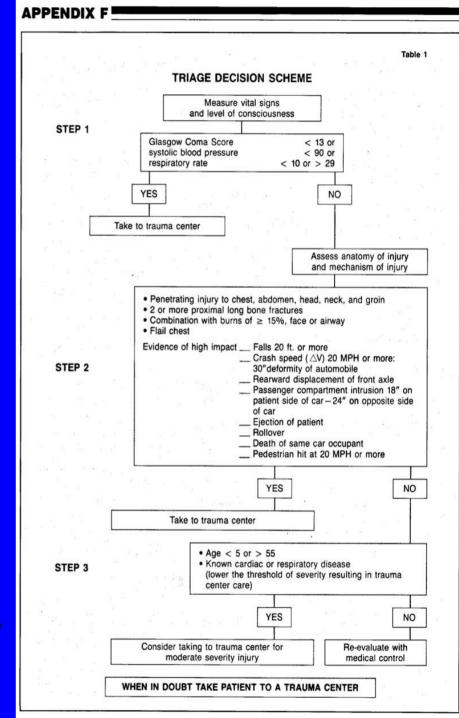
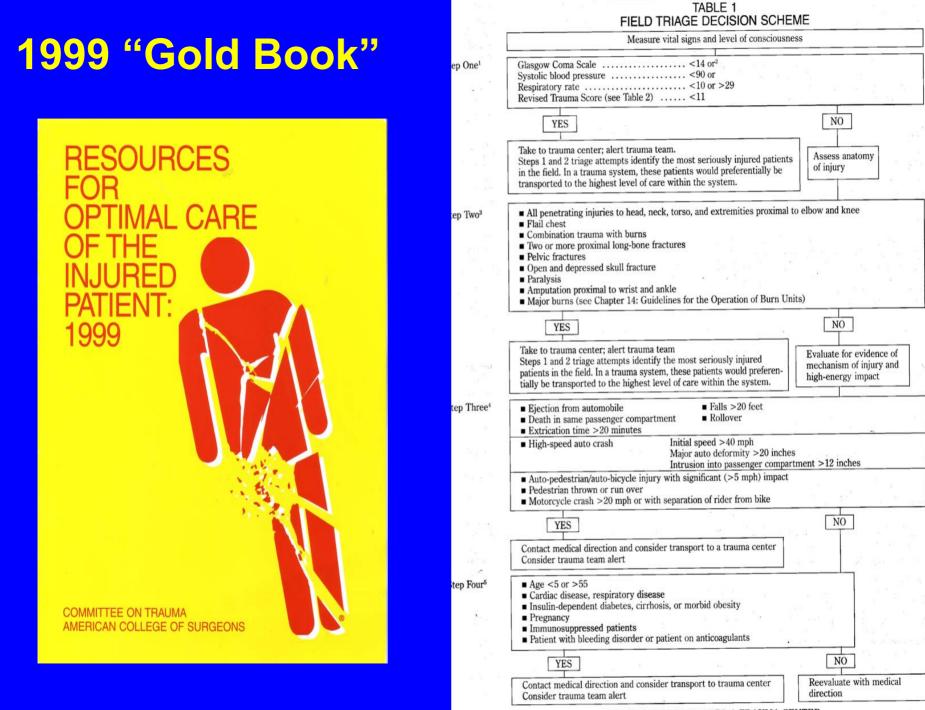
Upcoming Revisions to Field Triage Criteria

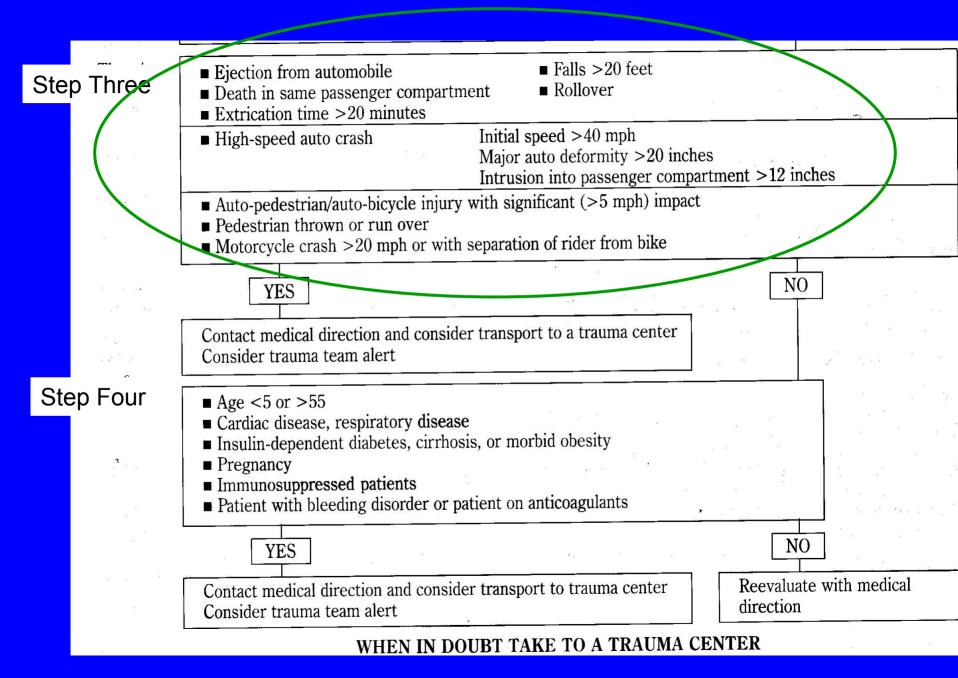

Stewart C. Wang, MD PhD Professor and Associate Chairman of Surgery Director, UMPIRE University of Michigan


CIREN Public Meeting, Milwaukee WI September 2006 **1987 Freestanding document:**

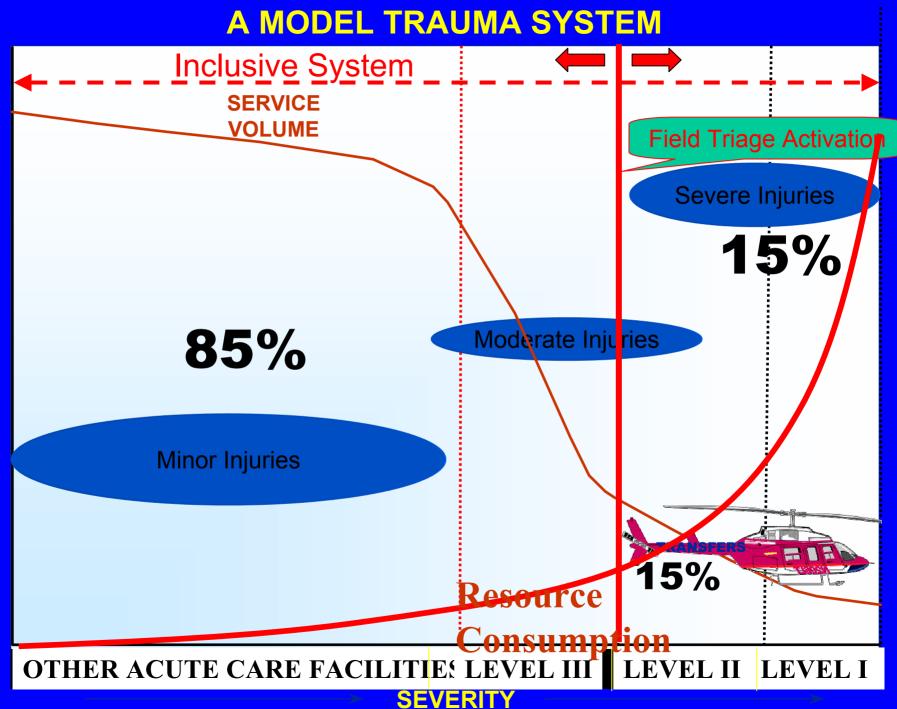
"Hospital and Prehospital Resources for Optimal Care of the Injured Patient"

- Initial algorithm for pre-hospital trauma triage
- Reproduced in PHTLS documents
- Used 3 triage domains:
 - physiologic
 - anatomic
 - mechanistic
 - special populations
- Revised 1990 Orange Book
- Revised 1993 Blue Book


<u>Adopted around the world</u>



WHEN IN DOUBT TAKE TO A TRAUMA CENTER


TABLE 1 FIELD TRIAGE DECISION SCHEME

Why is this guideline important?

