𝑃𝑃𝑃𝑃 𝑏𝑏𝑢𝑢𝑖𝑖𝑘𝑘 𝑃𝑃𝑒𝑒𝑢𝑢𝑃𝑃𝑢𝑢𝑃𝑃𝑎𝑎𝑖𝑖, and 
• 𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑖𝑖 𝐶𝐶𝐻𝐻4 =  𝐶𝐶𝐻𝐻4: 𝑐𝑐𝑃𝑃𝑃𝑃𝑏𝑏𝑢𝑢𝐶𝐶𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 +  𝐶𝐶𝐻𝐻4:𝑃𝑃𝑃𝑃𝑃𝑃-𝑐𝑐𝑃𝑃𝑃𝑃𝑏𝑏𝑢𝑢𝐶𝐶𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃. 

 
Many extraction processes do not include VOC from bulk terminal and CH4: non-combustion 
but are added to primary VOC and CH4 estimates respectively for crude oil and shale oil 
recovery.  The Petroleum Transportation and Fuel TS&D processes also consider combined 
VOC and CH4 emission factors.  

5.2.2 Petroleum Transportation 

The Petroleum Transportation process is quite similar to the Petroleum Extraction process 
described above, but instead only includes the transport processes of crude feedstocks sent for 
domestic refining: 

•  Crude Oil 
o Transportation to U.S. Refineries 

• Oil Sands 
o Surface Mining + Dilbit: Transportation to U.S. Refineries, 
o Surface Mining + Synthetic Crude Oil (SCO): Transportation to U.S. Refineries, 
o In-Situ Production + Dilbit: Transportation to U.S. Refineries, and 
o In-Situ Production + SCO: Transportation to U.S. Refineries; 

• Shale Oil (Bakken) 
o Transportation to U.S. Refineries 

• Shale Oil (Eagle Ford) 
o Transportation to U.S. Refineries 

 
While the Petroleum Transportation calculation does still use energy share 𝑒𝑒𝐶𝐶 by crude 
feedstock, it omits the loss factors.  As with Petroleum Extraction, the Petroleum Transportation 
emission factor 𝑇𝑇𝐹𝐹, shown in Equation 5-3, is aggregated by feedstock/process combinations 
also located in the GREET 2020 Petroleum tab. 

𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝

= �𝑇𝑇𝐹𝐹𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝐹𝐹𝑡𝑡�

+ �𝑇𝑇𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝐶𝐶𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑡𝑡
�

+ �𝑇𝑇𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑆𝑆𝐶𝐶𝑂𝑂𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝐶𝐶𝑆𝑆𝑟𝑟𝑟𝑟𝐶𝐶 𝑁𝑁𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃𝑊𝑊,𝑆𝑆𝐶𝐶𝑂𝑂𝑦𝑦�

+ �𝑇𝑇𝐹𝐹𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝐶𝐶𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑟𝑟𝑟𝑟𝐹𝐹𝐶𝐶𝑟𝑟𝐹𝐹𝑡𝑡� + �𝑇𝑇𝐹𝐹𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑆𝑆𝐶𝐶𝑂𝑂𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝐶𝐶𝑟𝑟𝑃𝑃-𝑆𝑆𝑟𝑟𝐹𝐹𝑟𝑟,𝑆𝑆𝐶𝐶𝑂𝑂𝑦𝑦�

+ �𝑇𝑇𝐹𝐹𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝑟𝑟𝑃𝑃 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝐶𝐶𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝑟𝑟𝑃𝑃 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑡𝑡�

+ �𝑇𝑇𝐹𝐹𝐹𝐹𝑆𝑆𝑊𝑊𝐹𝐹𝑟𝑟 𝐹𝐹𝑃𝑃𝑟𝑟𝑟𝑟 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝐶𝐶𝐹𝐹𝑆𝑆𝑊𝑊𝐹𝐹𝑟𝑟 𝐹𝐹𝑃𝑃𝑟𝑟𝑟𝑟 𝑆𝑆ℎ𝑆𝑆𝐹𝐹𝑟𝑟𝑡𝑡
� 

Equation 5-3 – Yearly Gasoline Petroleum Transportation Emission Factor 



 

As in the extraction process calculation, the crude feedstock transportation 𝑇𝑇𝐹𝐹𝐶𝐶 are generated for 
each fuel type 𝑓𝑓, year in the series of analysis years 𝑐𝑐 ∈ 𝑌𝑌, and each pollutant is the full set of 
pollutants 𝐹𝐹 ∈ 𝐹𝐹.  The final Petroleum Transportation 𝑇𝑇𝐹𝐹 for gasoline is multiplied by the 
national default non-ethanol remainder (1 − 𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %), whereas the final transport 𝑇𝑇𝐹𝐹 for 
diesel will not contain any ethanol, shown in Equation 5-4. 

𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %)  
and 

𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃. 

Equation 5-4 – Total Gasoline Petroleum Transportation Emission Factor 

Lastly, the total VOC for Petroleum Transportation is the sum of the primary VOC and the VOC 
from bulk terminal as shown above for Petroleum Extraction while the total CH4 is comprised of 
the combustion component alone. 

5.2.3 Petroleum Refining 

Unlike the Petroleum Extraction and Petroleum Transportation calculations, the Petroleum 
Refining calculation is based on the aggregation of fuel blendstock processes rather than the 
crude feedstock processes.  In GREET 2020, the refining processes are found in the finished 
gasoline and low-sulfur diesel sections of the Petroleum tab, as listed below: 

• Gasoline 
o Gasoline Blendstock Refining: Feed Inputs 
o Gasoline Blendstock Refining: Intermediate Product Combustion 
o Gasoline Blendstock Refining: Non-Combustion Emissions 

• Low-Sulfur Diesel 
o LS Diesel Refining: Feed Inputs 
o LS Diesel Refining: Intermediate Product Combustion 
o LS Diesel Refining: Non-Combustion Emissions 

 
Since the distribution of crude feedstocks is not considered directly in the refining process, the 
finished fuel transportation loss adjustment (Gasoline Blendstock Transportation and LS Diesel 
Transportation Distribution respectively) is factored into the refining emission factor 𝑇𝑇𝐹𝐹 
calculation while the energy share 𝑒𝑒𝐶𝐶 is not.  This leads to Equation 5-5 for the Petroleum 
Refining process. 

𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑃𝑃𝑟𝑟𝑓𝑓,𝑦𝑦,𝑝𝑝

= �𝑇𝑇𝐹𝐹𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑃𝑃𝑁𝑁𝑟𝑟𝐹𝐹𝑆𝑆𝑓𝑓,𝑦𝑦,𝑝𝑝 + 𝑇𝑇𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹𝑟𝑟𝑟𝑟𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆𝐹𝐹𝑟𝑟 𝑖𝑖𝑃𝑃𝑁𝑁𝐶𝐶𝑟𝑟𝑆𝑆𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 + 𝑇𝑇𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃-𝑖𝑖𝑃𝑃𝑁𝑁𝐶𝐶𝑟𝑟𝑆𝑆𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝�
∙ 𝑖𝑖𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹𝑆𝑆𝐹𝐹𝑟𝑟𝑃𝑃𝑃𝑃𝑡𝑡

 

Equation 5-5 – Yearly Gasoline Petroleum Refinery Emission Factor 

In a similar fashion to the extraction and transportation processes of crude feedstocks, the final 
Petroleum Refining 𝑇𝑇𝐹𝐹 for gasoline applies the non-ethanol energy content adjustment (1 −



 

𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %) for E10.  The final Petroleum Refining 𝑇𝑇𝐹𝐹 for diesel does not apply any such non-
ethanol adjustment because the fuel is purely based on petroleum.  The final refining 𝑇𝑇𝐹𝐹𝐶𝐶 can be 
written as shown in Equation 5-6. 

𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑃𝑃𝑟𝑟𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑃𝑃𝑟𝑟𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %)  
and 

𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑃𝑃𝑟𝑟𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑃𝑃𝑟𝑟𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃. 

Equation 5-6 – Total Gasoline Petroleum Refinery Emission Factor 

 
In the refining calculations, there are no exceptions for VOC or CH4.  Both primary VOC and 
CH4 combustion account for the total VOC and total CH4 respectively. 

5.2.4 Fuel TS&D 

The final upstream process after refining is the transportation, storage, and distribution (TS&D) 
of the finished fuel product.  For gasoline, the blendstock transportation and distribution 
subprocesses were previously combined in a single GREET value on the Petroleum tab, but now 
these emission factors (𝑇𝑇𝐹𝐹𝐶𝐶) are reported separately to avoid double-counting of pre-blended E0 
transportation in the Fuel TS&D process.  This issue does not exist for low-sulfur diesel, which 
does not require blending like E10.  The Fuel TS&D subprocesses for gasoline and diesel in 
GREET 2020 are summarized: 

• Gasoline 
o Gasoline Blendstock Transportation  
o Gasoline Blendstock Distribution 
o Gasoline Distribution 
o Gasoline Storage 

• Low-Sulfur Diesel 
o LS Diesel Transportation Distribution 
o LS Diesel Storage 

 
Note that GREET 2016 has a single Gasoline Blendstock Transportation and Distribution 𝑇𝑇𝐹𝐹.  In 
the default settings, GREET does not report any emissions associated with fuel storage.  Given 
that all storage 𝑇𝑇𝐹𝐹𝐶𝐶 are zero, the initial Fuel TS&D calculation with GREET 2020 is just the 
reported 𝑇𝑇𝐹𝐹𝐶𝐶 for E0 blendstock transportation and distribution. 

𝑇𝑇𝐹𝐹𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹 𝑇𝑇𝑆𝑆&𝐷𝐷𝑓𝑓,𝑦𝑦,𝑝𝑝 = 𝑇𝑇𝐹𝐹𝐹𝐹0 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑓𝑓,𝑦𝑦,𝑝𝑝 + 𝑇𝑇𝐹𝐹𝐹𝐹0 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝑟𝑟𝑟𝑟𝑆𝑆𝐹𝐹𝑓𝑓,𝑦𝑦,𝑝𝑝 

Equation 5-7 – Yearly E0 Blendstock Transportation and Distribution Emission Factor 

For GREET 2016, it was simply the 𝑇𝑇𝐹𝐹𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝑇𝑇&𝐷𝐷𝑓𝑓,𝑦𝑦,𝑝𝑝.  The final Fuel TS&D 𝑇𝑇𝐹𝐹 for gasoline 
accounts for emissions before and after E10 blending.  This final gasoline 𝑇𝑇𝐹𝐹 utilizes the percent 
energy content of the non-ethanol remainder—the same as earlier petroleum processes.  It also 
incorporates ethanol energy content with upstream ethanol for gasoline blending 𝑇𝑇𝐹𝐹𝐶𝐶 on the 
GREET EtOH tab, where the total ethanol 𝑇𝑇𝐹𝐹 is the sum of its fuel and feedstock subprocesses. 



 

𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 →𝑊𝑊𝑆𝑆𝑆𝑆 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟𝑦𝑦,𝑝𝑝 = 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 →𝑊𝑊𝑆𝑆𝑆𝑆 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟,𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹𝑦𝑦,𝑝𝑝 + 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 →𝑊𝑊𝑆𝑆𝑆𝑆 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟,𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆𝐹𝐹𝑃𝑃𝑖𝑖𝐵𝐵𝑦𝑦,𝑝𝑝 

Equation 5-8 – Fuel Transportation and Distribution Emission Factor with E10 Blending 

The final Fuel TS&D 𝑇𝑇𝐹𝐹𝐶𝐶 for gasoline and for diesel can be broken into three terms, E0 
distribution, ethanol TS&D, and E10 distribution, such that in GREET 2020: 

𝑇𝑇𝐹𝐹′𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹 𝑇𝑇𝑆𝑆&𝐷𝐷𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = �𝑇𝑇𝐹𝐹𝐹𝐹0 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝑟𝑟𝑟𝑟𝑆𝑆𝐹𝐹𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %)� +

�𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 →𝑊𝑊𝑆𝑆𝑆𝑆 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 ∙ 𝑇𝑇𝐶𝐶𝐹𝐹𝐹𝐹𝑂𝑂𝐻𝐻 %� + 𝑇𝑇𝐹𝐹𝐹𝐹10 𝑟𝑟𝑟𝑟𝑆𝑆𝐹𝐹𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃   
and 

𝑇𝑇𝐹𝐹′𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹 𝑇𝑇𝑆𝑆&𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝑇𝑇&𝐷𝐷𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 

Equation 5-9 – Total Fuel Transportation and Distribution Emission Factor 

These Fuel TS&D equations have omitted the non-existent storage terms for simplicity.  The E0 
distribution cannot be directly pulled from GREET 2016 and must be inferred from reported E0 
𝑇𝑇𝐹𝐹𝐶𝐶 for T&D and transportation alone. 

𝑇𝑇𝐹𝐹𝐹𝐹0 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝑟𝑟𝑟𝑟𝑆𝑆𝐹𝐹𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹𝐹𝐹0 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝑇𝑇&𝐷𝐷𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 − 𝑇𝑇𝐹𝐹𝐹𝐹0 𝐶𝐶𝐹𝐹𝑟𝑟𝑃𝑃𝑟𝑟 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑔𝑔𝑎𝑎𝑔𝑔,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 

Equation 5-10 – E0 Blend Distribution Emission Factor 

Total CH4 for Fuel TS&D is based solely on the CH4: combustion component and total VOC is 
the sum of the primary VOC and other components from the T&D process (applies to gasoline 
TS&D in GREET 2016 and diesel TS&D in both GREET 2016 and 2020). 

𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑖𝑖 𝑉𝑉𝐹𝐹𝐶𝐶 = 𝑉𝑉𝐹𝐹𝐶𝐶 + 𝑉𝑉𝐹𝐹𝐶𝐶 𝑓𝑓𝑢𝑢𝑃𝑃𝑃𝑃 𝑏𝑏𝑢𝑢𝑖𝑖𝑘𝑘 𝑃𝑃𝑒𝑒𝑢𝑢𝑃𝑃𝑢𝑢𝑃𝑃𝑎𝑎𝑖𝑖 + 𝑉𝑉𝐹𝐹𝐶𝐶 𝑓𝑓𝑢𝑢𝑃𝑃𝑃𝑃 𝑢𝑢𝑒𝑒𝑓𝑓.  𝐶𝐶𝑃𝑃𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃. 
Equation 5-11 – Total Volatile Organic Compounds from the Transportation and Distribution Process 

However, for the gasoline TS&D calculation in GREET 2020, the primary VOC comes from the 
blendstock distribution while the other VOC components come from the blendstock 
transportation. 

5.2.5 Aggregated Gasoline and Diesel Emission Factors 

The upstream gasoline and diesel emission factors 𝑇𝑇𝐹𝐹𝐶𝐶 for this analysis continue to be 
aggregated using the same method as the 2020 final rule and earlier rulemakings.  While the 
particular gasoline and diesel 𝑇𝑇𝐹𝐹𝐶𝐶 vary by analysis year and pollutant, the aggregation of the 
four upstream processes—Petroleum Extraction, Petroleum Transportation, Petroleum Refining, 
and Fuel TS&D—follows the same calculation for both fuel types.  The CAFE aggregation 
method differs from the GREET method and considers the following two upstream adjustments 
for CAFE: 

• Share of Fuel Savings Leading to Reduced Domestic Fuel Refining, and 
• Share of Reduced Domestic Refining from Domestic Crude. 

 



 

In this case, the final CAFE aggregation applies a fuel savings adjustment to the Petroleum 
Refining process and a combined fuel savings and reduced domestic refining adjustment to the 
pair of Petroleum Extraction and Petroleum Transportation processes for each fuel type in the 
gasoline-diesel pair 𝑓𝑓 ∈ 𝐹𝐹, each year in the series of analysis years 𝑐𝑐 ∈ 𝑌𝑌, and each pollutant in 
the full set of pollutants 𝐹𝐹 ∈ 𝐹𝐹. 

𝑇𝑇𝐹𝐹′′𝑆𝑆𝑊𝑊𝑊𝑊 𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 = 𝑇𝑇𝐹𝐹′𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹 𝑇𝑇𝑆𝑆&𝐷𝐷𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 + �𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑃𝑃𝑟𝑟𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 ∙ 𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹 𝑆𝑆𝑆𝑆𝑠𝑠𝑟𝑟𝑃𝑃𝑊𝑊𝑆𝑆�

+ ��𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝑟𝑟𝑒𝑒𝐹𝐹𝑟𝑟𝑆𝑆𝑖𝑖𝐹𝐹𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 + 𝑇𝑇𝐹𝐹′𝑁𝑁𝑟𝑟𝐹𝐹𝑟𝑟𝑃𝑃𝐹𝐹 𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃� ∙ 𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝐶𝐶𝑟𝑟𝑟𝑟𝐹𝐹 𝑆𝑆𝑆𝑆𝑠𝑠𝑟𝑟𝑃𝑃𝑊𝑊𝑆𝑆

∙ 𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑃𝑃𝑟𝑟� 

Equation 5-12 – Aggregated Fuel Emissions Factor 

For consistency, these aggregated gasoline and diesel 𝑇𝑇𝐹𝐹 calculations occur in the CAFE Model 
rather than the Python script or elsewhere.  Note that the upstream adjustments in the CAFE 
Model are constant across fuel types, analysis years, and pollutants and are unchanged since the 
2020 final rule. 

5.2.6 Electricity Emission Factors 

As part of the proposed rulemaking upstream emissions updates, the electricity emission factors 
𝑇𝑇𝐹𝐹𝐶𝐶 were also transitioned to GREET 2020.  The electricity 𝑇𝑇𝐹𝐹 calculations were similar to the 
calculations for ethanol.  They project a national default electricity generation mix for 
transportation use from the latest Annual Energy Outlook data available, in this case from 2019.  
The final electricity 𝑇𝑇𝐹𝐹 simply sums the feedstock and fuel subprocesses for every unique 
analysis year and pollutant. 

𝑇𝑇𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝑖𝑖𝐹𝐹𝑟𝑟𝑟𝑟𝑖𝑖,𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹 𝑟𝑟𝑆𝑆𝑟𝑟𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃

= 𝑇𝑇𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝑖𝑖𝐹𝐹𝑟𝑟𝑟𝑟𝑖𝑖,𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹 𝑟𝑟𝑆𝑆𝑟𝑟𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 + 𝑇𝑇𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝑖𝑖𝐹𝐹𝑟𝑟𝑟𝑟𝑖𝑖,𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝑟𝑟𝐹𝐹 𝑟𝑟𝑆𝑆𝑟𝑟𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑀𝑀,𝑝𝑝∈𝑃𝑃 

Equation 5-13 – Electricity Transportation Emissions Factor 

Unlike for the upstream gasoline and diesel 𝑇𝑇𝐹𝐹𝐶𝐶, the CAFE Model utilizes the single upstream 
electricity 𝑇𝑇𝐹𝐹 for transportation use highlighted above and does not differentiate by process.  
The electricity calculation has not changed between GREET 2016 and 2020.  

5.2.7 Python Implementation of Upstream Updates 

In order to run Python for generating these upstream gasoline, diesel, and electricity emission 
factors 𝑇𝑇𝐹𝐹𝐶𝐶, the Anaconda platform638 should be installed.  Anaconda packages the latest version 
of Python (3.7) and its most frequently used data science libraries.  The upstream updates require 
pandas for creating and manipulating database-like structures, numpy for advanced mathematical 
functions, xlwings for reading and writing to Excel files, and other common libraries.  Python 
can be executed through any number of text editors, but this script to update upstream 𝑇𝑇𝐹𝐹𝐶𝐶 was 

 
638 Anaconda (Data Science Platform for Python): Individual Edition, Last Accessed: 3 May 2021,  
https://www.anaconda.com/products/individual.  

https://www.anaconda.com/products/individual


 

developed with PyCharm (the free Community edition),639 which has helpful version control and 
debugging features. 

To update upstream data in the CAFE Model parameters file, the shared Python should be run in 
the preferred text editor or by command line.  Running the script will produce a new parameters 
file in the same structure and format as the existing parameters file, which can then be relabeled 
with the current date and version of GREET.  Analysts can toggle back and forth between 
GREET 2016 and 2020 using the greet_year variable (line 13) as needed for testing and data 
validation.  There is also an ethanol energy content flag (line 14) for examining interim results 
before applying the percent of E10 energy content to the calculations by upstream process.  This 
Python script references particular cells in the GREET Excel workbook file and cell references 
sometimes differ by version.  There is already a code fork implemented in Python to accept both 
the GREET 2016 and 2020 files, so another fork will likely be needed for subsequent GREET 
releases.   

5.2.8 Validation Testing of GREET Updates 

Plots between GREET releases were prepared in an effort to validate upstream emission updates 
in the CAFE Model and its input parameters.  As an example, upstream CO2 emission factors 
from GREET 2018 used in the 2020 final rule compared to emission factors from GREET 2020 
implemented for this proposed rulemaking are presented in Figure 5-1.  This example figure 
shows some modest decreases in emission factors by upstream process and over time when 
transitioning from GREET 2018 to 2020, particularly influenced by changing assumptions for 
petroleum extraction.  Similar plots for other greenhouse gases as well as criteria pollutants and 
air toxics highlight commensurate changes to the upstream parameters. 
 

 
639 JetBrains, PyCharm: Community Edition, Last Accessed: 3 May 2021, https://www.jetbrains.com/pycharm/.  

https://www.jetbrains.com/pycharm/


 

 
Figure 5-1 – Validation Plot of Upstream CO2 Emission Factors from the CAFE Parameters File Comparing 

GREET 2018 and 2020 

The following section discusses updates to the modeling of tailpipe emissions in this rulemaking. 

5.3 Simulating Tailpipe Emissions Impacts   

Tailpipe emission factors are generated using the latest regulatory model for on-road emission 
inventories from the U.S. Environmental Protection Agency, the Motor Vehicle Emission 
Simulator (MOVES3).  This section has two primary components of discussion: 1) preparing 
model runs to estimate tailpipe emission inventories and vehicle activity, referred to below as 
pre-processing, and 2) calculating tailpipe emission factors on a per-mile basis, referred to below 
as post-processing.  In addition, this section discusses the separate process for generating tailpipe 
CO2 emissions levels in the CAFE Model. 

5.3.1 Pre-Processing of MOVES Data 

For this rulemaking, the CAFE Model’s tailpipe input parameters for criteria pollutants, non-CO2 
greenhouse gases, and mobile-source air toxics have been updated with the latest available 
emission factors.  The most recent version of the Motor Vehicle Emission Simulator (MOVES3), 
first released in November 2020, is a state-of-the-science, mobile-source emissions inventory 
model for regulatory applications.640  New MOVES3 tailpipe emission factors have been 

 
640 U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Motor Vehicle Emission 
Simulator (MOVES), Last Updated: March 2021, https://www.epa.gov/moves/latest-version-motor-vehicle-
emission-simulator-moves.  

https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves
https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves


 

incorporated into the CAFE parameters, and these updates supersede tailpipe data previously 
provided by EPA from MOVES2014. 

5.3.1.1 Overview of MOVES Modeling 

To maintain continuity in the historical inventories, only emission factors for model years 2020 
and after were updated; all emission factors prior to MY 2020 were unchanged from previous 
CAFE rulemakings.  In addition, this updated tailpipe data in the current CAFE reference case no 
longer accounts for any fuel economy improvements or changes in vehicle miles traveled from 
the 2020 rule.  In order to avoid double-counting effects from the previous rulemaking in the 
current rulemaking, the new tailpipe baseline backs out: 

1) 1.5% year-over-year stringency increases in fuel economy, and 
2) 0.3% VMT increases assumed each year (20% rebound on the 1.5% improvements in 

stringency).  
 
The baseline was reverted in the MOVES3 default database prior to executing the new runs for 
the tailpipe data updates.  Detailed MOVES3 run specifications have been listed in Table 5-1.  
Tailpipe parameters in the CAFE Model have otherwise maintained their format, besides now 
extending to MY 2060.  The most relevant factors from these tailpipe parameters have been 
summarized as follows: 

• MOVES Release: 3.0.1 (March 2021) 
• MOVES Default Database: 20210209 
• Fuel Types:  

o gasoline 
o diesel 

• Vehicle Classes:  
o light-duty vehicles (MOVES regulatory class 21) 
o light-duty trucks, Classes 1 and 2a (MOVES regulatory class 30) 
o light-duty trucks, Classes 2b and 3 (MOVES regulatory class 41) 

• Model Years: 2020 – 2060 
• Vehicle Ages: 0 – 39 years old 
• Criteria Pollutants: 

o carbon monoxide (CO) 
o volatile organic compounds (VOCs) 
o nitrogen oxides (NOx) 
o particulate matter with 2.5-micron (µm) diameters or less (PM2.5) 

• Greenhouse gases 
o methane (CH4) 
o nitrous oxide (N2O) 

• Air Toxics 
o acetaldehyde 
o acrolein 
o benzene 
o butadiene 



 

o formaldehyde 
o diesel particulate matter with 10-micron (µm) diameters or less (PM10) 

  



 

Table 5-1 – National-Scale Run Specifications 

Categories Variable Input 
Description ----- <blank> 

Scale 
Model Onroad 

Domain/Scale National 
Calculation Type Inventory 

Time Spans 

Time Aggregation Level Year 

Years 2020, 2021, 2022, 2023… 2057, 2058, 2059, 2060 
[each year was run separately] 

Months All Selected 
Days All Selected 
Hours All Selected 

Geographic 
Bounds ----- Nation 

Vehicles/ 
Equipment 

On-Road Vehicle 
Equipment All Fuel/Type Combinations Selected 

Road Type Road Type All Road Types 

Pollutants 
and 

Processes 

Total Gaseous 
Hydrocarbons 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

Non-methane 
Hydrocarbons 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

Volatile Organic 
Compounds 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

Methane (CH4) 
Running Exhaust, Start Exhaust, Crankcase Running 

Exhaust, Crankcase Start Exhaust 

Carbon Monoxide (CO) Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Oxides of Nitrogen (NOx) 
Running Exhaust, Start Exhaust, Crankcase Running 

Exhaust, Crankcase Start Exhaust 

Nitrous Oxide (N2O) Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Primary Exhaust PM2.5 – 
Total 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Primary Exhaust PM2.5 – 
Species 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Primary PM2.5 – Brakewear 
Particulate Brakewear 

Primary PM2.5 – Tirewear 
Particulate Tirewear 

Primary Exhaust PM10 – 
Total 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

 



 

Categories Variable Input 

Pollutants 
and 

Processes 

Primary Exhaust PM10 – 
Species 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Primary PM10 – Brakewear 
Particulate Brakewear 

Primary PM10 – Tirewear 
Particulate Tirewear 

Sulfur Dioxide (SO2) 
Running Exhaust, Start Exhaust, Crankcase Running 

Exhaust, Crankcase Start Exhaust 
Carbon Dioxide Equivalent 

(CO2e) Running Exhaust, Start Exhaust 

Total Energy Consumption 
(TEC) Running Exhaust, Start Exhaust 

Benzene 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

1,3-Butadiene Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Formaldehyde Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Acetaldehyde Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Acrolein Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Manage 
Input Data 

Series 
----- <blank> 

Strategies Rate of Progress <blank> 

General 
Output 

Units Mass: kilograms, Energy: million BTU, Distance: 
miles 

Activity Distance Traveled, Population 

Output 
Emissions 

Detail 

Always Year, Nation 
On Road/Off Road Road Type, Source Use Type, Regulatory Class 

For All Vehicle/Equipment 
Combinations Model Year, Fuel Type, Emission Process 

Advanced 
Performance 

Features 
----- <blank> 

 

5.3.1.2 Implementation of MOVES Runs 

To begin, a MOVES3 run specification (runspec) for calendar year 2020 was built as a template 
and then replicated for all other years out to 2060, creating a total of 41 runs.  The 2020 template 
run uses the national-scale specifications denoted in Table 5-1.  In addition, the MOVES3 default 
database has been updated with the light-duty vehicle changes noted earlier, namely higher 
energy consumption rates and lower annual VMT estimates compared to the 2020 final rule.  
Beyond designating one year per run, all runs were executed with the same runspecs and 



 

modified default database.  The 41 runs were then batched together and executed continuously.  
Performance ranged from roughly 5-8 hours of time to complete each run depending on the 
machine on which it was executed and its available resources.   

Post-processing the MOVES3 data into an appropriate format for the CAFE Model is described 
below.  This post-processing discussion details how the tailpipe emission factors were calculated 
from the MOVES3 output databases and then translated into the CAFE input parameters file. 

5.3.2 Post-Processing of MOVES Data 

The Motor Vehicle Emission Simulator (MOVES3) data were post-processed into input 
parameters for the CAFE Model using a Python script.  Tailpipe emission parameters for this 
rulemaking were updated for gasoline and diesel light-duty vehicles and trucks, including the 
criteria pollutants, greenhouse gases, and air toxics across model years 2020 to 2060, as 
mentioned in the run specifications in the MOVES pre-processing discussion above. 

5.3.2.1 Overview of Tailpipe Data Development from MOVES 

As noted earlier, each MOVES3 run created an output database for a single evaluation year, 
meaning there were 41 total runs and subsequent output databases.  Output databases contain a 
number of tables with model emissions inventories and vehicle activities, such as VMT. 

The next section describes the specific steps taken to alter the output database from MOVES3.  
The data for years before 2020 were removed and previous data were used.  This should not 
affect the outcome of the model because emission rates for previous models cannot be changed. 

5.3.2.2 Description of MOVES Output Tables 

The MOVES output database contains many tables; however, the post-processing script pulls 
from only two of these tables.  The post-processing script uses the following tables: 

• movesoutput 
• movesactivityoutput 

 
Each table contains many columns, including calendar year, vehicle model year, regulatory class 
based on vehicle weight and build, fuel type, specific pollutant, and emission inventory, and the 
vehicle activity.  The following columns from each table were used in the post-processing script: 

• movesoutput: yearID, modelYearID, regClassID, fuelTypeID, pollutantID, 
emissionQuant 

• movesactivityoutput: yearID, modelYearID, regClassID, fuelTypeID, activity 

5.3.2.3 Connecting to and Querying the MOVES Database 

After establishing a MariaDB connection, the code queries the database and returns a dataframe 
with the following columns: 

• yearID, modelYearID, age, regClassID, fuelTypeID, pollutantID, VMT, emissionRate 



 

 
The age, VMT, and emissionRate columns are calculated from the other columns, which are 
generated in the default outputs.  Age is simply calculated by subtracting the modelYearID from 
the yearID, while the VMT is taken as the sum of the distance traveled activity and then grouped 
by yearID, modelYearID, pollutantID, and regClassID for gasoline and diesel separately.  Lastly, 
emissionRate was calculated as the aggregated emissions inventories divided by the aggregated 
vehicle miles traveled at a corresponding level of resolution. 

5.3.2.4 MOVES Data Manipulation 

After querying and calculating the columns in the correct units, the next step is simply arranging 
the data into the appropriate format and copying them to the appropriate parameters file.  To do 
so, we first separated the data into two dataframes by fuel type.  We then sorted the data by 
ascending model year, meaning the data began with model year 1990.  Within the model year, 
the data were again sorted by descending age, ascending pollutant, and ascending regulatory 
class.  The resulting dataframe had the structure shown in Figure 5-2. 

Model 
Year Age Pollutant Regulatory 

Class 
2020 0   
2020 1   
2020 2   
2020 3   
2020 4   
… … … … 
2060 34   
2060 35   
2060 36   
2060 37   
2060 38   
2060 39   

Figure 5-2 – Example of General MOVES Output 

Next, the script pivots this dataframe such that the pollutant and regulatory class values become 
column headers in the format shown in Figure 5-3. 

 



 

 Pollutant 
 
 

2 2 2 3 3 3 … 

Model 
Year 

Regulatory 
Class 
 
Age 

20 30 41 20 30 41 … 

2020 0        
2020 1        
2020 2        
2020 3        
2020 4        
…. … … … … … … … … 
2060 34        
2060 35        
2060 36        
2060 37        
2060 38        
2060 39        

Figure 5-3 – Example of MOVES Output Prepared in CAFE Parameters Format 

The MOVES3 output does not cover all the model years and ages required by the CAFE Model, 
MOVES only generates emissions data for vehicles made in the last 30 model years for each 
calendar year being run.  This means emissions data for some calendar year and vehicle age 
combinations are missing.  To remedy this, the script takes the last vehicle age that has emissions 
data and forward fills those data for the following vehicle ages.  Due to incomplete available data 
for years prior to MY 2020, tailpipe emission factors for MY 2019 and earlier have not been 
modified and continue to utilize MOVES2014 data. 

5.3.2.5 Exporting MOVES Data to Excel 

The Python code connects to an Excel spreadsheet and requires a reference Excel spreadsheet 
that contains the CAFE parameters.  This file is copied and the new data are added to the copied 
file.  Copying the reference file builds in redundancy and ensures that all original data remains 
intact. 

5.3.2.6 Validation Testing of MOVES Updates 

To ensure the parameters file was modified correctly, we conducted quality assurance tests.  
These consisted of checking the data from previous parameters files with the new file.  The data 
are the same in model years before 2020 and have changed in MY 2020 and later.  As an 
example, Figure 5-4 shows light-duty gasoline CO emission factors over time, and illustrates 
how the updated MOVES3 data (2021 update scenarios) diverge from the existing MOVES2014 
data (reference scenarios) in MY 2020. 



 

 
Figure 5-4 – Illustration of Newly Updated CO Emission Rate Projections for Gasoline Cars and Light 

Trucks Over the Next 40 Years 

5.3.3 Simulating Tailpipe CO2 Emissions   

Much like the impacts from criteria pollutant emissions, the CAFE input parameters for 
greenhouse gases are generally taken from other models.  As discussed at length above, upstream 
GHG emission factors come from GREET 2020 and tailpipe non-CO2 GHG emission factors 
come from MOVES3.  This section briefly describes the methodology for the development and 
use of the tailpipe CO2 emission factors. 

For tailpipe CO2 emissions, these factors are defined based on the fraction of each fuel type’s 
mass that represents carbon (the carbon content) along with the mass density per unit of the 
specific type of fuel.  To obtain the emission factors associated with each fuel, the carbon content 
is then multiplied by the mass density of a particular fuel as well as by the ratio of the molecular 
weight of carbon dioxide to that of elemental carbon.  This ratio, a constant value of 44/12, 
measures the mass of carbon dioxide that is produced by complete combustion of mass of carbon 
contained in each unit of fuel.  The resulting value defines the emission factor attributed to CO2 
as the amount of grams of CO2 emitted during vehicle operation from each type of fuel.  This 



 

calculation is repeated for gasoline, E85, diesel, and compressed natural gas (CNG) fuel types.  
In the case of CNG, the mass density and the calculated CO2 emission factor are denoted as 
grams per standard cubic feet (scf), while for the remainder of fuels, these are defined as grams 
per gallon of the given fuel source.  Since electricity and hydrogen fuel types do not cause CO2 
emissions to be emitted during vehicle operation, the carbon content and the CO2 emission 
factors for these two fuel types are assumed to be zero.  For the other fuel types, the table below 
summarizes the mass density, carbon content, and CO2 emission factors for each. 

Table 5-2 – CO2 Emission Factors by Fuel Type 

Fuel Type Mass Density 
(grams/unit) 

Carbon Content 
(% by weight) 

CO2 Emission Factor 
(grams/unit) 

Gasoline (gallons) 2,823 85.9% 8,887 
Ethanol-85 (gallons) 2,963 57.3% 6,226 
Low Sulfur Diesel (gallons) 3,206 86.6% 10,180 
CNG (scf) 19.09 76% 53.20 

 

The CAFE Model calculates CO2 tailpipe emissions associated with vehicle operation of the 
surviving on-road fleet by multiplying the number of gallons (or scf for CNG) of a specific fuel 
consumed by the CO2 emissions factor for the associated fuel type.  More specifically, the 
amount of gallons or scf of a particular fuel are multiplied by the carbon content and the mass 
density per unit of that fuel type, and then applying the ratio of carbon dioxide emissions 
generated per unit of carbon consumed during the combustion process.641 

The next section describes and helps to quantify the adverse human health impacts from both 
upstream and vehicle tailpipe emissions.  

5.4 Estimating Health Impacts from Changes in Criteria Pollutant Emissions  

The CAFE Model computes select health impacts resulting from three criteria pollutants: NOx, 
SOx,642 and PM2.5.  Out of the six criteria pollutants currently regulated, NOx, SOx, and PM2.5 are 
known to be emitted regularly from mobile sources and have the most adverse effects to human 
health.  These health impacts include several different morbidity measures, as well as low and 
high mortality estimates, and are measured by the number of instances predicted to occur per ton 
of emitted pollutant.643  The model reports total health impacts by multiplying the estimated tons 
of each criteria pollutant by the corresponding health incidence per ton value.  The inputs that 
inform the calculation of the total tons of emissions resulting from criteria pollutants are 
described in Chapter 5.2.  This section discusses how the health incidence per ton values were 

 
641 Chapter 3, Section 4 of the CAFE Model Documentation provides additional description for calculation of CO2 
tailpipe emissions with the model. 
642 Any reference to SOx in this section refers to the sum of sulfur dioxide (SO2) and sulfate particulate matter 
(pSO4) emissions, following the methodology of the EPA papers cited. 
643 The complete list of morbidity impacts estimated in the CAFE Model is as follows: acute bronchitis, asthma 
exacerbation, cardiovascular hospital admissions, lower respiratory symptoms, minor restricted activity days, non-
fatal heart attacks, respiratory emergency hospital admissions, respiratory emergency room visits, upper respiratory 
symptoms, and work loss days.  



 

obtained.  See Chapter 6.2.2 Monetized Health Impacts from Changes in Criteria Pollutant 
Emissions for information regarding the monetized damages arising from these health impacts.   

NHTSA’s Draft Supplemental Environmental Impact Statement (SEIS) for MYs 2024-2026 that 
accompanies this proposal includes a detailed discussion of the criteria pollutants and air toxics 
analyzed in the effects analysis.  Both the Draft SEIS and the preamble also contain information 
regarding environmental justice impacts.  See Chapter 6 of the PRIA for discussion of overall 
changes in health impacts associated with criteria pollutant changes across the different 
rulemaking scenarios.  In addition, consistent with past analyses, NHTSA will perform full-scale 
photochemical air quality modeling and present those results in the Final SEIS associated with 
the final rule.  That analysis will provide additional assessment of the human health impacts from 
changes in ambient PM2.5 and ozone associated with this rule.  

5.4.1 Health Impacts per Ton from Upstream Emissions 

This chapter describes the health incidence per ton values that are used to calculate the total 
health impacts from upstream criteria pollutant emissions.  In previous rulemakings, health 
impacts were split into two categories based on whether they arose from upstream emissions or 
tailpipe emissions.  In the current analysis, these health incidence per ton values have been 
updated to reflect the differences in health impacts arising from each emission source sector, 
according to the latest publicly available EPA reports.  Five different upstream emission source 
sectors (Petroleum Extraction, Petroleum Transportation, Refineries, Fuel Transportation, 
Storage and Distribution, and Electricity Generation) are now represented.  As the health 
incidences for the different source sectors are all based on the emission of one ton of the same 
pollutants, NOx, SOx, and PM2.5, the differences in the incidence per ton values arise from 
differences in the geographic distribution of the pollutants, a factor which affects the number of 
people impacted by the pollutants.644   

The CAFE Model health impacts inputs are based partially on the structure of EPA’s 2018 
technical support document, Estimating the Benefit per Ton of Reducing PM2.5 Precursors from 
17 Sectors (referred to here as the 2018 EPA source apportionment TSD).645  The 2018 EPA 
source apportionment TSD describes a reduced-form benefit-per-ton (BPT) approach to inform 
the assessment of health impacts.  In this approach, the PM2.5-related BPT values are the total 
monetized human health benefits (the sum of the economic value of the reduced risk of 
premature death and illness) that are expected from reducing one ton of directly-emitted PM2.5 or 
PM2.5 precursor such as NOX or SO2.  We note, however, that the complex, non-linear 
photochemical processes that govern ozone formation prevent us from developing reduced-form 
ozone, ambient NOx, or other air toxic BPT values.  This is an important limitation to recognize 
when using the BPT approach.  We include additional discussion of uncertainties in the BPT 
approach in Chapter 5.4.3.   

 
644 See Environmental Protection Agency (EPA).  2018. Estimating the Benefit per Ton of Reducing PM2.5 
Precursors from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
645 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
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Consistent with past analyses, NHTSA will perform full-scale photochemical air quality 
modeling and present those results in the Final SEIS associated with the final rule.  That analysis 
will provide additional assessment of the human health impacts from changes in ambient PM2.5 
and ozone associated with this rule.  NHTSA will also consider whether such modeling could 
practicably and meaningfully be included in the FRIA, noting that compliance with CAFE 
standards is based on the average performance of manufacturers’ production for sale throughout 
the U.S., and that the FRIA will involve sensitivity analysis spanning a range of model inputs, 
many of which impact estimates of future emissions from passenger cars and light-trucks. 

The 2018 EPA source apportionment TSD reported benefit per ton values for the years 2016, 
2020, 2025, and 2030.  As the year 2016 is not included in this analysis, the 2016 values were 
not used.  For the years in between the source years used in the input structure, the CAFE Model 
applies values from the closest source year.  For instance, 2020 values are applied for 2020-2022, 
and 2025 values are applied for 2023-2027.  For further details, see the CAFE Model 
documentation, which contains a description of the model’s computation of monetized health 
impacts.  EPA is currently working to update its BPT estimates to reflect recent updates in the 
2019 PM2.5 and 2020 Ozone Integrated Science Assessments (ISAs), which were reviewed by 
the Clean Air Science Advisory Committee (CASAC) and the public.646,647  We may incorporate 
any updates for the final rule if those updates become available, or in future analyses. 

The following subsections detail the calculations involved in mapping each CAFE Model 
upstream component to the appropriate sector or combination of sectors from EPA reports.  
Despite efforts to be as consistent as possible with the EPA sources already used in the mapping, 
the need to use up-to-date sources based on newer air quality modeling updates led to the use of 
multiple papers.  Table 5-3 provides specific details of the EPA to CAFE Model upstream sector 
mapping.   

The CAFE Model divides upstream emissions into the five varying components based on the 
GREET Model from Argonne National Laboratory (ANL).648  DOT staff examined how each 
component was defined in GREET 2020 in order to appropriately map EPA source sectors to the 
ones used in the CAFE Model. 

 
646 U.S. Environmental Protection Agency (U.S. EPA). 2019a. Integrated Science Assessment (ISA) for Particulate 
Matter (Final Report, 2019). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-19/188, 2019. 
647 U.S. Environmental Protection Agency (U.S. EPA). 2020b. Integrated Science Assessment (ISA) for Ozone and 
Related Photochemical Oxidants (Final Report). U.S. Environmental Protection Agency, Washington, DC, 
EPA/600/R-20/012, 2020. 
648 U.S. Department of Energy, Argonne National Laboratory, Greenhouse gases, Regulated Emissions, and Energy 
use in Transportation (GREET) Model, Last Update: 9 Oct. 2020, https://greet.es.anl.gov/.  

https://greet.es.anl.gov/


 

Table 5-3 – CAFE/GREET Source Sectors to EPA Source Mapping 

CAFE Model Upstream 
Component (per GREET) Corresponding EPA Source Categories 

Petroleum Extraction 
Assigned to the “Oil and natural gas” sector from a 2018 EPA paper (Fann 

et al.).649  Health incidents per ton were calculated using BenMAP files 
received from EPA staff. 

Petroleum Transportation 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe 
et al.)650 and one source sector from the 2018 EPA source apportionment 

TSD.651  The specific mode mappings are as follows: 
 

From Wolfe et al.: 
Rail sector (for GREET’s rail mode) 

C1&C2 marine vessels sector (for GREET’s barge mode) 
C3 marine vessels sector (for GREET’s ocean tanker mode) 

On-road heavy-duty diesel sector (for GREET’s truck mode) 
From the 2018 EPA source apportionment TSD: 

Electricity generating units (for GREET’s pipeline mode) 
A weighted average of these different sectors was used to determine the 

overall health impact values for the sector as a whole.  
Refineries Assigned to the refineries sector in the 2018 EPA source apportionment 

TSD. 

Fuel TS&D 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe 
et al.)650 and one source sector from the 2018 EPA source apportionment 

TSD.652  The specific mode mappings are as follows: 
 

From Wolfe et al: 
Rail sector (for GREET’s rail mode) 

C1&C2 marine vessels sector (for GREET’s barge mode) 
C3 marine vessels sector (for GREET’s ocean tanker mode) 

On-road heavy-duty diesel sector (for GREET’s truck mode) 
From the 2018 EPA source apportionment TSD: 

Electricity generating units (for GREET’s pipeline mode) 
A weighted average of these different sectors was used to determine the 

overall health impact values for the sector as a whole.  
Electricity Generation 
 

Assigned to the electricity-generating units sector from the 2018 EPA 
source apportionment TSD.653  

 
 

649 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/. 
650 Wolfe, P., Davidson, K., Fulcher, C., Fann, N., Zawacki, M., & Baker, K. R. (2019). Monetized health benefits 
attributable to mobile source emission reductions across the United States in 2025. The Science of the total 
environment, 650(Pt 2), 2490–2498 (hereinafter Wolfe et al.).  Health incidence per ton values corresponding to this 
paper were sent by EPA staff.  
651 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
652 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
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5.4.1.1 Health Incidence per Ton Values Associated with the Petroleum Extraction Sector 

The basis for the health impacts from the petroleum extraction sector was a 2018 oil and natural 
gas sector paper written by EPA staff (Fann et al.), which estimated health impacts for this sector 
in the year 2025.654  This paper defined the oil and gas sector’s emissions not only as arising 
from petroleum extraction but also from transportation to refineries, while the CAFE/GREET 
component is composed of only petroleum extraction.  After consultation with the authors of the 
EPA paper, it was determined that these were the best available estimates for the petroleum 
extraction sector, notwithstanding this difference. 

Specific health incidence per pollutant were not reported in the paper, so EPA staff sent 
BenMAP health incidence files for the oil and natural gas sector upon request.  DOT staff then 
calculated per ton values based on these files and the tons reported in the Fann et al. paper.655 

The only available health impacts corresponded to the year 2025.  Rather than trying to 
extrapolate, these 2025 values were used for all the years in the CAFE Model structure: 2020, 
2025, and 2030.656  This simplification implies an overestimate of damages in 2020 and an 
underestimate in 2030.657 

We understand that uncertainty exists around the contribution of VOCs to PM2.5 formation in the 
modeled health impacts from the petroleum extraction sector; however, based on feedback to the 
2020 final rule we believe that the updated health incidence values specific to petroleum 
extraction sector emissions may provide a more appropriate estimate of potential health impacts 
from that sector’s emissions than the previous approach of applying refinery sector emissions 
impacts to the petroleum extraction sector.  That said, we are aware of work that EPA has been 
doing to address concerns about the BPT estimates, and NHTSA will work further with EPA to 
update and synchronize approaches to the BPT estimates. 

5.4.1.2 Health Incidence per Ton Values Associated with the Petroleum Transportation Sector  

The petroleum transportation sector did not correspond to any one EPA source sector, so a 
weighted average of multiple different EPA sectors was used to determine the health impact per 
ton values for the petroleum transportation sector as a whole.  In calculating the weighted 

 
653 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
654 Fann, N., Baker, K. R., Chan, E., Eyth, A., Macpherson, A., Miller, E., & Snyder, J. (2018). Assessing Human 
Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025.  Environmental science 
& technology, 52(15), 8095–8103 (hereinafter Fann et al.).  
655 Nitrate-related health incidents were divided by the total tons of NOx projected to be emitted in 2025, sulfate-
related health incidents were divided by the total tons of projected SOx, and EC/OC (elemental carbon and organic 
carbon) related health incidents were divided by the total tons of projected EC/OC.  Both Fann et al. and the 2018 
EPA source apportionment TSD define primary PM2.5 as being composed of elemental carbon, organic carbon, and 
small amounts of crustal material.  Thus, the EC/OC BenMAP file was used for the calculation of the incidents per 
ton attributable to PM2.5. 
656 These three years are used in the CAFE Model structure because it was originally based on the estimate provided 
in the 2018 EPA source apportionment TSD.  
657 See EPA. 2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors from 17 Sectors.  
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf p.9. 
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average, DOT staff mapped the petroleum transportation sector as described in GREET to a 
combination of different EPA mobile source sectors from two different papers, the 2018 EPA 
source apportionment TSD,658 and a 2019 mobile source sectors paper (Wolfe et al.).659  

Wolfe et al. include more sectors than the 2018 EPA source apportionment TSD; for instance, 
where ‘Aircraft, Locomotive, and Marine Vessels’ is a single category in the 2018 source 
apportionment TSD, Wolfe et al. specify four: ‘Aircraft’, ‘Rail’, ‘C1&C2 Marine Vessels’, and 
‘C3 Marine Vessels’.  Therefore, sectors from Wolfe et al. are used wherever possible, and the 
2018 EPA source apportionment TSD is used for the transportation mode mapping only when 
there are no appropriate sectors reported in the 2019 Wolfe et al. paper.  Wolfe et al. only report 
impacts for the year 2025, but DOT staff determined that these values could be applied to the 
other years in the input structure, after communication with one of the authors at EPA.  
Therefore, this implies a slight overestimation of health incidence per ton in 2020 and a slight 
underestimation of health incidence per ton in 2030.   

A weighted average of these different sectors was used to calculate the total health incidences 
per ton by pollutant, based on the percent of upstream emissions attributable to each 
transportation mode. 

In GREET, the model that informs the CAFE upstream component categories, there are five 
types of petroleum products relevant to upstream emissions for gasoline:  

• Conventional crude oil 
• Synthetic crude oil 
• Dilbit 
• Shale oil (Bakken) 
• Shale oil (Eagle Ford) 

 

 
658 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
659 Wolfe et al. 2019.  Monetized health benefits attributable to mobile source emissions reductions across the 
United States in 2025.  https://pubmed.ncbi.nlm.nih.gov/30296769/. 

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
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Table 5-4 – Petroleum Transportation Mode Shares in 2020660 

Fuel Type661 Ocean Tanker Barge Pipeline Rail Truck 

Conventional Crude Oil 13.9% 23.3% 83.5% 2.8% 0 
Synthetic Crude Oil (SCO)  0 0 100% 0 0 
Dilbit  0 0 100% 0 0 
Shale Oil (Bakken) 0 0 50.0% 50.0% 100% 
Shale Oil (Eagle Ford) 0 20.0% 65.0% 15.0% 100% 

 
GREET provides the percentage of these five petroleum products transported by each mode, as 
shown in Table 5-4.  Transportation both within the U.S. and outside of U.S. borders is included, 
provided that the destination of the transported products is the continental United States.  The 
percentages add up to more than 100% because there are multiple stages of the transportation 
journey.  For example, 50% of shale oil (Bakken) is transported by pipeline and the other 50% 
by rail during the first part of the journey to the refinery, but 100% of it is transported by truck 
on the second part of the journey. 

GREET also provides emissions in grams/mmBTU of fuel transported attributable to each 
transportation mode.  These emissions values are multiplied by the percentage of petroleum 
product transported by each mode, as seen in Table 5-4, to obtain a weighted value.  Total 
emissions from each mode are used for all modes except ocean tanker.  Health effects from 
ocean transport are concentrated in populated areas, rather than while the tankers are at sea.  To 
address this, the ocean tanker mode includes only urban emissions.  Additionally, using urban 
emissions for ocean tankers ensures that the emissions attributable to this mode are not 
underestimated, because the percentage of related health impacts decreases when using the high 
total emissions figure. 

This process of multiplying emissions by transportation mode share is done five times, once for 
each of the five petroleum types.  Since the transportation mode shares are projected to change 
over time, different weights are used for years 2020, 2025, and 2030, based on the mode 
percentages GREET reports for those years.662 

 
660 These values are from the GREET 2020 model, using baseline year 2020.  In the Excel version, this information 
can be found in the T&D Flowcharts worksheet.  See Argonne GREET Model (anl.gov) to download the model. 
661 Conventional crude oil is both extracted domestically and imported.  SCO and Dilbit are oil sand products and 
are imported exclusively from Canada.  Shale oil is exclusively domestic.  See the ‘T&D Flowcharts’ worksheet in 
the GREET model.  
662 These are the three years used in the CAFE Model inputs for health impacts, based on the structure of the 2018 
EPA source apportionment TSD that originally informed the analysis.  Baseline years may be changed in the 
‘Inputs’ worksheet in the GREET model. 
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Table 5-5 – Energy Share by Petroleum Type663 

Conventional 
Crude Oil  SCO Dilbit Shale 

(Bakken) 
Shale (Eagle 

Ford) 
77.4% 3.0% 4.0% 7.4% 8.2% 

 
The energy share of each petroleum type is multiplied by its corresponding emissions value to 
reflect how much of each emissions value should go into the weighted average.  For example, 
using the energy share information in  

Table 5-5, the conventional crude emissions are multiplied by 77.4%, SCO emissions are 
multiplied by 3.0%, Dilbit emissions are multiplied by 4.0%, shale (Bakken) emissions are 
multiplied by 7.4%, and shale (Eagle Ford) emissions are multiplied by 8.2%.   

Next, the resulting weighted emissions values are summed by pollutant to represent the total 
upstream emissions in grams/mmBTU of petroleum product transported.  With that information, 
the percentages of each pollutant attributable to each mode for petroleum transportation overall 
can be calculated.  These calculations are completed three times, for each different base year 
(2020, 2025, 2030).  Table 5-6 shows these percentages, using base year 2020 as an example.   

Table 5-6 – Percent of Emissions Attributable to each Mode for the Petroleum Transportation Category664 

Mode EPA source category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 6.00% 16.37% 10.60% 
Barge C1 & C2 marine vessels 48.75% 1.66% 33.78% 
Pipeline Electricity-generating units 23.73% 81.22% 42.62% 
Rail Rail 19.12% 0.52% 11.97% 
Truck On-road heavy duty diesel 2.41% 0.24% 1.03% 

 
Finally, a weighted average of health incidence is created when the percentages of emissions by 
mode are multiplied by the health incidence per ton from the relevant EPA sector that matches 
each mode.  Equation 5-14 illustrates this process.  The variables beginning with “%” represent 
the percent of SOx emissions attributable to each specified mode.  The other variables indicate 
the incidents per ton resulting from SOx emissions coming from each sector: C3marine 
corresponds to C3 marine vessels, C1&C2 marine to C1&C2 marine vessels, EGU corresponds 
to electricity-generating units, Rail to railroad, and Truck corresponds to on-road heavy duty 
diesel. 

𝑇𝑇𝐶𝐶𝑃𝑃ℎ𝑃𝑃𝑎𝑎 𝑇𝑇𝐹𝐹𝑎𝑎𝑐𝑐𝑒𝑒𝑢𝑢𝑏𝑏𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 𝑢𝑢𝑃𝑃𝑐𝑐𝑢𝑢𝑑𝑑𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶 𝐹𝐹𝑒𝑒𝑢𝑢 𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑢𝑢𝑃𝑃𝑃𝑃 𝑆𝑆𝐹𝐹𝐹𝐹 𝑢𝑢𝑃𝑃 𝐹𝐹𝑒𝑒𝑃𝑃𝑢𝑢𝑃𝑃𝑖𝑖𝑒𝑒𝑢𝑢𝑃𝑃 𝑇𝑇𝑢𝑢𝑎𝑎𝑃𝑃𝐶𝐶𝐹𝐹𝑃𝑃𝑢𝑢𝑃𝑃𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 = 
                                (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑃𝑃𝑐𝑐𝑒𝑒𝑎𝑎𝑃𝑃 𝑃𝑃𝑎𝑎𝑃𝑃𝑘𝑘𝑒𝑒𝑢𝑢 ∗ 𝐶𝐶3𝑃𝑃𝑎𝑎𝑢𝑢𝑢𝑢𝑃𝑃𝑒𝑒)    + (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑏𝑏𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 ∗ 𝐶𝐶1&𝐶𝐶2 𝑃𝑃𝑎𝑎𝑢𝑢𝑢𝑢𝑃𝑃𝑒𝑒)

+ (%𝑆𝑆𝐹𝐹𝐹𝐹 𝐹𝐹𝑢𝑢𝐹𝐹𝑒𝑒𝑖𝑖𝑢𝑢𝑃𝑃𝑒𝑒 ∗ 𝑇𝑇𝑇𝑇𝑃𝑃 ) + (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑢𝑢𝑎𝑎𝑢𝑢𝑖𝑖 ∗ 𝑇𝑇𝑎𝑎𝑢𝑢𝑖𝑖) + (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑃𝑃𝑢𝑢𝑢𝑢𝑐𝑐𝑘𝑘 ∗ 𝑇𝑇𝑢𝑢𝑢𝑢𝑐𝑐𝑘𝑘)   
Equation 5-14 – Weighted Average of Health Incidences from the Petroleum Transportation Sector 

 
663 Taken from the Petroleum tab of the GREET Excel model, using 2020 as a base year. 
664 These percentages are calculated using the 2020 base year in GREET. 



 

Following guidance from the 2018 EPA source apportionment TSD, the incidence per ton are 
rounded to two significant digits.665 

5.4.1.3 Health Incidence per Ton Values Associated with the Fuel Transportation, Storage, and 
Distribution (TS&D) Sector 

The Fuel TS&D sector, similarly to the Petroleum Transportation sector, corresponded to several 
different EPA source sectors, so DOT staff used the same weighted average approach as 
described in Chapter 5.3.1.2.  Gasoline blendstocks and finished gasoline are the two 
components of the Fuel TS&D category described in GREET.  DOT staff mapped these 
components to five different transportation source sectors from two EPA papers, the 2018 EPA 
source apportionment TSD and the 2019 mobile sources paper.666 

GREET provides the percentage of each fuel type transported by each mode, and as in the case 
of the petroleum transportation calculations, the percentages change based on the year.  In the 
case of the gasoline blendstocks fuel type, the mode shares add up to more than 100% because 
there are distinct parts of the trip and multiple modes are taken.  As an example, Table 5-7 shows 
the estimated mode shares in 2020. 

Table 5-7 – Transportation Mode Shares for the Fuel TS&D Sector667 

Mode Share Gasoline 
Blendstocks 

Finished 
Gasoline 

Ocean Tanker 3.0% 0 
Barge 31.2% 0 
Pipeline 67.6% 0 
Rail 2.2% 0 
Truck 100% 100% 

 

The emissions by pollutant attributed to each mode, measured in grams/mmBTU, are multiplied 
by these mode share percentages to create weighted emissions values. 

Next, the weighted emissions from trucks transporting gasoline blendstocks are added to the 
emissions arising from finished gasoline transportation.  Using that information, the total 
emissions per pollutant may be calculated in order to find the percentage of emissions 
attributable to each mode for Fuel TS&D overall.  Table 5-8 provides an example of these 
percentages. 

 
665 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
666 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf; Wolfe et al. 2019. Monetized health benefits attributable to 
mobile source emissions reductions across the United States in 2025.  https://pubmed.ncbi.nlm.nih.gov/30296769/. 
667 Using baseline year 2020 in GREET.  These values can be found in the ‘T&D Flowcharts’ tab of the GREET 
model.  

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
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Table 5-8 – Percent of Emissions Attributable to each Mode for the Fuel TS&D Sector668 

Mode EPA category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 2.39% 20.28% 5.99% 
Barge C1 & C2 marine vessels 57.67% 6.07% 57.30% 
Pipeline Electricity-generating units 5.97% 63.41% 15.38% 
Rail Rail 1.37% 0.12% 1.23% 
Truck On-road heavy duty diesel 32.60% 10.13% 20.11% 

 
The fuel TS&D calculations follow the same process as the petroleum transportation category, 
matching the modes to EPA sectors and using the calculated percentages to create a weighted 
average of health incidence associated with emissions of each pollutant.  DOT staff completed 
these calculations three times, for years 2020, 2025, and 2030.  As stated previously, the sectors 
in the 2019 mobile sources paper only showed health incidence per ton estimated for the year 
2025, but analysts determined that this information was the most up-to-date available, after 
communications with EPA staff.  The use of 2025 health incidence for all three years implies a 
slight overestimation of incidences in 2020 and a slight underestimation in 2030. 

5.4.1.4 Health Incidence per Ton Values Associated with the Refineries Sector 

DOT staff matched the health incidence per ton values associated with the refineries sector in the 
2018 EPA source apportionment TSD to the petroleum refining emission category in the CAFE 
Model.  Table 5-9 shows the various types of health effects per ton corresponding to each 
pollutant emitted from the refineries sector. 

 
668 Calculated using baseline year 2020 in GREET.  



 

Table 5-9 – Health Incidences per Ton from the Refineries Sector 

Health Effects 
2020 2025 2030 

NOx SOx PM2.5 NOx SOx PM2.5 NOx SOx PM2.5 
Premature Deaths - 
Low (Krewski) 0.00082 0.0082 0.039 0.00087 0.0088 0.041 0.00094 0.0095 0.044 

Premature Deaths - 
High (Lepeule) 0.0019 0.019 0.088 0.0020 0.020 0.094 0.0021 0.022 0.10 

Respiratory 
emergency room 
visits 

0.00044 0.0045 0.022 0.00045 0.0047 0.023 0.00047 0.0049 0.024 

Acute bronchitis 0.0012 0.012 0.059 0.0013 0.013 0.061 0.0014 0.014 0.066 
Lower respiratory 
symptoms 0.016 0.16 0.75 0.016 0.16 0.78 0.018 0.18 0.84 

Upper respiratory 
symptoms 0.023 0.22 1.1 0.023 0.23 1.1 0.025 0.25 1.2 

Minor Restricted 
Activity Days 0.66 6.7 31 0.67 6.8 32 0.68 7.0 33 

Work loss days 0.11 1.1 5.3 0.11 1.2 5.4 0.12 1.2 5.6 
Asthma 
exacerbation 0.026 0.26 1.2 0.027 0.28 1.3 0.029 0.29 1.4 

Cardiovascular 
hospital 
admissions 

0.00019 0.0021 0.0095 0.00022 0.0023 0.010 0.00024 0.0026 0.012 

Respiratory 
hospital 
admissions 

0.00019 0.0020 0.0089 0.00021 0.0022 0.010 0.00024 0.0025 0.011 

Non-fatal heart 
attacks (Peters) 0.00080 0.0082 0.038 0.00088 0.0091 0.041 0.00097 0.010 0.045 

Non-fatal heart 
attacks (All others) 0.000087 0.00089 0.0041 0.000095 0.00099 0.0045 0.00010 0.0011 0.0049 

 

5.4.1.5 Health Incidence per Ton Values Associated with the Electricity Generation Sector  

The 2018 EPA source apportionment TSD contains health incidence per ton values associated 
with emissions of NOx, SOx, and PM2.5 arising from electricity-generating units.  DOT staff 
mapped these to the electricity generation sector in the CAFE Model.  The health effects per ton 
associated with the emissions of criteria pollutants from this sector are shown in Table 5-10. 



 

Table 5-10 – Health Effects per Ton from the Electricity Generation Sector 

Health Effects 
2020 2025 2030 

NOx SOx PM2.5 NOx SOx PM2.5 NOx SOx PM2.5 
Premature 

Deaths - Low 
(Krewski) 

0.00066 0.0045 0.016 0.00070 0.0048 0.017 0.00074 0.0051 0.018 

Premature 
Deaths - High 

(Lepeule) 
0.0015 0.010 0.037 0.0016 0.011 0.039 0.0017 0.011 0.042 

Respiratory 
emergency 
room visits 

0.00032 0.0022 0.0091 0.00033 0.0023 0.0094 0.00034 0.0024 0.0098 

Acute 
bronchitis 0.00085 0.0055 0.021 0.00089 0.0057 0.022 0.00096 0.0062 0.024 

Lower 
respiratory 
symptoms 

0.011 0.070 0.27 0.011 0.073 0.29 0.012 0.079 0.31 

Upper 
respiratory 
symptoms 

0.016 0.10 0.39 0.016 0.10 0.41 0.017 0.11 0.44 

Minor 
Restricted 

Activity Days 
0.46 3.0 12 0.46 3.0 12 0.46 3.1 12 

Work loss days 0.077 0.51 2.0 0.077 0.52 2.0 0.078 0.53 2.1 
Asthma 

exacerbation 0.018 0.12 0.46 0.019 0.12 0.48 0.020 0.13 0.51 

Cardiovascular 
hospital 

admissions 
0.00016 0.0011 0.0040 0.00017 0.0012 0.0044 0.00018 0.0014 0.0048 

Respiratory 
hospital 

admissions 
0.00015 0.0011 0.0038 0.00017 0.0012 0.0043 0.00018 0.0013 0.0047 

Non-fatal heart 
attacks (Peters) 0.00063 0.0045 0.016 0.00068 0.0049 0.018 0.00074 0.0053 0.019 

Non-fatal heart 
attacks (All 

others) 
0.000068 0.00049 0.0017 0.000074 0.00054 0.0019 0.000079 0.00058 0.0021 

 

5.4.2 Health Impacts per Ton from Tailpipe Emissions  

The CAFE Model follows a similar process for computing health impacts resulting from tailpipe 
emissions as it does for calculating health impacts from upstream emissions.  Previous 
rulemakings used the 2018 EPA source apportionment TSD as the source for the health 
incidence per ton, matching the CAFE Model tailpipe emissions inventory to the “on-road 
mobile sources sector” in the TSD.  However, a more recent EPA paper from 2019 (Wolfe et 



 

al.)669 computes monetized damage costs per ton values at a more disaggregated level, separating 
on-road mobile sources into multiple categories based on vehicle type and fuel type.  Wolfe et al. 
did not report incidences per ton, but that information was obtained through communications 
with EPA staff. 

Three source categories from the Wolfe et al. paper were matched to the CAFE Model tailpipe 
emissions inventory: “on-road light duty gas cars and motorcycles,” “on-road light duty gas 
trucks,” and “on-road light duty diesel.”670  Table 5-11 shows the health incidence per ton 
associated with these sectors in 2025. 

