Government / Industry Brake Research, Rulemaking and Technologies – CV102

NHTSA VRTC HV Forward Collision Avoidance and Mitigation Research

Frank S. Barickman National Highway Traffic Safety Administration

Overview

- Heavy Vehicle Rear-End Crash Problem
- Definitions of Rear-End Crash Avoidance Technologies
- LV NCAP Forward Collision Warning Test
- Heavy Vehicle Rear End Collision Avoidance
 Research at VRTC
- Conclusions

Heavy Truck Crashes

- Rear-end Crashes accounted for 19.9% of all police reported heavy truck crashes based on GES 2004.
- Heavy truck was the striking vehicle in 60% of these rear end crashes.

Rear-End Pre Crash Scenarios

▲ 13.3%: Lead vehicle moving at constant speed

Development of Crash Imminent Test Scenarios for Integrated Vehicle-Based Safety Systems DOT HS 810 757

Technologies Preventing Rear-End Crashes

ACC – Autonomous Cruise Control ICC – Intelligent Cruise Control ACB – Active Cruise with Braking

Comfort and Convenience with some safety benefits

FCW – Forward Collision Warning

Passive – Driver must take action.

CIB – Crash Imminent Braking CMB – Collision Mitigation Braking DBA – Dynamic Brake Assist ABA – Automatic Brake Application

Active – Various levels of autonomous braking

LV New Car Assessment Program

- MY 2011 New Vehicles
- NCAP Crash Avoidance Technologies
 - 1. Electronic Stability Control
 - Porward Collision Avoidance ← for each of these
 - 3. Lane Departure Warning
- <u>www.regulations.gov</u>
 - Docket No. NHTSA-2006-26555

Confirmation tests for each of these technologies

LV FCW Test Maneuvers

- SV speed, all tests: 72.4 km/h (45 mph)
- Stopped POV

- Decelerating POV
 - Initial POV speed: 72.4 km/h
 - Initial SV-to-POV Headway = 30m
 - POV deceleration: 0.3g

- Slower Moving POV
 - POV speed: 32.2 km/h (20 mph)

Programmable brake controller used to maximize accuracy, repeatability, and reproducibility of the Decelerating POV tests

Key FCW NCAP Evaluation Criteria

- Successful Test Requirements
 - 7 trials per condition are performed
 - TTC requirements must be satisfied for 5 of the 7 trials
 - TTC requirements must no be violated 2 consecutive trials
- Time To Collision (TTC)
 - Stopped POV: 2.1 sec
 - Decelerating POV: 2.4 sec
 - Slower Moving POV: 2.0 sec

HV Rear-End CA Research Objectives

- Quantify the state-of-the-industry for HV FCW and CIB from performance testing with a POV
 - Time To Collision (TTC)
 - Delta V @ impact
- Determine if the LV FCW confirmation test can be adapted for HV evaluation
- Identify issues and challenges unique to HV

Test Vehicles

- 2006 Freightliner Century Class 6X4
 - Retrofitted MW OnGuard System
- 2006 Volvo VNL64T630 6x4
 - Retrofitted Bendix Wingman ACB System
- 28 ft Great Dane Flatbed
 - 121 style control trailer

Test Matrix

		Freightliner		Volvo	
Scenario	Speed (MPH)	Bobtail	121 Style Loading	Bobtail	121 Style Loading
SV encounters a stopped POV	35	Х	X	X	X
	45	X	X	X	X
	55	X	X	X	X
SV encounters a decelerating POV	35	X	X	X	X
	45	X	X	X	X
	55	X	X	X	X
SV encounters a slower moving POV	35	X	X	X	X
	45	X	X	X	X
	55	X	X	X	X

Draft – Subject to change

Balloon Car – POV for CIB

Stopped POV: LV CIB Example

HV Example

HV Example#2

HV Example #3

Known Issues

- Current protocol designed for FCW not CIB
- Stopped Lead Vehicles
 - State-of-Industry not detecting stopped lead vehicles that were not previously tracked
- Confirm track tests and protocol not generating artificial data
 - Mass estimation
 - Accurate target response
 - RCS of target

Conclusions

- Rear-end collision avoidance technology is expected to improve automotive safety in both LV and HV
- FCW Potential to reduce 21% of heavy vehicle rear end crashes
 - VTTI: 2/2008 DOT HS 810 910
 - Battelle: 2006 Evaluation of the Volvo IVI FOT
- CIB Current research in support of understanding performance and determining safety benefits

frank.barickman@dot.gov

