

National Highway Traffic Safety Administration



DOT HS 810 704

January 2007

# Pilot Test of New Roadside Survey Methodology for Impaired Driving

This document is available to the public from the National Technical Information Service, Springfield, Virginia 22161

## Acknowledgements

The authors would like to acknowledge the extensive assistance we received from State and local officials in the conduct of this project. The data collection procedures we were developing and testing were not routine by any means and the willingness of State officials to help us identify cooperating local police agencies and the agencies' willingness to participate in the project were obviously essential to our success.

Many individuals provided the assistance described above, but in each jurisdiction certain persons were pivotal to the process. They include:

- Roberto Rodriguez, Director, Division of Highway Traffic Safety, New Jersey
- Steven Janosko, Supervising Assistant Prosecutor, County of Ocean, Vehicular Homicide Unit, New Jersey
- Sergeant John Mount, Jr., Sergeant, County of Ocean, Vehicular Homicide Unit, New Jersey
- Brian Wormer, Berkeley Township, New Jersey
- Diane Lapp and Louise Ciaburri, Finance Office, Manchester Township, New Jersey
- Kevin Gagan, Dover Township Police Department, New Jersey
- Tom Leach, Dover Township Police Department, New Jersey
- Louis Santora, Dover Township Police Department, New Jersey
- Frank Polozzo, South Toms River Police Department, New Jersey
- Robert Pruit, Acting Director, Department of Economic and Community Affairs, Governors Highway Safety Program, Alabama
- Tasha Washington, Assistant Director, West Alabama Community Traffic Safety, Alabama
- Maxie Thomas, Director, West Alabama Community Traffic Safety, Alabama
- David Jones, Sergeant, Bibb County Sheriff's Department, Alabama
- Michele Meadows, Office of Traffic Safety, California
- Lieutenant Mark Matsuda, Head of Traffic Division, Torrance Police Department, California
- Sergeant Steve Bock, Sergeant, Head of DUI Unit, Torrance Police Department, California
- Glenn Davis, Impaired Driving Enforcement Program Manager, Colorado Department of Transportation, Colorado
- Cherokee Blake, Traffic Division, Gilpin County Sheriff's Office, Colorado
- Sergeant Bob Enney, Sergeant, Gilpin County Sheriff's Office, Colorado
- Sergeant Dave Farley, Sergeant, Investigations/Patrol, City of Golden Police Department, Colorado
- Donald Nail, Governor's Highway Safety Program, North Carolina
- Sergeant Joe Clifton, Cary Police Department, North Caroline
- Fred Zwonechek, Administrator, Governor's Highway Safety Office, Nebraska
- Lieutenant Dave Baker, Omaha Police Department, Nebraska
- Sergeant Laurie Scott, Traffic Unit, Omaha Police Department, Nebraska

To all of the persons listed above, and to the many others who also helped, the authors express their sincere gratitude.

**Technical Report Documentation Page** 

| 1. Report No.<br>DOT HS <b>810 704</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. Government Accession N                     | No. 3. Re                   | cipient's Catalog No.       |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|-----------------------------|-----------|--|
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. Re                                         | port Date                   |                             |           |  |
| Pilot Test of New Roadside Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan                                           | uary 2007                   |                             |           |  |
| for Impaired Driving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,                                            | 6. Pe                       | rforming Organization Code  |           |  |
| <sup>7. Author(s)</sup><br>John H. Lacey, Tara Kelley-Baker, De<br>Brainard, and Christine Moore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | rforming Organization Repor | t No.                       |           |  |
| 9. Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 10. V                       | 10. Work Unit No. (TRAIS)   |           |  |
| Pacific Institute for Research and Eva<br>11710 Beltsville Drive, Calverton, MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | 11. C                       | ontract or Grant No.        |           |  |
| Phone: 301-755-2700 Fax: 301-755-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                             | NH22-02-D-95121             |           |  |
| 1 Hone: 501-755-2766 1 dx. 501-755-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                             | 11122-02-0-95121            |           |  |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 13. T                       | ype of Report and Period Co | vered     |  |
| DOT/National Highway Traffic Safe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ety Administration                            | Fin                         | al Report                   |           |  |
| Office of Research and Technology<br>400 Seventh Street SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | 14. S                       | ponsoring Agency Code       |           |  |
| Washington, DC 20590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                             |                             |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                             |                             |           |  |
| <ul> <li>15. Supplementary Notes</li> <li>Amy Berning served as the project Contracting Officer's Technical Representative.</li> <li>The National Institute of Alcohol Abuse and Alcoholism (NIAAA) provided funding and support for the alcohol use disorders portion of this project.</li> <li>16. Abstract</li> <li>This study developed and tested procedures to enhance roadside survey procedures to include collecting and analyzing oral fluid and blood samples from the nighttime weekend driving population. Roadside surveys involve collecting information from a random sample of drivers. In the past, they have been used to measure the extent of alcohol use in the nighttime driving population in order to establish regular measures of that activity, which is a measure of progress in reducing impaired driving. This study developed and tested techniques to extend the scope of that measurement to drugs other than alcohol. Breath and oral fluid samples were successfully collected from over 600 drivers at 6 locations across the United States. Blood samples were conducted on the oral fluid and blood samples. Procedures and results are described in this report. The findings indicate that this form of expanded roadside survey is practicable in the United States. The intent of this Pilot Test was to develop and test procedures that would be used in the next full-scale national roadside survey. It was not designed to yield a nationally-representative sample of the nighttime weekend driving population; thus the results are not representative of the United States as a whole.</li> </ul> |                                               |                             |                             |           |  |
| 17. Key Words     18. Distribution Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                             |                             |           |  |
| Alcohol and driving, drugs and driv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | This report is available through the National |                             |                             |           |  |
| survey, impaired driving Technical Information Service, Springfiel also on the NHTSA website at www.nhts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                             |                             |           |  |
| 19 Security Classif. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20. Security Classif. (of                     | this page)                  | 21 No. of Pages             | 22. Price |  |
| Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unclassified                                  |                             |                             |           |  |