 
669 Wolfe et al. 2019.  Monetized health benefits attributable to mobile source emissions reductions across the 
United States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769/. 
670Wolfe et al. 2019.  Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025.  https://pubmed.ncbi.nlm.nih.gov/30296769/. 

https://pubmed.ncbi.nlm.nih.gov/30296769/
https://pubmed.ncbi.nlm.nih.gov/30296769/


 

Table 5-11 – Health Incidents per Ton from On-Road Source Sectors in 2025 

Health 
Effects 

On-road Light Duty Gas 
Cars & Motorcycles 

Sector 

On-road Light Duty Gas 
Trucks 

On-road Light Duty 
Diesel 

2025 NOx SOx PM2.5 NOx SOx PM2.5 NOx SOx PM2.5 
Premature 

Deaths - Low 
(Krewski) 

0.00075 0.013 0.073 0.00068 0.011 0.061 0.00060 0.031 0.050 

Premature 
Deaths - High 

(Lepeule) 
0.0017 0.030 0.17 0.0015 0.024 0.14 0.0014 0.071 0.11 

Respiratory 
emergency 
room visits 

0.00039 0.0076 0.041 0.00035 0.0061 0.035 0.00032 0.019 0.029 

Acute 
bronchitis 0.0010 0.020 0.11 0.00096 0.016 0.091 0.00085 0.047 0.075 

Lower 
respiratory 
symptoms 

0.013 0.25 1.4 0.012 0.20 1.2 0.011 0.59 0.95 

Upper 
respiratory 
symptoms 

0.018 0.35 2.0 0.017 0.28 1.7 0.015 0.84 1.35 

Minor 
Restricted 

Activity Days 
0.53 11 60 0.49 8.5 49 0.44 25 40 

Work loss 
days 0.090 1.8 10 0.084 1.4 8.4 0.075 4.3 6.9 

Asthma 
exacerbation 0.022 0.42 2.3 0.020 0.33 1.9 0.018 1.0 1.6 

Cardiovascular 
hospital 

admissions 
0.00019 0.0036 0.020 0.00017 0.0028 0.016 0.00015 0.0085 0.013 

Respiratory 
hospital 

admissions 
0.00018 0.0034 0.018 0.00016 0.0027 0.015 0.00015 0.0081 0.013 

Non-fatal 
heart attacks 

(Peters) 
0.00075 0.014 0.076 0.00068 0.011 0.064 0.00060 0.033 0.053 

Non-fatal 
heart attacks 
(All others) 

0.000080 0.0015 0.0082 0.000073 0.0012 0.0069 0.000065 0.0035 0.0057 

 
 
  



 

5.4.3 Uncertainty  

Uncertainties and limitations exist at each stage of the emissions-to-health benefit analysis 
pathway (e.g., projected emissions inventories, air quality modeling, health impact assessment, 
economic valuation).  As discussed above, we used a BPT approach to estimate health impacts 
from changes in criteria pollutant emissions and the resulting monetized benefits, which are 
discussed further in Chapter 6.2.2, Monetized Health Impacts from Changes in Criteria Pollutant 
Emissions.  The following discussion applies to that section as well. 

The BPT approach to monetizing benefits relies on many assumptions; when uncertainties 
associated with these assumptions are compounded, even small uncertainties can greatly 
influence the size of the total quantified benefits.  Some key assumptions associated with PM2.5-
related health benefits and uncertainties associated with the BPT approach are described below.  

We assume that all fine particles, regardless of their chemical composition, are equally potent in 
causing premature mortality.  Support for this assumption comes from the 2019 PM ISA, which 
concluded that “many PM2.5 components and sources are associated with many health effects and 
that the evidence does not indicate that any one source or component is consistently more 
strongly related with health effects than PM2.5 mass.”671 

We assume that the health impact function for fine particles is log-linear without a threshold.  
Thus, the estimates include health benefits from reducing fine particles in areas with different 
concentrations of PM2.5, including both areas with projected annual mean concentrations that are 
above the level of the fine particle standard and areas with projected concentrations below the 
level of the standard. 

We also assume that there is a “cessation” lag between the change in PM exposures and the total 
realization of changes in mortality effects.  Specifically, we assume that some of the incidences 
of premature mortality related to PM2.5 exposures occur in a distributed fashion over the 20 years 
following exposure based on the advice of the Science Advisory Board Health Effect 
Subcommittee,672 which affects the valuation of mortality benefits at different discount rates.  
The above assumptions are subject to uncertainty.  

In general, we are more confident in the magnitude of the risks we estimate from simulated 
PM2.5 concentrations that coincide with the bulk of the observed PM concentrations in the 
epidemiological studies that are used to estimate the benefits.  Likewise, we are less confident in 
the risk we estimate from simulated PM2.5 concentrations that fall below the bulk of the observed 
data in these studies.  There are uncertainties inherent in identifying any particular point at which 
our confidence in reported associations decreases appreciably, and the scientific evidence 
provides no clear dividing line.  Applying BPT values to estimates of changes in policy-related 

 
671 U.S. Environmental Protection Agency (U.S. EPA). 2019. Integrated Science Assessment (ISA) for Particulate 
Matter (Final Report, 2019). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-19/188, 2019. 
672 U.S. Environmental Protection Agency—Science Advisory Board (U.S. EPA-SAB). 2004. Advisory Council on 
Clean Air Compliance Analysis Response to Agency Request on Cessation Lag. EPA-COUNCIL-LTR-05-001. 
December. Available at: 
http://yosemite.epa.gov/sab/sabproduct.nsf/0/39F44B098DB49F3C85257170005293E0/$File/council_ltr_05_001.p
df>. 



 

emissions precludes us from assessing the distribution of risk as it relates to the associated 
distribution of baseline concentrations of PM2.5. 

Another limitation of using the BPT approach is an inability to provide estimates of the health 
benefits associated with exposure to ozone, ambient NOX, and air toxics.  Furthermore, the air 
quality modeling that underlies the PM2.5 BPT value did not provide estimates of the PM2.5-
related benefits associated with reducing VOC emissions, but these unquantified benefits are 
generally small compared to benefits associated with other PM2.5 precursors.673 

National-average BPT values reflect the geographic distribution of the underlying modeled 
emissions used in their calculation, which may not exactly match the geographic distribution of 
the emission reductions that would occur due to a specific rulemaking.  Similarly, BPT estimates 
may not reflect local variability in population density, meteorology, exposure, baseline health 
incidence rates, or other local factors for any specific location.  For instance, even though we 
assume that all fine particles have equivalent health effects, the BPT estimates vary across 
precursors depending on the location and magnitude of their impact on PM2.5 levels, which 
drives population exposure.  The emissions and photochemically-modeled PM2.5 concentrations 
used to derive the BPT values may not match the changes in air quality that would result from 
the proposal. 

6 Simulating Economic Effects of Regulatory Alternatives 

6.1 Costs and Benefits Accrued to Consumers 

Many, if not most, of the benefits and costs resulting from changes to CAFE standards are 
private benefits that accrue to the buyers of new cars and trucks, produced in the model years 
under consideration.  These benefits and costs largely flow from the changes to vehicle 
ownership and operating costs that result from improved fuel economy, and the cost of the 
technology required to achieve those improvements.  In general, increasing CAFE standards 
cause manufacturers to apply additional technology to new vehicles offered for sale.  These 
technologies increase the cost of vehicle production, and manufacturers pass along those cost 
increases to consumers in the form of higher purchase prices.  In turn, the higher purchase prices 
that buyers of new cars and light trucks pay also mean that their expenses for sales taxes, vehicle 
registration fees, financing their purchases, and insuring their new vehicles will rise.  At the same 
time, consumers reap substantial benefits from reduced fuel costs over the lifetimes of new 
vehicles, and also save time because they require less frequent refueling.   

6.1.1 Additional Consumer Purchasing Costs 

Some costs of purchasing and owning new vehicles scale with the value of the vehicle.  When 
fuel economy standards increase the price of new vehicles, both taxes and registration fees 
increase, too, because they are calculated as a percentage of vehicle price.  Increasing the price 
of new vehicles also affects the average amount paid on interest for financed vehicles and the 
insurance premiums for similar reasons.  NHTSA computes these additional costs as scalar 
multipliers on the MSRP of new vehicles.  These costs are included in the consumer per-vehicle 

 
673 U.S. EPA. 2012. Regulatory Impact Analysis for the Proposed Revisions to the National Ambient Air Quality 
Standards for Particulate Matter. 



 

cost-benefit analysis but, for the reasons described below, are not included in the societal cost-
benefit analysis.  

6.1.1.1 Sales Tax and Vehicle Registration Costs 

In the analysis, sales taxes and registration fees are considered transfer payments between 
consumers and the government and are therefore not considered a cost from the societal 
perspective.  However, these costs do represent an additional cost to consumers and are 
accounted for in the private consumer perspective.  To estimate the sales tax for the analysis, 
NHTSA weighted the auto sales tax of each state by its population—using Census population 
data—to calculate a national weighted-average sales tax of 5.46%.674   

We recognize that weighting state sales tax by new vehicle purchases within a state would likely 
produce a better estimate since new vehicle purchasers represent a small subset of the population 
and may differ between states.  NHTSA explored using Polk registration data to approximate 
new vehicle sales by state by examining the change in new vehicle registrations across several 
recent years.  The results derived from this examination resulted in a national weighted-average 
sales tax rate slightly above 5.5%, which is almost identical to the rate calculated using 
population instead.  NHTSA opted to utilize the population estimate, rather than the registration-
based proxy of new vehicle sales, because the results were negligibly different and the analytical 
approach was more straightforward.  

6.1.1.2 Financing Costs 

Consumers who purchase new vehicles with financing options incur an additional cost above the 
new vehicle price—interest.  Based on Experian data,675 the analysis assumes 85% of 
automobiles are purchased through financing options.  The analysis used data from Wards 
Automotive and JD Power on the average transaction price of new vehicle purchases, average 
principal of new auto loans, and the average OEM-offered incentive as a percentage of MSRP to 
compute the ratio of the average financed new auto principal to the average new vehicle MSRP 
for calendar years 2011-2016.  Table 6-1 shows that the average financed auto principal was 
between 82% and 84% of the average new vehicle MSRP.  Applying the assumption that 85% of 
new vehicle purchases involve some financing, the average share of the MSRP financed for all 
vehicles purchased, including non-financed transactions, was computed.  Table 6-1 shows that 

 
674 See Car Tax by State, FactoryWarrantyList.com, http://www.factorywarrantylist.com/car-tax-by-state.html (last 
visited April 16, 2021).  Note: County, city, and other municipality-specific taxes were excluded from weighted 
averages, as the variation in locality taxes within states, lack of accessible documentation of locality rates, and lack 
of availability of weights to apply to locality taxes complicate the ability to reliably analyze the subject at this level 
of detail.  Localities with relatively high automobile sales taxes may have relatively fewer auto dealerships, as 
consumers would endeavor to purchase vehicles in areas with lower locality taxes, therefore reducing the effect of 
the exclusion of municipality-specific taxes from this analysis.  
675 A report by Experian found that 85.2% of 2016 new vehicles were financed, as were 85.9% of 2015 new vehicle 
purchases.  Zabritski, M. State of the Automotive Finance Market: A look at loans and leases in Q4 2016, Experian, 
https://www.experian.com/assets/automotive/quarterly-webinars/2016-Q4-SAFM-revised.pdf (last visited April 16, 
2021).  This ratio was relatively constant through 2019, which saw 85.9% of new vehicle purchases financed.  
However, the ratio declined to 81.1% in 2020, likely as a result of COVID-19 impacts in the new vehicle market 
(https://www.experian.com/content/dam/marketing/na/automotive/quarterly-webinars/credit-trends/2020-quarterly-
trends/v2-2020-q4-state-automotive-market.pdf, last accessed April 16, 2021).  NHTSA will monitor this ratio in the 
coming years and adjust the analysis as necessary. 

https://www.experian.com/content/dam/marketing/na/automotive/quarterly-webinars/credit-trends/2020-quarterly-trends/v2-2020-q4-state-automotive-market.pdf
https://www.experian.com/content/dam/marketing/na/automotive/quarterly-webinars/credit-trends/2020-quarterly-trends/v2-2020-q4-state-automotive-market.pdf


 

the average percentage of MSRP financed ranges between 70% and 72%.  From this, we assume 
that 70% of the value of all vehicles’ MSRP is financed.  It is likely that the share financed is 
correlated with the MSRP of the new vehicle purchased, but for simplification purposes, it is 
assumed that 70% of all vehicle costs are financed, regardless of the MSRP of the vehicle.  This 
simplification does not affect the accuracy of the calculation of the average cost to consumers, 
but we are unable to identify which specific consumers bear the burden of additional financing 
costs when vehicle prices increase.  Although it seems unlikely that buyers’ choices of specific 
vehicle models are independent of buyers’ demographic characteristics and income levels, the 
agency does not have sufficient information to identify specific vehicle models whose purchases 
are likely to be financed, or the characteristics of households that purchase those models.  We 
also assume that increasing the cost of new vehicles will not change the share of new vehicle’s 
purchase prices that buyers finance; the relatively constant share from 2011-2016 when the 
average MSRP of a vehicle increased 10% supports this assumption.  While this may not be 
indicative of average individual consumer transactions, it provides a useful perspective from 
which to analyze the aggregate marketplace. 

Table 6-1 – Share of Average MSRP Financed 

Year 

Of the Vehicles Purchased 
through Financing Options— 
Average Percentage of MRSP 

Financed 

Average Percentage of MSRP 
Financed of All New Vehicles 

2016 84% 71% 
2015 84% 71% 
2014 82% 70% 
2013 82% 70% 
2012 84% 72% 
2011 84% 72% 

 

A general trend over the last decade has shown average loan terms increasing in length.  While 
there is a distribution of both loan rate and loan terms that is highly correlated with the buyer’s 
credit score, the average term length has been slowly increasing for several years.  The current 
average term length increased again in 2019 to almost 69 months (and again in 2020 to nearly 70 
months).  The average interest rate has declined over the last few year, from 5.75% in 2018 to 
4.31% in 2020.676  However, the precipitous drop from 2019 to 2020 is inconsistent with the 
magnitude of changes from previous years, and is most likely a reflection of the changes within 
the population of new car buyers – where buyers with the highest credit scores are both most 
likely to obtain low-interest loans and also more likely to have experienced less financial 
hardship during the recession induced by the response to the pandemic.  In fact, the share of new 
auto loans to buyers in the deep subprime risk category was down over 50% from 2019 to 2020.  
For that reason, the current analysis uses the values for both average loan rate and average loan 
term from 2019, 69 months at 5.25% interest, to project forward for future years (during which 

 
676 Zabritkis, Melinda, Automotive Industry Insights, Finance Market Report Q4 2020, Experian, 
https://www.experian.com/content/dam/marketing/na/automotive/quarterly-webinars/credit-trends/2020-quarterly-
trends/v2-2020-q4-state-automotive-market.pdf (last accessed April 20, 2021). 

https://www.experian.com/content/dam/marketing/na/automotive/quarterly-webinars/credit-trends/2020-quarterly-trends/v2-2020-q4-state-automotive-market.pdf
https://www.experian.com/content/dam/marketing/na/automotive/quarterly-webinars/credit-trends/2020-quarterly-trends/v2-2020-q4-state-automotive-market.pdf


 

these assumptions are held constant, rather than dynamically updated within the simulation).  
NHTSA will continue to monitor the evolution of loan terms in the new vehicle market and 
adjust these assumptions as needed in the future.  

Using these inputs the model computes the stream of additional costs associated with financing 
options paid for the average financed purchases as shown in Equation 6-1.677 

 

𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑎𝑎𝑖𝑖 𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒𝑢𝑢𝑒𝑒𝐶𝐶𝑃𝑃 =
𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒𝑢𝑢𝑒𝑒𝐶𝐶𝑃𝑃 ∗ 𝑀𝑀𝑆𝑆𝑇𝑇𝐹𝐹 ∗ (𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑒𝑒 𝑓𝑓𝑢𝑢𝑃𝑃𝑎𝑎𝑃𝑃𝑐𝑐𝑒𝑒𝑑𝑑)

1 − (1 + (𝑢𝑢𝑃𝑃𝑃𝑃𝑒𝑒𝑢𝑢𝑒𝑒𝐶𝐶𝑃𝑃/12))−𝐹𝐹𝑟𝑟𝑟𝑟𝑁𝑁
−
𝑀𝑀𝑆𝑆𝑇𝑇𝐹𝐹 ∗ (𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑒𝑒 𝑓𝑓𝑢𝑢𝑃𝑃𝑎𝑎𝑃𝑃𝑐𝑐𝑒𝑒𝑑𝑑)

(𝑃𝑃𝑒𝑒𝑢𝑢𝑃𝑃/12)
 

Equation 6-1 – Calculating Annual Interest 

While Equation 6-1 explicitly assumes the interest is distributed evenly over the period, in reality 
more of the interest is paid during the beginning of the term.  However, the incremental amount 
calculated as attributable to the standard will represent the difference in the annual payments at 
the time that they are paid, assuming that a new car buyer does not repay early.  This will 
represent the expected change in the stream of financing payments at the time of financing. 

While Equation 6-1 suffices to provide a rough estimate of financing costs, it is limited in its 
granularity.  In order to calculate a value that more closely tracks the true cost of financing, the 
share of financed transactions at each interest rate and term combination would have to be 
known.  Without having projections of the full distribution of the auto finance market into the 
future, the above methodology reasonably accounts for the increased amount of financing costs 
due to the purchase of a more expensive vehicle, on an average basis taking into account non-
financed transactions.  Financing payments are assumed to be a transfer between the consumer 
and the institution (whether bank, credit union, or automotive finance arm); for this reason, they 
are not included in the societal cost and benefit analysis.  However, because financing payments 
are an additional cost paid by the consumer, they are calculated as a part of the private consumer 
welfare analysis. 

Increased financing terms, combined with rising interest rates, lead to longer periods before a 
consumer will have positive equity in the vehicle to trade in toward the purchase of a newer 
vehicle.  This has impacts in terms of consumers either trading vehicles with negative equity 
(thereby increasing the amount financed and potentially subjecting the consumer to higher 
interest rates and/or rendering the consumer unable to obtaining financing) or delaying the 
replacement of the vehicle until the consumer achieves suitably positive equity to allow for a 
trade.   

6.1.1.3 Insurance Cost 

More expensive vehicles will require more expensive collision and comprehensive (e.g., fire and 
theft) car insurance.  Actuarially fair insurance premiums for these components of value-based 
insurance will be the amount an insurance company will pay out in the case of an incident 

 
677 As alluded to above, the principle portion of repayments are reflected in the sales price, which is accounted 
elsewhere in the analysis.  



 

weighted by the risk of that type of incident occurring.  For simplicity, we assume that the 
vehicle has the same exposure to harm throughout its lifetime in this calculation.  However, the 
value of vehicles will decline at some depreciation rate so that the absolute amount paid in value-
related insurance will decline as the vehicle depreciates.  This is represented in the CAFE Model 
as the Equation 6-2 stream of expected collision and comprehensive insurance payments. 

(𝐶𝐶𝑃𝑃𝑃𝑃𝐹𝐹𝑢𝑢𝑒𝑒ℎ𝑒𝑒𝑃𝑃𝐶𝐶𝑢𝑢𝐴𝐴𝑒𝑒 & 𝐶𝐶𝑃𝑃𝑖𝑖𝑖𝑖𝑢𝑢𝐶𝐶𝑢𝑢𝑃𝑃𝑃𝑃)𝑆𝑆𝑊𝑊𝑟𝑟 =
𝑀𝑀𝑆𝑆𝑇𝑇𝐹𝐹 ∗ (𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑒𝑒 𝑀𝑀𝑆𝑆𝑇𝑇𝐹𝐹)
(1 + 𝑑𝑑𝑒𝑒𝐹𝐹𝑢𝑢𝑒𝑒𝑐𝑐𝑢𝑢𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 )𝑆𝑆𝑊𝑊𝑟𝑟

 

Equation 6-2 – Estimating Insurance Costs 
 
To utilize the framework described by Equation 6-2, estimates of the share of MSRP paid on 
collision and comprehensive insurance and of annual vehicle depreciations are needed.  Wards 
Automotive has data on the average annual amount paid by model year for new light trucks and 
passenger cars on collision, comprehensive and damage and liability insurance for model years 
1992-2003; for model years 2004-2016, they only offer the total amount paid for insurance 
premiums.  The share of total insurance premiums paid for collision and comprehensive 
coverage throughout the lifetime of a vehicle was computed for 1979-2003.  For cars, the share 
ranges from 49 to 55%, with the share tending to be largest towards the end of the series.  For 
trucks, the share ranges from 43 to 61%, again, with the share increasing towards the end of the 
series.  We assume that for model years 2004-2016, 60% of insurance premiums for trucks, and 
55% for cars, is paid for collision and comprehensive.  Using these shares, we computed the 
aggregate amount paid for collision and comprehensive coverage for cars and trucks.  Then each 
regulatory class in the fleet is weighted by share to estimate the overall average amount paid for 
collision and comprehensive insurance by model year as shown in Table 6-2.  The ratio of annual 
collision and comprehensive costs to average MSRP results in a range from 1.74% to 2.03% over 
the series.  The average annual share paid for model years 2010-2016 is 1.83% of the initial 
MSRP.  This is used as the share of the value of a new vehicle paid for collision and 
comprehensive in the future. 

Table 6-2 – Average Share of MSRP Paid for Collision and Comprehensive Insurance 

Model 
Year 

Collision and 
Comprehensive 

Average 
MSRP 

Percent 
MSRP 

2016 $681 $33,590 2.03% 
2015 $601 $32,750 1.84% 
2014 $567 $31,882 1.78% 
2013 $548 $31,056 1.76% 
2012 $530 $30,062 1.76% 
2011 $517 $29,751 1.74% 
2010 $548 $29,076 1.88% 

 

To estimate depreciation rates, we used recent data from Black Book and Fitch,678 which showed 
that the average annual depreciation rate of two- to six-year-old vehicles fluctuated over the last 

 
678 Vehicle Depreciation Report 2021, Black Book and Fitch Ratings, https://2j6hf2q7wf819gchr14pr7l1-
wpengine.netdna-ssl.com/wp-content/uploads/2021/04/FitchFINAL.pdf (last accessed April 20, 2021). 

https://2j6hf2q7wf819gchr14pr7l1-wpengine.netdna-ssl.com/wp-content/uploads/2021/04/FitchFINAL.pdf
https://2j6hf2q7wf819gchr14pr7l1-wpengine.netdna-ssl.com/wp-content/uploads/2021/04/FitchFINAL.pdf


 

decade from a high of 17.3% to a low of 8.3%679 prior to the pandemic.  The pandemic rates are 
unlikely to be representative of future depreciation rates, so we averaged the annual rates from 
2016 – 2019 to construct a more representative average depreciation rate (14.9%).  We assume 
that future depreciation rates will resemble pre-pandemic trends as the pandemic continues to 
recede, and the analysis assumes the same depreciation rate for all future years.   

Table 6-3 shows the cumulative share of the initial MSRP of a vehicle estimated to be paid in 
collision and comprehensive insurance in five-year age increments under this depreciation 
assumption, conditional on a vehicle surviving to that age—that is, the expected insurance 
payments at the time of purchase will be weighted by the probability of surviving to that age.  If 
a vehicle lives to 10 years, 10.6% of the initial MSRP is expected to be paid in collision and 
comprehensive payments; by 20 years 13.2% of the initial MSRP; finally, if a vehicle lives to 
age 40, 14.1% of the initial MSRP.  

Table 6-3 – Cumulative Percentage of MSRP Paid in Collision/Comprehensive Premiums by Age 

Age Percentage of 
Value Remaining 

Cumulative 
Percentage of 
MSRP Paid 

5 64% 7.0% 
10 32% 10.6% 
15 16% 12.4% 
20 8.0% 13.2% 
25 4.0% 13.7% 
30 2.0% 13.9% 
35 1.0% 14.0% 
40 0.5% 14.1% 

 
The increase in insurance premiums resulting from an increase in the average value of a vehicle 
is a result of an increase in the expected amount insurance companies will have to pay out in the 
case of damage occurring to the driver’s vehicle.  In this way, it is a cost to the private consumer, 
attributable to the CAFE standard, that caused the insurance price increase. 

6.1.2 Consumer Sales Surplus 

Buyers who would have purchased a new vehicle with the baseline standards in effect but decide 
not to do so in response to the increase in new vehicles’ prices due to more stringent standards 
experience a decrease in welfare.  The collective welfare loss to potential buyers who are 
deterred by higher prices is measured by the foregone consumer surplus they would have 
received from their purchase of a new vehicle in the baseline.  However, because the fuel 
economy of vehicles they would otherwise have purchased also increases, and higher fuel 
economy would have provided some value to them, measuring their loss in consumer surplus is 

 
679 During the pandemic depreciation largely halted, with two- to six-year old vehicles depreciating at only 2% in 
2020 and projected at only 5% in 2021.  



 

more complicated than in the conventional case where the price of a product changes but its 
other attributes do not.680   

 
Figure 6-1 – New Vehicle Consumer Surplus 

The triangle bcd in Figure 6-1 reflects the loss of consumer surplus to new vehicle buyers, 
calculated based on changes to new vehicle sales.  Line P0 reflects the baseline vehicle cost.  
More stringent regulatory alternatives are expected to increase the cost of light duty vehicles, as 
represented by line P1.  Consistent with other sections of the analysis, we assume that consumers 
value 30 months of fuel savings at the time of purchase and offset the price increase accordingly, 
thus shifting price from line P1 to line P2.  This shift leads the quantity demanded to move from 
Q0 to Q1, Dotted line D* is a linear representation of the change in quantity of vehicles 
purchased.681  The consumer surplus is equal to the area of triangle bcd.682 

6.1.3 Value of Fuel Savings 

Fuel savings are calculated by multiplying avoided fuel consumption by fuel prices.  Each 
vehicle of a given body style is assumed to be driven the same as all the others of a comparable 
age and body style in each calendar year.  The ratio of that cohort’s VMT to its fuel efficiency 
produces an estimate of fuel consumption.  The difference between fuel consumption in the 
baseline, and in each alternative, represents the gallons (or energy) saved.  Under this 
assumption, our estimates of fuel consumption from increasing the fuel economy of each 

 
680 Consumer surplus is a fundamental economic concept and represents the net value (or net benefit) a good or 
service provides to consumers.  It is measured as the difference between what a consumer is willing to pay for a 
good or service and the market price.  OMB circular A-4 explicitly identifies consumer surplus as a benefit that 
should be accounted for in cost-benefit analysis.  For instance, OMB Circular A-4 states the “net reduction in total 
surplus (consumer plus producer) is a real cost to society,” and elsewhere elaborates that consumer surplus values be 
monetized “when they are significant.”  OMB Circular A-4, at 37-38. 
681 D* is not a demand curve.  It is included in Figure 6-1 to help visualize the change in consumer welfare.  
682 The exact calculation is half the increase in sales multiplied by the reduction in the cost of light duty vehicles net 
of the increased fuel cost.  



 

individual model depend only on how much its fuel economy is increased, and do not reflect 
whether its actual use differs from other models of the same body type.  Neither do our estimates 
of fuel consumption account for variation in how much vehicles of the same body type and age 
are driven each year, which appears to be significant (see Chapter 4.3.1).  Consumers save 
money on fuel expenditures at the average retail fuel price (fuel price assumptions are discussed 
in detail in Chapter 4.1.2), which includes all taxes and represents an average across octane 
blends.  For gasoline and diesel, the included taxes reflect both the federal tax and a calculated 
average state fuel tax.  Expenditures on alternative fuels (E85 and electricity, primarily) are also 
included in the calculation of fuel expenditures, on which fuel savings are based.  And while the 
included taxes net out of the social benefit cost analysis (as they are a transfer), consumers value 
each gallon saved at retail fuel prices including any additional fees such as taxes.  

This assumption that each vehicle is driven the average miles for its cohort may cause our 
estimates of fuel consumption under more stringent CAFE standards to be too large.  Because the 
distribution of annual driving is wide, using its mean value to estimate fuel savings for individual 
car or light truck models may overstate the fuel consumption likely to result under tighter 
standards, even when the fuel economy of different models are correctly averaged.683  This will 
be the case even when increases in fuel economy can be estimated reliably for individual models, 
which this analysis does, because the reduction in a specific model’s fuel consumption depends 
on how much it is actually driven as well as on the change in fuel economy under alternative fuel 
economy standards.  

To illustrate, we estimate that new automobiles are driven about 17,000 miles on average during 
their first year.684  If the 17,000 mile figure represents the average of two different models that 
are driven 14,000 and 20,000 miles annually, and the two initially achieve, respectively, 30 and 
40 miles per gallon—thus averaging 35 miles per gallon—they will consume a total of 967 
gallons annually.685  Improving the fuel economy of each model by 5 miles per gallon will 
reduce their total fuel use to 844 gallons, thus saving 123 gallons annually.686  In contrast, using 
the 17,000 mile average figure for both two vehicles yields estimated fuel savings of 128 gallons 
per year, about 5% above the correct value.687   

The magnitude of this potential overestimation of fuel savings increases with any association 
between annual driving and fuel economy.  Car and light truck buyers who anticipate driving 

 
683 The correct average fuel economy of vehicles whose individual fuel economy differs is the harmonic average of 
their individual values, weighted by their respective use; for two vehicles with fuel economy levels MPG1 and 
MPG2 that are assumed to be driven identical amounts (as in the agencies’ analysis), their harmonic average fuel 
economy is equal to 2/(1/MPG1 + 1/MPG2). 
684 While the mileage accumulation schedule reflects this estimate, the actual VMT during 2020 (and the next few 
subsequent years) is lower, as U.S. light-duty VMT declined significantly during the pandemic. 
685 Calculated as 14,000 miles / 30 miles per gallon + 20,000 miles / 40 miles per gallon = 467 gallons + 500 gallons 
= 967 gallons (all figures in this calculation are rounded to whole gallons).  
686 Calculated as 14,000 miles / 35 miles per gallon + 20,000 miles / 45 miles per gallon = 400 gallons + 444 gallons 
= 844 gallons (again, all figures in this calculation are rounded to whole gallons). 
687 Our estimate of their combined initial fuel consumption would be 17,000 miles / 30 miles per gallon + 17,000 
miles / 40 miles per gallon, or 567 gallons + 425 gallons = 992 gallons.  After the 5 mile per gallon improvement in 
fuel economy for each vehicle, our estimate would decline to 17,000 miles / 35 miles per gallon + 17,000 miles / 45 
miles per gallon = 486 + 378 = 863 gallons, yielding an estimated fuel savings of 992 gallons - 863 gallons = 128 
gallons (as previously, all figures in this calculation are rounded to whole gallons).  



 

more should be more likely to choose models offering higher fuel economy because the number 
of miles driven directly affects their fuel costs, and thus the savings from driving a model that 
features higher fuel economy.688  Conversely, buyers who anticipate driving less are likely to 
purchase models with lower fuel economy.  Such behavior— whereby buyers who expect to 
drive more extensively are likely to select models offering higher fuel economy—cannot be fully 
accounted for in today’s analysis, which is necessarily based on empirical estimates of average 
vehicle use.  To the extent it occurs, we are likely to consistently overstate actual fuel savings 
from requiring higher fuel economy.  Thus, NHTSA’s central analysis is likely to slightly 
overestimate the proposal’s impact on consumer benefits such as reduced fuel consumption and 
increased refueling time, as well as on the resulting environmental impacts of fuel production 
and use. 

A similar phenomenon may cause the analysis to overstate the value of fuel savings resulting 
from requiring higher fuel economy as well.  As with miles driven, our analysis assumes all 
vehicle owners pay the national average fuel price at any time.  However, fuel prices vary 
substantially among different regions of the U.S., and one would expect buyers in regions with 
consistently higher fuel prices to purchase vehicles with higher fuel economy, on average.  To 
the extent they actually do so, evaluating the savings from requiring higher fuel economy 
identically in all regions using nationwide average fuel prices is likely to overstate their actual 
dollar value.   

As an illustration, suppose gasoline averages $3.00 per gallon nationwide, but a buyer who 
expects to drive a new car 17,000 miles during its first year (the same value used in the example 
above) faces a local price of $4.00 per gallon, and chooses a model that achieves 40 mpg.  That 
driver’s cost of fuel during the vehicle’s first year will total $1,700 (calculated at 17,000 miles / 
40 miles per gallon x $4.00 per gallon).  A buyer who plans to drive the same number of miles 
but faces a lower price of $2.00 per gallon and thus chooses a vehicle that offers only 30 mpg 
will have first-year fuel costs of $1,133 (calculated as 17,000 miles / 30 miles per gallon x $2.00 
per gallon), so total annual fuel costs for these two vehicles will be $1,700 + $1,133 = $2,633.  If 
the fuel economy of both vehicles increases by 5 mpg, their actual fuel savings will be $189 and 
$162, or a total savings of $351.  However, evaluating total fuel savings using a price of $3.00 
per gallon yields savings of $382, thus overstating actual savings by about 10%.   

6.1.4 Benefits of Fewer Frequent Refueling Events 

Increasing CAFE standards, all else being equal, affect the amount of time drivers spend 
refueling their vehicles in several ways.  First, they increase the fuel economy of ICE vehicles 
produced in the future, which increases vehicle range and decreases the number of refueling 
events for those vehicles.  Second, to the extent that more stringent standards increase the 
purchase price of new vehicles, they may reduce sales of new vehicles and scrappage of existing 
ones, causing more VMT to be driven by older and less efficient vehicles which require more 
refueling events for the same amount of VMT driven.  Finally, sufficiently stringent standards 

 
688 For example, some businesses, rental car firms, taxi operators, and ride sharing drivers are likely to anticipate 
using their vehicles significantly more than the average new car or light truck buyer.  Furthermore, their choices 
among competing models are likely to be more heavily influenced by economics than by the preferences for other 
attributes that motivate many other buyers, making them more likely to select vehicles with higher fuel economy in 
order to improve their economic returns. 



 

may also change the number of electric vehicles that are produced, and shift refueling to occur at 
a charging station, rather than at the pump—changing per-vehicle lifetime expected refueling 
costs.  The basic calculation for all three effects is the same: we multiply the additional amount 
of time spent refueling by the value of time of passengers, which is assumed to be the same for 
all three effects.   

6.1.4.1 Value of Travel Time Savings 

The calculation of the value of time follows the guidance from DOT’s 2016 Value of Travel 
Time Savings memorandum (“VTTS Memo”).689  The economic value of refueling time savings 
is calculated by applying valuations for travel time savings from the VTTS Memo to estimates of 
how much time is saved across alternatives.690  The value of travel time depends on average 
hourly valuations of personal and business time, which are functions of annual household income 
and total hourly compensation costs to employers, respectively.  As designated by the 2016 
VTTS memo, the nationwide median annual household income, $56,516 in 2015, is divided by 
2,080 hours to yield an income of $27.20 per hour.  Total hourly compensation cost to 
employers, inclusive of benefits, in 2015$ was $25.40.691  Table 6-4 demonstrates NHTSA’s 
approach to estimating the value of travel time ($/hour) for urban and rural driving; we make the 
simplifying assumption that urban travel consists entirely of local trips, while travel in rural areas 
is exclusively longer-distance intercity travel.  This approach relies on the use of DOT-
recommended weights that assign a lesser valuation to personal travel time than to business 
travel time, as well as weights that adjust for the distribution between personal and business 
travel.692  In accordance with DOT guidance, wage valuations are estimated with base year 2015 
dollars and end results are adjusted to 2018 dollars. 

 
689 United States Department of Transportation, The Value of Travel Time Savings: Departmental Guidance for 
Conducting Economic Evaluations, (2016), available at https://www7.transportation.gov/office-
policy/transportation-policy/revised-departmental-guidance-valuation-travel-time-economic (last accessed July 1, 
2021). 
690  VTTS Memo Tables 1, 3, and 4.  
691 Ibid at 11. 
692 Business travel is higher than personal travel because an employer has additional expenses, e.g. taxes and 
benefits costs, above and beyond an employee’s hourly wage. 

https://www7.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-valuation-travel-time-economic
https://www7.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-valuation-travel-time-economic


 

Table 6-4 – Estimating the Value of Travel Time for Urban and Rural (Intercity) Travel ($/hour, 2015 
Dollars) 

 Personal Travel Business Travel Total 

Urban Travel 

Wage Rate ($/hour) $27.20 $25.40 - 

DOT - Recommended Value of Travel Time Savings, as % 
of Wage Rate 50% 100% - 

Hourly Valuation (=Wage Rate * DOT-Recommended 
Value) $13.60 $25.40 - 

% of Total Urban Travel 95.4% 4.6% 100% 

Hourly Valuation (Adjusted for % of Total Urban Travel) $12.97 $1.17 $14.14 

Rural (Intercity) Travel 

Wage Rate ($/hour) $27.20 $25.40  

DOT - Recommended Value of Travel Time Savings, as % 
of Wage Rate 70% 100%  

Hourly Valuation (=Wage Rate * DOT-Recommended 
Value) $19.04 $25.40  

% of Total Rural Travel 78.6% 21.4% 100% 

Hourly Valuation (Adjusted for % of Total Rural Travel) $14.97 $5.44 $20.40 

 
Estimates of the hourly value of urban and rural travel time ($14.14 and $20.40, respectively), 
shown in Table 6-5, must be adjusted to account for the nationwide ratio of urban to rural 
driving.693  This adjustment, which gives an overall estimate of the hourly value of travel time—
independent of urban or rural status—is shown in Table 6-6. 

 
693 Estimate of Urban vs. Rural travel weights from FHWA Highway Statistics 2019, Table VM-1 (light-duty 
vehicles only), https://www.fhwa.dot.gov/policyinformation/statistics/2019/pdf/vm1.pdf. 



 

Table 6-5 – Estimating Weighted Urban/Rural Value of Travel Time ($/hour, 2015 Dollars) 

  Unweighted Value of 
Travel Time ($/hour) 

Weight (% of Total 
Miles Driven) 

Weighted Value of Travel 
Time ($/hour) 

Urban Travel $14.14 71.6% $10.12 
Rural Travel $20.40 28.4% $5.80 
Total - 100.0% $15.92 

 
Table 6-6 – Estimating the Value of Travel Time for Light-Duty Vehicles ($/hour, 2015 Dollars) 

  Passenger Cars Light Trucks 

Average Vehicle Occupancy During Refueling Trips (persons) 1.52 1.83 

Weighted Value of Travel Time ($/hour) $15.92 $15.92 

Occupancy-Adjusted Value of Vehicle Travel Time During 
Refueling Trips ($/hour) $24.23 $29.16 

 
Note that the calculations in Table 6-5 represent the hourly value of travel time for each 
individual vehicle occupant, and many vehicles have multiple occupants.  To estimate the 
average value of travel time per vehicle-hour, Table 6-6 accounts for all passengers in vehicles 
making refueling stops.  We estimated average vehicle occupancy using data from the 2017 
National Household Travel Survey, and our estimate of average vehicle occupancy includes the 
driver and all passengers who are age five and above.694  The average occupancy assumption 
used in the refueling benefit is consistent with occupancy assumptions used to estimate the social 
cost of additional traffic congestion.  Lastly, the occupancy-adjusted value of travel time per 
vehicle-hour is converted to 2018 dollars using the GDP deflator as shown in Table 6-7.695 

Table 6-7 – Value of Vehicle Travel Time in 2018 Dollars ($/hour, 2018 Dollars) 

  Passenger Cars Light Trucks 

Occupancy-Adjusted Value of Vehicle Travel Time During 
Refueling Trips ($/hour) $25.55 $30.75 

6.1.4.2 Accounting for Improved Fuel Economy of ICE Vehicles 

The CAFE Model calculates the number of refueling events for each ICE vehicle in a calendar 
year.  This is calculated as the number of miles driven by each vehicle in that calendar year 
divided by the product of that vehicle’s on-road fuel economy (rather than fuel economy as 

 
694 The National Household Travel Survey excludes trips by children under age five.  
695 Bureau of Economic Analysis, NIPA Table 1.1.9 Implicit Price Deflators for Gross Domestic Product, available 
at https://apps.bea.gov/iTable/index_nipa.cfm.  

https://apps.bea.gov/iTable/index_nipa.cfm


 

measured for compliance), tank size, and an assumption about the average share of the tank 
refueled at each event, as shown in Equation 6-3. 

𝑇𝑇𝑒𝑒𝑓𝑓𝑢𝑢𝑒𝑒𝑖𝑖 𝑇𝑇𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ =
𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ

𝐹𝐹𝑇𝑇𝑉𝑉𝑟𝑟ℎ ∗ 𝑇𝑇𝑎𝑎𝑃𝑃𝑘𝑘𝑉𝑉𝑟𝑟ℎ ∗ 𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝑉𝑉𝑟𝑟ℎ
 

 
Equation 6-3 – Calculating the Number of Refueling Events 

The model then computes the cost of refueling as the product of the number of refueling events, 
total time of each event and the value of the time spent on each event (computed as average 
salary), as shown in Equation 6-4. 

𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ = 𝑇𝑇𝑒𝑒𝑓𝑓𝑢𝑢𝑒𝑒𝑖𝑖 𝑇𝑇𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ ∗ (𝑇𝑇𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃 𝑇𝑇𝑢𝑢𝑃𝑃𝑒𝑒𝑉𝑉𝑟𝑟ℎ) ∗ 𝑇𝑇𝑢𝑢𝑃𝑃𝑒𝑒 𝑉𝑉𝑎𝑎𝑖𝑖𝑢𝑢𝑒𝑒 
 

Equation 6-4 – Calculating the Cost of Refueling Events 

The refueling event time of each vehicle is calculated by summing a fixed and variable 
component.  The fixed component is the number of minutes required for each refueling event, 
regardless of the tank size or share refueled at each event (i.e., the time it takes to get to and from 
the pump).  The variable component is the ratio of the average number of gallons refueled for 
each event (the product of the tank size and share refueled) and the rate at which gallons flow 
from the pump.  This is shown in Equation 6-5. 

𝑇𝑇𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃 𝑇𝑇𝑢𝑢𝑃𝑃𝑒𝑒𝑉𝑉𝑟𝑟ℎ = 𝐹𝐹𝑢𝑢𝐹𝐹𝑒𝑒𝑑𝑑 𝑉𝑉𝑟𝑟ℎ +
𝑇𝑇𝑎𝑎𝑃𝑃𝑘𝑘𝑉𝑉𝑟𝑟ℎ ∗ 𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒𝑉𝑉𝑟𝑟ℎ

𝑇𝑇𝑎𝑎𝑃𝑃𝑒𝑒
 

 
Equation 6-5 – Calculating the Time of Refueling Events 

The value of time is taken from DOT guidance on travel time savings, as described in Chapter 
6.1.4.1.  The fixed time component, share refueled, and rate of flow are calculated from survey 
data gathered as part of our 2010-2011 National Automotive Sampling System’s Tire Pressure 
Monitoring System (TPMS) study.696  Finally, the vehicle fuel tank sizes are taken from 
manufacturer specs for the reference fleet and historical averages are calculated from popular 
models for the existing vehicle fleet, as described later in this section and in Table 6-9 through 
Table 6-11. 

We estimated the amount of saved refueling time using survey data gathered as part of the 
aforementioned TPMS study.  In this nationwide study, researchers gathered information on the 
total amount of time spent pumping and paying for fuel.  From a separate sample (also part of the 
TPMS study), researchers conducted interviews at the pump to gauge the distances that drivers 
travel in transit to and from fueling stations, how long that transit takes, and how many gallons 
of fuel are purchased. 

 
696 Docket for Peer Review of NHTSA/NASS Tire Pressure Monitoring System, available at 
https://www.regulations.gov/docket?D=NHTSA-2012-0001.  

https://www.regulations.gov/docket?D=NHTSA-2012-0001


 

We focused on the interview-based responses in which respondents indicated the primary reason 
for the refueling trip was due to a low reading on the gas gauge.  Such drivers experience a cost 
due to added mileage driven to detour to a filling station, as well as added time to refuel and 
complete the transaction at the filling station.  Drivers who refuel on a regular schedule or 
incidental to stops they make primarily for other reasons (e.g., using restrooms or buying snacks) 
do not experience the cost associated with detouring in order to locate a station or paying for the 
transaction, because the frequency of refueling for these reasons is unlikely to be affected by fuel 
economy improvements.  This restriction was imposed to exclude distortionary effects of those 
who refuel on a fixed (e.g., weekly) schedule and may be unlikely to alter refueling patterns as a 
result of increased driving range.  The relevant TPMS survey data on average refueling trip 
characteristics are presented below in Table 6-8. 

Table 6-8 – Average Refueling Trip Characteristics for Passenger Cars and Light Trucks 

  
Gallons of 

Fuel 
Purchased 

Round-Trip 
Distance 

to/from Fueling 
Station (miles) 

Round-Trip 
Time to/from 

Fueling Station 
(minutes) 

Time to Fill 
and Pay 

(minutes) 

Total Time 
(minutes) 

Passenger Cars 10 0.97 2.28 4.1 6.38 
Light Trucks 13 1.08 2.53 4.3 6.83 

 

From the data, we assume that all of the round-trip time necessary to travel to and from the 
fueling station is a part of the fixed time component of each refueling event.  Some portion of the 
time to fill and pay is also a part of the fixed time component.  Given the information in Table 
6-8, we assume that each refueling event has a fixed time component of 3.5 minutes.  For 
example, the sum for passenger cars of 2.28 minutes round trip time to/from fueling station and 
roughly 1.2 minutes to select and pay for fuel, remove/recap fuel tank, remove/replace fuel 
nozzle, etc.  The time to fill the fuel tank is the variable time component; about 2.9 minutes for 
passenger cars (2.28 + 1.2 + 2.9 = 6.38 total minutes).   

To calculate the variable time component, the agency estimates how much time is spent during a 
refueling event just pumping gas.  Cars have an average tank size of about 15 gallons, 
SUVs/vans of about 18 gallons, and pickups of about 27 gallons (see Table 6-9 through Table 
6-11).  For simplicity of this calculation, the agency assumes that the average passenger car has a 
tank of 15 gallons and the average light truck—which includes SUVs for this calculation—has a 
tank of 20 gallons (there are more SUVs/vans than pickups in the light truck fleet).  From these 
assumptions, we calculate that the average refueling event fills approximately 65 percent of the 
fuel tank—as derived from the TPMS study— for both passenger cars and light trucks.  This 
value is used as an input in the CAFE Model for both styles (cars and SUVs/vans/pickups).  
Finally, the rate of the pump flow can be calculated either as the total gallons pumped over the 
assumed variable time component (approximately 3 minutes) or as the difference in the average 
number of gallons filled between light trucks and passenger cars over the difference in the time 
to fill and pay between the two classes.  The first methodology implies a rate between 3 and 4 
gallons per minute.  Although the second methodology implies a rate of 15 gallons per minute, 



 

there is a legal restriction on the flow of gasoline from pumps of 10 gallons per minute.697  Thus, 
we assume the rate of gasoline pumps range between 4 and 10 gallons per minute, and use 7.5 
gallons per minute—a value slightly above the midpoint of that range—as the average flow rate 
in the CAFE Model. 

The calculations described above are repeated for each future calendar year in the analysis.  As a 
vehicle ages, the refueling benefit attributable to it decreases—as older vehicles are typically 
driven less which means less fuel consumption and fewer refueling events698—until the vehicle 
is scrapped.   

As described in Chapter 4.2, more stringent regulatory alternatives cause fleet turnover to slow, 
and as a result older and less efficient vehicles are relied upon to drive additional miles.  This 
shift of VMT from newer to older vehicles diminishes a portion of the refueling benefit accrued 
under stricter standards.  The CAFE Model calculates the aggregate refueling costs for all 
vehicles—new and the existing fleet—and calculates the refueling benefit associated with more 
stringent standards as the difference in fleet-wide absolute refueling costs relative to the baseline. 

The CAFE Model tracks the legacy fleet of light-duty vehicles by body style and vintage, using 
average measures for fuel economy.  Estimating refueling costs for these vehicles requires 
measures of average fuel tank sizes by body style and vintage.  We used publicly available data 
on fuel tank sizes of 17 high-volume nameplates to derive estimates of average fuel tank size 
over time.  The tank sizes are averaged by body style, and these historical values are used as 
estimates of the average by body style and vintage.  The vehicles included, their fuel tank sizes, 
and the averages are reported in Table 6-9 through Table 6-11 for cars, vans/SUVs, and pickups, 
respectively.  The averages are used to represent the fuel tank sizes by vintage and vehicle body 
style.  We used the fuel tank sizes from Table 6-9 to Table 6-11 to determine the number of 
refueling events and time spent refueling to compute refueling costs using the methodology 
described above. 

 
697 40 CFR 80.22 (j), Regulation of Fuels and Fuel Additives - subpart B. Controls and Prohibitions, available at  
https://www.law.cornell.edu/cfr/text/40/80.22. 
698 See 4.3.1.2. 

https://www.law.cornell.edu/cfr/text/40/80.22


 

Table 6-9 – Fuel Tank Size of High-Volume Car Models and Averages by Vintage 

Model 
Year 

Honda 
Civic 

Honda 
Accord 

Toyota 
Corolla 

Toyota 
Camry 

Ford 
Mustang 

Chevy 
Corvette 

Car 
Average 

1975 10  13.2  12.4 17 13.2 
1976 10 13.2 13.2  12.4 17 13.2 
1977 10 13.2 13.2  12.4 17 13.2 
1978 10.6 13.2 13.2  12.4 24 14.7 
1979 10.6 13.2 13.2  12.5 24 14.7 
1980 10.8 13.2 13.2 16.1 12.5 24 15.0 
1981 10.8 13.2 13.2 16.1 12.5 24 15.0 
1982 12.2 15.9 13.2 16.1 15.4 24 16.1 
1983 12.2 15.9 13.2 14.5 15.4 24 15.9 
1984 12.2 15.9 13.2 14.5 15.4 20 15.2 
1985 12.2 15.9 13.2 14.5 15.4 20 15.2 
1986 12.2 15.9 13.2 14.5 15.4 20 15.2 
1987 12.2 15.9 13.2 15.9 15.4 20 15.4 
1988 11.9 15.9 13.2 15.9 15.4 20 15.4 
1989 11.9 15.9 13.2 15.9 15.4 20 15.4 
1990 11.9 16.9 13.2 15.9 15.4 20 15.6 
1991 11.9 16.9 13.2 15.9 15.4 20 15.6 
1992 11.9 16.9 13.2 18.5 15.4 20 16.0 
1993 11.9 16.9 13.2 18.5 15.4 20 16.0 
1994 11.9 16.9 13.2 18.5 15.4 20 16.0 
1995 11.9 16.9 13.2 18.5 15.4 20 16.0 
1996 11.9 16.9 13.2 18.5 15.4 20 16.0 
1997 11.9 16.9 13.2 18.5 15.4 19.1 15.8 
1998 11.9 17.2 13.2 18.5 15.7 19.1 15.9 
1999 11.9 17.2 13.2 18.5 15.7 19.1 15.9 
2000 11.9 17.2 13.2 18.5 15.7 18.5 15.8 
2001 13.2 17.2 13.2 18.5 15.7 18.5 16.1 
2002 13.2 17.2 13.2 18.5 15.7 18.5 16.1 
2003 13.2 17.2 13.2 18.5 15.7 18.5 16.1 
2004 13.2 17.2 13.2 18.5 15.7 18 16.0 
2005 13.2 17.2 13.2 18.5 16.6 18 16.1 
2006 13.2 17.2 13.2 18.5 16.6 18 16.1 
2007 13.2 17.2 13.2 18.5 16.6 18 16.1 
2008 13.2 18.5 13.2 18.5 16.6 18 16.3 
2009 13.2 18.5 13.2 18.5 16.6 18 16.3 
2010 13.2 18.5 13.2 18.5 16 18 16.2 
2011 13.2 18.5 13.2 18.5 16 18 16.2 
2012 13.2 18.5 13.2 17 16 18 16.0 
2013 13.2 17.2 13.2 17 16 18 15.8 
2014 13.2 17.2 13.2 17 16 18.5 15.9 
2015 13.2 17.2 13.2 17 16 18.5 15.9 
2016 12.4 17.2 13.2 17 16 18.5 15.7 



 

Table 6-10 – Fuel Tank Size of High-Volume Van/SUV Models and Averages by Vintage 

Model 
Year 

Jeep 
Wrangler 

Ford 
Explorer 

Jeep Grand 
Cherokee 

Chevy 
Blazer 

Ford 
Escape 

Honda 
CR-V 

Toyota 
Rav4 

SUVs 
Average 

1975    31    31.0 
1976    31    31.0 
1977    31    31.0 
1978    31    31.0 
1979    31    31.0 
1980    31    31.0 
1981    31    31.0 
1982    31    31.0 
1983    31    31.0 
1984    31    31.0 
1985    31    31.0 
1986    31    31.0 
1987 20   31    25.5 
1988 20   31    25.5 
1989 20   31    25.5 
1990 20   31    25.5 
1991 20 19.3  30    23.1 
1992 20 19.3  30    23.1 
1993 20 19.3 23 30    23.1 
1994 20 19.3 23 30   15.3 21.5 
1995 20 19.3 23 20   15.3 19.5 
1996 20 21 23 19   15.3 19.7 
1997 19 21 23 19  15.3 15.3 18.8 
1998 19 21 23 19  15.3 15.3 18.8 
1999 19 21 20.5 19  15.3 15.3 18.4 
2000 19 21 20.5 19  15.3 15.3 18.4 
2001 19 21 20.5 19 16 15.3 14.7 17.9 
2002 19 22.5 20.5 19 16 15.3 14.7 18.1 
2003 19 22.5 20.5 19 16 15.3 14.7 18.1 
2004 19 22.5 20.5 19 16 15.3 14.8 18.2 
2005 19 22.5 20.5 19 16.5 15.3 14.8 18.2 
2006 19 22.5 20.5 22 16.5 15.3 15.9 18.8 
2007 19 22.5 21.1 22 16.5 15.3 15.9 18.9 
2008 22.5 22.5 21.1 22 16.5 15.3 15.9 19.4 
2009 22.5 22.5 21.1 22 16.5 15.3 15.9 19.4 
2010 22.5 22.5 21.1  16.5 15.3 15.9 19.0 
2011 22.5 18.6 24.6  17.5 15.3 15.9 19.1 
2012 22.5 18.6 24.6  17.5 15.3 15.9 19.1 
2013 22.5 18.6 24.6  15.1 15.3 15.9 18.7 
2014 22.5 18.6 24.6  15.1 15.3 15.9 18.7 
2015 22.5 18.6 24.6  15.1 15.3 15.9 18.7 
2016 22.5 18.6 24.6  15.1 15.3 15.9 18.7 



 

Table 6-11 – Fuel Tank Size of High-Volume Pickup Models and Averages by Vintage 

Model 
Year 

Ford 
F150 

Dodge 
Ram 

Chevy 
Silverado 

Ford 
Ranger 

Pickups 
Average 

1975 39.2    39.2 
1976 39.2    39.2 
1977 39.2    39.2 
1978 39.2    39.2 
1979 39.2    39.2 
1980 37.5    37.5 
1981 37.5 26   31.8 
1982 37.5 26   31.8 
1983 37.5 26  19 27.5 
1984 37.5 26  19 27.5 
1985 37.5 26  19 27.5 
1986 37.5 26  19 27.5 
1987 37.5 26  19 27.5 
1988 37.5 26  19 27.5 
1989 37.5 26  19 27.5 
1990 37.5 26  19 27.5 
1991 37.5 26  19 27.5 
1992 37.5 26  19 27.5 
1993 37.5 30.5  18.8 28.9 
1994 37.5 30.5  18.8 28.9 
1995 37.5 30.5  18.8 28.9 
1996 37.5 30.5  18.8 28.9 
1997 30 30.5  18.8 26.4 
1998 30 30.5  18.5 26.3 
1999 30 30.5 30 18.5 27.3 
2000 30 30.5 30 18.5 27.3 
2001 30 30.5 30 18.5 27.3 
2002 30 30.5 30 18.5 27.3 
2003 30 30.5 30 18.5 27.3 
2004 30 30.5 30 18.5 27.3 
2005 30 30.5 30 18.5 27.3 
2006 30 30.5 30 18.5 27.3 
2007 30 30.5 30 18.5 27.3 
2008 30 30.5 30 18.5 27.3 
2009 26 29 30 18.5 25.9 
2010 26 29 30 18.3 25.8 
2011 26 29 30 18.3 25.8 
2012 26 29 30  28.3 
2013 26 29 30  28.3 
2014 26 29 30  28.3 
2015 23 29 30  27.3 
2016 23 29 30  27.3 



 

 
After calculating the aggregate value for each regulatory alternative using the methodology and 
inputs described above for both the new and legacy fleets, the model calculates the incremental 
value relative to the baseline as the refueling cost or benefit for that regulatory alternative.  More 
efficient vehicles have to be refueled less often and refueling costs per vehicle decline.   

6.1.4.3 Including Electric Vehicle Recharging 

In addition to including the refueling costs associated with the “legacy fleet,” the CAFE Model 
also adds the cost to recharge electric vehicles to the total refueling costs.  As electric vehicles 
become a larger share of the on-road fleet, accounting for the cost of their refueling becomes 
increasingly relevant.  In order to do so, it is important to first understand how many electric 
vehicle charging events will require the driver to wait and for how long.  The answer to this 
question depends on the range of the electric vehicle and the length of the trip.699  For trips 
shorter than the range, the driver can recharge the vehicle at times that will not require them to 
be actively waiting and there would be no cost related to recharging.  Only for trips where the 
vehicle is driven more miles than the range will the driver have to stop mid-trip, a time that is 
assumed to be inconvenient, to recharge the vehicle at least enough to reach the intended 
destination.   

NHTSA used trip data from the National Household Transportation Survey (NHTS) to estimate 
the frequency and expected length of trips that exceed the range of the electric vehicle 
technologies in the simulation (200 and 300 mile ranges – which were extrapolated for longer 
battery ranges).  The NHTS collects data on individual trips by mode of transportation from a 
representative random sample of U.S. households.  A trip is defined by the starting and ending 
point for any personal travel, so that vehicle trips will capture any time a car is driven.  The 
survey includes identification numbers for households, individuals, and vehicles, and mode of 
transportation (including the body style of the vehicle for vehicle trips), and the date of the trip.  
Although some trips made in the same day may allow for convenient charging in between trips, 
we assume that travel in the same day exceeding the range will involve the driver waiting for the 
vehicle to charge.  Thus, the total number of miles driven by the same vehicle in a single day is 
summed, and we assume that charging stations are not conveniently available to the driver in 
between.  

From the final body style datasets (which excludes taxis and rental cars), we calculated two 
measures that allow for the construction of the value of recharging time.  First, the expected 
distance between trips that exceed the range of 200-mile and 300-mile BEVs (BEV200 and 
BEV300, respectively) was calculated.  This is calculated as the quotient of the sum of total 
miles driven by each individual body style and the total number of trips exceeding the range, as 
shown in Equation 6-6.700 

 
699 While the range of EVs is dependent on a number of factors, such as driver habits, geography, and weather, 
NHTSA took a conservative approach and assumed a best-case scenario.  
700 The denominator counts the number of necessary recharging events by body style.  It is not a measurement of 
VMT. 



 

𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 𝐹𝐹𝑢𝑢𝑒𝑒𝑅𝑅𝑢𝑢𝑒𝑒𝑃𝑃𝑐𝑐𝑐𝑐𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟,𝑀𝑀𝑆𝑆𝑃𝑃𝑊𝑊𝑟𝑟 =
∑ 𝑇𝑇𝑢𝑢𝑢𝑢𝐹𝐹 𝐿𝐿𝑒𝑒𝑃𝑃𝑔𝑔𝑃𝑃ℎ𝑇𝑇𝑟𝑟𝑟𝑟𝑁𝑁 𝜖𝜖 𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟

∑ [𝑇𝑇𝑢𝑢𝑢𝑢𝐹𝐹 𝐿𝐿𝑒𝑒𝑃𝑃𝑔𝑔𝑃𝑃ℎ > 𝑇𝑇𝑎𝑎𝑃𝑃𝑔𝑔𝑒𝑒]𝑇𝑇𝑟𝑟𝑟𝑟𝑁𝑁 𝜖𝜖 𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟
 

Equation 6-6 – Calculation of En Route Charge Frequency 

This calculates the expected frequency of en route recharging events, or the amount of miles 
traveled per inconvenient recharging event.  It is used later to calculate the total expected time to 
recharge a vehicle. 

The second measure needed to calculate the total expected recharging time is the expected share 
of miles driven that will be charged in the middle of a trip (causing the driver to wait and lose the 
value of time).  In order to calculate this measure, we sum the difference of the trip length and 
range, conditional on the trip length exceeding the range for each body style.  This figure is then 
divided by the sum of the length of all trips for that body style, as in Equation 6-7. 

𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒 𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒𝑑𝑑𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟,𝑀𝑀𝑆𝑆𝑃𝑃𝑊𝑊𝑟𝑟 =
∑ ([𝑇𝑇𝑢𝑢𝑢𝑢𝐹𝐹 𝐿𝐿𝑒𝑒𝑃𝑃𝑔𝑔𝑃𝑃ℎ > 𝑇𝑇𝑎𝑎𝑃𝑃𝑔𝑔𝑒𝑒]𝑇𝑇𝑟𝑟𝑟𝑟𝑁𝑁 𝜖𝜖 𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟 ∗ (𝑇𝑇𝑢𝑢𝑢𝑢𝐹𝐹 𝐿𝐿𝑒𝑒𝑃𝑃𝑔𝑔𝑃𝑃ℎ − 𝑇𝑇𝑎𝑎𝑃𝑃𝑔𝑔𝑒𝑒))

∑ 𝑇𝑇𝑢𝑢𝑢𝑢𝐹𝐹 𝐿𝐿𝑒𝑒𝑃𝑃𝑔𝑔𝑃𝑃ℎ𝑇𝑇𝑟𝑟𝑟𝑟𝑁𝑁 𝜖𝜖 𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟
 

Equation 6-7 – Share of Battery Electric Range Charged  

The calculated frequency of inconvenient charging events and share of miles driven that require 
the driver to wait for BEVs with 200 and 300-mile ranges are presented in Table 6-12, below.  
As the table shows, cars are expected to require less frequent inconvenient charges and a smaller 
share of miles driven will require the driver to charge the vehicle in the middle of a trip.  Pickups 
and vans/SUVs have fairly similar measures, with vans and SUVs requiring slightly more 
inconvenient charging than pickups.   

Table 6-12 – Electric Vehicle Recharging Thresholds by Body Style and Range 

Body Style Cars Vans/SUVs Pickups 
Miles until mid-trip charging 
event, BEV200 2,000 1,500 1,600 

Miles until mid-trip charging 
event, BEV300 5,200 3,500 3,800 

Share of miles charged mid-
trip, BEV200 6% 9% 8% 

Share of miles charged mid-
trip, BEV300 3% 4% 4% 

 
The measures presented in Table 6-12, above, can be used to calculate the expected time drivers 
of electric vehicles of a given body style and range will spend recharging at a time that will 
require them to wait.  First the agencies calculate the expected number of refueling events for a 
vehicle of a given style and range in a given calendar year.  This is shown in Equation 6-8 as the 



 

expected miles driven by a vehicle in a given calendar year divided by the charge frequency of a 
vehicle of that style and range (from Table 6-12).701 

𝑇𝑇𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 𝑇𝑇𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ 𝜖𝜖 (𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟 ∪ 𝑀𝑀𝑆𝑆𝑃𝑃𝑊𝑊𝑟𝑟) =
𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ

𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 𝐹𝐹𝑢𝑢𝑒𝑒𝑅𝑅𝑢𝑢𝑒𝑒𝑃𝑃𝑐𝑐𝑐𝑐𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟,𝑀𝑀𝑆𝑆𝑃𝑃𝑊𝑊𝑟𝑟)
 

Equation 6-8 – Calculation of Recharge Events 

We next calculate the number of miles charged for a vehicle of a given style and range in a 
specific calendar year.  This is the product of the number of miles driven by the vehicle and the 
share of miles driven that require an inconvenient charge for a vehicle of that style and range 
(from Table 6-12), as presented in Equation 6-9. 

𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶 𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒𝑑𝑑𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ 𝜖𝜖 (𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟 ∪ 𝑀𝑀𝑆𝑆𝑃𝑃𝑊𝑊𝑟𝑟) = 𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ ∗ 𝑆𝑆ℎ𝑎𝑎𝑢𝑢𝑒𝑒 𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒𝑑𝑑𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟,𝑀𝑀𝑆𝑆𝑃𝑃𝑊𝑊𝑟𝑟 
Equation 6-9 – Calculation of Miles Charged 

Finally, we calculate the expected time that a driver of an electric vehicle (of a given style and 
range) will spend waiting for the vehicle to charge.  This is the product of the fixed amount of 
time it takes to get to the charging station and the number of recharging events plus the quotient 
of the expected miles that will require inconvenient charging over an input assumption of the rate 
of which a vehicle of that style and range can be charged in a given calendar year (expressed in 
units of miles charged per hour).  The fixed amount of time it takes to get to a charging station is 
set equal to the average time it takes for an ICE vehicle to get to a gas station for a refueling 
event, as discussed above.702  This is shown in Equation 6-10. 

𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 𝑇𝑇𝑢𝑢𝑃𝑃𝑒𝑒𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ 𝜖𝜖 (𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟 ∪ 𝑀𝑀𝑆𝑆𝑃𝑃𝑊𝑊𝑟𝑟) = (𝐹𝐹𝑢𝑢𝐹𝐹𝑒𝑒𝑑𝑑 𝑉𝑉𝑟𝑟ℎ ∗ 𝑇𝑇𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 𝑇𝑇𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ ) +
𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶 𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒𝑑𝑑𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ

𝐶𝐶ℎ𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 𝑇𝑇𝑎𝑎𝑃𝑃𝑒𝑒𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ
 

Equation 6-10 – Calculation of Charging Time 

The expected time that a driver will wait for their vehicle to charge can then be multiplied by the 
value of time estimate, as is done with gasoline, diesel, and E85 vehicles (see description above 
of the current approach to accounting for refueling time costs).  

Plug-in hybrids are treated somewhat differently in the modelling.  Presumably, plug-in hybrids 
that are taken on a trip that exceeds their electric range will be driven on gasoline and the driver 
will recharge the battery at a time that is convenient.  For this reason, the electric portion of 
travel should be excluded from the refueling time calculation.  The gasoline portion of travel is 
treated the same as other gasoline vehicles so that when the tank reaches some threshold, the 
vehicles is assumed to be refueled with the same fixed event time and the same rate of refueling 
flow.  

 
701 Note that ∑ 𝑇𝑇𝑢𝑢𝑢𝑢𝐹𝐹 𝐿𝐿𝑒𝑒𝑃𝑃𝑔𝑔𝑃𝑃ℎ𝑇𝑇𝑟𝑟𝑟𝑟𝑁𝑁 𝜖𝜖 𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟  and 𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ are different values.  𝑀𝑀𝑢𝑢𝑖𝑖𝑒𝑒𝐶𝐶𝐶𝐶𝑀𝑀,𝑉𝑉𝑟𝑟ℎ is the estimated amount of 
VMT predicted by VMT while ∑ 𝑇𝑇𝑢𝑢𝑢𝑢𝐹𝐹 𝐿𝐿𝑒𝑒𝑃𝑃𝑔𝑔𝑃𝑃ℎ𝑇𝑇𝑟𝑟𝑟𝑟𝑁𝑁 𝜖𝜖 𝑆𝑆𝐹𝐹𝑡𝑡𝐹𝐹𝑟𝑟  is the sum of trips observed by the NHTS study. 
702 Given the current state charging infrastructure, this is likely a conservative estimate.  Gas stations vastly 
outnumber publicly available recharging stations and are often in more convenient locations.  



