AGENCY SPONSORED MASS REDUCTION STUDIES FOR THE MIDTERM EVALUATION

Kevin Bolon Lixin Zhao

US EPA US DOT

LD GHG MYs 2017+ CO₂ and Fuel Economy Targets (Based on Footprint)

EPA (2017-2025): CO₂ (g/mile)

NHTSA (2017-2021): Fuel Economy (mpg)

Timing for Mid Term Evaluation (MTE)

Schedule	Milestone in the Midterm Evaluation Process		
June 2016	EPA, NHTSA and CARB jointly issue a Draft Technical Assessment Report (TAR) for public comment		
Between the Draft TAR and Final Determination	EPA issues for public comment a Proposed Determination on the appropriateness of the MYs 2022-2025 standards NHTSA (potentially jointly with EPA) issues a Notice of Proposed Rulemaking		
No later than April 2018	EPA issues a Final Determination on the appropriateness of the 2022-2025 standards		

The Draft Technical Assessment Report (TAR) is the <u>first step</u> in the process, to seek public comment that will inform decisions regarding standards for MYs 2022-2025 – it is a technical report, <u>not</u> a decision document.

What factors will we consider for the Midterm Evaluation?

- ✓ Powertrain improvements
- ✓ Light-weighting and impacts on vehicle safety
- ✓ Market penetration of fuel efficient technologies
- ✓ Consumer acceptance
- ✓ Payback periods for consumers
- ✓ Fuel prices
- ✓ Fleet mix
- ✓ Infrastructure
- ✓ Employment impacts
- ✓ Any others ...

Mass Reduction for MYs 2017+ CAFE and GHG Final Rule (2008/2010 Baseline)

- Cost and feasibility estimates were not based on any single study
- Wide range of sources considered, and aggregated into a cost curve

Agency Sponsored Holistic Vehicle Mass Reduction Studies

Since then, the agencies have sponsored several mass reduction projects for unibody designed passenger cars and CUVs and body-on-frame designed pickup trucks.

(EPA) <u>Midsize CUV</u>	(ARB) <u>Midsize CUV</u>	(EPA) Light Duty Pickup Truck
(2012):	(2012):	(2015):
Baseline: MY2010 Venza	Baseline: MY2010 Venza	Baseline: MY2011 Silverado
Unibody	Unibody	Body on Frame
Towing 1000-3500 lbs	Towing 1000-3500 lbs	Towing up to 12,000 lbs
2G Optimization; Secondary Mass		2G Optimization; Secondary Mass
HSS body structure with limited	Al intensive design	Al intensive and HSS frame
use of AI closure		

(NHTSA) <u>Midsize Passenger Car</u>	(NHTSA) Light Duty Pickup Truck
(2012):	(2016):
Baseline: MY2011 Honda Accord	Baseline: MY2014 Silverado
Unibody	Body on Frame
Towing 1000 lbs	Towing up to 12,000 lbs
3G Optimization	3G Optimization
AHSS body structure with AI Closure	AHSS frame with AI/AHSS cab structure
	and closure

EPA Sponsored Light Duty Pickup Truck Lightweighting Study - Overview

Scope of Study:

Base Truck: 2011 Silverado 1500, Crew Cab, 4x4 Methodology: Similar to EPA's Midsize CUV 2012

- Contractor: FEV w/Subcontractors EDAG, Munro, etc. Addition of Dynamic and Durability Analyses

- Dynamic: instrument vehicle and run on test track
- Bed and frame durability (CAE) under loaded conditions

Boundary Conditions

Maintain function and performance (including payload and towing capacities) (2011)

No degradation in safety from the baseline vehicle (2011)

Capable of being mass produced in the 2020-2025 timeframe (450,000/yr)

10% maximum increase in direct manufacturing costs

Report Status: Post Peer Review - Online April '15 – EPA Website

EPA Sponsored Light Duty Pickup Truck Lightweighting Study - CAE LOADCASES

N\

CAE was used for a variety of analyses, including:

-NVH (frame, box, cabin, body on frame)

- -Crash and Safety (FMVSS, IIHS)
- -Durability and Full Vehicle Dynamics

Discipline	System	Loadcase	Measures
/H	Frame	Static Bending	Global bending stiffness
	Frame	Static Torsion	Global torsion stiffness
	Cabin	Static Bending	Global bending stiffness
	Cabin	Static Torsion	Global torsion stiffness
	Cargo Box	Static Bending	Global bending stiffness
		Static Torsion	Global torsion stiffness
	Body On	Static Bending	Global bending stiffness
	Frame	Static Torsion	Global torsion stiffness
			Pulse
		FMVSS 208-35 mph flat	Crush
		frontal crash (US NCAP)	Time-to-zero velocity
			Dash intrusions
		IIHS—35 mph ODB frontal crash	Pulse
			Crush
			Time-to-zero velocity
			Dash intrusions
		FMVSS 214-38.5 mph MDB	B-Pillar velocity
		side impact (US SINCAP)	Side structure intrusions
ash / fety	Full		B-Pillar velocity
	Vehicle	IIHS-31.0 mph MDB side	B-Pillar intrusions
		impact	Survival space
			Exterior crush
			B-Pillar velocity
		FMVSS 214—20 mph 5 ^{er} %ile pole side impact	B-Pillar intrusions
			Structure intrusions
			Under structural zone deformation
		FMVSS 301—50 mph MDB	Door operability
		i sa mpasi	Fuel tank damage
		FMVSS 261a—Roof crush	Roof strength to weight ratio
		FMVSS 581—Bumper impact	Front end deformation