## **Table of Contents**

| Acknowledgements                           | i  |
|--------------------------------------------|----|
| Technical Report Documentation Page        | ii |
| Background                                 | 6  |
| Methodology                                | 6  |
| Conclusion                                 | 7  |
| Introduction                               | 8  |
| Purpose                                    | 8  |
| Background                                 | 8  |
| Drug Testing Opportunities                 | 9  |
| Project Objectives                         | 10 |
| Survey Sampling Procedures                 | 10 |
| Selection of Primary Sampling Units (PSUs) |    |
| Selection of Counties                      | 12 |
| Selection of Police Jurisdictions          | 13 |
| Selection of Survey Locations              | 14 |
| Survey Administration                      | 15 |
| Procedures                                 | 15 |
| Overview                                   | 15 |
| General Survey Procedures                  |    |
| Driver Selection                           |    |
| Basic Survey Sequence                      |    |
| Field Data Recording                       |    |
| Breath Sample Collection Procedure         |    |
| Oral Fluid Collection Procedure            |    |
| Blood Collection Procedure                 |    |
| Oral Fluid and Blood Analyses              |    |
| Selection of Drugs                         |    |
| Oral Fluid                                 |    |
| Blood                                      |    |
| Drugs                                      |    |
| Ethanol (Oral Fluid and Blood)             |    |
| Results                                    |    |
| Data Collection and Management             |    |
| Pilot Study Subject Recruitment Patterns   |    |
| Sample Characteristics                     |    |
| Trends                                     |    |
| Pilot Study                                |    |
| Breath Test Alcohol Results                |    |
| Drug Results                               |    |
| Objective Measures of Drug Use             |    |
| Summary                                    |    |
| Antidepressants                            |    |
| Benzodiazepines                            |    |
| Carisoprodol                               |    |
| Marijuana                                  | 39 |

| Cocaine                        |  |
|--------------------------------|--|
| Other Stimulants               |  |
| Other Drugs                    |  |
| Ethanol                        |  |
| Alcohol Use Disorder Results   |  |
| Response Rates and Sample Size |  |
| Alcohol Use Disorder Estimates |  |
| Discussion and Recommendations |  |
| References                     |  |

### List of Tables

| Table 1. Trends From Prior National Roadside Surveys                                          | 8    |
|-----------------------------------------------------------------------------------------------|------|
| Table 2. National Roadside Survey Pilot Test Sites                                            |      |
| Table 3. NRS Pilot Test Sites                                                                 | . 14 |
| Table 4. Drugs of Interest for the National Roadside Survey Pilot Test                        | . 20 |
| Table 5. Concentrations (ng/mL) used for Analysis in Oral Fluid and Blood                     | . 22 |
| Table 6. Drugs Included in Confirmation Profile in Oral Fluid and Blood                       |      |
| Table 7. Response Rates by Site and Survey Element                                            | . 24 |
| Table 8. Time Required per Subject for Roadside Data Collection                               | . 25 |
| Table 9. List of Equipment used in the National Roadside Survey Pilot Test                    | . 25 |
| Table 10. Gender and Age Group - NRS Pilot Study                                              | . 27 |
| Table 11. Crosstabs of Observed Race/Ethnicity (Columns) Versus Self-Reported                 |      |
| Race/Ethnicity (Rows)                                                                         | . 28 |
| Table 12. Drivers Entering the Survey Sites                                                   | . 28 |
| Table 13. Comparison of High BAC Drivers in Relation to Time of Night and Weekend Night       | t    |
| and Overall for Samples in 1973, 1986, 1996, and 2005                                         | . 29 |
| Table 14. Comparison of High BAC Drivers in Relation to Demographic Characteristics           |      |
| Table 15. Breath Test Results                                                                 |      |
| Table 16. Breath Test Results: Distribution of BACs above .08                                 | . 31 |
| Table 17. Race/Ethnicity by BAC Categories                                                    | . 32 |
| Table 18. Race/Ethnicity by Previous BAC Categories                                           |      |
| Table 19. PAS Reading by BAC Categories – NRS Pilot Study                                     | . 33 |
| Table 20. Oral and Blood Specimen Results                                                     |      |
| Table 21. Oral and Blood Specimen Results by Racial/Ethnic Group                              | . 33 |
| Table 22. Have you taken any meds or drugs in the past year that you think may have affected  | Ŀ    |
| your driving? by Drug Test Positive (DRUGPOS)                                                 |      |
| Table 23. Have you taken any meds or drugs tonight that you think may affect your driving?    | by   |
| Drug Test Positive (DRUGPOS)                                                                  |      |
| Table 24. Tested Positive for Cocaine by Self-Report Used Cocaine                             | . 35 |
| Table 25. Tested Positive for Opiates by Self-Report Used Heroin, Morphine, or Codeine        |      |
| Table 26. Tested Positive for Amphetamines by Self-Report Used Amphetamines                   | . 36 |
| Table 27. Tested Positive for Amphetamines by Self-Report Used Amphetamines                   |      |
| Table 28. Tested Positive for Cannabinoids by Self-Report Used Marijuana                      |      |
| Table 29. Tested Positive for Benzodiazepines by Self-Report Used Benzodiazepines             | . 38 |
| Table 30. Specimens Positive for Drugs*                                                       |      |
| Table 31. Summary of Total Drug Positive Results by Matrix Tested                             | . 42 |
| Table 32. Overall Drug Results (Includes Specimens Positive for Multiple Drugs)               |      |
| Table 33. Drivers Testing Positive for Drugs other than Alcohol in either Oral Fluid or Blood |      |
| Table 34. Specimens Positive for Ethanol in at Least One Matrix                               | . 45 |