 

6.1.5 Benefits of Additional Mobility 

Increased travel provides benefits that reflect the value to drivers and their passengers of the 
added—or more desirable—social and economic opportunities to which it provides access.  
Under the regulatory alternatives considered in this analysis, the fuel cost per mile of driving 
would decrease as a consequence of the higher fuel economy levels they require, thus increasing 
the number of miles that buyers of new cars and light trucks would drive as a consequence of the 
well-documented fuel economy rebound effect.   

The fact that drivers and their passengers elect to make more frequent or longer trips to gain 
access to these opportunities when the cost of driving declines demonstrates that the benefits 
they gain by doing so exceed the costs they incur.  At a minimum, the benefits must be large 
enough to offset the cost of the fuel consumed to travel the additional miles (or they would not 
have occurred).  Because the cost of fuel consumed by additional rebound-effect driving is has 
already been accounted for in the simulated fuel expenditures for each regulatory alternative, it is 
necessary to account separately for the benefits associated with the additional miles traveled.703  
The amount by which the benefits of this additional travel exceeds its economic costs measures 
the net benefits drivers and their passengers experience, usually referred to as increased 
consumer surplus. 

The structure of these additional benefits is described by Figure 6-2, below.  In the figure, the 
triangle abc is the consumer surplus associated with the additional travel, and the area of the 
rectangle immediately below triangle abc represents the cost of the fuel consumed in the course 
of traveling the additional miles.704  The rectangle immediately below that one represents the 
internalized benefit of increased exposure to vehicular crashes.  While we assume that drivers 
consider the added safety risks they assume when they undertake additional trips,  we assume 
that they do not completely internalize any risks they impose on other drivers when they travel 
more.  So, unlike the corresponding benefit associated with the additional fuel cost of rebound 
travel, which fully offsets the cost, the offsetting benefit of safety risk only offsets 90 percent of 
the (social) cost of increasing safety risk.  

While Figure 6-2 also shows travel costs related to maintenance, non-fuel operating costs, and 
the value of occupants’ travel time, these other elements that accrue due to the rebound effect are 
not accounted for in the analysis.  Because we do not estimate these additional costs of increased 
driving, there is no need to separately account for an offsetting benefit (as we do with other 
components of the mobility costs related to rebound travel).  

 
703 The benefits from additional travel must also offset the economic value of their (and their passengers’) travel 
time, other vehicle operating costs, and the economic cost of safety risks due to the increase in exposure that occurs 
with additional travel.   
704 The CAFE Model tracks mileage accrual for new vehicles atomically, at the row level, and is thus able to 
separate the fuel cost of rebound travel on a per-vehicle basis.  It then aggregates all of those individual benefits to 
construct the aggregate estimate of increased mobility. 



 

 
Figure 6-2 – The Benefit of Additional Mobility 

6.2 External Benefits and Costs 

In addition to the benefits and costs that establishing higher CAFE standards creates for 
manufacturers and buyers of new cars and light trucks, NHTSA’s analysis evaluates a number of 
impacts its action is likely to have on the general public, the U.S. economy, and even global 
economic activity.  The agency refers to these indirect impacts as “external” costs and benefits 
from establishing more stringent standards, because they extend well beyond the private 
businesses and households that experience the more direct effects of raising CAFE standards.  

The most significant external benefit from reducing fuel consumption lower GHG emissions and 
the consequent reduction in the expected economic damages caused by resulting changes in the 
future global climate.  Chapter 5.2 and Chapter 5.3 explain how the agency estimates the 
reductions in emissions of GHGs that are likely to result from establishing stricter CAFE 
standards, and Chapter 6.2.1 explains how the agency values the associated reduction in future 
climate-related economic damages, which is likely to extend to nations and regions well outside 
U.S. borders.  

As Chapter 5 discussed previously, changes in emissions of criteria air pollutants and the health 
damages they cause for the U.S. population are likely to result from raising CAFE standards.  
Chapter 6.2.2 below explains how NHTSA estimates the economic value of changes in health 
outcomes.  Finally, Chapter 6.2.3 discusses how U.S. consumption and imports of petroleum can 
generate economic externalities that impose potential costs beyond those to consumers of 
petroleum products and describes how reducing gasoline consumption can limit the costs of 
these externalities, thus generating additional external benefits.  

At the same time, raising CAFE standards is likely to impose some costs that extend beyond its 
private impacts on producers and buyers of new cars and light trucks, and beyond related 
economic transfers (such as sales taxes on new vehicle purchases) discussed above..  As Chapter 
4.3.3 describes, improving fuel economy is likely to increase the number of miles that new cars 



 

and light trucks are driven via the well-documented fuel economy rebound effect.  This 
additional driving will contribute to increased traffic congestion and road noise, the impacts of 
which will extend to road users other than those traveling in new cars and light trucks, as well as 
to residents of areas surrounding streets and highways.  Chapter 6.2.4 explains how NHTSA 
updated its previous estimates of the costs of these congestion and noise externalities for use in 
analyzing this proposed action.   

Some fraction of the safety risks that buyers of new cars and light trucks impose when they drive 
additional miles is likely to be borne by occupants of other vehicles using the same roads, as well 
as perhaps by pedestrians and bystanders.  Chapter 7.4 describes how the agency estimates this 
“external” component of safety risks from additional rebound-effect driving, and how NHTSA 
calculates the fraction of costs from fatalities, injuries, and property damage to vehicles that are 
borne by road users other than drivers and passengers of new cars and light trucks.   

Finally, reducing fuel consumption by raising CAFE standards will lower revenue to government 
agencies from fuel taxes.  Taxes are considered a transfer in the analysis, so while we include the 
lost tax revenue as a societal cost in our accounting, consumers experience an exactly offsetting 
savings in fuel tax payments, which is included in our estimates of fuel cost savings.   

6.2.1 Social Costs of Greenhouse Gas Emissions 

The combustion of petroleum-based fuels to power cars and light trucks generates emissions of 
various greenhouse gases (GHGs), which contribute to changes in the global climate and the 
resulting economic damages.  The processes of extracting and transporting crude petroleum, 
refining it to produce transportation fuels, and distributing fuel for retail sale each generate 
additional GHG emissions (“upstream” emissions), as does generating electricity that is used to 
power by plug-in hybrid (PHEVs) and battery-electric vehicles (BEVs).  By reducing the volume 
of petroleum-based fuel produced and consumed by cars and light trucks, the proposed action to 
establish stricter CAFE standards will reduce both direct GHG emissions from fuel consumption 
and upstream emissions from supplying petroleum-based fuels.  By increasing sales and use of 
PHEVs and BEVs, however, raising CAFE standards will increase upstream emissions from 
generating the additional electricity they consume.  

NHTSA’s regulatory analysis supporting proposed changes in CAFE standards quantifies 
resulting changes in emissions of three important GHGs: carbon dioxide (CO2), methane (CH4), 
and nitrous oxide (N2O).  For an extensive discussion of the definitions, sources, and impacts of 
these GHGs, see Chapter 5 of the Draft Environmental Impact statement accompanying the 
agency’s proposed action.  Chapter 5 of this Technical Support Document details how NHTSA 
estimates changes in GHG emissions expected to result from the different rulemaking 
alternatives.  The agency calculates the economic benefits and costs resulting from anticipated 
changes in emissions of each of these three GHGs using estimates of the social costs of 
greenhouse gases (SC-GHG) values reported by the federal Interagency Working Group on the 
Social Cost of Greenhouse Gases (hereafter referred to as the IWG).  Chapter 6.2.1.1 offers a 
brief overview of the IWG and the methods it uses to estimate the social costs of greenhouse gas 
emissions, while Chapter 6.2.1.2 explains the process NHTSA uses to integrate the IWG’s SC-
GHG values into the agency’s CAFE Model, and the assumptions it makes regarding discounting 
of future economic benefits from reducing emissions of GHGs. 



 

6.2.1.1 Interagency Working Group’s Estimated Social Costs of GHGs 

 In principle, SC-GHG includes the value of all climate change impacts, including (but not 
limited to) changes in net agricultural productivity, human health effects, property damage from 
increased flood risk and natural disasters, disruption of energy systems, risk of conflict, 
environmental migration, and the value of ecosystem services. The SC-GHG therefore, reflects 
the societal value of reducing emissions of the gas in question by one metric ton. The SC-GHG is 
the theoretically appropriate value to use in conducting benefit-cost analyses of policies that 
affect CO2, CH4, and N2O emissions. 

We estimate the global social benefits of CO2, CH4, and N2O emission reductions expected from 
this proposed rule using the SC-GHG estimates presented in the Technical Support Document: 
Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates under Executive Order 
13990.705  These SC-GHG estimates are interim values developed under Executive Order (E.O.) 
13990 for use in benefit-cost analyses until updated estimates of the impacts of climate change 
can be developed based on the best available science and economics. 

The SC-GHG estimates presented here were developed over many years, using transparent 
process, peer-reviewed methodologies, the best science available at the time of that process, and 
with input from the public. Specifically, in 2009, an interagency working group (IWG) that 
included the DOT and other executive branch agencies and offices was established to ensure that 
agencies were using the best available science and to promote consistency in the SC-CO2 values 
used across agencies. The IWG published SC-CO2 estimates in 2010 that were developed from 
an ensemble of three widely cited integrated assessment models (IAMs) that estimate global 
climate damages using highly aggregated representations of climate processes and the global 
economy combined into a single modeling framework. The three IAMs were run using a 
common set of input assumptions in each model for future population, economic, and CO2 
emissions growth, as well as equilibrium climate sensitivity (ECS) – a measure of the globally 
averaged temperature response to increased atmospheric CO2 concentrations. These estimates 
were updated in 2013 based on new versions of each IAM.706   In August 2016 the IWG 
published estimates of the social cost of methane (SC-CH4) and nitrous oxide (SC-N2O) using 
methodologies that are consistent with the methodology underlying the SC-CO2 estimates.  

Executive Order (EO) 13990 (issued on January 20, 2021) re-established the IWG and directed it 
to publish updated interim SC-GHG values for CO2, CH4, and N2O within thirty days.  The EO 
also tasked the IWG with devising long-term recommendations to update the methodology used 
to estimate these SC-GHG values, based on “the best available economics and science,” while 
incorporating principles of “climate risk, environmental justice, and intergenerational equity”.707  

 
705 Interagency Working Group on Social Cost of Greenhouse Gases (IWG). 2021. Technical Support Document: 
Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates under Executive Order 13990. February. 
United States Government. Available at: https://www.whitehouse.gov/briefing-room/blog/2021/02/26/a-return-to-
science-evidence-based-estimates-of-the-benefits-of-reducing-climate-pollution/. 
706 Id.; Climate Framework for Uncertainty, Negotiation, and Distribution (FUND) 3.8 (Anthoff and Tol 2013a, 
2013b); Policy Analysis of the Greenhouse Gas Effect (PAGE) 2009 (Hope 2013). 
707 Executive Order on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate 
Crisis. (2021). Available at https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/executive-
order-protecting-public-health-and-environment-and-restoring-science-to-tackle-climate-crisis/ . 

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/executive-order-protecting-public-health-and-environment-and-restoring-science-to-tackle-climate-crisis/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/executive-order-protecting-public-health-and-environment-and-restoring-science-to-tackle-climate-crisis/


 

The EO also instructed the IWG to take into account the recommendations from the National 
Academy of Sciences (NAS) committee that had been previously convened to address this topic, 
which were contained in the committee’s 2017 report.708 

The February 2021 TSD provides a complete discussion of the IWG’s initial review conducted 
under E.O. 13990.  First, the IWG found that a global perspective is essential for SC-GHG 
estimates because climate impacts occurring outside U.S. borders can directly and indirectly 
affect the welfare of U.S. citizens and residents.  Thus, U.S. interests are affected by the climate 
impacts that occur outside U.S. borders.   Examples of affected interests include direct effects on 
U.S. citizens and assets located abroad, international trade, and tourism, and spillover pathways 
such as economic and political destabilization and global migration. In addition, assessing the 
benefits of U.S. GHG mitigation activities requires consideration of how those actions may 
affect mitigation activities by other countries, as those international mitigation actions will 
provide a benefit to U.S. citizens and residents by mitigating climate impacts that affect U.S. 
citizens and residents.  Therefore, in this proposed rule DOT centers attention on a global 
measure of SC-GHG.  This approach is the same as that taken in DOT regulatory analyses over 
2009 through 2016.  As noted in the February 2021 TSD, the IWG will continue to review 
developments in the literature, including more robust methodologies for estimating SC-GHG 
values based on purely domestic damages, and explore ways to better inform the public of the 
full range of carbon impacts, both global and domestic. As a member of the IWG, DOT will 
continue to follow developments in the literature pertaining to this issue.   

Second, the IWG found that the use of the social rate of return on capital (7 percent under current 
OMB Circular A-4 guidance) to discount the future benefits of reducing GHG emissions 
inappropriately underestimates the impacts of climate change for the purposes of estimating the 
SC-GHG.  Consistent with the findings of the National Academies and the economic literature, 
the IWG continued to conclude that the consumption rate of interest is the theoretically 
appropriate discount rate in an intergenerational context (IWG 2010, 2013, 2016a, 2016b), and 
recommended that discount rate uncertainty and relevant aspects of intergenerational ethical 
considerations be accounted for in selecting future discount rates.709  As a member of the IWG 

 
708 National Academies of Science (NAS). (2017). Valuing Climate Damage: Updating Estimation of the Social 
Cost of Carbon Dioxide. Available at https://www.nap.edu/catalog/24651/valuing-climate-damages-updating-
estimation-of-the-social-cost-of . 
709 GHG emissions are stock pollutants, where damages are associated with what has accumulated in the atmosphere 
over time, and they are long lived such that subsequent damages resulting from emissions today occur over many 
decades or centuries depending on the specific greenhouse gas under consideration.  In calculating the SC-GHG, the 
stream of future damages to agriculture, human health, and other market and non-market sectors from an additional 
unit of emissions are estimated in terms of reduced consumption (or consumption equivalents). Then that stream of 
future damages is discounted to its present value in the year when the additional unit of emissions was released. 
Given the long time horizon over which the damages are expected to occur, the discount rate has a large influence 
on the present value of future damages.  See also Interagency Working Group on Social Cost of Carbon (IWG). 
2010. Technical Support Document: Social Cost of Carbon for Regulatory Impact Analysis under Executive Order 
12866. February. United States Government;  Interagency Working Group on Social Cost of Carbon (IWG). 2013. 
Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under 
Executive Order 12866. May. United States Government; Interagency Working Group on Social Cost of 
Greenhouse Gases (IWG). 2016a. Technical Support Document: Technical Update of the Social Cost of Carbon for 
Regulatory Impact Analysis Under Executive Order 12866. August. United States Government; Interagency 
Working Group on the Social Cost of Greenhouse Gases. 2016b. Addendum to Technical Support Document on 
 

https://www.nap.edu/catalog/24651/valuing-climate-damages-updating-estimation-of-the-social-cost-of
https://www.nap.edu/catalog/24651/valuing-climate-damages-updating-estimation-of-the-social-cost-of


 

involved in the development of the February 2021 TSD, DOT agrees with this assessment and 
will continue to follow developments in the literature pertaining to this issue.   

NHTSA uses the IWG’s recommended interim SC-GHG values, which were published in a 
February 2021 technical support document, for the analysis of increasing CAFE standards it 
conducts in this NPRM.710  Table 6-13, Table 6-14, and Table 6-15 below show the IWG’s 
interim SC-CO2, SC-CH4, and SC-N2O values for the period 2020-2050.  The values shown in 
these tables differ slightly from those reported in the IWG’s February 2021 TSD because they 
have been converted to 2018$ to be consistent with the remainder of the agency’s analysis.  For 
this purpose, NHTSA staff used the change in Bureau of Economic Analysis (BEA)’s implicit 
price deflator for U.S. GDP between 2018 and 2020, the year the IWG used to denominate its 
estimated social costs of GHGs.711 

 

 
Social Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866: Application of the 
Methodology to Estimate the Social Cost of Methane and the Social Cost of Nitrous Oxide. August. United Stated 
Government. Available at: https://www.epa.gov/sites/production/files/2016-12/documents/addendum_to_sc-
ghg_tsd_august_2016.pdf (accessed February 5, 2021). 
710 Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. (2021). Technical 
Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates under Executive Order 
13990, available at https://www.whitehouse.gov/wp-
content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf?source=email. 
711 Bureau of Economic Analysis (BEA). Table 1.1.9, Implicit Price Deflators for Gross Domestic Product. 
Available at https://apps.bea.gov/ . 

https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf?source=email
https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf?source=email
https://apps.bea.gov/


 

Table 6-13 – SC-CO2 Interim Values (per ton, 2018$) 

Year 

Social Cost 
of CO2 

Discounted 
at 5% 

Social Cost 
of CO2 

Discounted 
at 3% 

Social Cost 
of CO2 

Discounted 
at 2.50% 

Social Cost 
of CO2 

Discounted 
at 3%, 95th 

Percentile712 
2020 14 50 74 148 
2021 15 50 76 150 
2022 15 51 77 154 
2023 16 52 78 157 
2024 16 53 80 161 
2025 17 54 81 164 
2026 17 55 82 168 
2027 17 57 83 171 
2028 17 58 84 175 
2029 18 59 85 178 
2030 18 60 86 182 
2031 19 61 88 185 
2032 20 62 89 188 
2033 20 63 91 192 
2034 21 64 92 196 
2035 21 65 93 200 
2036 22 67 95 204 
2037 22 68 96 207 
2038 23 69 97 211 
2039 24 70 99 215 
2040 24 71 100 218 
2041 25 72 101 221 
2042 25 73 103 225 
2043 26 75 104 228 
2044 27 76 105 232 
2045 27 77 107 235 
2046 28 78 108 239 
2047 29 79 109 242 
2048 29 80 111 246 
2049 30 82 112 248 
2050 31 83 113 252 

 
 

 
712 The IWG constructs these values based on the 95th percentile of estimates, using a 3% discount rate. 



 

Table 6-14 – SC-CH4 Interim Values (per ton, 2018$) 

Year 

Social Cost 
of CH4 

Discounted 
at 5% 

Social Cost 
of CH4 

Discounted 
at 3% 

Social Cost 
of CH4 

Discounted 
at 2.50% 

Social Cost 
of CH4 

Discounted 
at 3%, 95th 

Percentile713 
2020 650 1,456 1,941 3,786 
2021 670 1,456 1,941 3,883 
2022 699 1,553 2,038 4,077 
2023 728 1,553 2,038 4,174 
2024 747 1,650 2,136 4,271 
2025 777 1,650 2,136 4,368 
2026 806 1,747 2,233 4,562 
2027 835 1,747 2,233 4,659 
2028 854 1,844 2,330 4,756 
2029 883 1,844 2,427 4,951 
2030 912 1,941 2,427 5,048 
2031 942 1,941 2,524 5,145 
2032 971 2,038 2,524 5,339 
2033 971 2,038 2,621 5,533 
2034 1,068 2,136 2,718 5,630 
2035 1,068 2,136 2,718 5,824 
2036 1,068 2,233 2,815 5,921 
2037 1,165 2,233 2,912 6,115 
2038 1,165 2,330 2,912 6,212 
2039 1,165 2,427 3,009 6,407 
2040 1,262 2,427 3,009 6,504 
2041 1,262 2,524 3,106 6,698 
2042 1,359 2,524 3,203 6,795 
2043 1,359 2,621 3,203 6,989 
2044 1,359 2,621 3,300 7,086 
2045 1,456 2,718 3,397 7,280 
2046 1,456 2,718 3,397 7,377 
2047 1,456 2,815 3,494 7,474 
2048 1,553 2,912 3,592 7,668 
2049 1,553 2,912 3,592 7,766 
2050 1,650 3,009 3,689 7,960 

 
  

 
713 The IWG constructs these values based on the 95th percentile of estimates, using a 3% discount rate. 



 

Table 6-15 – SC-N2O Interim Values (per ton, 2018$) 

Year 

Social Cost 
of N2O 

Discounted 
at 5% 

Social Cost 
of N2O 

Discounted 
at 3% 

Social Cost 
of N2O 

Discounted 
at 2.50% 

Social Cost 
of N2O 

Discounted 
at 3%, 95th 

Percentile714 
2020 5,630 17,472 26,209 46,593 
2021 5,824 18,443 27,179 47,564 
2022 6,018 18,443 27,179 49,505 
2023 6,212 19,414 28,150 50,476 
2024 6,407 19,414 28,150 51,447 
2025 6,601 20,384 29,121 52,417 
2026 6,795 20,384 29,121 54,359 
2027 6,989 20,384 30,091 55,329 
2028 7,183 21,355 31,062 56,300 
2029 7,377 21,355 31,062 57,271 
2030 7,571 22,326 32,033 58,241 
2031 7,766 22,326 32,033 60,183 
2032 8,057 23,297 33,003 61,153 
2033 8,251 23,297 33,974 62,124 
2034 8,542 24,267 33,974 64,066 
2035 8,736 24,267 34,945 65,036 
2036 9,027 25,238 34,945 66,007 
2037 9,222 25,238 35,916 67,948 
2038 9,513 26,209 36,886 68,919 
2039 9,707 26,209 36,886 70,860 
2040 9,707 27,179 37,857 71,831 
2041 10,678 27,179 37,857 72,802 
2042 10,678 28,150 38,828 74,743 
2043 10,678 28,150 39,798 75,714 
2044 10,678 29,121 39,798 77,655 
2045 11,648 29,121 40,769 78,626 
2046 11,648 30,091 41,740 79,597 
2047 11,648 30,091 41,740 81,538 
2048 12,619 31,062 42,710 82,509 
2049 12,619 31,062 43,681 84,450 
2050 12,619 32,033 43,681 85,421 

 
The IWG’s SC-GHG estimates reflect various sources of uncertainty.  One major source is 
uncertainty regarding the effects of accumulating concentrations of GHGs  in the earth’s 
atmosphere on the stability of global climate systems, changes in climate-related indicators such 
as surface and ocean temperatures and precipitation levels, and increases in  the frequency or 
severity of significant weather events.  A second source is uncertainty about the effects of 
changes in climate indicators and severe weather events on the well-being of the global 

 
714 The IWG constructs these values based on the 95th percentile of estimates, using a 3% discount rate. 



 

population, the overall level of economic activity and its distribution over the globe, and the 
social and political stability of nations and global regions.  

The extent to which social, political, and economic systems will be able to adapt to changes in 
the global climate in ways that reduce potential disruptions and damage also introduces 
uncertainty into the IWGs’ SC-GHG estimates.715  Finally, the appropriate rate at which to 
discount future economic damages resulting from climate change to their present value is 
unknown, and because much of the damage caused by current GHG emissions is likely to occur 
in the distant future, choosing a discount rate can have an enormous effect on calculated SC-
GHG values. Recognizing these many important sources of uncertainty, the IWG recommends 
that agencies consider the wide distribution of possible SC-GHG values rather than simply the 
mean or expected values when conducting regulatory analyses, and also reports estimates of each 
SC-GHG that reflect discount rates of 2.5%, 3%, and 5%.716 

6.2.1.2 How NHTSA Uses the IWG’s Estimated Social Costs of GHG Emissions 

Following the guidance of OMB Circular A-4, NHTSA discounts future costs and benefits of 
adopting higher CAFE standards at alternative rates of 3% and 7%; the former reflects OMB’s 
estimate of the rate at which consumers discount future consumption opportunities to their 
present value, while the latter represents the opportunity cost of drawing capital from private 
investment opportunities.  (Both rates are expressed in “real,” or inflation-adjusted terms.) As the 
agency interprets the IWG’s recent interim guidance, the working group’s estimates of SC-
GHGs that discount distant future climate damages using a 2.5% rate are consistent with a near-
term consumption discount rate of 3%, as explicitly accounting for uncertainty surrounding the 
3% rate produces a “certainty-equivalent” rate of approximately 2.5% over the year time horizon 
(100 years and well beyond) when climate impacts resulting from today’s emissions would be 
expected to occur.717  In contrast, it is unclear whether any of the three discount rates the IWG 
used to develop its alternative estimates of SC-GHGs (2.5%, 3%, and 5%) is fully consistent 
with a discount rate of 7% applied to nearer-term benefits and costs.   

Thus, NHTSA’s evaluation of this proposed increase in CAFE standards reports costs and 
benefits using two different approaches to discounting the future.  First, the agency reports future 
costs and benefits from sources other than reduced emissions of GHGs discounted at OMB’s 
recommended 3% consumption discount rate.  In conjunction with these results, the agency 
reports benefits from reducing GHG emissions that use the IWG’s estimates of mean SC-GHGs 
that apply a 2.5% discount rate to climate damages occurring in distant future years.  For 
consistency, NHTSA also discounts benefits from reductions in GHG emissions from the year in 
which those reductions occur to the base or decision year of 2020 used throughout this analysis 
at a 2.5% rate, although the IWG recognizes that doing so may introduce other issues of time-
inconsistency.718  Second, the agency also reports future costs and benefits from impacts of 
higher CAFE standards other than lower GHG emissions discounted at OMB’s estimate of the 
7% social opportunity cost of capital. Wherever it does so, benefits from reducing GHG 
emissions are estimated using the IWG’s mean estimates of SC-GHGs that use a 3% rate to 

 
715 Ibid., p. 26. 
716 Ibid., p.23. 
717 For a more detailed explanation, see ibid., Section 3.3, pp. 20-21. 
718 Ibid.  



 

discount distant future climate damages.  Again for consistency, NHTSA discounts benefits from 
reducing GHG emissions from the year in which reductions occur to 2020 using the same 3% 
rate. 

6.2.2 Monetized Health Impacts from Changes in Criteria Pollutant Emissions 

The CAFE Model estimates monetized health effects associated with emissions from three 
criteria pollutants: NOx, SOx, and PM2.5.  As discussed in Chapter 5, although other criteria 
pollutants are currently regulated, only impacts from these three pollutants are calculated since 
they are known to be emitted regularly from mobile sources, have the most adverse effects to 
human health, and there exist several papers from the EPA estimating the benefits per ton of 
reducing these pollutants.  Other pollutants, especially those that are precursors to ozone, are 
more difficult to model due to the complexity of their formation in the atmosphere, and EPA 
does not calculate benefit-per-ton estimates for these.  The CAFE Model computes the 
monetized impacts associated with health damages from each pollutant by multiplying 
monetized health impact per ton values by the total tons of these pollutants, which are emitted 
from both upstream and tailpipe sources.  Chapter 5.2 includes a detailed description of the 
emission factors that inform the CAFE Model’s calculation of the total tons of each pollutant 
associated with upstream and tailpipe emissions. 

These monetized health impacts per ton values are closely related to the health incidence per ton 
values described in Chapter 5.4.  We use the same EPA sources that provided health incidence 
values to determine which monetized health impacts per ton values to use as inputs in the CAFE 
Model.  The EPA uses the value of a statistical life (VSL) to estimate premature mortality 
impacts, and a combination of willingness to pay estimates and costs of treating the health 
impact for estimating the morbidity impacts.719  EPA’s 2018 technical support document, 
“Estimating the Benefit per Ton of Reducing PM2.5 Precursors from 17 Sectors”,720 (referred to 
here as the 2018 EPA source apportionment TSD) contains a more detailed account of how 
health incidences are monetized.  It is important to note that the EPA sources cited frequently 
refer to these monetized health impacts per ton as “benefits per ton,” since they describe these 
estimates in terms of emissions avoided.  In the CAFE Model input structure, these are generally 
referred to as monetized health impacts or damage costs associated with pollutants emitted, not 
avoided, unless the context states otherwise. 

The CAFE Model includes monetized impacts per ton for multiple pollutant sources, referred to 
here as source sectors or source categories (e.g. refineries, light truck mobile sources, electricity 
generation, etc.).  Certain source sectors may be associated with higher monetized impacts per 
ton than others.  Since the impacts for the different source sectors all are based on the emission 
of one ton of the same pollutants (NOx, SOx, and PM2.5), the differences in the incidence per ton 

 
719 Although EPA and DOT’s VSL values differ, DOT staff determined that using EPA’s VSL was appropriate here, 
since it was already included in these monetized health impact values, which were best suited for the purposes of the 
CAFE Model.  
720 See Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 
Precursors from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf . 

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf


 

values between sectors arise from differences in the geographic distribution of the pollutants, a 
factor that affects the number of people impacted by the pollutants.721 

The various emission source sectors included in the EPA papers cited do not always correspond 
exactly to the emission source categories used in the CAFE Model.722  In those cases, we 
mapped multiple EPA sectors to a single CAFE source category and computed a weighted 
average of the health impact per ton values from those EPA sectors.  The CAFE Model health 
impacts inputs are based partially on the structure of one of the EPA source papers (the 2018 
EPA source apportionment TSD), which reported benefits per ton values for the years 2020, 
2025, and 2030.  For the years in between the source years used in the input structure, the CAFE 
Model applies values from the closest source year.  For instance, the model applies 2020 
monetized health impact per ton values for calendar years 2020-2022 and applies 2025 values for 
calendar years 2023-2027.  For more information, see the CAFE Model documentation723, which 
contains additional details of the model’s computation of monetized health impacts. 

It is important to note that uncertainties and limitations exist at each stage of the emissions-to-
health benefit analysis pathway (e.g., projected emissions inventories, air quality modeling, 
health impact assessment, economic valuation).  The BPT approach to monetizing benefits relies 
on many assumptions; when uncertainties associated with these assumptions are compounded, 
even small uncertainties can greatly influence the size of the total quantified benefits.  Some key 
assumptions associated with PM2.5-related health benefits and uncertainties associated with the 
BPT approach are discussed above in Chapter 5.4.3. 

The following subsections describe the sources that we used to provide the CAFE Model with 
monetized health impacts per ton values, and any calculations made in the process.  Each 
subsection corresponds to one of the five upstream emission source sectors that the CAFE Model 
distinguishes between, and the tailpipe emission sources.  

The emission source categories defined in the CAFE Model are as follows: 

• Upstream emissions sources 
o Petroleum Extraction 
o Petroleum Transportation 
o Refineries 
o Fuel Transportation, Storage, and Distribution (Fuel TS&D) 
o Electricity Generation 

• Tailpipe emissions sources 
o On-road light duty cars and motorcycles 
o On-road light duty trucks 
o On-road light duty diesel 

 
721 See Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 
Precursors from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf .  
722 The CAFE Model’s emission source sectors follow a similar structure to the inputs from GREET.  See Chapter 
5.2 for further information. 
723 https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system . 

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system


 

Table 6-16 details the mapping between CAFE and EPA emission source sectors. 



 

Table 6-16 – CAFE to EPA Emissions Source Sector Mapping 

CAFE Model Upstream 
Component (per GREET) Corresponding EPA Source Categories 

Petroleum Extraction Assigned to the “Oil and natural gas” sector from a 2018 EPA paper (Fann et 
al.).724  

Petroleum Transportation 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe et al.)725 
and one source sector from the 2018 EPA source apportionment TSD.726  The 
specific mode mappings are as follows: 
 
From Wolfe et al: 
• Rail sector (for GREET’s rail mode) 
• C1&C2 marine vessels sector (for GREET’s barge mode) 
• C3 marine vessels sector (for GREET’s ocean tanker mode) 
• On-road heavy-duty diesel sector (for GREET’s truck mode) 
 
From the 2018 EPA source apportionment TSD: 
• Electricity generating units (for GREET’s pipeline mode) 
 
A weighted average of these different sectors was used to determine the overall 
health impact values for the sector as a whole. 

Fuel TS&D 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe et al.)727 
and one source sector from the 2018 EPA source apportionment TSD.728  The 
specific mode mappings are as follows: 
 
From Wolfe et al.: 
• Rail sector (for GREET’s rail mode) 
• C1&C2 marine vessels sector (for GREET’s barge mode) 
• C3 marine vessels sector (for GREET’s ocean tanker mode) 
• On-road heavy-duty diesel sector (for GREET’s truck mode) 
 
From the 2018 EPA source apportionment TSD: 
• Electricity generating units (for GREET’s pipeline model) 
 
A weighted average of these different sectors was used to determine the overall 
health impact values for the sector as a whole. 

Electricity Generation 
 

Assigned to the electricity-generating units sector from the 2018 EPA source 
apportionment TSD.729  

 

 
724 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/ . 
725 Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769/  
Health incidence per ton values corresponding to this paper were sent by EPA staff. 
726 2018 EPA source apportionment TSD. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf . 
727 Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769/ . 
 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/
https://pubmed.ncbi.nlm.nih.gov/30296769/
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
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6.2.2.1 Monetized Health Impacts per Ton Associated with the Petroleum Extraction Sector 

We match the monetized health impact per ton values for the petroleum extraction sector to a 
2018 oil and natural gas sector paper written by EPA staff (Fann et al.), which estimates 
monetized health impacts for this sector in the year 2025.730  Fann et al. define emissions from 
the oil and natural gas sector as not only arising from petroleum extraction but also from 
transportation to refineries, while the CAFE /GREET component is composed of only petroleum 
extraction.  We consulted with the authors at EPA and determined that this paper contained the 
best available estimates for the petroleum extraction sector, notwithstanding this difference.  
Therefore, these monetized values may slightly overestimate the cost of health impacts 
associated with emissions from this sector. 

Fann et al. reported monetized health impact per ton values discounted at 3%, while the CAFE 
Model reports total health impact costs discounted at both 3% and 7%.731  In order to match the 
structure of other health impact costs in the CAFE Model, we developed proxies for the 7% 
discounted values, using the ratio between a comparable sector’s 3% and 7% discounted values.  
From the 17 sectors discussed in the 2018 EPA source apportionment TSD, the taconite mines 
sector most closely resembled the petroleum extraction sector in emission location 
characteristics, as both occur largely in rural areas.732 

Fann et al. estimates monetized health impacts per ton values only for calendar year 2025, so 
DOT staff apply these values to all three years in the CAFE Model health impacts input 
structure: 2020, 2025, and 2030.733  This implies an overestimation of damages in earlier years 
and an underestimation in 2030.  

All monetized health impact per ton estimates reported by Fann et al. use 2015 dollars.  We use 
implicit price deflators from the Bureau of Economic Analysis (BEA) to convert the estimates to 
2018 dollars, in order to be consistent with the rest of the CAFE Model inputs.734 

We understand that uncertainty exists around the contribution of VOCs to PM2.5 formation in the 
modeled health impacts from the petroleum extraction sector; however, based on feedback to the 
2020 final rule we believe that the updated health incidence values specific to petroleum 

 
728 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf . 
729 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf . 
730 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/ . 
731 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/ . 
732 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf . 
733 These three years are used in the CAFE Model structure for health impact per ton values because it was originally 
based on the estimates provided in the 2018 EPA source apportionment TSD. 
734 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey . 

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
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extraction sector emissions may provide a more appropriate estimate of potential health impacts 
from that sector’s emissions than the previous approach of applying refinery sector emissions 
impacts to the petroleum extraction sector.  That said, we are aware of work that EPA has been 
doing to address concerns about the BPT estimates, and NHTSA will work further with EPA to 
update and synchronize approaches to the BPT estimates. 

6.2.2.2 Monetized Health Impacts per Ton Associated with the Petroleum Transportation 
Sector 

We use the same weighted average calculation used to determine the appropriate health 
incidence per ton values (see Chapter 5.4.1.2) for the petroleum transportation sector when 
estimating the monetized health impacts per ton values.  All of the same sources and calculations 
are used, the only difference being that this section deals strictly with monetized impacts per ton 
as opposed to incidences. 

The petroleum transportation sector does not correspond to any single EPA source sector, so we 
use a weighted average of multiple different EPA sectors to determine the monetized health 
impact per ton values for the petroleum transportation sector as a whole.  In calculating the 
weighted average, we mapped the petroleum transportation sector as described in GREET to a 
combination of different EPA mobile source sectors from two different papers, the 2018 EPA 
source apportionment TSD735 and a 2019 mobile source sectors paper (Wolfe et al.).736  See 
Table 6-16 for the exact mapping. 

Wolfe et al. includes more specific sectors than the 2018 EPA source apportionment TSD; for 
instance, where ‘Aircraft, Locomotive, and Marine Vessels’ is a single category in the 2018 EPA 
source apportionment TSD, Wolfe et al. specify four: Aircraft, Rail, C1&C2 Marine Vessels, and 
C3 Marine Vessels.  Therefore, the mapping uses sectors from Wolfe et al wherever possible and 
uses the 2018 EPA source apportionment TSD for the transportation mode mapping only when 
there are no appropriate sectors in the Wolfe et al. paper.  Wolfe et al. only report impacts for the 
year 2025, but DOT staff determined that these values could be applied to the other years in the 
input structure, after communication with one of the authors at EPA.  Therefore, this implies a 
slight overestimation of monetized health impacts in 2020 and a slight underestimation of 
monetized impacts in 2030.   

We calculate the total monetized health costs per ton by pollutant using a weighted average of 
these different sectors, based on the percent of upstream emissions attributable to each 
transportation mode. 

In GREET, the model that informs the CAFE upstream component categories, there are five 
types of petroleum products relevant to upstream emissions for gasoline:  

• Conventional crude oil 

 
735 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf . 
736 Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769/ . 

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://pubmed.ncbi.nlm.nih.gov/30296769/


 

• Synthetic crude oil (SCO) 
• Dilbit 
• Shale oil (Bakken) 
• Shale oil (Eagle Ford) 

Table 6-17 – Petroleum Transportation Mode Shares in 2020737 

Fuel Type738 Ocean Tanker Barge Pipeline Rail Truck 

Conventional Crude Oil 13.9% 23.3% 83.5% 2.8% 0 
Synthetic Crude Oil (SCO)  0 0 100% 0 0 
Dilbit  0 0 100% 0 0 
Shale Oil (Bakken) 0 0 50.0% 50.0% 100% 
Shale Oil (Eagle Ford) 0 20.0% 65.0% 15.0% 100% 

 
GREET provides the percentage of these five petroleum products transported by each mode, as 
shown in Table 6-17.  Transportation both within the U.S. and outside of U.S. borders is 
included, provided that the destination of the transported products is the continental United 
States.  The percentages add up to more than 100% because there are multiple stages of the 
transportation journey.  For example, 50% of shale oil (Bakken) is transported by pipeline and 
the other 50% by rail during the first part of the journey to the refinery, but 100% of it is 
transported by truck on the second part of the journey. 

GREET also provides emissions in grams/mmBtu of fuel transported attributable to each 
transportation mode.  DOT staff multiply these emissions values by the percentage of petroleum 
product transported by each mode, as seen in Table 6-17, to obtain a weighted value.  This 
calculation uses total emissions from each mode for all of the modes except ocean tanker.  
Health effects from ocean transport are concentrated in populated areas, rather than while the 
tankers are at sea.  To address this, the ocean tanker mode includes only urban emissions.  
Additionally, using urban emissions for ocean tankers ensures that the emissions attributable to 
this mode are not underestimated, because the percentage of related health impacts decreases 
when using the high total emissions figure. 

We multiply emissions by transportation mode share five times, once for each of the five 
petroleum types.  Since the GREET Model projects that the transportation mode shares will 
change over time, different weights are used for years 2020, 2025, and 2030, based on the mode 
percentages GREET reports for those years.739 

 
737 These values are from the GREET 2020 Model, using baseline year 2020.  In the Excel version, this information 
can be found in the T&D Flowcharts worksheet.  See Argonne GREET Model (anl.gov) to download the model. 
738 Conventional crude oil is both extracted domestically and imported. SCO and Dilbit are oil sand products and are 
imported exclusively from Canada. Shale oil is exclusively domestic.  See the ‘T&D Flowcharts’ worksheet in the 
GREET Model.  
739 These are the three years used in the CAFE Model inputs for health impacts, based on the structure of the 2018 
EPA source apportionment TSD that originally informed the analysis.  Baseline years may be changed in the 
‘Inputs’ worksheet in the GREET Model. 

https://greet.es.anl.gov/


 

Table 6-18 – Energy Share by Petroleum Type740 

Conventional 
Crude Oil  SCO Dilbit Shale 

(Bakken) 
Shale (Eagle 

Ford) 
77.4% 3.0% 4.0% 7.4% 8.2% 

 
Then, we multiply the energy share of each petroleum type by its corresponding emissions value 
to reflect how much of each emissions value should go into the weighted average.  For example, 
using the energy share information in Table 6-18, the conventional crude emissions are 
multiplied by 77.4%, SCO emissions are multiplied by 3.0%, Dilbit emissions are multiplied by 
4.0%, shale (Bakken) emissions are multiplied by 7.4%, and shale (Eagle Ford) emissions are 
multiplied by 8.2%.  

Next, we sum the resulting weighted emissions values by pollutant to represent the total 
upstream emissions in grams/mmBtu of petroleum product transported.  With that information, 
the percentages of each pollutant attributable to each mode for petroleum transportation overall 
can be calculated.  DOT staff calculate these percentages three times, for each different base year 
(2020, 2025, and 2030).  Table 6-19 shows these percentages, using base year 2020 as an 
example.   

Table 6-19 – Percent of Emissions Attributable to each Mode for the Petroleum Transportation Category741 

Mode EPA source category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 6.00% 16.37% 10.60% 
Barge C1 & C2 marine vessels 48.75% 1.66% 33.78% 
Pipeline Electricity-generating units 23.73% 81.22% 42.62% 
Rail Rail 19.12% 0.52% 11.97% 
Truck On-road heavy duty diesel 2.41% 0.24% 1.03% 

 
Finally, we calculate the weighted average of monetized health impacts by multiplying the 
percentages of emissions by mode by the monetized health costs per ton from the relevant EPA 
sector that matches each mode.  Equation 6-11 illustrates this process, using incidences of 
asthma exacerbation as an example.  The variables beginning with “%” represent the percent of 
SOx emissions attributable to each specified mode.  The other variables indicate the incidences 
per ton resulting from SOx emissions coming from each sector: C3marine corresponds to C3 
marine vessels, C1&C2 marine to C1&C2 marine vessels, EGU corresponds to electricity-
generating units, Rail to railroad, and Truck corresponds to on-road heavy-duty diesel. 

𝑇𝑇𝐶𝐶𝑃𝑃ℎ𝑃𝑃𝑎𝑎 𝑇𝑇𝐹𝐹𝑎𝑎𝑐𝑐𝑒𝑒𝑢𝑢𝑏𝑏𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 𝑢𝑢𝑃𝑃𝑐𝑐𝑢𝑢𝑑𝑑𝑒𝑒𝑃𝑃𝑃𝑃𝐶𝐶 𝐹𝐹𝑒𝑒𝑢𝑢 𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑢𝑢𝑃𝑃𝑃𝑃 𝑆𝑆𝐹𝐹𝐹𝐹 𝑢𝑢𝑃𝑃 𝐹𝐹𝑒𝑒𝑃𝑃𝑢𝑢𝑃𝑃𝑖𝑖𝑒𝑒𝑢𝑢𝑃𝑃 𝑇𝑇𝑢𝑢𝑎𝑎𝑃𝑃𝐶𝐶𝐹𝐹𝑃𝑃𝑢𝑢𝑃𝑃𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 = 
                                (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑃𝑃𝑐𝑐𝑒𝑒𝑎𝑎𝑃𝑃 𝑃𝑃𝑎𝑎𝑃𝑃𝑘𝑘𝑒𝑒𝑢𝑢 ∗ 𝐶𝐶3𝑃𝑃𝑎𝑎𝑢𝑢𝑢𝑢𝑃𝑃𝑒𝑒)    + (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑏𝑏𝑎𝑎𝑢𝑢𝑔𝑔𝑒𝑒 ∗ 𝐶𝐶1&𝐶𝐶2 𝑃𝑃𝑎𝑎𝑢𝑢𝑢𝑢𝑃𝑃𝑒𝑒)

+ (%𝑆𝑆𝐹𝐹𝐹𝐹 𝐹𝐹𝑢𝑢𝐹𝐹𝑒𝑒𝑖𝑖𝑢𝑢𝑃𝑃𝑒𝑒 ∗ 𝑇𝑇𝑇𝑇𝑃𝑃 ) + (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑢𝑢𝑎𝑎𝑢𝑢𝑖𝑖 ∗ 𝑇𝑇𝑎𝑎𝑢𝑢𝑖𝑖) + (% 𝑆𝑆𝐹𝐹𝐹𝐹 𝑃𝑃𝑢𝑢𝑢𝑢𝑐𝑐𝑘𝑘 ∗ 𝑇𝑇𝑢𝑢𝑢𝑢𝑐𝑐𝑘𝑘)   
Equation 6-11 – Weighted Average of Health Incidences from the Petroleum Transportation Sector 

 
740 Taken from the Petroleum tab of the GREET Excel Model, using 2020 as a base year. 
741 These percentages are calculated using the 2020 base year in GREET. 



 

Following guidance from the 2018 EPA source apportionment TSD, DOT staff round the final 
health impact costs per ton to two significant digits.742 

6.2.2.3 Monetized Health Impacts per Ton Associated with the Fuel Transportation, Storage, 
and Distribution Sector 

As in the case of the previous section, this section closely echoes the approach taken in the 
corresponding Fuel TS&D section in Chapter 5.4, since we calculate the monetized health 
impacts per ton described in this section using the same sources and the same weighted 
averaging process.  The Fuel TS&D sector, like the Petroleum Transportation sector, 
corresponds to several different EPA source sectors, so DOT staff use the same weighted 
average approach as described in Chapter 6.2.2.2.  Gasoline blendstocks and finished gasoline 
are the two components of the Fuel TS&D category described in GREET.  DOT staff map these 
components to five different transportation source sectors from two EPA papers, the 2018 EPA 
source apportionment TSD and the 2019 mobile source emission sectors paper, Wolfe et al.743 

GREET provides the percentage of each fuel type transported by each mode, and as in the case 
of the petroleum transportation calculations, the percentages change based on the year.  In the 
case of the “gasoline blendstocks” fuel type, the mode shares add up to more than 100% because 
multiple modes are taken during the distinct parts of the trip.  As an example, Table 6-20 shows 
the estimated mode shares in 2020. 

Table 6-20 – Transportation Mode Shares for the Fuel TS&D Sector744 

Mode Share Gasoline 
Blendstocks 

Finished 
Gasoline 

Ocean Tanker 3.0% 0% 
Barge 31.2% 0% 
Pipeline 67.6% 0% 
Rail 2.2% 0% 
Truck 100% 100% 

 
We multiply the emissions by pollutant attributed to each mode (measured in grams/mmBtu), by 
these mode share percentages to create weighted emissions values. 

Next, we add the weighted emissions from trucks transporting gasoline blendstocks to the 
emissions arising from finished gasoline transportation (100% truck mode).  Using that 
information, the total emissions per pollutant may be calculated in order to find the percentage of 

 
742 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf, p.14. 
743 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf, p.14. 
Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769/ . 
744 Using baseline year 2020 in GREET. These values can be found in the ‘T&D Flowcharts’ tab of the GREET 
Model.  
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emissions attributable to each mode for Fuel TS&D overall.  Table 6-21 provides an example of 
these percentages. 

Table 6-21 – Percent of Emissions Attributable to each Mode for the Fuel TS&D Sector745 

Mode EPA category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 2.39% 20.28% 5.99% 
Barge C1 & C2 marine vessels 57.67% 6.07% 57.30% 
Pipeline Electricity-generating units 5.97% 63.41% 15.38% 
Rail Rail 1.37% 0.12% 1.23% 
Truck On-road heavy duty diesel 32.60% 10.13% 20.11% 

 
The Fuel TS&D calculations follow the same process as the petroleum transportation category, 
matching the modes to EPA sectors and using the calculated percentages to create a weighted 
average of monetized health impacts associated with emissions of each pollutant.  We completed 
these calculations three times, for years 2020, 2025, and 2030.  As stated previously, the sectors 
in the 2019 mobile sources paper only showed monetized health costs per ton estimated for the 
year 2025, but analysts determined that this information should be applied to all years, as it was 
the most up-to-date available, after communicating with EPA staff.  The use of 2025 monetized 
impacts for all three years implies a slight overestimation of monetized health impacts in 2020 
and a slight underestimation in 2030. 

Wolfe et al report all monetized impacts per ton values in 2015$.  We use BEA deflators to 
convert these values to 2018$, in order to ensure consistency with the rest of the CAFE Model 
inputs.746 

6.2.2.4 Monetized Health Impacts per Ton Associated with the Refineries Sector  

We match the monetized health impacts per ton values associated with the refineries sector in the 
2018 EPA source apportionment TSD to the petroleum refining emissions category in the CAFE 
Model.  BEA deflators are used to convert the values to 2018$.747  Table 6-22 shows the various 
types of health effects per ton corresponding to each pollutant emitted from the refineries sector.  
The high and low estimates are based on the two studies cited in the 2018 EPA source 
apportionment TSD, Krewski et al. and Lepeule et al.748 

 
745 Calculated using baseline year 2020 in GREET.  
746 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey . 
747 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey . 
748 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf  p.14. 

https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf


 

Table 6-22 – Monetized Health Impacts per Ton from Refineries, 3% Discount Rate 

Calendar 
Year  

Upstream Emissions  
(Refineries Sector) 

NOx SOx PM2.5 

2020 
Low Estimate (Krewski et al.) $8,100 $81,000 $380,000 
High Estimate (Lepeule et al.) $18,000 $190,000 $870,000 

2025 
Low Estimate (Krewski et al.) $8,800 $90,000 $420,000 
High Estimate (Lepeule et al.) $20,000 $200,000 $950,000 

2030 
Low Estimate (Krewski et al.) $9,600 $98,000 $450,000 
High Estimate (Lepeule et al.) $22,000 $220,000 $1,000,000 

 

6.2.2.5 Monetized Health Impacts per Ton Associated with the Electricity Generation Sector 

The 2018 EPA source apportionment TSD contains monetized health impacts per ton values 
associated with emissions of NOx, SOx, and PM2.5 arising from electricity-generating units 
(EGUs), reported in 2015$.  We mapped these to the electricity generation sector in the CAFE 
Model and converted the values to 2018$ using BEA deflators, to ensure consistency with the 
rest of the CAFE Model inputs.749  Table 6-23 shows the health effects per ton associated with 
the emissions of criteria pollutants from this sector. 

Table 6-23 – Monetized Health Impacts per ton from Electricity-Generating Units, 3% Discount Rate 

Calendar 
Year  

Upstream Emissions (Electricity 
Generation Sector) 

NOx SOx PM2.5 

2020 
Low Estimate (Krewski et al.) $6,500 $44,000 $160,000 
High Estimate (Lepeule et al.) $15,000 $100,000 $370,000 

2025 
Low Estimate (Krewski et al.) $7,100 $48,000 $180,000 
High Estimate (Lepeule et al.) $16,000 $110,000 $390,000 

2030 
Low Estimate (Krewski et al.) $7,600 $52,000 $190,000 
High Estimate (Lepeule et al.) $17,000 $120,000 $430,000 

 

6.2.2.6 Monetized Health Impacts per Ton Associated with Tailpipe Emissions 

The CAFE Model follows a similar process for computing monetized health impacts resulting 
from tailpipe emissions as it does for calculating monetized health impacts from the upstream 
emissions sectors.  Previous rulemakings used the 2018 EPA source apportionment TSD as the 
source for the monetized health impacts per ton, matching the CAFE Model tailpipe emissions 

 
749 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey. 

https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey


 

inventory to the “on-road mobile sources sector” in the TSD.750  However, a more recent EPA 
paper from 2019 (Wolfe et al.) computes monetized health impacts per ton values at a more 
disaggregated level, separating on-road mobile sources into multiple categories based on vehicle 
type and fuel type.  We match three source categories from the 2019 paper to the CAFE Model 
tailpipe emissions inventory: “on-road light duty gas cars and motorcycles,” “on-road light duty 
gas trucks,” and “on-road light duty diesel.”  Table 6-24 shows the monetized impacts by criteria 
pollutant for these three categories.  As in the case of the other monetized impacts from Wolfe et 
al., we used BEA deflators to convert monetized values from 2015$ to 2018$.751   

Table 6-24 – Monetized Impacts per Ton from Tailpipe Source Categories 

 On-road Light Duty Gas Cars & 
Motorcycles On-road Light Duty Gas Trucks On-road Light Duty Diesel 

2025 NOx SOx PM2.5 NOx SOx PM2.5 NOx SOx PM2.5 
Low 
Estimate 
(Krewski 
et al.) 

$7,500 $130,000 $740,000 $6,800 $110,000 $620,000 $6,100 $320,000 $510,000 

High 
Estimate 
(Lepeule 
et al.) 

$17,000 $300,000 $1,700,000 $15,000 $240,000 $1,400,000 $14,000 $720,000 $1,200,000 

6.2.3 Social Costs of Congestion and Noise 

If more driving of new cars and light trucks results from the fuel economy rebound effect, it will 
add to the levels of traffic congestion and roadway noise caused by overall motor vehicle use.  
The resulting increases in delays to vehicles traveling in congested traffic, and the noise impacts 
on areas surrounding roadways would impose additional economic costs that are attributable to 
the agency’s action to establish higher fuel economy standards.  Only a small fraction of these 
increases in delay and noise costs is likely to be experienced by the buyers of new cars and light 
trucks whose decisions about how much more to drive – and where and when to do so – cause 
the increases in congestion delays and traffic noise.  Thus, the agency’s analysis treats increases 
in the costs of congestion delays and noise impacts as external costs from requiring higher fuel 
economy, as distinguished from private costs such as the higher prices buyers of new cars and 
light trucks pay.   

To estimate the economic costs associated with increases in congestion delays and roadway 
noise caused by increased rebound-effect driving, the agency uses estimates of incremental (or 
“marginal”) congestion and noise costs from increased automobile and light truck use that were 

 
750 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf. 
751 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey.  

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey


 

originally developed by FHWA as part of its 1997 Highway Cost Allocation Study.752  The 
marginal congestion cost estimates reported in the 1997 FHWA study were intended to measure 
the costs of increased congestion resulting from incremental growth in automobile and light 
truck use and the delays it causes to drivers, passengers, and freight shipments.  

As the 1997 study explained, the distinction between marginal and average congestion costs is 
extremely important: while average congestion costs on a roadway are calculated as total 
congestion costs experienced by all vehicles divided by the total number of miles they travel, 
marginal congestion costs are calculated as the increase in congestion costs resulting from an 
incremental increase in the number of vehicle-miles traveled.  When roads are already crowded, 
marginal congestion costs can be much higher that their average value, because while each 
additional vehicle slows travel speeds only slightly, it does so for a very large number of 
vehicles, so the resulting increase in total delay experienced by all vehicles on the road can be 
extremely large.  As a consequence, increases in total delay and congestion costs associated with 
additional driving are generally more than proportional to the changes in traffic volumes that 
cause them.   

The 1997 FHWA study’s estimates of marginal noise costs reflected the variation in noise levels 
resulting from incremental changes in travel by autos and light trucks and the estimated 
economic value of annoyance and other adverse impacts from noise, including those on 
pedestrians and residents of the surrounding area as well as vehicle occupants. 

Because the agency’s proposal (and other alternatives that were considered) increases the 
stringency of CAFE standards for model years 2024-2026 and is expected to raise the fuel 
economy of new cars and light trucks, the number of miles new cars and light trucks are driven is 
likely to increase relative to the baseline alternative.  To calculate the incremental costs of 
congestion and noise caused by this added driving, the agency multiplies FHWA’s “middle” 
estimates of marginal congestion and noise costs per mile of auto and light truck travel by the 
increase in new car and light truck travel.  As with the estimates of various other parameters used 
throughout this analysis, the agency has updated the original 1997 FHWA estimates of 
congestion costs to account for changes in travel activity and economic conditions since they 
were originally developed, as well as to express them in 2018 dollars for consistency with other 
economic inputs.   

One factor affecting marginal congestion costs from additional travel include traffic volumes and 
their relationship to roadway capacity, since this determines how travel speeds and delays will 
change in response to incremental growth in traffic.  The agency approximated the effect of 
growth in traffic on congestion and resulting delays using the increase in annual vehicle-miles of 
travel per lane-mile on major U.S. highways that occurred between 1997, the date of FHWA’s 
original estimates of marginal congestion costs, and 2017.753  Other important factors include the 
typical number of occupants riding in each vehicle and the economic value of their travel time, 

 
752 Federal Highway Administration, 1997 Highway Cost Allocation Study, Chapter V, Tables V-22 and V-23, 
available at https://www.fhwa.dot.gov/policy/hcas/final/five.cfm.  The agency previously employed these same cost 
estimates to analyze the impacts of its actions establishing new CAFE standards in 2010, 2012, 2016, and 2020.   
753 Traffic volumes, as measured by the annual number of vehicle-miles traveled per lane-mile of roads and 
highways nationwide, rose by 53 percent between 1997 and 2017.  Calculated from FHWA, Highway Statistics, 
1998 and 2018, Tables VM-1 and HM-48, available at  https://www.fhwa.dot.gov/policyinformation/statistics.cfm. 

https://www.fhwa.dot.gov/policy/hcas/final/five.cfm


 

since these combine to determine the average hourly cost of congestion delays.754  The agency 
estimated growth in the hourly cost of delays from 1997 to 2017 by combining growth in the 
DOT-recommended value of travel time with the change in average occupancy of cars and light 
trucks.755   

The agency applied these adjustments to FHWA’s 1997 estimates of marginal congestion costs 
to update those original values to reflect current travel and economic conditions.  Expressed in 
2018 dollars for consistency with the other economic values used to analyze this proposal, the 
agency’s updated values of external congestion costs are $0.135 per vehicle-mile of increased 
travel by cars and $0.121 per vehicle-mile for light trucks.  The agency adjusted FHWA’s 1997 
estimate of marginal noise costs only to account for inflation since its original publication since 
little research is available to indicate how noise levels or the economic costs of noise might have 
changed.756  Because marginal noise costs are so small—less than $0.001 per mile of travel for 
both cars and light trucks—the change in noise resulting from the proposal would have a 
minimal impact.  The agency’s updated estimates of incremental congestion and noise costs from 
added car and light truck use are assumed to remain constant (in real or inflation-adjusted terms) 
throughout the analysis period. 

6.2.4 Benefit of Increased Energy Security 

U.S. consumption and imports of petroleum products has three potential effects on the domestic 
economy that are often referred to collectively as “energy security externalities,” and increases in 
their magnitude are sometimes cited as possible social costs of increased U.S. demand for 
petroleum.  First, any increase in global petroleum prices that results from higher U.S. gasoline 
demand will cause a transfer of revenue from consumers of petroleum products to oil producers 
worldwide, because consumers throughout the world are ultimately subject to the higher global 
prices for petroleum and refined products that results.  Although this transfer is simply a shift of 
resources that produces no change in global economic output or welfare, the financial drain it 
produces on the U.S. economy is sometimes cited as an external cost of increased U.S. petroleum 
consumption.   

As the U.S. has achieved self-sufficiency in petroleum production in recent years (AEO 2021 
projects the nation to be a net exporter of petroleum and other liquids through 2050), this transfer 

 
754 Fuel consumption and other operating costs can also increase during travel in congested conditions, but their 
relationship to the frequent changes in speed that typically occur in congested travel is less well understood, and in 
any case, they vary by far smaller amounts than the value of vehicle occupants’ travel time.  
755 Measured in inflation-adjusted terms, the average hourly value of travel time increased by 22 percent between 
1997 and 2017, including light-duty vehicle occupants as well as truck drivers and passengers; see U.S. Department 
of Transportation, “Departmental Guidance for the Valuation of Travel Time in Economic Analysis,” April 9, 1997, 
Table 4, and U.S. Department of Transportation, “Benefit-Cost Analysis Guidance for Discretionary Grant 
Programs,” December 2018, Table A-3.  From 1995 to 2017, the average number of occupants traveling in 
household vehicles increased by 3 percent; values were tabulated from FHWA, Nationwide Personal Transportation 
Survey, 2005 and 2017, using on-line table designer available at https://nhts.ornl.gov/ and 
https://nhts.ornl.gov/index9.shtml.  
756 The agency’s revised estimates of congestion and noise costs were adjusted to 2018 dollars using the change in 
the implicit price deflator for U.S. GDP between the year in which they were originally denominated (1994 dollars) 
and 2018; see Bureau of Economic Analysis, NIPA Table 1.1.9 Implicit Price Deflators for Gross Domestic Product, 
available at https://apps.bea.gov/iTable/index_nipa.cfm.  



 

is increasingly from U.S. consumers of refined petroleum products to U.S. petroleum producers, 
so it not only leaves welfare unaffected, but even ceases to be a financial burden on the U.S. 
economy.757  In fact, as the U.S. has become a net petroleum exporter, any transfer from global 
consumers to petroleum producers would become a net financial benefit to the U.S. economy.  
Nevertheless, uncertainty about the nation’s long-term import-export balance makes it difficult to 
project precisely how these effects might change in response to changes in U.S. domestic 
consumption of petroleum products. 

Increased U.S. consumption of refined products such as gasoline can also expose domestic users 
of other petroleum products – whose consumption would be unrelated to changes in CAFE 
standards – to increased economic risks from sudden changes in their prices or interruptions in 
their supply.  Users of petroleum products are unlikely to consider the effects their consumption 
has on others by increasing these risks,  and the economic value of that change in risk is often 
cited as an  external cost of increased U.S. petroleum consumption.  Finally, some analysts argue 
that domestic demand for imported petroleum may also influence U.S. military spending; 
because the increased cost of military activities would not be reflected in the price paid at the gas 
pump, this is often alleged to represent a third category of external costs form increased U.S. 
petroleum consumption. 

Each of these three costs could decline – although probably only modestly – as a consequence of 
the reduction in U.S. petroleum consumption likely to result from the proposed CAFE standards.  
This section describes the extent to which each cost is expected to change as a result of this 
action, whether that change would represent a significant economic benefit (or simply reduce 
transfers of resources), and how the agency has measured each cost and incorporated it into the 
analysis. 

6.2.4.1 U.S. Petroleum Demand and its Effect on Global Prices   

Figure 6-3 illustrates the effect of a decrease in U.S. fuel and petroleum demand on worldwide 
demand for petroleum and its global market price.  The reduction in domestic demand from 
adopting more stringent CAFE standards can be represented as an inward shift in the U.S. 
demand curve for petroleum from its initial position at DUS,0 with the baseline standards in effect, 
to DUS,1 with the proposed standards replacing them.  Because global demand is simply the sum 
of what each nation would purchase at different prices, the inward shift in U.S. demand causes 
an identical shift in the global demand schedule, as the figure shows.758 

 
757 The United States became a net exporter of oil on a weekly basis several times in late 2019, and EIA’s 
subsequent analyses continue to project that it will do so on a sustained, long-term basis after 2020; see EIA, AEO 
2021 Reference Case, Table 11, https://www.eia.gov/outlooks/aeo/tables_ref.php.  
758 The figure exaggerates the U.S. share of total global consumption, which currently stands at 20 percent, for 
purposes of illustration.   

https://www.eia.gov/outlooks/aeo/tables_ref.php
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Figure 6-3 – U.S. Petroleum Demand and its Effect on Global Prices   

The global supply curve for petroleum shown in Figure 6-3 slopes upward, reflecting the fact 
that it is progressively costlier for oil-producing nations to explore for, extract, and deliver 
additional supplies of oil to the world market.759  Thus the downward shift in the U.S. and world 
demand schedules leads to a decrease in the global price for oil, from P0 to P1 in the figure.760  
Lower domestic demand reduces U.S. purchases of petroleum from QUS,0 to QUS,1, and global 
consumption from QG,0 to QG,1.  The resulting savings to U.S. consumers consist mainly of what 
they previously spent to purchase the quantity they no longer consume, the product of the 
original price P0 and the decline in consumption (QUS,0 – QUS,1).  At the same time, the decline in 
the global price of petroleum means that domestic consumers also save that amount on each 
barrel they continue to buy; their total savings is the product of the decline in price (P0-P1) and 
the amount they continue to use (QUS,1), or the area P0abP1.761,762  This additional savings is 
sometimes cited as an economic benefit of U.S. conservation measures such as raising CAFE 
standards, but it is more properly interpreted as reducing the transfer of revenue from U.S. 
consumers to petroleum producers worldwide.  Reducing this transfer is thus a purely 

 
759 The figure depicts the relationship between the global supply of petroleum and its worldwide price during a 
single time period.  The global supply curve for petroleum has been shifting outward over time in response to 
increased investment in exploration, the ability of refineries to utilize feedstocks other than conventional petroleum, 
and technological innovations in petroleum extraction.  The combination of these developments may also have 
reduced its upward slope, meaning that global supply now increases by more in response to increases in the world 
price than it once did. 
760 While U.S. demand influences prices, price is determined by global demand.  
761 Foreign petroleum users also pay the lower global price P1 for each barrel they continue to consume, so in total 
they save (P0-P1) times (QG,1 – QUS,1) or the area acdb in the figure, as a consequence of reducing U.S. demand.   
762 Sometimes this benefit is expressed in terms of per barrel of reduced domestic consumption.  Under this 
approach, the amount is expressed as by the reduction in U.S. consumption divided by the elasticity of oil (the 
change in demand divided by the change in price). 



 

“pecuniary” externality resulting from lower U.S. demand that has no effect on economic output 
or welfare, either within or outside the U.S.763  

Much of the reduction in payments by domestic users of petroleum products would once have 
represented a loss to foreign-owned oil producers, and would thus have reduced the financial 
drain on the U.S. economy from using and importing petroleum.  To a growing extent, however, 
lower payments by U.S. consumers that result from downward pressure on the world oil price are 
a transfer entirely within the Nation’s economy, because a growing fraction of domestic 
petroleum consumption is supplied by U.S. producers.  The U.S. recently became a net exporter 
of petroleum, and as it approached that situation an increasing share of any savings to U.S. 
petroleum consumers resulting from lower global oil prices became a loss to U.S. oil 
producers.764  Once the U.S. became self-sufficient in petroleum supply (which occurred in 
2020), the savings to U.S. petroleum users that results from reducing oil prices effectively 
reduced a transfer to domestic producers.  Stated another way, the financial burden that transfers 
from U.S. consumers to foreign oil producers once placed on the U.S. economy has been erased 
by growing U.S. petroleum production, so reducing domestic demand no longer reduces that 
burden.765  

Over most of the period spanned by the analysis of this proposed rule, any decrease in domestic 
spending for petroleum caused by the effect of lower U.S. fuel consumption and petroleum use 
on world oil prices is expected largely to be a transfer within the U.S. economy and thus produce 
no net impact on domestic economic resources.  For this reason—and because in any case, such 
transfers do not create real economic costs or benefits—lower U.S. spending on petroleum 
products that results from this action’s effect on U.S. gasoline demand and the downward 
pressure it places on global petroleum prices is not included among the economic benefits 
accounted for in this proposal. 