- Adopted as operating policy by
 - EMS and health care systems
 - Local, regional, state and national governments worldwide
 - Insurance and other payors
- Directly impacts how crash occupants are treated
- Greatly affects the clinical load (business) at trauma and non-trauma centers

Trends towards non-inclusive systems

- Centralizing <u>all</u> trauma care
 - may worsen adverse selection
 - results in poor utilization of resources
 - may overwhelm existing centers
 - may delay treatment of major injuries
 - may lessen the 'system' capability to respond to MCI / disaster

Things change....

- Trauma systems have evolved
- Expansion of air medical coverage
- EMS training has expanded
- Existing field triage criteria have been field-tested
- Trauma patterns and mechanisms have shifted
- Technology has evolved (telemedicine, vehicles, etc)
- Laws and policies have changes (EMTALA, HIPPAA) as have health care economics.

Context

- Trauma and EMS systems were less developed when the ACS-COT field triage criteria were last revised.
- There are increasing demands on EMS and medical centers to improve coordination and optimally utilize available resources.
- Need to balance needs of highly populated urban centers possessing advanced trauma systems with those of rural communities with limited capabilities and resources.
- Changes to the field triage criteria affects policy and many parties (therefore many local, state and federal agencies).

- Gather representatives from involved governmental agencies, professional societies, practitioners and experts.
- Put them in a room and examine all their perspectives, issues and needs.
- May 2005 full panel
- November 2006 small working group
- April 2006 Finalization of revisions

Field Triage Revision Panel

• <u>CDC</u>

- Richard C. Hunt, MD, FACEP
 - Director, Division of Injury and Disability Outcomes and Programs (DIDOP)
- Ileana Arias, Ph.D.
 - Acting Director, National Center for Injury Prevention and Control (NCIPC)
- John Seggerson, Bob Bailey
- Health Resources and Services Administration (HRSA)
 - CDR Cheryl Anderson
 - Director, Trauma-EMS Program
- <u>National Highway Traffic Safety Administration (NHTSA)</u>
 - Drew E. Dawson,
 - Chief, EMS Division

Field Triage Revision Panel

William Ball

- Vice President, Public Policy
- OnStar
- Robert R. Bass, MD, FACEP
 - President NASEMSD
 - Executive Director, Maryland Institute for EMS Systems
- Robert L. Galli, MD
 - Chair of Emergency Medicine, Univ Mississippi
 - Executive Director of TelEmergency
- Jerris R. Hedges, MD, MS
 - Chair, Emergency Medicine
 - Orgeon Health & Science University
- Mark C. Henry, MD
 - Chair of Emergency Medicine, Stony Brook University
 - Former NY State Director of EMS
- Troy Hogue
 - Area Manager, Rual Metro
- Robert O'Connor, MD, MPH, FACEP
 - President NAMESP
 - Professor of Emergency Medicine, Thomas Jefferson Univ.
- E. Brooke Lerner, PhD
 - Assistant Professor of Emergency Medicine
- Drexdal Pratt
 - Chief, North Carolina Office of Emergency Medical Services
- Gail Cooper
 - Public Health Administrator (Retired)
 - Trauma Systems Consultation Committee
- Mark Johnson
 - Former state coordinator of EMS, Alaska
- Gregory J. Jurkovich, MD, FACS
 - Professor of Surgery, Harborview Medical Center
 - ACS-Committee on Trauma, Vice Chair

- Jorie Klein, RN
 - Trauma Coordinator, Parkland Hospital
- Robert C. MacKersie, MD, FACS
 - Professor of Surgery, UCSF
 - ACS-COT
- Jane Ball, RN, DrPH
 - Director, Emergency Medical Services for Children
 - National Resource Center
 - Children's National Medical Center
- Daniel G. Hankins, MD
 - Mayo Medical Transport, Emergency Medicine
- Alasdair Conn, MD
 - Massachusetts General Hospital Emergency Services
- Jeffrey P. Salomone, MD FACS
 - Trauma/Critical Care, Emory University, Grady Memorial
- Roslyne D.W. Schulman
 - Senior Associate Director for Policy Development
 - American Hospital Association
- Rick Murray
 - Manager, mergency Medical Services
 - American College of Emergency Physicians (ACEP)
- Stanley J. Kurek, DO, FACS
 - MUSC Dept. of Surgery
- Jon Krohmer, MD
 - Kent County EMS, Grand Rapids, MI
- Paul Taheri, MD
 - University of Michigan Trauma Center
- Stewart C. Wang, MD, PhD, FACS
 - Director, Program for Injury Research and Education
 - University of Michigan Health Systems

Evaluation of the ACS Criteria

- Norcross 1995 –patients transported by ground EMS directly to the trauma center
- EMS completed survey on ACS criteria
- Severe trauma defined as ISS>15

N=753	Sensitivity	PPV
Physiologic Criteria	65%	42%
Anatomic Criteria	45%	22%
Physiologic and Anatomic	83%	27%
Mechanism of injury	54%	16%
Physiologic, Anatomic, and Mechanism of injury	95%	18%

Positive Predictive Value (PPV)

• is the proportion of people with a positive test who have the condition.

Consensus target: 20% PPV for ISS 15

Evaluation of ACS criteria

- Wuerz 1996 all helicopter transports from scene to trauma center over 2 years
 - Gold standard ISS>15
 - Note: providers used ACS for triage

N=333	ACS scheme	Physiologic	Situational (anatomic and mx)	Age/co- morbidity
Sensitivity	97%	56%	87%	56%
Specificity	8%	86%	20%	45%
PPV	47%	76%	32%	23%
NPV	22%	30%	23%	10%

Evaluation of ACS criteria

- Esposito 1995 All patients who meet at least one of the criteria (identified prehospital or hospital) over a year statewide (n=2,260)
- 24% of patients who meet any one of the criteria had severe trauma
 - Resulting in 76% of patients being over triaged

<u>Criteria</u>	<u>ISS>15</u>
Prolonged prehospital time	39%
Ped struck <u>>20mph**</u>	35%
Physiologic	32%
Occupant death	23%
Anatomic	23%
Vehicle intrusion	23%
Deformity	25%
Ejection	24%
Provider gut feeling	15%
Fall >20ft	13%
Rollover	12%
Comorbid Factors	11%

Incremental Benefit of Individual American College of Surgeons Trauma Triage Criteria

Mark C. Henry, MD, Judd E. Hollander, MD, Jeanne M. Alicandro, MD, Guy Cassara, RN, RPA, AEMT, Susan O'Malley, BS, AEMT, Henry C. Thode Jr., PhD

ABSTRACT

Objective: To determine the incremental benefit of individual American College of Surgeons (ACS) trauma triage criteria for prediction of severe injuries after consideration of concurrent physiologic, anatomic, mechanism, or "other" criteria.

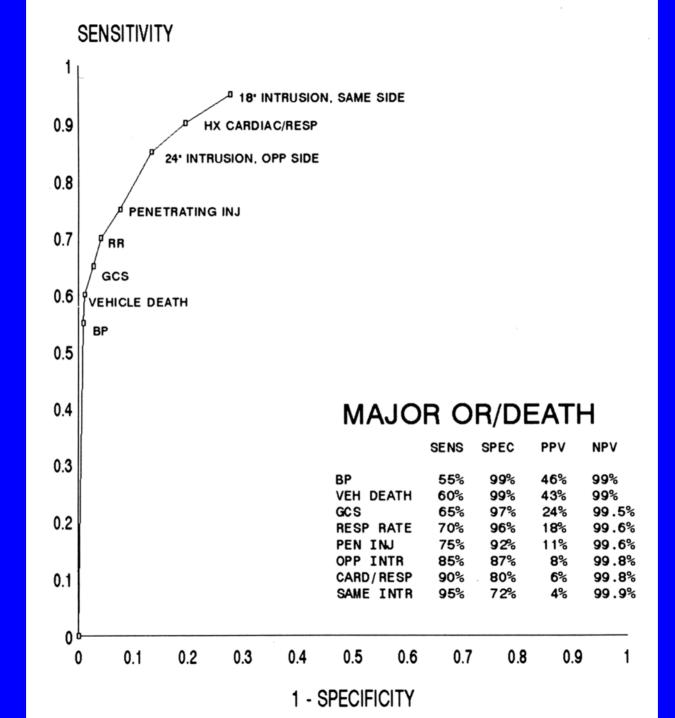
Methods: A prospective cross-sectional study of motor vehicle crash victims transported to any of the 12 hospitals in a suburban/rural county by local ambulance services was performed. Demographic and individual ACS criteria were collected using structured data instruments. EDs provided patient disposition within 24 hours of patient arrival. Medical records were reviewed. Major outcomes were admission, operative interventions (OR), major nonorthopedic operative interventions or death (Maj-OR), and injury severity score (ISS). To optimize sensitivity and specificity of out-of-hospital triage decision rules, receiver operating characteristic (ROC) curves were derived.

