

# Field Study of Light Vehicle Advanced Driving Assistance System (ADAS)

Presenter: Jenny Zhang 04.05, 2019

## Outline

- Project Background & Objectives
- Methodology for Data Collection
- Definition of Automatic Emergency Braking (AEB) Events
- Overview of Results
- Q & A

# Project Background & Objectives

- Rapid proliferation of ADAS technologies
- Evaluate emerging ADAS technologies in real world driving
  - Focus on AEB system performance
- Performed by University of Michigan Transportation Research Institution (UMTRI)
  - In collaboration with General Motors (GM)

# **Methodology for Data Collection**



Data Acquisition System



- Utilized vehicle telematics
- Across 46 States
- Drivers opted in
  - Used own vehicles
  - No experimenter interaction
- Event data sent to OnStar Center
- GM provided de-identified AEB data to UMTRI for analysis
  - Vehicle safety performance
  - Drivers' adaption

### **Definition of AEB**

- Collision Imminent Braking (CIB)
  - Imminent front-end collision detected
  - **Driver has not applied brakes**
  - System automatically applies brakes
- Dynamic Braking Support (DBS)
  - Imminent front-end collision detected
  - **Driver brakes hard**
  - DBS provides boost to driver braking
- Both CIB & DBS
  - **CIB** initiated
  - **Driver intervened/override CIB**
  - DBS provides a boost to the driver
- AEB Either CIB or DBS or Both



# **Basic Statistics on AEB Events**

| Total Vehicles         | 1,021      |
|------------------------|------------|
| Total Trips            | 1,106,210  |
| Total Miles of Driving | 11,891,341 |
| # CIB Events           | 258        |
| # DBS Events           | 962        |
| # CIB with DBS Events  | 17         |
| Total All Events       | 1,237      |

# **Drivers' Setting Choices**

| Front Auto Braking |                            |  |
|--------------------|----------------------------|--|
| Setting            | Percent of Driving<br>Time |  |
| Off                | 1.7                        |  |
| Alert Only         | 1.9                        |  |
| Alert + Brake      | 96.4                       |  |

| Forward Collision Alert/Adaptive<br>Cruise Control |                            |  |
|----------------------------------------------------|----------------------------|--|
| Setting                                            | Percent of Driving<br>Time |  |
| Near                                               | 27.4                       |  |
| Medium                                             | 27.5                       |  |
| Far                                                | 45.1                       |  |

Majority of drivers employed AEB/default setting

About half of driving time 'Far' /default setting selected

Far Setting = maximum following distance

# AEB & DBS Events Distribution Vehicle Speed and Event Duration



# **Study Crash Statistics**

- 8 Automatic Collision Notification (ACN) events collected
  - 3 side impacts (no CIB/DBS)
  - 3 rear impacts (no CIB/DBS)
  - 2 frontal impacts (CIB/DBS unknown)

### Conclusion

- 1. Onboard data collection from production vehicles is a viable study approach
  - Can successfully produce large-scale data acquisition and analysis of ADAS system performance and driver behavior
- 2. Public-Private Partnerships are of high value for real-world vehicle safety studies

## **Contact Information**

### **Jenny Zhang**

Project Manager, Intelligent Vehicle Technologies Research Division, NHTSA <u>Jenny.Zhang@dot.gov</u>

### **Robert Kreeb**

Division Chief, Electronic Systems Safety Research Division, NHTSA Robert.Kreeb@dot.gov

#### **Rob Heilman**

Division Chief, Intelligent Vehicle Technologies Research Division, NHTSA Robert.Heilman@dot.gov