6.2.4.2 Macroeconomic Costs of U.S. Petroleum Consumption 

In addition to influencing global demand and prices, U.S. petroleum consumption imposes 
further costs that are unlikely to be reflected in the market price for petroleum, or in the prices 
paid by consumers of refined products such as gasoline.766  Petroleum consumption imposes 

 
763 The decline is petroleum prices caused by lower U.S. demand does have consequences for economic welfare, 
because it leads to increases in consumer surplus to both domestic and foreign petroleum users.  However, lower 
prices also reduce producer surplus to domestic and overseas suppliers of petroleum, and in total these losses in 
producer surplus exceed gains in consumer surplus to petroleum users.  How domestic economic welfare changes 
depends on the U.S. petroleum import situation, which as discussed below has changed rapidly in recent years.  The 
agency’s analysis of this proposal does not attempt to estimate the net effect of these changes in domestic consumer 
and producer surplus.   
764 The U.S. Energy Information Administration EIA estimates that the United States exported more total crude oil 
and petroleum products in September and October of 2019, and expects the United States to continue to be a net 
exporter.  See Short Term Energy Outlook November 2019, available at 
https://www.eia.gov/outlooks/steo/archives/nov19.pdf.  
765 In fact, much of that transfer has been reversed, so that reducing global petroleum prices may actually lower 
revenue to U.S. producers by more than it saves domestic consumers.  
766 See, e.g., Bohi, D. R. & W. David Montgomery (1982), Oil Prices, Energy Security, and Import Policy 
Washington, D.C. - Resources for the Future, Johns Hopkins University Press; Bohi, D. R., & M. A. Toman (1993), 
“Energy and Security - Externalities and Policies,” Energy Policy 21:1093-1109; and Toman, M. A. (1993).  “The 
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external economic costs by exposing the U.S. economy to increased risks of rapid increases in 
prices triggered by global events that may also disrupt the supply of imported oil, and U.S. 
consumers of petroleum products are unlikely to take such costs into account when making their 
decisions about how much to consume.  

Interruptions in oil supplies and sudden increases in oil prices can impose significant economic 
costs because they raise the costs of commodities whose production and distribution relies on 
petroleum, and temporarily reduce the level of output that the U.S. economy can produce.  The 
magnitude of the resulting reduction in U.S. economic output depends on the extent and duration 
of increases in prices for petroleum products that result from disruptions to global oil supplies.  
Of course, it also depends on whether and how rapidly prices return to their pre-disruption levels, 
which in turn depends on the petroleum industry’s capacity to respond to localized supply 
disruptions by increasing production elsewhere.  Even if prices for oil return completely to their 
original levels, economic output will be at least temporarily reduced from the level that would 
have been possible with uninterrupted oil supplies and stable prices, so the U.S. economy will 
bear some transient losses it cannot subsequently recover.  

Supply disruptions and price increases caused by global political events tend to occur suddenly 
and unexpectedly, so they can also force businesses and households to adjust their use of 
petroleum products more rapidly than if the same price increase occurred gradually.  Rapid 
substitutions between different forms of energy and between energy and other inputs, as well as 
other changes such as adjusting production levels and downstream prices, can be costly for 
businesses to make.  As with businesses, sudden changes in energy prices and use are also 
difficult for households to adapt to quickly or smoothly, and doing so may cause at least 
temporary losses in other consumption.   

Interruptions in oil supplies and sudden increases in petroleum prices are both uncertain 
prospects, and the costs of the disruptions they can cause must be weighted or adjusted by the 
probability that they will occur, as well as for their uncertain duration.  The agency relies on 
estimated costs of such disruptions that reflect the probabilities that price increases of different 
magnitudes and durations will occur, as well as the resulting costs of lower U.S. economic output 
and abrupt adjustments to sharply higher prices.  Any change in the probabilistic “expected 
value” of such costs that can be traced to lower U.S. fuel consumption and petroleum demand 
stemming from this proposal to increase CAFE standards is considered to be an external benefit 
of adopting it. 

A variety of mechanisms is available to businesses and households to “insure” against sudden 
increases in petroleum prices and reduce their costs for adjusting to them.  Examples including 
making purchases or sales in oil futures markets, adopting energy conservation measures, 
diversifying the fuel economy levels within the set of vehicles owned by the household, locating 
where public transit provides a viable alternative to driving, and installing technologies that 
permit rapid fuel switching.  Growing reliance on such measures, coupled with continued 
improvements in energy efficiency throughout the economy, has reduced the vulnerability of the 
U.S. economy to the costs of oil shocks in recent decades, and there is now considerable debate 

 
Economics of Energy Security - Theory, Evidence, Policy,” in A. V. Kneese and J. L. Sweeney, eds. (1993), 
Handbook of Natural Resource and Energy Economics, Vol. III, Amsterdam - North-Holland, pp. 1167-1218. 



 

about the potential magnitude and continued relevance of economic damages from sudden 
increases in petroleum prices.   

As one indicator of the U.S. economy’s changing vulnerability to such disruptions, DOE’s Office 
of Energy Efficiency and Renewable Energy has developed an economy-wide energy intensity 
index that estimates how the amount of energy needed to produce the same level of economic 
output has changed over time.  Figure 6-4 shows that this index fell by 14 percent from 1985 to 
2011, as the ratio of energy consumption to GDP declined 36 percent as a consequence of 
continuing improvements in energy efficiency and shifts in the composition of GDP.  The AEO 
2021 forecasts a continuing decline in U.S. energy intensity, with the energy/GDP ratio projected 
to decline a further 38 percent from 2020 through 2050.  This forecast reflects anticipated energy 
efficiency improvements throughout the U.S. economy, including among passenger cars and 
light trucks. 

 
GDP = gross domestic product; E/GDP = energy-GDP ratio 

Figure 6-4 – U.S. Energy Intensity, 1950 - 2011767 

As with the overall energy intensity of the U.S. economy, the petroleum intensity of U.S 
economic output has declined considerably over time.  At the same time, global oil prices are 
now dramatically lower than when analysts first identified and quantified the risks they create to 
the U.S. economy.  As Figure 6-5 illustrates, there was a nearly one-to-one relationship between 
growth in U.S. GDP and petroleum consumption until about 1980, after which the petroleum use 
per dollar of economic output declined steadily for four decades.  AEO 2021 projects that the 
petroleum intensity of U.S. GDP will fall by another 40 percent from its current level over the 
next three decades.  Further, not only has the U.S. dramatically increased its own petroleum 
supply, but other new global supplies have emerged as well, both of which reduce the potential 

 
767 2019 EIA Annual Energy Outlook. 



 

impact of disruptions that occur in unstable or vulnerable regions of the globe that have 
historically represented critical sources of supply. 

 

Figure 6-5 – Petroleum Intensity of U.S. GDP, 1950 - 2020768 

As a consequence, the potential macroeconomic costs of sudden increases in oil prices are now 
likely to be considerably smaller than when they were originally identified and estimated.  The 
National Research Council (2009) argued that non-environmental externalities associated with 
dependence on foreign oil are small, and perhaps trivial.769  Research by Nordhaus and by 
Blanchard and Gali has also questioned how harmful recent oil price shocks have been to the 
U.S. economy, noting that the U.S. economy actually expanded rapidly following the most recent 
oil price shocks, and that there was little evidence of higher energy prices being passed through 
to higher wages or prices.770  

 
768 Source: GDP data from Federal Reserve Bank, FRED series GDPC1 and petroleum consumption data from EIA, 
by sector, https://www.eia.gov/totalenergy/data/annual/. 
769 National Research Council, Hidden Costs of Energy - Unpriced Consequences of Energy Production and Use, 
National Academy of Sciences, Washington, D.C. (2009). 
770 Nordhaus (2010) argues that one reason for limited vulnerability to oil price shocks is that monetary policy has 
become more accommodating to the price impacts, while another is that U.S. consumers and businesses may 
determine that such movements are temporary and abstain from passing them on as inflationary price increases in 
other parts of the economy.  He also notes that changes in productivity in response to recent oil price increases are 
have been extremely modest, observing that “energy-price changes have no effect on multifactor productivity and 
very little effect on labor productivity.” at p. 19.  Blanchard and Gali (2010) contend that improvements in monetary 
policy, more flexible labor markets, and the declining energy intensity of the U.S. economy (combined with an 
absence of concurrent shocks to the economy from other sources) lessened the impact of oil price shocks after 1980.  
They find that “the effects of oil price shocks have changed over time, with steadily smaller effects on prices and 
wages, as well as on output and employment...The message…is thus optimistic in that it suggests a transformation in 
U.S. institutions has inoculated the economy against the responses that we saw in the past.” at p. 414; See William 
Nordhaus, “Who’s Afraid of a Big Bad Oil Shock?”  Available at 
http://aida.econ.yale.edu/~nordhaus/homepage/Big_Bad_Oil_Shock_Meeting.pdf; and Blanchard, Olivier and Jordi 
Gali, J., “The Macroeconomic Effects of Oil price Shocks - Why are the 2000s so Different from the 1970s?,” in 
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Since these studies were conducted, the petroleum intensity of the U.S. economy has continued 
to decline, while domestic energy production has increased in ways and to an extent that experts 
failed to predict, so that the U.S. became the world’s largest producer in 2018.771  The U.S. shale 
oil revolution has both established the potential for energy independence and placed downward 
pressure on prices.  Lower oil prices are also a result of sustained reductions in U.S. consumption 
and global demand resulting from energy efficiency measures, many undertaken in response to 
previously high oil prices and, more recently, the pandemic.   

Reduced petroleum intensity and higher U.S. production have combined to produce a decline in 
U.S. petroleum imports that permits U.S. supply to act as a buffer against artificial or natural 
restrictions on global petroleum supplies due to military conflicts or natural disasters.  In 
addition, the speed and relatively low incremental cost with which U.S. oil production has 
increased suggests that both the magnitude and (especially) the duration of future oil price 
shocks may be limited, because U.S. production offers the potential for a large and relatively 
swift supply response. 

While some risk of price shocks certainly still exists, even the potential for a large and swift U.S. 
production response may be playing a role in limiting the extent of price shocks attributable to 
external events.  For example, the large-scale attack on Saudi Arabia’s Abqaiq processing 
facility—the world’s largest crude oil processing plant—on September 14, 2019 caused “the 
largest single-day [crude oil] price increase in the past decade,” of between $7 and $8 per barrel, 
according to EIA.772  The Abqaiq facility has the capacity to process 7 million barrels per day, or 
about 7 percent of global crude oil production capacity.  EIA declared, however, that by 
September 17, only three days after the incident: Saudi Aramco reported that Abqaiq was 
producing 2 million barrels per day, and they expected its entire output capacity to be fully 
restored by the end of September.  In addition, Saudi Aramco stated that crude oil exports to 
customers will continue by drawing on existing inventories and offering additional crude oil 
production from other fields.  Tanker loading estimates from third-party data sources indicate 
that loadings at two Saudi Arabian export facilities were restored to the pre-attack levels.  Likely 
driven by news of the expected return of the lost production capacity, both Brent and WTI crude 
oil prices fell on Tuesday, September 17.773 

Thus, the largest single-day oil price increase in the past decade was largely resolved within a 
week; assuming that average crude oil prices were approximately $70/barrel in September 2019 
(slightly higher than their actual average), an increase of $7/barrel would have represented a 10 
percent increase as a result of the Abqaiq attack.  This contrasts sharply with the 1973 Arab oil 
embargo, which lasted several months and raised prices nearly 350 percent.774  Saudi Arabia 
could have taken advantage of increased revenue resulting from higher prices following the 

 
Gali, Jordi and Mark Gertler, M., eds., The International Dimensions of Monetary Policy, University of Chicago 
Press, February (2010), pp. 373-421, available at http://www.nber.org/ses/c0517.pdf. 
771 See U.S. Energy Information Administration EIA, Today in Energy August 20, 2019, available at 
https://www.eia.gov/todayinenergy/detail.php?id=40973; Today in Energy September 12, 2018, available at 
https://www.eia.gov/todayinenergy/detail.php?id=37053. 
772 https://www.eia.gov/todayinenergy/detail.php?id=41413. 
773 Id. 
774 See Jeanne Whalen, “Saudi Arabia’s oil troubles don’t rattle the U.S. as they used to,” Washington Post, 
September 19, 2019, available at https://www.washingtonpost.com/business/2019/09/19/saudi-arabias-oil-troubles-
dont-rattle-us-like-they-used/. 
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Abqaiq attack, but instead moved rapidly to restore production and tap its domestic reserves to 
control the risk of resulting price increases.  In doing so, the Saudis likely recognized that 
sustained, long-term price increases would reduce their ability to control global supply (and thus 
prices and their own revenues) by relying on their lower cost of production.775   

Some commenters have asserted that U.S. shale oil resources cannot serve as “swing supply” to 
provide stability in the face of a sudden, significant global supply disruption.  Despite its greater 
responsiveness to price changes, commenters argued that lead time to bring new shale resources 
to market (6-12 months) is inferior to “true spare capacity” (like Saudi Arabia’s large oil fields) 
because it cannot be deployed quickly enough to mitigate the economic consequences resulting 
from rapidly rising oil prices.  However, shale oil projects’ lead times are still shorter—and 
possibly much shorter—than conventional oil resource development.  So, while new U.S. oil 
resources may take some time to respond to supply disruptions, they are nevertheless likely to 
provide some stabilizing influence on supply.   

This is especially true for price increases that occur more slowly.  When Beccue and Huntington 
updated their 2005 estimates of supply disruption probabilities in 2016,776 they found that the 
probability distribution had generally “flattened,” meaning that supply disruptions of most 
potential magnitudes were less likely to occur under today’s market conditions than they had 
estimated previously in 2005.  In particular, Beccue and Huntington find that supply disruptions 
of between two and four million barrels per day are significantly less likely than their previous 
estimates suggested.  Although their recent study also estimated that larger supply disruptions 
(nine or more million barrels per day) are now slightly more likely to occur than in previous 
estimates, in their view disruptions of this magnitude are extremely unlikely under either set of 
estimates.  

DOT thus concludes that while shale resources may not be able to stabilize oil markets 
sufficiently to prevent price increases that originate from rapid, very large supply disruptions 
elsewhere in the world, U.S. resources are likely to be adequate to stabilize most smaller or less 
rapid disruptions. 

6.2.4.3 Petroleum Imports and U.S. Energy Security 

Although the vulnerability of the U.S. economy to oil price shocks depends on the nation’s 
aggregate consumption of petroleum rather than on the level of its oil imports, variation in U.S. 
imports may itself have some independent effect on the frequency, size, or duration of sudden oil 
price increases.  Insofar as it does, the expected value of potential economic costs from supply or 
price disruptions would also depend partly on the fraction of U.S. petroleum use that is supplied 
by imports.  In addition, the estimates of these costs that NHTSA has relied upon in past 
regulatory analyses—and continues to employ in this analysis—are expressed per unit (barrel) of 
petroleum imported into the U.S, rather than total U.S. consumption.  After converting them to a 
per-gallon basis, the agency applies these costs both to fuel that is imported in refined form, and 
that refined domestically from imported crude petroleum.  To support these calculations, 

 
775 See, e.g., “Dynamic Delivery: America's Evolving Oil and Natural Gas Transportation Infrastructure,” National 
Petroleum Council (2019) at 18, available at: https://dynamicdelivery.npc.org/downloads.php.  
776 Beccue, Phillip, Huntington, Hillard, G., 2016.  An Updated Assessment of Oil Market Disruption Risks: Final 
Report.  Energy Modeling Forum, Stanford University.  
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NHTSA is required to make specific assumptions about how imports of refined gasoline and 
crude petroleum are likely to change in response to reductions in gasoline consumption of the 
magnitude expected to result from the proposed increase in CAFE standards.  

In its previous analyses of CAFE standards, NHTSA assumed that 50% of any change in 
domestic fuel consumption by cars and light trucks would be reflected in changes in imports of 
refined fuel, while the remaining 50% would be reflected in changes in the volume of fuel 
refined domestically.  In turn, the agency assumed that 90% of any change in the volume of fuel 
refined domestically would be reflected in changes in the volume of crude petroleum imported 
into the U.S., while the remaining 10% would be reflected in changes in the volume produced 
within the U.S.  This combination of assumptions implied that for a change in domestic fuel 
consumption of 100 gallons, U.S. imports of refined fuel would change by 50 gallons, while 
domestic refining of imported crude oil would change by 45 gallons, and domestic refining of 
domestically-produced crude oil would change by 5 gallons.  

Recent developments in U.S. petroleum production and in the global market, however, call for a 
careful review of these assumptions, which were based on forecasts of changes in future U.S. 
fuel consumption and petroleum imports originally published in AEO 2012.  For most of the past 
half-century, the U.S. has been a large net importer of crude petroleum, importing the volume 
necessary to meet the difference between U.S. demand for refined petroleum products and 
domestic petroleum supply.  Throughout this period, the U.S. has also been largely self-sufficient 
in refining, meaning that any gap between domestic demand for refined products and the 
volumes refined from U.S. crude petroleum was primarily met by refining imported crude oil, 
supplemented by minor imports of refined gasoline.  The agency’s assumptions about the 
impacts of conserving fuel on U.S. petroleum imports and refining reflected the expected 
continuation of this situation.  

In the past decade, this situation has changed dramatically.  U.S. production of crude petroleum 
has more than doubled since 2008, making the nation one of the world’s largest producers, while 
net imports of crude oil and refined products have declined more than 75-percent.777  Domestic 
gasoline consumption declined by more than 6 percent between 2007 and 2012, recovering to its 
2007 levels only as recently as 2016 and remaining near or slightly below that level since.  As a 
consequence, the U.S. shifted from being a net importer of refined petroleum products to a net 
exporter in 2011 and has become a net exporter of gasoline and “blending stock” since 2016.778 

 
777 All petroleum statistics are calculated from data at: (EIA, Petroleum and Other Liquids, 2019).  Net U.S. imports 
are the difference between the nation’s total (or gross) imports from elsewhere in the world and the volumes it 
exports to other nations.   
778 Another recent change in petroleum markets has been the increasing production and trade in gasoline blendstock 
in domestic and international petroleum trade.  While in earlier periods refineries normally produced finished 
gasoline and shipped it to local storage terminals for distribution and retailing, in recent years, refineries have 
increasingly shifted to producing standardized gasoline blendstocks, such as Reformulated Blendstock for 
Oxygenate Blending (or “RBOB”), which are then shipped and blended with ethanol or other additives to make 
finished gasoline that meets local regulatory requirements or customer specifications.  Although this process has 
clear cost and operational advantages, particularly with extensive geographic and seasonal variation in gasoline 
formulations, it complicates the tabulation and comparison of petroleum statistics.  In both EIA and most 
international trade statistics, finished gasoline and blendstocks are treated as separate products, and as reported in 
 



 

Over the past decade, increased availability of crude petroleum and other refinery feedstocks in 
combination with declining gasoline consumption has presented U.S. refiners with a choice 
between continuing to produce gasoline at or near their capacity while boosting exports, or 
cutting back on refinery output.  As gasoline consumption declined from 2007 through 2012, 
U.S. refiners elected not to cut back on their production of gasoline; instead, they actually 
increased the volume they refined, and have continued to do so since 2012 as domestic demand 
recovered.  Overall, refinery and blender production of gasoline increased by 9 percent between 
2007 and 2018, while, as noted, consumption has only recently recovered to its 2007 level.   

The resulting excess of gasoline production over domestic consumption has partly displaced 
previous gasoline and blendstock imports, with the remainder taking the form of increased U.S. 
exports.  As Figure 6-6 shows, the decline in U.S. gasoline consumption after 2007 has not led to 
a corresponding decline in refinery production, and the nation now has a capacity to produce 
gasoline that considerably exceeds its current domestic consumption.  Further, this surplus of 
gasoline appears likely to increase in the coming years, as EIA’s Annual Energy Outlook 2019 
reference case (EIA, 2019) anticipates that domestic gasoline consumption will continue to 
decline until nearly 2040.  Thus, unless domestic refinery capacity is significantly curtailed, the 
U.S. seems likely to remain a net exporter of gasoline through the next three decades.   

 

 
EIA statistics, large volumes of finished gasoline are now produced from blendstocks by local “blenders,” rather 
than by more centralized “refiners.”  In addition, the volume of refinery production of gasoline and blendstock is 
now systematically lower than consumption of finished gasoline, because up to 10 percent of the volume of gasoline 
sold at retail can be made up of ethanol that is blended into gasoline after it leaves the refinery. 



 

 

Figure 6-6 – U.S. Gasoline Consumption, Production, and Net Exports: Historical and Forecast 

Although EIA’s Annual Energy Outlook does not include separate forecasts of gasoline exports 
and imports, that same agency’s Short Term Energy Outlook projects that U.S. gasoline exports 
will continue to rise through 2020 (EIA, 2019).779  Taken together, the forecasts of declining 
U.S. gasoline consumption and rising net exports of refined petroleum products reported in AEO 
2019 suggest that that EIA expects the United States to grow as a net exporter of refined 
petroleum products – including gasoline – through nearly 2040.  In turn, this suggests that any 
decrease in domestic gasoline consumption that would result from the proposal is likely to 
accelerate growth in U.S. exports slightly, rather than decrease domestic refining and associated 
upstream emissions.   

As Figure 6-7 below shows, gasoline production along the East Coast has increased rapidly in 
recent years, while shipments into the region from the remainder of the U.S. and foreign imports 
(which come mostly from Canada) declined as the gap between consumption and local supply 
within PADD1 has closed.  In June 2019, however, press reports suggested that that one of the 
largest East Coast refineries (Philadelphia Energy Solutions, which represents some 28 percent 
of East Coast refining capacity) would be closed.780  At the same time, construction of new 
refineries continues to be hindered by the density of population concentrations and commercial 

 
779 AEO does not forecast gasoline refining, imports, or exports separately, instead reporting them as part of total 
refined petroleum products.  
780 Seba, E. (2019, July 5). Philadelphia refinery closing reverses two years of U.S. capacity gains.  Retrieved 
September 19, 2019, from Reuters: https://www.reuters.com/article/us-usa-refinery-blast-capacity/philadelphia-
refinery-closing-reverses-two-years-of-u-s-capacity-gains-idUSKCN1U0283.  



 

development along the nation’s East Coast, casting doubt on the potential for continued increases 
in local gasoline refining and supply within PADD 1.  

 

Figure 6-7 – U.S. East Coast (EIA PADD 1) Gasoline Production, Consumption, Transfers from Rest of U.S., 
and Net Exports 

As a consequence, it seems likely that any decrease in gasoline consumption along the nation’s 
East Coast in response to the proposal would diminish the need to rely upon foreign imports or 
resumption of once-large transfers from the Gulf Coast.  Pipelines available to transport refined 
petroleum products from Gulf Coast refineries to the East Coast may also face capacity 
limitations, in which case most of any decrease in gasoline consumption there would diminish 
the need of imports from abroad.   

The West Coast, which includes Nevada and Arizona (EIA’s PADD 5), currently accounts for 18 
percent of U.S. gasoline consumption.  Almost all of the gasoline consumed in that region is also 
refined within it, although small volumes are shipped into Arizona from neighboring PADDs by 
pipeline, and small volumes are also exported to Latin America by tanker.  Since the West Coast 
is relatively isolated from other U.S. sources of refined gasoline by long transportation distances 
and limited pipeline capacity, while import terminals for crude petroleum are relatively 
numerous, it appears more likely that marginal increases in gasoline consumption from the rule 
will be met from increases in local (i.e., within-PADD) refining.  Figure 6-8 shows that this has 
been the case in recent decades, as growth in gasoline production within PADD 5 throughout that 
period has closely paralleled growth in local consumption, while net exports have remained 
minimal.   



 

 

Figure 6-8 – U.S. West Coast (EIA PADD 5) Gasoline Production, Consumption, Transfers from Rest of U.S., 
and Net Exports 

The central region of the United States (PADDs 2-4) accounts for the remaining 47 percent of 
U.S. gasoline consumption, and almost 80 percent of the nation’s production of gasoline and 
blendstock.  Although as Figure 6-9 shows the central region was a minor net exporter of 
gasoline as recently as 2007, it now exports some 800,000 barrels per day of gasoline and 
blendstock (primarily to Mexico and other Latin American countries), and has accounted for 
virtually all of the recent growth in U.S. exports of these two categories of refined products.  
Recent press reports indicate that firms are currently making significant new investments to add 
refining capacity on the Gulf Coast to process the growing supply of U.S. shale oil (Douglas, 
2019), and with the projected future decline in U.S. consumption, any additional gasoline refined 
there is likely to increase U.S. exports.  Thus future decreases in gasoline consumption in the 
central region of the U.S. of the magnitude likely to result from the proposal would easily allow 
additional gasoline exports, even in the absence of additional refinery investments. 



 

 

Figure 6-9 – U.S. Central Region (EIA PADDs 2-4) Gasoline Production, Consumption, Transfers to Rest of 
U.S., and Net Exports 

To summarize, based on changes in the various sources of supply that have accompanied recent 
changes in consumption within different regions of the U.S., the agencies anticipate that: 

• Most of any reductions in gasoline consumption resulting from this proposal that occurs 
on the East Coast of the U.S., which currently accounts for slightly more than one-third 
(35%) of total U.S. consumption, will be met in the near term by reduced transfers of 
gasoline refined in other regions of the U.S. or lower foreign imports, and possibly by 
reduced domestic refining activity in the longer term; 

• Most of any decline in U.S. gasoline consumption that occurs on the West Coast, which 
now accounts for about one-sixth (18%) of U.S. gasoline consumption, will be reflected 
in reduced gasoline refining within that region; and 

• Most or all of any reduction in U.S. gasoline consumption that occurs in the Central 
region, which currently accounts for nearly half (47%) of total U.S. consumption, will be 
met by increasing exports to foreign markets.  

With these expectations and acknowledging the uncertainty surrounding them, NHTSA 
concludes that assuming 50 percent of any reduction in U.S. gasoline consumption resulting 
from this proposal would lead to lower domestic refining activity continues to be reasonable.  



 

Thus, the agency continues to use this assumption in its central analysis of the proposal, and to 
examine the sensitivity of its results to varying this fraction over the entire possible range, from 
zero to 100%.  

The agency has also reviewed its previous assumption that 90 percent of any reduction in 
domestic petroleum refining to produce gasoline that results from the proposal would reduce 
U.S. petroleum imports, with the remaining 10 percent reducing domestic production.  After 
doing so, NHTSA concludes it is more reasonable to assume that 100 percent of any reduction in 
refining of crude petroleum to produce gasoline would reduce U.S. oil imports, rather than 
changing U.S. output.  U.S. oil production is primarily a function of development opportunities 
identified during prior exploration programs, innovations in the technology for drilling and 
extracting crude petroleum, producer’s expectations regarding future world petroleum prices, and 
the U.S. tax and regulatory situations surrounding petroleum exploration and production.  Crude 
oil is a fungible, non-perishable commodity, and can usually be transported among local oil 
markets around the globe at some cost.  As a consequence, the price of oil in a U.S. domestic 
market such as Texas is highly correlated with its price in markets located in Northern Europe, 
the Far East, and the Middle East. 

In contrast, U.S. gasoline consumption depends on a broad array of factors that overlap only 
partially with the determinants of U.S. crude petroleum production.  These include domestic 
economic growth and its consequences for transportation demand, current and future vehicle fuel 
economy, gasoline prices, excise and sales taxes levied on gasoline, technological and cultural 
changes, vehicle prices, and the evolution of transportation systems and the built environment.  
As a consequence, changes in U.S. consumption and supply of petroleum products seems likely 
to be reflected primarily in changes in the destination of domestically produced crude petroleum, 
rather than in its total volume.  To the extent that lower U.S. gasoline demand affects domestic 
refining activity, this is likely to be reflected in larger U.S. exports of crude oil, rather than in a 
change in U.S. production of crude oil.  Any changes in U.S. crude oil production would arise 
primarily from second-order impacts of increased domestic gasoline demand, such as local 
changes in the relative prices refiners pay for crude petroleum, or minor changes in global oil 
prices, and these second-order impacts are in turn likely to have relatively small effects on U.S. 
petroleum production.  

For example, localized and temporary changes in production might arise in response to capacity 
limitations or transportation bottlenecks associated with particular regions or refineries, 
temporarily creating a localized market for higher-priced crude oil.  However, these situations 
would normally be localized and prevail for only a limited time.781  At the same time, the effects 
of any change in domestic petroleum consumption on world oil prices would be attenuated, 
because the impact of increased domestic consumption would be felt on prices and volumes 
supplied in the much larger global petroleum market, rather than confined to the much smaller 
U.S. market.  Any resulting changes in global oil prices and petroleum production would 

 
781 A recent example occurred in May 2021 when a major East Coast oil pipeline owned by Colonial Pipeline was 
subject to a ransomware attack which raised gasoline prices temporarily in response to regional shortages in the 
Southeast.  See https://www.eia.gov/todayinenergy/detail.php?id=47996.   
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inevitably be small when viewed on a world scale, and likely to prompt only minimal responses 
in U.S. petroleum supply.   

As one indication of the likely minimal impacts of higher U.S. gasoline consumption on U.S. 
production of crude petroleum, EIA’s Annual Energy Outlook 2018 included a side case called 
“No New Efficiency Requirements,” which included a freeze on U.S. fuel economy standards 
beginning in 2020.  Comparing its results to those from the AEO 2018 reference case illustrates 
the insensitivity of domestic crude oil production to changes in domestic gasoline consumption, 
as represented in EIA’s National Energy Modeling System (NEMS).  Figure 6-10 below presents 
such a comparison, showing historical trends is U.S gasoline consumption and petroleum 
production, and comparing their projected future trends in the AEO 2018 Reference Case and No 
New Efficiency Requirements alternative.  As it illustrates, the large increase in U.S. gasoline 
consumption under the latter scenario relative to the Reference Case is accompanied by an 
almost indiscernible change in U.S. crude petroleum production, for exactly the reasons 
described above. 

 

Figure 6-10 – Projected U.S. Gasoline Consumption and Crude Oil Production under AEO 2018 Reference 
and no New Efficiency Standards Scenario Cases 

Thus after carefully considering the factors that influence U.S. petroleum supply and comparing 
EIA’s forecasts of future changes in domestic petroleum production under very different levels 
of domestic gasoline consumption, NHTSA concludes that in the context of the current global 



 

petroleum market, reductions in U.S. gasoline demand on the scale likely to result from this 
proposal are unlikely to prompt significant changes in domestic petroleum production, fuel 
refining, or net U.S. petroleum exports.  Instead, they are likely to affect mainly the distribution 
of crude petroleum and gasoline produced within the U.S. between domestic consumption and 
U.S. exports to serve global markets, reducing the volumes supplied to U.S. markets and 
increasing exports.  As a consequence, the agency’s analysis of this proposal assumes that the 
anticipated reduction in domestic gasoline consumption is unlikely by itself to significantly 
affect domestic crude oil production, gasoline refining, or U.S. exports and imports of crude 
petroleum. 

6.2.4.4 Estimates of Energy Security Benefits Used to Evaluate the Proposal 

Table 6-25 reports the per-barrel estimates of external costs from potential oil price shocks this 
analysis uses to estimate the decrease in their total value likely to result from increasing CAFE 
standards.  They depend in part on projected future oil prices, the elasticities of consumption 
with respect to price, income, and U.S. GDP.  Over the last decade, all of these factors have 
evolved in directions that would reduce the magnitude of the oil security premium.782  
Specifically, the global petroleum prices projected in EIA’s Annual Energy Outlook have fallen 
in real dollars relative to price projections from the early 2010’s.  Projections of U.S. petroleum 
consumption and imports have similarly declined, as have total petroleum expenditures as a 
percentage of U.S. GDP.  The values used to support this analysis are sourced from a recent 
paper by Brown.783  Brown updates the underlying parameters used to estimate the oil security 
premium and finds a range of $0.60 – $3.45 per barrel of imported oil, with a mean of $1.26 per 
barrel.  The study determines that the U.S. is less much less sensitive to oil price shocks than 
earlier estimates imply.784  The values used in today’s analysis reflect that conclusion. 

 
782 The costs reported in Table 6-25 also depend on the probabilities or expected frequencies of supply interruptions 
or sudden price shocks of different sizes and durations.  The most recent reassessment of the probabilities on which 
these estimates are based (which were originally developed in 2005) was conducted in 2016; see Beccue, Phillip C. 
and Hillard G. Huntington, An Updated Assessment of Oil Market Disruption Risks - Final Report EMF SR 10, 
Stanford University Energy Modeling Forum (February 5, 2016) available at 
https://emf.stanford.edu/publications/emf-sr-10-updated-assessment-oil-market-disruption-risks.  
783 See Brown, Stephen P.A., New estimates of the security costs of U.S. oil consumption, Energy Policy, Volume 
13, 2018, Pages 171-192. 
784 Another report by Krupnick, et.  al, similarly concludes that the macroeconomic cost of oil price shocks has 
diminished over time and that the oil security premium is lower than the majority of the existing literature would 
suggest.  See Krupnick, Alan, Morgenstern, Richard, Balke, Nathan, Brown, Stephen P.A., Herrera, Ana Maria, and 
Mohan, Shashank, “Oil Supply Shocks, US Gross Domestic Product, and the Oil Security Premium,” Resources for 
the Future, November 2017, available at: https://media.rff.org/documents/RFF-Rpt-OilSecurity.pdf (last accessed 
01/2020).  
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Table 6-25 – Expected Cost of Petroleum Price Shocks 

Year 
Oil Security 

Premium 
(2018$/Barrel)785 

2015 1.21 
2016 1.28 
2017 1.3 
2018 1.25 
2019 1.28 
2020 1.38 
2021 1.35 
2022 1.43 
2023 1.43 
2024 1.48 
2025 1.5 
2026 1.6 
2027 1.58 
2028 1.62 
2029 1.69 
2030 1.79 
2031 1.89 
2032 1.89 
2033 1.89 
2034 1.99 
2035 1.96 
2036 2.04 
2037 2.12 
2038 2.16 
2039 2.19 
2040 2.23 
2041 2.26 
2042 2.3 
2043 2.34 
2044 2.37 
2045 2.41 
2046 2.45 
2047 2.49 
2048 2.53 
2049 2.57 
2050 2.61 

 
Because they are expressed per barrel of petroleum that is imported (either in already-refined 
form as gasoline, or as crude petroleum to be refined domestically), applying these estimates 



 

requires the agency to project any changes in U.S. petroleum imports that are likely to result 
from the higher level of fuel required under the proposed standards.  As discussed above in 
Chapter 6.2.4.3, DOT has elected to retain its previous assumptions that 50 percent of any 
decrease in fuel consumption attributable to higher CAFE standards will be reflected in lower 
gasoline imports, while 90 percent of domestic gasoline refining would continue to rely on 
imported petroleum as a feedstock.  As a consequence, the oil security premiums shown in Table 
6-25 are considered to be an external benefit associated with 95 percent of the decrease in 
gasoline consumption projected to result from the proposed standards.786  

6.2.4.5 Potential Effects of Fuel Consumption on Petroleum Imports and U.S. Military 
Spending  

A third potential effect of decreasing U.S. demand for petroleum is a decrease in U.S. military 
spending to secure the supply of oil imports from potentially unstable regions of the world and 
protect against their interruption.  If a decrease in fuel consumption that results from adopting 
higher CAFE standards leads to lower military spending to protect oil supplies, this decrease in 
outlays would represent an additional external benefit of NHTSA’s action.  Such benefits could 
also include decreased costs to maintain the U.S. Strategic Petroleum Reserve (SPR), because it 
is intended to cushion the U.S. economy against disruptions in the supply of imported oil or 
sudden increases in the global price of oil.  

Some previous commenters have argued that U.S. military expenditures are uniquely attributable 
to securing U.S. supplies of petroleum from unstable regions of the globe – the Middle East, in 
particular.  However, such a perspective appears to confuse those costs with the marginal impact 
of changes in oil consumption of the scale likely to result from this proposal  on U.S. military 
activity and its costs.  Incrementally reducing domestic petroleum consumption does not seem 
likely to significantly decrease military spending to protect those resources and ensure their safe 
and reliable distribution throughout the world.  An analysis by Crane et al. stated, “our analysis 
addresses the incremental cost to the defense budget of defending the production and transit of 
oil.  It does not argue that a partial reduction of the U.S. dependence on imported oil would yield 
a proportional reduction in U.S. spending that is focused on this mission.  The effect on military 
cost from such changes in petroleum use would be minimal.”787  NHTSA thus does not believe 
that any incremental reduction in petroleum consumption that may result from proposed CAFE 
standards will influence whatever U.S. defense spending might be uniquely ascribed to 
protecting the global oil network.   

Eliminating petroleum imports (to both the U.S. and its national security allies) entirely might 
permit the Nation to scale back its military presence in oil-supplying regions of the globe, but 
only to the extent that maintaining this presence is necessitated by narrow concerns for oil 
production rather than broader geopolitical considerations.  There is little evidence that U.S. 

 
785 In order to convert per-barrel costs into per-gallon costs, we make the common assumption (used throughout the 
analysis) that each barrel of petroleum produces 42 gallons of motor gasoline. 
786 The 95 percent figure  calculates at 50 percent plus 90 percent of the remaining 50 percent, or 50 percent plus 45 
percent.  
787 Crane, K., A. Goldthau, M. Toman, T. Light, S. E. Johnson, A. Nader, A. Rabasa, & H. Dogo, Imported Oil and 
U.S. National Security, Santa Monica, CA, The RAND Corporation (2009) available at 
https://www.rand.org/pubs/monographs/MG838.html.  
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military activity and spending in those regions have varied over history in response to 
fluctuations in the Nation’s oil imports or are likely to do so over the future period spanned by 
this analysis.  Figure 6-11 shows that military spending as a share of total U.S. economic activity 
has gradually declined over the past several decades, and that any temporary—although 
occasionally major—reversals of this longer-term decline have been closely associated with U.S. 
foreign policy initiatives or overseas wars. 

 
Figure 6-11 – Historical Variation in U.S. Military Spending (Percent of U.S. GDP) 

Figure 6-12 superimposes U.S. petroleum consumption and imports on the history of military 
spending shown in the previous figure.  Doing so shows that variation in U.S military spending 
throughout this period has had little association with the historical pattern of domestic petroleum 
purchases, changes in which instead primarily reflected the major increases in global petroleum 
prices that occurred in 1978-79, 2008, and 2012-13.  More important, Figure 6-12 also shows 
that U.S. military spending varied almost completely independently of the nation’s imports of 
petroleum over this period.  This history suggests that U.S. military activities—even in regions 
of the world that have historically represented vital sources of oil imports—serve a far broader 
range of security and foreign policy objectives than simply protecting oil supplies.  Thus, 
reducing the nation’s consumption or imports of petroleum is unlikely by itself to lead to 
reductions in military spending.  

 



 

 

Figure 6-12 – Historical Variation in U.S. Military Spending in Relation to U.S. Petroleum Consumption and 
Imports (Percent of U.S. GDP) 

Further, the agency was unable to find any record of the U.S. government attempting to calibrate 
U.S. military expenditures, force levels, or deployments to any measure of the Nation’s 
petroleum use and the fraction supplied by imports, or to an assessment of the potential 
economic consequences of hostilities in oil-supplying regions of the world that could disrupt the 
global market.788  Instead, changes in U.S. force levels, deployments, and spending in such 
regions appear to have been governed by purposeful foreign policy initiatives, unforeseen 
political events, and emerging security threats, rather than by shifts in U.S. oil consumption or 
imports.789  

 
788 Crane et al. (2009) analyzed reductions in U.S. forces and associated cost savings that could be achieved if oil 
security were no longer a consideration in military planning, and disagree with this assessment.  After reviewing 
recent allocations of budget resources, they concluded that “the United States does include the security of oil 
supplies and global transit of oil as a prominent element in its force planning” at p. 74 (emphasis added).  
Nevertheless, their detailed analysis of individual budget categories estimated that even eliminating the protection of 
foreign oil supplies completely as a military mission would reduce the current U.S. defense budget by approximately 
12-15 percent.  See Crane, K., A. Goldthau, M. Toman, T. Light, S. E. Johnson, A. Nader, A. Rabasa, & H. Dogo, 
Imported Oil and U.S. National Security., Santa Monica, CA, The RAND Corporation (2009) available at 
https://www.rand.org/pubs/monographs/MG838.html.  
789 Crane et al. (2009) also acknowledge the difficulty of reliably allocating U.S. military spending by specific 
mission or objective, such as protecting foreign oil supplies.  Moore et al. (1997) conclude that protecting oil 
supplies cannot be distinguished reliably from other strategic objectives of U.S. military activity, so that no clearly 
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The agency thus concludes that U.S. military activity and expenditures are unlikely to be affected 
by even relatively large changes in consumption of petroleum-derived fuels by light duty 
vehicles.  Certainly, the historical record offers no suggestion that U.S. military spending is 
likely to adjust significantly in response to the decrease in domestic petroleum use that would 
result from increasing CAFE standards. 

Nevertheless, it is possible that more detailed analysis of military spending might identify some 
relationship to historical variation in U.S. petroleum consumption or imports.  A number of 
studies have attempted to isolate the fraction of total U.S. military spending that is attributable to 
protecting overseas oil supplies.790  These efforts have produced varying estimates of how much 
it might be reduced if the U.S. no longer had any strategic interest in protecting global oil 
supplies.  However, none has identified an estimate of spending that is likely to vary 
incrementally in response to changes in U.S. petroleum consumption or imports.  

Nor have any of these studies tracked changes in spending that can be attributed to protecting 
U.S. interests in foreign oil supplies over a prolonged period, so they have been unable to 
examine whether their estimates of such spending vary in response to fluctuations in domestic 
petroleum consumption or imports.  The agency concludes from this review of research that U.S. 
military commitments in the Persian Gulf and other oil-producing regions of the world contribute 
to worldwide economic and political stability, and insofar as the costs of these commitments are 
attributable to petroleum use, they are attributable to oil consumption throughout the world, 
rather than simply U.S. oil consumption or imports.  It is thus unlikely that military spending 
would decline in response to any decrease in U.S. imports, or consumption, that did result from 
the proposed standards.  As a consequence, the agency’s evaluation of this proposed increase in 
CAFE standards assumes that there would be no reduction in government spending to support 
U.S. military activities in response to the anticipated reduction in gasoline use and U.S. 
petroleum consumption.  Similarly, while the ideal size of the Strategic Petroleum Reserve from 
the standpoint of its potential stabilizing influence on global oil prices may be related to the level 

 
separable component of military spending to protect oil flows can be identified, and its value is likely to be near 
zero.  Similarly, the U.S. Council on Foreign Relations (2015) takes the view that significant foreign policy missions 
will remain over the foreseeable future even without any imperative to secure petroleum imports.  A dissenting view 
is that of Stern (2010), who argues that other policy concerns in the Persian Gulf derive from U.S. interests in 
securing oil supplies, or from other nations’ reactions to U.S. policies that attempt to protect its oil supplies.  See 
Crane, K., A. Goldthau, M. Toman, T. Light, S.E. Johnson, A. Nader, A. Rabasa, and H. Dogo, Imported Oil and 
U.S. National Security., Santa Monica, CA, The RAND Corporation (2009) available at 
https://www.rand.org/pubs/monographs/MG838.html; Moore, John L., E.J. Carl, C. Behrens, and John E. Blodgett, 
“Oil Imports - An Overview and Update of Economic and Security Effects,” Congressional Research Service,  
Environment and Natural Resources Policy Division, Report 98, No. 1 (1997), pp. 1-14; Council on Foreign 
Relations, “Automobile Fuel Economy Standards in a Lower-Oil-Price World,” November 2015; and Stern, Roger J. 
“United States cost of military force projection in the Persian Gulf, 1976–2007,” Energy Policy 38, no. 6 (June 
2010), pp. 2816-25, https://www.sciencedirect.com/science/article/pii/S0301421510000194?via%3Dihub.  
790 These include Copulos, M R. “America’s Achilles Heel - The Hidden Costs of Imported Oil,” Alexandria VA - 
The National Defense Council Foundation, September 2003 - 1-153, available at 
http://ndcf.dyndns.org/ndcf/energy/NDCFHiddenCostsofImported_Oil.pdf; Copulos, M R. “The Hidden Cost of 
Imported Oil--An Update.” The National Defense Council Foundation (2007) available at 
http://ndcf.dyndns.org/ndcf/energy/NDCF_Hidden_Cost_2006_summary_paper.pdf; Delucchi, Mark A. & James J. 
Murphy. “US military expenditures to protect the use of Persian Gulf oil for motor vehicles,” Energy Policy 36, no. 
6 (June 2008), pp. 2253-64; and National Research Council Committee on Transitions to Alternative Vehicles and 
Fuels, Transitions to Alternative Vehicles and Fuels (2013). 
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of U.S. petroleum consumption or imports, its actual size has not appeared to vary in response to 
either of those measures.  The budgetary costs for maintaining the SPR are thus similar to U.S. 
military spending in that, while they are not reflected in the market price for oil (and thus do not 
enter consumers’ decisions about how much to use), they do not appear to have varied in 
response to changes in domestic petroleum consumption or imports.  As a consequence, 
NHTSA’s analysis of this proposal does not include any reduction in the cost to maintain a 
(possibly) smaller SPR as an external benefit of the expected reduction in gasoline and petroleum 
consumption.  This view aligns with the conclusions of most recent studies of military-related 
costs to protect U.S. oil imports, which generally conclude that savings in military spending are 
unlikely to result from incremental reductions in U.S. consumption of petroleum products on the 
scale of those that would resulting from adopting higher CAFE standards.  

6.2.4.6 Emerging Energy Security Considerations 

As discussed above, energy security has traditionally referred to our ability to reliably acquire 
petroleum in sufficient quantities to meet our demand, and to do so at an acceptable cost.  
However, as the number of electric vehicles on the road continues to increase, energy security 
may also soon refer to our ability to supply the amount of electricity to meet demand from these 
vehicles.  While nearly all electricity in the U.S. is generated through the conversion of domestic 
energy sources, the electric vehicles also require sophisticated batteries in order to use that 
electricity.  Currently, vehicle batteries rely on raw materials that are either scarce or expensive 
and environmentally destructive to obtain and convert into usable material. 

Most vehicle electrification is enabled by lithium-ion batteries.  Lithium-ion battery global 
production chains have several phases:  sourcing (mining/extraction); processing/refining; cell 
manufacturing; battery manufacturing; installation of batteries in an EV; and recycling.791  
Because lithium-ion battery materials have a wide global diversity of origin, accessing them can 
pose varying geopolitical challenges.792  The U.S. International Trade Commission recently 
summarized 2018 data from the U.S. Geological Survey on the production/sourcing of the four 
key lithium-ion battery materials as shown in Table 6-26.  

 
791 Scott, Sarah, and Robert Ireland, “Lithium-Ion Battery Materials for Electric Vehicles and their Global Value 
Chains,” Office of Industries Working Paper ID-068, U.S. International Trade Commission, June 2020, at 7.  
Available at 
https://www.usitc.gov/publications/332/working_papers/gvc_overview_scott_ireland_508_final_061120.pdf and in 
the docket for this rulemaking, NHTSA-2021-0053. 
792 Id. at 8. 



 

Table 6-26 –  Lithium-ion Battery Materials Mining Production, 2018793 

Lithium-ion Battery 
Material Ores and 

Concentrates 

Countries with Largest Mining 
Production (share of global total) 

U.S. Mining 
Production (share of 

global total) 

Lithium Australia (60 percent), Chile (19 percent), 
China (9 percent), Argentina (7 percent) 

USITC staff estimates 
less than 1 percent 

Cobalt 
Democratic Republic of Congo (64 

percent), Cuba (4 percent), Russia (4 
percent), Australia (3 percent) 

Less than 0.5 percent 

Graphite (natural) China (68 percent), Brazil (10 percent), 
India (4 percent) 0 percent 

Nickel Indonesia (24 percent), Philippines (15 
percent), Russia (9 percent) Less than 1 percent 

 
Of these sources, the USITC notes that while “lithium has generally not faced political instability 
risks,” “because of the [Democratic Republic of Congo’s] ongoing political instability, as well as 
poor labor conditions, sourcing cobalt faces significant geopolitical challenges.”794  Nickel is 
also used extensively in stainless steel production, and much of what is produced in Indonesia 
and the Philippines is exported to China for stainless steel manufacturing.795  Obtaining graphite 
for batteries does not currently pose geopolitical obstacles, but the USITC notes that Turkey has 
great potential to become a large graphite producer, which would make stability there a larger 
concern.796  However, as Table 6-26 illustrates, the U.S. is currently at a disadvantage with 
respect to domestic sources and capacity of some materials critical for producing electric vehicle 
batteries. 

For materials processing and refining, China is the largest importer of unprocessed lithium, 
which it then transforms into processed or refined lithium,797 the leading producer of refined 
cobalt (with Finland a distant second),798 one of the leading producers of primary nickel products 
(along with Indonesia, Japan, Russia, and Canada) and one of the leading refiners of nickel into 
nickel sulfate, the chemical compound used for cathodes in lithium-ion batteries,799 and one of 
the leading processors of graphite intended for use in lithium-ion batteries as well.800  In all 
regions, increasing attention is being given to vertical integration in the lithium-ion battery 
industry from material extraction, mining and refining, battery materials, cell production, battery 
systems, reuse, and recycling.  The United States is lagging in upstream capacity; although the 
U.S. has some domestic lithium deposits, it has very little capacity in mining and refining any of 

 
793 Id., citing U.S. Geological Survey, Mineral Commodity Summaries, Feb. 2019. 
794 Id. at 8, 9. 
795 Id. at 9. 
796 Id. 
797 Id. 
798 Id. at 10. 
799 Id. 
800 Id. 



 

the key raw materials.  However, there can be benefits and drawbacks in terms of environmental 
consequences associated with increased mining, refining, and battery production. 

President Biden has already issued an Executive Order on “America’s Supply Chains,” aiming to 
strengthen the resilience of America’s supply chains, including those for automotive batteries.801  
Reports are to be developed within one year of issuance of the Executive Order, and the agency 
will monitor these findings as they develop.  However, obstacles to increasing domestic capacity 
for these critical materials have already emerged.  The proposed development of the Rhyolite 
Ridge lithium deposits in Nevada, one of the most significant known deposits in the U.S., has 
been complicated by the discovery of an indigenous species of buckwheat, Tiehm’s buckwheat 
flower.  The Center for Biological Diversity (CBD) opposed the development of the mine, and 
issued an emergency petition to the U.S. Fish and Wildlife Service to designate the Tiehm’s 
buckwheat an endangered species.  This designation would provide it additional protections 
under the Endangered Species Act and further complicate permitting of the proposed lithium 
mine.  CBD’s Patrick Donnelly was quoted as saying, “The Biden administration is at a 
crossroads and the Tiehm’s buckwheat is a symbol of our times.”  On June 4, 2021, Tiehm’s 
buckwheat flower was designated an endangered species.802    

China and the EU are also major consumers of lithium-ion batteries, along with Japan, Korea, 
and others.  Lithium-ion batteries are used not only in light-duty vehicles, but in many ubiquitous 
consumer goods, and are likely to be used eventually in other forms of transportation as well.  
Thus, securing sufficient batteries to enable large-scale shifts to electrification in the U.S. light-
duty vehicle fleet may face new challenges as vehicle companies compete with other new 
sectors.  Our ability to make a transition to electric vehicles may increasingly depend upon our 
ability to develop domestic sources of critical raw materials and production capacity.  The 
agency will continue to monitor these issues going forward and determine whether access to 
these materials constitutes a new form of energy security for which future analyses must account. 

6.2.5 Changes in Labor Utilization 

Changes in vehicle prices and fuel costs resulting from CAFE technologies will affect  new 
vehicle sales, which will in turn affect employment associated with those sales.  Conversely, 
production of new technologies used to improve fuel economy will create new demand for 
production.  NHTSA’s analysis includes estimates of automobile industry employment under 
each of the regulatory alternatives. 

The following sections describe the assumptions, data and calculations used to estimate the 
proposal’s impact on labor utilization.  Chapter 6.2.5.1 characterizes the baseline and describes 
the data used to obtain the relevant labor estimates for the CAFE Model inputs.  Chapter 6.2.5.2 
describes how NHTSA estimates labor within the three employment categories included in the 
analysis—dealership labor, assembly labor, and labor associated with additional fuel saving 
technologies.  Chapter 6.2.5.2.4 contains a description of the calculations done to integrate the 
labor estimates into the CAFE Model. 

 
801 Executive Order 14017, “America’s Supply Chains,” Feb. 24, 2021.  86 FR 11849 (Mar. 1, 2021). 
802 Department of the Interior, U.S. Fish and Wildlife Service, Notification of Finding on a Petition to List the 
Tiehm's Buckwheat as Threatened or Endangered.  86 FR 29975 (Jun. 4, 2021). 



 

6.2.5.1 Labor Utilization Assumptions and Data Description 

The analysis considers the direct labor effects that the CAFE standards have across the 
automotive sector.  The facets of the automotive labor market considered include (1) dealership 
labor related to new light-duty vehicle unit sales; (2) assembly labor for vehicles, engines, and 
transmissions related to new vehicle unit sales; and (3) labor related to mandated additional fuel 
savings technologies, accounting for new vehicle unit sales.  The labor utilization analysis is 
intentionally narrow in its focus and does not represent an attempt to quantify the overall labor or 
economic effects of this rulemaking. 

All labor effects are estimated and reported at a national level, in person-years, assuming 2,000 
hours of labor per person-year.803  These labor hours are not converted into monetized values 
because we assume that the labor costs are included into a new vehicle’s purchasing price.  The 
analysis estimates labor effects from the forecasted CAFE Model technology costs and from 
review of automotive labor for the MY 2020 fleet.  NHTSA uses information about the locations 
of vehicle assembly, engine assembly, and transmission assembly, and the percent of U.S. 
content of vehicles collected from American Automotive Labeling Act (AALA) submissions for 
each vehicle in the reference fleet.804  The analysis assumes the portion of parts that are made in 
the U.S. will remain constant for each vehicle as manufacturers add fuel-savings technologies.  
This should not be misconstrued as a prediction that the percentage of U.S. made parts—and by 
extension U.S. labor— will remain constant in actuality, but rather that the agency does not have 
a clear basis to project where future productions may shift. 

From this foundation, the CAFE Model estimates automotive labor effects after estimating how 
manufacturers could add fuel economy technology and then estimating impacts on future sales of 
passenger and light trucks.  The model estimates sales in response to the different regulatory 
alternatives, by considering changes in new vehicle prices and new vehicle fuel economy 
levels.805  As vehicle prices rise and fuel consumption falls, we expect vehicle sales to be 
affected.  For this analysis, we assume that if manufacturers sell fewer vehicles, the 
manufacturers may need less labor to produce the vehicles and dealers may need less labor to sell 
the vehicles.  However, as manufacturers add equipment to each new vehicle, the industry will 
require labor resources to develop, sell, and produce additional fuel-saving technologies.806  We 
also account for the possibility that new standards could shift the relative shares of passenger 
cars and light trucks in the overall fleet (see Chapter 4.2.1.3).  Since the production of different 
vehicles involves different amounts of labor, this shift impacts the quantity of estimated labor.  
We take into account the anticipated changes in vehicle sales, shifts in the mix of passenger cars 
and light trucks, and the addition of fuel-savings technologies that result from the regulation. 

For this analysis, NHTSA assumes that some observations about the production of MY 2020 
vehicles will carry forward into the future.  We further assume that assembly labor hours per unit 
will remain at estimated MY 2020 levels for vehicles, engines, and transmissions, and that the 

 
803 The agencies recognize a few local production facilities may contribute meaningfully to local economies, but the 
analysis reports only on national effects. 
804 49 CFR Part 583. 
805 See Chapter 4.2.1.   
806 For the purposes of this analysis, NHTSA assumes a linear relationship between labor and production volumes. 



 

factor between direct assembly labor and parts production labor will remain the same.  NHTSA 
makes these simplifying assumptions for modeling purposes and recognizes that they may not 
reflect actual automotive practices.  When considering shifts from one technology to another, we 
assume that revenue per employee from suppliers and original equipment manufacturers will 
remain in line with MY 2020 levels, even as manufacturers add fuel-saving technologies and 
experience cost reductions from learning. 

NHTSA focuses this analysis on automotive labor because adjacent employment factors and 
consumer spending factors for other goods and services are uncertain and difficult to predict.  
We do not consider how direct labor changes may affect the macro economy and potentially 
change employment in adjacent industries.  For instance, we do not consider possible labor 
changes in vehicle maintenance and repair, nor does it consider changes in labor at retail gas 
stations.  We also do not consider possible labor changes due to raw material production, such as 
production of aluminum, steel, copper, and lithium, nor does NHTSA consider possible labor 
impacts due to changes in production of oil and gas, ethanol, and electricity. 

Finally, NHTSA makes no assumptions regarding part-time-level of employment in the broader 
economy and the availability of human resources to fill positions.  When the economy is at full 
employment, a fuel economy regulation is unlikely to have much impact on net overall U.S. 
employment; instead, labor would primarily be shifted from one sector to another.  These shifts 
in employment impose an opportunity cost on society, as regulation diverts workers from other 
market-based activities in the economy.  In this situation, any effects on net employment are 
likely to be transitory as workers change jobs (e.g., some workers may need to be retrained or 
require time to search for new jobs, while short-term labor shortages in some sectors or regions 
could result in firms bidding up wages to attract workers).  On the other hand, if a regulation 
comes into effect during a period of less-than-full employment, a change in labor demand due to 
regulation would affect net overall U.S. employment because the labor market is not in 
equilibrium.  Schmalensee and Stavins point out that net positive employment effects are 
possible in the near term when the economy is at less than full employment due to the potential 
hiring of idle labor resources by the regulated sector to meet new requirements (e.g., to install 
new equipment) and new economic activity in sectors related to the regulated sector longer 
run.807  However, the net effect on employment in the long run is more difficult to predict and 
will depend on the way in which the related industries respond to regulatory requirements.  For 
that reason, we do not include multiplier effects but instead focus on labor impacts in the most 
directly affected industries, which would face the most concentrated labor impacts. 

The data used for these calculations include the National Automotive Dealers Association 
(NADA) annual report808 and AALA reports, which are available on the NHTSA website.809  
The NADA report includes information regarding dealership employment related to new light 
duty vehicle sales, which serves as the basis for estimating dealership labor hours.  The AALA 
reports list the passenger vehicles labeled with their percent U.S./Canadian parts content, the 

 
807 Schmalensee, Richard, and Robert N. Stavins. “A Guide to Economic and Policy Analysis of EPA’s Transport 
Rule.” White paper commissioned by Excelon Corporation, March 2011 (Docket EPA-HQ-OAR-2010-0799-0676). 
808 National Automotive Dealers Association. (2016). NADA Data 2016: Annual Financial Profile of America’s 
Franchised New-Car Dealerships, available at https://www.nada.org/2016NADAdata/ . 
809 https://www.nhtsa.gov/part-583-american-automobile-labeling-act-reports . 
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source of their engine and transmission, and the location of final assembly.  These values serve 
as the basis for estimating final assembly and parts production labor.   

6.2.5.2 Estimating Labor for Fuel Economy Technologies, Vehicle Components, Final 
Assembly, and Retailers 

The following sections discuss NHTSA’s approaches to estimating the individual factors related 
to dealership labor, final assembly labor and parts production, and fuel economy technology 
labor. 

6.2.5.2.1 Dealership Labor 

The labor utilization analysis evaluates dealership labor related to new light-duty vehicle sales 
and estimates the labor hours per new vehicle sold at dealerships.  For the analysis, NHTSA 
considers changes in dealership labor related to sales, finance, insurance, and management.  
NHTSA does not include maintenance, repair, and parts department labor,810 as their effect on 
new car sales is expected to be limited. 

To estimate the labor hours dealerships spend per new vehicle sold, NHTSA uses data from the 
NADA annual report, which provides franchise dealer employment by department and function.   

We calculate the average labor hours per new vehicle sold by using several values provided in 
the NADA annual report, including the total number of employees at dealerships, the 
percentages of employees involved in sales, the percentage of supervisors, new and total sales 
values, and the number of new vehicles sold in dealerships.  We estimate that slightly less than 
20 percent of dealership employees’ work relates to new vehicle sales (the remaining 
approximately 80 percent of work is related to service, parts, and used car sales).  Using these 
values, we estimate the number of employees involved with new vehicle sales, either as 
salespeople or in supervisory positions.  Equation 6-12 shows how the final labor hours per 
vehicle value is calculated. 

𝑖𝑖𝑎𝑎𝑏𝑏𝑃𝑃𝑢𝑢 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 𝐹𝐹𝑒𝑒𝑢𝑢 𝑃𝑃𝑒𝑒𝑤𝑤 𝐴𝐴𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝐶𝐶𝑃𝑃𝑖𝑖𝑑𝑑 =
𝑎𝑎𝑃𝑃𝑃𝑃𝑢𝑢𝑎𝑎𝑖𝑖 𝑖𝑖𝑎𝑎𝑏𝑏𝑃𝑃𝑢𝑢 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 ∗ 𝑃𝑃𝑒𝑒𝑤𝑤 𝐴𝐴𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝐶𝐶𝑎𝑎𝑖𝑖𝑒𝑒𝐶𝐶 𝐴𝐴𝑃𝑃𝑏𝑏𝐶𝐶

𝑃𝑃𝑒𝑒𝑤𝑤 𝐴𝐴𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒𝐶𝐶 𝐶𝐶𝑃𝑃𝑖𝑖𝑑𝑑
 

 
Where: 
Annual labor hours = hours of labor assumed per employee (2,000) 
New vehicle sales jobs = number of employees estimated to be involved with new vehicle 
sales, in salesperson or supervisory positions 
New vehicles sold = total number of new vehicles sold in dealerships 

Equation 6-12 – Calculation of Labor Hours per New Vehicle Sold 

We estimate that on average, dealership employees working on new vehicle sales labor for 27.8 
hours per new vehicle sold.  This labor hours per new vehicle value can be found in the Market 

 
810 These are other labor components reported by the NADA’s reports.  For instance, a dealership might have a 
department dedicated to vehicle parts and body shop services. 



 

Data file.  For the CAFE Model’s total jobs outputs, dealership labor scales directly with sales.  
See Chapter 6.2.5.2.4 for further discussion of these outputs. 

6.2.5.2.2 Final Assembly Labor and Parts Production 

As new vehicle sales increase or decrease, the amount of labor required to assemble parts and 
vehicles changes accordingly.  NHTSA evaluates how the quantity of assembly labor and parts 
production labor will increase or decrease in the future as new vehicle unit sales increase or 
decrease.  As a result of the analysis, manufacturing and assembly jobs scale directly with new 
vehicle unit sales, adjusted for origin of manufacturer.  As part of this analysis, NHTSA 
identifies specific assembly locations for final vehicle assembly, engine assembly, and 
transmission assembly for each MY 2020 vehicle, to determine the number of assembly labor 
hours relevant to U.S. employment.  In some cases, manufacturers assemble products in more 
than one location, and the analysis identifies such products and considers parallel production in 
the labor analysis.  For context, Figure 6-13 shows the average percent of U.S. (and Canadian) 
content, weighted by sales, of passenger cars and light trucks in MY 2020. 

 

 
Figure 6-13 – Sales Weighted Percent U.S. Parts Content by Regulatory Class (MY 2020) 

We estimate average direct assembly labor per vehicle (30 hours), per engine (four hours), and 
per transmission (five hours), based on a sample of U.S. assembly plant employment and 
production statistics and other publicly available information.  NHTSA uses the AALA reports 
described in Chapter 6.2.5.1 to determine the assembly location of the final vehicle, engine, and 
transmission.811   

NHTSA uses the assembly locations and the averages for labor per vehicle to estimate U.S. 
assembly labor hours for each vehicle in the Market Data file.  U.S. assembly labor hours per 
vehicle range from as high as 39 hours if the manufacturer assembles the vehicle, engine, and 
transmission at U.S. plants, to as low as zero hours if the manufacturer imports the vehicle, 

 
811 Part 583 American Automobile Labeling Act Reports | NHTSA . 

https://www.nhtsa.gov/part-583-american-automobile-labeling-act-reports


 

engine, and transmission.  Equation 6-13 shows the how NHTSA calculates the U.S. assembly 
employment hours associated with each vehicle in the Market Data file. 

𝑃𝑃. 𝑆𝑆.𝑇𝑇𝐶𝐶𝐶𝐶𝑒𝑒𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐 𝑇𝑇𝑃𝑃𝐹𝐹𝑖𝑖𝑃𝑃𝑐𝑐𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶
= (𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑇𝑇𝐶𝐶𝐶𝐶𝑒𝑒𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐 𝑖𝑖𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 ∗ 30) + (𝑇𝑇𝑃𝑃𝑔𝑔𝑢𝑢𝑃𝑃𝑒𝑒 𝑇𝑇𝐶𝐶𝐶𝐶𝑒𝑒𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐 𝑖𝑖𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 ∗ 4)
+ (𝑇𝑇𝑢𝑢𝑎𝑎𝑃𝑃𝐶𝐶𝑃𝑃𝑢𝑢𝐶𝐶𝐶𝐶𝑢𝑢𝑃𝑃𝑃𝑃 𝑇𝑇𝐶𝐶𝐶𝐶𝑒𝑒𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐 𝑖𝑖𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 ∗ 5) 

Where:  
Vehicle assembly location = Portion of U.S. content, 1 = fully U.S. 
Engine assembly location = Portion of U.S. content, 1 = fully U.S. 
Transmission assembly location = Portion of U.S. content, 1 = fully U.S. 

Equation 6-13 – Calculation of U.S. Assembly Employment Hours 

The analysis also considers labor for parts production.  We surveyed motor vehicle and 
equipment manufacturing labor statistics from the U.S. Census Bureau, the Bureau of Labor 
Statistics, and other publicly available sources.  We found that the historical average ratio of 
vehicle assembly manufacturing employment to employment for total motor vehicle and 
equipment manufacturing for new vehicles was roughly constant over the period from 2001 
through 2013, at a ratio of 5.26.812  Observations from 2001-2013 included many combinations 
of technologies and technology trends, and many economic conditions, yet the ratio remained 
about the same over time.  Accordingly, we scaled up estimated U.S. assembly labor hours by a 
factor of 5.26 to consider U.S. parts production labor in addition to assembly labor for each 
vehicle.  The estimates for vehicle assembly labor and parts production labor for each vehicle 
scaled up or down as unit sales scaled up or down over time in the CAFE Model. 