Results: Of 1,545 patients, 13% were admitted; 6% had OR; 1% had Maj-OR; and 3% had ISSs \geq 16. For all outcomes, the most useful criteria were physiologic and anatomic. Some additional criteria (crash speed >20 mph, \geq 30-inch vehicle deformity, axle displacement) substantially worsened specificity, with minimal or no improvement in sensitivity. For example, the optimal ROC curve for Maj-OR was determined by a systolic blood pressure <90 mm Hg, Glasgow Coma Scale (GCS) score <13, respiratory rate (RR) <10 or >29, death of a same-car occupant, penetrating injury, and/or \geq 24-inch opposite-side compartment intrusion (sensitivity, 85%; specificity, 87%). An ISS \geq 16 was predicted by GCS score <13, RR <10 or >29, penetrating injury, 2 proximal long bone fractures, flail chest, \geq 24-inch opposite-side compartment intrusion, patient ejection, rollover, and/or age <5 or >55 years (sensitivity, 86%; specificity, 70%).

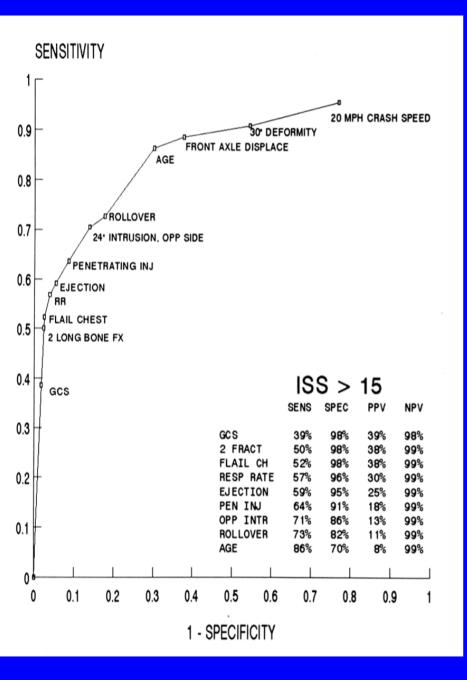
Conclusion: Physiologic and anatomic trauma triage criteria predicted increased hospital resource utilization and severe injury. On the other hand, when used concurrently with physiologic, anatomic, and "other" criteria, some mechanism criteria worsen specificity with negligible improvement in sensitivity. In particular, crash speed >20 mph and \geq 30-inch vehicle deformity had little predictive value for all outcomes.

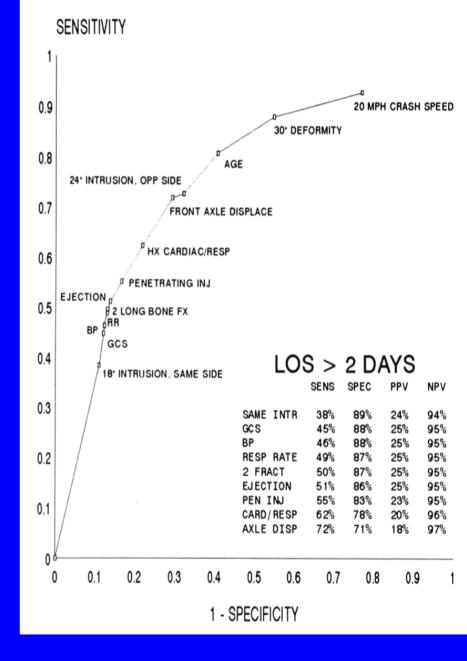
Key words: emergency medical services; trauma triage; outcome studies; resource use; trauma system; motor vehicle crashes.

Acad. Emerg. Med. 1996; 3:992-1000.


Major Non-orthopedic OR or Death

Unadjusted and Adjusted Odds Ratios for Major Nonorthopedic Operative Interventions (or Death) for the American College of Surgeons Trauma Triage Criteria


	Univariate Odds Ratio (95% CI)	Multivariate Odds Ratio (95% CI)		
Physiologic criteria				
Systolic blood pressure <90 mm Hg ($n = 24$)	142.2 (50.4-400.7)*	14.0 (2.3-84.0)*		
Glasgow Coma Scale (GCS) score <13 ($n = 45$)	67.8 (26.0-176.9)*	5.0 (0.9-29.7)		
Respiratory rate <10 or >29 breaths/min ($n = 36$)	35.6 (13.5-94.0)*	5.0 (0.8-29.9)		
Anatomic criteria				
Flail chest $(n = 7)$	33.8 (6.1-185.7)*	1.8 (0.1-31.4)		
≥ 2 proximal long bone fractures ($n = 17$)	19.0 (5.0-72.4)*	2.2 (0.1-40.6)		
Penetrating injury (nonextremity) $(n = 68)$	10.1 (3.8–27.2)*	3.1 (0.5–17.7)		
"Other" criteria				
Age <5 or >55 years $(n = 227)$	2.5 (1.0-6.6)	2.2 (0.5-9.6)		
Known cardiac or respiratory disease $(n = 115)$	2.2 (0.6–7.7)	2.6 (0.4–15.4)		
Mechanism criteria				
Crash speed >20 mph $(n = 1,017)$	10.0 (1.3-75.2)*	2.0 (0.2-18.6)		
\geq 30-inch vehicle deformity (<i>n</i> = 588)	6.7 (2.2–20.0)*	3.1 (0.7-14.1)		
Rearward displacement of front axle $(n = 207)$	3.6 (1.4–9.0)*	1.3 (0.3–6.4)		
Death of a same-vehicle occupant $(n = 7)$	67.1 (13.9-323.0)*	39.0 (2.7-569.6)*		
Ejection of patient from the vehicle $(n = 28)$	—	—		
Opposite-side intrusion >24 inches $(n = 113)$	4.4 (1.6-12.3)*	0.8 (0.1-4.8)		
Same-side vehicle intrusion >18 inches $(n = 208)$	6.7 (2.8–16.3)*	1.0 (0.2–4.7)		
Vehicle rollover $(n = 89)$	1.8 (0.4-8.0)	1.6 (0.1-18.9)		


*Significant predictor of injury severity score.

Henry 1996

Henry 1996

Henry 1996

Mechanism of Injury Criteria

• Knopp, R 1988

- Prospective 9 week study of all EMS calls in a single county and transfers from surrounding counties.
- Trauma defined ISS>15

N=1,473	Ν	PPV	Cumulative PPV
Spinal Injury	4	100%	100%
Amputation	2	100%	100%
Penetrating Injury	48	60%	65%
Burn	8	38%	61%
Extrication	10	40%	58%
Ejection	67	22%	40%
Fatality	14	21%	38%
Proximal long bone fx	41	20%	34%
Space intrusion	84	19%	29%
Auto vs ped	56	18%	27%
Fall > 15 ft	7	14%	27%
Age <1 or >65	144	12%	20%

First meeting

- A. Good field evidence, keep as criteria.
- **B.** Acceptable criteria, needs more research/evidence.
- C. Poor/confusing criteria. Delete as criteria.

Mechanism	Α	B	С
Ejection from auto	11	1	0
Death in same passenger compartment	3	6	1
Pedestrian thrown or run over	5	4	0
Initial speed >40 MPH*	0	8	2
Major auto deformity > 20 inches*	0	8	4
Intrusion into passenger compartment > 12 inches*	1	11	1
Extrication time > 20 minutes	3	6	2
Falls > 20 feet	7	3	0
Rollover*	7	6	0
Auto-pedestrian injury with > 5 mph impact	0	8	0
Motorcycle crash > 20 MPH or with separation of rider and bike	1	10	0

* unrestrained passenger

Panel Consensus

- Physiologic Criteria (Step 1): no changes needed
- Anatomic Criteria (Step 2): minor additions only
- Mechanisms Criteria (Step 3): major changes and data needed
- Age/Comorbidities (Step 4): much more information needed

Review more data...