| Table 35. Specimens Positive for Ethanol in at Least One Matrix | . 47 |
|-----------------------------------------------------------------|------|
| Table 36. AUD 15-item Screener Response Rates                   | . 49 |
| Table 37. AUD Screener Prevalence Estimates. n= 516             | 49   |

### List of Figures

| Figure 1. BACs of Drivers in National Surveys                                 | 7  |
|-------------------------------------------------------------------------------|----|
| Figure 2. National Roadside Survey Pilot Test Primary Sampling Unit Locations | 13 |
| Figure 3. Site Supervisor's Sketches of Site Layouts                          | 16 |
| Figure 4. Portable Breath Alcohol Test (PBT) Device, Intoxilyzer S-400        | 17 |
| Figure 5. BACs of Drivers in National Surveys                                 | 30 |
| Figure 6. 2005 Pilot BACs with New Categories                                 | 31 |
| Figure 7. Pattern of BAC Test Results by Biological Matrix                    | 48 |
| Figure 8. Blood Alcohol Concentrations of Drivers in National Surveys         | 52 |

### **Appendices**

- A. National Roadside Survey Pilot Test Verbal Interview Consent
- B. National Roadside Survey Pilot Test Instrument
- C Passive Alcohol Sensor (PAS) Specifications
- D. National Roadside Survey Pilot Test Drug Questionnaire
- E. Alcohol Use Disorder (AUD) Survey Instrument
- F. National Roadside Survey Pilot Test Screenshots
- G. Portable Breath Alcohol Tester (PBT) Specifications
- H Quantisal Oral Fluid Specifications
- I. Oral Fluid and Blood Analytic Procedures

## **Executive Summary**

The Pacific Institute for Research and Evaluation (PIRE) worked with the National Highway Traffic Safety Administration (NHTSA) to develop and conduct a "Pilot Test of New Roadside Survey Methodology for Impaired Driving." This final report presents the results of the two phases of the project:

(1) The feasibility study, in which the procedure to collect survey data and biological samples at the roadside was developed and refined; and

(2) The pilot test, in which the developed procedure was tested in six States.

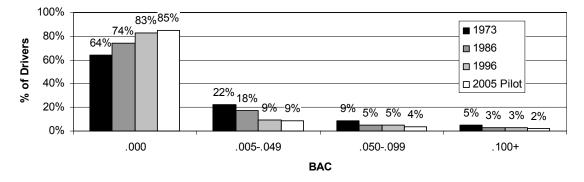
This study lays the groundwork for the next decennial national roadside survey of impaired driving, which will estimate the incidence of alcohol- and drug-positive drivers on U.S. roads.

### Background

Three prior national roadside surveys of drivers have been conducted. The first, sponsored by NHTSA, was in 1973 (Wolfe, 1974). The second, sponsored by the Insurance Institute for Highway Safety (IIHS), was in 1986 (Lund & Wolfe, 1991). The most recent, in 1996, was funded by NHTSA and IIHS (Voas et al., 1998). These surveys were taken of a national probability sample from the 48 contiguous States.

New to this pilot test was to develop and test the collection of additional types of biological samples which could be used to determine the extent of the presence of drugs other than alcohol in the nighttime driving population. These data are essential to developing more precise estimates of the crash risk associated with the presence of alcohol and other drugs in drivers and measuring the national progress in reducing the prevalence of alcohol- and drug-impaired driving. The full-scale roadside survey will be more extensive than any previous project, and will provide a much broader perspective on which drugs are detected in the nighttime driving population than previously known.

