

Augustus "Chip" Chidester, National Highway Traffic Safety Administration John Hinch, National Highway Traffic Safety Administration Thomas C. Mercer, General Motors Corporation Keith S. Schultz, General Motors Corporation

May 5, 1999

National Transportation Safety Board Symposium On Recorders

1914 Car Crash in Scotland

Source: http://www.sol.co.uk/s/scott.wilson/Old_Traffic_DundAcc1914.jpg

The Opportunities Are Vast

- 18,000 Tow-away crashes per day
- Equivalent to about \$600 million worth of crash Tests per day (18,000 crashes * \$35,000 / test)
- Current total production of crash tests conducted for US vehicles is estimated around 5,000 / year

Background

- Need for real world crash data crash pulses
- Today methodology based on observation of post crash vehicle deformation
- Need for more detailed data to define crash conditions (pre-impact conditions, detailed deceleration data)
- Recommendations from NTSB & JPL

NTSB

- NTSB public forum on air bags and child passenger safety (March 1997)
- NHTSA (H-97-18)
 - "Develop and implement, in conjunction with the domestic and international manufacturers, a plan to gather better information on crash pulses and other crash parameters in actual crashes, utilizing current or augmented sensing and recording devices."

JPL

- 1997 recommendation for NHTSA to work on EDRs
- Study feasibility of installing and obtaining crash data for safety analyses from crash recorders on vehicles
- JPL findings
 - Crash recorders exist already on some vehicles with electronic air bag sensors, but data recorded are determined by the OEMs
 - These recorders could be basis for an evolving data-recording capability that could be expanded to serve other purposes

JPL (cont'd)

- Emergency rescues information could be combined with occupant smart keys to provide critical crash & personal data to paramedics
- Questions of data ownership and data protection would have to be resolved, however
 - Where data ownership concerns arise, consultation with experts in the aviation community regarding use of aircraft flight recorder data is recommended

Potential Uses of Event Data

Category	Potential Examples
Improve Vehicle Design/Highway Infrastructure	<u>vehicle systems</u> - airbag sensing system deployment criteria <u>highway systems</u> - roadside safety feature design standards
Provide a Basis for Regulatory & Consumer Information Initiatives	 offset frontal impact severity average/extreme vehicle decel pulses
Provide Objective Data for Crash Reconstruction	<u>alleged defects & litigation</u> - unintended vehicle acceleration - crash & airbag deployment sequence
Develop an Objective Driver Behavior Database	 pre-crash driver braking/steering belt use vehicle speed

The Haddon Matrix w/o EDR

	Human	Vehicle	Environment
Pre Crash		Skid Marks	
Crash		Calculated Delta-V	
Post Crash	Injury	Collision Damage	Environment after crash

The Haddon Matrix w/ EDR

	Human	Vehicle	Environment
Pre Crash	Belt Use Steering Brake	Speed ABS Other Controls	Conditions During Crash
Crash	Air Bag Data Pre Tensioners	Crash Pulse Delta-V Yaw A/B Activation Time	Location
Post Crash	ACN (Automatic Collision Notification)	ACN	ACN

GM EDR Systems

General Motors

GM Airbag Systems Data Stored

People Saving People http://www.nhtsa.dot.gov

	1990	1994	1999
Parameter	DERM	SDM	SDM
State of Warning Indicator when event occurred (ON/OFF)			
Length of time the warning lamp was illuminated			
Crash-sensing activation times or sensing criteria met			
Time from vehicle impact to deployment			
Diagnostic Trouble Codes present at the time of the event			
Ignition cycle count at event time			
Maximum Delta-V for near-deployment event			
Delta-V vs. time for frontal airbag deployment event			
Time from vehicle impact to time of maximum Delta-V			
State of driver's seat belt switch			
Time between near-deploy and deploy event (if within 5 seconds)			
Passenger's airbag enabled or disabled state			
Engine speed (5 sec before impact)			
Vehicle speed (5 sec before impact)			
Brake status (5 sec before impact)			
Throttle position (5 sec before impact)			

1999 EDR Simplified Block Diagram

Time (msec)

Pre-Impact Data 1999 EDR

Crash Time (sec)