Literature Review: Palanca, 2003

Emergency Medicine (2003) 15, 423-428

Emergency Medicine

ORIGINAL RESEARCH

Mechanisms of motor vehicle accidents that predict major injury

Sylvia Palanca,¹ David McD Taylor,¹ Michael Bailey² and Peter A Cameron¹ ¹Emergency Department, Royal Melbourne Hospital and ²Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia 621 MVAs analyzed. Australia

Major Injury: ISS>15, ICU admit, urgent OR, death

Table 2. Major injury and presence/absence of one or more mechanism of injury

	All patients	Major injury patients (%)
No. MOI	196	52 (26.5)
1 MOI	228	83 (36.4)
2 MOI	129	74 (57.4)
3 MOI	62	41 (66.1)
$4 \mathrm{MOI}$	6	3 (50.0)

MOI, mechanism of injury.

Literature Review: Palanca, 2003

Mechanism of injury	Mechanism of injury All patients† (%)		Uni-variate (P)	Multi-variate OR (95% CI, P)		
Ejection	24 (6)	14 (3)	0.0736	2.5 (1.1-6.0, P = 0.04)		
Fatality‡	11 (0)	7 (0)	0.1189			
High speed	320 (146)	155 (53)	< 0.0001	1.5(1.1-2.2, P = 0.003)		
Intrusion	156 (38)	85 (16)	< 0.0001	1.5(1.0-2.3, P = 0.047)		
Extrication	126 (14)	82 (7)	< 0.0001	2.9(1.9-4.5, P < 0.0001)		
Rollover‡	60 (22)	23 (3)	0.6897			

Table 3. Uni-variate and multivariate analyses for each mechanism of injury

†Number having solitary mechanism of injury in parentheses; ‡not included in multivariate regression equation; OR, odds ratio; CI, confidence intervals; P, P-value.

Author	Year	Country	Patient numbers†	Methodology	Outcome measures	Key results
Long et al. ¹⁰	1986	USA	287	retrospective	ISS > 15 death	Fatality in same vehicle and prolonged extrication time indications for trauma centre evaluation.
Henry et al. ¹⁶	1996	USA	1545	prospective	ISS > 15 urgent surgery, death	Fatality in same vehicle, predictive.
Esposito et al.20	1995	USA	1018	prospective	ISS > 15, death	Fatality in same vehicle, predictive.
Kreis et al.14	1988	USA	4999	prospective	urgent surgery, ICU admission, death in ED	High speed alone is not a useful predictor.
Knopp et al. ¹³	1988	USA	676	prospective	ISS > 15	No mechanism predictive
Simmons et al.23	1995	USA	not specified	prospective	ISS > 15, urgent surgery, ICU admission death	No mechanism predictive

Table 4. Summary of existing studies evaluating mechanisms of motor vehicle accidents that predict major injury

†Patient numbers are for motor vehicle accidents only.

Palanca, 2003

Literature Review: Kohn, 2004

ACAD EMERG MED • January 2004, Vol. 11, No. 1 • www.aemj.org

CLINICAL INVESTIGATIONS

Trauma Team Activation Criteria as Predictors of Patient Disposition from the Emergency Department

Michael A. Kohn, MD, MPP, Jean M. Hammel, MD, Stephen W. Bretz, MD, Ann Stangby, RN, CEM

Study Setting and Population. All adult trauma team activations at San Francisco General Hospital (SFGH) between June 8 and October 29, 1998, were included. SFGH is an urban, public, teaching hospital and the only Level 1 trauma center in the city and county of San Francisco.

Two-tier activation system San Francisco General

1

Literature Review: Kohn, 2004

ACAD EMERG MED • January 2004, Vol. 11, No. 1 • www.aemj.org

TABLE 5. Second-tier Activation Criteria Ranked by Fraction Admitted to the Intensive Care Unit or Operating Room

Second-tier Activation Criterion*	Trauma Team Activations	Percent of Second-tier Activations	Admitted to Intensive Care Unit or Operating Room	Percent Admitted to ICU or OR	95% Confidence Interval
Crush or degloving injury to extremity	2	0.3	1	50.0	1.3%, 98.7%
Motor vehicle crash with ejection	9	1.3	3	33.3	7.5%, 70.1%
Multisystem trauma	24	3.6	5	20.8	7.1%, 42.2%
Stab wound to torso, head, neck, or thigh	108	16.2	16	14.8	8.7%, 22.9%
Gunshot wound to extremity	20	3.0	2	10.0	1.2%, 31.7%
Falls \geq 20 feet	53	7.9	5	9.4	3.1%, 20.7%
Motorcycle crash with separation of rider	109	16.3	5	4.6	1.5%, 10.4%
Pedestrian hit by motor vehicle	254	38.0	10	3.9	1.9%, 7.1%
Motor vehicle crash with rollover	87	13.0	3	3.4	0.7%, 9.7%
Motor vehicle crash with death of occupant	2	0.3	0	0.0	0.0%, 84.2%
TOTAL	668	100.0	50	7.5	5.8%, 9.9%

*Thirty-two second-tier activations based on triage nurse's clinical judgment were excluded from the analysis.

Ranked best to worst. Authors recommended eliminating bottom 4 as criteria although they had few cases with death in vehicle. (No intrusion measure)

Literature Review: Santaniello, 2003

Mechanism of injury does not predict acuity or level of service need: Field triage criteria revisited

John M. Santaniello, MD, Thomas J. Esposito, MD, MPH, Fred A. Luchette, MD, Debbie K. Atkian, RN, MSN, Kimberly A. Davis, MD, and Richard L. Gamelli, MD, Maywood, Ill

Retrospective review of adult (>17) trauma patients admitted between July 1, 1999 and June 30, 2001

830 subjects.
300 (36%) met Physiologic criteria
115 (14%) met Anatomic criteria
414 (50%) met Mechanisms criteria

Literature Review: Santaniello, 2003

414 (50%) met Mechanisms criteria

40	to OR		
152	to ICU	Group I:	ISS<15
	to floor	Group II:	ISS 15+

Table I. Triage criteria, ISS grouping, mean ISS, and mortality for patients with ED disposition to OR or ICU

	ICU		0	OR		Mean ISS		Mortality*	
	Ι	П	Ι	П	Ι	П	Ι	П	
P (n = 157)	113	27	12	5	6	21	1%	7.3%	
A $(n = 62)$	21	10	31	0	6	24	0%	36.4%†	
M (n = 194)	126	27	33	8	4	22	0.2%	4.7%	

Table Ia. Combined P/A and M criteria results for ISS and mortality in patients with OR or ICU ED dispositions

	ICU		OR		Mea	m ISS	Mortali ty*	
	Ι	П	Ι	П	Ι	П	Ι	П
P/A (n = 219)	134	37	43	5	6	23	0.5%	22%†
M (n = 194)	126	27	33	8	4	22	0.2%	4.7%

ISS, Injury Severity Score; ED, emergency department, OR, operating room; ICU; intensive care unit; P, physiologic factors; A, anatomic factors; M, mechanistic factors.

*P < .05.

†1 death in ED.