### Methodology


In the feasibility study, PIRE developed and tested a roadside survey protocol for (1) subject sampling, (2) sample collection and analysis, and (3) data presentation. We collected data (survey, breath, oral fluid, and blood) from approximately 50 drivers in Delaware. This provided preliminary indications of the potential ability to assess the incidence of alcohol- and other drug-positive drivers in the nighttime driving population, and provided data on alcohol use from breath samples, and alcohol and other drug use from oral fluid (saliva) samples. Additionally, we examined the feasibility of obtaining blood samples from drivers. We also developed and tested a screening instrument designed to detect alcohol use disorders (AUDs) among the nighttime driving population. This activity was funded through a grant from the National Institute of Alcohol Abuse and Alcoholism (NIAAA).

After the feasibility test and procedure development, PIRE conducted a pilot test to refine data collection procedures and test analytic procedures. In the pilot study, we collected data (breath, oral fluid, and blood) from approximately 100 drivers at each of six sites across the country (for a target total of at least 600 subjects providing oral fluid samples). These sites were selected from the primary sampling units of the National Analysis Sampling System (NASS) of NHTSA. Thus, the pilot test was 1/10 of the contemplated sample size of the next national roadside survey (6,000 subjects), which will be used to estimate the incidence of alcohol and drugged driving on our Nation's roadways. The intent of this Pilot Test was to develop and test

procedures that would be used in the next full-scale national roadside survey. It was not designed to yield a nationally-representative sample of the nighttime weekend driving population; thus the results are not representative of the United States as a whole.

### Conclusion

One use of the national roadside survey is to track trends in alcohol levels of the nighttime driving population. Though this study is a pilot test and the sample size is relatively small, it is of interest to examine the general results in relation to previous national roadside surveys. These are presented in the figure below (Figure 1) and are generally quite encouraging. The long-term trend has been for an ever increasing proportion of survey respondents to have zero blood alcohol concentration (BAC) readings and for fewer to have positive readings at each level of BAC reading. That seems to have held true in this pilot test, conducted nearly a decade after the most recent national roadside survey. However, because of the small sample size in the pilot study, one cannot say definitively that that is the true trend. Such conclusions are best left for the next full-scale national roadside survey.





The major focus of this study was to determine whether it is feasible and practical to collect oral fluid and blood from the nighttime driving population and analyze them for drugs. We determined that it is feasible to do so, with a lower response rate than that achieved for breath tests of alcohol. However, one should bear in mind that the overall response rates achieved (67% for oral fluid and 42% for blood) are in line with many telephone and mail surveys, which of course are based on self-report. Results of the analyses of the specimens obtained indicated that approximately 16 percent of these nighttime drivers tested positive for drugs other than alcohol. Additionally, the results of the chemical analyses indicated a much higher use rate than that obtained for the same subjects based on self-report. The most frequently encountered drug was marijuana and its metabolites, followed by cocaine and amphetamines. Another area examined was whether it was feasible and practical to administer a brief alcohol use disorder (AUD) self-report screening instrument at the roadside. Again we found that this was feasible and meaningful results could be obtained.

In summary, the results of this pilot test indicate that it is practical to expand the traditional roadside survey to include self-report based measures of AUD and biological measures of drug use. The objective biological measures, either through oral fluid or blood, are much to be desired over reliance on self-report of drug use.

## Introduction

### Purpose

This report summarizes the results of a feasibility study and pilot study conducted by the Pacific Institute for Research and Evaluation (PIRE) under the National Highway Traffic Safety Administration (NHTSA) Task Order "Pilot Test of New Roadside Survey Methodology for Impaired Driving" under Contract DTNH22-02-D-95121.

### Background

Three prior national roadside surveys of drivers have been conducted in the United States. The first, sponsored by NHTSA, was in 1973 (Wolfe, 1974). The second, sponsored by the Insurance Institute for Highway Safety (IIHS), was in 1986 (Lund & Wolfe, 1991). The most recent, in 1996, was funded by NHTSA and IIHS (Voas et al., 1998). These surveys were taken of a national probability sample from the 48 contiguous States.

Historically, a roadside survey in the context of this study has been a survey conducted during weekend nights where drivers are stopped at random, a brief interview is conducted and a breath sample is requested in order to determine the drivers' blood alcohol concentration (BAC). These surveys have been used to track progress in the Nation's effort to reduce alcohol-impaired driving.