6.2.5.2.3 Fuel Economy Technology Labor 

As manufacturers spend additional dollars on fuel-saving technologies, parts suppliers and 
manufacturers require labor to bring those technologies to market.  Manufacturers may add, shift, 
or replace employees in ways that are difficult for the agencies to predict.  However, it is 
expected that the revenue per labor hour at original equipment manufacturers (OEMs) and 
suppliers will remain about the same as in MY 2020 even as manufacturers include additional 
fuel-saving technology.  To estimate the average revenue per labor hour at OEMs and suppliers, 
the analysis looked at financial reports from publicly traded automotive businesses.813  Based on 
recent figures, NHTSA estimates that OEMs will add one labor year per each $633,066 
increment in revenue and that suppliers will add one labor year per $247,648 in revenue.814 

NHTSA applies these global estimates to all revenues, and the share of U.S. content is applied as 
a later adjustment.815  NHTSA assumes that these ratios will remain constant for all technologies 

 
812 NAICS Code 3361, 3363. 
813 The analysis considered suppliers that won the Automotive News “PACE Award” from 2013-2017, covering 
more than 40 suppliers, more than 30 of which are publicly traded companies.  Automotive News gives “PACE 
Awards” to innovative manufacturers, with most recent winners earning awards for new fuel-savings technologies. 
814 The analysis assumed incremental OEM revenue as the retail price equivalent for technologies, adjusting for 
changes in sales volume.  The analysis assumed incremental supplier revenue as the technology cost for 
technologies before retail price equivalent mark-up, adjusting for changes in sales volume.  
815 U.S. content information is found in the AALA reports discussed in Chapter 6.2.5.1. 



 

rather than that the increased labor costs would be shifted toward foreign countries.  However, 
NHTSA acknowledges that this simplifying assumption might not always hold true.  For 
instance, domestic manufacturers may react to increased labor costs by searching for lower-cost 
labor in other countries. 

The additional labor hours associated with fuel-saving technology are calculated by the CAFE 
Model based on the values seen in Equation 6-14 and reported as part of the total labor hour 
outputs (see the Vehicles Report). 

𝐹𝐹𝑢𝑢𝑒𝑒𝑖𝑖 𝑒𝑒𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 𝑃𝑃𝑒𝑒𝑐𝑐ℎ 𝑖𝑖𝑎𝑎𝑏𝑏𝑃𝑃𝑢𝑢 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶

= �
𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑃𝑃𝑒𝑒𝑐𝑐ℎ 𝑐𝑐𝑃𝑃𝐶𝐶𝑃𝑃
𝐹𝐹𝑇𝑇𝑀𝑀 𝑢𝑢𝑒𝑒𝐴𝐴𝑒𝑒𝑃𝑃𝑢𝑢𝑒𝑒

+

𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑃𝑃𝑒𝑒𝑐𝑐ℎ 𝑐𝑐𝑃𝑃𝐶𝐶𝑃𝑃
𝑆𝑆𝑢𝑢𝐹𝐹𝐹𝐹𝑖𝑖𝑢𝑢𝑒𝑒𝑢𝑢 𝑢𝑢𝑒𝑒𝐴𝐴𝑒𝑒𝑃𝑃𝑢𝑢𝑒𝑒

𝑇𝑇𝐹𝐹𝑇𝑇
� ∗ 𝐹𝐹𝑒𝑒𝑢𝑢𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃 𝑃𝑃𝑆𝑆 𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃

∗ 𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑎𝑎𝑖𝑖 𝑖𝑖𝑎𝑎𝑏𝑏𝑃𝑃𝑢𝑢 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 
  

Where: 
Fuel economy tech labor hours = labor hours spent on additional fuel-saving 
technologies (for both OEMs and suppliers) 
Vehicle tech cost = cost of technology for each vehicle in the analysis, reported in the 
CAFE Model outputs 
OEM revenue = increment in OEM revenue estimated to correspond to the addition of 
one labor year  
Supplier revenue = increment in supplier revenue estimated to correspond to the addition 
of one labor year  
RPE = revenue per employee 
Percent U.S. content = percent of vehicle components built within the U.S. 
Annual labor hours = number of hours assumed to correspond to one labor year 

Equation 6-14 – Calculation for Fuel Economy Technology Labor Hours 

6.2.5.2.4 Labor Calculations in the CAFE Model 

NHTSA estimates the total labor effect as the sum of the three components described in the 
previous chapters: changes to dealership hours, final assembly and parts production, and labor 
for fuel-economy technologies (at OEMs and suppliers) that are due to the proposed change in 
CAFE standards.  The CAFE Model calculates additional labor hours for each vehicle, based on 
current vehicle manufacturing locations, simulation outputs for additional technologies, and sales 
changes.  While NHTSA does not consider a multiplier effect of all U.S. automotive-related 
labor on non-auto related U.S. jobs, the analysis does incorporate a “global multiplier” that can 
be used to scale up or scale down the total labor hours.  We set the value of this parameter at 
1.00 (see the Parameters file).  Equation 6-15, Equation 6-16, and Equation 6-17 illustrate how 
the CAFE Model calculates base hours (assembly and dealership), innovation hours (associated 
with additional fuel-saving technology), and total hours, respectively.  The labor utilization 
analysis’s final outputs, total U.S. jobs and thousands of labor hours, can be found in the 
compliance report and the Vehicles Report. 



 

𝐵𝐵𝑎𝑎𝐶𝐶𝑒𝑒 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 = (𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑃𝑃. 𝑆𝑆.𝑇𝑇𝐶𝐶𝐶𝐶𝑒𝑒𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐 𝐻𝐻𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 ∗ 𝑃𝑃. 𝑆𝑆.𝑇𝑇𝐶𝐶𝐶𝐶𝑒𝑒𝑃𝑃𝑏𝑏𝑖𝑖𝑐𝑐 𝑀𝑀𝑢𝑢𝑖𝑖𝑃𝑃𝑢𝑢𝐹𝐹𝑖𝑖𝑢𝑢𝑒𝑒𝑢𝑢
+ 𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑃𝑃𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑢𝑢𝐶𝐶ℎ𝑢𝑢𝐹𝐹 𝐻𝐻𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶) 

Equation 6-15 – Calculation of Base Work Hours per Vehicle 

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶

=
𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑃𝑃𝑒𝑒𝑐𝑐ℎ 𝑐𝑐𝑃𝑃𝐶𝐶𝑃𝑃
𝐹𝐹𝑇𝑇𝑀𝑀 𝑢𝑢𝑒𝑒𝐴𝐴𝑒𝑒𝑃𝑃𝑢𝑢𝑒𝑒

+
𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑃𝑃𝑒𝑒𝑐𝑐ℎ 𝑐𝑐𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶

𝑆𝑆𝑢𝑢𝐹𝐹𝐹𝐹𝑖𝑖𝑢𝑢𝑒𝑒𝑢𝑢 𝑢𝑢𝑒𝑒𝐴𝐴𝑒𝑒𝑃𝑃𝑢𝑢𝑒𝑒𝑇𝑇𝐹𝐹𝑇𝑇
∗ 𝐹𝐹𝑒𝑒𝑢𝑢𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃 𝑃𝑃𝑆𝑆 𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃

∗ 𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑎𝑎𝑖𝑖 𝑖𝑖𝑎𝑎𝑏𝑏𝑃𝑃𝑢𝑢 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 
Equation 6-16 – Calculation of Innovation Hours per Vehicle 

𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑖𝑖 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 = (𝐵𝐵𝑎𝑎𝐶𝐶𝑒𝑒 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶 + 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑎𝑎𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃 ℎ𝑃𝑃𝑢𝑢𝑢𝑢𝐶𝐶) ∗ 𝑉𝑉𝑒𝑒ℎ𝑢𝑢𝑐𝑐𝑖𝑖𝑒𝑒 𝑆𝑆𝑎𝑎𝑖𝑖𝑒𝑒𝐶𝐶 
Equation 6-17 – Calculation of Total Labor Hours per Vehicle 

Section S5.9 of the CAFE Model documentation (U.S. Employment) also describes these U.S. 
labor utilization calculations. 

 
 Figure 6-14 – Labor Hours (billions) by Model Year in the Baseline   

Figure 6-14 shows the number of labor hours (in billions) calculated by the CAFE Model in the 
baseline, for model years 2020-2029.816  As the figure indicates, the agency projects a significant 
increase in overall automobile industry employment from 2020 through 2023.  The main source 
of this projected increase is higher employment in the automobile assembly and parts 
manufacturing sectors, primarily reflecting the anticipated rebound in new car and light truck 

 
816 The steep increase in jobs between MY 2020 and MY 2023 is related to the Covid recovery response in sales.  
See Chapter 4 for further discussion of this increase in sales associated with those model years. 



 

sales from its unusually low level during the COVID-19 pandemic and accompanying 
restrictions on activity.  To a lesser extent, the projected increase also represents increased 
employment by suppliers of fuel economy technology in response to car and light truck 
manufacturers’ efforts to improve the fuel economy of their models.  See Chapter 6.3.3 of the 
PRIA for further discussion of the total labor impacts associated with the proposed rulemaking. 

7 Safety Impacts of Regulatory Alternatives  

The primary objective of CAFE standards is to achieve maximum feasible fuel economy, thereby 
reducing fuel consumption.  In setting standards to achieve this intended effect, the potential of 
the standards to affect vehicle safety is also considered.  As a safety agency, NHTSA has long 
considered the potential for adverse safety consequences when establishing CAFE standards.  
Safety consequences include all impacts from motor vehicle crashes, including fatalities, 
nonfatal injuries, and property damage. 

Safety trade-offs associated with increases in fuel economy standards have occurred in the 
past—particularly before CAFE standards became attribute-based—because manufacturers 
chose to comply with stricter standards by building smaller and lighter vehicles.817  In cases 
where fuel economy improvements were achieved through reductions in vehicle size and mass, 
the smaller, lighter vehicles did not protect their occupants as effectively in crashes as larger, 
heavier vehicles, on average.  Although NHTSA now uses attribute-based standards, in part to 
reduce the incentive to downsize vehicles to comply with CAFE standards, the agency continues 
to be mindful of the possibility of safety-related trade-offs. 

This safety analysis includes the comprehensive measure of safety impacts from three factors:  

1. Changes in Vehicle Mass.  Similar to previous analyses, NHTSA calculates the safety 
impact of changes in vehicle mass made to reduce fuel consumption and comply with the 
standards.  Statistical analysis of historical crash data indicates reducing mass in heavier 
vehicles generally improves safety, while reducing mass in lighter vehicles generally 
reduces safety.  NHTSA’s crash simulation modeling of vehicle design concepts for 
reducing mass revealed similar effects. 

2. Impacts of Vehicle Prices on Fleet Turnover.  Vehicles have become safer over time 
through a combination of new safety regulations and voluntary safety improvements.  
The agency expects this trend to continue as emerging technologies, such as advanced 
driver assistance systems, are incorporated into new vehicles.  Safety improvements will 
likely continue regardless of changes to CAFE standards.   

As discussed in Chapter 4.2, technologies added to comply with fuel economy standards 
have an impact on vehicle prices, therefore slowing the acquisition of newer vehicles and 
retirement of older ones.  A delay in fleet turnover resulting from higher new vehicle 
prices is assumed to affect safety by slowing the penetration of new safety technologies 
into the fleet. 

 
817 Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (NRC, 2002).   
 



 

The standards also influence the composition of the light-duty fleet.  As the safety 
provided by light trucks, SUVs and passenger cars responds differently to technology that 
manufacturers employ to meet the standards—particularly mass reduction—fleets with 
different compositions of body styles will have varying numbers of fatalities, so changing 
the share of each type of light-duty vehicle in the projected future fleet impacts safety 
outcomes. 

3. Increased driving because of better fuel economy.  The “rebound effect” predicts 
consumers will drive more when the cost of driving declines.  More stringent standards 
reduce vehicle operating costs, and in response, some consumers may choose to drive 
more.  Additional driving increases exposure to risks associated with motor vehicle 
travel, and this added exposure translates into higher fatalities and injuries. 

The contributions of the three factors described above generate the differences in safety 
outcomes among regulatory alternatives.818  The agency’s analysis makes extensive efforts to 
allocate the differences in safety outcomes between the three factors.  Fatalities expected during 
future years under each alternative are projected by deriving a fleet-wide fatality rate (fatalities 
per vehicle mile of travel) that incorporates the effects of differences in each of the three factors 
from baseline conditions and multiplying it by that alternative’s expected VMT.  Fatalities are 
converted into a societal cost by multiplying fatalities with the DOT-recommended value of a 
statistical life (VSL) supplemented by economic impacts that are external to VSL measurements.  
Traffic injuries and property damage are also modeled directly using the same process and 
valued using costs that are specific to each injury severity level.  

All three factors influence predicted fatalities, but only two of them—changes in vehicle mass 
and in the composition of the light-duty fleet in response to changes in vehicle prices—impose 
increased risks on drivers and passengers that are not compensated for by accompanying 
benefits.  In contrast, increased driving associated with the rebound effect is a consumer choice 
that reveals the benefit of additional travel.  Consumers who choose to drive more have 
apparently concluded that the utility of additional driving exceeds the additional costs for doing 
so—including the crash risk that they perceive additional driving involves.  As discussed in 
Chapter 7.4, the benefits of rebound driving are accounted for by offsetting a portion of the 
added safety costs.  

The agency categorizes safety outcome through three measures of light-duty vehicle safety: 
fatalities to occupants occurring in crashes, serious injuries sustained by occupants, and the 
number of vehicles involved in crashes that cause property damage but no injuries.  Counts of 
fatalities to occupants of automobiles and light trucks are obtained from NHTSA’s Fatal 
Accident Reporting System (FARS).  Estimates of the number of serious injuries to drivers and 
passengers of light-duty vehicles are tabulated from NHTSA’s General Estimates System (GES), 
an annual sampling of motor vehicle crashes occurring throughout the U.S.  Weights for different 
types of crashes were used to expand the samples of each type to estimates of the total number of 

 
818The terms safety performance and safety outcome are related but represent different concepts. When we use the 
term safety performance, we are discussing the intrinsic safety of a vehicle based on its design and features, while 
safety outcome is used to describe whether a vehicle has been involved in a crash and the severity of the accident. 
While safety performance influences safety outcomes, other factors such as environmental and behavioral 
characteristics also play a significant role. 



 

crashes occurring during each year.  Finally, estimates of the number of automobiles and light 
trucks involved in property damage-only (PDO) crashes each year were also developed using 
GES. 

7.1 Impact of Weight Reduction on Safety 

Vehicle mass reduction can be one of the more cost-effective means of improving fuel economy, 
particularly for makes and models not already built with much high-strength steel or aluminum 
closures or low-mass components.  Manufacturers have stated that they will continue to reduce 
vehicle mass to meet more stringent standards, and therefore, this expectation is incorporated 
into the modeling analysis supporting the standards.  Newer vehicles incorporate design and 
hardware improvements that may mitigate some of the direct safety effects to occupants 
associated with lightweighting, but historical relationships between vehicle weight and societal 
fatalities persists.   

Historically, as shown in FARS data analyzed by NHTSA,819 mass reduction concentrated 
among the heaviest vehicles (chiefly, the largest LTVs, CUVs and minivans) is estimated to 
reduce overall fatalities, while mass reduction concentrated among the lightest vehicles (chiefly, 
smaller passenger cars) is estimated to increase overall fatalities.  Past NHTSA analyses have 
consistently indicated that increasing the disparity of the masses of vehicles is harmful to safety.  
In collisions among vehicles, mass reduction in heavier vehicles alone is more beneficial to the 
occupants of lighter vehicles than it is harmful to the occupants of the heavier vehicles.  Mass 
reduction in lighter vehicles alone is more harmful to the occupants of lighter vehicles than it is 
beneficial to the occupants of the heavier vehicles.  Reducing mass simultaneously across 
multiple vehicles can have a range of net effects; for example, proportional mass reduction 
across the vehicle fleet would be expected to have a roughly neutral effect on societal fatality 
rates for two-vehicle crashes.  This highlights the role of mass disparity in societal fatality risk: 
as the overall vehicle fleet moves closer together is in terms of mass (or, as measured in our 
analysis, curb weight), the impacts of changes in vehicle mass on fatality risk decrease for 
crashes involving two or more vehicles.  However, even if manufacturers were capable of 
coordinating and reducing mass equally across the new vehicle fleet, new vehicles would 
encounter vehicles with different masses within the existing fleet. Further, many fatalities and 

 
819 See Kahane, C. J. (1997). Relationships Between Vehicle Size and Fatality Risk in Model Year 1985- 93 
Passenger Cars and Light Trucks, NHTSA Technical Report. DOT HS 808 570. Washington, DC: National 
Highway Traffic Safety Administration, http://wwwnrd.nhtsa.dot.gov/Pubs/808570.PDF; Kahane, C. J. (2003). 
Vehicle Weight, Fatality Risk and Crash Compatibility of Model Year 1991-99 Passenger Cars and Light Trucks, 
NHTSA Technical Report. DOT HS 809 662. Washington, DC: National Highway Traffic Safety Administration, 
http://wwwnrd.nhtsa.dot.gov/Pubs/809662.PDF; Kahane, C. J. (2010). “Relationships Between Fatality Risk, Mass, 
and Footprint in Model Year 1991-1999 and Other Passenger Cars and LTVs,” Final Regulatory Impact Analysis: 
Corporate Average Fuel Economy for MY 2012-MY 2016 Passenger Cars and Light Trucks. Washington, DC: 
National Highway Traffic Safety Administration, pp. 464-542, 
http://www.nhtsa.dot.gov/staticfiles/DOT/NHTSA/Rulemaking/Rules/Associated%20Files/CAF E_2012-
2016_FRIA_04012010.pdf Kahane, C.J. (2012). Relationships Between Fatality Risk, Mass, and Footprint in Model 
Year 2000-2007 Passenger Cars and LTVs: Final Report, NHTSA Technical Report. Washington, DC: National 
Highway Traffic Safety Administration, Report No. DOT-HS-811-665; Puckett, S.M. and Kindelberger, J.C. (2016, 
June). Relationships between Fatality Risk, Mass, and Footprint in Model Year 2003-2010 Passenger Cars and 
LTVs – Preliminary Report. (Docket No. NHTSA2016-0068). Washington, DC: National Highway Traffic Safety 
Administration. 

http://wwwnrd.nhtsa.dot.gov/Pubs/808570.PDF


 

injuries occur in single vehicle crashes and collisions between light-duty vehicles and cyclists or 
pedestrians and these must also be taken into account in representing the effects of mass 
reduction on societal fatality rates. 

In response to questions of whether designs and materials of more recent model year vehicles 
may have weakened the historical statistical relationships between mass, size, and safety, 
NHTSA updated its public database for statistical analysis consisting of crash data.  The database 
incorporates the full range of real-world crash types.  NHTSA also sponsored a study conducted 
by George Washington University to develop a fleet simulation model and study the impact and 
relationship of light-weighted vehicle design with crash injuries and fatalities.  That study is 
discussed in detail in Chapter 7.1.5. 

The CAFE standards proposed here are “footprint-based,” with footprint being defined as a 
measure of a vehicle’s size, roughly equal to the wheelbase times the average of the front and 
rear track widths.  Manufacturers are less likely than they were in the past to reduce vehicle 
footprint to reduce mass for increased fuel economy.  Indeed, as reflected in shifts from smaller 
passenger cars to larger trucks, SUVs, and CUVs (see Chapter 1.2.8 and PRIA Chapter 3.2 
Simulating Manufacturers’ Potential Responses to the Alternatives) the average footprint of 
light-duty vehicles has increased slightly and gradually since the adoption of footprint-based 
standards.  Footprint-based standards create a disincentive for manufacturers to produce smaller-
footprint vehicles.  This is because, as footprint decreases, the corresponding fuel economy target 
becomes more stringent.  The agency believes that the shape of the footprint curves themselves is 
such that the curves should neither encourage manufacturers to increase the footprint of their 
fleets, nor to decrease it.  Several technologies, such as substitution of light, high-strength 
materials for conventional materials during vehicle redesigns, have the potential to reduce weight 
and conserve fuel while maintaining a vehicle’s footprint. 

For the rulemaking analysis, the CAFE Model tracks the amount of mass reduction applied to 
each vehicle model, and then applies estimated changes in societal fatality risk per 100 pounds of 
mass reduction determined through the statistical analysis of FARS crash data.  100-pound mass 
reductions have been considered in NHTSA analyses as a matter of convention; the implications 
of the analysis would not change meaningfully either for focal vehicle classes or for the fleet at 
large (i.e., in terms of mass disparity) if different magnitudes of mass reduction were considered.  
This process allows the CAFE Model to tally changes in fatalities attributed to mass reduction 
across all the analyzed future model years.  In turn, the CAFE Model is able to provide an overall 
impact of the final standards and alternatives on fatalities attributed to changes in mass disparity 
resulting from mass reduction.  The projections of societal effects of mass reduction from the 
CAFE Model are subject to uncertainty in the paths that manufacturers will follow in applying 
mass reduction to the fleet.  That is, there is uncertainty in which vehicle models will undergo 
mass reduction.  Rather, the model is calibrated to incorporate the best available information on 
the application, and safety effects, of mass reduction. 

7.1.1 Historical Analyses of Vehicle Mass and Safety 

The methodology used for the statistical analysis of historical crash data has evolved over many 
years.  The methodology used for this NPRM is carried forward from the 2020 CAFE rule, and 
reflects learnings and refinements from: NHTSA studies in 2003, 2010, 2011, 2012, and 2016; 



 

independent peer review of 23 studies by the University of Michigan Transportation Research 
Institute; two public workshops hosted by NHTSA; interagency collaboration among NHTSA, 
DOE and EPA; and comments to CAFE and GHG rulemakings in 2010, 2012, the 2016 Draft 
TAR, and the 2020 rulemaking.  As explained in greater detail below, the methodology used for 
the statistical analysis of historical crash data for this NPRM is the best and most up-to-date 
available. 

Over the course of refining the methodology and the corresponding data per stakeholder 
feedback and internal review, NHTSA has confirmed the central relationship that mass reduction 
is most likely to reduce societal fatalities when concentrated among the heaviest vehicles.  For 
crashes involving two or more vehicles, this relationship manifests itself within the vehicle fleet 
in terms of the dispersion of vehicle mass (or curb weights): All else being equal, as disparities in 
mass among vehicles increase, fatalities increase as well.  That is, mass reduction concentrated 
among the lightest vehicles would increase the dispersion of mass (i.e., the heaviest vehicles 
become even heavier than the lightest vehicles), while mass reduction concentrated among the 
heaviest vehicles would decrease the dispersion of mass (i.e., the lightest vehicles grow closer in 
mass to the heaviest vehicles).   

Representing the overall relationship of mass reduction and safety within the CAFE Model (e.g., 
through model coefficients placing a detrimental effect on mass reduction in the lightest vehicles 
and a beneficial effect on mass reduction in the heaviest vehicles) enables the model to project 
effects of mass reduction in individual vehicle models on societal fatalities.  The model achieves 
this by incorporating the corresponding effects of vehicle-model-specific mass reduction on the 
dispersion of mass for multi-vehicle crashes and effects of mass reduction on other types of 
crashes across the vehicle fleet.820  Projected levels of mass reduction are internal to the CAFE 
Model and represent plausible paths forward for manufacturers to meet fuel economy targets in 
an economical manner, rather than specific predictions on mass reduction paths.  Thus, there is 
some uncertainty introduced by the use of CAFE Model estimates as predictions of future 
changes in the distribution of vehicle mass.  Consistency in the directionality and magnitude of 
the central point estimates across NHTSA’s analyses has increased NHTSA’s confidence that 
reducing the dispersion of mass across the vehicle fleet would reduce societal fatalities.   

Researchers have been using statistical analysis to examine the relationship of vehicle mass and 
safety in historical crash data for many years and continue to refine their techniques.  In the MY 
2012-2016 final rule, NHTSA stated we would conduct further study and research into the 
interaction of mass, size, and safety to assist future rulemakings and start to work collaboratively 
by developing an interagency working group between NHTSA, EPA, DOE, and CARB to 
evaluate all aspects of mass, size, and safety.  The team would seek to coordinate government-
supported studies and independent research to the greatest extent possible to ensure the work is 
complementary to previous and ongoing research and to guide further research in this area. 

 
820 There are nine types of crashes specified in the mass-safety analysis: three types of single-vehicle crashes, five 
types of two-vehicle crashes; and one classification of all other crashes.  Single-vehicle crashes include first-event 
rollovers, collisions with fixed objects, and collisions with pedestrians, bicycles and motorcycles.  Two-vehicle 
crashes include collisions with: heavy-duty vehicles; cars, CUVs, or minivans, truck-based LTVs.  All other fatal 
crash types include collisions involving more than two vehicles, animals, trains and other crash types. 



 

Subsequent to the publication of the MY 2012-2016 rule, NHTSA identified three specific areas 
to direct research in preparation for future CAFE rulemakings.  First, NHTSA would contract 
with an independent institution to review the statistical methods NHTSA and DRI used to 
analyze historical data related to mass, size, and safety, and to provide recommendations on 
whether existing or other methods should be used for future statistical analysis of historical data.   

In 2010, NHTSA published the results of the contractor’s review in a research report (hereinafter 
2010 Kahane report).  The 2010 Kahane report considered the potential near multicollinearity in 
the historical data and suggested methods to overcome it in a logistical regression analysis.  The 
2010 Kahane report was also peer reviewed by two other experts in the safety field - Farmer 
(Insurance Institute for Highway Safety) and Lie (Swedish Transport Administration) prior to 
publication. 

Second, NHTSA and EPA, in consultation with DOE, would update the MY 1991–1999 
database, used to calculate the mass safety coefficients, with newer vehicle data and create a 
common database that could be made publicly available to address concerns that differences in 
data were leading to different results in statistical analyses by different researchers.  The 
database contains FARS and State-level crash data, to enable the estimation of changes in fatality 
risk as a function of vehicle curb weight across recent light-duty vehicle models.  The FARS 
component of the database essentially forms the numerator of fatality risk calculations (i.e., 
societal fatalities), while the State component of the database forms the denominator (i.e., VMT 
by vehicle model).  The FARS component of the database represents a census of fatalities 
associated with vehicle models in the sample; the State component of the database represents a 
random sample of vehicle exposure (i.e., induced exposure, comprised of crashes where drivers 
are assumed to be not at fault), yielding estimates of distributions of key contextual factors, such 
as driver age, driver sex, and vehicle location.  Combining these data within a logistic regression 
yields a range of estimated fatality risks (i.e., fatalities per VMT) for each vehicle model, which 
vary with respect to vehicle curb weight, footprint, and contextual effects.  This enables the 
logistic regression to isolate effects associated with curb weight, yielding the estimates of 
primary interest for the analysis summarized in this section. 

And third, NHTSA sought to identify vehicles using newer material substitution and smart 
design and to assess if there were sufficient crash data involving those vehicles for statistical 
analysis to assess if modern mass reduction methods affected the historical relationship between 
vehicle mass, size, and safety.  If sufficient data existed, statistical analysis would be conducted 
to compare the relationship among mass, size, and safety of these smart design vehicles to 
vehicles of similar size and mass with more traditional designs. 

By the time of the MY 2017-2025 final rule, significant progress had been made on these tasks.  
The independent review then-recent statistical analyses of the relationship between vehicle mass, 
size, and crash fatality rates had been completed by UMTRI.  Led by Dr. Green, UMTRI 
evaluated more than 20 academic papers, including studies done by NHTSA’s Kahane, Wenzel 
of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, Dynamic 
Research, Inc., and others.  UMTRI’s basic findings will be discussed below. 

To support rulemaking efforts, NHTSA created a common, updated database for statistical 
analysis consisting of crash data of model years 2000-2007 vehicles in calendar years 2002-



 

2008, as compared to the database used in prior NHTSA analyses, which was based on model 
years 1991–1999 vehicles in calendar years 1995-2000.  The new database was the most up-to-
date possible, given the processing lead time for crash data and the need for enough crash cases 
to permit statistically meaningful analyses.  NHTSA made the preliminary version of the new 
database, which was the basis for NHTSA’s 2011 preliminary report (hereinafter 2011 Kahane 
report), available to the public in May 2011, and an updated version in April 2012 (used in 
NHTSA’s 2012 final report, hereinafter 2012 Kahane report), enabling other researchers to 
analyze the same data and hopefully minimize discrepancies in results because of inconsistencies 
across databases.  NHTSA updated the crash and exposure databases for the 2016 Draft TAR 
analysis and has added a new variable denoting status as a medium- or heavy-duty truck to the 
database released with this proposed rule. 

NHTSA was aware of several studies that had been initiated using the 2011 version or the 2012 
version of NHTSA’s newly established safety database.  In addition to new Kahane studies, other 
recent and on-going studies included two by Wenzel at Lawrence Berkeley National Laboratory 
(LBNL) under contract with the U.S. DOE and one by DRI contracted by ICCT.  These studies 
took somewhat different approaches to examining the statistical relationship between fatality 
risk, vehicle mass, and size.  In addition to a detailed assessment of the 2011 Kahane report, 
Wenzel considered the effect of mass and footprint reduction on casualty risk per crash, using 
data from 13 states.  Casualty risk includes fatalities and serious or incapacitating injuries.  Both 
LBNL studies were peer reviewed and subsequently revised and updated.  DRI used models 
separating the effect of mass reduction on two components of fatality risk - crash avoidance and 
crashworthiness.  The LBNL and DRI studies were available in the docket for the 2012 final 
rule.  

For the 2020 CAFE rule, the crash and exposure databases were updated again; these databases 
were used to support this NPRM as well.  The databases were updated to include crash data for 
MY 2004-2011 vehicles during CY 2006-2012; for ensuing rulemakings, NHTSA intends to 
once again update the databases with more recent MYs and CYs, where feasible.  As in previous 
analyses, NHTSA has made the databases available to the public on its website.821  

NHTSA has continued to sponsor new studies and research to inform the current CAFE 
rulemaking.  In addition, the National Academies of Science/National Academies of Sciences, 
Medicine, and Medicine (NAS/NASEM) published reports that include discussions of 
relationships between vehicle mass and societal fatality risk.822  The 2015 NAS report 
summarizes results from studies by NHTSA, DRI, and LBNL, confirming the general 
relationships between vehicle mass disparity and societal fatality risk (i.e., mass reduction in the 
lightest vehicles is detrimental, mass reduction on in the heaviest vehicles is beneficial) and 
noting that future changes in technology and fleet composition could lead to different 
conclusions.  The 2021 NASEM report highlights the role that mass disparity among the vehicle 

 
821 Visit https://www.nhtsa.gov/content/nhtsa-ftp/191 for access to the databases and other files and documentation 
associated with CAFE rulemaking. 
822 National Research Council.  2015.  Cost, Effectiveness, and Deployment of Fuel Economy Technologies for 
Light-Duty Vehicles.  Washington, DC: The National Academies Press.  https://doi.org/10.17226/21744, and 
National Academies of Sciences, Medicine, and Engineering.  2021.  Assessment of Technologies for Improving 
Light-Duty Fuel Economy 2025-2035.  Washington, DC: The National Academies 
Press.  https://doi.org/10.17226/26092. 

https://doi.org/10.17226/21744
https://doi.org/10.17226/26092


 

fleet plays in societal fatality risk, with greater mass disparity associated with greater societal 
fatality risk.  The NASEM report clarifies that the path of mass disparity is unknown (i.e., 
general trends and the application of mass reduction technologies could increase or decrease 
mass disparity).  The NASEM report qualifies the general conclusions associated with mass 
disparity, noting that new vehicle designs, continued effects associated with footprint-based fuel 
economy standards, changes in demand across vehicle classes, and increased demand for 
vehicles with (heavier) electrified powertrains could yield different safety relationships from 
those identified in relevant studies.  Throughout the rulemaking process, NHTSA’s goal is to 
publish as much of the agency’s research as possible.  In establishing standards, all available 
data, studies, and objective information without regard to whether they were sponsored by 
NHTSA, will be considered.  

Undertaking these tasks has helped come closer to resolving ongoing debates in statistical 
analysis research of historical crash data and has informed NHTSA analysis supporting this 
NPRM.  It is intended that these conclusions will continue to be applied going forward in future 
rulemakings, and it is believed the research will assist the public discussion of the issues. 

7.1.1.1 2011 NHTSA Workshop on Vehicle Mass, Size, and Safety 

On February 25, 2011, NHTSA hosted a workshop on mass reduction, vehicle size, and fleet 
safety at the Headquarters of the U.S. Department of Transportation in Washington, D.C.  The 
purpose of the workshop was to provide a broad understanding of current research in the field 
and provide stakeholders and the public with an opportunity to weigh in on this issue.  NHTSA 
also created a public docket to receive comments from interested parties who were unable to 
attend. 

Speakers included Kahane of NHTSA, Wenzel of LBNL, Van Auken of DRI, Padmanaban of JP 
Research, Inc., Lund of the Insurance Institute for Highway Safety, Green of UMTRI, Summers 
of NHTSA, Peterson of Lotus Engineering, Kamiji of Honda, German of ICCT, Schmidt of the 
Alliance of Automobile Manufacturers, Nusholtz of Chrysler, and Field of the Massachusetts 
Institute of Technology. 

The wide participation in the workshop allowed the agency to hear from a broad range of experts 
and stakeholders.  Contributions were particularly relevant to the analysis of effects of mass 
reduction for the MY 2017-2025 final rule.  Presentations were divided into two sessions 
addressing two expansive sets of issues - statistical evidence of the roles of mass and size on 
safety, and engineering realities regarding structural crashworthiness, occupant injury, and 
advanced vehicle design.  Some main points from the workshop were:  

• Statistical studies of crash data attempting to identify relative recent historical effects of 
vehicle mass and size on fleet safety show complicated relationships with many 
confounding influences in data.  

• Analyses must control for individual technologies with significant safety effects (e.g., 
Electronic Stability Control, airbags).  



 

• Physics of a two-vehicle crash require the lighter vehicle experience a greater change in 
velocity, which, all else being equal, often leads to disproportionately more injury risk.  

• The separation of key parameters is a challenge to analyses, as vehicle size has 
historically been highly correlated with vehicle mass.  

• No consensus on whether smaller, lighter vehicles maneuver better, and thus avoid more 
crashes, than larger, heavier vehicles.  

• Kahane’s results from his 2010 report found a scenario, which took some mass out of 
heavier vehicles but little or no mass out of the lightest vehicles, did not affect safety in 
absolute terms, and noted if analyses were able to consider the mass of both vehicles in a 
two-vehicle crash, results may be more indicative of future crashes. 

7.1.1.2 UMTRI Report 

NHTSA contracted with UMTRI to conduct an independent review of a set of statistical analyses 
of relationships between vehicle curb weight, footprint variables (track width, wheelbase), and 
fatality rates from vehicle crashes.  The purpose of this review was to examine analysis methods, 
data sources, and assumptions of statistical studies, with the objective of identifying reasons for 
any differences in results.  Another objective was to examine the suitability of various methods 
for estimating fatality risks of future vehicles. 

UMTRI reviewed a set of papers, reports, and manuscripts provided by NHTSA (listed in 
Appendix A of UMTRI’s report823) examining statistical relationships between fatality or 
casualty rates and vehicle properties such as curb weight, track width, wheelbase, and other 
variables.   

Fundamentally, the UMTRI team concluded the database created by Kahane appeared to be an 
impressive collection of files from appropriate sources and the best ones available for answering 
the research questions considered in this study; the disaggregate logistic regression model used 
by NHTSA in its 2003 report (hereinafter 2003 Kahane report) seemed to be the most 
appropriate model, valid for the analysis in the context that it was used - finding general 
associations between fatality risk and mass, and general directions of reported associations were 
correct. 

7.1.1.3 2012 LBNL Reports 

In its 2012 “Phase 1” report, LBNL replicated the 2012 NHTSA baseline results and conducted 
19 alternative regression models to test the sensitivity of the NHTSA baseline model to changes 
in the measure of risk, variables included, and data used.  In its report, LBNL pointed out that 
other vehicle attributes, driver characteristics, and crash circumstances were associated with 

 
823 Green, P.E., Kostyniuk, L.P., Gordon, T.J., and M.P.  Reed.  (2011).  Independent Review Statistical Analyses of 
Relationship between Vehicle Curb Weight, Track Width, Wheelbase and Fatality Rates.  Report for U.S. 
Department of Transportation, Report No.  UMTRI-2011-12.  Available in the docket to the MY 2017-2025 
rulemaking at regulations.gov, or at 
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/85162/102752.pdf?sequence=1&isAllowed=y. 



 

much larger changes in risk than mass reduction.  LBNL also demonstrated there was little 
correlation between mass and fatality risk by vehicle model, even after accounting for all other 
vehicle attributes, driver characteristics, and crash circumstances.  

In its 2012 “Phase 2” report, LBNL used data from police reported crashes in the 13 states to 
study casualty (fatality plus severe injury) risk per VMT, and to divide risk per VMT into its two 
components - crash frequency (crashes per VMT) and crashworthiness/crash compatibility (risk 
per crash).  LBNL found mass reduction was associated with increases in crash frequency and 
decreases in fatality or serious injury risk per crash.  Preliminary versions LBNL’s Phase 1 and 
Phase 2 reports were reviewed by external reviewers, and comments were incorporated into final 
versions published in 2012.824 

7.1.1.4 2012 DRI Reports 

DRI published three preliminary reports in 2012.  DRI’s preliminary Phase I report updated its 
analysis of data from 1995 to 2000 and was able to replicate results from the 2003 Kahane 
report.  DRI’s preliminary Phase II report replicated the 2012 rulemaking baseline results and 
used a simultaneous two-stage model to estimate separate effects of mass reduction on crash 
frequency and fatality risk per crash.  Results from DRI’s two-stage model were comparable to 
LBNL’s Phase 2 analysis - mass reduction was associated with increases in crash frequency and 
decreases in risk per crash.  DRI’s preliminary summary report showed the effect of two 
alternative regression models - using stopped rather than non-culpable vehicles as the basis for 
the induced exposure database and replacing vehicle footprint with its component’s wheelbase 
and track width.  Under these two alternatives, mass reduction was estimated to have less 
harmful (e.g., for the lightest passenger cars) or more beneficial (e.g., for the heaviest LTVs) 
impacts on societal fatality risk.  The three preliminary DRI reports were peer-reviewed with 
comments incorporated into the final versions published in 2013.  

Results from LBNL’s Phase 2 and DRI’s Phase II reports implied the increase in fatality risk per 
VMT from mass reduction in lighter cars estimated by the NHTSA baseline model was because 
of increasing crash frequency and not increasing fatality risk once a crash had occurred, as mass 
was reduced.  In the 2012 Kahane report, NHTSA argued effects of crash frequency could not be 
separated from risk per crash because of reporting bias in state crash data, such as lack of a crash 
severity measure, and possible bias because of underreporting of less severe crashes in certain 
states.  This is a complex issue, in which it is possible for crashes to be reported at variable rates 
across vehicle type, vehicle size, or vehicle weight.  That is, if underreporting were solely 
random, it may be feasible to draw unbiased inferences with respect to crash risk and crash 
severity independently.  However, if underreporting is not random (e.g., crashes involving 
smaller, lighter, or older, less valuable vehicles may be less likely to meet State reporting 
thresholds), factors leading to variable reporting rates would be conflated with representations of 
crash frequency. 

 
824 See Wenzel, T.P.  (2012).  An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass 
and Footprint for Model Year 2000-2007 Light-Duty Vehicles – Final Report.  Lawrence Berkeley National 
Laboratory Report No. LBNL-5697E and Wenzel T.P.  (2012).  Assessment of NHTSA’s Report “Relationships 
Between Fatality Risk, Mass, and Footprint in Model Year 2000-2007 Passenger Cars and LTVs” – Final Report.  
Lawrence Berkeley National Laboratory Report No. LBNL-5698E. 



 

7.1.1.5 2013 NHTSA Workshop on Vehicle Mass, Size, and Safety 

On May 13-14, 2013, NHTSA hosted a follow-on symposium to continue exploring relevant 
issues and concerns with mass, size, and potential safety tradeoffs, bringing together experts in 
the field to discuss questions to address CAFE standards for model years 2022-2025.  The first 
day of the two-day symposium focused on engineering, while the second day investigated 
various methodologies for assessing statistical evidence of roles of vehicle mass and size on 
occupant safety.   

Speakers for the second day, focusing on the subject matter of this chapter, included Kahane of 
NHTSA, Nolan of the Insurance Institute for Highway, Nusholtz of Chrysler, Van Auken of 
Dynamic Research Incorporated, and Wenzel of Lawrence Berkeley National Laboratory.  
Summaries of the topics follow:  

• Kahane gave an overview of statistical studies designed to determine the incremental 
change in societal risk as vehicle mass of a particular vehicle is modified while keeping 
its footprint (the product of wheelbase and track width) constant.  The physics of crashes, 
in particular conservation of momentum and equal and opposite forces, imply mass 
reduction in the heaviest vehicles and/or mass increase in the lightest vehicles can reduce 
societal risk in two-vehicle crashes.  It is, therefore, reasonable that reducing disparities 
in mass ratio in the vehicle fleet (such as by reducing the mass of heavy vehicles by a 
larger percentage than that of light vehicles) should reduce societal harm.  This trend was 
noticed in data for model year 2000-2007 vehicles but only statistically significant for the 
lightest group of vehicles.  This is similar to results found for model year 1991-1999 
vehicles in a 2003 study.  Kahane acknowledged numerous confounding factors such as 
maneuverability of different vehicle classes (although data indicated smaller cars were 
more likely to be involved in crashes), driver attributes and vulnerabilities, advances in 
restraint safety systems and vehicle structures, and electronic stability control.  

• Wenzel replicated Kahane’s results using the same data and methods but came to slightly 
different conclusions.  Wenzel demonstrated that the effect of mass or footprint reduction 
estimated on societal risk is much smaller than the effect estimated for other vehicle 
attributes, driver characteristics, or crash circumstances.  Wenzel plotted actual fatality 
risk versus weight by vehicle make and model and estimated predicted risk by make and 
model after accounting for all control variables used in NHTSA’s baseline model except 
for mass and footprint.  The remaining, or residual risk, not explained by the control 
variables has no correlation with vehicle weight.  Wenzel presented results of the 19 
alternative regression models he conducted to test the sensitivity of results from 
NHTSA’s baseline model.  He also presented results from LBNL’s Phase 2 analysis, 
which examined the effect of mass or footprint reduction on the two components of risk 
per VMT - crashes per VMT (crash frequency), and risk per crash (crashworthiness).  His 
analysis of casualty risk using crash data from 13 states and his replication of the DRI 
two-state simultaneous regression model indicate mass reduction is associated with an 
increase in crash frequency but a decrease in risk per crash.  

• Van Auken also replicated Kahane’s results from the NHTSA baseline model and 
presented results from three sensitivity regression models.  Replacing footprint with its 



 

components wheelbase and track width reduces the estimated increase in risk from mass 
reduction in cars and suggests reduction in light trucks decreases societal risk.  Using 
stopped rather than non-culpable vehicles to derive the induced exposure dataset also 
reduces the estimated increase in risk from mass reduction in lighter-than-average cars 
and light trucks and estimates mass reduction in heavier cars and trucks decreases 
societal risk.  Adding these changes to the NHTSA baseline model greatly reduces the 
estimated increase in risk from mass reduction in the lightest cars and is associated with 
decreases in risk for all other vehicle types.  Van Auken described in more detail his two-
stage simultaneous regression model, which allows risk per vehicle mile of travel to be 
decomposed into crashes per VMT (crash frequency) and risk per crash (crashworthiness/ 
crash compatibility).  As with Wenzel’s analysis, Van Auken found mass reduction is 
associated with an increase in crash frequency but with a decrease in risk per crash.  Once 
again, resulting trends were similar to those from Kahane and Wenzel.  Van Auken 
explored the issue of inducing the exposure of vehicles via crash statistics in which 
relative exposure was measured by non-culpable vehicles in the crash database versus by 
its subset of stopped vehicles in the data and also investigated the effect of substituting 
footprint for track width and wheelbase as size variables in the regression.  

• Nusholtz of Chrysler presented an analysis of the sensitivity of the fleet-wide fatality risk 
to changes in vehicle mass and size.  He noted the difficulty in finding a definitive metric 
for “size.” He dismissed some assertions of mass having negligible (or purely negative) 
effects on safety as leading to absurd conclusions in the extreme.  He extended the 
methods of Joksch (1993) and Evans (1992) to estimate risk as a function of readily 
measurable vehicle attributes and reported crash characteristics.  He used crash physics 
(closing speed, estimates of inelastic stiffness, and energy absorption) to estimate 
changes in fleet risk as a function of changes in these parameters.  He observed mass is a 
dominant factor but believed crush space could begin to dominate if vehicles could be 
made larger.  Nusholtz concurred removing more mass from larger vehicles could reduce 
risk but is not convinced such a strategy will be sufficient to meet fuel economy goals.  
He regards safety implications of mass reduction to be transition issues of greater 
importance so long as legacy heavier vehicles are used in significant numbers.  

• Nolan analyzed historical trends in the fleet.  While median vehicle mass has increased, 
safety technologies have enhanced the safety of current small cars to the level only 
achieved by larger cars in the past.  In particular, electronic stability control has reduced 
the relative importance of some severe crash modes.  While acknowledging that smaller 
vehicles will always be at a disadvantage, there is hope further technological advances 
such as crash avoidance systems hold promise in advancing safety.  Fleet safety would be 
enhanced if these technologies could quickly penetrate across the fleet to small cars as 
well as large ones.  

• Nusholtz presented the results of an attempt to separate the effect of mass on crash 
outcome as distinct from the likelihood of the crash itself.  It was acknowledged mass can 
affect both.  Nusholtz emphasized crash parameters (e.g., closing speed) necessarily 
dominate.  Kahane suggested reporting rates might be sufficiently different to affect 
results.  Nusholtz cautioned physics and statistics must be considered but, in a way, 
connecting them to reality rather than abstractions.  Nusholtz noted assessments of that 



 

effect are difficult because determining when and why a crash did not occur is 
problematic against the backdrop of confounding information. 

7.1.1.6 Subsequent Analyses by LBNL 

As part of its review of the 2012 DRI studies, LBNL recreated DRI’s two-stage simultaneous 
regression model, which estimated the effect of mass or footprint reduction on the two 
components of fatality risk per VMT - number of crashes per VMT and risk of fatality per crash.  
LBNL first replicated DRI’s methodology of taking a random “decimated” sample of crash data 
from 10 states for induced exposure records.  Although LBNL was not able to exactly recreate 
DRI’s results, its results were comparable to DRI’s, and LBNL’s Phase 2, analysis.  That is, 
mass reduction is associated with - (1) increases in crash frequency for all vehicle types; and (2) 
with decreases in fatalities per crash for all vehicle types except heavier cars.  LBNL then re-ran 
the two-stage regression model using all crash data from the 13 states NHTSA used in their 
baseline model and obtained similar results.  

The LBNL Phase 2 study and DRI Phase II study had two unexpected results - mass reduction is 
associated with increased crash frequency but decreased risk per crash, and signs on some of the 
control variables are in the unexpected direction.  Mass reduction could feasibly reduce crash 
risk due to increased maneuverability and braking capability; the converse result may reflect 
driver behavior (e.g., riskier maneuvers under higher power-to-weight ratios) or important 
structural changes under lightweighting.  Examples of unexpected signs for control variables 
include - side airbags in light trucks and CUVs/minivans were estimated to reduce crash 
frequency; the crash avoidance technologies electronic stability control (ESC) and antilock 
braking systems (ABS) were estimated to reduce risk once a crash had occurred; and all-wheel-
drive and brand new vehicles were estimated to increase risk once a crash had occurred.  In 
addition, male drivers were estimated to have essentially no effect on crash frequency but were 
associated with a statistically significant increase in fatality risk once a crash had occurred.  In 
addition, driving at night, on high-speed or rural roads, was associated with higher increases in 
risk per crash than on crash frequency.  

A possible explanation for these unexpected results is that important control variables were not 
included in regression models.  For example, crashes involving male drivers, in vehicles 
equipped with AWD, or occurring at night on rural or high-speed roads, may not be more 
frequent but are rather more severe than other crashes, leading to greater fatality or casualty risk.  
Drivers who select vehicles with certain safety features may tend to drive more carefully, 
resulting in vehicle safety features designed to improve crashworthiness or compatibility, such as 
side airbags, and are associated with lower crash frequency.  

LBNL made several attempts to create a regression model that “corrected” for these unexpected 
results.  LBNL first examined results of three vehicle braking and handling tests conducted by 
Consumer Reports - the maximum speed achieved during the avoidance maneuver test, 
acceleration time from 45 to 60 mph, and dry braking distance.  

When these three test results were added to the LBNL baseline regression model of the number 
of crashes per mile of vehicle travel in cars, none of the three handling/braking variables had the 
expected effect on crash frequency.  In other words, an increase in maximum maneuver speed, 



 

the time to reach 60 miles per hour, or braking distance on dry pavement in cars, either 
separately or combined, was associated with a decrease in the likelihood of a crash, of any type 
or with a stationary object.  Adding one or all of the three handling/braking variables had 
relatively little effect on the estimated relationship between mass or footprint reduction in cars 
and crash frequency, either in all types of crashes or only in crashes with stationary objects.  

LBNL next tested the sensitivity of the relationship between mass or footprint reduction and 
crash frequency by adding five additional variables to the regression models - initial vehicle 
price, average household income, bad driver rating, alcohol/drug use, and seat belt use.  An 
increase in vehicle price, household income, or belt use was associated with a decrease in crash 
frequency, while an increase in alcohol/drug use was associated with an increase in crash 
frequency, for all three vehicle types; a poor bad driver rating increases crash frequency in cars, 
but unexpectedly decreases crash frequency in light trucks and CUVs/minivans.  Including these 
five variables, either individually or including all in the same regression model, did not change 
general results of the baseline LBNL regression model - mass reduction is associated with an 
increase in crash frequency in all three types of vehicles, while footprint reduction is associated 
with an increase in crash frequency in cars and light trucks but with a decrease in crash 
frequency in CUVs/ minivans.  The variable with the biggest effect was initial vehicle purchase 
price, which dramatically reduced the estimated increase in crash frequency in heavier-than-
average cars (and in heavier-than-average light trucks, and all CUVs/minivans).  These results 
suggest other, subtler, differences in vehicles and their drivers account for the unexpected 
finding that lighter vehicles have higher crash frequencies than heavier vehicles for all three 
types of vehicles.  

In the 2012 Kahane report NHTSA suggested two possible explanations for unexpected results in 
the LBNL Phase 2 analysis and the DRI and LBNL two-stage regression models – the analyses 
did not account for the severity of the crash, and there was possible bias in the crashes reported 
to police in different states, with less severe crashes being under-reported for certain vehicle 
types.  LBNL analyzed the first of Kahane’s explanations for the unexpected result of mass 
reduction being associated with decreased risk per crash, by re-running the baseline Phase 2 
regressions after excluding the least-severe crashes from the state crash databases objects.  Only 
vehicles described as “disabled” or as having “severe” damage were included, while vehicles 
driven away from the crash site or that had functional, none, or unknown damage were excluded.  
Excluding non-severe crashes had little effect on the relationship between mass reduction and 
crash frequency; in either LBNL’s Phase 2 baseline model or the two-stage simultaneous model - 
mass reduction was associated with an increase in crash frequency and a decrease in risk per 
crash.  Excluding the non-severe crashes also did not change unexpected results for other control 
variables - most of the side airbag variables and the crash compatibility variables in light trucks, 
continued to be associated with an increase in crash frequency, while antilock braking systems, 
electronic stability control, all-wheel drive, male drivers, young drivers, and driving at night, in 
rural counties, and on high speed roads continued to be associated with an increase in risk per 
crash. 

DOE contracted with Wenzel of LBNL to conduct an assessment of NHTSA’s updated 2016 
study of the effect of mass and footprint reductions on U.S. fatality risk per vehicle miles 
traveled (LBNL 2016 “Phase 1” preliminary report), and to provide an analysis of the effect of 



 

mass and footprint reduction on casualty risk per police-reported crash, using independent data 
from 13 states (LBNL 2016 “Phase 2” preliminary report).  

The 2016 LBNL Phase 1 report replicated the analysis in NHTSA’s 2016 report (hereinafter, 
2016 Puckett and Kindelberger report), using the same data and methods, and in many cases 
using the same SAS programs, to confirm NHTSA’s results.  The LBNL report confirmed 
NHTSA’s 2016 finding, holding footprint constant, each 100-lbs of mass reduction is associated 
with a 1.49% increase in fatality risk per vehicle miles travelled (VMT) for cars weighing less 
than 3,197 pounds, a 0.50% increase for cars weighing more than 3,197 pounds, a 0.10% 
decrease in risk for light trucks weighing less than 4,947 pounds, a 0.71% decrease in risk for 
light trucks weighing more than 4,947 pounds, and a 0.99% decrease in risk for CUVs/minivans.  

Wenzel tested the sensitivity of model estimates to changes in the measure of risk as well as 
control variables and data used in the regression models.  Wenzel concluded there is a wide 
range in fatality risk by vehicle model for models possessing comparable mass or footprint, even 
after accounting for differences in drivers’ age and gender, safety features installed, and crash 
times and locations.  

The 2016 LBNL Phase 1 report notes many of the control variables NHTSA includes in its 
logistic regressions are statistically significant and have a much larger estimated effect on fatality 
risk than vehicle mass.  For example, installing torso side airbags, electronic stability control, or 
an antilock braking system in a car was estimated to reduce fatality risk by at least 7%; cars 
driven by men were estimated to have a 40% higher fatality risk than cars driven by women; and 
cars driven at night, on rural roads, or on roads with a speed limit higher than 55 mph were 
estimated to have a fatality risk over 100 times higher than cars driven during the daytime on 
low-speed non-rural roads.  The report concluded that, while the estimated effect of mass 
reduction may result in a statistically-significant increase in risk in certain cases, the increase is 
small and is overwhelmed by other known vehicle, driver, and crash factors. 

7.1.1.7 Presentation to NAS Subcommittee 

Kahane, Wenzel, Ridella, Thomas of Honda, and Nolan of IIHS, were invited to the June 2013 
NAS subcommittee on light-duty fuel economy to present results from their 2012 analyses.  At 
the meeting, committee members raised several questions about the studies; presenters responded 
to these questions at the meeting, as well as in two emails in August 2013 and December 2014. 

7.1.1.8 2015 National Academy of Sciences Report 

In 2015, the National Academy of Sciences published the report “Cost, Effectiveness and 
Deployment of Fuel Economy Technologies for Light-Duty Vehicles.”  The report is the result 
of the work of the Committee on Assessment of Technologies for Improving the Fuel Economy 
of Light-Duty Vehicles, Phase 2, established upon the request of NHTSA to help inform the 
midterm review.  The committee was asked to assess the CAFE standard program and the 
analysis leading to the setting of standards, as well as to provide its opinion on costs and fuel 
consumption improvements of a variety of technologies likely to be implemented in the light-
duty fleet between now and 2030. 



 

The Committee found the estimates of mass reductions to be conservative for cars; the 
Committee projected mass reductions between 5% (for small and large cars) and 6.5% (for 
midsize cars) larger than the projections.  The Committee acknowledged the possibility of 
negative safety effects during the transition period because of variances in how reductions 
occurred.  Because of this, the Committee recommended NHTSA consider and, if necessary, 
take steps to mitigate this possibility. 

7.1.1.9 NBER Working Paper 

In a NBER working paper, Bento et al.  (2017) present an analysis of relationships among traffic 
fatalities, CAFE standards, and distributions of MY 1989-2005 light-duty vehicle curb weights.  
Consistent with NHTSA’s mass-size-safety analyses, Bento et al. concluded decreases in the 
dispersion of curb weights have a positive effect on safety.  A central conclusion in Bento et al. 
is the monetized value of the net safety improvements achieved under CAFE exceed costs of 
meeting CAFE standards (i.e., CAFE offers a positive net societal benefit independent of fuel-
related impacts).  However, NHTSA identified factors in the analysis limiting the inference that 
can be drawn with respect to CAFE rulemaking going forward.  The temporal range of the 
analysis does not include current footprint-based standards that incentivize light-weighting 
existing models rather than switching to lighter models.  The statistical approach in the analysis 
did not account for the rebound effect or effects of CAFE on vehicle sales (which affect per-mile 
fatality risk), and Bento et al. also represented annual CAFE compliance costs at a level 
substantially less than expected to comply with standards. 

7.1.2 Recent NHTSA Analysis Supporting CAFE Rulemaking 

As mentioned previously, NHTSA and EPA’s 2012 joint final rule for MY 2017 and beyond set 
“footprint-based” standards, with footprint being defined as roughly equal to the wheelbase 
multiplied by the average of the front and rear track widths.  Basing standards on vehicle 
footprint is intended to discourage manufacturers from downsizing their vehicles because fuel 
economy targets are contingent on the vehicles size—the smaller the vehicle’s footprint, the 
higher (more stringent) MPG target.  However, mass reduction that maintains a vehicle’s 
footprint does not create an additional MPG burden as downsizing and is a viable compliance 
mechanism.  Several technologies, such as substitution of light, high-strength materials for 
conventional materials during vehicle redesigns, have the potential to reduce weight and 
conserve fuel while maintaining a vehicle’s footprint.   

NHTSA considers the likely effect of mass reduction on safety.  The relationship between a 
vehicle’s mass, size, and fatality risk is complex, and it varies in different types of crashes.  As 
summarized above, NHTSA, along with others, have been examining this relationship for over a 
decade.  The safety chapter of NHTSA’s April 2012 final regulatory impact analysis (FRIA) of 
CAFE standards for MY 2017-2021 passenger cars and light trucks included a statistical analysis 
of relationships between fatality risk, mass, and footprint in MY 2000-2007 passenger cars and 
LTVs (light trucks and vans), based on calendar year (CY) 2002-2008 crash and vehicle-
registration data; this analysis was also detailed in the 2012 Kahane report.  The principal 
findings and conclusions of the 2012 Kahane report were mass reduction in the lighter cars, even 
while holding footprint constant, would significantly increase fatality risk, whereas mass 
reduction in the heavier LTVs would reduce societal fatality risk by reducing the fatality risk of 



 

occupants of lighter vehicles colliding with those heavier LTVs.  NHTSA concluded, as a result, 
any reasonable combination of mass reductions that held footprint constant in MY 2017-2021 
vehicles – concentrated, at least to some extent, in the heavier LTVs and limited in the lighter 
cars – would likely be approximately safety-neutral; it would not significantly increase fatalities 
and might well decrease them. 

NHTSA released a preliminary report (2016 Puckett and Kindelberger report) on the relationship 
between fatality risk, mass, and footprint in June 2016 in advance of the Draft TAR.  The 
preliminary report covered the same scope as the 2012 Kahane report, offering a detailed 
description of the databases, modeling approach, and analytical results on relationships among 
vehicle size, mass, and fatalities that informed the Draft TAR.  Results in the Draft TAR and the 
2016 Puckett and Kindelberger report are consistent with results in the 2012 Kahane report with 
respect to mass disparity; chiefly, societal effects of mass reduction are small, and mass 
reduction concentrated in larger vehicles is likely to have a beneficial effect on fatalities, while 
mass reduction concentrated in smaller vehicles is likely to have a detrimental effect on fatalities.  
There are differences between the studies in how a proportional reduction of mass would be 
expected to affect societal fatalities directionally, but the estimated effects are functionally near 
zero in both cases. 

For the 2016 Puckett and Kindelberger report and Draft TAR, NHTSA, working closely with 
EPA and the DOE, performed an updated statistical analysis of relationships between fatality 
rates, mass and footprint, updating the crash and exposure databases to the latest available model 
years.  NHTSA analyzed updated databases that included MY 2003-2010 vehicles in CY 2005-
2011 crashes.  For this regulatory analysis, databases are the most up-to-date possible (MY 2004-
2011 vehicles in CY 2006-2012), given the processing time for crash data and the need for 
enough crash cases to permit statistically meaningful analyses.  As in previous analyses, NHTSA 
has made the new databases available to the public at http://www.nhtsa.gov/fuel-economy, 
enabling other researchers to analyze the same data and hopefully minimizing discrepancies in 
results that would have occurred because of inconsistencies across databases. 

7.1.3 Analysis Supporting this Rulemaking 

The basic analytical method used to analyze the impacts of weight reduction on safety for this 
proposed rule is the same as in the 2016 Puckett and Kindelberger report.  NHTSA released the 
2016 Puckett and Kindelberger report as a preliminary report on the relationship between fatality 
risk, mass, and footprint in June 2016 in advance of the Draft TAR.  The 2016 Puckett and 
Kindelberger report covered the same scope as previous NHTSA reports, offering a detailed 
description of the crash and exposure databases, modeling approach, and analytical results on 
relationships among vehicle size, mass, and fatalities that informed the Draft TAR.  The 
modeling approach described in the 2016 Puckett and Kindelberger report was developed with 
the collaborative input of NHTSA, EPA and DOE, and subject to extensive public review, 
scrutiny in two NHTSA-sponsored workshops, and a thorough peer review that compared it with 
the methodologies used in other studies.   

In computing the impact of changes in mass on safety, NHTSA is faced with competing 
challenges.  Research has consistently shown that mass reduction affects “lighter” and “heavier” 
vehicles differently across crash types.  The 2016 Puckett and Kindelberger report found mass 



 

reduction concentrated amongst the heaviest vehicles is likely to have a beneficial effect on 
overall societal fatalities, while mass reduction concentrated among the lightest vehicles is likely 
to have a detrimental effect on fatalities.  To accurately capture the differing effect on lighter and 
heavier vehicles, NHTSA must split vehicles into lighter and heavier vehicle classifications in 
the analysis.  However, this poses a challenge of creating statistically-meaningful results.  There 
is limited relevant crash data to use for the analysis.  Each partition of the data reduces the 
number of observations per vehicle classification and crash type, and thus reduces the statistical 
robustness of the results.  The methodology employed by NHTSA was designed to balance these 
competing forces as an optimal trade-off to accurately capture the impact of mass-reduction 
across vehicle curb weights and crash types while preserving the potential to identify robust 
estimates. 

For this proposed rule, as in the 2020 CAFE rule, NHTSA employed the modeling technique 
developed in the 2016 Puckett and Kindelberger report to analyze the updated crash and 
exposure data by examining the cross sections of the societal fatality rate per billion vehicle 
miles of travel (VMT) by mass and footprint, while controlling for driver age, gender, and other 
factors, in separate logistic regressions for five vehicle groups and nine crash types.  NHTSA 
utilized the relationships between weight and safety from this analysis, expressed as percentage 
increases in fatalities per 100-pound weight reduction, to examine the weight impacts applied in 
this CAFE analysis.  The effects of mass reduction on safety were estimated relative to 
(incremental to) the regulatory baseline in the CAFE analysis, across all vehicles for MY 2018 
and beyond. 

As in the 2012 Kahane report, 2016 Puckett and Kindelberger report, the Draft TAR, and the 
2020 CAFE rule, the vehicles are grouped into three classes: passenger cars (including both two-
door and four-door cars); CUVs and minivans; and truck-based LTVs.  The curb weight of 
passenger cars is formulated, as in the 2012 Kahane report, 2016 Puckett and Kindelberger 
report, Draft TAR, and 2020 CAFE rule, as a two-piece linear variable to estimate one effect of 
mass reduction in the lighter cars and another effect in the heavier cars.   

Comments on the NPRM for the 2020 CAFE rule included suggestions that the sample of LTVs 
in the analysis should not include the medium- or heavy-duty (i.e., truck-based vehicles with 
GVWR above 8,500 pounds) equivalents of light-duty vehicles in the sample (e.g., Ford F-250 
versus F-150, RAM 2500 versus RAM 1500, Chevrolet Suburban 2500 versus Chevrolet 
Suburban 1500), or Class 2b and 3 vehicles.  For the proposal, NHTSA explored revising the 
analysis consistent with such comments.  The process involved two key analytical steps: (1) 
removing all case vehicles from the analysis whose GVWR exceeded 8,500 pounds; and (2) re-
classifying all crash partners with GVWR above 8,500 pounds as heavy vehicles.  The direct 
effects of these changes are: (1) the range of curb weights in the LTV sample is reduced, 
lowering the median curb weight from 5,014 pounds to 4,808 pounds; (2) the sample size of 
LTVs is reduced (the number of case LTVs under this alternative specification is approximately 
18 percent lower than in the central analysis); and (3) the relative impact of crashes with LTVs 
on overall impacts on societal fatality rates decreases, while the corresponding impact of crashes 
with heavy vehicles increases.   

The results from the exploratory analysis of this alternative approach are provided in the 
Sensitivity Analysis section below.  NHTSA seeks comment on this alternative approach; public 



 

comment will inform the decision whether to incorporate the results into the CAFE Model.  The 
primary functional change offered by the alternative approach is that the sample of vehicles 
classified as LTVs would be restricted to vehicles that would be subject to CAFE regulations; it 
is important to note that the LTVs in question are subject to other fuel economy regulations, 
hence their relevance within a study informing the CAFE Model is not immediately nullified by 
being outside the scope of CAFE regulations.  At the statistical level, the concerns raised in 
NHTSA’s response to comment on the 2018 CAFE NPRM remain.  In particular, including 
Class 2b and 3 vehicles in the analysis to determine the relationship of vehicle mass on safety 
has the added benefit of improving correlation constraints.  Notably, curb weight increases faster 
than footprint for large light trucks and Class 2b and 3 pickup trucks and SUVs, in part because 
the widths of vehicles are constrained more tightly (i.e., due to lane widths) than their curb 
weights.  Including data from Class 2b and 3 pick-up truck and SUV fatal crashes provides data 
over a wider range of vehicle weights, which improves the ability to estimate the mass-crash 
fatality relationship.  That is, by extending the footprint-curb weight-fatality data to include 
Class 2b and 3 trucks that are functionally and structurally similar to corresponding ½-ton 
models that are subject to CAFE regulation, the sample size and ranges of curb weights and 
footprint are improved.  However, this result may arise due to the presence of non-linearities 
over the relatively large range of vehicle curb weights when Class 2b and 3 vehicles are included 
in the sample.  Sample size is a challenge for estimating relationships between curb weight and 
fatality risk for individual crash types in the main analysis; dividing the sample further or 
removing observations makes it increasingly difficult to identify meaningful estimates and the 
relationships that are present in the data, as shown in the sensitivity analysis below.  For the 
proposal, NHTSA has determined that the benefit of the additional data points outweighs the 
concern that some of the vehicles used to determine the mass-safety coefficients are not 
regulated by CAFE vehicles. 

