

Data Acquisition & Field Test Data Analysis Dave LeBlanc

IVBSS 2008 Public Meeting April 10-11, 2008

Eagle Crest Resort & Conference Center Ypsilanti, MI

Topics

- Overview purpose of data collection
- Data archive overview
- Requirements on data
- Data acquisition
- Fleet monitoring

Data Acquisition System

Phase I

- Support Phase I development of IVBSS.
- Provide data during Phase I testing.

Phase II

- Provide data from extended pilot FOT and from FOT itself.
- Allow remote monitoring of test fleet (IVBSS performance & health, driving behavior)

Data Uses

- UMTRI
 - monitoring fleet
 - analysis of experimental data (performance, acceptance, safety)
 - debriefing test subjects
- Visteon/Eaton/Cognex – technology performance
- Volpe Center/USDOT -
 - quality assurance
 - analysis of experimental data
- Side benefit data archive for future research

IVBSS 2008 Public Meeting April 10 -11, 2008 Eagle Crest Resort & Conference Center, Ypsilanti, MI

Data Archive – "Raw" Objective Data

- Driver information
- Onboard data
 - Numerical (database)
 - Video
 - Audio
- Offboard data
 - Map & roadway feature databases
 - Weather data

IVBSS 2008 Public Meeting April 10 -11, 2008 Eagle Crest Resort & Conference Center, Ypsilanti, MI

Data Archive – Processed Objective Data

- Cleansed data smoothing/fusing, managing dropouts & outliers, bias removal, validating trips, etc.
- Driving context characterization using roadway data, weather data, time, etc.
- Characterization of events & scenarios of interest
- Building measures of system performance, potential safety impacts, facts possibly affecting driver acceptance
- Additional data may exceed size of original raw numerical data

- Pre-drive questionnaire
 - Driving style and behavior questionnaires completed prior to FOT participation
- Post-drive questionnaires
 - Completed after FOT participation: on-site and take home
- Driver debriefs
 - Review of a subset of warnings to rate for usefulness
- Focus groups

Data Archive – Subjective Data: Questionnaires

- Pre-drive questionnaires
 - Driver style questionnaire (DSQ)
 - Evaluates 6 factors of drivers' style: focus, calmness, social resistance, speed, deviance, and planning
 - Driver behavior questionnaire (DBQ)
 - Examines drivers' errors, lapses, and violations
 - Drivers' scores from DSQ and DBQ will be used in statistical models as predictors of IVBSS acceptance

Data Archive – Subjective Data: Questionnaires (continued)

- Post-drive questionnaires
 - Extensive evaluation of drivers' opinions of IVBSS
 - Will evaluate safety, ease of use, comfort and convenience, and willingness to purchase
 - Two questionnaires
 - On-site: highest priority questions
 - Take home: questions of lesser priority

- Complete and 'auditable' characterization of events & system performance
 - Highly robust & structured data set
 - Continuous 10 to100 Hz logging (depending on subsystem)
 - ~400 signals on light vehicle and ~300 signals on heavy truck
- Video collection to provide analysts with situational context for FOT data, especially IVBSS-related events.
 - What was happening inside and outside the vehicle?
 - What did the IVBSS system react to?
- Secure from data loss, privacy concerns

- Format when archived:
 - Numerical: enterprise-level relational database
 - Video: MPEG-4 compressed video with indexing for synching with numerical data
 - Compression & frame rates vary by video stream
 - Audio: Compressed 64 kbps with indexing
- Size estimates are preliminary
 - Numerical depends on radar 1-2 terrabyte (TB) order of magnitude
 - Video depends on compression levels 10 TB?

- Highly usable:
 - Analyst access to all data within seconds, including video
 - Analysis tools
- Sharing information between project team & independent evaluator

UMTRI integrated data collection and analysis

IVBSS 2008 Public Meeting April 10 -11, 2008

Eagle Crest Resort & Conference Center, Ypsilanti, MI

Data Acquisition System

- Two CPU system (CAN/radar + vision/audio)
- Automotive-grade hard disks
- CAN and J1939 buses primary data sources
- Second GPS for analysis (differential)
- 5 cameras with video capture & compression
- Up to 7 radars
- Vehicle motion sensors
- GPRS/Edge cellular modem
- DAS power management system

Video Scenes – Representative Images

IVBSS 2008 Public Meeting April 10 -11, 2008

Eagle Crest Resort & Conference Center, Ypsilanti, MI

Monitoring the fleet

Track:

- health of IVBSS & data system
- usage of vehicle
- driver experience with IVBSS (alert types & experience)
- Cellular modem:
- Trip characteristics, IVBSS actions, health information including histograms

IVBSS 2008 Public Meeting April 10 -11, 2008 Eagle Crest Resort & Conference Center, Ypsilanti, MI