In 1996, breath samples were requested from 6,298 drivers, of which 95.7 percent provided a valid breath sample. In 1986, 93.7 percent of 3,043 drivers provided a breath sample and in 1973, 86.3 percent of 3,698 drivers did so. In the 1996 survey, 17 percent of nighttime weekend drivers had a positive breath alcohol concentration (BAC), compared to 26 percent in 1986, and 36 percent in 1973. In 1996, there was a significant decrease in drivers with BACs of .05 or below compared to 1986, but little or no change in drivers with higher BACs. There was also a significant decrease in drivers under the age of 21 who had been drinking heavily (greater than .10 BAC) in 1996 compared to the previous surveys (4% in 1973 to .3% in 1996) (see Table 1).

|                              | 1973  | 1986  | 1996  |
|------------------------------|-------|-------|-------|
| Participants                 | 3,698 | 3,043 | 6,298 |
| Breath Samples               | 86.3% | 93.7% | 95.7% |
| Positive BAC                 | 36%   | 26%   | 17%   |
| <21 Yrs. BAC <u>&gt;</u> .10 | 4.1%  | 2.7%  | 0.3%  |

Table 1. Trends From Prior National Roadside Surveys

New to this pilot test was to develop and test the collection of additional types of biological samples which could be used to determine the extent of the presence of drugs other than alcohol in the nighttime driving population. These additional data are essential to estimating the national progress in reducing the prevalence of alcohol- and drug-impaired driving. Another aspect of this pilot study was to develop and pilot test a self-report screening instrument to determine alcohol use disorder (AUD) prevalence in the nighttime driving population. This activity was funded through a grant from the National Institute of Alcohol Abuse and Alcoholism (NIAAA). The full-scale roadside survey will be more extensive than any previous project, and will provide a much broader perspective on which drugs are detected in the nighttime driving population than previously known. This pilot study is intended to both

develop data collection and analysis techniques for biological samples other than breath and to test the viability of those techniques in the context of previous roadside survey sampling procedures.

### **Drug Testing Opportunities**

Typically, previous national roadside surveys used an off-duty police officer to randomly stop nighttime weekend drivers so that researchers could ask them a few questions about their driving and drinking, and then obtain a breath test as an objective measure of their BAC. However, since the first national roadside survey was conducted, the technology for collecting and analyzing oral fluid or saliva to detect drugs (including alcohol) has greatly improved. Oral fluid testing for recent use of alcohol and other drugs of interest appears to be a promising method for testing drivers for drugs other than alcohol in the upcoming full-scale national roadside survey.

In a recent study conducted by Cone et al. (2002), oral fluid testing of 77,218 subjects in private industry showed a 5 percent positive rate for any the five Substance Abuse and Mental Health Services Administration (SAMHSA) drug categories (marijuana, cocaine, opiates, phencyclidine, and amphetamines). The pattern and frequency of drug positives was remarkably similar to urine drug prevalence rates in the general workplace from other surveys (Cone et al., 2002). Further, in a study of 180 drivers given blood, urine, and oral fluid tests which were analyzed using quantitative Gas Chromatography/Mass Spectrometry (GC/MS), the positive predictive value of oral fluids was 98 percent for amphetamines, 92 percent for cocaine, and 90 percent for cannabinoids (Samyn et al., 2002).

However, in an analysis of blood, urine, saliva, and sweat from 198 injured drivers admitted to a hospital, saliva detected only 14 positives for cannabinoids, while 22 positives were detected in the urine. The amount of matrix (body fluid) collected in saliva appears to be smaller when compared to urine, and the levels of drugs are typically higher in urine than in saliva, according to the authors (Kintz et al., 2000). In a study of saliva and sweat, Samyn and van Haeren (2000) concluded that saliva should be considered a useful analytical matrix for the detection of drugs of abuse after "recent use" when analyzed using GC/MS. This finding is most desirable in the roadside testing of drivers.

Yacoubian et al. (2001), tested 114 adult arrestees using saliva and urine and concluded that saliva testing may have certain advantages over urine testing for drugs, including (1) ease of sample collection, (2) subject preference for giving saliva over urine, (3) less vulnerability of adulteration in saliva, (4) little concern for subjects producing an adequate sample with saliva, and (5) saliva storage is easier than urine. The authors found a sensitivity of 100 percent and a specificity<sup>1</sup> of 99 percent for cocaine in saliva and a sensitivity of 88 percent and specificity of 100 percent for heroin. However, saliva results only had a sensitivity of 5 percent for marijuana,

<sup>&</sup>lt;sup>1</sup> **Sensitivity:** Sensitivity is ability of a test to measure what it purports to measure or in this case the ability of the oral fluid tests to correctly identify active drug users. It is operationalized as a proportion represented by the true positives (i.e., those who are drug positive and actually test positive) divided by all persons who are drug positive [i.e., those who are positive and test positive (i.e., true positives) plus those who are positive and test negative (false negatives)]. The formula for sensitivity is Sn = TP / (TP + FN) where TP and FN are the number of true positive and false negative results, respectively. You can think of sensitivity as 1 minus the false negative rate. Notice that the denominator for sensitivity is the number of drug positive persons.