Accuracy and Resolution

EDR Data

Parameter	Full Scale	Resolution	Accuracy	How Measured	When Updated
Delta V	<u>+</u> 55.9 mph	0.4 mph	~ <u>+</u> 10%	Integrated acceleration	recorded every .010s, calculated every .00125s
Vehicle speed	158.4 mph	0.6 mph	<u>+</u> 4 %	Magnetic pickup	vehicle speed changes by <u>></u> 0.1 mph
Engine Speed	16383 RPM	1/4 RPM	<u>+</u> 1 RPM	Magnetic pickup	RPM changes by <u>></u> 32 RPM.
Throttle Position	100% Wide open throttle	0.4 %	<u>+</u> 5%	Rotary potentiometer	Throttle position changes by <u>></u> 5%.

Validation

GM Tech 1 Retrieval Unit

Vetronix EDR Retrieval Tool

EDR Uses

SCIs Involving GMs' EDRs

🔪 D	river Belt	ed	Delta-V (mph)		(mph)
MY - Make - Model	Field	0p	SM	SHE	R Comments
1998 Chevrolet Malibu	Y	N	23	50	Final seat belt determination was "not belted. Severe under-ride.
1995 Saturn SL	N	N	13	16	Very minor damage
1996 Geo Metro	Y*	Y	19	20	*Physical evidence indicated shoulder portion of the belt under the driver's arm
1995 Saturn	N	N	NR	11	Driver stated belt used, no physical evidence
1996 Oldsmobile 98	Y	Y	NR	17	Under-ride - visual of 14-18 mph
1995 Chevrolet Lumina	N	N	12	24	Under-ride, 24 mph @ 150 msec
1995 Geo Metro	Y	Y	14	9	The report writer specified the SDM Delta-V data as more representative of this crash
1995 Geo Metro	N	Ν	NR	11	Undercarriage impact. Visual estimate of 9-14 mph
1998 Pont. Grand Prix	Y	Y	NR	2	Inadvertent deployment

NR = No Results

NHTSA SCI w/ EDR Involvement

<u>Delta-V</u>

- Struck a heavy, parked truck in a severe bumper under-ride impact.
- Such crashes typically generate long crash pulses.
- WINSMASH estimated a Delta-V of 23 mph.
- The investigator noted this Delta-V estimate appeared to be low.
- Data from the on-board recorder indicated a Delta-V of approximately 50 mph.

Belt Use

- Belt use status unsure Investigator.
- EDR was read.
- EDR indicate "Belt Used."
- EDR was correct.

Motor Vehicle Safety Research Advisory Committee

MVSRAC Working Group Formed

- On April 29, 1998, NHTSA staff presented a briefing to the MVSRAC committee
- Purpose was to recommend that a working group be formed
- MVSRAC members indicated:
 - It would be several years before such devices would be wide spread enough to give researchers information on crashes
 - Manufacturers were not far along in EDR technology
- Working group formed
- MVSRAC Crashworthiness Subcommittee would organize EDR working group

MVSRAC WG Representatives

- AAAM
- Blue Bird
- CA DMV
- Chrysler
- FHWA
- Ford
- Navistar
- GM
- NASDPTS

- Honda
- NHTSA
- NTSB
- Private
- Transport Canada
- TRB
- UVA
- VW
- Worcester

Objectives of MVSRAC W.G.

- Define functional and performance requirements for on-board crash data recorders
- Understand technology presently available to meet these requirements
- Develop a set of data definitions
- Discuss the various uses of the data

Objectives (cont'd)

- Discussions of legal and privacy issues
- Historical overview of other agency's actions related to data collection

Potential Outcomes of the MVSRAC WG

GM

- Technical Report (by end of 2000)
- Recommendations to Full MVSRAC for EDR actions
 - Establish National Data Base for EDR Data
 - Encourage all manufacturers to develop EDR technology

Conclusions

- Potential to Greatly Improve Highway Safety
- Well-Coordinated Efforts will be Needed to Achieve
 the Results Envisioned by the NTSB
- NHTSA's MVSRAC Event Data Recorder Working Group will Establish Guidelines for Future On-Board Data Recording Capability
- EDR Data is now being stored in NHTSA's National Crash Data Bases

The End