Only 8% with positive Mechanisms criteria had ISS 15+, but nearly 50% required ICU or OR

Literature Review: Engum, 2000

Prehospital Triage in the Injured Pediatric Patient

By S.A. Engum, M.K. Mitchell, L.R. Scherer, G. Gomez, L. Jacobson, K. Solotkin, and J.L. Grosfeld. Indianapolis, Indiana

Table 2. Simplified Trauma Triage Criteria Distribution (1,285 Patients)

-

-

	No. (%)
Emergency medical technician/paramedic judge-	
ment	518 (40)
Pedestrian struck >20 mph	277 (22)
Glasgow Coma Scale score ≤12	131 (10)
Second or third degree burn involving >15% TBSA	82 (6)
Penetrating injury to head, neck, chest, abdomen,	
or groin	69 (5)
Blood pressure ≤90 mm Hg (systolic)	65 (5)
Rollover of vehicle	58 (5)
Fall from >20 feet	43 (3)
Ejection from vehicle	17 (1)
Respiratory rate <10/min or >29/min	11 (1)
Extrication of patient from vehicle	10 (1)
Paralysis	4 (1)

1285 pediatric patients (<15) Studied prospectively

Note absence of speed, crush and intrusion criteria

Literature Review: Engum, 2000

Criteria	No.	ER	ORMA	icu	ORMI	WARD	DC	ACC%
BP ≤90	65 (133)	28 (30)	7 (47)	21 (27)	1 (13)	7 (6)	1 (10)	86 (78)
GCS ≤12	131 (152)	1 (5)	13 (19)	88 (55)	2 (12)	18 (18)	9 (43)	78 (52)*
RR <10 >29	11 (4)	1 (0)	0 (2)	7 (0)	1 (90)	2 (1)	0 (1)	73 (50)
Penetrating	69 (332)	0 (5)	7 (65)	13 (34)	3 (12)	12 (100)	34 (116)	29 (31)
Burn >15%	82 (82)	1 (2)	6 (6)	58 (67)	0 (0)	14 (1)	3 (6)	79 (91)1
Paralysis	4 (14)	0 (0)	0 (0)	2 (7)	0 (0)	1 (3)	1 (4)	50 (50)
Ejection	17 (23)	0 (0)	0 (0)	4 (5)	1 (4)	6 (5)	6 (9)	24 (22)
Rollover	58 (55)	0 (0)	1 (4)	1 (6)	2 (2)	5 (6)	49 (37)	3 (18)
Extrication	10 (34)	0 (0)	0 (4)	0 (9)	1 (4)	6 (7)	3 (10)	0 (38)
Fall >20ft.	43 (34)	0 (0)	0 (0)	14 (9)	0 (3)	12 (7)	17 (15)	33 (26)
Ped >20mph	277 (99)	1 (1)	2 (2)	41 (7)	23 (28)	66 (9)	144 (52)	16 (10)
Paramedic judgment	518 (364)	0 (0)	4 (14)	58 (60)	28 (46)	182 (49)	246 (195)	12 (20)
Total	1285 (1326)	32 (43)	40 (143)	307 (286)	62 (124)	331 (212)	513 (498)	29 (37)

NOTE. Values are expressed as pediatric patients with adult patients in parentheses.

Abbreviations: ER, died in emergency room; ORMA, major operating room procedure; ICU, admit to intensive care unit; ORMI, minor OR procedure; WARD, admit to ward bed; DC, discharged from emergency room; ACC%, percent accuracy of criterion = (ER + ORMA + ICU)/N.

Accuracy for predicting ED death, ICU admit or OR.

Fall >20 ft Ped struck >20mph Extrication

Pediatric (<15) vs. Adult

 33% (26%)
 Ejection
 24% (22%)

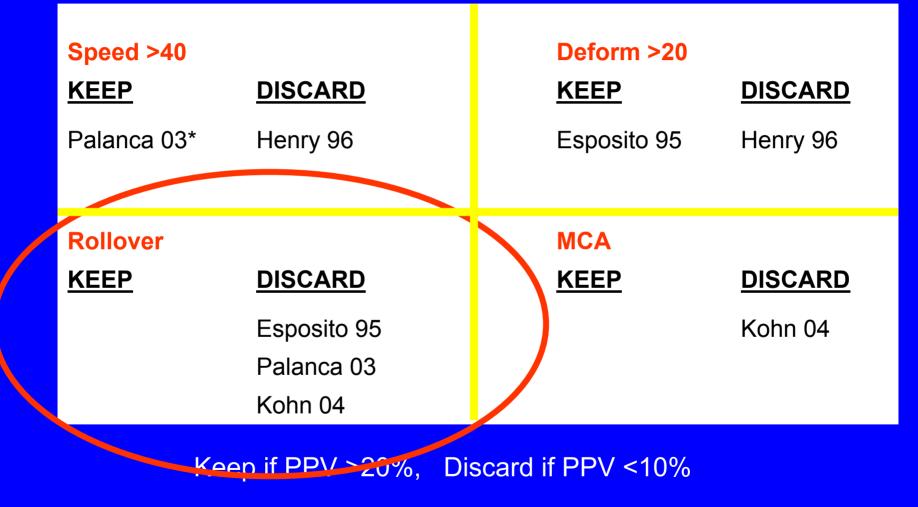
 16% (10%)
 Rollover
 3% (18%)

 0% (38%)
 0%
 0%

1285 peds patients vs. 1326 adult patients

Mechanism Criteria Summary

Ejection		Death			Pedestrian		
<u>KEEP</u>	DISCARD	<u>KEEP</u>	DISCARD		<u>KEEP</u>	DISCARD	
Esposito 95		Esposito 95			Esposito 95	Kohn 04	
Henry 96		Henry 96					
Knopp 88		Knopp 88					
Palanca 03		Long 86					
Kohn 04							
Engum 00					Engum 00 Peds*		


Keep if PPV >20%, Discard if PPV <10%

Mechanism Criteria Summary

Intru >12		Extric >20			Falls >20		
KEEP DISCARD		<u>KEEP</u>	DISCARD		<u>KEEP</u>	DISCARD	
Esposito 95		Knopp 88			Engum 00	Esposito 95	
Henry 96*		Palanca 03			Yagmur 04	Kohn 04	
Palanca 03		Long 86					
		Engum 00					

Keep if PPV >20%, Discard if PPV <10%

Mechanism Criteria Summary

Literature Review: Eigen, 2005

DOT HS 809 894

July 2005

Technical Report

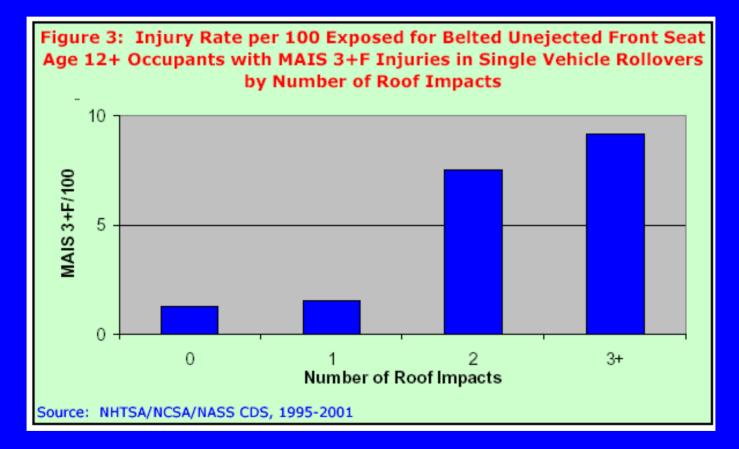

Rollover Crash Mechanisms and Injury Outcomes for Restrained Occupants

Table 3: Annualized Number of Occupants Sustaining Rollover Crashes, by Quarter Turns and Vehicle Body Type							
Number of		Sports					
Quarter Turn	Passenger			Pick up			
	Car	Vehicle	Van	Truck	Total		
1	8,318	5,340	2,336	6,900	22,894		
2	33,515	28,397	1,251	10,356	73,519		
3	3,445	2,877	1,322	1,379	9,023		
4	14,487	12,824	711	4,459	32,481		
5	362	526	64	1,090	2,042		
6	9,043	2,600	400	1,774	13,817		
7	20	918	8	236	1,182		
8	6,012	1,515	67	314	7,908		
9	76	56	26	297	455		
10	1,181	70	99	88	1,438		
11	0	0	0	10	10		
12	311	103	30	0	444		
13	0	0	0	0	0		
14	20	13	9	113	155		
15	0	0	0	0	0		
16	0	2	0	40	42		
>16	0	107	18	5	130		
End-over-End	550	57	74	44	725		
Total	, 20						
Source: NASS CDS, 1							
Note: Annualized seven	en-year freque	ncy.					