**Specificity:** Specificity is the ability of a test to correctly identify non-cases of disease or in this case the ability of the oral fluid tests to correctly identify non-drug users. It is operationalized as a proportion represented by the true negatives (i.e., those who are drug negative and test negative) divided by all persons who are drug negative [i.e., those who are negative and test negative (i.e., true negatives) plus those who are negative, but falsely test positive (false positives)]. The formula for specificity is Sp = TN / (TN + FP) where TN and FP and the number of true negative and false positive results, respectively. You can think of specificity as 1 minus the false positive rate. Notice that the denominator for specificity is the number of non drug users.

likely reflecting only detection of very recent smoking, in that marijuana does not migrate from the blood supply to the oral fluid. Thus, positives in oral fluid are an indication of residual marijuana remaining in the mouth after ingestion. This may well be a positive factor for the current study in that when marijuana is detected in saliva, it is more likely to be in its active phase in the body rather than simply evidence the marijuana has been consumed during a lookback period which may be as long as two weeks and may no longer have a potential impairing effect.

Hold et al. (1999) conducted a review of the literature of using saliva for drug testing; the review included 135 references and provided guidelines for techniques for collecting and measuring drugs in saliva. In an earlier review of drugs of abuse found in saliva, Schramm et al. (1992) concluded that initial studies with cocaine and phencyclidine suggested a correlation between saliva and blood concentration, but that tetrahydrocannabinol (THC) does not appear to be transferred from blood to saliva. Recent marijuana smoking, however, can be detected in saliva from the buccal cavity.<sup>2</sup>

With regard to saliva and BAC, Bates et al. (1993), found that saliva strips and breath tester results for alcohol correlated very highly (r=.89-.90) with each other. Blood sample analyses, however, still remain the "gold standard" in terms of measurement of alcohol and other drugs in the human body, because they are the form of analysis which has been most established.

### **Project Objectives**

This study was composed of two main components – a feasibility study and a pilot study.

In the feasibility study, PIRE developed and tested the protocol for (1) driver sampling, (2) sample collection and analysis, and (3) data presentation for a roadside survey incorporating collection of oral fluid and blood.

After the feasibility test and procedure development, PIRE conducted a pilot test to refine data collection procedures and test analytic procedures. In the pilot study, we collected data (breath, oral fluid, and blood) from approximately 100 drivers at each of six sites across the country (600 subjects). These sites were selected from the primary sampling units of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) of NHTSA. Thus, the pilot test was 1/10 of the contemplated sample size of the next national roadside survey (6,000 subjects), which will be used to estimate the incidence of alcohol and drugged driving on our Nation's roadways. On the following pages we describe the activities undertaken to conduct the pilot test, present the results of that endeavor and discuss issues that should be addressed in preparation for the full-scale national roadside survey.

## **Survey Sampling Procedures**

It is obviously impossible to conduct surveys on all the roads in America. It is, therefore, necessary to construct a sampling system that is representative of the United States but requires interviewing only a few thousand of the more than 196 million drivers using American roads (NHTSA, 1978; Lunn et al., 1979). All three prior national roadside surveys limited the area

<sup>&</sup>lt;sup>2</sup> The buccal cavity includes that part of the mouth bounded anteriorly and laterally by the lips and the cheeks, posteriorly and medially by the teeth and/or gums, and above and below by the reflections of the mucosa from the lips and cheeks to the gums.

covered to the 48 contiguous States. All three surveys were conducted between 10 p.m. and midnight and between 1 a.m. and 3 a.m. on both Friday and Saturday nights, when heavy drinking is most likely to occur and alcohol-involved crashes are most frequent (NHTSA, 2004). From a practical standpoint, these national surveys had to limit survey locations to roadways with sufficient traffic to provide enough interviews to justify the expense of employing a survey crew. Thus, counties with populations of less than 20,000 were not surveyed. In counties with larger populations, only roadways with 2,000 to 4,000 average daily traffic counts were included in the survey. Finally, commercial operators could not be asked to take time from their employment to be interviewed. In the past, motorcycles were excluded; in our pilot test, motorcycles would have been included, if any had presented themselves when vehicles were being selected to participate. This means that in the past three national roadside surveys, information was provided on private four-wheel vehicle operators at locations and during periods when drinking and driving is most prevalent. Therefore, these results were not typical of all drivers at all times or on all roadways in the United States.

The 1973 and 1996 national surveys made use of multi-staged samples developed to be representative of the 48 contiguous States in the year data were collected. The 1986 survey attempted to use the same locations used in 1973. In 1996, the initial sample structure was taken from the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS, 1995). The first stage of the 1973 and 1996 sample designs was the selection of primary sampling units (PSUs) made up of cities, large counties, or groups of counties from within four regions of the United States and three levels of population density. The second step was to select from a list of the police jurisdictions (PJs) within each of the selected PSUs that would be invited to participate in the survey. The third step was to select survey sites within the geographical area of the selected PJs by placing a grid over a map of the area and randomly selecting 1-square-mile cells within which the survey sites would be located. Finally, drivers to be interviewed were selected at random from the traffic passing through the survey site.