Web-based interface for monitoring fleet

		- A D	ABC V				74 A			9 6 %	- 2										
r U		Arial	▲ 00	- 10	- B /			/ - E		 		•									
		HING		. 10				≝ i [e													_
yste	m Hea	lth																			
1			- P-10-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-						-												
drive	r trip	Shutdo	Malfunct	ioi DirtyRa D	lasTempMin	DasTempMa:	DasT	empAv	e Encl	osureTem	Enclosu	reTe En	closure	Batter	yVMin	Bat	teryVMax	Battery	V/ Targ	e TargetsN	Targets
8	7 68]	0 0	0	10	1	4.	4	-5		10			13		14	1	4 (J 13	
8	/ 6/	l	J	0 0	U 45	5	1		5	U AE	-	5	4	1	13.5		14	13	.9 l	J 12	
8	/ bb		1	0 0	-15	5		-2.	b 0	-15		10	e-1	-	13		14	42	4 L	J 11	
0	7 65		J	0 0	0	L	-		0	-5		-5	-5	-	13.5		14	13	.9 l 7 l	J J J 10	
0	7 64		1		C- 0	l r			0	-5 E		0	-5)	13.5		14	13	./ U	U 10	
0	(03 7 61	i l	2		U 0	10 10		E	5	-5 0	7	10	-2		13.5		14	1	14 U M (14 ב 12 ר	
8	7 61		י ר	0 0	n			0. 3	1	0		5	с Г	, 1	13.5		14	1	14 U	ט ב 10 ר	
8	7 60		1	0 0	-10	, F		-1	8	-10		5	-1		12.5		14	1	4 (1 15	
8	7 59		1	0 0	-10	-10		-1	n	-10	<u>.</u>	5	_0	4	14		14	1	4 (ט וס 1 12	
8	7 58		1	0 0	-20	-14		-17	8	-15	-	-10	-14	5	13.5		14	1	14 (1 15	
8	7 57			1 0	10	10		1	n	5		5	F		10.8		10.8	÷			
8	7 58	()	0 0	15	15		1	5	15		15	15	5	13.5		13.5	13	.5 (o c	
0	7 55	()	0 0	10	10		11.	5	5		15	10)	12.5		14	13	.5 (J 12	
8	7 54	. ()	0 0	-5	15	1	5.	8	-5		15	7	7	13		14	13	.8 (15	
																					•
trive	r trin	miloc	minutoc	StartTime	Critics	IOK NonCritic		Forgot	Throat	Vicion V	owDoto	DV/L	Accolu	Class	Fucion	000	ManDate Ma	nMotch	Padar	Sconol Ata	Dilano(
8	7 65	unies Q 1	14.0	01.20	16:06 10		3.0		100.0	08.3	100.0	Q1 0	100.0	100.0	100.0	100.0		53	100.0	000110 ALC	
8	7 67	21	8.0	01-23	14.10 10	0.0	96.0	100.0	100.0	97.1	100.0	91.0	100.0	100.0	100.0	100.0	66.8	100.0	100.0	97 2 100	0
8	7 66	18.7	37.0	01-29	12:21 1	0.0	94 N	100.0	100.0	99.6	100.0	91.0	100.0	100.0	100.0	93.0	67.3	100.0	100.0	99.6 100	0
8	7 65	0.0	0.0	01-28	21:33 10	0.0	0.0	100.0	100.0	0.0	100.0	90.0	100.0	100.0	100.0	100.0	70.4	100.0	100.0	0.0 100	0
8	7 64	0.7	3.0	01-28	20:51 10	0.0	94.0	100.0	100.0	94.1	100.0	91.0	100.0	100.0	100.0	100.0	69.3	100.0	100.0	94.5 100	.0
8	7 63	1.1	5.0	01-28	19:01 10	0.0	95.0	100.0	100.0	95.9	100.0	91.0	100.0	100.0	100.0	100.0	67.8	100.0	100.0	96.2 100	.0
8	7 62	3.8	11.0	01-28	13:51 10	0.0	97.0	100.0	100.0	97.1	100.0	91.0	100.0	100.0	100.0	100.0	67.5	100.0	100.0	97.2 100	.0
8	7 61	0.3	2.0	01-28	13:06 10	0.0	87.0	100.0	100.0	87.6	100.0	91.0	100.0	100.0	100.0	100.0	68.1	100.0	100.0	88.1 100	.0
8	7 60	3.8	27.0	01-28	11:43 10	0.0	99.0	100.0	100.0	99.3	100.0	91.0	100.0	100.0	100.0	100.0	67.9	100.0	100.0	99.4 100	.0
8	7 59	0.7	2.0	01-25	14:30 10	0.0	0.0	100.0	100.0	0.0	100.0	90.0	100.0	100.0	100.0	100.0	67.5	100.0	100.0	0.0 100	.0
8	7 58	0.5	2.0	01-25	11:28 10	0.0	78.0	100.0	100.0	78.1	100.0	90.0	100.0	100.0	100.0	100.0	69.5	100.0	100.0	78.4 100	.0
8	7 57	0.0	0.0	01-23	17:33	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	.0
8	7 56	0.0	0.0	01-23	16:47 10)0.0 1	00.0	100.0	100.0	100.0	100.0	90.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0 100	.0
8	7 55	1.1	12.0	01-23	16:35 10	0.0	97.0	100.0	100.0	97.6	100.0	91.0	100.0	100.0	100.0	100.0	67.8	100.0	100.0	97.7 100	.0
8	7 54	7.9	33.0	01-23	15:18 10	0.0	88.0	100.0	100.0	99.4	100.0	91.0	100.0	100.0	100.0	87.6	67.7	100.0	100.0	99.4 100	.0
																					•

IVBSS 2008 Public Meeting April 10 -11, 2008

Eagle Crest Resort & Conference Center, Ypsilanti, MI

Virtual Private Network

Summary

- Data archive several types of data
- Extensions from previous FOT analyses:
 - More advanced data collection
 - Power through joining diverse types of data: onboard, offboard, driver information.
 - Driving treated as more 'holistic' than previous studies – context considered in more detail