166,263 rollover occupants per year

Literature Review: Eigen, 2005

166,263 rollover occupants per year

Risk is very low for belted, unejected rollover occupants. (few have more than 1 roof impact)

Table 5 Percentage of Injured Occupants, by Injury Severity and Crash Attitude

Injury Severity	Crash Attitude		
(MAIS)	Planar	Rollover	
Minor	86 %	74 %	
Moderate	9 %	15 %	
Serious - Maximum	5 %	10 %	
All Known Injured	100 %	100 %	

Note: Slight differences may exist in percentage calculation owing to rounding. Source: NCSA, NHTSA, NASS-CDS, 1995-2001

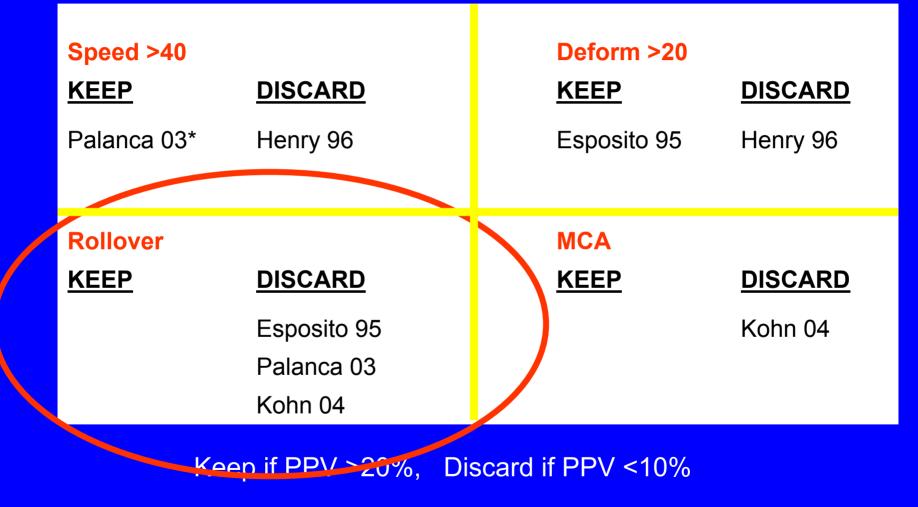
Eigen, 2003, DOT HS 809 692

Table 1: Risk of Injury for Two Intrusion Measures

	Maximum Vert	ical Intrusion	Maximum I	Roof Intrusion
Intrusion Amount	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury
>=1"	7.2%	3.1%	7.5%	3.4%
>3"	7.7%	3.6%	7.8%	3.8%
>6"	8.4%	4.2%	10.1%	5.2%
>12"	12.6%	6.6%	14.5%	8.3%
>18"	18.2%	11.4%	23.0%	14.8%
>24"	24.1%	19.3%	20.8%	16.1%

Table 3: Risk of Injury for Landing and Ejection Criteria

Criterion	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury
Land On Roof	5.9%	2.1%
Land On Side	6.2%	3.3%
Land Upright	5.9%	3.2%
Any Ejection	38.1%	21.5%
Complete Ejection Only	44.9%	27.4%


Table 5: Risk of Injury for Number of Quarter Turns

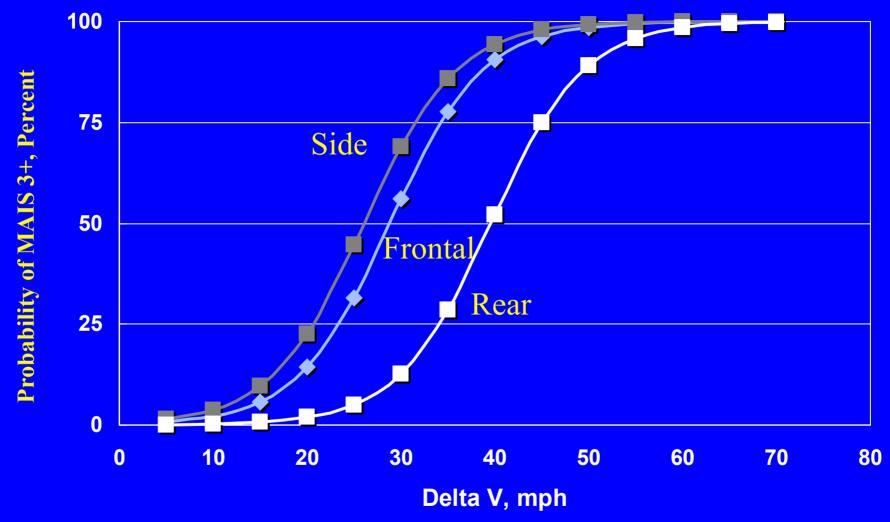
Criterion	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury
>=2	6.2%	2.8%
>=3	8.2%	3.7%
>=4	8.3%	3.6%
>=5	12.0%	4.8%
>=6	12.9%	5.1%
>=7	10.3%	6.1%
>=8	10.3%	6.1%
>=9	20.8%	13.9%

Table 7: Bottom Line for Various Criteria

	For every occupant correctly brought to a trauma center, there will be:				
Criterion	ISS 9+ False Alarms	ISS 9+ Misses	ISS 15+ False Alarms	ISS 15+ Misses	
Any Ejection	1.62	1.48	3.65	1.01	
Roof Intrusion >=12"	6.94	2.27	14.04	1.84	

Mechanism Criteria Summary

Mechanism Criterion


Initial Speed > 40 MPH

- Car 45 mph
 - Head on into tree
 - Head on into semi-trailer going 40 mph
 - Into back of car going 10 mph
 - Strikes side of another car
- How do you know what speed??

Response Center – Screen I

	-			
AVeridian Automated Collision Notil File <u>Vi</u> ew Agencies Incident <u>H</u> elp	Crash	Information		_ _ 8 ×
N 🖲 🔍 🖑 🎹 🖬	Data	Pre Camera	Post Camera Occupancy	
Crash Information Data Pre Camera Post Camera Occ		ne of Crash		-
Time of Crash				
Crash Date: 10/3/00 Crash Time: 9:58:28 AM		Crash Date:	10/3/00	BING
Elapsed Time: 0 days 01:33:01		Crash Time:	9:58:28 AM	
Impact Details:	-	Elapsed Time:	0 days 01:33:01	
Lat/Long: N 42 17' 29.00"/w		pact Details:-		
		puot blotuns.		-randa
• •		Lat/Long:	N 42 17' 29.00''/W 83 14' 19.93''	1 the
			Final Resting Position:	- North
Change in Velo			Upright	
Communications Vehicle				
Dispatcher Fax	*	+		
State Police-Detroit -	-	\sim		
Henry Ford Hospital	-	<u> </u>		
Manual Dial:	-		Change in Velocity = <mark>20 mph</mark>	
	-			
		\sim		

Frontal Crashes — Side Impacts — Rear Impacts

Mechanism Criteria Crash Severity

DISCARD Initial Speed >40 criterion

ADD ACN telemetry criterion

Mechanism Criterion

Major auto deformity > 20 inches

Mechanism Criteria Summary

Keep if PPV >20%, Discard if PPV <10%

Mechanism Criterion

Intrusion > 12 inches into passenger compartment

NASS Frontal Impact

 Table 2: Risk of Given Level of ISS as a Function of Intrusion

Intrusion Amount	Maximum Intrusion @ Seat ISS 9+	Maximum Intrusion @ Seat ISS 15+	Longitudinal Intrusion @ seat ISS 9+	Longitudinal Intrusion @ seat ISS 15+	Maximum Longitudinal Intrusion anywhere ISS 9+	Maximum Longitudinal Intrusion anywhere ISS 15+
No Intr.	1.56%	0.50%	1.66%	0.55%	1.31%	0.38%
1"+	3.80%	1.26%	4.45%	1.47%	3.00%	0.94%
3"+	8.96%	3.10%	11.40%	3.89%	6.75%	2.30%
6"+	19.66%	7.43%	26.21%	9.90%	14.47%	5.51%
12"+	37.85%	16.77%	49.51%	22.96%	28.35%	12.62%
18"+	60.24%	33.61%	73.03%	44.70%	48.06%	26.35%
24"+	79.03%	55.98%	88.20%	68.68%	68.39%	46.98%

NASS Side Impact

Table 1aRisk of Injury for Maximum Lateral Intrusion

	Occ on St	truck Side	Occ on U	nstruck Side
Intrusion Amount	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury
>=1"	9.6%	5.0%	5.2%	2.2%
>=3"	12.9%	6.7%	6.8%	2.9%
>=6"	21.0%	11.3%	8.2%	4.5%
>=12"	38.8%	23.3%	15.3%	8.0%
>=18"	45.2%	29.6%	19.8%	9.9%
>=24"	57.7%	34.1%	33.3%	22.0%