These sampling procedures were followed to ensure that the probability of selecting a PSU and a PJ survey location and driver was known at each of these stages in the sample design. Knowing these probabilities allowed the computation of the probability that each individual driver would be interviewed in the survey. This was done by multiplying the sampling probabilities at each of the four stages to obtain the final overall probability of being sampled. The weight given to each case in the final totals (sampling weight) was then computed as the inverse of the sampling probability- that is, data from drivers who were unlikely to be interviewed based on the sampling procedure used were given more weight than data from drivers who were more likely to be interviewed. This ensured that the basic requirement of the sampling theory – that is, every driver has an equal chance of being interviewed – was met by adjusting for the biases inherent in the selection of locations within the sampling frame. A more detailed description of the sampling procedure is provided in Lestina, Greene, Wells, and Voas (1999).

The major barrier to carrying out this staged sampling scheme was obtaining police department support for the survey. In some localities, city attorneys or the police leadership believed that legal limitations to stopping vehicles or potential liability prevented their participation in the surveys. In other cases, the police departments reported that they lacked the personnel resources to support the effort. This resulted in the requirement to make substitutions in all three national surveys and in this pilot test for initially selected PSUs and PJs where enforcement assistance was not available. Substitutions were required for 5 PSUs in the 1973 survey, 9 PSUs in the 1986 survey, and 5 PSUs in the 1996 survey. The effect of these departures

from the original structure of the sample was minimized by ensuring that the substitute was selected from the same geographical and population stratum.

### Selection of Primary Sampling Units (PSUs)

The primary sampling units (PSUs) in the National Automotive Sampling System (NASS/CDS, 1995) consist of two parts: (1) the General Estimates System (GES) (NHTSA, 1991) collects data on an annual sample of approximately 54,000 police-reported motor vehicle traffic crashes occurring in 60 PSUs across the United States; and (2) the Crashworthiness Data System (CDS) collects detailed information on an annual sample of approximately 5,000 traffic crashes involving at least one vehicle that is towed from the crash scene in 24 PSUs across the nation.

The pilot test sampling began with the 24 PSUs employed by the CDS (NASS/CDS, 1995). The CDS sampling frame was used in the 2005 pilot test for two reasons: (1) use of the CDS offered the possibility of weighting the sample by crash frequency rather than population which has the advantage of producing a smaller sampling variance (NASS/CDS, 1995) and (2) use of the CDS list of police jurisdictions potentially provided easier access to police departments because they were already cooperating with NHTSA. The multi-stage sampling system used in the three prior national roadside surveys will produce a valid comparable estimate of the national level of drinking and driving for the next national roadside survey as long as the sampling plan is carefully implemented. In this pilot study, we adhered, to a large extent, to that sampling procedure in order to test our ability to obtain cooperation for the more complex survey (involving collecting oral fluid and blood samples in addition to breath samples) from both police agencies and the driving public.

### **Selection of Counties**

In the first two stages of the sample, counties and police departments were selected using a probability proportional to size (PPS) scheme, where the number of fatal and serious injury crashes served as the measure of size. The survey used the NASS/CDS (1995) sample for parts of the first two stages. Initially, the 24 PSUs that were selected from the CDS came from a frame of 1,195 PSUs, which then formed the set of selected PSUs for the national survey.

We stratified the 24 CDS PSUs by east and west of the Mississippi to insure that we would have geographic dispersion within our six sites. We then conducted a simple random sample to identify three PSUs in each of the two regions. A backup sample of three PSUs in each of the regions was also taken so that we would have replacement PSUs should we be unable to obtain cooperation in any of those initially sampled. We were able to obtain cooperation in five of the six sites initially selected. State-level administrators for the other site were reluctant to endorse the survey activity so a replacement site was recruited from the same region of the country. The six PSUs used in this pilot test are shown in Figure 2.

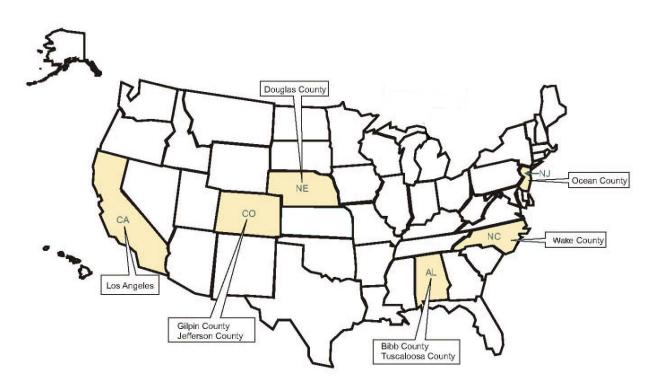



Figure 2. National Roadside Survey Pilot Test Primary Sampling Unit Locations

### **Selection of Police Jurisdictions**

The same general procedure as in the three previous national surveys was employed in selecting and recruiting police departments for this pilot study. Initially, using the CDS frame, departments were selected from those chosen for the CDS using simple random sampling. This preserved the underlying PPS scheme. Police departments electing not to participate were replaced by other departments from the same PSU.