EPA Sponsored Light Duty Pickup Truck Lightweighting Study - Preliminary Cost Curve

Preliminary results (peer review revisions pending)

- Results are a range of possible mass reduction not a single point
- Multiple body and frame solutions included
- Some cost savings at low levels of mass reduction (from this base vehicle)

SAE INTERNATIONAL

Cost/Kilogram of Mass Reduction

EPA Sponsored Light Duty Pickup Truck Lightweighting Study - Non body and frame mass reduction examples with cost savings

NHTSA Sponsored Light Duty Pickup Truck Lightweighting Study - Purpose

- **Purpose:** Design a light-weighted light-duty pickup truck that can
 - At minimum, meet the following performance functions of original baseline vehicle:
 - Safety
 - NVH
 - Fuel Economy, Utility/Performance (towing, acceleration)
 - Manufacturability
 - Durability
 - Serviceability, etc.
 - Control both direct and in-direct cost to maintain affordability
 - Maintain retail price parity of +/- 10% of baseline vehicle
 - Use advanced design, material and manufacturing process for MYs 2020-2030
 - Recommendation for cost curve for both passenger car and light truck: Single curve? Multiple curves? How to generalize the mass reduction amount and cost to the overall fleet?
 - Mass reduction for other light-duty vehicles

NHTSA Sponsored Light Duty Pickup Truck Lightweighting Study - Project Phases

- The work under this contract will occur in two phases and divided into three major parts as follows:
 - Phase I Baseline Vehicle Tear-down and Finite Element Analysis Modeling
 - The Contractor shall pick a baseline vehicle that best represents the Contractor's expectation of the lightduty pickup truck fleet for MY 2021 and perform a teardown study to build the baselines for engineering analysis and cost analysis for the lightweighted design.

NHTSA Sponsored Light Duty Pickup Truck Lightweighting Study - Project Phases

- The work under this contract will occur in two phases and divided into three major parts as follows:
 - Phase II, Part 1 Design and Optimization of the Light-Weighted Pickup Truck and Cost Modeling
 - The Contractor shall use advanced design, material and manufacturing processes that will likely be available during model years 2020-2030 to develop a light-weighted pickup truck concept vehicle that is capable of high volume production.

NHTSA Sponsored Light Duty Pickup Truck Lightweighting Study - Project Phases

- The work under this contract will occur in two phases and divided into three major parts as follows:
 - Phase II, Part 2 Mass Reduction for Other Light-Duty Vehicles
 - Generalize the results from the midsize passenger car lightweighting project and pickup truck lightweighting project to other vehicle classes, such as small PC, large PC, CUV, and other size of pickup trucks.

NHTSA Sponsored Light Duty Pickup Truck Lightweighting Study - What's Special about NHTSA Pickup Truck Lightweighting Study?

- Baseline vehicle is also the latest design at the beginning of the project with extensive use of AHSS, 5 star safety rating and lowest mass compared with other MY 2014 light duty trucks.
- Tear down and investigate a total of 3 vehicles
 - Fully understand the impact on light-weighting from different body styles, powertrain combinations, driveline variations and towing/payload packages.
- Use 3G optimization
 - Redesign of structure to accommodate the usage of new materials, new manufacturing processes and joining processes.
 - Seek to identify maximum potential mass reduction for the vehicle structure (cab, box, closures and frame)
- Integrate all the most recent safety tests including IIHS small overlap test and have the test fully integrated into the light-weighted design.
- Investigate mass reduction for other vehicle classes

Estimated Vehicle Weight Impact of Safety Regulations – Final Rules

Final Rules by FMVSS No.	Passenger Cars Added Weight (kg)	Light Trucks Added Weight (kg)	
111 Rear Cameras	0.19	0.15	
214 Side Pole	5.64	5.25	
216 Roof Crush	5.28	5.28	
226 Ejection Mitigation	0.91	1.07	
Final Rules Subtotal	12.02	11.75	

Information from MY2017+ CAFE Final Regulatory Impact Analysis at http://www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/FRIA_2017-2025.pdf. (Starting from Page 110)

Estimated Vehicle Weight Impact of Safety Regulations – Potential Rules

Potential Rules	Passenger Cars Added Weight (kg)		Light Trucks Added Weight (kg)	
	min	max	min	max
Pedestrain Protection	?		?	
Forward Collision Warning				
(with Dynamic Brake	0.20	2.72	0.29	2.72
Support and Crash	0.29			
Imminent Braking)				
Lane Departure Warning	Included above		Included above	
Oblique/Offset Frontal	9.07	18.14	9.07	18.14
Part 563 EDR	0.04		0.04	
V2V	1.56		1.56	
Potential Rules Subtotal	10.96	20.87	10.96	22.47

Total	22.98	32.89	22.72	34.22
-------	-------	-------	-------	-------

Conclusions

- Over the past 5 years, the agencies (NHTSA, EPA and ARB) have invested millions of dollars into advancing our understandings of mass reduction cost, feasibility, and safety:
 - These studies covered both unibody and body-on-frame design, from passenger cars to crossover utility vehicles to pickup trucks;
- These studies helped the agencies better understand the engineering principles, material usages, design and manufacturing complexity and cost of mass reduction;
- These studies laid solid foundation for the inputs for rulemaking analyses for midterm review;
- These studies (CAE models and cost models) are in public domain and helpful to foster more studies in understanding mass reduction and its costs.

EXTRA SLIDES

SAE INTERNATIONAL

Paper # (if applicable)

19

EPA Sponsored Light Duty Pickup Truck Lightweighting Study - Project Methodology Overview (Source: FEV)