NASS Side Impact

Table 1bRisk of Injury for Maximum Lateral Intrusion at Occupant Seat Position

	Occ on St	truck Side	Occ on U	nstruck Side
Intrusion Amount	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury
>=1"	11.4%	6.1%	12.6%	8.6%
>=3"	15.8%	8.6%	16.8%	11.1%
>=6"	25.3%	14.3%	22.6%	13.9%
>=12"	45.5%	27.3%	54.0%	41.3%
>=18"	47.1%	30.9%	51.8%	34.5%
>=24"	59.7%	39.4%	94.8%	78.4%

Slight increase in sensitivity if intrusion measured at occupant position

NASS Side Impact

Table 1c

Risk of Injury for Maximum Intrusion (Any Direction) at Occupant Seat Position

	Occ on St	truck Side	nstruck Side	
Intrusion Amount	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury	Risk of ISS 9+ Injury	Risk of ISS 15+ Injury
>=1"	11.4%	6.1%	11.5%	6.3%
>=3"	15.7%	8.4%	14.9%	7.6%
>=6"	25.4%	14.3%	14.8%	8.1%
>=12"	46.3%	28.5%	19.4%	15.0%
>=18"	54.4%	35.5%	14.2%	11.0%
>=24"	59.5%	43.2%	22.7%	20.5%

Any intrusion as good as maximum lateral intrusion

Mechanism Criteria Vehicle Damage

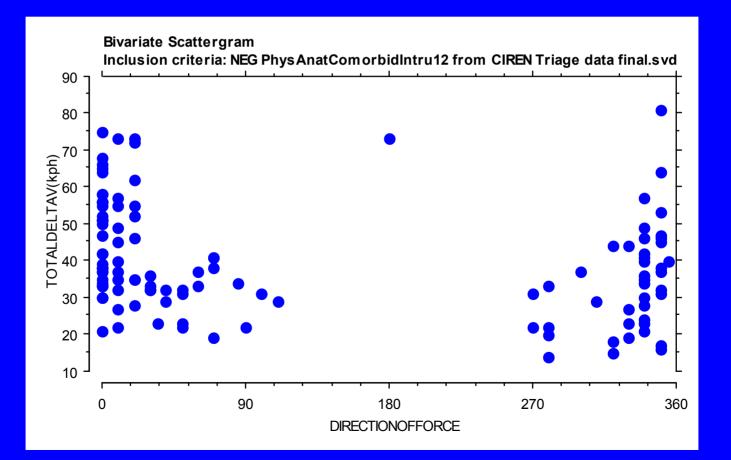
Deformation > 20 inches Intrusion >12 inches Prolonged extrication (redundant)

Intrusion > 12 inches at occupant location Intrusion >18 inches anywhere

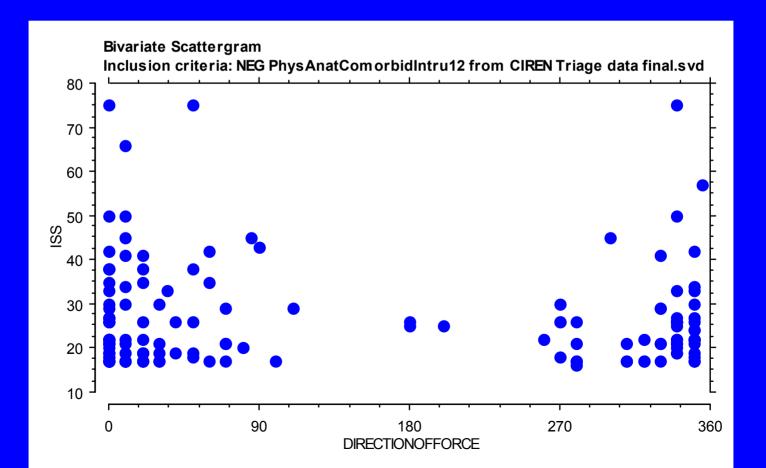
1162 subjects with ISS 15+ Nearly all planar MVC occupants evaluated at Trauma Center

(23%) 268 Picked up on Physiologic Criteria

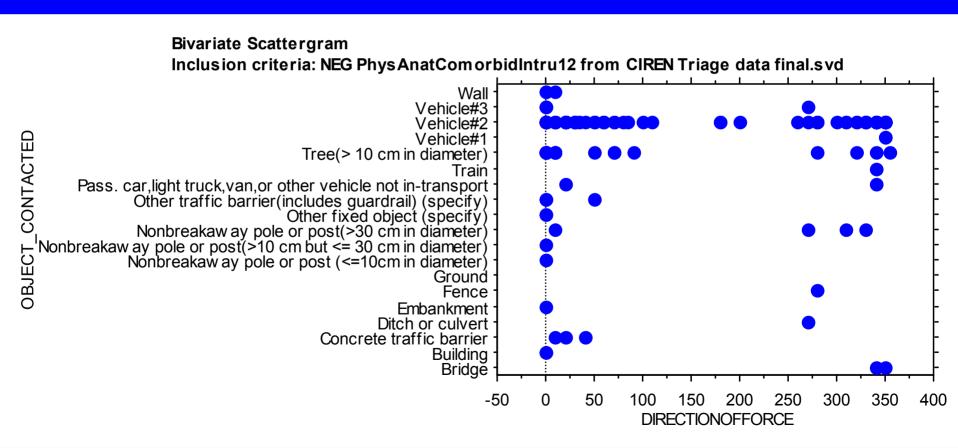
(80%)


(41%) 210 Picked up on Anatomic criteria

- (63%) 255 Picked up on Mechanisms criteria (Intrusion >12in)
 - 192 Picked up on Comorbidity criteria



Characteristics of CIREN subjects without ANY positive field triage criteria. Crash Severity vs. Principal Direction of Force.



Characteristics of CIREN subjects without ANY positive field triage criteria. ISS vs. Principal Direction of Force.

Characteristics of CIREN subjects without ANY positive field triage criteria. Object Struck vs. Principal Direction of Force.

CIREN

Characteristics of CIREN subjects without ANY positive field triage criteria. Object struck

Frequency Distribution for OBJECT_CONTACTED Inclusion criteria: NEG PhysAnatComorbidIntru12 from CIREN Triage data final.svd

	Count	
Bridge	2	
Building	2	
Concrete traffic barrier	3	
Ditch or culvert	1	
Embankment	1	
Fence	1	
Ground	1	
Nonbreakaw ay pole or post (<=10cm in	1	
Nonbreakaw ay pole or post(>10 cm but	1	
Nonbreakaw ay pole or post(>30 cm in di	4	
Other fixed object (specify)	2	
Other traffic barrier(includes guardrail) (3	
Pass. car,light truck,van,or other vehicle	2	
Train	1	
Tree(> 10 cm in diameter)	29	
Vehicle#1	2	
Vehicle#2	98	
Vehicle#3	4	
Wall	3	
Total	161	

Data Analysis

Analysis Procedure

A. CIREN Analysis

- 1. For each case, identify whether the occupant qualified for transport under physiological or anatomical criteria or not
- 2. Among CIREN cases, 27% did not pass (qualify for transport) physiological or anatomical criteria; all AIS 3+ injuries to these occupants were classified as Type 1 (i.e., possibly failing to present with notable symptoms)
- 3. Injuries sustained **only** by the 73% of occupants who did pass physiological or anatomical criteria were classified as Type 2 (i.e., always presenting with notable symptoms)

B. NASS Analysis

- 1. Identify "target" occupants:
 - a. Any occupant with type 1 injury from CIREN
 - b. Any occupant with AIS 3+ injury not found in CIREN list
- 2. Remove from analysis:

Any occupant with type 2 injury

3. All other occupants are "no-transport" occupants

4. Evaluate various crash criteria in terms of how well the criterion distinguishes between target & no-transport occupants in NASS

Results

27% of CIREN cases did not meet transport criteria under Step 1 or Step 2

There are approximately 41,000 Type 1 injuries in frontal crashes each year; 12,600 in near-side impacts; 7,200 in far-side impacts; and 15,600 in rollovers

CIREN Analysis

Top 10 Type 1 Injuries (May Not Meet Step 1 & 2 Criteria)