NHTSA also explored three other alternative model specifications that are presented in the 
sensitivity analysis below.  The first alternative centers on aligning CUVs and minivans with the 
rest of the sample, by splitting these vehicles into two weight classes.  The key factor restricting 
this change historically has been a low sample size for these vehicles; the exploratory analysis 
examined whether the current database (which, due to the range of CYs covered, contains a 
smaller share of CUVs and minivans than the current fleet) contains a sufficient sample size to 
evaluate two weight classes for CUVs and minivans.  A complicating factor in this analysis is 
that minivans tend to have higher curb weights than other CUVs, adding statistical burden in 
identifying meaningful effects of mass on societal fatality rates after accounting for body type in 
the weight class with the fewest minivans (i.e., lighter CUVs and minivans).  

The second alternative centers on aligning passenger cars with the rest of the sample by 
including cars that are equipped with all-wheel drive (AWD).  In previous analyses, passenger 
cars with AWD were excluded from the analysis because they represented a sufficiently low 
share of the vehicle fleet that statistical relationships between AWD status and societal fatality 
risk were highly prone to being conflated with other factors associated with AWD status (e.g., 
location, luxury vehicle status).  However, the share of AWD passenger cars in the fleet has 
grown.  Approximately one-quarter of the passenger cars in the database have AWD, compared 
to an approximately five-percent share in the MY 2000-2007 database.  Furthermore, all other 
vehicle types in the analysis include AWD as an explanatory variable.  Thus, NHTSA finds the 



 

inclusion of a considerable portion of the real-world fleet (i.e., passenger cars with AWD) to be a 
meaningful consideration. 

The third alternative is a minor procedural question: whether to expand the CYs and MYs used 
to identify the distribution of fatalities across crash types.  The timing of the safety databases 
places the years of the analysis used to establish the distribution of fatalities by crash type firmly 
within the central years of the economic downturn of the late 2000s and early 2010s.  During 
these years, travel demand was below long-term trends, resulting in fewer crashes.  In turn, 
applying the same window of CYs and MYs to the identification of the distribution of fatalities 
across crash types results in notably fewer crashes to incorporate into the analysis.  NHTSA 
conducted exploratory analysis on the question of whether to add CYs and MYs to the range of 
crashes used to identify the distribution of fatalities across crash types; this analysis was 
conducted in concert with the two alternatives discussed directly above.  Results incorporating 
these three alternatives are presented in the sensitivity analysis below. 

The boundary between “lighter” and “heavier” cars is 3,201 pounds (which is the median mass 
of MY 2004-2011 cars in fatal crashes in CY 2006-2012, up from 3,106 pounds for MY 2000-
2007 cars in CY 2002-2008 in the 2012 NHTSA safety database, and up from 3,197 pounds for 
MY 2003-2010 cars in CY 2005-2011 in the 2016 NHTSA safety database).  Likewise, for 
truck-based LTVs, curb weight is a two-piece linear variable with the boundary at 5,014 pounds 
(again, the MY 2004-2011 median, higher than the median of 4,594 pounds for MY 2000-2007 
LTVs in CY 2002-2008 and the median of 4,947 pounds for MY 2003-2010 LTVs in CY 2005-
2011).  CUVs and minivans are grouped together in a single group covering all curb weights of 
those vehicles; as a result, curb weight is formulated as a simple linear variable for CUVs and 
minivans.  Historically, CUVs and minivans have accounted for a relatively small share of new-
vehicle sales over the range of the data, resulting in less crash data available than for cars or 
truck-based LTVs.  CUVs have increased their share of the fleet both across the years covered in 
the database and since, in turn increasing the importance of relationships between mass and 
societal fatality risk for CUVs.  As the share of CUVs increases, any estimated beneficial mass 
reduction in CUVs will have a larger beneficial effect on overall societal fatality risk.  As 
discussed in the sensitivity analysis below, NHTSA evaluated whether the current database 
contains sufficient observations of CUVs and minivans to separate these vehicles into two 
weight classes.  The evidence does not support such a change under the current database; 
however, adding new CYs and MYs to the next database may yield sufficient observations to 
make this change.  In sum, vehicles are distributed into five groups by class and curb weights: 
passenger cars < 3,201 pounds; passenger cars 3,201 pounds or greater; truck-based LTVs < 
5,014 pounds; truck-based LTVs 5,014 pounds or greater; and all CUVs and minivans. 

There are nine types of crashes specified in the analysis for each vehicle group: three types of 
single-vehicle crashes, five types of two-vehicle crashes; and one classification of all other 
crashes.  Single-vehicle crashes include first-event rollovers, collisions with fixed objects, and 
collisions with pedestrians, bicycles and motorcycles.  Two-vehicle crashes include collisions 
with: heavy-duty vehicles; cars, CUVs, or minivans < 3,187 pounds (the median curb weight of 
other, non-case, cars, CUVs and minivans in fatal crashes in the database); cars, CUVs, or 
minivans ≥ 3,187 pounds; truck-based LTVs < 4,360 pounds (the median curb weight of other 
truck-based LTVs in fatal crashes in the database); and truck-based LTVs ≥ 4,360 pounds.  
Grouping partner-vehicle CUVs and minivans with cars rather than LTVs is more appropriate 



 

because their front-end profile and rigidity more closely resemble a car than a typical truck-based 
LTV.  An additional crash type includes all other fatal crash types (e.g., collisions involving 
more than two vehicles, animals, or trains).  Splitting the vehicles from this crash type involved 
in crashes involving two light-duty vehicles into a lighter and a heavier group permits more 
accurate analyses of the mass effect in collisions of two vehicles. 

For a given vehicle class and weight range (if applicable), regression coefficients for mass (while 
holding footprint constant) in the nine types of crashes are averaged, weighted by the number of 
baseline fatalities that would have occurred for the subgroup MY 2008-2011 vehicles in CY 
2008-2012 if these vehicles had all been equipped with electronic stability control (ESC).  The 
adjustment for ESC, a feature of the analysis added in 2012, accounts for the fact that all mass 
reduction in future vehicles will apply to vehicles that are equipped with ESC, as required by 
NHTSA’s regulations. 

Table 7-1 presents the estimated percent increase in U.S. societal fatality risk per ten billion 
VMT for each 100-pound reduction in vehicle mass, while holding footprint constant, for each of 
the five vehicle classes. 

Table 7-1 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant - MY 
2004-2011, CY 2006-2012 

Vehicle Class Point Estimate 95% Confidence 
Bounds 

Cars < 3,201 pounds 1.20 -.35 to +2.75 

Cars > 3,201 pounds 0.42 -.67 to +1.50 

CUVs and minivans -0.25 -1.55 to +1.04 
Truck-based LTVs < 5,014 

pounds 0.31 - .51 to  +1.13 

Truck-based LTVs > 5,014 
pounds -0.61 -1.46 to +.25 

 
Techniques developed in the 2011 (preliminary) and 2012 (final) Kahane reports have been 
retained to test statistical significance and to estimate 95 percent confidence bounds (sampling 
error) for mass effects and to estimate the combined annual effect of removing 100 pounds of 
mass from every vehicle (or of removing different amounts of mass from the various classes of 
vehicles), while holding footprint constant.  Confidence bounds estimate only the sampling error 
internal to the data used in the specific analysis that generated the point estimate.  Point estimates 
are also sensitive to the modification of components of the analysis, as discussed at the end of 
this section.  However, this degree of uncertainty is methodological in nature rather than 
statistical.   

None of the estimated effects has 95-percent confidence bounds that exclude zero, and thus are 
not statistically significant at the 95-percent confidence level.  NHTSA has evaluated these 
results and provided them for the purposes of transparency.  Sensitivity analyses have confirmed 
that the exclusion of these statistically-insignificant results would not affect our policy 
determination, because the net effects of mass reduction on safety costs are small relative to 
predominant estimated benefit and cost impacts.  Among the estimated effects, the most 



 

important effects of mass reduction are, as expected, concentrated among the lightest and 
heaviest vehicles.  Societal fatality risk is estimated to: (1) increase by 1.2 percent if mass is 
reduced by 100 pounds in the lighter cars; and (2) decrease by 0.61 percent if mass is reduced by 
100 pounds in the heavier truck-based LTVs.    

A key constraint limiting statistical significance is that the analysis focuses on societal fatality 
risk (i.e., all fatalities, including crash partners and people outside of vehicles, such as 
pedestrians, cyclists, and motorcyclists) rather than merely in-vehicle fatality risk, which yields 
estimates that are smaller in magnitude (and thus more difficult to identify meaningful 
differences from zero) than estimates representing changes in in-vehicle fatality risk.  That is, 
compared to an analysis of in-vehicle fatality risk (which would tend to yield relatively large 
estimated effects of mass reduction – either relatively highly-beneficial to reduce mass in the 
heaviest vehicles, or relatively highly-detrimental to reduce mass in the lightest vehicles), the 
focus on societal fatalities tends to yield relatively small (net) effects of mass reduction on 
fatality risk.  This arises because the effects of mass reduction inherently net out to some extent 
in two-vehicle crashes: Impacts of mass reduction that protect one set of occupants (i.e., 
occupants of the vehicle striking or being struck by the vehicle that has experienced mass 
reduction) are accompanied by impacts that make the other set of occupants more vulnerable 
(i.e., occupants of the vehicle that has experienced mass reduction).   

NHTSA judges the central value estimates are the best estimates available; the estimates offer a 
stronger statistical representation of relationships among vehicle curb weight, footprint and 
fatality risk than an assumption of no correlation whatsoever.  NHTSA appropriately presents the 
statistical uncertainty.  For example, the central values for the highest vehicle weight group 
(LTVs 5,014 pounds or heavier) and the lowest vehicle weight group (passenger cars lighter than 
3,201 pounds) (which, based on fundamental physics, are expected to have the greatest impact of 
mass reduction on safety) are economically meaningful,825 and are in line with the prior analyses 
used in past NHTSA CAFE rulemakings.  As shown in Table 7-2, the estimated coefficients 
have trended to lower numerical values in successive studies, but remain positive for lighter cars 
and negative for heavier LTVs.   

The regression results are constructed to project the effect of changes in mass, independent of all 
other factors, including footprint.  With each additional change from the current environment 
(e.g., the scale of mass change, presence and prevalence of safety features, demographic 
characteristics), the results may become less representative.  That is, although safety features and 
demographic factors are accounted for separately, the estimated effects of mass are identified 
under the specific mix of vehicles and drivers in the data.  NHTSA notes that the analysis 
accounts for safety features that are optional but available across all MYs in the sample (most 

 
825 NHTSA uses “economically meaningful results” to mean values that have an important, practical implication, but 
may be derived from estimates that do not meet traditional levels of statistical significance.  For example, if the 
projected economic benefit of a project equaled $100 billion, the agency would consider the impact economically 
meaningful, even if the estimates used to derive the impact were not statistically significant at the 95-percent 
confidence level.  Conversely, if the projected economic benefit of a project equaled $1, the agency would not 
consider the impact economically meaningful, even if the estimates used to derive the impact were statistically 
significant at the 99.99-percent confidence level.  In the case above, the results associated with the lightest and 
heaviest vehicle types were considered to be economically meaningful because the associated safety costs were 
large, and the estimates had magnitudes meaningfully different from zero and were statistically significant at the 85-
percent confidence level. 



 

notably electronic stability control, which was not yet mandatory for all model years in the 
sample), and calibrates historical safety data to account for future fleets with full ESC 
penetration to reflect the mandate. 

NHTSA considered the near multicollinearity of mass and footprint to be a major issue in the 
2010 Kahane report and voiced concern about inaccurately estimated regression coefficients.  
High correlations between mass and footprint and variance inflation factors (VIF) have not 
changed from MY 1991-1999 to MY 2004-2011; large vehicles continued to be, on the average, 
heavier than small vehicles to the same extent as in the previous decade. 

Nevertheless, multicollinearity appears to have become less of a problem in the 2012 Kahane, 
2016 Puckett and Kindelberger/Draft TAR, and 2020 CAFE rulemaking analyses.  Ultimately, 
only three of the 27 core models of fatality risk by vehicle type in the current analysis indicate 
the potential presence of effects of multicollinearity, with estimated effects of mass and footprint 
reduction greater than two percent per 100-pound mass reduction and one-square-foot footprint 
reduction, respectively; these three models include passenger cars and CUVs in first-event 
rollovers, and CUVs in collisions with LTVs greater than 4,360 pounds.  This result is consistent 
with the 2016 Puckett and Kindelberger report, which also found only three cases out of 27 
models with estimated effects of mass and footprint reduction greater than two percent per 100-
pound mass reduction and one-square-foot footprint reduction. 

Multicollinearity is one of the important concerns regarding the robustness of the results, along 
with estimated statistical significance.  An alternative gauge of the robustness of the results is 
stability in estimates over time.  That is, concerns regarding limitations of the data and low levels 
of statistical significance may be dampened if related, but substantially different, analyses using 
the same methodology yield consistent results.  Table 7-2 compares the fatality coefficients from 
the 2012 Kahane report (MY 2000-2007 vehicles in CY 2002-2008) and the 2016 Puckett and 
Kindelberger report and Draft TAR (MY 2003-2010 vehicles in CY 2005-2011). 



 

Table 7-2 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant 

Vehicle Class826 2012 Report 
Point Estimate 

2016 Report/Draft 
TAR Point 
Estimate 

2012 Report 95% 
Confidence 

Bounds 

2016 Report 95% 
Confidence 

Bounds 
Lighter Passenger Cars 1.56 1.49 +.39 to +2.73 -.30 to +3.27 

Heavier Passenger Cars .51 .50 -.59 to 1.60 -.59 to +1.60 

CUVs and minivans -.37 -.99 -1.55 to +.81 -2.17 to +.19 
Lighter Truck-based 

LTVs .52 -.10 -.45 to +1.48 -1.08 to +.88 

Heavier Truck-based 
LTVs -.34 -.72 -.97 to + .30 -1.45 to +.02 

 
The most recent results are directionally the same as in 2012; in the 2016 analysis, the estimate 
for lighter LTVs was of opposite sign (but small magnitude).  Consistent with the 2012 Kahane 
and 2016 Puckett and Kindelberger reports, mass reductions in lighter cars are estimated to lead 
to increases in fatalities, and mass reductions in heavier LTVs are estimated to lead to decreases 
in fatalities. 

The estimated mass effect for heavier truck-based LTVs has higher statistical significance in this 
analysis and in the 2016 Puckett and Kindelberger report than in the 2012 Kahane report; both 
estimates are statistically significant at the 85-percent confidence level, unlike the corresponding 
estimate in the 2012 Kahane report.  The estimated mass effect for lighter truck-based LTVs is 
insignificant and positive in this analysis and the 2012 Kahane report, while the corresponding 
estimate in the 2016 Puckett and Kindelberger report was insignificant and negative. 

NHTSA believes the most recent analysis represents the best estimate of the impacts of mass 
reduction that results in increased mass disparities on crash fatalities; and, that it is appropriate 
for the analysis to use the best and most likely estimates for safety, even if the estimates are not 
statistically significant at the 95-percent confidence level.  Significance at the 85-percent 
confidence level is important evidence that the relevant point estimates are meaningfully 
different from zero (e.g., approximately five to six times more likely to be non-zero than zero).  
NHTSA believes it would be misleading to ignore these data or to use values of zero for the 
rulemaking analysis, as doing so would not properly inform decision makers on the safety 
impacts of the regulatory alternatives and final standards.  Similar to past analyses, the most 
recent analysis uses the best available data and estimates.  NHTSA feels it is inappropriate to 
ignore likely impacts of the standards simply because the best available estimates have 
confidence levels below 95 percent; uniform estimates of zero are statistically weaker than the 
estimates identified in the analysis, and thus are not the best available.  Because the point 
estimates are derived from the best-fitting estimates for each crash type (all of which are non-
zero), the confidence bounds around an overall estimate of zero would necessarily be larger than 
the corresponding confidence bounds around the point estimates presented here.  Ultimately, the 
point estimates for the lightest and heaviest vehicles in the sample are the estimates that have 

 
826 Median curb weights in the 2012 Kahane report - 3,106 pounds for cars, 4,594 pounds for truck-based LTVs.  
Median curb weights in the 2016 Puckett and Kindelberger report - 3,197 pounds for cars, 4,947 pounds for truck-
based LTVs. 



 

shown consistent directionality (and, to a lesser extent, magnitude) across studies, and these 
estimates are the most important in representing the effects of changes in mass disparity.  Thus, 
the point estimates for lighter passenger cars and heavier LTVs offer the highest informative 
value among the estimates in the analysis; the smaller estimates corresponding to vehicles near 
the median of the fleet curb weight distribution are likely to be less informative. 

The sensitivity analysis in the accompanying PRIA Chapter 7 Expanded Sensitivity Analysis 
provides an evaluation of extreme cases in which all the estimated net fatality rate impacts of 
mass reduction are either at their fifth- or 95th-percentile values.  The range of net impacts in the 
sensitivity analysis not only covers the relatively more likely case that uncertain, yet generally 
offsetting, effects are distinct from the central estimates considered here (e.g., in a plausible case 
where mass reduction in the heaviest LTVs is less beneficial than indicated by the central 
estimates, it would also be relatively likely that mass reduction in the lightest passenger cars 
would be less harmful, yielding a similar net impact), but also covers the relatively unlikely case 
that all of the estimates are uncertain in the same direction. 

The 2012 Kahane report, the 2016 Puckett and Kindelberger, the Draft TAR, and the 2020 CAFE 
rule all have shown that both mass disparity and vehicle size impact societal safety.  Across 
recent rulemakings, the analyses have confirmed a protective effect of vehicle size (i.e., societal 
fatality risk decreases as footprint increases).  As mentioned previously, NHTSA believes 
vehicle footprint-based standards help to discourage vehicle manufacturers from downsizing 
their vehicles, and therefore assume changes in CAFE standards will not impact vehicle size and 
size-related safety impacts.  On the other hand, mass reduction is a cost-effective technology for 
increasing fuel economy.  Therefore, NHTSA includes the assessment of safety impacts related 
to mass reduction and its potential impact on mass disparity.  In this regard, the CAFE Model 
estimates of how mass reductions will be distributed across the new vehicle fleet and the effects 
of electrification which tends to increase vehicle mass, can strongly affect conclusions about the 
effects of standards on safety.  As discussed throughout this mass-safety subsection, 
comprehensive consideration of the various studies and workshops on the impact of vehicle mass 
disparity on safety is presented and conclude there is in fact a relationship.  The fleet simulation 
study, discussed in the next subsection, further supports the existence of this relationship and that 
this relationship will continue to exist in future vehicle designs. 

Vehicle mass continued an historical upward trend across the MYs in the newest databases.  The 
average (VMT-weighted) masses of passenger cars and CUVs both increased by approximately 
3% from MY 2004 to MY 2011 (3,184 pounds to 3,289 pounds for passenger cars, and 3,821 
pounds to 3,924 pounds for CUVs).  Over the same period, the average mass of minivans 
increased by 6% (from 4,204 pounds to 4,462 pounds), and the average mass of LTVs increased 
by 10% (from 4,819 pounds to 5,311 pounds).  Historical reasons for mass increases within 
vehicle classes include - manufacturers discontinuing lighter models; manufacturers re-designing 
models to be heavier and larger; and shifting consumer preferences with respect to cabin size and 
overall vehicle size.  Indeed, not only have vehicles increased in mass, but also footprint.  Across 
vehicles involved in fatal accidents in the analysis, mean footprint increased by between 
approximately 3% (for CUVs) and 8% (for sedans).   

The principal difference between heavier vehicles, especially truck-based LTVs, and lighter 
vehicles, especially passenger cars, is mass reduction has a different effect in collisions with 



 

another car or LTV.  When two vehicles of unequal mass collide, the change in velocity (delta 
V) is greater in the lighter vehicle.  Through conservation of momentum, the degree to which the 
delta V in the lighter vehicle is greater than in the heavier vehicle is proportional to the ratio of 
mass in the heavier vehicle to mass in the lighter vehicle.   

The relationships among vehicle velocities and vehicle masses in inelastic collisions are given in 
Equation 7-1. 

𝐴𝐴1𝐶𝐶 =
𝐶𝐶𝑀𝑀𝑃𝑃2(𝐴𝐴2𝑟𝑟 − 𝐴𝐴1𝑟𝑟) + 𝑃𝑃1𝐴𝐴1𝑟𝑟 + 𝑃𝑃2𝐴𝐴2𝑟𝑟

𝑃𝑃1 + 𝑃𝑃2
 

Equation 7-1 – Final Velocity for Focal Vehicle in an Inelastic Collision 

Where: 
𝐴𝐴1 is the velocity for a focal vehicle 
 𝐴𝐴2 is the velocity for a partner vehicle 
 i and f represent initial and final velocities respectively 
𝑃𝑃1 and 𝑃𝑃2 are the masses of the vehicles 
𝐶𝐶𝑀𝑀 is the coefficient of restitution (which represents effects extending the time of deceleration 
and dissipating energy through deformation and heat transfer). 
 
As the final velocity decreases, delta-V increases.827  Thus, delta-V increases with the mass of 
the partner vehicle but is unchanged if both vehicles increase their mass proportionally. 

Because fatality risk is a positive function of delta-V, the fatality risk in the lighter vehicle in 
two-vehicle collisions is also higher.  Vehicle design can reduce the magnitude of delta-V to 
some degree (e.g., changing the stiffness of a vehicle’s structure could dampen delta-V for both 
crash partners).  These considerations drive the overall result: increased mass disparity is 
associated with an increase in fatality risk in lighter cars, a decrease in fatality risk in heavier 
LTVs, CUVs, and minivans, and has smaller effects in the intermediate groups.  Mass reduction 
may also be harmful in a crash with a movable object such as a small tree, which may break if hit 
by a high mass vehicle resulting in a lower delta-V than may occur if hit by a lower mass vehicle 
which does not break the tree and therefore has a higher delta-V.  However, in some types of 
crashes not involving collisions between cars and LTVs, especially first-event rollovers and 
impacts with fixed objects or collisions with vulnerable road users (e.g., pedestrians and 
cyclists), mass reduction may not be harmful and may even be beneficial. 

Ultimately, delta-V is a direct function of relative vehicle mass for given vehicle structures.  
Removing some mass from the heavier vehicle involved in an accident with a lighter vehicle 
reduces the delta-V in the lighter vehicle, where fatality risk is higher, resulting in a large benefit 
to the passengers of the lighter vehicle.  This is partially offset by a small increase in the delta-V 
in the heavy vehicle; however, the fatality risk is lower in the heavier vehicle and remains 
relatively low despite the increase in delta-V.  In sum, the change in mass and delta-V from mass 
reduction in heavier vehicles results in a net societal benefit. 

 
827 Delta-V refers to the change of in the velocity experienced during a crash.  



 

These considerations drive the overall result: Mass reduction in lighter cars is associated with an 
increase in societal fatality risk; mass reduction in heavier LTVs, CUVs, and minivans is 
associated with a decrease in societal fatality risk; and mass reduction in the intermediate groups 
has smaller effects.  These results can be considered in concert to represent the potential effects 
of fleetwide mass reduction; in particular, certain ratios of mass reduction across the fleet may 
have little to no net effect on societal fatalities.   

Mass reduction may also be harmful in a crash with a movable object such as a small tree, which 
may break if hit by a high mass vehicle resulting in a lower delta-V than may occur if hit by a 
lower mass vehicle which does not break the tree and therefore has a higher delta-V.  However, 
in some types of crashes not involving collisions between cars and LTVs, especially first-event 
rollovers and impacts with fixed objects, mass reduction may not be harmful and may be 
beneficial.  To the extent lighter vehicles may respond more quickly to braking and steering, or 
may be more stable because their center of gravity is lower, they may more successfully avoid 
crashes or reduce the severity of crashes. 

Farmer, Green, and Lie, who reviewed the 2010 Kahane report, again peer-reviewed the 2011 
Kahane report.  In preparing his 2012 report (along with the 2016 Puckett and Kindelberger 
report and Draft TAR), Kahane also took into account Wenzel’s assessment of the preliminary 
report and its peer reviews, DRI’s analyses published early in 2012, and public comments such 
as the International Council on Clean Transportation’s comments submitted on NHTSA and 
EPA’s 2010 notice of joint rulemaking.  These comments prompted supplementary analyses, 
especially sensitivity tests, discussed at the end of this section. 

The regression results are best suited to predict the effect of a small change in mass, leaving all 
other factors, including footprint, the same.  With each additional change from the current 
environment (e.g., the scale of mass change, presence and prevalence of safety features, 
demographic characteristics), uncertainty in the model results may increase.  It is recognized that 
the light-duty vehicle fleet in the MY 2021-2026 timeframe will be different from the MY 
2004-2011 fleet analyzed here. 

Nevertheless, one consideration provides some basis for confidence in applying regression 
results to estimate effects of relatively large mass reductions or mass reductions over longer 
periods.  The central results represent the findings from NHTSA’s sixth evaluation of effects of 
mass reduction and/or downsizing, comprising databases ranging from MY 1985 to MY 2011. 

Results of the six studies are not identical, but they have been consistent to a point.  During this 
time period, many makes and models have increased substantially in mass, sometimes as much 
as 30-40%.  If the statistical analysis has, over the past years, been able to accommodate mass 
increases of this magnitude, perhaps it will also succeed in modeling effects of mass reductions 
of approximately 10-20%, should they occur in the future. 

7.1.4 Sensitivity Analyses 

Table 7-3 shows the principal findings and includes sampling-error confidence bounds for the 
five parameters used in the CAFE Model.  The confidence bounds represent the statistical 
uncertainty that is a consequence of having less than a census of data.  NHTSA’s 2011, 2012, 



 

and 2016 reports acknowledged another source of uncertainty - The baseline statistical model 
can be varied by choosing different control variables or redefining the vehicle classes or crash 
types, which for example, could produce different point estimates.  

Beginning with the 2012 Kahane report, NHTSA has provided results of 11 plausible alternative 
models that serve as sensitivity tests of the baseline model.  Each alternative model was tested or 
proposed by: Farmer (IIHS) or Green (UMTRI) in their peer reviews; Van Auken (DRI) in his 
public comments; or Wenzel in his parallel research for DOE.  The 2012 Kahane and 2016 
Puckett and Kindelberger reports provide further discussion of the models and the rationales 
behind them.  

Alternative models use NHTSA’s databases and regression-analysis approach but differ from the 
baseline model in one or more explanatory variables, assumptions, or data restrictions.  NHTSA 
applied the 11 techniques to the latest databases to generate alternative CAFE Model 
coefficients.  The range of estimates produced by the sensitivity tests offers insight to the 
uncertainty inherent in the formulation of the models, subject to the caveat these 11 tests are, of 
course, not an exhaustive list of conceivable alternatives.  

The central and alternative results follow, ordered from the lowest to the highest estimated 
increase in societal risk per 100-pound reduction for cars weighing less than 3,201 pounds. 

Table 7-3 – Fatality Increase (%) Per 100-Pound Mass Reduction While Holding Footprint* Constant 

 Cars Cars CUVs & LTVs† LTVs† 
< 3,201 ≥ 3,201 Minivans < 5,014 ≥ 5,014 

Baseline Estimate 1.20 0.42 -0.25 0.31 -0.61 
95% Confidence Bounds 
(sampling error) 

Lower: -0.35 -0.67 -1.55 -0.51 -1.46 
Upper: 2.75 1.5 1.04 1.13 0.25 

11 Alternative Models: 
1. Without CY control variables 0.26 -0.07 -0.58 0.35 -0.24 
2. By track width & wheelbase 0.66 0.54 -0.48 -0.44 -0.90 
3. Track width/wheelbase w. stopped veh data 0.73 -0.02 -0.18 -0.77 -1.91 
4. Without non-significant control variables 0.98 0.26 0.14 0.36 -0.50 
5. With stopped-vehicle State data 1.32 -0.17 -0.08 0.21 -1.55 
6. CUVs/minivans weighted by 2010 sales 1.20 0.42 -0.06 0.31 -0.61 
7. Including muscle/police/AWD cars/big vans 1.56 1.01 -0.25 0.87 0.43 
8. Limited to drivers with BAC=0 1.72 1.33 0.01 0.35 -0.74 
9. Control for vehicle manufacturer 2.09 1.51 -0.01 1.12 0.30 
10. Limited to good drivers‡ 2.15 1.80 -0.33 0.40 -0.45 
11. Control for vehicle manufacturer/nameplate 2.26 2.70 -0.55 1.13 0.50 
*While holding track width and wheelbase constant (rather than footprint) in alternative model nos. 2 and 3. 
†Excluding CUVs and minivans. 
‡BAC=0, no drugs, valid license, at most 1 crash and 1 violation during the past 3 years. 
 
For example, in cars weighing less than 3,201 pounds, the baseline estimate associates 100-
pound mass reduction, while holding footprint constant, with a 1.56% increase in societal fatality 



 

risk.  The corresponding estimates for the 11 sensitivity tests range from a 0.26 to a 2.26% 
increase.  

The sensitivity tests illustrate both the fragility and the robustness of baseline estimates.  On the 
one hand, the variation among NHTSA’s coefficients is quite large relative to the baseline 
estimate - In the preceding example of cars < 3,201 pounds, the estimated coefficients range 
from almost zero to almost double the baseline estimate.  This result underscores the key 
relationship that the societal effect of mass reduction is small, a finding shared by Wenzel (2011, 
2018).  In other words, varying how to model some of these other vehicle, driver, and crash 
factors, which is exactly what sensitivity tests do, can appreciably change the estimate of the 
societal effect of mass reduction. 

On the other hand, variations are not particularly large in absolute terms.  The ranges of 
alternative estimates are generally in line with the sampling-error confidence bounds for the 
central estimates.  Generally, in alternative models as in the central model, mass reduction tends 
to be relatively more harmful in the lighter vehicles and more beneficial in the heavier vehicles, 
just as they are in the central analysis.  In all models, the point estimate of the coefficient is 
positive for the lightest vehicle class, cars < 3,201 pounds.  In 10 out of 11 models, the point 
estimate is negative for CUVs and minivans, and in nine out of 11 models the point estimate is 
negative for LTVs ≥ 5,014 pounds.  NHTSA believes the central case uses the most rigorous 
methodology, as discussed further above, and provides the best estimates of the impacts of 
differential mass reductions on safety. 

In addition to the above sensitivity analyses, NHTSA conducted exploratory analyses on four 
candidate revisions to the model.  The first candidate revision, per feedback on the 2018 CAFE 
NPRM, is the reclassification of Class 2b and Class 3 truck-base vehicles.  In the exploratory 
analysis, NHTSA removed Class 2b and Class 3 truck-based vehicles as case vehicles, and re-
assigned crash partner Class 2b and Class 3 vehicles from LTVs to heavy-duty vehicles.  The 
second candidate revision is the inclusion of passenger cars equipped with AWD.  The third 
candidate revision is splitting CUVs and minivans into two vehicle classes by curb weight, 
consistent with the treatment of passenger cars and truck-based LTVs.  The fourth candidate 
revision is the expansion of the range of CYs and MYs used to establish the distribution of 
fatalities by crash type. 

Results based on the candidate revisions are consolidated in Table 7-4. 



 

Table 7-4 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant with 
Alternative Model Specifications - MY 2004-2011, CY 2006-2012 

Vehicle Class 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2008-2011 in 

CY 2008-2012 
(Original 
Weights) 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2007-2011 in 

CY 2007-2012 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2006-2011 in 

CY 2006-2012 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2004-2011 in 

CY 2006-2012 
(Full Sample) 

Cars < 3,201 Pounds 
(including AWD) 1.12% 1.12% 1.11% 1.12% 

Cars 3,201+ Pounds 
(including AWD) 0.89% 0.87% 0.84% 0.86% 

LTVs < 4,808 Pounds  
(No Class 2b/3) 0.26% 0.26% 0.26% 0.29% 

LTVs 4,808+ Pounds  
(No Class 2b/3) -0.16% -0.17% -0.16% -0.17% 

CUVs and Minivans  
< 3,955 Pounds 0.20% 0.19% 0.18% 0.18% 

CUVs and Minivans  
3,955+ Pounds -0.52% -0.52% -0.53% -0.51% 

 
Under the alternative specification excluding Class 2b and Class 3 truck-based vehicles as case 
vehicles, the median curb weight for LTVs is 4,808 pounds, or 206 pounds lighter than in the 
central analysis.  When splitting CUVs and minivans into two weight classes, the median curb 
weight for the vehicles is 3,955 pounds.  Under this alternative specification, where Class 2b and 
Class 3 truck-based crash partners are shifted from truck-based LTVs to heavy-duty vehicles, the 
median curb weight for LTV crash partners is 4,216 pounds, or 144 pounds lighter than in the 
central analysis. 

Re-classifying Class 2b and Class 3 truck-based vehicles has a strong effect on the point estimate 
for heavier LTVs.  Critically, removing the heaviest trucks as case vehicles yields a much 
smaller point estimate (reduction in societal fatality rates of between 0.16% and 0.17% per 100-
pound mass reduction, versus 0.61% in the central analysis).  This result is consistent with a 
relationship where a key share of the sensitivity of fatality risk is attributed to the mass of the 
heaviest vehicles in the fleet (i.e., supporting the role of mass dispersion in societal fatality 
rates).  Importantly, the point estimate for lighter LTVs is not meaningfully different from the 
corresponding estimate in the central analysis (increase in societal fatality rates of between 
0.26% and 0.29% per 100-pound mass reduction, versus 0.3% in the central analysis).  
Considered in concert, these results indicate that the most effective reductions in societal fatality 
rates via mass reduction in truck-based vehicles would arise not from lightweighting the heaviest 
vehicles subject to CAFE regulation, but rather from lightweighting similar, medium- and heavy-
duty vehicles.   

Including passenger cars with AWD in the analysis has little effect on the point estimate for 
lighter passenger cars (increase in societal fatality rates of approximately 1.1% per 100-pound 
mass reduction, versus 1.2% in the central analysis).  However, this revision has a strong effect 
on the point estimate for heavier passenger cars (increase in societal fatality rates of between 



 

0.84% and 0.89% per 100-pound mass reduction, versus 0.42% in the central analysis).  This 
result supports a hypothesis that, after taking AWD status into account, mass reduction in heavier 
passenger cars is a more important driver of societal fatality rates than previously estimated.  
Although this result could be spurious, estimated confidence bounds (presented below) indicate 
that accounting for AWD status reduces uncertainty in the point estimate.  NHTSA seeks 
comment on the inclusion of passenger cars with AWD when estimating the effects of mass 
reduction on societal fatality rates. 

Splitting CUVs and minivans into two vehicle classes yields point estimates that are consistent 
with the point estimate for the consolidated CUV-minivan vehicle class (an average decrease in 
societal fatality rates of approximately 0.16% to 0.18% per 100-pound mass reduction across the 
two vehicle classes, versus a decrease of 0.25% in the central analysis).  However, sample sizes 
half as large in the two vehicle classes relative to the consolidated vehicle class lead to very large 
estimated confidence bounds, as shown below.  Due to this uncertainty, NHTSA does not feel 
that the current databases contain a large enough sample of CUVs and minivans to split these 
vehicles into two classes in the analysis; however, this issue will be re-examined when the next 
iteration of the databases is complete. 

Extending the range of CYs and MYs used to establish the distribution of fatalities across crash 
types has a negligible effect on the point estimates.  Based on the narrow ranges of results in 
Table 7-4, NHTSA finds evidence supporting a flexible approach in the choice of CYs and MYs 
used in this manner.  All else being equal, extending the range helps to mitigate the potential for 
individual crash types with large estimated effects to drive spurious effects on overall estimates 
through unrepresentatively high estimated shares of overall fatalities.  As a hedge in this 
direction, NHTSA applied the estimates from the alternative specification with two additional 
CYs and MYs (i.e., the second column from the right in Table 7-4) when evaluating 95-percent 
confidence bounds for the alternative models considered here.  NHTSA seeks comment on this 
approach to representing the distribution of fatalities across crash types. 

The estimated confidence bounds are presented in Table 7-5. 



 

Table 7-5 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant with 
Alternative Model Specifications - MY 2004-2011, CY 2006-2012; Fatalities Weighted Across MY 2006-2011 

in CY 2006-2012 

Vehicle Class Point 
Estimates 

95% 
Confidence 

Interval Lower 
Bound 

95% 
Confidence 

Interval Upper 
Bound 

Cars < 3,201 Pounds 
(including AWD) 1.11% -0.57% 2.80% 

Cars 3,201+ Pounds 
(including AWD) 0.84% -0.14% 1.82% 

LTVs < 4,808 Pounds  
(No Class 2b/3) 0.26% -0.83% 1.36% 

LTVs 4,808+ Pounds  
(No Class 2b/3) -0.16% -1.47% 1.14% 

CUVs and Minivans  
< 3,955 Pounds 0.18% -2.94% 3.30% 

CUVs and Minivans  
3,955+ Pounds -0.53% -2.26% 1.21% 

All CUVs and Minivans -0.29% -1.56% 0.99% 

 
The estimated 95-percent confidence intervals are similar for lighter passenger cars with and 
without the inclusion of cars with AWD (-0.57% to 2.80% versus -0.35% to 2.75%) and CUVs 
and minivans as a combined class (-1.56% to 0.99% versus -1.55% to 1.04%).  The latter result 
underscores the small impact that re-classifying Class 2b and Class 3 crash partners has on 
estimates in isolation.   

The estimated confidence interval for heavier passenger cars is somewhat narrower when 
including vehicles with AWD (-0.14% to 1.82% versus -0.67% to 1.50% when excluding cars 
with AWD).  Critically, combined with the increase in the magnitude of the point estimate, the 
alternative confidence interval indicates that the estimate is much closer to statistical significance 
at the 95-percent confidence level when including cars with AWD. 

The confidence interval for lighter LTVs is somewhat larger when re-classifying Class 2b and 
Class 3 truck-based vehicles (-0.83% to 1.36% versus -0.51% to 1.13%), reflecting in part the 
effects of reducing the range of vehicles represented in the group.  This effect is much stronger in 
the vehicle class affected most directly by this change, heavier LTVs.  The upper bound of the 
95-percent confidence interval is much larger when re-classifying Class 2b and Class 3 truck-
based vehicles (-1.47% to 1.14% versus -1.46% to 0.25%).  Thus, after removing the heaviest 
vehicles from the vehicle class, the point estimate changes from being at least economically 
significant to being simply statistically insignificant. 

Lastly, the estimated confidence bounds for the separate CUV and minivan classes are much 
larger than the rest (-2.94% to 3.30% for lighter CUVs and minivans, and -2.26% to 1.21% for 
heavier CUVs and minivans).  These results underscore the need for increased sample size 
before splitting CUVs and minivans into two vehicle classes. 



 

7.1.5 Fleet Simulation Model 

Commenters to recent CAFE rulemakings, including some vehicle manufacturers, have 
suggested that designs and materials of more recent model year vehicles may have weakened the 
historical statistical relationships between mass, size, and safety.  NHTSA agreed that the 
statistical analysis would be improved by using an updated crash and exposure database 
reflecting more recent safety technologies, vehicle designs and materials, and reflecting changes 
in the vehicle fleet.  As mentioned above, a new crash and exposure database was created with 
the intention of capturing modern vehicle engineering and has been employed for assessing 
safety effects for CAFE rules since 2012. 

NHTSA has traditionally relied solely on real-world crash data as the basis for projecting the 
future safety implications for regulatory changes.  NHTSA is required to consider relevant data 
in setting standards.  Every fleet regulated by NHTSA’s standards differs from the fleet used to 
establish said standard, and as such, the light-duty vehicle fleet in the MY 2024-2026 timeframe 
will be different from the MY 2004-2011 fleet analyzed in the 2012 study.  This is not a new or 
unique phenomenon, but instead is an inherent challenge in regulating an industry reliant on 
continual innovation.  The statistical analysis reviewed above is NHTSA’s sixth evaluation of 
effects of mass reduction and/or downsizing, comprising databases ranging from MY 1985 to 
MY 2011.  Despite continual claims that modern lightweight engineering will render current data 
obsolete, results of the six studies, while not identical, have been generally consistent in showing 
a small, negative impact related to increased mass disparity.  NHTSA strongly believes that real-
world crash data remain the best, most relevant data to measure the effect of mass reduction on 
safety. 

However, because lightweight vehicle designs introduce fundamental changes to the structure of 
the vehicle, there remains a persistent question of whether historical safety trends will apply.  To 
address this concern and to verify that real-world crash data remain an appropriate source of data 
for projecting mass-safety relationships in the future fleet, in 2014, NHTSA sponsored research 
to develop an approach to utilize experimental lightweight vehicle designs to evaluate safety in a 
broader range of real-world representative crashes.  NHTSA contracted with George Washington 
University to develop a fleet simulation model to study the impact and relationship of light-
weighted vehicle design with injuries and fatalities.  The study involved simulating crashes on 
eight test vehicles, five of which were equipped with lightweight materials and advanced designs 
not yet incorporated into the U.S. fleet.  The study assessed a range of frontal crashes, including 
crashes with fixed objects and other vehicles, across a wide range of vehicle speeds, and with 
mid-size male and mid-size female dummies. 

The methodology focused on frontal crashes because of the availability of existing vehicle and 
occupant restraint models.  Representative crashes were simulated between baseline and 
lightweight vehicles against a range of vehicles and roadside objects using two different size 
belted driver occupants (adult male and small female) only.  No passenger(s) or unbelted driver 
occupants were considered in this fleet simulation.  The occupant injury risk from each 
simulation was calculated and summed to obtain combined occupant injury risk.  The combined 
occupant injury risk was weighted according to the frequency of real-world occurrences to 
develop overall societal risk for baseline and light-weighted vehicles.  Note - The generic 
restraint system developed and used in the baseline occupant simulations was also used in the 



 

light-weighted vehicle occupant simulations as the purpose of this fleet simulation was to 
understand changes in societal injury risks because of mass reduction for different classes of 
vehicles in frontal crashes.  No modifications to the restraint systems were made for light-
weighted vehicle occupant simulations.  Any modifications to restraint systems to improve 
occupant injury risks or societal injury risks in the light-weighted vehicle, would have conflated 
results without identifying effects of mass reduction only.  The following sections provide an 
overview of the fleet simulation study: 

In this study, there were eight vehicles as follows: 

• 2001 model year Ford Taurus finite element model baseline and two simple design 
variants included a 25% lighter vehicle while maintaining the same vehicle front end 
stiffness and 25% overall stiffer vehicle while maintaining the same overall vehicle mass.  

• 2011 model year Honda Accord finite element baseline vehicle and its 20% light- weight 
vehicle designed by Electricore.  This mass reduction study was sponsored by NHTSA.  

• 2009/2010 model year Toyota Venza finite element baseline vehicle and two design 
variants included a 20% light-weight vehicle model (2010 Venza) funded by EPA and 
International Council on Clean Transportation (ICCT) and a 35% light-weight vehicle 
(2009 Venza) funded by California Air Resources Board.  

Light weight vehicles were designed to have similar vehicle crash pulses as baseline vehicles.  
More than 440 vehicle crash simulations were conducted for the range of crash speeds and crash 
configurations to generate crash pulse and intrusion data points shown in Figure 7-1.  The crash 
pulse data and intrusion data points will be used as inputs in the occupant simulation models. 

 

 

Figure 7-1 – Vehicle Crash Simulations 



 

For vehicle-to-vehicle impact simulations, four finite element models were chosen to represent 
the fleet as shown in Table 7-6.  The partner vehicle models were selected to represent a range of 
vehicle types and weights.  It was assumed vehicle models would reflect the crash response for 
all vehicles of the same type, e.g. mid-size car.  Only the safety or injury risk for the driver in the 
target vehicle and in the partner vehicle were evaluated in this study. 

Table 7-6 – Base Vehicle Models Used in the Fleet Simulation Study 

Vehicle Models FE Weight / No. Parts /Elements 

Taurus 
(MY 2000 – 2007)  

 
 
 

1505 kg / 802 / 973,351 

Yaris 
(MY 2005 – 2013)  

 
 
 

1100 kg / 917 / 1,514,068 

Explorer  
(MY 2002 – 2005)  

  
 

2025 kg / 923 / 714,205 

Silverado  
(MY 2007 –2013)  

  
 

2270 kg / 719 / 963,482 

 
As noted, vehicle simulations generated vehicle deformations and acceleration responses utilized 
to drive occupant restraint simulations and predict the risk of injury to the head, neck, chest, and 
lower extremities.  In all, more than 1,520 occupant restraint simulations were conducted to 
evaluate the risk of injury for mid-size male and small female drivers. 

The societal injury risk (SIR), as computed by Equation 7-2, for a target vehicle v in frontal 
crashes is an aggregate of individual serious crash injury risks weighted by real-world frequency 
of occurrence (v) of a frontal crash incident.  A crash incident corresponds to a crash with 
different partners (Npartner) at a given impact speed (Pspeed), for a given driver occupant size 
(Loccsize), in the target or partner vehicle (T/P), in a given crash configuration (Mconfig), and in 
a single- or two-vehicle crash (Kevent).  CIR (v) represents the combined injury risk (by body 
region) in a single crash incident.  (v) designates the weighting factor, i.e., percent of occurrence, 
derived from National Automotive Sampling System Crashworthiness Data System (NASS 
CDS) for the crash incident.  A driver age group of 16 to 50 years old was chosen to provide a 
population with a similar, i.e., more consistent, injury tolerance. 

 

Equation 7-2 – Societal Injury Risk 



 

Figure 7-2 shows how change in societal risk is computed. 

 
Figure 7-2 – Diagram of Computation for Overall Change in Societal Risk 

The fleet simulation was performed using the best available engineering models, with base 
vehicle restraint and airbag settings, to estimate societal risks of future lightweight vehicles.  The 
range of the predicted risks for the baseline vehicles is from 1.25% to 1.56%, with an average of 
1.39%, for the NASS frontal crashes that were simulated.  The change in driver injury risk 
between the baseline and light-weighted vehicles will provide insight into the estimate of 
modification needed in the restraint and airbag systems of lightweight vehicles.  If the difference 
extends beyond the expected baseline vehicle restraint and airbag capability, then adjustments to 
the structural designs would be needed.  Results from the fleet simulation study show that the 
trend of increased societal injury risk for light-weighted vehicle designs, as compared to their 
baselines, occurs for both single vehicle and two-vehicle crashes.  Results are listed in Table 7-7. 

In general, the societal injury risk in the frontal crash simulation associated with the small size 
driver is elevated when compared to that of the mid-size driver.  However, both occupant sizes 
had levels of injury risk in the simulated impact configurations representative of the regulatory 
and consumer information testing.  NHTSA examined three methods for combining injuries with 
different body regions.  One observation was the baseline mid-size CUV model was more 
sensitive to leg injuries. 



 

Table 7-7 – Overall Societal Risk Calculation Results for Model Runs, with Base Vehicle Restraint and 
Airbag Settings Being the same for All Vehicles, in Frontal Crash Only 

Target Vehicle Passenger 
Car Baseline 

Passenger Car 
LW 

CUV 
Baseline 

CUV Low 
Option 

CUV High 
Option 

Weight (lbs) 3681 2964 3980 3313 2537 
Reduction  716  668 1444 
% mass reduction  19%  17% 36% 
Societal Risk I 1.56% 1.73% 1.36% 1.46% 1.57% 
Delta Increase  0.17%  0.10% 0.21% 
Societal Risk II 1.43% 1.57% 1.14% 1.20% 1.30% 
Delta Increase  0.14%  0.06% 0.16% 
Societal Risk IIP 1.44% 1.59%  
Delta Increase  0.15% 
Societal Risk I - Target + Partner Combined AIS3+ risk of Head, Neck, Chest & Femur  
Societal Risk II - Target + Partner Combined AIS3+ risk of Head, Neck, and Chest 
Societal Risk IIP - Target + Partner Combined AIS3+ risk of Head, Neck, and Chest with A-Pillar  
Intrusion Penalty 

 
This study only looked at lightweight designs for a midsize sedan and a mid-size CUV and did 
not examine safety implications for heavier vehicles.  The study was also limited to only frontal 
crash configurations and considered just mid-size CUVs whereas the statistical regression model 
considered all CUVs and all crash modes. 

The change in the safety risk from the MY 2010 fleet simulation study was directionally 
consistent with results for passenger cars from the 2012 Kahane report, the 2016 Puckett and the 
Kindelberger report, and the analysis used for the proposal and today’s final rule.  As noted, fleet 
simulations were performed only in frontal crash mode and did not consider other crash modes 
including rollover crashes. 

This fleet simulation study does not provide information that can be used to modify coefficients 
derived for the NPRM regression analysis because of the restricted types of crashes and vehicle 
designs.  As explained earlier, the fleet simulation study assumed restraint equipment to be as in 
the baseline model, in which restraints/airbags are not redesigned to be optimal with light-
weighting. 

7.2 Impact of Vehicle Scrappage and Sales Response on Fatalities 

The sales response discussed above impacts the number of vehicles produced in a given model 
year and, consequently, in service in subsequent years.  The scrappage response impacts safety 
because it changes the rate at which older, and less safe vehicles are retired from service.  
Collectively, sales and scrappage influence how quickly the fleet will “turn over” to newer 
vehicles, which tend to be safer than older vehicles.  Setting aside other responses, then, the sales 
and scrappage responses may change the absolute numbers of estimated fatalities by simply 
changing the size of the fleet.  Related, the dynamic fleet share model discussed above also 
impacts the relative shares of passenger cars and light trucks produced in each model year 



 

(because as the fuel economy levels of both passenger cars and light trucks improve, the 
improvements add more value to the latter, the effect being amplified as fuel prices increase over 
time), and this impacts the absolute numbers of fatalities because our estimates of impacts of 
changes in mass reduction on fatality risk are different for passenger cars and light trucks.828  
While the sales effect is calculated as an elasticity and thus does not have statistical significance, 
the scrappage effect on sales is statistically significant.   

Any effects on fleet turnover (either from changes in the pace of  vehicle retirement or sales of 
new vehicles) will affect the distribution of both ages and model years present in the on-road 
fleet.  Because each of these vintages carries with it inherent rates of fatal crashes, and newer 
vintages are generally safer than older ones, changing that distribution will change the total 
number of on-road fatalities under each regulatory alternative.  Similarly, the dynamic fleet share 
model captures the changes in the fleet’s composition of cars and trucks.  As cars and trucks 
have different fatality rates, differences in fleet composition across the alternatives will affect 
fatalities. 

At the highest level, the agency calculates the impact of the sales and scrappage effects by 
multiplying the VMT of a vehicle by the fatality risk of that vehicle.  The estimation of VMT 
involves three steps:  First, we apply a model (developed for FHWA and discussed in Chapter 
4.3 to estimate total light-duty vehicle VMT in the no-action alternative, accounting for the 
elasticity of VMT with respect to the per-mile cost of driving.  Second, for each of the action 
alternatives, we adjust this VMT to account for the fact that more efficient new vehicle will be 
less costly to drive (i.e., the rebound effect discussed in Chapter 4.3.3.  Third, for each regulatory 
alternative, we distribute estimated VMT in each calendar year among vehicles estimated to be 
in service in that year, as discussed in Chapter 4.3.2.1.  The fatality risk measures the likelihood 
that a vehicle will be involved in a fatal accident per mile driven.  NHTSA calculates the fatality 
risk of a vehicle based on the vehicle’s model year, age, and style, while controlling for factors 
that are independent of the intrinsic nature of the vehicle, such as behavioral characteristics.  

7.2.1  Historical Safety Trend Model 

The relationships among vehicle age, model year, and safety risks to occupants are significant, 
and have persisted over time.  In a 2020 Research Note, NHTSA’s National Center for Statistics 
and Analysis (NCSA) concluded that an occupant of a 7-11 year old vehicle is 11% more likely 
to be severely injured in a crash than the driver of a vehicle 1-6 years old, after accounting for 
the vehicle’s model year and various factors related to the severity of the crash.  The increase in 
risk is even more pronounced for the oldest vehicles in use,  with occupants of vehicles 15 years 
or older being 23% more likely to be severely injured in crashes than occupants of new vehicles 
(again after controlling for the model years of vehicles involved in crashes).829  At the same time, 

 
828 See Passenger Vehicle Occupant Injury Severity by Vehicle Age and Model Year in Fatal Crashes, Traffic Safety 
Facts Research Note, DOT-HS-812-528, National Highway Traffic Safety Administration, April, 2018, and The 
Relationship Between Passenger Vehicle Occupant Injury Outcomes and Vehicle Age or Model Year in Police-
Reported Crashes, Traffic Safety Facts Research Note, DOT-HS-812-937, National Highway Traffic Safety 
Administration, March, 2020. 
829 Liu, C., & Subramanian, R. (2020, March). The relationship between passenger vehicle occupant injury outcomes 
and vehicle age or model year in police-reported crashes (Traffic Safety Facts Research Note. Report No. DOT HS 
812 937). National Highway Traffic Safety Administration. 



 

new vehicles have become consistently safer over time, most likely because of advancements in 
safety technology, like side-impact airbags, electronic stability control, and (more recently) 
sophisticated crash avoidance systems starting to work their way into the vehicle population. 
NHTSA’s 2020 study showed that occupants of cars and light trucks produced in model years 
1995-2011 were 15% more likely to sustain serious injuries in crashes than were occupants of 
vehicles from more recent model years (2012-18), and that occupants of pre-1987 cars and light 
trucks were 50% more likely to be seriously injured in crashes than occupants of vehicles from 
the most recent model years.  These results account for the model year when the vehicles 
involved in crashes were produced and illustrate that the relationship between vehicles’ age and 
the safety risks to their occupants when they are involved in crashes has persisted as new 
vehicles have become safer.   

To estimate the impact of fleet turnover on safety, the agency uses statistical models that 
explicitly incorporate variation in the safety performance of individual vehicle model years.  The 
agency uses separate models for fatalities, non-fatal injuries, and property damage to vehicles.  
These models track vehicles from when they enter the fleet, as they gradually age and 
accumulate usage (and for most vehicles, change in ownership as they age), and are ultimately 
retired from service.  The overall safety performance is determined by the composite of model 
years within the light-duty vehicle fleet, and a host of external factors such as population 
demographics, driver behavior, and traffic levels that can fluctuate over time.  

7.2.2 Model Framework  

The agency’s model uses an “age-period-cohort” framework, where vehicles are divided by 
model years – sometimes referred to as “vintages” – that represent the cohorts making up the 
fleet or population.  The safety performance of each model year cohort differs from its 
predecessors, as successive model years entering the light-duty vehicle fleet have generally 
become safer over time due to improvements in their design, increased durability resulting from 
changes in materials and manufacturing methods, and the effects of the agency’s safety 
regulations.  The “age-period-cohort” approach disaggregates the evolution of fleet-wide safety 
improvements into changes over time, the evolution of each model year’s safety performance 
from the time it is new as it ages, and the influence of factors that vary over time (such as seat 
and shoulder belt use) and affect the safety of all model years in the fleet as they change.830   

 
830 For a detailed explanation of the rationale and methods for age-period-cohort analysis, see for example Columbia 
University Mailman School of Public Health, Population Health Methods: Age Period-Cohort Analysis, available at 
https:// www.mailman.columbia.edu/research/populationhealth-methods/age-period-cohort-analysis (accessed 
February 12, 2020); and Kupper, Lawrence L. et al., ‘‘Statistical age-period-cohort analysis: A review and critique,’’ 
Journal of Chronic Diseases 38:10 (1985), at 811–830, available at 
https://www.sciencedirect.com/science/article/abs/ pii/0021968185901055#! (accessed February 12, 2020).  
Previous applications of the age-period-cohort framework vehicle safety include Anderson, R. W. G., & Searson, D. 
J. (2015). Use of age-period-cohort models to estimate effects of vehicle age, year of crash and year of vehicle 
manufacture on driver injury and fatality rates in single vehicle crashes in New South Wales, 2003–2010. Accident 
Analysis and Prevention, 75: 202-210; Eun, Sang Jun (2020), “Trends in mortality from road traffic injuries in South 
Korea, 1983–2017: Joinpoint regression and age-period-cohort analyses,” Accident Analysis and Prevention 134: 1-
7; and Langley, J., Samaranayaka, A., Begg, D.J., (2013), “Age, period and cohort effects on the incidence of 
motorcyclist casualties in traffic crashes,” Injury Prevention 19 (3), 153–157. https://doi.org/10.1136/injuryprev-
2012-040345. 



 

The safety performance of individual model-year cohorts tends to follow a common pattern as 
they age, accumulate use, and for most vehicles, experience changes in ownership and locations 
where they are driven.  Historically, vehicles’ safety appears to deteriorate gradually through 
approximately age 20, level off for some period, and in some cases improve thereafter.  The 
causes of this pattern are not completely understood, but the agency believes that the major 
influences are the transition of older vehicles to ownership by habitually riskier drivers, or a shift 
in where vehicles are driven to geographic areas where road conditions are less safe and travel 
speeds higher.   

Figure 7-3 illustrates the age-period-cohort framework as applied to the safety of light-duty 
vehicle travel.  New model years introduced into the fleet have generally become progressively 
safer, and these improvements tend to persist throughout their lifetimes in the fleet (a cohort 
effect).  As indicated previously, vehicles tend to gradually be involved in more frequent and 
dangerous accidents as they age and accumulate use, and this effect – which is surprisingly 
consistent across successive model years – represents an aging effect.  Finally, changes in driver 
demographics and driving behavior, as well as external events such as gradual improvements in 
emergency crash response or transient periods of economic stress can affect the safety 
performance of the entire driver population and vehicle fleet.  Such time-varying factors – which 
are the period effects in age-period-cohort analysis – influence fleet-wide safety independently of 
and in addition to the effects of safer new vehicles entering the fleet and the gradual aging of 
vehicles from previous model years.  As the figure suggests, these three effects are conceptually 
independent, but interact in ways that combine to produce observed historical evolution in the 
overall safety of the light-duty vehicle fleet. 

 
Figure 7-3 – Age, Cohort, and Period Effects on Safety of Light-Duty Vehicle Fleet 



 

7.2.3 The Aging Effect 

Figure 7-4 illustrates changes in the safety performance of selected recent model years of cars 
and light trucks as each model year cohort ages, using fatalities per billion miles driven as a 
measure of safety.831  It shows a pattern of gradually increasing fatality rates through 
approximately age 20, after which fatality rates level off, and for some model years ultimately 
decline.  Again, the increase in fatality rates is generally thought to result from transferring 
ownership of used vehicles to riskier drivers and driving locations, although structural fatigue 
with increased usage and mechanical failure also plays some small role in explaining the 
increase.832  The decline in fatality rates for some very old vehicles may result because the small 
share of vehicles that remain in use beyond ages 20-25 tend to be owned by their original 
purchasers, carefully maintained, and driven on a limited basis under relatively safe conditions.  

 
Figure 7-4 – Fatality Rates by Age for Selected Model Years 

 
831 Fatalities occurring among occupants of light-duty vehicles of different model years in use during each calendar 
year were tabulated from NHTSA’s Fatal Accident Reporting System (FARS, https://www.nhtsa.gov/research-
data/fatality-analysis-reporting-system-fars).  Fatality rates for each model year and age were estimated by 
calculating age as equal to (calendar year – model year), and dividing the count of fatalities for each model year and 
age by the number of miles that vehicles produced during that model year and remaining in use during that calendar 
year were estimated to be driven.  The numbers of non-fatal injuries and vehicles involved in property damage-only 
crashes were tabulated from NHTSA’s National Automotive Sampling System General Estimates System (NASS 
GES, https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-estimates-system), and were 
converted to rates per billion miles driven using the same procedure for calculating fatality rates.  Non-fatal injury 
and property damage only crash rates show patterns of variation over historical model years and age that are similar 
to those for fatalities shown in Figure 7-4.   
832  https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811825. 



 

7.2.4 Safer New Cars: The Cohort Effect 

Figure 7-5 isolates the fatality rates for recent model years during the first years after they are 
sold and enter the fleet.833  It clearly illustrates the gradual decline in new vehicles’ fatality rates 
over successive model years, but it also shows that this decline has proceeded in distinct steps 
rather than continuously.  As the figure suggests, some of the largest improvements in new cars 
and light truck safety have coincided with the implementation of NHTSA safety regulations, 
including those requiring front-seat air bags (2000), side air bags (2006-08), and tire pressure 
monitoring systems (2008).  To reflect the historical pattern of safety improvements shown in 
Figure 7-5, we group successive model years that had similar fatality rates when new into a 
smaller number of cohorts, based on visual examination of the figure and the effective dates of 
NHTSA safety regulations.  Grouping model years in this way also enables more reliable 
identification of the effect of vehicle age, since it allows some independent variation in vehicles’ 
ages within model year cohorts during any calendar year, rather than having age be uniquely 
determined by the combination of calendar year and model year.   

 

Figure 7-5 – Fatality Rates for New Light-Duty Vehicles 

7.2.5 Factors that Affect Safety Over Time: Period Effects 

As indicated previously, period effects are factors that vary over time and modify the gradual 
evolution in safety that results from the introduction of new, safer model year cohorts into the 
fleet and the effect of increasing age on their safety.  Period effects can influence the safety of all 
model years making up the fleet during the years when they occur, although they do not 

 
833 Vehicles from each successive new model year are produced and sold over a period spanning well over a single 
calendar year, so we use their average fatality rate for the first two years they are represented in the fleet to be sure 
of including most or all vehicles from each model year.   



 

necessarily have the same effect on each model year’s safety.  One important example is the 
changing demographic composition of the driver population to include more older drivers and 
women; this trend improves overall safety because younger male drivers have historically been 
involved in more frequent crashes.  Another period effect on safety is the gradual shift of driving 
from rural to urban and suburban areas, since road conditions in the latter tend to be safer and 
travel speeds lower, thus reducing the frequency and severity of crashes.  

Other important period influences on safety include driver behavior, since factors like the use of 
lap and shoulder belts – which has increased steadily since they were introduced but appears to 
be reaching a plateau – significantly reduce the severity of injuries vehicle occupants suffer in 
crashes.  Other aspects of driver behavior such as driving under the influence of alcohol (which 
continues to decline) and using electronic devices such as smart phones that distract drivers’ 
attention (which is increasing rapidly, particularly among younger drivers) are both linked to 
more frequent involvement in crashes.  Still other period effects include gradual improvements in 
road design that reduce crash rates, such as wider travel lanes, more gradual curves, and fewer 
roadside obstructions.  Faster response to crash situations by emergency vehicles and personnel, 
together with improved effectiveness of emergency medical treatment, also appear to have 
reduced the consequences of injuries to occupants of vehicles involved in crashes.  

7.2.6 Measuring Safety 

The agency developed separate statistical models to project future rates of fatalities, non-fatal 
injuries, and light-duty vehicles’ involvement in property damage-only crashes per billion 
vehicle-miles of travel.  Fatality rates were calculated by dividing fatalities to occupants of 
vehicles from each model year in use during a calendar year by the total number of miles those 
vehicles were estimated to be driven.  As discussed in detail in Chapter 4.3, the number of 
vehicle-miles (VMT) driven was estimated by multiplying the number of vehicles originally 
produced during each model year that remain use in a subsequent calendar year by the average 
number of miles that vehicles of their age are driven annually.834  This produces fatality rates by 
calendar year and model year for each calendar year from 1990-2019; the model years included 
range from 1975 (the earliest for which reliable registration data were available) to 2019 (the 
newest model year in the fleet during calendar year 2019).  A similar process was used to 
calculate non-fatal injuries to light-duty vehicle occupants per billion miles driven, and the 
number of cars and light trucks involved in property damage-only crashes per billion miles 
driven.   

7.2.7 Model Specification and Estimation 

Defining a model year’s age as the number of calendar years since its introduction (age = 
calendar year – model year) transforms the fatality, non-fatal injury, and property damage rates 
from calendar year and model year to calendar year and age.  Viewed from this perspective, each 
model year’s safety is measured at different ages throughout its lifetime.  Combining these data 
for a succession of model years makes it possible to isolate model year and age-specific effects 
on safety.  However, a model year’s fatality rate during any subsequent calendar year will also 

 
834 A model year’s age during a past calendar year is equal to the difference between that calendar year and that 
model year.  For example, vehicles produced during model year 2000 were age 10 during calendar year 2010, since 
2010-2000 = 10.  



 

reflect period-specific influences that are unique to that calendar year.  Because each model year 
has a unique age when that specific combination of period effects is at work, it is impossible to 
disentangle aging and period effects on any model year’s safety.835  

Common approaches to overcoming this problem include constraining the effects of multiple 
cohorts, ages, or time periods to be identical, specifying the model to be non-linear in age or 
other parameters, and using measures that vary over calendar years (instead of a simple count of 
calendar years elapsed) to capture period effects.  We use a combination of these approaches; as 
noted previously, we first group successive model years with similar fatality rates in their first 
year of use into “safety cohorts.”  This introduces some independent variation between model 
year and age, because during any calendar year each of the model years grouped together in a 
safety cohort have different ages, which facilitates measuring independent cohort and aging 
effects.  Next, we include both age and its squared value as explanatory variables, in order to 
capture the leveling-off of fatality rates as model years approach age 20 as shown in Figure 7-4.  

We attempted to use various measures likely to affect all vehicles’ safety to capture period 
effects, including the fraction of drivers using lap and shoulder belts, the fraction driving under 
the influence of alcohol, the fraction using hand-held electronic devices while driving, the 
proportion of licensed drivers who are male and under the age of 25 (historically the riskiest 
cohort of drivers), and the fraction of light-duty vehicle travel in rural areas.836  A major 
complication with these measures is that they are closely correlated over the period we analyzed, 
which makes it difficult to disentangle their separate effects. Table 7-8 shows the pairwise 
correlations among these period-effect measures, and as it illustrates, many of these are 
extremely high.  Thus, even after controlling for the effects of model year and age, it is 
extremely difficult to isolate the independent contributions of these individual factors.   