FRONTAL		
1. Femur fracture shaft	6. Tibia fracture shaft open/displaced/comminuted	
2. Cerebrum subarachnoid hemorrhage	7. Ulna fracture open/displaced/comminuted	
3. Radius fracture open/displaced/comminuted	8. Humerus fracture open/displaced/comminuted	
4. Lung contusion unilateral with or without hemo-/pneumothorax	9. Rib cage fracture >3 ribs on one side and <=3 ribs on other side, stable chest or NFS == with hemo-	
5. Lung contusion bilateral with or without hemo-/pneumothorax	10. Rib cage fracture 2-3 ribs any location with hemo-/pneumothorax	

CIREN Analysis

Top 10 Type 1 Injuries (May Not Meet Step 1 & 2 Criteria)

SIDE		
1. Cerebrum subarachnoid hemorrhage	6. Rib cage fracture 2-3 ribs any location with hemo-/pneumothorax	
2. Lung contusion unilateral with or without hemo-/pneumothorax	7. Rib cage fracture >3 ribs on one side and <=3 ribs on the other side, stable chest or NFS	
3. Lung contusion bilateral with or without hemo-/pneumothorax	8. Rib cage fracture >3 ribs on one side and <=3 ribs on other side, stable chest or NFS == with hemo-	
4. Cerebrum intraventricular hemorrhage/intracerebral hematoma in ventricular system	9. Cerebrum hematoma/hemorrhage subdural small	
5. Femur fracture shaft	10. Radius fracture open/displaced/comminuted	

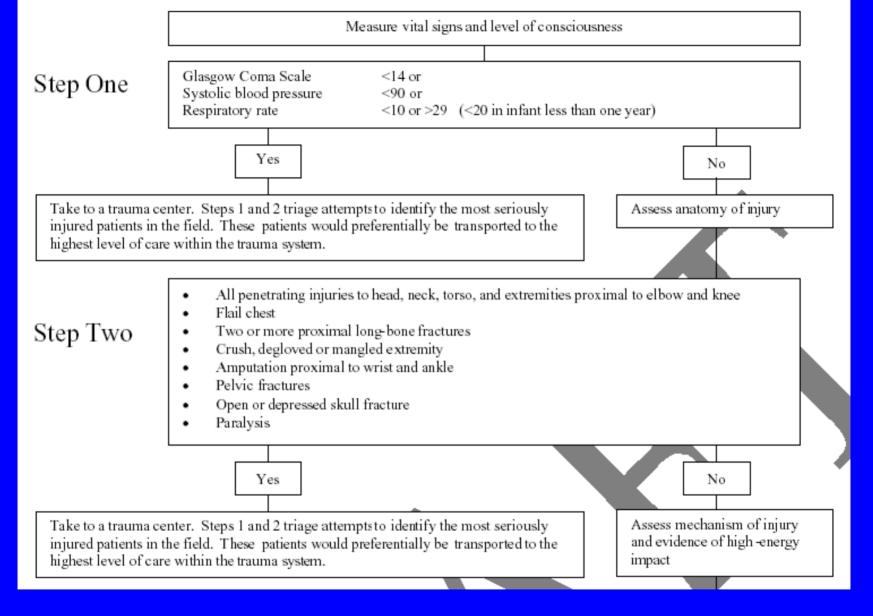
CIREN Analysis

Top 10 Type 1 Injuries (May Not Meet Step 1 & 2 Criteria)

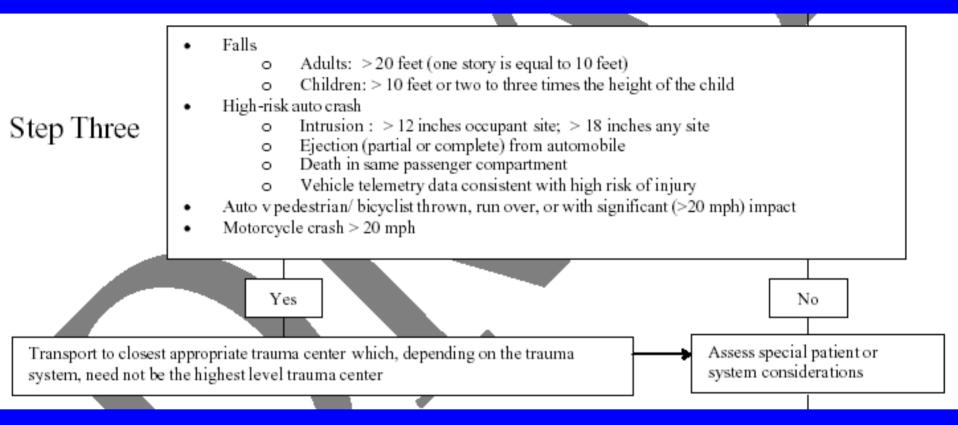
ROLLOVER

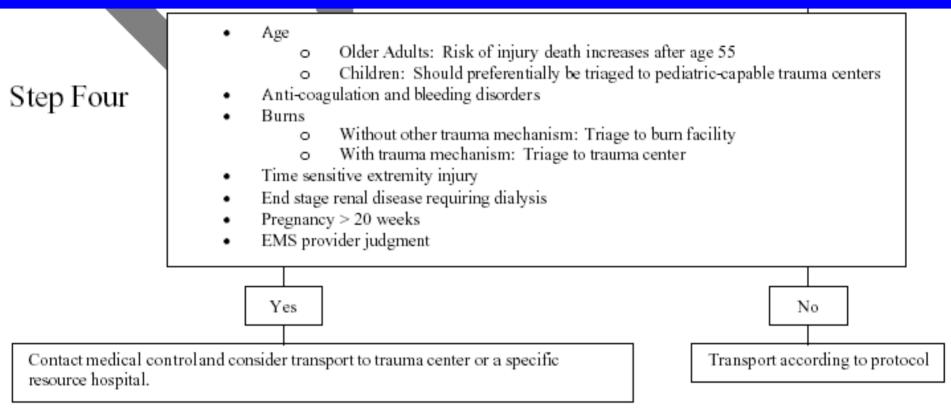
1. Cerebrum subarachnoid hemorrhage	6. Radius fracture open/displaced/comminuted
2. Lung contusion bilateral with or without hemo-/pneumothorax	7. Cerebrum intraventricular hemorrhage/intracerebral hematoma in ventricular system
3. Lung contusion unilateral with or without hemo-/pneumothorax	8. Rib cage fracture >3 ribs on one side and <=3 ribs on the other side, stable chest or NFS
4. Femur fracture shaft	9. Rib cage fracture 2-3 ribs any location with hemo-/pneumothorax
5. Cerebrum hematoma/hemorrhage subdural small	10. Humerus fracture open/displaced/comminuted

Additional Criteria Considered


- Restraint Use
- Crashes involving incompatible vehicles
- Improperly restrained children
- Different deformation levels
- Specific types of deformation (e.g. SW)
- Special crashes
 - Poles/narrow objects
 - Specific PDOF

Panel Goal


Keep one page and "Elegantly simple"



Step 1 & 2 criteria unchanged, directed action consistent with inclusive trauma system

Reorganization of mechanism criteria:

Initial speed, deformation and rollover criteria deleted. ACN telemetry added. Stronger instruction with consideration of inclusive trauma systems.

When in doubt, transport to a trauma center

Changes with New Guidelines

- Mechanism criteria updated
- Altered approach to co-morbidities
- De-emphasize medical control
- Increased emphasis on EMS judgment

Toolkit

- Local calibration of field triage to optimally fit available resources
- Educational materials for training

Progress

- Reviewed and accepted by
 - CDC, NHTSA, HRSA
 - American College of Surgeons
 - American College of Emergency Physicians
 - National Association of EMS Physicians
 - Guidelines and supporting documents are in press
 - Toolkit being developed

Implications

- Revision of field triage protocols around the world
- Greater coordination of EMS/Medical Centers
- Better utilization of resources and support of inclusive trauma systems (preparation for mass casualty incident & homeland security)
- Health care costs & medical compensation

New considerations

Need to assess intrusion

Need to assess for partial ejection

Detection of triage misses

Special Thanks

- Carol Flannagan UMTRI
- Drew Dawson, Mark Scarboro, Cathy McCullough, Priya Sarda - NHTSA
- Cheryl Anderson HRSA
- Jerry Jurkovich ACS-COT
- Rick Hunt, MD CDC