We use model years from 1975 through 2019 as a panel whose members are observed at 
different ages ranging from their first year in use (age=1) to an upper limit of 40, and employ 
fixed effects to represent individual model years.837  Because the estimation period is shorter 
than 40 years, no single model year can be observed throughout its entire lifetime, but multiple 
model years are observed at every age over the entire range, so the effect of age should be 
measured reliably.  As discussed previously, we group successive model years with similar 
fatality rates during their first year in use into “safety regimes,” and constrain the fixed effects 
for the model years making up each regime to be identical.  This provides some variation in the 
age of vehicles making up each regime during any calendar year, which improves the models’ 
ability to measure the independent effects of age and period variables.  We group 30 model years 
used in the models for fatality rates into 9 safety regimes, with some regimes corresponding to 

 
835 Viewed another way, defining age = calendar year – model year means that there can be independent variation in 
only two of the three variables (since they uniquely determine the third), so it is impossible to identify their three 
separate effects on safety.   
836 We were unable to obtain useful measures of roadway design parameters or road conditions that would be 
expected to affect safety.  Such measures tend to be reported for individual road and highway segments or routes, 
making it difficult to combine these data into aggregate measures that describe overall driving conditions likely to 
affect safety and how those conditions vary by calendar year.  Nor could we identify satisfactory measures of 
incident response time or the effectiveness of emergency medical treatment in reducing the consequences of injuries 
occurring in motor vehicle crashes. 
837 For an introduction to this method, see Wooldridge, Jeffrey M. (2009), Introductory Econometrics: A Modern 
Approach, 4th ed., South-Western Cengage Learning. Chapters 13 and 14. 



 

only a single model year and others including as many as 8 consecutive model years.  For the 
non-fatal injury and property damage crash models, we group the 26 model years included in the 
sample into 5 safety regimes, each including 2 to 9 consecutive model years.   

Table 7-8 – Correlations Between Time-Varying Measures Affecting Safety 

Variable Unemployment 
Rate 

% of 
Licensed 
Drivers 

Male 16-
24 

% of 
VMT 

in 
Rural 
Areas 

% of 
Occupants 
Wearing 
Lap and 
Shoulder 

Belts 

% of 
Fatal 

Crashes 
Involving 

Drunk 
Driver 

% of Drivers 
Using Hand-
Held Devices 

Unemployment 
Rate 1.00      

% of Licensed 
Drivers Male 

16-24 
0.11 1.00     

% of VMT in 
Rural Areas -0.05 0.89 1.00    

% of 
Occupants 

Wearing Lap 
and Shoulder 

Belts 

0.06 -0.94 -0.91 1.00   

% of Fatal 
Crashes 

Involving 
Drunk Driver 

0.26 0.88 0.65 -0.75 1.00  

% of Drivers 
Using Hand-
Held Devices 

-0.24 0.44 0.59 -0.66 0.32 1.00 

 
To address the difficulty presented by close correlation of the period effect measures, some 
model specifications substitute a linear time trend – a variable that takes the value of one in the 
first calendar year and increases by one in each successive calendar year – to capture the effect 
of their joint movement on safety.  Measuring the model’s dependent variables as the natural 
logarithm of the relevant rate (fatalities, non-fatal injuries, or involvement in property damage 
crashes) for each model year and age offers the advantage that a linear time trend implies a 
constant percentage decline in fatality rates each year, and this specification provides a close fit 
to the observed historical pattern of safety improvements.  We also experimented with more 
complex specifications to test whether the rate of improvement in fleet-wide safety has been 
constant over time, including using a non-linear function of time and testing for more abrupt 
changes in the rate of improvement in safety during the analysis period.838  Finally, after noting 

 
838 Because the model’s dependent variable is the natural logarithm of model year and age-specific fatality rates, 
using a linear time trend corresponds to assuming a constant percentage decline in fatality rates each year (rather 
 



 

that the linear time trend did not fully capture the effects on fleet-wide safety associated with the 
economic recessions in 1991, 2001-2, and 2008-11, we supplemented the time trend with 
indicator (or “dummy”) variables to capture temporary departures from the longer-term trend 
during those years.  

With minor variations, we used this same model specification to analyze trends in non-fatal 
injuries per billion miles driven by cars and light trucks, and in the number of those vehicles 
involved in property damage only crashes per billion miles.  The data used to estimate these 
models spanned a slightly shorter period (1990-2015), which was limited by the fact that 
NHTSA implemented a new crash sampling system starting in 2016, and the difficulty of using it 
together with the system it replaced to generate a continuous history of non-fatal and property 
damage crash estimates.  As indicated previously, the groupings of model years into safety 
regimes used in these models also differed from that used in the fatality rate model.  Based on 
examination of non-fatal injury and property damage rates for new cars and light trucks, model 
years were grouped into 5 regimes, ranging from 2 to 9 consecutive model years, in contrast to 
the 9 regimes used in the fatality model.   

7.2.8 Estimation Results 

The estimation period for the fatality rate model spans 40 calendar years (1990-2019), while that 
for the non-fatal injury and property damage rate models include 36 years (1990-2015).  This 
means that only a single model year (1990) is observed over its entire 40-year service lifetime for 
the fatality model, while no model year is observed throughout its entire service life for the non-
fatal injury and property damage models.  On average, individual model years are observed for 
13-14 years, with older model years observed only during the later years of their service lives, 
while the most recent model years are of course observed only at the very early ages of their 
expected lifetimes.839  We test several different specifications for each model, and evaluate them 
to determine which version is likely to provide the most reliable forecasts of safety for the future 
period spanned by the agency’s evaluation of proposed CAFE standards, which extends through 
2050.   

7.2.9 Fatality Rate Model 

Table 7-9 summarizes estimation results for the fatality rate models.  As it indicates, the fixed 
effects for safety regimes show the expected monotonic decline over progressively more recent 
model years, with surprisingly consistent reductions in new car and light truck fatality rates 
occurring with each move from one regime to the next.  The largest reductions appear to occur in 
model years 2003, 2010, and 2018, although only the last of those is significantly larger than the 
reductions associated with the transitions between previous cohorts.  The values of the diagnostic 
statistic rho reported in the last line of the table, which measures the proportion of the total 
variation in fatality rates that is accounted for by differences in the models’ fixed effects – 
indicate that the largest share represents persistent variation across model years as they age.  

 
than a constant absolute decline each year), and this pattern appeared to provide the best fit to the observed historical 
pattern of safety improvements.   
839 Although the typical observation period is considerably shorter than the maximum number of years that a model 
year remains in the vehicle fleet, it is only slightly shorter than the “expected” lifetime of a model year, or the length 
of time that a typical car or light truck remains in use after it is produced and initially sold. 



 

Overall, the models replicate historical variation in fatality rates both among model years (as 
measured by the values of “Within R-squared”) and over time (“Between R-squared”) quite well.   

As the results for Models 1 and 2 show, the combination of model-year fixed effects and age 
explain much of the variation in fatality rates over time and among model years over their 
lifetimes.  Linear, squared, and cubed values of age all show statistically significant effects, but 
the effect of age cubed is empirically small and does not add to the models’ explanatory power, 
so subsequent results rely on the simpler specification that includes only age and age squared to 
capture the patterns shown previously in Figure 7-4.  Although not shown in the table, we 
experimented with interactions between model year and age to test whether the form of the aging 
effect has changed significantly for more recent model years but found little evidence that it has 
done so.   

 

 

 



 

Table 7-9 – Estimation Results for Fatality Rate Models  

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Constant 2.005*** 2.079*** 2.134*** 2.699*** 1.555*** 2.378*** 0.563 -1.011 2.077*** 2.063*** 2.154*** 2.169*** 
(0.015) (0.020) (0.019) (0.080) (0.171) (0.317) (0.442) (0.710) (0.016) (0.014) (0.025) (0.030) 

Model Years  
1998-2002 

-0.194 
*** 

-0.194 
*** 

-0.194 
*** 

-0.124 
*** 

-0.109 
*** 

-0.0693 
*** 

-0.0405 
*** 

-0.0371 
** 

-0.0563 
*** 

-0.0595 
*** 

-0.0576 
*** 

-0.0586 
*** 

(0.012) (0.012) (0.011) (0.014) (0.014) (0.015) (0.015) (0.015) (0.018) (0.015) (0.015) (0.015) 

Model Years  
2003-05 

-0.360 
*** 

-0.351 
*** 

-0.356 
*** 

-0.246 
*** 

-0.225 
*** 

-0.154 
*** 

-0.106 
*** 

-0.0992 
*** 

-0.135 
*** -0.139*** -0.141*** -0.143*** 

(0.016) (0.016) (0.015) (0.021) (0.020) (0.022) (0.023) (0.023) (0.028) (0.024) (0.023) (0.023) 

Model Year 
2006 

-0.501 
*** 

-0.489 
*** 

-0.493 
*** 

-0.366 
*** 

-0.337 
*** 

-0.249 
*** 

-0.190 
*** 

-0.183 
*** 

-0.233 
*** -0.235*** -0.240*** -0.242*** 

(0.028) (0.027) (0.025) (0.030) (0.028) (0.030) (0.030) (0.030) (0.038) (0.032) (0.032) (0.032) 

Model Year 
2007 

-0.632 
*** 

-0.619 
*** 

-0.620 
*** 

-0.485 
*** 

-0.450 
*** 

-0.354 
*** 

-0.290 
*** 

-0.281 
*** 

-0.342 
*** -0.339*** -0.345*** -0.346*** 

(0.029) (0.028) (0.026) (0.031) (0.030) (0.032) (0.032) (0.032) (0.041) (0.034) (0.034) (0.033) 

Model Years  
2008-09 

-0.750 
*** 

-0.736 
*** 

-0.740 
*** 

-0.591 
*** 

-0.549 
*** 

-0.441 
*** 

-0.371 
*** 

-0.362 
*** 

-0.428 
*** -0.432*** -0.438*** -0.440*** 

(0.023) (0.022) (0.020) (0.028) (0.027) (0.031) (0.032) (0.032) (0.040) (0.034) (0.033) (0.033) 

Model Year 
2010 

-0.896 
*** 

-0.882 
*** 

-0.897 
*** 

-0.734 
*** 

-0.688 
*** 

-0.570 
*** 

-0.492 
*** 

-0.482 
*** 

-0.541 
*** -0.568*** -0.574*** -0.577*** 

(0.033) (0.032) (0.030) (0.036) (0.035) (0.037) (0.039) (0.038) (0.049) (0.041) (0.040) (0.040) 

Model Years  
2011-17 

-1.018 
*** 

-1.013 
*** 

-1.043 
*** 

-0.846 
*** 

-0.792 
*** 

-0.649 
*** 

-0.555 
*** 

-0.545 
*** 

-0.592 
*** -0.621*** -0.635*** -0.638*** 

(0.019) (0.018) (0.017) (0.032) (0.031) (0.038) (0.040) (0.039) (0.049) (0.041) (0.040) (0.040) 

Model Years  
2018--19 

-1.316 
*** 

-1.355 
*** 

-1.359 
*** 

-1.111 
*** 

-1.038 
*** 

-0.851 
*** 

-0.727 
*** 

-0.721 
*** 

-0.775 
*** -0.804*** -0.829*** -0.832*** 

(0.057) (0.055) (0.052) (0.060) (0.057) (0.060) (0.062) (0.061) (0.078) (0.065) (0.064) (0.064) 

Vehicle Age 
0.0901 

*** 
0.0601 

*** 
0.0924 

*** 0.106*** 0.109*** 0.122*** 0.127*** 0.128*** 0.114*** 0.115*** 0.117*** 0.117*** 

(0.002) (0.006) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Vehicle Age2 -0.00193 
*** 0.000753 -0.00203 

*** 
-0.00217 

*** 
-0.00219 

*** 
-0.00242 

*** 
-0.00242 

*** 
-0.00243 

*** 
-0.00203 

*** 
-0.00213 

*** 
-0.00222 

*** 
-0.00222 

*** 



 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vehicle Age3  
 -6.42e-05 

*** 
          

 (0.000)           

Unemployment 
Rate 

  -2.327 
*** 

-2.025 
*** 

-2.936 
*** 

-3.241 
*** 

-3.396 
*** 

-3.568 
*** 

    

  (0.242) (0.232) (0.251) (0.243) (0.235) (0.241)     
% Using 
Lap/Shoulder 
Belts 

   -0.933 
*** 

-0.736 
*** 

-1.801 
*** 

-0.903 
*** 0.0826     

   (0.129) (0.125) (0.242) (0.282) (0.448)     
% Fatalities 
Involving 
Drunk Driver 

    3.240*** 3.065*** 0.16 1.16     

    (0.435) (0.659) (0.815) (0.882)     

% Using Hand-
Held Electronic 
Devices 

     -0.0467 
*** 

-0.0342 
*** 

-0.0294 
*** 

    

     (0.007) (0.007) (0.007)     
% Drivers Male 
<25 Years 

      29.33*** 27.63***     
      (5.171) (5.160)     

% Rural Travel 
       1.642***     
       (0.583)     

Trend 
        -0.0217 

*** 
-0.0203 

*** 
-0.0337 

*** 
-0.0327 

*** 
        (0.002) (0.002) (0.004) (0.004) 

Trend2 
          0.000373 

*** 
 

          (0.000)  

Trend Shift 
           -0.00176 
           (0.002) 

Trend Shift x 
Trend 

           0.000387 
*** 

           (0.000) 



 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Calendar Year 
1991 

         0.191*** 0.122** 0.107* 
         (0.053) (0.054) (0.055) 

Calendar Year 
2001 

         0.0667 0.00872 -0.00495 
         (0.044) (0.044) (0.046) 

Calendar Year 
2007 

         0.0469** 0.0673*** 0.0650**
* 

         (0.018) (0.018) (0.018) 
Calendar Year 
2008 

         -0.0166 0.00386 0.00198 
         (0.018) (0.018) (0.018) 

Calendar Year 
2009 

         -0.170*** -0.150*** -0.151*** 
         (0.017) (0.018) (0.017) 

Calendar Year 
2010 

         -0.153*** -0.134*** -0.135*** 
         (0.017) (0.017) (0.017) 

              

Observations 448 448 448 448 448 393 393 393 448 448 448 448 
R-squared 
within (1) 0.89 0.90 0.91 0.92 0.93 0.93 0.93 0.93 0.91 0.94 0.94 0.94 

R-squared 
between (2) 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

R-squared 
overall (3) 0.67 0.67 0.66 0.81 0.84 0.92 0.94 0.94 0.91 0.91 0.90 0.90 

Corr (u_i, Xb) 
(4) 0.43 0.44 0.42 0.56 0.60 0.74 0.75 0.75 0.68 0.67 0.66 0.66 

sigma_u (5) 0.42 0.42 0.43 0.36 0.34 0.28 0.25 0.24 0.26 0.27 0.28 0.28 
sigma_e (6) 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.09 0.07 0.07 0.07 
rho (7) 0.95 0.95 0.96 0.95 0.95 0.94 0.93 0.93 0.90 0.93 0.94 0.94 
(1) Indicates proportion of variance among individual model year cohorts model accounts for.  
(2) Indicates proportion of variance for all model year cohorts over time model accounts for.  
(3) Indicates proportion of total variance among individual model year cohorts and over time model accounts for.  
(4) Correlation between model error term and explanatory variables included in model. 
(5) Standard deviation of residual terms for individual model year cohorts across time periods.  
(6) Standard deviation of overall model error term.  
(7) Proportion of total variance accounted for by differences among model year cohorts. 

 



 

The results for Models 3 through 8 reported in Table 7-9 illustrate the challenge of incorporating 
the various period effect measures caused by their close correlations.  Increases in the 
unemployment rate, which are primarily associated with the recessions occurring in 1991-92, 
2001-02, and 2008-10, have the expected effect of reducing fatality rates, which is well-
documented in previous research.  Not surprisingly, Models 4 through 8 show that increasing use 
of lap and shoulder belts over time has made a major contribution to the decline in fatality rates, 
although growth in their use has slowed in recent years and appears to be approaching a plateau 
(near 90%).  Driving under the influence of alcohol is strongly associated with higher fatality 
rates in Models 5 to 8, although the apparent strength of this result may largely reflect the fact 
that it is measured as the fraction of fatalities occurring in crashes where at least one driver 
showed a high alcohol blood level, so some “reverse causality” undoubtedly contributes to this 
result. 

Models 6 to 8 in Table 7-9 appear to show that drivers’ use of hand-held electronic devices 
reduces fatality rates, but this result strongly contradicts the seemingly persuasive argument that 
their use distracts drivers visually, cognitively, and manually, so it must be regarded skeptically.  
The fact that including this measure significantly affects the estimated effect of seat belt use also 
suggests that its counter-intuitive estimated effect may stem from their relatively close 
correlation (-0.66, shown previously in Table 7-8).  The estimated positive coefficients on 
variables measuring the fraction of licensed drivers who are young (under age 25) males and the 
fraction of car and light truck travel in rural areas shown for Models 7 and 8 in Table 7-9 suggest 
that declines over time in both of these measures have also contributed significantly to the 
observed decline in fatality rates.  Again, however, the close correlation of these measures with 
seat belt use and driving under the influence of alcohol (as well as with each other; see Table 
7-8) and the fact that introducing them into the model causes such pronounced changes in the 
estimated coefficients on those variables makes the strength of their apparent effect on fatalities 
suspect.   

As an alternative to relying on these period effect variables, Models 9 to 12 in Table 7-9 
substitute a linear time trend in an effort to capture their combined effect.  As indicated 
previously, this implies a constant annual percent decline in fatality rates, which means that the 
magnitude of the annual reduction in fatality rates due to the combination of period effects has 
declined over time.  The coefficient estimates on the time trend variable in Models 9 through 12 
imply a 2-3% annual decline in fatality rates for occupants of cars and light trucks of all model 
years and ages included in the sample, over and above the effect of sustained improvements in 
the safety of new models entering the fleet each year.  Models 10 to 12 supplement the time 
trend with indicator variables for recession years, to account for the fact that higher 
unemployment or other economic stresses during those years may have changed the composition 
of drivers on the road in ways that resulted in safer travel.  As the estimated coefficients on these 
variables show, fatality rates declined more rapidly than the historical downward trend would 
have predicted in 2009 and 2010, although there was little or no evidence that this occurred in 
1992 or 2008, and the results suggest that declines in fatalities during 1991 and 2007 were 
actually slower than would have been predicted by the historical trend alone.   

Finally, Models 11 and 12 include basic tests for whether the downward historical trend in 
fatality rates has slowed over time.  Model 11 tests for gradual slowing in the rate by including 
the squared value of the time trend; the positive coefficient on the squared value suggests a 



 

slowing trend, but its value is so small relative to that of the coefficient on the time trend itself 
that this slowing has barely been perceptible.840  Model 12 tests for whether there was a 
perceptible slowing of the downward trend in fatalities beginning in the year 2007, as visual 
examination of the historical trend in the fleet-wide fatality rate suggests.  As with the previous 
test, the positive coefficient on the Trend Shift variable in Model 12 suggests some slowing of 
the historical decline, but it again appears to be so slight as to be almost imperceptible.841  On 
balance, we conclude that after accounting for the gradual improvement in new car safety and the 
association between age and diminished safety, a constant annual percentage decline explains 
historical variation in fatality rates as well as do more complex trends.  

7.2.10 Non-Fatal Injury Rates 

Table 7-10 reports estimation results for a similar set of models to explain the historical decline 
in non-fatal injuries sustained by occupants of automobiles and light-duty trucks.  As with the 
fatality rate model, the dependent variable in all of the model specifications summarized in the 
table is the natural logarithm of non-fatal injuries per billion miles traveled by cars and light 
trucks, and this rate varies across model years in any calendar year as well as over the calendar 
years for which any model year is represented in the data sample.  The non-fatal injury rate 
models use a much coarser grouping of model years into safety regimes than did the fatality rate 
model, with the 26 model years included in the sample grouped into only 5 regimes.  
Nevertheless, Table 7-10 shows that the fixed effects associated with the safety regimes show the 
same monotonic decline over successive model years, again with fairly consistent reductions in 
non-fatal injury rates as the regimes change with model years 1998, 2001, 2007, and 2009.  The 
largest reductions appear to occur in model years 1998 and 2001, with slightly smaller declines 
occurring in 2007 and 2009.   

As with fatality rates, the results for Models 1 and 2 reported in Table 7-10 show that model-year 
fixed effects and age alone explain much of the variation in fatality rates over time and among 
model years, and the effect of age cubed is empirically small and does not increase the models’ 
explanatory power.  The estimated effects of the period variables on non-fatal injury rates also 
parallel those observed for fatality rates, with a few notable exceptions, and once again illustrate 
the difficulty of incorporating multiple period effect measures.  Increases in the unemployment 
rate again have the expected effect of reducing injury rates, while increasing use of lap and 
shoulder restraints again appears to have significantly reduced the rate of non-fatal injuries to car 
and light truck occupants.  In Models 5 and 6, driving under the influence of alcohol appears to 
be significantly associated with lower injury rates, but this effect disappears in subsequent 
models and in any case is again suspect for the reasons discussed previously.  

Table 7-10 shows that drivers’ use of hand-held electronic devices has no apparent effect on non-
fatal injury rates, although this result may again stem partly from its correlation with the measure 
of lap and shoulder belt use.  The estimated negative coefficients on the fraction of licensed 
drivers who are young males – which suggest that their representation in the driver population 
reduces the rate of non-fatal injuries – are implausible, and the magnitude of the coefficient in 

 
840 For example, including this additional variable in Model 11 reduces the estimated annual decline in fatality rates 
from -3.4% to -3.3%.  
841 The results for Model 12 suggest that the annual decline in fatality rates slowed from 3.3% to 3.2% beginning in 
2007.  



 

Model 8 also makes it extremely suspect.  The estimated effect of the shift in car and light truck 
travel from rural to urban areas has the expected direction (it reduces the rate of non-fatal 
injuries), but its magnitude is suspiciously large and including it removes all of the explanatory 
power from the seat belt use measure; both results seem likely to reflect the extremely close 
correlation between these two measures (-0.91, as shown in Table 7-10), rather than their true 
effects.  

 



 

Table 7-10 – Estimation Results for Non-Fatal Injury Rate Models 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Constant 
6.846*** 6.909 

*** 
6.902 
*** 7.755*** 8.214*** 8.381 

*** 8.905*** 6.019*** 6.890*** 6.882*** 7.067*** 6.935*** 

(0.019) (0.026) (0.025) (0.095) (0.206) (0.403) (0.685) (0.918) (0.021) (0.019) (0.031) (0.033) 

Model Years 
1998-2000 

-0.195 
*** 

-0.195 
*** 

-0.189 
*** 

-0.0900 
*** 

-0.0944 
*** 

-0.0813 
*** 

-0.0866 
*** 

-0.0823 
*** 

-0.124 
*** -0.124*** -0.119*** -0.112*** 

(0.017) (0.016) (0.017) (0.018) (0.018) (0.019) (0.020) (0.020) (0.023) (0.019) (0.017) (0.017) 

Model Years 
2001-2006 

-0.351 
*** 

-0.341 
*** 

-0.335 
*** 

-0.165 
*** 

-0.171 
*** 

-0.150 
*** 

-0.160 
*** 

-0.150 
*** 

-0.226 
*** -0.215*** -0.221*** -0.209*** 

(0.015) (0.015) (0.016) (0.023) (0.023) (0.027) (0.029) (0.028) (0.032) (0.026) (0.025) (0.024) 

Model Years 
2007-2008 

-0.465 
*** 

-0.453 
*** 

-0.437 
*** 

-0.207 
*** 

-0.220 
*** 

-0.192 
*** 

-0.207 
*** 

-0.194 
*** 

-0.286 
*** -0.271*** -0.289*** -0.277*** 

(0.028) (0.028) (0.029) (0.036) (0.036) (0.041) (0.044) (0.043) (0.049) (0.041) (0.038) (0.036) 

Model Years 
2009-2015 

-0.511 
*** 

-0.508 
*** 

-0.491 
*** 

-0.212 
*** 

-0.229 
*** 

-0.200 
*** 

-0.218 
*** 

-0.206 
*** 

-0.290 
*** -0.320*** -0.348*** -0.334*** 

(0.025) (0.025) (0.026) (0.038) (0.038) (0.047) (0.050) (0.049) (0.056) (0.046) (0.043) (0.041) 

Vehicle Age 
0.0487 

*** 
0.0195 

** 
0.0499 

*** 
0.0729 

*** 
0.0715 

*** 
0.0847 

*** 
0.0837 

*** 
0.0845 

*** 
0.0629 

*** 0.0657*** 0.0706*** 0.0722*** 

(0.004) (0.009) (0.003) (0.004) (0.004) (0.005) (0.005) (0.004) (0.005) (0.004) (0.004) (0.004) 

Vehicle Age2 
-0.00193 

*** 0.00104 -0.00192 
*** 

-0.00222 
*** 

-0.00220 
*** 

-0.00267 
*** 

-0.00266 
*** 

-0.00267 
*** 

-0.00202 
*** 

-0.00214 
*** 

-0.00239 
*** 

-0.00242 
*** 

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vehicle Age3  
 -8.14e-05 

*** 
          

 (0.000)           

Unemployment 
Rate 

  -1.183 
*** 

-0.991 
*** -0.698** -1.010 

*** 
-1.049 

*** 
-2.112 

*** 
    

  (0.361) (0.323) (0.341) (0.335) (0.337) (0.401)     

% Using Lap/ 
Shoulder Belts 

   -1.410 
*** 

-1.486 
*** 

-1.240 
*** 

-1.498 
*** 0.71     

   (0.152) (0.154) (0.312) (0.414) (0.630)     



 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

% Non-Fatal 
Injuries in 
Crashes 
Involving 
Drunk Driver 

    -1.296** -2.722 
*** -1.95 0.889     

    (0.517) (0.902) (1.217) (1.331)     

% Using Hand-
Held Electronic 
Devices 

     0.00915 0.00542 0.0149     

     (0.009) (0.010) (0.009)     

% Drivers Male 
<25 years 

      -8.16 -27.34 
*** 

    

      (8.629) (9.344)     

% Rural Travel 
       4.358***     
       (0.961)     

Trend 
        -0.0130 

*** 
-0.0115 

*** 
-0.0419 

*** 
-0.0155 

*** 
        (0.003) (0.002) (0.005) (0.004) 

Trend2 
          0.000952 

*** 
 

          (0.000)  

Trend Shift 
           -0.0165 

*** 
           (0.002) 

Trend Shift x 
Trend 

           0.000737 
*** 

           (0.000) 
Calendar Year 
1991 

         0.0417 -0.0931 -0.0124 
         (0.060) (0.059) (0.058) 

Calendar Year 
2001 

         -0.0695 -0.181*** -0.122** 
         (0.049) (0.049) (0.048) 

Calendar Year 
2007 

         -0.0852 
*** -0.0493** -0.0431** 



 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

         (0.021) (0.020) (0.019) 

Calendar year 
2008 

         -0.0979 
*** 

-0.0651 
*** 

-0.0616 
*** 

         (0.020) (0.019) (0.019) 
Calendar Year 
2009 

         -0.215*** -0.187*** -0.185*** 
         (0.020) (0.019) (0.018) 

Calendar Year 
2010 

         -0.117*** -0.0952 
*** 

-0.0958 
*** 

         (0.019) (0.018) (0.017) 
              
Observations 336 336 336 336 336 281 281 281 336 336 336 336 
R-squared 
within (1) 0.37 0.39 0.39 0.52 0.53 0.62 0.62 0.64 0.41 0.61 0.66 0.69 

R-squared 
between (2) 0.57 0.67 0.74 0.99 0.99 0.99 0.99 0.99 0.95 0.98 0.99 0.99 

R-squared 
overall (3) 0.18 0.22 0.26 0.79 0.79 0.83 0.82 0.84 0.68 0.73 0.72 0.75 

Corr (u_i, Xb) 
(4) 0.10 0.14 0.19 0.74 0.73 0.73 0.72 0.73 0.66 0.61 0.57 0.59 

sigma_u (5) 0.21 0.21 0.20 0.09 0.10 0.08 0.09 0.09 0.12 0.13 0.14 0.13 
sigma_e (6) 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.10 0.08 0.08 0.07 
rho (7) 0.81 0.81 0.79 0.50 0.54 0.51 0.54 0.53 0.60 0.71 0.77 0.77 

Footnotes: see Table 7-9 – Estimation Results for Fatality Rate Models. 

 

 



 

Substituting the time trend measure for the period effect variables in the models for non-fatal 
injuries reveals a considerably slower rate of decline (1.1-1.6% annually, except for the 
anomalously large decline suggested by Model 11) than was the case with fatalities.  Again, 
including indicator variables for recession years improves the model’s fit to the data slightly, and 
the transient effects of higher unemployment and other economic stresses during those years 
weaken the downward trend in non-fatal injuries slightly.  As with the fatality rate models, 
Models 11 and 12 in Table 7-10 show some slowing in the downward trend in non-fatal injury 
rates, although the apparent increase in the strength of the downward trend suggested by Model 
11 seems suspect.  In any case, both models show only very slight weakening in the downward 
historical trend, slowing it by only 0.1% to 0.2% per year.  

7.2.11 Property Damage Rates 

Table 7-11 shows the results of estimating similar models for crashes that cause only property 
damage to vehicles or the immediate surroundings.  Here, the dependent variable is the natural 
logarithm of the number of vehicles involved in property damage only crashes per billion 
vehicle-miles driven by cars and light trucks, and this measure again varies across the model 
years (and thus vehicles of different ages) making up the fleet during each calendar year, as well 
as over successive calendar years (and thus ages) for each model year.  The models for property 
damage group model years into the same 5 clusters as did those for non-fatal injuries the fatality 
rate model, but Table 7-11 shows that there is not the same orderly downward progression the 
fixed effects associated with model year groups as was evident in the models for fatality and 
non-fatal injury rates.  In several specifications, property damage crash rates for model years 
2007-08 seem to be slightly higher when they were newly introduced than those for the 
immediately preceding group of model years, although in each of those cases crash involvement 
rates once again decline significantly for model years 2009 and later. 

As with fatality and non-fatal injury rates, Table 7-11 shows that model-year fixed effects and 
age alone explain much of the variation in property damage rates, while the effect of age cubed is 
empirically small and does not significantly improve the models’ ability to explain historical 
variation in the data.  The estimated effects of the period variables on the rate of property 
damage crashes are inconsistent across models and difficult to interpret; for example, while the 
estimated coefficient on the unemployment rate consistently shows the anticipated negative sign, 
its magnitude is extremely sensitive to the combination of other period effect variables that are 
included.  The effect of the drunk driving measure varies in both direction and magnitude 
depending on the other variables used in combination with it, and there is little evidence that 
drivers’ use of hand-held electronic devices affects property damage crash rates significantly.  
The effects of the fraction of licensed drivers who are young males and the proportion of vehicle 
use in rural areas have the expected directions, although the strength of the former again seems 
unexpectedly large in relation to the other period effect measures.   

The results for Models 8 through 11 in Table 7-11 provide only limited evidence that the same 
downward trend that was observed for fatality and non-fatal injury rates also applies in the case 
of property damage crashes.  One possible explanation for this result is that crashes resulting in 
significant property damage, but no injuries have actually become more common over time as 
vehicles have become increasingly complex in design and more costly to repair.  Only Models 10 
and 11 in Table 7-11, the two specifications that allow for a weakening in the trend over time, 



 

show the expected downward trend over time in the rate of cars’ and light trucks’ involvement in 
property damage crashes.  Its apparent strength in Model 10 – which allows the trend to slow 
gradually over time – is not only large by comparison to those estimated for fatal and injury 
crashes, but also and well over twice that in Model 11, which allows the trend to become less 
steep starting in 2010.  In both cases, however, the trend moderates only very minimally over 
time, the same result that was observed in the models for fatality and non-fatal injury rates.   

 



 

Table 7-11 – Estimation Results for Property Damage-Only Crash Involvement Rates 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 

Constant 7.822*** 7.858*** 7.861*** 7.801*** 8.230*** 9.302*** 9.360 
*** 

7.813 
*** 

7.796 
*** 8.044*** 7.963*** 

(0.014) (0.019) (0.019) (0.138) (0.206) (0.244) (0.242) (0.016) (0.015) (0.022) (0.023) 

Model Years 
1998-2000 

-0.0420 
*** 

-0.0422 
*** 

-0.0380 
*** 

-0.0366 
*** 0.0184 -0.0326 

** -0.0257* -0.0562 
*** 

-0.0578 
*** 

-0.0510 
*** 

-0.0478 
*** 

(0.013) (0.012) (0.012) (0.013) (0.012) (0.013) (0.013) (0.017) (0.015) (0.012) (0.012) 

Model Years 
2001-2006 

-0.0793 
*** 

-0.0740 
*** 

-0.0687 
*** 

-0.0665 
*** 0.0105 -0.0842 

*** 
-0.0703 

*** 
-0.104 

*** 
-0.103 

*** 
-0.110 

*** -0.106*** 

(0.012) (0.012) (0.012) (0.013) (0.014) (0.019) (0.019) (0.025) (0.022) (0.017) (0.017) 

Model Years 
2007-2008 

-0.0610 
*** 

-0.0541 
** -0.0410* -0.0373 0.0623 

*** 
-0.0756 

*** -0.0567* -0.0970 
** 

-0.0909 
*** 

-0.115 
*** -0.111*** 

(0.021) (0.021) (0.022) (0.024) (0.023) (0.029) (0.029) (0.038) (0.033) (0.026) (0.026) 

Model Years 
2009-2015 

-0.0930 
*** 

-0.0911 
*** 

-0.0786 
*** 

-0.0738 
*** 0.0374 -0.134 

*** 
-0.112 

*** 
-0.137 

*** 
-0.162 

*** 
-0.198 

*** -0.194*** 

(0.019) (0.019) (0.019) (0.022) (0.024) (0.033) (0.033) (0.043) (0.038) (0.030) (0.029) 

Vehicle Age 
0.0379 

*** 
0.0212 

*** 
0.0387 

*** 
0.0391 

*** 
0.0602 

*** 
0.0495 

*** 
0.0512 

*** 
0.0351 

*** 
0.0369 

*** 
0.0434 

*** 
0.0441 

*** 
(0.003) (0.007) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.002) 

Vehicle Age2 
-0.00142 

*** 0.00028 -0.00142 
*** 

-0.00142 
*** 

-0.00201 
*** 

-0.00196 
*** 

-0.00197 
*** 

-0.00141 
*** 

-0.00150 
*** 

-0.00183 
*** 

-0.00185 
*** 

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vehicle Age3  
 -4.67e-05 

*** 
         

 (0.000)          

Unemployment 
Rate 

  -0.831 
*** 

-0.873 
*** 

-1.241 
*** 

-1.549 
*** 

-1.827 
*** 

    

  (0.270) (0.286) (0.241) (0.227) (0.243)     



 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 

% of Vehicles 
Damaged in 
Crashes 
Involving 
Drunk Driver 

   0.189 -1.746 
*** 1.767** 3.126***     

   (0.430) (0.641) (0.775) (0.898)     

% Using Hand-
Held 
Electronic 
Devices 

    0.00754 0.0101** 0.00293     

    (0.005) (0.005) (0.005)     

% Drivers 
Male <25 years 

     -30.54 
*** 

-44.27 
*** 

    

     (4.362) (6.413)     

% Rural Travel 
      1.210***     
      (0.419)     

Trend 
       0.00261 0.00426 

** 
-0.0363 

*** 
-0.0146 

*** 
       (0.002) (0.002) (0.003) (0.003) 

Trend2 
         0.00127 

*** 
 

         (0.000)  

Trend Shift 
          -0.0149 

*** 
          (0.001) 

Trend Shift x 
Trend 

          0.00112 
*** 

          (0.000) 
Calendar Year 
1991 

        0.103** -0.0775* -0.0363 
        (0.049) (0.041) (0.041) 

Calendar Year 
2001 

        0.00881 -0.140*** -0.114*** 
        (0.040) (0.034) (0.034) 

Calendar Year 
2007 

        -0.0348 
** 0.0132 0.0142 

        (0.017) (0.014) (0.014) 



 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 

Calendar Year 
2008 

        -0.0305* 0.0134 0.0131 
        (0.017) (0.014) (0.013) 

Calendar Year 
2009 

        -0.144 
*** -0.107*** -0.108*** 

        (0.016) (0.013) (0.013) 

Calendar Year 
2010 

        -0.0910 
*** 

-0.0622 
*** 

-0.0641 
*** 

        (0.016) (0.013) (0.012) 
             
Observations 336 336 336 336 281 281 281 336 336 336 336 
R-squared 
within (1) 0.40 0.41 0.42 0.42 0.66 0.71 0.72 0.40 0.56 0.72 0.74 

R-squared 
between (2) 0.79 0.83 0.85 0.86 0.94 0.73 0.88 0.33 0.07 0.87 0.87 

R-squared 
overall (3) 0.41 0.43 0.45 0.46 0.71 0.62 0.68 0.31 0.41 0.47 0.50 

Corr (u_i, Xb) 
(4) 0.14 0.16 0.20 0.21 -0.50 0.06 0.15 -0.06 -0.08 -0.15 -0.13 

sigma_u (5) 0.04 0.03 0.03 0.03 0.02 0.05 0.04 0.05 0.06 0.07 0.07 
sigma_e (6) 0.08 0.08 0.08 0.08 0.06 0.06 0.06 0.08 0.07 0.05 0.05 
rho (7) 0.18 0.17 0.14 0.13 0.14 0.46 0.38 0.32 0.44 0.66 0.67 
Footnotes: see Table 7-9 – Estimation Results for Fatality Rate Models. 

 

 

 



 

7.2.12 Using the Models to Forecast 

To simplify forecasting baseline future rates for fatalities, non-fatal injuries, and involvement in 
property damage only crashes, we utilize the versions of each model that include fixed effects for 
safety regimes, vehicle age and its squared value, the time trend measure (including any 
significant change in the trend), and indicator variables for recession years.  Specifically, we use 
model 10 from Table 7-9 and Table 7-10, and model 11 from Table 7-11.  

Starting with the relevant rate for the latest model year when it was new (e.g., the fatality rate for 
model year 2019 during calendar year 2019, when most vehicles from that model year were sold 
and placed into service), we apply estimates of the shares of new vehicles produced during future 
model years that will be equipped with various crash avoidance technologies and the 
effectiveness of each of those technologies in reducing crashes (fatal, non-fatal, or property 
damage, as appropriate).  The nature of these technologies, projections of the shares of new cars 
and light trucks that will be equipped with each of them, and estimates of the effectiveness of 
those technologies in preventing these three different types of crashes are discussed in the 
following section.  This generates forecasts of fatality, non-fatal injury, and property damage 
crash involvement rates for future model years during their initial year of use, which for 
simplicity is assumed to be the same calendar year.  

During each future calendar year, the appropriate new model year is assumed to be incorporated 
into the fleet, with its forecast rate (of fatalities per billion miles, for example).  At the same 
time, the rate for each earlier model year making up the fleet during that calendar year is 
increased to reflect the aging effect implied by the coefficients on the variables age and age-
squared in the relevant model.  Any remaining vehicles originally produced during the model 
year that would have reached age 41 in a future calendar year are assumed to be retired from 
service or driven so little that they contribute negligibly to overall safety.  Finally, the rates 
(again, fatality, non-fatal injury, or property damage) for these earlier model years are also 
adjusted downward to reflect continuation of their historical downward trends, which were 
estimated as part of the models discussed previously.   

This produces estimates of fatality, non-fatal injury, and property damage crash involvement rates for 
each model year making up the fleet during each future calendar year, and the process is continued until 
calendar year 2050.  Multiplying these rates by the estimated number of miles driven by cars and light 
trucks of each model year in use during a future calendar year produces baseline estimates of total 
fatalities, non-fatal injuries, and cars and light trucks involved in property damage-only crashes.  As an 
example,  
Figure 7-6 illustrates the recent history and baseline forecast of the overall fatality rate for 
occupants of cars and light trucks.  The sharp rise in the fatality rate for 2020 reflects the steep 
drop in car and light truck VMT during that year due to the COVID-19 pandemic and 
accompanying restrictions on activity, as well as an increase in fatalities that is not yet fully 
explained, but which may be due to riskier driving on less congested roadways.842  These rates 
are also used as the basis for estimating changes in safety resulting from reductions in the mass 
of new vehicles, additional rebound-effect driving, and changes in the numbers of cars and light 
trucks from different model years making up each calendar year’s fleet.  The underlying causes 

 
842 See, e.g., https://www.nhtsa.gov/press-releases/2020-fatality-data-show-increased-traffic-fatalities-during-
pandemic. 



 

and methods for estimating each of those three sources of changes in safety are discussed in 
detail in various sub-sections of this chapter.   

 
Note: The abrupt rise in the fatality rate for 2020 shown in this figure reflects the large drop in car and 
light truck VMT during that year due to the COVID-19 pandemic and accompanying restrictions on 
activity, as well as a rise in fatalities. 

Figure 7-6 – Recent and Projected Future Fatality Rates for Cars and Light Trucks 

7.2.13 Future Safety Trends Predicted by Advanced Safety Technologies 

The historical model described above uses trends observed over several decades to make a coarse 
projection of future safety rates.  To augment these projections with knowledge about 
forthcoming safety improvements, the agency applied detailed empirical estimates of the market 
uptake and improving effectiveness of crash avoidance technologies to estimate their effect on 
the fleet-wide fatality rate, including explicitly incorporating both the direct effect of those 
technologies on the crash involvement rates of new vehicles equipped with them, as well as the 
“spillover” effect of those technologies on improving the safety of occupants of vehicles that are 
not equipped with these technologies.  

Reduced  new vehicle sales would cause an increase in fatalities due primarily to slower 
adoption of safer vehicles while increased vehicle sales would have the opposite effect.  Added 
driving because of less costly vehicle operating costs will increase.  The development of 
advanced crash avoidance technologies in recent years indicates some level of safety 
improvement is almost certain to occur going forward.  Moreover, autonomous vehicles offer the 
possibility of significantly reducing the effect of human perception, judgment or error in crash 
causation, a contributing factor in roughly 94% of all crashes.  However, there is insufficient 



 

information and certainty regarding autonomous vehicles eventual impact to include them in this 
analysis.  

Advanced technologies that are currently deployed or in development include: 

1. Forward Collision Warning (FCW) systems passively assist drivers in avoiding or 
mitigating the impact of rear-end collisions (i.e., a vehicle striking the rear portion of a 
vehicle traveling in the same direction directly in front of it).  FCW uses forward-looking 
vehicle detection capability, such as RADAR, LIDAR (laser), camera, etc., to detect 
other vehicles ahead and use the information from these sensors to warn the driver and to 
prevent crashes.  FCW systems provide an audible, visual, or haptic warning, or any 
combination thereof, to alert the driver of an FCW-equipped vehicle of a potential 
collision with another vehicle or vehicles in the anticipated forward pathway of the 
vehicle. 

2. Crash Imminent Braking (CIB) systems actively assist the drivers by mitigating the 
impact of rear-end collisions.  These safety systems have forward-looking vehicle 
detection capability provided by sensing technologies such as RADAR, LIDAR, video 
camera, etc.  CIB systems mitigate crash severity by automatically applying the vehicle’s 
brakes shortly before the expected impact (i.e., without requiring the driver to apply force 
to the brake pedal).  

3. Dynamic Brake Support (DBS) is a technology that actively increases the amount of 
braking provided to the driver during a rear-end crash avoidance maneuver.  If the driver 
has applied force to the brake pedal, DBS uses forward-looking sensor data provided by 
technologies such as RADAR, LIDAR, video cameras, etc. to assess the potential for a 
rear-end crash.  Should DBS ascertain a crash is likely (i.e., the sensor data indicate the 
driver has not applied enough braking to avoid the crash), DBS automatically intervenes.  
Although the manner in which DBS has been implemented differs among vehicle 
manufacturers, the objective of the interventions is largely the same - to supplement the 
driver’s commanded brake input by increasing the output of the foundation brake system.  
In some situations, the increased braking provided by DBS may allow the driver to avoid 
a crash.  In other cases, DBS interventions mitigate crash severity. 

4. Pedestrian AEB (PAEB) systems provide automatic braking for vehicles when 
pedestrians are in the forward path of travel and the driver has taken insufficient action to 
avoid an imminent crash.  Like CIB, PAEB safety systems use information from forward-
looking sensors to automatically apply or supplement the brakes in certain driving 
situations in which the system determines a pedestrian is in imminent danger of being hit 
by the vehicle.   

5. Rear Automatic Braking features have the ability to sense the presence of objects 
behind a reversing vehicle, alert the driver of the presence of the object(s) via auditory 
and visual alerts, and automatically engage the available braking system(s) to stop the 
vehicle. 



 

6. Semi-automatic Headlamp Beam Switching devices provide either automatic or 
manual control of headlamp beam switching at the option of the driver.  When the control 
is automatic, headlamps switch from the upper beam to the lower beam when illuminated 
by headlamps on an approaching vehicle and switch back to the upper beam when the 
road ahead is dark.  When the control is manual, the driver may obtain either beam 
manually regardless of the conditions ahead of the vehicle. 

7. Lane Departure Warning (LDW) is a driver assistance system that monitors lane 
markings on the road and alerts the driver when their vehicle is about to drift beyond a 
delineated edge line of their current travel lane. 

8. Lane Keep Assist (LKA) utilizes LDW sensors to monitor lane markings but, in addition 
to warning the driver, provides gentle steering adjustments to prevent drivers from 
unintentionally drifting out of their lane. 

9. Lane Centering keeps the vehicle centered in its lane and typically comes with steering 
assist to help the vehicle take gentle turns at highway speeds.  These systems also work 
together with adaptive cruise control and lane keeping assist to give the car semi-
autonomous capability. 

10. Blind Spot Detection (BSD) systems use digital camera imaging technology or radar 
sensor technology to detect one or more vehicles in either of the adjacent lanes that may 
not be apparent to the driver.  The system warns the driver of an approaching vehicle’s 
presence to help facilitate safe lane changes.  

11. Lane Change Alert (LCA) systems use digital camera imaging technology or radar 
sensor technology to detect vehicles either in, or rapidly approaching in adjacent lanes 
that may not be apparent to the driver.  The system warns the driver of an approaching 
vehicle’s presence to help facilitate safe lane changes. 

7.2.13.1 Crash Avoidance Technologies 

Beginning with the 2020 CAFE final rule, NHTSA augmented the sales-scrappage safety 
analysis with recent research into the effectiveness of specific advanced crash avoidance safety 
technologies (also known as ADAS or advanced driver assistance systems) that are expected to 
drive future safety improvement to estimate the impacts of crash avoidance technologies.  The 
analysis analyzes six crash avoidance technologies that are currently being produced and 
commercially deployed in the new vehicle fleet.  These FCW, Automatic Emergency Braking 
(AEB),843 LDW, LKA, BSD, and LCA.  These are the principal technologies that are being 
developed and adopted in new vehicle fleets and will likely drive vehicle-based safety 
improvements for the coming decade.  These technologies are being installed in more and more 
new vehicles; in fact, manufacturers recently reported that they voluntarily installed AEB 
systems in more than 70 percent of their new vehicles sold in the year ending August 31, 

 
843 AEB is a combination of CIB, DBS, and PEAB. 



 

2019.844  NHTSA notes that the terminology and the detailed characteristics of these systems 
may differ across manufacturers, but the basic system functions are generally similar. 

These 6 technologies address three basic crash scenarios through warnings to the driver or 
alternately, through dynamic vehicle control: 

1. Forward collisions, typically involving a crash into the rear of a stopped vehicle; 

2. Lane departure crashes, typically involving inadvertent drifting across or into another 
traffic lane; and 

3. Blind spot crashes, typically involving intentional lane changes into unseen vehicles 
driving in or approaching the driver’s blind spot. 

Unlike traditional safety features where the bulk of the safety improvements were attributable to 
improved protection when a crash occurs (crash worthiness), the impact of advanced crash 
avoidance technologies (ADAS or advanced driver assistance systems) will have on fatality and 
injury rates is a direct function of their effectiveness in preventing or reducing the severity of the 
crashes they are designed to mitigate.  This effectiveness is typically measured using real world 
data comparing vehicles with these technologies to similar vehicles without them.  While these 
technologies are actively being deployed in new vehicles, their penetration in the larger on-road 
vehicle fleet has been at a low but increasing level.  This limits the precision of statistical 
regression analyses, at least until the technologies become more common in the on-road fleet. 

NHTSA’s approach to measuring these impacts is to derive effectiveness rates for these 
advanced crash-avoidance technologies from safety technology literature.  NHTSA then applies 
these effectiveness rates to specific crash target populations for which the crash avoidance 
technology is designed to mitigate and adjusted to reflect the current pace of adoption of the 
technology, including the public commitment by manufactures to install these technologies.  The 
products of these factors, combined across all 6 advanced technologies, produce a fatality rate 
reduction percentage that is applied to the fatality rate trend model discussed above, which 
projects both vehicle and non-vehicle safety trends.  The combined model produces a projection 
of impacts of changes in vehicle safety technology as well as behavioral and infrastructural 
trends. 

7.2.13.2 Technology Effectiveness Rates 

7.2.13.2.1  Forward Crash Collision Technologies 

For forward collisions, manufacturers are currently equipping vehicles with FCW, which warns 
drivers of impending collisions, as well as AEB, which incorporates the sensor systems from 
FCW together with dynamic brake support (DBS) and crash imminent braking (CIB) to help 

 
844 NHTSA Announces Update to Historic AEB Commitment by 20 Automakers, NHTSA press release December 
17, 2019.  https://www.nhtsa.gov/press-releases/nhtsa-announces-update-historic-aeb-commitment-20-automakers.  

https://www.nhtsa.gov/press-releases/nhtsa-announces-update-historic-aeb-commitment-20-automakers


 

avoid crashes or mitigate their severity.  Manufacturers have committed voluntarily to install 
some form of AEB on all light vehicles by the 2023 model year (September 2022).845 

Table 7-12 summarizes studies which have measured effectiveness for various forms of FCW 
and AEB over the past 13 years.  Most studies focused on crash reduction rather than injury 
reduction.  This is a function of limited injury data in the on-road fleet, especially during the 
early years of deployment of these technologies.  In addition, it reflects engineering limitations in 
the technologies themselves.  Initial designs of AEB systems were basically incapable of 
detecting stationary objects at speeds higher than 30 mph, making them potentially ineffective in 
higher speed crashes that are more likely to result in fatalities or serious injury.  For example, 
Wiacek et al. (2-15) conducted a review of rear-end crashes involving a fatal occupant in the 
2003-2012 NASS-CDS data-bases to determine the factors that contribute to fatal rear-end 
crashes.846  They found that the speed of the striking vehicle was the primary factor in 71 percent 
of the cases they examined.  The average Delta-V of the striking vehicle in these cases was 46 
km/h (28.5 mph), implying pre-crash travel speeds in excess of this speed.  While Table 7-12 
includes studies going back to 2005, the agency focus’ discussion on more recent studies 
conducted after 2012 in order to reflect more current safety systems and vehicle designs. 

 
845 See https://www.nhtsa.gov/press-releases/nhtsa-iihs-announcement-aeb.  Note that the agreement calls for CIB, 
but systems installed by manufacturers include various combinations of technologies that make up AEB. 
846 Wiacek, C., Bean, J., Sharma, D., Real World Analysis of Fatal Rear-End Crashes, National Highway Traffic 
Safety Administration, 24th Enhanced Safety of Vehicles Conference, 150270, 2015. 

https://www.nhtsa.gov/press-releases/nhtsa-iihs-announcement-aeb


 

Table 7-12 – Summary of AEB Technology Effectiveness Estimates 

Authors AEB Type Crashes Fatalities Injury Reduction All Injuries Serious Minor 
Sugimoto & Sauer (2005)847 CMBS 38% 44%    
Page et al. (2005)848 EBA  7.50%   11% 
Najm et al. (2005)849 ACAS 6-15%     
Breuer et al. (2007)850 BAS+ 44%     
Kuehn et al. (2009)851 CMBS 40.80%     
Grover et al. (2008)852 AEB 30%     
Kisano &Gabler (2015)853 AEB 0-67% 2-69% 2-69%   
HLDI (2011)854 AEB 22-27%    51% 
Doecke et al. (2012)855 AEB 25-28%     
Chauvel et al. (2013)856 PAEB 4.30% 15% 37%   
Fildes et al. (2015)857 AEB 38%     

Cicchino (2017)858 
FCW 27%    20% 

Low AEB 43%    45% 
High AEB 50%    56% 

Kusano & Gabler (2012)859 FCW 3.20% 29% 29%   
AEB 7.70% 50% 50%   

Leslie et al. (2019)860 FCW 21%     
AEB 46%     

 

 
847 Sugimoto, Y., and Sauer, C., (2005).  Effectiveness Estimation Method for Advanced Driver Assistance System 
and its Application to Collision Mitigation Brake systems, paper number 05-148, 19th International Technical 
Conference on the Enhanced safety of Vehicles (ESV), Washington D.C., June 6-9, 2005. 
848 Page, Y., Foret-Bruno, J., & Cuny, S. (2005).  Are expected and observed effectiveness of emergency brake 
assist in preventing road injury accidents consistent? 19th ESV Conference, Washington DC.  
849 Najm, W.G., Stearns, M.D., Howarth, H., Koopman, J. & Hitz, J., (2006).  Evaluation of an Automotive Rear-
End Collision Avoidance System (technical report DOT HS 810 569), Cambridge, MA: John A. Volpe National 
Transportation System Center, U.S. Department of Transportation. 
850 Breuer, JJ., Faulhaber, A., Frank, P. and Gleissner, S. (2007).  Real world Safety Benefits of Brake Assistance 
Systems, Proceedings of the 20th International Technical Conference of the Enhanced Safety of Vehicles (ESV) in 
Lyon, France June 18-21, 2007. 
851 Keuhn, M., Hummel, T., and Bende J., Benefit estimation of advanced driver assistance systems for cars derived 
from real-world accidents, Paper No. 09-0317, 21st International Technical Conference on the Enhanced Safety of 
Vehicles (ESV) – International Congress Centre, Stuttgart, Germany, June 15-18, 2009. 
852 Grover, C., Knight, I., Okoro, F., Simmons I., Couper, G., Massie, P., and Smith, B. (2008).  Automated 
Emergency Brake Systems: Technical requirements, Costs and Benefits, PPR227, TRL Limited, DG Enterprise, 
European Commission, April 2008. 
853 Kusano, K.G., and Gabler, H.C. (2015).  Comparison of Expected Crash Injury and Injury Reduction from 
Production Forward Collision and Lane Departure Warning Systems, Traffic Injury Prevention 2015; Suppl. 2: 
S109-14. 
854 HLDI (2011).  Volvo’s City Safety prevents low-speed crashes and cuts insurance costs, Status Report, Vol. 46, 
No. 6, July 19,2011. 
855 Docke, S.D., Anderson, R.W.G., Mackenzie, J.R.R., Ponte, G. (2012).  The potential of autonomous emergency 
braking systems to mitigate passenger vehicle crashes.  Australian Road Safety Research Policing and Education 
Conference, October 4-6, 2012, Wellington, New Zealand.  
 



 

Doecke et al. (2012) created simulations of 103 real world crashes and applied AEB system 
models with differing specifications to determine the change in impact speed that various AEB 
interventions might produce.  Their modeling found significant rear-end crash speed reductions 
with various AEB performance assumptions.  In addition, they estimated a 29 percent reduction 
in rear-end crashes and that 25 percent of crashes over 10 km/h were reduced to 10 km/h or less. 

Cicchino (2017) analyzed the effectiveness of a variety of forward collision mitigation systems 
including both FCW and AEB systems.  Cicchino used a Poisson regression to compare rates of 
police-reported crashes per insured vehicle year between vehicles with these systems and the 
same models that did not elect to install them.  The analysis was based on crashes occurring 
during 2010 to 2014 in 22 States and controlled for other factors that affected crash risk.  
Cicchino found that FCW reduced all rear-end striking crashes by 27 percent and rear-end 
striking injury crashes by 20 percent, and that AEB functional at high speeds reduced these 
crashes by 50 and 56 percent, respectively.  She also found that low speed AEB without driver 
warning reduced all crashes by 43 percent and injury crashes by 45 percent.  She also found that 
even low-speed AEB could impact crashes at higher speed limits.  Reductions were found of 53 
percent, 59 percent, and 58 percent for all rear-end striking crash rates, rear-end striking injury 
crash rates, and rear-end third party injury crash rates, respectively, at speed limits of 40-45 mph.  
For speed limits of 35 mph or less, reductions of 40 percent, 40 percent, and 43 percent were 
found.  For speed limits of 50 mph or greater, reductions of 31 percent, 30 percent, and 28 
percent, were found.  Further, Cicchino (2016) found significant reductions (30 percent) in rear-
end injury crashes even in crashes on roadways where speed limits exceeded 50 mph.   

Kusano and Gabler (2012) examined the effectiveness of various levels of forward collision 
technologies including FCW and AEB based on simulations of 1,396 real world rear end crashes 
from 1993-2008 NASS CDS databases.  The authors developed a probability-based framework 
to account for variable driver responses to the warning systems.  Kusano and Gabler found FCW 
systems could reduce rear-end crashes by 3.2 percent and driver injuries in rear-end crashes by 
29 percent.  They also found that full AEB systems with FCW, pre-crash brake assist, and 
autonomous pre-crash braking could reduce rear-end crashes by 7.7 percent and reduce moderate 
to fatal driver injuries in rear-end crashes by 50 percent. 

 
856 Chauvel, C., Page, Y., Files, B.N., and Lahausse, J. (2013).  Automatic emergency braking for pedestrian’s 
effective target population and expected safety benefits, Paper No. 13-0008, 23rd International Technical Conference 
on the Enhanced Safety of Vehicles (ESV), Seoul, Republic of Korea, May 27-30, 2013. 
857 Fildes B., Keall M., Bos A., Lie A., Page, Y., Pastor, C., Pennisi, L., Rizzi, M., Thomas, P., and Tingvall, C. 
Effectiveness of Low Speed Autonomous Emergency Braking in Real-World Rear-End Crashes.  Accident Analysis 
and Prevention, AAP-D-14-00692R2.   
858 Cicchino, J.B. (2017).  Effectiveness of forward collision warning and autonomous emergency braking systems 
in reducing front-to-rear crash rates.  Accident Analysis and Prevention, V. 99, Part A, February 2017, Pages 142-
52. 
859 Kusano, K.D., and Gabler H.C. (2012).  Safety Benefits of Forward Collision Warning, Brake Assist, and 
Autonomous Braking Systems in Rear-End Collisions, Intelligent Transportation Systems, IEEE Transactions, 
Volume 13 (4). 
860 Leslie, A, Kiefer, R., Meitzner, M, and Flannagan, C.  (2019).  Analysis of the Field Effectiveness of General 
Motors Production Active Safety and Advanced headlighting Systems.  University of Michigan Transportation 
Research Institute, UMTRI-2019-6, September 2019. 



 

Fildes et al. (2015) performed meta-analyses to evaluate the effectiveness of low-speed AEB 
technology in passenger vehicles based on real-world crash experience across six different 
predominantly European countries.  Data from these countries was pooled into a standard 
analysis format and induced exposure methods were used to control for extraneous effects.  The 
study found a 38 percent overall reduction in rear-end crashes for vehicles with AEB compared 
to similar vehicles without this technology.  The study also found no statistical evidence for any 
difference in effectiveness between urban roads with speed limits less than or equal to 60 km/h, 
and rural roads with speed limits greater than 60 km/h.  Fildes et al. (2015) found no statistical 
difference in the performance of AEBs on lower speed urban or higher speed rural roadways. 

Kusano and Gabler (2015) simulated rear-end crashes based on a sample of 1,042 crashes in the 
2012 NASS-CDS.  Modelling was based on 54 model year 2010-2014 vehicles that were 
evaluated in NHTSA’s New Car Assessment Program (NCAP).  Kusano and Gabler found FCW 
systems could prevent 0-67 percent of rear-end crashes and 2-69 percent of serious to fatal driver 
injuries. 

Leslie et al. (2019) analyzed the relative crash performance of 123,377 General Motors (GM) 
MY 2013 to 2017 vehicles linked to State police-reported crashes by Vehicle Identification 
numbers (VIN).  GM provided VIN-linked safety content information for these vehicles to 
enable precise identification of safety technology content.  The authors analyzed the 
effectiveness of a variety of crash avoidance technologies including both FCW and AEB 
separately.  They estimated effectiveness comparing system-relevant crashes to baseline (control 
group) crashes using a quasi-induced exposure method in which rear-end struck crashes are used 
as the control group.  Leslie et al. found that FCW reduced rear-end striking crashes of all 
severities by 21 percent, and that AEB (which includes FCW) reduced these crashes by 46 
percent.861 

For this analysis, NHTSA based its projections on Leslie et al. because they are the most recent 
study, and thus reflect the most current versions of these systems in the largest number of 
vehicles, and also because they arguably have the most precise identification of the presence of 
the specific technologies in the vehicle fleet.  Furthermore, Leslie et al. was the only study to 
report estimates for each of the six crash avoidance technologies analyzed for the final rule, 
hence providing a certain level of consistency amongst estimates.  NHTSA recognizes that there 
is uncertainty in estimates of these technologies effectiveness, especially at this early stage of 

 
861 NHTSA notes that UMTRI, the sponsoring organization for the Leslie et al. study, published a previous version 
of this same study utilizing the same methods in March of 2018 (Flannagan, C. and Leslie, A, Crash Avoidance 
Technology Evaluation Using Real-World crashes, University of Michigan Transportation Research Institute, March 
22, 2018).  The agency focused on the more recent 2019 study because its sample size is significantly larger, and it 
represents more recent model year vehicles.  The revised (2019) study uses the same basic techniques but 
incorporated a larger database of system-relevant and control cases (123,377 cases in the 2019 study vs. 35,401 in 
the 2018 study).  Relative to the Flannagan and Leslie (2018) findings, the results of the 2019 study varied by 
technology.  The revised study found effectiveness rates of 21% for FCW and 46% for AEB, compared to 16% and 
45% in the 2018 study.  The revised study found effectiveness rates of 10% for LDW and 20% for LKA, compared 
to 3% and 30% for these technologies in the 2018 study.  The revised study found effectiveness rates of 3% for BSD 
and 26-37% for LCA systems, compared to 8% and 19-32% for these technologies in the 2018 study.  Thus, some 
system effectiveness estimates increased while others decreased.   



 

deployment.  For this reason, the agency examines a range of effectiveness rates to estimate 
boundary outcomes in a sensitivity analysis.   

Leslie et al. measured effectiveness against all categories of crashes but did not specify 
effectiveness against crashes that result in fatalities or injuries.  NHTSA examined a range of 
effectiveness rates against fatal crashes using a central case based on boundary assumptions of 
no effectiveness and full effectiveness across all crash types.  Our central case is thus a simple 
average of these two extremes.  Sensitivity cases were based on the 95th percent confidence 
intervals calculated from this central case.  Leslie et al. found effectiveness rates of 21 percent 
for FCW and 46 percent for AEB.  Our central fatality effectiveness estimates will thus be 10.5 
percent for FCW and 23 percent for AEB.  The calculated 95th percentile confidence limits 
range is 8.11 to 12.58 percent effective for FCW and 20.85 to 25.27 for AEB.  We note that our 
central estimate is conservative compared to averages of those studies that did specifically 
examine fatality impacts; that is, the analysis assumes reduced future fatalities less than most of, 
or the average of, those studies, and thus minimizes the estimate of fatality impacts under 
alternatives to the current  standards.  Furthermore, we note that the estimates against fatal 
crashes is higher in the recent studies in Table 7-12, which reflects our understanding that earlier 
iterations of AEB and FCW may have been less effective against crashes that result in fatalities 
than newer and improved versions.862   

7.2.13.2.2  Lane Departure Crash Technologies 

For lane departure crashes, manufacturers are currently equipping vehicles with lane departure 
warning (LDW), which monitors lane markings on the road and alerts the driver when their 
vehicle is about to drift beyond a delineated edge line of their current travel lane, as well as lane 
keep assist (LKA), which provides gentle steering adjustments to help drivers avoid 
unintentional lane crossing.  Table 7-13 summarizes studies which have measured effectiveness 
for LDW and LKA. 

 
862 As an example of improvements, NHTSA notes that the Mercedes system described in their 2015 owner’s 
manual specified that for stationary objects the system would only work in crashes below 31 mph, but that in their 
manual for the 2019 model, the systems are specified to work in these crashes up to 50 mph.  



 

Table 7-13 – Summary of LDW Technology Effectiveness Estimates 

Authors LDW Type Crash Reduction Fatalities 
Injury Reduction 

All Injuries 
Serious Minor 

Cicchino (2018)863 LDW 11%    21% 
Sternlund, Strandroth,  
et al. (2017)864 LDW/LKA     6-30% 

Leslie et al. (2019)865 
LDW 10%     
LKA 20%     

Kusano & Gabler (2015)866 LDW 11-23% 13-22% 13-22%   
Kusano, Gorman, et al. (2014)867 LDW 29%  24%   

 
Cicchino (2018) examined crash involvement rates per insured vehicle year for vehicles that 
offered LDW as an option and compared crash rates for those that had the option installed to 
those that did not.  The study focused on single-vehicle, sideswipe, and head-on crashes as the 
relevant target population for LDW effectiveness rates.  The study examined 5,433 relevant 
crashes of all severities found in 2009-2015 police-reported data from 25 States.  The study was 
limited to crashes on roadways with 40 mph or greater speed limits not covered in ice or snow 
since lower travel speeds would be more likely to fall outside of the LDW systems’ minimum 
operational threshold.  Cicchino found an overall reduction in relevant crashes of 11 percent for 
vehicles that were equipped with LDW.  She also found a 21 percent reduction in injury crashes.  
The result for all crashes was statistically significant, while that for injury crashes approached 
significance (p<0.07).  Cicchino did not separately analyze LKA systems. 

Sternlund et al. (2017) studied single vehicle and head-on injury crash involvements relevant to 
LDW and LKA in Volvos on Swedish roadways.  They used rear-end crashes as a control and 
compared the ratio of these two crash groups in vehicles that had elected to install LDW or LKA 
to the ratio in vehicles that did not have this content.  Studied crashes were limited to roadways 
with speeds of 70-120 kph and not covered with ice or snow.  Sternlund et al. found that 
LDW/LKA systems reduced single vehicle and head-on injury crashes in their crash population 
by 53 percent, with a lower limit of 11 percent, which they determined corresponded to a 
reduction of 30 percent (lower limit of 6 percent) across all speed limits and road surface 
assumptions. 

Leslie et al. (2019) analyzed the relative crash performance of 123,377 General Motors (GM) 
MY 2013 to 2017 vehicles linked to state police-reported crashes by Vehicle Identification 
numbers (VIN).  GM provided VIN-linked safety content information for these vehicles to 

 
863 Cicchino, J.B. (2018).  Effects of lane departure warning on police-reported crash rates, Journal of Safety 
Research 66 (2018), pp.61-70.  National Safety Council and Elsevier Ltd., May, 2018. 
864 Sternlund, S., Strandroth, J., Rizzi, M., Lie, A., and Tingvall, C. (2017).  The effectiveness of lane departure 
warning systems – A reduction in real-world passenger car injury crashes.  Traffic Injury Prevention V. 18 Issue 2 
Jan 2017.   
865  Leslie et al. (2019), op. cit.  
866 Kusano and Gabler (2015), op. cit. 
867 Kusano, K., Gorman, T.I., Sherony, R., and Gabler, H.C.  Potential occupant injury reduction in the U.S. vehicle 
fleet for lane departure warning-equipped vehicles in single-vehicle crashes.  Traffic Injury Prevention 2014 Suppl 
1:S157-64. 



 

enable precise identification of safety technology content.  The authors analyzed the 
effectiveness of a variety of crash avoidance technologies including both LDW and LKA 
separately.  They estimated effectiveness comparing system-relevant crashes to baseline (control 
group) crashes using a quasi-induced exposure method in which rear-end struck crashes are used 
as the control group.  Leslie et al. found that LDW reduced lane departure crashes of all 
severities by 10 percent, and that LKA (which includes LDW) reduced these crashes by 20 
percent. 

Kusano et al. (2014) developed a comprehensive crash and injury simulation model to estimate 
the potential safety impacts of LDW.  The model simulated results from 481 single-vehicle 
collisions documented in the NASS-CDS database for the year 2012.  Each crash was simulated 
as it actually occurred and again as it would occur had the vehicles been equipped with LDW.  
Crashes were simulated multiple times to account for variation in driver reaction, roadway, and 
vehicle conditions.  Kusano et al. found that LDW could reduce all roadway departure crashes 
caused by the driver drifting from his or her lane by 28.9 percent, resulting in 24.3 percent fewer 
serious injuries. 

Kusano and Gabler (2015), simulated single-vehicle roadway departure crashes based on a 
sample of 478 crashes in the 2012 NASS-CDS.  Modelling was based on 54 model year 2010-
2014 vehicles that were evaluated in NHTSA’s New Car Assessment Program (NCAP).  Kusano 
and Gabler found LDW systems could prevent 11-23 percent of drift-out-of-lane crashes and 13-
22 percent of serious to fatally injured drivers. 

As noted previously for frontal crash technologies, we will base our projections on Leslie et al. 
because they are the most recent study, thereby reflecting the most current versions of these 
systems in the largest number of vehicles, and because they arguably have the most precise 
identification of the presence of the specific technologies in the vehicle fleet.  However, unlike 
forward crash technologies, lane change technologies are operational at travel speeds where 
fatalities are likely to occur.  Both LDW and LKA typically operate at speeds above roughly 35 
mph.  For this reason, and because the research noted in Table 7-13 indicates similar 
effectiveness against fatalities, injuries, and crashes, we believe it is reasonable to assume the 
Leslie et al.  crash reduction estimates are generally applicable to all crash severities, including 
fatal crashes.  Our central effectiveness estimates are thus 10 percent for LDW and 20 percent 
for LKA.  For sensitivity analysis, we adopt the 95 percent confidence intervals from Leslie et al.  
For LKA this range is 14.95-25.15 percent.  For LDW, the upper range was 4.95-13.93 percent. 

7.2.13.2.3  Blind Spot Crash Technologies 

To address blind spot crashes, manufacturers are currently equipping vehicles with BSD, which 
detects vehicles in either of the adjacent lanes that may not be apparent to the driver.  The system 
warns the driver of an approaching vehicle’s presence to help facilitate safe lane changes and 
avoid crashes.  A more advanced version of this, LCA, also detects vehicles that are rapidly 
approaching the driver’s blind spot.  Table 7-14 summarizes studies which have measured 
effectiveness for BSD and LCA. 



 

Table 7-14 – Summary of BSD Technology Effectiveness Estimates 

Authors BSD Type Crash Reduction Injury Reduction 
Cicchino (2017b)868 BSD 14% 23% 

Leslie et al. (2019)869 
BSD 3%  

LCA 26%  

Isaksson-Hellman & Lindman (2018)870 LCA 30%* 31%** 
* reduction in claim costs across all lane change crashes 
** reduction in severe crashes with repair costs greater than $1250 

 
Cicchino (2017) used Poisson regression to compare crash involvement rates per insured vehicle 
year in police-reported lane-change crashes in 26 U.S. States during 2009-2015 between vehicles 
with blind spot monitoring and the same vehicle models without the optional system, controlling 
for other factors that can affect crash risk.  Systems designs across the 10 different manufacturers 
included in the study varied regarding the extent to which the size of the adjacent lane zone that 
they covered exceeded the blind spot area, speed differentials at which vehicles could be 
detected, and their ability to detect rapidly approaching vehicles, but these different systems 
were not examined separately.  The study examined 4,620 lane change crashes, including 568 
injury crashes.  Cicchino found an overall reduction of 14 percent in blind spot related crashes of 
all severities, with a non-significant 23 percent reduction in injury crashes. 

Leslie et al. (2019) analyzed the relative crash performance of 123,377 2013-2017 General 
Motors (GM) vehicles linked to State police-reported crashes by Vehicle Identification numbers 
(VIN).  GM provided VIN-linked safety content information for these vehicles to enable precise 
identification of safety technology content.  The authors analyzed the effectiveness of a variety 
of crash avoidance technologies including both BSD and LCA separately.  They estimated 
effectiveness comparing system-relevant crashes to baseline (control group) crashes using a 
quasi-induced exposure method in which rear-end struck crashes are used as the control group.  
Flannagan and Leslie found that BSD reduced lane departure crashes of all severities by 3 
percent (non-significant), and that LCA (which includes BSD) reduced these crashes by 26 
percent. 

Isaksson-Hellman and Lindman (2018) evaluated the effect of the Volvo Blind Spot Information 
System (BLIS) on lane change crashes.  Volvo’s BLIS functions as an LCA, detecting vehicles 
approaching the blind spot as well as those already in it.  The authors analyzed crash rate 
differences in lane change situations for cars with and without the BLIS system based on a 
population of 380,000 insured vehicle years.  The authors found the BLIS system did not 
significantly reduce the overall number of lane change crashes of all severities, but they did find 

 
868 Cicchino, J.B. (2017b).  Effects of blind spot monitoring systems on police-reported lane-change crashes.  
Insurance Institute for Highway Safety, August 2017. 
869 Leslie et al. (2019), op. cit. 
870 Isaksson-Hellman, I., Lindman, M., An evaluation of the real-world safety effect of a lane change driver support 
system and characteristics of lane change crashes based on insurance claims.  Traffic Injury Prevention, February 
28, 2018: 19 (supp. 1).  



 

a significant 31 percent reduction in crashes with a repair cost exceeding $1250, and a 30 percent 
lower claim cost across all lane change crashes, indicating a reduced crash severity effect. 

Like lane change technologies, blind spot technologies are operational at travel speeds where 
fatalities are likely to occur.  NHTSA therefore assumes the Leslie et al. crash reduction 
estimates are generally applicable to all crash severities, including fatal crashes.  Our central 
effectiveness estimates are thus 3 percent for BSD and 26 percent for LCA.  For sensitivity 
analysis, we adopt the 95 percent confidence intervals from Leslie et al.  For LCA this range is 
16.59-33.74 percent.  For BSD, the upper range was 14.72 percent, but the findings were not 
statistically significant.  The agency therefore limited the range to 0-14.72 percent.  Table 7-15 
summarizes the effectiveness rates calculated in Leslie et al. and used in this analysis.  
Differences between the rates listed as “Used in CAFE Fatality Analysis” and those computed 
from Leslie et al. are explained in the above discussion. 

Table 7-15 – Summary of Advanced Technology Effectiveness Rates for Central and Sensitivity Cases 

Tech. 
UMTRI September 2019 Report  Used in CAFE Fatality Analysis 

Estimate Std. Error Central Low High Central Low High 
FCW -0.2334 0.0288 21 16.22 25.16 10.5 8.11 12.58 
AEB -0.6218 0.0419 46 41.71 50.54 23 20.85 25.27 
LDW -0.1004 0.0253 10 4.95 13.93 10 4.95 13.93 
LKA -0.2258 0.0326 20 14.95 25.15 20 14.95 25.15 
BSD -0.0297 0.0661 3 -10.50 14.72 3 0.00 14.72 
LCA -0.2965 0.0587 26 16.59 33.74 26 16.59 33.74 

7.2.13.3 Target Populations for Crash Avoidance Technologies 

The impact these technologies will have on safety is a function of both their effectiveness rate 
and the portion of occupant fatalities that occur under circumstances that are relevant to the 
technologies function.  NHTSA based target population estimates on a recent study that 
examined these portions specifically for a variety of crash avoidance technologies.  Wang 
(2019)871 documented target populations for five groups of collision avoidance technologies in 
passenger vehicles including forward collisions, lane keeping, blind zone detection, forward 
pedestrian impact, and backing collision avoidance.  The first three of these affect the light 
vehicle occupant target population examined in this analysis.  Wang separately examined crash 
populations stratified by severity including fatal injuries, non-fatal injuries, and property 
damaged only (PDO) vehicles.  Wang based her analysis on 2011-2015 data from NHTSA’s 
Fatality Analysis Reporting System (FARS), National Automotive Sampling System (NASS), 
and General Estimates System (GES).  FARS data were the basis for fatal crashes while nonfatal 
injuries and PDOs were derived from the NASS and GES. 

 
871 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812653. 

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812653


 

Wang followed the pre-crash typology concept initially developed by Volpe.872  Under this 
concept, crashes are categorized into mutually exclusive and distinct scenarios based on vehicle 
movements and critical events occurring just prior to the crash.  Table 7-16 summarizes the 
portion of total annual crashes and injuries for each crash severity category that is relevant to the 
three crash scenarios examined. 

Table 7-16 – Summary of Target Crash Proportions by Technology Group 

Safety System Crash 
Type Crashes Fatalities MAIS 1-5 Injuries PDOVs 

Frontal Crashes 29.4% 3.8% 31.5% 36.3% 
Lane Departure Crashes 19.4% 44.3% 17.1% 11.9% 
Blind Spot Crashes 8.7% 1.6% 6.7% 11.8% 

 
The relevant proportions vary significantly depending on the severity of the crash.  The rear-end 
crashes that are addressed by FCW and AEB technologies tend to be low-speed crashes and thus 
account for a larger portion of non-fatal injury and PDO crashes than for fatalities.  Only 4 
percent of fatal crashes occur in front-to-rear crashes, but over 30 percent of nonfatal crashes are 
this type.  By contrast, fatal crashes are highly likely to involve inadvertent lane departure, 44 
percent of all light vehicle occupant fatalities occur in crashes that involve lane departure, but 
only 17 percent of non-fatal injuries and 12 percent of PDOs involve this crash scenario.  Blind 
spot crashes account for only about 2 percent of fatalities, 7 percent of MAIS1-5 injuries, and 12 
percent of PDOs. 

The target population of this analysis is occupants of light-duty vehicles subject to CAFE.  We 
chose occupants of light-duty vehicles rather than a more inclusive group such as all road 
users—which would include pedestrians, bicyclists and occupants of heavier vehicles—because 
the agency has been collecting data and developing statistical models for in-vehicle occupants 
for decades.  We seek comment on whether the model should consider all road users and more 
specifically methods and data for revising the CAFE Model to include other road users.  The 
values in Table 7-16 are portions of all crashes that occur annually.  These include crashes of 
motor vehicles not subject to the current CAFE rulemaking such as medium and large trucks, 
buses, motorcycles, bicycles, etc.  To adjust for this, the values in Wang are normalized to 
represent their portion of all light passenger vehicle (PV) crashes, rather than all crashes of any 
type.  Wang provides total PV fatalities consistent with her technology numbers which are used 
as a baseline for this process.  Based on 2011-2015 FARS data, Wang found an average of 
29,170 PV occupant fatalities occurred annually. 

A second adjustment to Wang’s results was made to make them compatible with the 
effectiveness estimates found in Leslie et al.  In her target population estimate for lane departure 
warning, Wang included both head-on collisions and rollovers, but Leslie et al. did not.  The 
Leslie et al. effectiveness rate is thus applicable to a smaller target population than that examined 

 
872 Najm, W. G., Smith, J., & Yanagisawa, M. (2007, April). Pre-crash scenario typology for crash 
avoidance research (Report No. DOT HS 810 767). Washington, DC: National Highway Traffic 
Safety Administration. 



 

by Wang.  To make these numbers more compatible, counts for these crash types were removed 
from Wang’s lane departure totals. 

Electronic Stability Control (ESC) has been standard equipment in all light vehicles in the U.S. 
since the 2012 model year.  ESC is highly effective in reducing roadway departure and traction 
loss crashes, and although it will be present in all future model year vehicles, it was present in 
only about 30 percent of the 2011-2015 on-road fleet examined by Wang.  To reflect the impact 
of ESC on future on-road fleets therefore, NHTSA further adjusted Wang’s numbers to reflect a 
100 percent ESC presence in the on-road fleet.  NHTSA allocated the reduced roadway departure 
fatalities to the LDW target population, and the reduced traction loss fatalities to the AEB target 
population.  This has the effect of reducing the total fatalities in both groups as well as in the 
total projected fatalities baseline. 

Table 7-17 summarizes the revised incidence counts and re-calculated proportions of total PV 
occupant crash /injury.  Revised totals are derived from original totals referenced in Table 1-3 in 
Wang (2019). 

Table 7-17 – Adjusted Target Crash Counts and Proportions 

Crash Type Crashes Fatalities MAIS 1-5 PDOVs 
Frontal Crashes 1,703,541 1,048 883,386 2,641,884 
% All PV Occupant Crashes 30.2% 4.0% 32.4% 36.8% 
Lane Departure Crashes 1,126,397 9,428 479,939 863,213 
% All PV Occupant Crashes 20.0% 35.8% 17.6% 12.0% 
Blind Spot Crashes 503,070 542 188,304 860,726 
% All PV Occupant Crashes 8.9% 2.1% 6.9% 12.0% 
Total, all Tech Groups 3,333,008 11,017 1,551,629 4,365,823 
% All PV Occupant Crashes 59.1% 41.8% 56.8% 60.9% 
All Crashes 5,640,000 26,364 2,730,000 7,170,000 

7.2.13.4 Fleet Penetration Schedules 

The third element of the rule’s safety projections is the fleet technology penetration schedules.  
Advanced safety technologies (ADAS) will only influence the safety of future MY fleets to the 
extent that they are installed and used in those fleets.  These technologies are already being 
installed on some vehicles to varying degrees, but the agency expects that over time, they will 
become standard equipment due to some combination of market pressure and/or safety 
regulation.  NHTSA adopts this assumption based on the history of most previous vehicle safety 
technologies, which are now standard equipment on all new vehicles sold in the US. 

The pace of technology adoption is estimated based on a variety of factors, but the most 
fundamental is the current pace of adoption in recent years.  These published data were obtained 
from Ward’s Automotive Reports for each technology.873  Since these technologies are relatively 

 
873 Derived from Ward’s Automotive Yearbooks, 2014 through 2018, % Factory Installed Electronic ADAS 
Equipment tables, weighting domestic and imported passenger cars and light trucks by sales volume.   



 

recent, only a few years of data—typically 2 or 3 years—were available from which to derive a 
trend.  This makes these projections uncertain, but under these circumstances, a continuation of 
the known trend is the baseline assumption, which we modify only when there is a rationale to 
justify it. 

The technologies are examined in pairs reflecting their mutual target populations.  Both FCW 
and AEB affect the same target population—frontal collisions.  Both systems have been installed 
in some current MY vehicles, but their relative paces are expected to diverge significantly due to 
a formal agreement brokered by NHTSA and IIHS involving nearly all auto manufacturers, to 
have AEB installed in 100 percent of their vehicles by September 2022 (MY 2023).874  Wards 
first published installation rates for FCW and AEB for the 2016 model year and as of this 
analysis the 2017 MY is the latest data they have published.  We thus have data indicating that 
FCW was installed in 17.6 percent of MY 2016 vehicles and 30.5 percent of MY 2017 vehicles.  
AEB was installed in 12.0 percent of MY 2016 vehicles and 27.0 percent of MY 2017 vehicles.  
More recent reports submitted by manufacturers to the Federal Register indicate that installation 
rates accelerated in MY 2018 and 2019 vehicles.  Four manufacturers, Tesla, Volvo, Audi, and 
Mercedes have already met their voluntary commitment of 100 percent installation 3 years ahead 
of schedule.  During the period, September 1, 2018 through August 31, 2019, 12 of the 20 
manufacturers equipped more than 75 percent of their new passenger vehicles with AEB, and 
overall manufacturers equipped more than 9.5 million new passenger vehicles with AEB.875 

Because of the NHTSA/IIHS agreement, NHTSA assumed that some form of AEB will be in 
100 percent of light vehicles by MY 2023.  To derive installation rates for MYs 2020 through 
2022, NHTSA interpolated between the MY 2019 rate of 58.3 percent and the MY 2023 rate of 
100 percent.  To derive a MY 2015 estimate, NHTSA modelled the results for MYs 2016-2023 
and calculated a value for year x=0, essentially extending the model results back one year on the 
same trendline. 

For FCW, NHTSA used the same interpolation/modeling method as was used for AEB to derive 
an initial baseline trend.  However, while both systems are available on some portion of the 
current MY fleet, the agency anticipates that by MY 2023, all vehicles will have AEB systems 
that essentially encompass both FCW and AEB functions.  NHTSA therefore projects a gradual 
increase in both systems until the sum of both systems penetration rates exceeds 100 percent.  At 
that point, the agency projects a gradual decrease in FCW only installations until FCW only 
systems are completely replaced by AEB systems in MY 2023. 

For LDW, Wards penetration data were available as far back as MY 2013, giving a total of 7 
data points through MY 2019.  The projection for LDW was derived by modelling these data 
points.  The data indicate a near linear trend and our initial projections of future years were 
derived directly from this model.  Wards did not report any of the more advanced LKA systems 
until MY 2016, leaving only 4 data points through 2019.  NHTSA modelled a simple trendline 
through these data points to estimate the pace of future LKA installations.  As with Frontal 
crashes, the agency assumes a gradual phase-in of the most effective technology, LKA, will 

 
874 https://www.nhtsa.gov/press-releases/nhtsa-iihs-announcement-aeb. 
875 NHTSA Announces Update to Historic AEB Commitment by 20 Automakers.  December 17, 2019.  
https://www.nhtsa.gov/press-releases/nhtsa-announces-update-historic-aeb-commitment-20-automakers. 
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eventually replace the lesser technology, LDW, and NHTSA allows gradual increases in both 
systems penetration until their sum exceeds 100 percent, at which point LDW penetration begins 
to decline to zero while LKA penetration climbs to 100 percent. 

For blind spot crashes, Wards data were available for MYs 2013-2017 for BSD, but no data were 
available to distinguish LCA systems.  LCA systems were available as optional equipment on at 
least 10 MY 2016 vehicles.876  In addition, Flannagan and Leslie found numerous cases in State 
databases involving vehicles with LCA.  Because LCA data are not specifically identified, 
NHTSA will estimate its frequency based on the samples found in Flannagan & Leslie.  In that 
study, 62 percent of vehicles with blind spot technologies had BSD alone, while 38 percent had 
LCA (which includes BSD).  NHTSA employs this ratio to establish the relative frequency of 
these technologies in our projections.  As with frontal and lane change technologies, the agency 
assumes a gradual phase-in of the most effective technology, LCA, will eventually replace the 
lesser technology, BSD, and the agency allows gradual increases in both systems penetration 
until their sum exceeds 100 percent, at which point BSD penetration begins to decline to zero 
while LCA penetration climbs to 100 percent. 

7.2.13.5 Impact Calculations 

Table 7-18, Table 7-19, and Table 7-20 summarize the resulting estimates of impacts on fatality 
rates for frontal crash technologies, lane change technologies, and blind spot technologies 
respectively for MYs 2015-2035.  All previously discussed inputs are shown in the tables.  The 
effect of each technology is the product of its effectiveness, its percent installation in the MY 
fleet, and the portion of the total light vehicle occupant target population that each technology 
might address.  Since installation rates for each technology apply to different portions of the 
vehicle fleet (i.e., vehicles have either the more basic or more advanced version of the 
technology), the effect of the two technologies combined is a simple sum of the two effects.  
Likewise, since each crash type addresses a unique target population, there is no overlap among 
the three crash types and the sum of the normalized crash impacts across all three crash types 
represents the total impact on fatality rates from these 6 technologies for each model year.  These 
cumulative results are shown in the last column of Table 7-20.  As technologies phase in to 
newer MY fleets,877 their impact on the light vehicle occupant fatality rate increases 
proportionally to roughly 8.5 percent before levelling off.  That is, eventually, by approximately 
MY 2026, these technologies are expected to reduce fatalities and fatality rates for new vehicles 
by roughly 8.5 percent below their initial baseline levels. 

 
876 https://www.autobytel.com/car-buying-guides/features/10-cars-with-lane-change-assist-using-cameras-or-
sensors-130847. 
877 While it is technically possible to retrofit these systems into the on-road fleet, such retrofits would be 
significantly more expensive than OEM installations.  NHTSA thus assumes all on-road fleet penetration of these 
technologies will come through new vehicle sales.   



 

Table 7-18 – Phased Impact of Crashworthiness Technologies on Fatality Rates, Forward Collision Crashes 

MY Forward Collision Warning Automatic Emergency Braking % T.P. Weighted  
Effectiveness FCW Eff. % Inst. AEB Eff. % Inst. 

2015 10.5% 0.047 23.0% 0.011 4.0% 0.000292 
2016 10.5% 0.176 23.0% 0.120 4.0% 0.001831 
2017 10.5% 0.305 23.0% 0.270 4.0% 0.00374 
2018 10.5% 0.466 23.0% 0.445 4.0% 0.006011 
2019 10.5% 0.417 23.0% 0.583 4.0% 0.007068 
2020 10.5% 0.313 23.0% 0.687 4.0% 0.007585 
2021 10.5% 0.209 23.0% 0.792 4.0% 0.008103 
2022 10.5% 0.104 23.0% 0.896 4.0% 0.008625 
2023 10.5% 0 23.0% 1 4.0% 0.009139 
2024 10.5% 0 23.0% 1 4.0% 0.009139 
2025 10.5% 0 23.0% 1 4.0% 0.009139 
2026 10.5% 0 23.0% 1 4.0% 0.009139 
2027 10.5% 0 23.0% 1 4.0% 0.009139 
2028 10.5% 0 23.0% 1 4.0% 0.009139 
2029 10.5% 0 23.0% 1 4.0% 0.009139 
2030 10.5% 0 23.0% 1 4.0% 0.009139 
2031 10.5% 0 23.0% 1 4.0% 0.009139 
2032 10.5% 0 23.0% 1 4.0% 0.009139 
2033 10.5% 0 23.0% 1 4.0% 0.009139 
2034 10.5% 0 23.0% 1 4.0% 0.009139 
2035 10.5% 0 23.0% 1 4.0% 0.009139 

 



 

Table 7-19 – Phased Impact of Crashworthiness Technologies on Fatality Rates, Lane Departure Crashes 

MY 
Lane Departure Warning Lane Keep Assist 

% T.P. Weighted Effectiveness 
LDW Eff. % Inst. LKA Eff. % Inst. 

2015 10.0% 0.177 20.0% 0.000 35.8% 0.006329 
2016 10.0% 0.198 20.0% 0.088 35.8% 0.013374 
2017 10.0% 0.280 20.0% 0.205 35.8% 0.024674 
2018 10.0% 0.382 20.0% 0.320 35.8% 0.036546 
2019 10.0% 0.479 20.0% 0.442 35.8% 0.04874 
2020 10.0% 0.442 20.0% 0.558 35.8% 0.055717 
2021 10.0% 0.324 20.0% 0.676 35.8% 0.059925 
2022 10.0% 0.207 20.0% 0.794 35.8% 0.064134 
2023 10.0% 0.089 20.0% 0.911 35.8% 0.068343 
2024 10.0% 0 20.0% 1 35.8% 0.071519 
2025 10.0% 0 20.0% 1 35.8% 0.071519 
2026 10.0% 0 20.0% 1 35.8% 0.071519 
2027 10.0% 0 20.0% 1 35.8% 0.071519 
2028 10.0% 0 20.0% 1 35.8% 0.071519 
2029 10.0% 0 20.0% 1 35.8% 0.071519 
2030 10.0% 0 20.0% 1 35.8% 0.071519 
2031 10.0% 0 20.0% 1 35.8% 0.071519 
2032 10.0% 0 20.0% 1 35.8% 0.071519 
2033 10.0% 0 20.0% 1 35.8% 0.071519 
2034 10.0% 0 20.0% 1 35.8% 0.071519 
2035 10.0% 0 20.0% 1 35.8% 0.071519 

 



 

Table 7-20 – Phased Impact of Crashworthiness Technologies on Fatality Rates, Blind Spot Crashes and 
Combined Total – All Three Crash Types 

MY 
Blind Spot Detection Lane Change Assist 

% T.P. Weighted  
Effectiveness 

Three Techs  
Avg Eff. Impact BSD Eff. % Inst. LCA Eff. % Inst. 

2015 3.0% 0.082 26.0% 0.123 2.1% 0.000711 0.007332 
2016 3.0% 0.124 26.0% 0.186 2.1% 0.001073 0.016278 
2017 3.0% 0.155 26.0% 0.233 2.1% 0.001342 0.029756 
2018 3.0% 0.191 26.0% 0.287 2.1% 0.001654 0.044211 
2019 3.0% 0.222 26.0% 0.333 2.1% 0.001915 0.057723 
2020 3.0% 0.252 26.0% 0.376 2.1% 0.002165 0.065467 
2021 3.0% 0.283 26.0% 0.424 2.1% 0.002442 0.07047 
2022 3.0% 0.314 26.0% 0.472 2.1% 0.002718 0.075473 
2023 3.0% 0.345 26.0% 0.520 2.1% 0.002994 0.080476 
2024 3.0% 0.376 26.0% 0.568 2.1% 0.00327 0.083938 
2025 3.0% 0.384 26.0% 0.617 2.1% 0.003532 0.084189 
2026 3.0% 0.335 26.0% 0.665 2.1% 0.003759 0.084417 
2027 3.0% 0.287 26.0% 0.713 2.1% 0.003987 0.084644 
2028 3.0% 0.239 26.0% 0.761 2.1% 0.004214 0.084871 
2029 3.0% 0.101 26.0% 0.809 2.1% 0.004442 0.085099 
2030 3.0% 0.143 26.0% 0.857 2.1% 0.004669 0.085326 
2031 3.0% 0.095 26.0% 0.905 2.1% 0.004896 0.085554 
2032 3.0% 0.047 26.0% 0.953 2.1% 0.005124 0.085781 
2033 3.0% 0 26.0% 1 2.1% 0.005345 0.086002 
2034 3.0% 0 26.0% 1 2.1% 0.005345 0.086002 
2035 3.0% 0 26.0% 1 2.1% 0.005345 0.086002 

7.2.13.6 Impact of Advanced Technologies on Older Vehicles’ Fatality Rates 

The users of older vehicles will also benefit from crash avoidance technologies on newer 
vehicles when those technologies prevent multi-vehicle crashes with older vehicles.  Crash 
avoidance technologies prevent crashes from happening and thus benefit both the vehicle with 
the technology and any other vehicles that it might have collided with.  However, the scope of 
these impacts on older vehicle’s fatality rates are somewhat limited due to several factors: 

• Single vehicle crashes, which make up about half of all fatal crashes, will not be affected.  
Only multi-vehicle crashes involving a newer vehicle with the advanced technology and 
an older vehicle will be affected.  Multi-vehicle crashes account for roughly half of all 
light vehicle occupant fatalities. 

• For a new safety technology to benefit an older vehicle in a multi-vehicle crash, the 
vehicle with the technology must have been in a position to control or prevent the crash.  
For example, in front-to-rear crashes which can be addressed by FCW and AEB, the 
older vehicle would only benefit if it was the vehicle struck from behind.  If the struck 
vehicle were the newer vehicle, its AEB technology would not prevent the crash.  
Logically this would occur in roughly half of two-vehicle crashes and a third of all three-



 

vehicle crashes.  Since most multi-vehicle crashes involve only two vehicles, roughly half 
of all multi-vehicle crashes might qualify. 

• The benefits experienced by older vehicles are proportional to the probability that the 
vehicles they collide with are newer vehicles with advanced crash avoidance technology.  
We estimate that the probability that this would occur is a function of the relative 
exposure of vehicles by age, measured by the portion of total VMT driven by vehicles of 
that age.  Based on VMT schedules (see CY 2016 example in Table 7-21) new (current 
MY) vehicles account for about 9.6 percent of annual fleet VMT.  The relevant portion 
would increase over time as additional MY vehicles are produced with advanced 
technologies.  However, the portion of older vehicle crashes that might be affected by 
newer technologies is initially very small—only about 2 percent (.5*.5*.096) of older 
vehicles involved in crashes might benefit from advanced crash avoidance technologies 
in other vehicles in the first year. 

Table 7-21 – Registrations, Total VMT, and Proportions of Total VMT by Vehicle Age  

Registrations, Total VMT, And Proportions of Total VMT By Vehicle Age 
Model Year Age CY 2016 Registrations VMT(thousand) % Total VMT 
1977 39 286,019 927,877 0.000329 
1978 38 332,760 1,247,190 0.000443 
1979 37 375,561 1,556,553 0.000553 
1980 36 205,942 903,948 0.000321 
1981 35 208,192 1,010,499 0.000359 
1982 34 213,697 1,130,039 0.000401 
1983 33 265,583 1,496,439 0.000531 
1984 32 408,058 2,428,835 0.000862 
1985 31 477,178 2,993,451 0.001063 
1986 30 605,932 3,991,280 0.001417 
1987 29 644,568 4,396,414 0.001561 
1988 28 629,179 4,431,880 0.001574 
1989 27 747,740 5,475,868 0.001944 
1990 26 755,244 5,685,511 0.002019 
1991 25 899,252 6,991,287 0.002483 
1992 24 1,005,716 8,055,442 0.00286 
1993 23 1,308,396 10,784,619 0.003829 
1994 22 1,738,409 14,739,099 0.005234 
1995 21 2,212,145 19,191,169 0.006815 
1996 20 2,364,368 21,059,984 0.007478 
1997 19 3,401,992 31,134,256 0.011055 
1998 18 4,079,728 38,358,375 0.013621 
1999 17 5,377,629 52,039,074 0.018478 
2000 16 6,826,267 67,907,099 0.024113 
2001 15 7,475,530 76,512,692 0.027169 
2002 14 8,912,404 94,016,400 0.033384 



 

Registrations, Total VMT, And Proportions of Total VMT By Vehicle Age 
Model Year Age CY 2016 Registrations VMT(thousand) % Total VMT 
2003 13 9,825,521 106,764,943 0.037911 
2004 12 10,806,847 121,080,704 0.042994 
2005 11 11,649,021 134,404,144 0.047725 
2006 10 11,699,430 138,962,811 0.049344 
2007 9 12,519,932 153,300,527 0.054435 
2008 8 11,781,605 148,871,424 0.052862 
2009 7 8,171,782 106,120,610 0.037682 
2010 6 9,944,848 133,696,015 0.047474 
2011 5 10,967,994 152,795,831 0.054256 
2012 4 12,409,627 177,760,326 0.06312 
2013 3 14,197,792 210,386,962 0.074706 
2014 2 14,726,690 226,423,858 0.0804 
2015 1 16,208,153 257,415,893 0.091405 
2016 0 16,338,755 269,760,666 0.095789 
Total  223,005,486 2,816,209,994 1 

 
To reflect this safety benefit for older vehicles, NHTSA calculated a revised fatality rate for each 
older MY vehicle on the road based on its interaction with each new MY starting with MY 2021 
vehicles based on the following relationship: 

Revised fatality rate = Fm-((x-y)mnp)+F(1-m) 

Where:  

F = initial fatality rate for each MY 

x = baseline MY fatality rate 

y = current MY fatality rate  

m = proportion of occupant fatalities that occur in multi-vehicle crashes (52 percent) 

n = probability that crash is with a new MY vehicle containing advanced technologies 

p = probability that new vehicle is “striking” vehicle   

The initial fatality rate for each vehicle MY (F) was derived by combining fatality counts from 
NHTSA’s Fatality Analysis Reporting System (FARS) with VMT data from IHS/Polk. 

The baseline MY fatality rate (x) represents the baseline rate over which the impact of new crash 
avoidance technologies should be measured   It establishes the baseline rate for each MY that 
will be compared to the most current MY rate to determine the change in fatality rate (FR) for 
each MY.  The relative effectiveness of new crash-avoidance technologies in modifying the 
fatality rate of older model vehicles is measured differently depending on the age of the older 



 

vehicle.  The fatality rate is a historical measure that reflects safety differences due to both 
crashworthiness technologies such as air bags and crash avoidance technologies such as 
electronic stability control, but up through MY 2017, crashworthiness standards are the 
predominate cause of these differences.   

The most recent significant crashworthiness safety standard, which upgraded roof strength 
standards, was effective in all new passenger vehicles in MY 2017.  Crashworthiness standards 
would not have secondary benefits for older MY vehicles.  Post MY 2017, NHTSA believes 
crash avoidance technologies will drive safety improvements.  To isolate the added crash 
avoidance safety expected in newer vehicles, the marginal impact of the difference between the 
MY 2017 fatality rate and the most current MY fatality rate represents the added marginal 
effectiveness of new crash-avoidance technologies of each subsequent MY for MYs 2017 and 
earlier.  Beginning with MY 2018, the difference between the older MY fatality rate and most 
current MY rate determines the potential safety benefit for the older vehicles. 

The current MY fatality rate (y), represents the projected fatality rate of future MY vehicles after 
adjustment for the impacts of the advanced crash avoidance technologies and projected 
improvements in non-technology factors examined in this analysis.  This process was discussed 
in detail in the previous section. 

The proportion of passenger vehicle occupant fatalities that occur in multi-vehicle crashes (m), 
was derived from an analysis of occupants of fatal passenger vehicle crashes from 2002-2017 
FARS.  The analysis indicated that 47.8 percent of fatal crash occupants were in single vehicle 
crashes, 40.2 percent were in two vehicle crashes, and 12 percent were in crashes involving 3 or 
more vehicles.  Overall, 52.2 percent were in multi-vehicle crashes. 

The portion of older vehicle crashes involving newer vehicles containing advanced crash 
avoidance technologies (n), is assumed to be equal to the cumulative risk exposure of vehicles 
that have these technologies.  This exposure is measured by the product of annual VMT by 
vehicle age and registrations of vehicles of that age.  The CAFE Model calculates this 
dynamically, but as an example, based on 2016 registration data (see Table 7-21), the most 
current MY would represent 9.6 percent of all VMT in a calendar year, implying a 9.6 percent 
probability that the vehicle encountered would be from the most current MY.  This percentage 
would increase for each CY as more MY vehicles adopt advanced crashworthiness technologies.  
NHTSA notes that other factors such as uneven concentrations of newer vs. older vehicles or 
improved crash avoidance in the younger vehicles already on the road that are the basis for  our 
VMT proportion table might disrupt this assumption, but it is likely that this would only serve to 
slow the probability of these encounters, making this a conservative assumption in that it 
maximizes the probability that older vehicles might benefit from newer technologies. 

The probability that the vehicle with advanced crash avoidance technology is the controlling or 
striking vehicle (p), was calculated using the relative frequency of fatal crash occupants in multi-
vehicle crashes.  As noted previously, 40.2 percent were in two vehicle crashes, and 12 percent 
were in crashes involving 3 or more vehicles.  NHTSA assumes a probability of 50 percent for 
two vehicle crashes and 33 percent for crashes with 3 or more vehicles.  Weighted together  we 
estimate a 46.1 percent probability that, given a multi-vehicle crash involving a vehicle with 
advanced technologies and an older vehicle without them, the newer vehicle will be the striking 



 

vehicle or in a position where its crash avoidance technologies might influence the outcome of 
the crash with the older vehicle. 

This process is illustrated in Table 7-22 below or adjustments due to improvements in MY 2021 
vehicles back through MY 1995.  In Table 7-22 the actual model year fatality rate is shown in 
the second column.  As noted above, the base fatality rate, shown in column 3, is the MY 2017 
rate for all MYs prior to 2018, after which it becomes the actual MY rate.  Column 4 shows the 
difference between the fatality rate for MY 2021 and the base rate for each MY.  Column 5 
shows the resulting revised fatality rate that would be used for each older MY, and column 6 and 
7 list the change in that rate.  The various factors noted in the above formula are applied in 
column 5.  The results indicate a 0.006 decrease in pre-2018 MY vehicles fatality rates, with 
declining impacts going forward to MY 2021.  In subsequent years, this impact would grow to 
reflect the both the increased probability that an older vehicle would crash with vehicles 
containing advanced technology, as well as the increased technology levels in progressively 
newer vehicles.  This table was created using inputs from the 2020 CAFE rule NPRM and is 
provided for explanatory purposes only.  The actual impacts are dynamically calculated within 
the CAFE Model using updated inputs applicable to this current CAFE NPRM and reflect 
revised fatality rate trends going forward and cover even older model years. 
 



 

Table 7-22 – Example Adjustment to Fatality Rates of Older Vehicles to Reflect Impact of Advanced Crash 
Avoidance Technologies in Newer Vehicles 

Model 
Year 

MY 
Fatality 

Rate 

Base 
Fatality 

Rate 

Difference 
Base FR -  

New MY FR 

Revised Fatality 
Rate 

% 
Change Difference  

1995 17.979 8.628 0.269 17.973 0.00034 -0.0062 
1996 16.519 8.628 0.269 16.513 0.00038 -0.0062 
1997 15.789 8.628 0.269 15.783 0.00039 -0.0062 
1998 14.709 8.628 0.269 14.703 0.00042 -0.0062 
1999 13.679 8.628 0.269 13.673 0.00045 -0.0062 
2000 12.909 8.628 0.269 12.903 0.00048 -0.0062 
2001 12.259 8.628 0.269 12.253 0.00051 -0.0062 
2002 11.489 8.628 0.269 11.483 0.00054 -0.0062 
2003 10.889 8.628 0.269 10.883 0.00057 -0.0062 
2004 10.349 8.628 0.269 10.343 0.00060 -0.0062 
2005 9.679 8.628 0.269 9.673 0.00064 -0.0062 
2006 9.349 8.628 0.269 9.343 0.00066 -0.0062 
2007 9.284 8.628 0.269 9.278 0.00067 -0.0062 
2008 9.220 8.628 0.269 9.214 0.00067 -0.0062 
2009 9.155 8.628 0.269 9.149 0.00068 -0.0062 
2010 9.090 8.628 0.269 9.084 0.00068 -0.0062 
2011 9.024 8.628 0.269 9.018 0.00069 -0.0062 
2012 8.959 8.628 0.269 8.953 0.00069 -0.0062 
2013 8.893 8.628 0.269 8.887 0.00070 -0.0062 
2014 8.827 8.628 0.269 8.821 0.00070 -0.0062 
2015 8.761 8.628 0.269 8.755 0.00071 -0.0062 
2016 8.694 8.628 0.269 8.688 0.00071 -0.0062 
2017 8.628 8.628 0.269 8.622 0.00072 -0.0062 
2018 8.561 8.561 0.202 8.556 0.00054 -0.00466 
2019 8.494 8.494 0.135 8.491 0.00037 -0.00311 
2020 8.426 8.426 0.068 8.425 0.00018 -0.00156 
2021 8.359 8.359 0.000 8.359 0 0 

7.3 Dynamic Fleet Composition 

As described in the sales discussion in Chapter 7.2, the standards may impact the distribution of 
cars and trucks purchased.  As light trucks, SUVs and passenger cars respond differently to 
technology applied to meet the standards—namely mass reduction—fleets with different 
compositions of body styles will have varying amounts of fatalities.  Since mass-safety fatalities 
are calculated by multiplying mass point-estimates by VMT, which implicitly captures the 
impact of the dynamic fleet share model, the estimates of mass-safety fatalities in the previous 
section include the impact of vehicle prices and fuel savings on fleet composition.   



 

7.4 Impact of Rebound Effect on Fatalities 

The “rebound effect” is a measure of the additional driving that occurs when the cost of driving 
declines.  More stringent standards reduce vehicle operating costs, and in response, some 
consumers may choose to drive more.  Driving more increases exposure to risks associated with 
on-road transportation, and this added exposure translates into higher fatalities.  NHTSA has 
calculated this impact by estimating the change in VMT that results from alternative standards.  
Estimates of the rebound effect in the literature differ significantly.  For this analysis, we use a 
rebound effect of 15%.  A full discussion of the basis for selecting this rate is provided in 
Chapter 4.3.3. 

Rebound miles are not imposed on consumers by regulation.  They are a freely chosen activity 
resulting from reduced vehicle operational costs.  As such, NHTSA believes a large portion of 
the safety risks associated with additional driving are offset by the benefits drivers gain from 
added driving.  The level of risk internalized by drivers is uncertain.  This analysis assumes that 
consumers internalize 90 percent of this risk, which mostly offsets the societal impact of any 
added fatalities from this voluntary consumer choice. 

The actual portion of risk from crashes that drivers internalize is unknown.  We suspect that 
drivers are more likely to internalize serious crash consequences than minor ones, and some 
drivers may not perfectly internalize injury consequences to other individuals, especially 
occupants of other vehicles and pedestrians.  However, legal consequences from crash liability, 
both criminal and civil, should also act as a caution for drivers considering added crash risk 
exposure.  NHTSA considered several approaches to estimating internalized crash risk.  The first 
assumes that drivers value harm to themselves as well as legal liability for causing harm to 
others.  It considers that all fatalities in single vehicle crashes are fully valued, that there is 
roughly a 50 percent chance that each driver would be the one killed in multi-vehicle crashes, 
and that there is roughly a 50 percent chance that each driver would be at-fault in a multi-vehicle 
crash that they survived.  This produces an estimate of roughly 88 percent.   

Another approach assumes that drivers fully value all damage in single vehicle crashes, and only 
discount property damage incidents in multi-vehicle crashes.  Based on data in Blincoe, et al. 
(2015),878 multi-vehicle property-damage-only crashes account for about 7 percent of all societal 
crash costs, leaving 93 percent recognized under this approach.  Yet another approach would 
assume drivers value injury crashes, but discount non-injury related costs such as property 
damage and traffic congestion.  This approach results in roughly an 88 percent estimate of costs 
internalized.  A fourth approach assumes that drivers fully value all quality of life losses 
associated with injury defined by the VSL, plus all personal expenses that result from external 
cost components not captured by the VSL.  This approach results in an estimate that 86% of 
crash risk costs are internalized.  Overall, while NHTSA recognizes this proportion is uncertain, 
we believe it is reasonable to assume that drivers internalize roughly 90 percent of the crash risk 
that results from added driving.  

 
878 Blincoe, L., Miller, T.R., Zaloshnja,E., Lawrence, B. A., (May 2015, Revised) The Economic and Societal 
Impact of Motor Vehicle Crashes, 2010, (DOT HS 812 012), National Highway Traffic Safety Administration, 
Washington, D.C.   



 

Note that none of these estimates account for net consumer surplus, implying that the full value 
of added driving gained or lost through the rebound effect is somewhat higher than these 
estimates.  Based on this, we assume that 90% of the societal cost of additional motor vehicle 
crashes occurring due to rebound mileage is offset by the internalized acceptance of safety risk, 
and an additional portion is offset by added consumer surplus drivers obtain while assuming this 
risk.  An estimate of this consumer surplus is provided in Chapter 6.1.5 of this document.   

7.5 Fatalities by Source 

To calculate safety impacts, the model produces a dynamic total fleetwide safety impact that 
reflects the interaction of added rebound VMT, mass/safety impacts, and shifts in VMT among 
vehicles of different ages due to sales/scrappage impacts.  Because these factors are interactive, 
the model does not predict which fatalities are “only” attributable to the sales/scrappage 
response; it calculates a fleet response, and that fleet is the result of all those integrated modules.  
For this reason, we treat the sales/scrappage fatalities to be the residual from the total after 
accounting for rebound and mass/safety impacts, which can be more directly measured.  

Rebound fatalities are computed by taking the difference in per vehicle rebound miles in the 
regulatory alternative and the baseline case multiplied by the baseline fatality rate per mile and 
baseline vehicle count.  Fatalities due to rebound are computed as shown in Equation 7-3.  

𝑇𝑇𝑒𝑒𝑏𝑏𝑃𝑃𝑢𝑢𝑃𝑃𝑑𝑑 𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑢𝑢𝑒𝑒𝐶𝐶𝐴𝐴𝐹𝐹𝐹𝐹
= �

𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇𝐴𝐴𝐹𝐹𝐹𝐹 − 𝑀𝑀𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇𝐴𝐴𝐹𝐹𝐹𝐹
𝑉𝑉𝑒𝑒ℎ𝐴𝐴𝐹𝐹𝐹𝐹

−
𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇𝐵𝐵𝑆𝑆𝑆𝑆𝑟𝑟 − 𝑀𝑀𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇𝐵𝐵𝑆𝑆𝑆𝑆𝑟𝑟

𝑉𝑉𝑒𝑒ℎ𝐵𝐵𝑆𝑆𝑆𝑆𝑟𝑟
� ∗  𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑐𝑐 𝑇𝑇𝑎𝑎𝑃𝑃𝑒𝑒𝐵𝐵𝑆𝑆𝑆𝑆𝑟𝑟

∗ 𝑉𝑉𝑒𝑒ℎ𝐵𝐵𝑆𝑆𝑆𝑆𝑟𝑟 

Equation 7-3 – Fatalities Due to Rebound 

Where “RVMT” is VMT including rebound miles, “NRVMT” is VMT excluding rebound miles, 
“Veh” is the quantity of vehicles, and “Alt” represents the alternative being examined and 
“Base” is the baseline value.  The rebound fatalities will show as zero for the baseline scenario, 
and all alternatives will show fatalities due to rebound miles using the baseline vehicle counts.  
The formula specifies vehicle counts to clarify that vehicle counts will change over time among 
alternatives.   

The fatalities due to mass reduction use the baseline vehicle counts and baseline per vehicle 
VMT including rebound.  As with the fatalities attributable to rebound, the fatalities attributable 
to changes in mass reduction are calculated inherently as incremental values, relative to the 
baseline standards (the values will appear as zero for baseline standards in the outputs).  The 
equation used to calculate the fatalities due to curb weight (mass)changes is as shown in 
Equation 7-4. 

∆𝐶𝐶𝑘𝑘 𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑢𝑢𝑒𝑒𝐶𝐶𝐴𝐴𝐹𝐹𝐹𝐹 = (𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑐𝑐 𝑇𝑇𝑎𝑎𝑃𝑃𝑒𝑒𝐴𝐴𝐹𝐹𝐹𝐹 − 𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑐𝑐 𝑇𝑇𝑎𝑎𝑃𝑃𝑒𝑒𝐵𝐵𝑆𝑆𝑆𝑆𝑟𝑟) ∗ 𝑇𝑇 𝑉𝑉𝑀𝑀𝑇𝑇 𝐵𝐵𝑆𝑆𝑆𝑆𝑟𝑟 

Equation 7-4 – Fatalities Due to Curb Weight Change 



 

NHTSA then computed the sales/scrappage fatalities as the remainder, as was done in the 
NPRM. 

𝑆𝑆𝑎𝑎𝑖𝑖𝑒𝑒𝐶𝐶/𝑆𝑆𝑐𝑐𝑢𝑢𝑎𝑎𝐹𝐹 𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑢𝑢𝑒𝑒𝐶𝐶
= �𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑢𝑢𝑒𝑒𝐶𝐶𝐴𝐴𝐹𝐹𝐹𝐹 − 𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑢𝑢𝑒𝑒𝐶𝐶𝐴𝐴𝑟𝑟𝑊𝑊� − 𝑇𝑇𝑒𝑒𝑏𝑏𝑃𝑃𝑢𝑢𝑃𝑃𝑑𝑑 𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑢𝑢𝑒𝑒𝐶𝐶 −  ∆𝐶𝐶𝑘𝑘 𝐹𝐹𝑎𝑎𝑃𝑃𝑎𝑎𝑖𝑖𝑢𝑢𝑃𝑃𝑢𝑢𝑒𝑒𝐶𝐶 

Equation 7-5 – Fatalities Due to Sales/Scrappage 

7.6 Non-fatal Crash Impacts 

Fatalities are valued as a societal cost within the CAFE Model’s cost and benefit accounting.  
Their value is based on the comprehensive value of a fatality, which includes lost quality of life 
and is quantified in the value of a statistical life (VSL) as well as economic consequences such as 
medical and emergency care, insurance administrative costs, legal costs, and other economic 
impacts not captured in the VSL alone.  These values were derived from data in Blincoe et al. 
(2015), adjusted to 2018 economics, and updated to reflect the official DOT guidance on the 
value of a statistical life.  This gives a societal value of $10.8 million for each fatality.879  To 
estimate the impact of CAFE standards on non-fatal crash impacts, different methods were used 
for each of the three safety categories.  These methods replace the previous method of scaling up 
the costs of non-fatal injuries and vehicle damage as a constant multiplier applied to increased 
fatality costs as was used in the 2020 CAFE final rule. 

7.6.1 Non-fatal Sales Scrappage Impacts 

To estimate the impacts on nonfatal injuries and property-damaged vehicles due to VMT shifts 
caused by changes in fleet turnover, we replicated the process used for fatalities, using 
effectiveness rates and target population proportions that are specific to these two nonfatal 
groupings.  The same data and methods described previously in this section to compute the 
impact of advanced crash avoidance technologies on fatalities can also be used to examine the 
effectiveness of these technologies against non-fatal and PDO crashes.  Effectiveness rates 
against nonfatal injuries and PDOs are identical for the two lane-change and blind spot 
technologies shown in Table 7-7.  For the two frontal impact technologies, the central 
effectiveness rate noted in Table 7-7 was used rather than the reduced rates that were applied 
against fatalities.  That is, we assume that effectiveness against crashes is a reasonable proxy for 
effectiveness against nonfatal injuries and PDOs.  The percentages of target population 
applicable to these crashes was taken from Wang (2019) using results specific to these types of 
crashes.  The inputs and results are summarized for nonfatal injuries in Table 7-23 through Table 
7-25, and for PDOs in Table 7-26 through Table 7-28.880   

 

 
879 See TSD 7.7 Valuation of Safety Impacts for further discussion of comprehensive value of a fatality. 
880 See previous discussion in this section for the studies and methodology used to create these estimates.  



 

Table 7-23 – Phased Impact of Crashworthiness Technologies on Non-Fatal  
Injury Rates, Forward Collision Crashes 

MY 
Forward Collision Warning Automatic Emergency Braking Weighted  

Effectiveness Eff. % Inst. Eff. % Inst. % T.P. 
2015 21.0% 0.047 46.0% 0.011 32.4% 0.004757 
2016 21.0% 0.176 46.0% 0.120 32.4% 0.029822 
2017 21.0% 0.305 46.0% 0.270 32.4% 0.060915 
2018 21.0% 0.466 46.0% 0.445 32.4% 0.097904 
2019 21.0% 0.417 46.0% 0.583 32.4% 0.115115 
2020 21.0% 0.313 46.0% 0.687 32.4% 0.123549 
2021 21.0% 0.209 46.0% 0.792 32.4% 0.131982 
2022 21.0% 0.104 46.0% 0.896 32.4% 0.140415 
2023 21.0% 0 46.0% 1 32.4% 0.148849 
2024 21.0% 0 46.0% 1 32.4% 0.148849 
2025 21.0% 0 46.0% 1 32.4% 0.148849 
2026 21.0% 0 46.0% 1 32.4% 0.148849 
2027 21.0% 0 46.0% 1 32.4% 0.148849 
2028 21.0% 0 46.0% 1 32.4% 0.148849 
2029 21.0% 0 46.0% 1 32.4% 0.148849 
2030 21.0% 0 46.0% 1 32.4% 0.148849 
2031 21.0% 0 46.0% 1 32.4% 0.148849 
2032 21.0% 0 46.0% 1 32.4% 0.148849 
2033 21.0% 0 46.0% 1 32.4% 0.148849 
2034 21.0% 0 46.0% 1 32.4% 0.148849 
2035 21.0% 0 46.0% 1 32.4% 0.148849 

  



 

Table 7-24 – Phased Impact of Crashworthiness Technologies on Non-Fatal  
Injury Rates, Lane Departure Crashes 

MY 
Lane Departure Warning Lane Keep Assist 

% T.P. Weighted  
Effectiveness Eff. % Inst. Eff. % Inst. 

2015 10.0% 0.177 20.0% 0.000 17.6% 0.003112 
2016 10.0% 0.198 20.0% 0.088 17.6% 0.006575 
2017 10.0% 0.280 20.0% 0.205 17.6% 0.01213 
2018 10.0% 0.382 20.0% 0.320 17.6% 0.017967 
2019 10.0% 0.479 20.0% 0.442 17.6% 0.023962 
2020 10.0% 0.442 20.0% 0.558 17.6% 0.027392 
2021 10.0% 0.324 20.0% 0.676 17.6% 0.029461 
2022 10.0% 0.207 20.0% 0.794 17.6% 0.03153 
2023 10.0% 0.089 20.0% 0.911 17.6% 0.033599 
2024 10.0% 0 20.0% 1 17.6% 0.03516 
2025 10.0% 0 20.0% 1 17.6% 0.03516 
2026 10.0% 0 20.0% 1 17.6% 0.03516 
2027 10.0% 0 20.0% 1 17.6% 0.03516 
2028 10.0% 0 20.0% 1 17.6% 0.03516 
2029 10.0% 0 20.0% 1 17.6% 0.03516 
2030 10.0% 0 20.0% 1 17.6% 0.03516 
2031 10.0% 0 20.0% 1 17.6% 0.03516 
2032 10.0% 0 20.0% 1 17.6% 0.03516 
2033 10.0% 0 20.0% 1 17.6% 0.03516 
2034 10.0% 0 20.0% 1 17.6% 0.03516 
2035 10.0% 0 20.0% 1 17.6% 0.03516 

 



 

Table 7-25 – Phased Impact of Crashworthiness Technologies on Non-Fatal Injury Rates, Blind Spot Crashes 
and Combined Total – All Three Crash Types, and Final Multiplier 

MY 
Blind Spot Detection Lane Change Assist 

% T.P. Weighted  
Effectiveness 

Three Techs  
Average Eff.  

Impact 

Multiplier/ 
Fatalities Eff. % Inst. Eff. % Inst. 

2015 3.0% 0.082 26.0% 0.123 6.9% 0.002385 0.010253 1.398385 
2016 3.0% 0.124 26.0% 0.186 6.9% 0.003601 0.039998 2.45713 
2017 3.0% 0.155 26.0% 0.233 6.9% 0.004503 0.077548 2.606141 
2018 3.0% 0.191 26.0% 0.287 6.9% 0.00555 0.121421 2.746386 
2019 3.0% 0.222 26.0% 0.333 6.9% 0.006425 0.145502 2.520716 
2020 3.0% 0.252 26.0% 0.376 6.9% 0.007265 0.158205 2.416556 
2021 3.0% 0.283 26.0% 0.424 6.9% 0.008192 0.169635 2.407186 
2022 3.0% 0.314 26.0% 0.472 6.9% 0.009119 0.181064 2.399058 
2023 3.0% 0.345 26.0% 0.520 6.9% 0.010045 0.192494 2.39194 
2024 3.0% 0.376 26.0% 0.568 6.9% 0.010972 0.194981 2.323211 
2025 3.0% 0.384 26.0% 0.617 6.9% 0.01185 0.195859 2.326417 
2026 3.0% 0.335 26.0% 0.665 6.9% 0.012613 0.196622 2.329189 
2027 3.0% 0.287 26.0% 0.713 6.9% 0.013376 0.197385 2.331945 
2028 3.0% 0.239 26.0% 0.761 6.9% 0.014139 0.198148 2.334687 
2029 3.0% 0.191 26.0% 0.809 6.9% 0.014902 0.198911 2.337415 
2030 3.0% 0.143 26.0% 0.857 6.9% 0.015665 0.199674 2.340127 
2031 3.0% 0.095 26.0% 0.905 6.9% 0.016428 0.200437 2.342826 
2032 3.0% 0.047 26.0% 0.953 6.9% 0.017191 0.201201 2.34551 
2033 3.0% 0 26.0% 1 6.9% 0.017934 0.201943 2.348108 
2034 3.0% 0 26.0% 1 6.9% 0.017934 0.201943 2.348108 
2035 3.0% 0 26.0% 1 6.9% 0.017934 0.201943 2.348108 

  



 

Table 7-26 – Phased Impact of Crashworthiness Technologies on PDO Crash Rates, Forward Collision 
Crashes 

MY 
Forward Collision Warning Automatic Emergency 

Braking Weighted 
Effectiveness FCW Eff. % Inst. AEB Eff. % Inst. % T.P. 

2015 21.0% 0.047 46.0% 0.011 36.8% 0.005416 
2016 21.0% 0.176 46.0% 0.120 36.8% 0.033958 
2017 21.0% 0.305 46.0% 0.270 36.8% 0.069363 
2018 21.0% 0.421 46.0% 0.445 36.8% 0.107987 
2019 21.0% 0.417 46.0% 0.583 36.8% 0.131081 
2020 21.0% 0.313 46.0% 0.687 36.8% 0.140684 
2021 21.0% 0.209 46.0% 0.792 36.8% 0.150287 
2022 21.0% 0.104 46.0% 0.896 36.8% 0.15989 
2023 21.0% 0 46.0% 1 36.8% 0.169493 
2024 21.0% 0 46.0% 1 36.8% 0.169493 
2025 21.0% 0 46.0% 1 36.8% 0.169493 
2026 21.0% 0 46.0% 1 36.8% 0.169493 
2027 21.0% 0 46.0% 1 36.8% 0.169493 
2028 21.0% 0 46.0% 1 36.8% 0.169493 
2029 21.0% 0 46.0% 1 36.8% 0.169493 
2030 21.0% 0 46.0% 1 36.8% 0.169493 
2031 21.0% 0 46.0% 1 36.8% 0.169493 
2032 21.0% 0 46.0% 1 36.8% 0.169493 
2033 21.0% 0 46.0% 1 36.8% 0.169493 
2034 21.0% 0 46.0% 1 36.8% 0.169493 
2035 21.0% 0 46.0% 1 36.8% 0.169493 

  



 

Table 7-27 – Phased Impact of Crashworthiness Technologies on PDO Crash Rates, Lane Departure Crashes  

MY 
Lane Departure Warning Lane Keep Assist 

% T.P. Weighted  
Effectiveness LDW Eff. % Inst. LKA Eff. % Inst. 

2015 10.0% 0.177 20.0% 0.000 12.0% 0.002131 
2016 10.0% 0.198 20.0% 0.088 12.0% 0.004503 
2017 10.0% 0.280 20.0% 0.205 12.0% 0.008307 
2018 10.0% 0.382 20.0% 0.320 12.0% 0.012304 
2019 10.0% 0.479 20.0% 0.442 12.0% 0.016409 
2020 10.0% 0.442 20.0% 0.558 12.0% 0.018758 
2021 10.0% 0.324 20.0% 0.676 12.0% 0.020175 
2022 10.0% 0.207 20.0% 0.794 12.0% 0.021592 
2023 10.0% 0.089 20.0% 0.911 12.0% 0.023009 
2024 10.0% 0 20.0% 1 12.0% 0.024078 
2025 10.0% 0 20.0% 1 12.0% 0.024078 
2026 10.0% 0 20.0% 1 12.0% 0.024078 
2027 10.0% 0 20.0% 1 12.0% 0.024078 
2028 10.0% 0 20.0% 1 12.0% 0.024078 
2029 10.0% 0 20.0% 1 12.0% 0.024078 
2030 10.0% 0 20.0% 1 12.0% 0.024078 
2031 10.0% 0 20.0% 1 12.0% 0.024078 
2032 10.0% 0 20.0% 1 12.0% 0.024078 
2033 10.0% 0 20.0% 1 12.0% 0.024078 
2034 10.0% 0 20.0% 1 12.0% 0.024078 
2035 10.0% 0 20.0% 1 12.0% 0.024078 

  



 

Table 7-28 – Phased Impact of Crashworthiness Technologies on PDO Crash Rates, Blind Spot Crashes and 
Combined Total – All Three Crash Types, and Final Multiplier 

MY 
Blind Spot Detection Lane Change Assist 

% T.P. Weighted  
Effectiveness 

Three Techs  
Average  

Eff. Impact 

Multiplier/ 
Fatalities Eff. % Inst. Eff. % Inst. 

2015 3.0% 0.082 26.0% 0.123 12.0% 0.004151 0.011698 1.59543 
2016 3.0% 0.124 26.0% 0.186 12.0% 0.006268 0.044728 2.747706 
2017 3.0% 0.155 26.0% 0.233 12.0% 0.007838 0.085508 2.873632 
2018 3.0% 0.191 26.0% 0.287 12.0% 0.009659 0.129951 2.939325 
2019 3.0% 0.222 26.0% 0.333 12.0% 0.011182 0.158673 2.748887 
2020 3.0% 0.252 26.0% 0.376 12.0% 0.012644 0.172087 2.628588 
2021 3.0% 0.283 26.0% 0.424 12.0% 0.014257 0.18472 2.621245 
2022 3.0% 0.314 26.0% 0.472 12.0% 0.01587 0.197353 2.614876 
2023 3.0% 0.345 26.0% 0.520 12.0% 0.017483 0.209986 2.609298 
2024 3.0% 0.376 26.0% 0.568 12.0% 0.019096 0.212668 2.533943 
2025 3.0% 0.384 26.0% 0.617 12.0% 0.020623 0.214195 2.544212 
2026 3.0% 0.335 26.0% 0.665 12.0% 0.021951 0.215523 2.553089 
2027 3.0% 0.287 26.0% 0.713 12.0% 0.023279 0.216851 2.561919 
2028 3.0% 0.239 26.0% 0.761 12.0% 0.024607 0.218179 2.570702 
2029 3.0% 0.191 26.0% 0.809 12.0% 0.025935 0.219507 2.579438 
2030 3.0% 0.143 26.0% 0.857 12.0% 0.027264 0.220835 2.588127 
2031 3.0% 0.095 26.0% 0.905 12.0% 0.028592 0.222163 2.59677 
2032 3.0% 0.047 26.0% 0.953 12.0% 0.02992 0.223491 2.605367 
2033 3.0% 0 26.0% 1 12.0% 0.031212 0.224784 2.613688 
2034 3.0% 0 26.0% 1 12.0% 0.031212 0.224784 2.613688 
2035 3.0% 0 26.0% 1 12.0% 0.031212 0.224784 2.613688 

 
Based on a comparison of the combined average effectiveness impacts for the three crash 
severity groups (fatalities, non-fatal injuries, and property damage), it is apparent that these 
advanced crash avoidance technologies will reduce non-fatal injuries and property damage 
crashes by more than they would fatalities.881   

7.6.2 Non-fatal Rebound VMT Crash Impacts 

Additional mileage driven due to the rebound effect increases exposure to risk and thus increases 
the probability of additional fatalities, non-fatal injuries, and property damage.  As was done for 
fatalities, we estimate the resulting additional numbers of non-fatal injuries and vehicles 
involved in PDO crashes explicitly (as the product of the change in miles driven and non-fatal 
injuries per mile, and similarly for PDO crashes) using the per-mile rates projected by our CAFE 
Model.  This produces estimates of increased incidence of nonfatal injuries and PDO vehicles.  
We apply our average monetary values (noted in Chapter 7.7) to the estimated numbers of 
additional non-fatal injuries and property damage to vehicles.   

 
881 For example, for MY 2035, the combined effectiveness for PDO crashes is .224784, as shown in the second to 
last column of Table 7-28, which is 2.613 times the .0860 combined effectiveness for fatalities, as seen in Table 
7-20, which shows the disproportionality impact of crash avoidance technologies on non-fatal accidents. 



 

7.6.3 Non-fatal Mass/Size Safety impacts   

For mass/safety, extensive research documented elsewhere in this TSD establish relationships 
between changes in vehicle mass that increase mass disparity and safety.  These relationships are 
used as inputs in the CAFE Model to determine how predicted changes in vehicle mass initiated 
to improve CAFE will impact motor vehicle fatalities.  Research into the effect of changes in 
mass on safety has typically been confined to fatality impacts, but logically, the same physics 
that increase or decrease fatality risk should impact injury and property damage risk in a 
directionally consistent manner.  For non-fatal crash impacts, we  assume that the rates of non-
fatal injuries and property damage to vehicles projected by our models will change in the same 
proportion to changes in vehicles’ mass disparities as do those vehicles’ fatality rates.  This 
produces estimates of changes in incidence for nonfatal injuries and PDO vehicles due to mass 
changes in the new vehicle fleet for each model year.  We apply our average monetary values 
(see Chapter 7.7) to the estimated numbers of additional non-fatal injuries and property damage 
to vehicles. 

7.7 Valuation of Safety Impacts 

Fatalities, nonfatal injuries, and property damage crashes are valued as a societal cost within the 
CAFE Model’s cost and benefit accounting.  Their value is based on the comprehensive value of 
a fatality, which includes lost quality of life and is quantified in the value of a statistical life 
(VSL) as well as economic consequences such as medical and emergency care, insurance 
administrative costs, legal costs, and other economic impacts not captured in the VSL alone.  
These values were derived from data in Blincoe et al. (2015), adjusted to 2018 economics, and 
updated to reflect the official DOT guidance on the value of a statistical life.882  Nonfatal injury 
costs, which differ according to severity, were weighted according to the relative incidence of 
injuries across the Abbreviated Injury Scale (AIS).  To determine this incidence, the agency 
applied a KABCO/MAIS translator to GES KABCO based injury counts from 2010 through 
2015.  This produced the MAIS based injury profile.  This profile was used to weight nonfatal 
injury unit costs derived from Blincoe et al, adjusted to 2018 economics and updated to reflect 
the official DOT guidance on the value of a statistical life.  Property-damaged vehicle costs were 
also taken from Blincoe et al and adjusted to 2018 economics.  VSL does not impact property 
damage.  This gives societal values of $10.8 million for each fatality, $132,000 for each nonfatal 
injury, and $7100 for each property damaged vehicle. 

7.8 Summary of Safety Impacts 

The previous discussion documents the methods used to determine the safety impacts of higher 
CAFE standards on vehicle occupants and their value to society. The resulting estimates are 
generated inside the CAFE Model and are detailed in Chapter 5 of the Preliminary Regulatory 
Impact Analysis (PRIA) accompanying this NPRM. 

 
882 https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-
of-a-statistical-life-in-economic-analysis . 

https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis
https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis
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