Departments were excluded where it would be difficult to install survey sites (for example, departments patrolling Native American reservations, airports, hospitals, and harbor jurisdictions). State police units were also excluded because their jurisdictions were limited to interstate and arterial highways. Because vehicles could not be safely stopped at these locations they would be inappropriate for survey sites. Table 2 presents a summary of the police jurisdictions participating in the study.

| EAST COAST                    | WEST COAST                  |
|-------------------------------|-----------------------------|
| ALABAMA                       | CALIFORNIA                  |
| Bibb County PD* – 4 sites     | Torrance PD - 4 sites       |
| NEW JERSEY                    | COLORADO                    |
| Dover Township PD – 1 site    | Gilpin County PD – 2 sites  |
| Manchester PD – 1 site        | City of Golden PD – 2 sites |
| South Tom's River PD – 1 site |                             |
| Berkeley Township PD – 1 site |                             |
| NORTH CAROLINA                | NEBRASKA                    |
| Cary PD – 4 sites             | Omaha PD – 4 sites          |

#### Table 2. National Roadside Survey Pilot Test Sites

\* Police Department

### **Selection of Survey Locations**

Once police departments were selected and recruited, survey locations were determined in conjunction with the departments. A map of the area was divided into squares of approximately 1-square mile each. Squares containing few or no road segments such as fields or parks were not included in the sampling frame. From those available, squares were selected, using simple random sampling, as possible sites for a survey location with no more than one survey location permitted in a square.

The site supervisor and police officer were instructed to find a safe and effective site within the selected square. To be considered safe, the site had to provide enough viewing distance of the roadway to permit an officer to signal oncoming vehicles to stop. This distance varied with the typical speed of the traffic on the roadway. The best locations were lighted, off-road parking areas into which selected drivers could be directed. In all cases, it was necessary to have the police department approval of the survey site. Table 3 presents the sites where survey activities were conducted.

| STATE | COUNTY         | DATE         | FRIDAY<br>SITE 1                    | FRIDAY<br>SITE 2                  | SATURDAY<br>SITE 1                         | SATURDAY<br>SITE 2                   |
|-------|----------------|--------------|-------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------|
| NJ    | Ocean          | 8/5-6/2005   | Rte. 35 in<br>Seaside Park          | Pinewald Keswick<br>in Manchester | Fisher Blvd. in<br>Dover                   | Rte. 166 in South<br>Tom's River     |
| AL    | Bibb           | 8/19-20/2005 | Rte. 82 South in<br>Brent           | CR219 in<br>Centreville           | CR97 near<br>CR12 crossing<br>in Woodstock | Rte. 11 in<br>Woodstock              |
| CA    | Los<br>Angeles | 9/9-10/2005  | Sepulveda Blvd.<br>in Torrance      | Crenshaw Blvd. in Torrance        | Torrance Blvd. in<br>Torrance              | Pacific Coast<br>Hwy. in Torrance    |
|       | Gilpin         |              | Mile 1.5, Rte. 119<br>in Black Hawk | Mile 12, Rte. 119<br>in Dury Hill | N/A                                        | N/A                                  |
| CO    | Jefferson      | 9/16-17/2005 | N/A                                 | N/A                               | S. Golden Rd. at<br>Johnson in<br>Golden   | Rte. 58 at<br>Briarwood in<br>Golden |
| NC    | Wake           | 9/23-24/2005 | High House Rd. in<br>Cary           | N. Harrison Ave.<br>in Cary       | Maynard Rd. in<br>Cary                     | Tryon Rd. in Cary                    |
| NE    | Douglas        | 10/7-8/2005  | 132 <sup>nd</sup> St. in<br>Omaha   | Pacific St. in<br>Omaha           | Pacific St. in<br>Omaha                    | 84 <sup>th</sup> St. in Omaha        |

#### Table 3. NRS Pilot Test Sites

### Procedures

#### Overview

The roadside survey procedures implemented in the pilot test followed, as closely as possible, those used in the three prior national roadside surveys (Lestina et al., 1999). This involved: (1) identifying a safe, well-lit location to conduct the survey, and (2) an off-duty police officer directing traffic into interview bays marked off by cones. However, adding procedures such as the collection of oral fluid and blood necessitated some variations on the prior procedures (e.g., a blood-draw van), while maintaining a safe, efficient, and cost-effective data collection protocol for collecting the desired specimens (breath, saliva, and blood) and information from the nighttime driving population.

Our goal for the pilot phase was to obtain at least 600 oral fluid samples (100 in each State), which was accomplished. For the pilot test phase, we refined the protocol developed in the feasibility phase and then continued to further refine it through the pilot testing. The following protocol reflects these changes, and the protocol used in the pilot test sites.

#### **General Survey Procedures**

The site supervisor arrived at the PSU on Thursday before the survey and visited the proposed survey sites with the liaison officers from the cooperating police departments. Three different sites with off-road parking were identified for each of the two survey periods for both Friday and Saturday nights for a total of 12 sites in each of the 6 States, in order to have spare sites. The sites were chosen for safety of the public, the police, and the researchers. Desired attributes included an adequate off-road area to conduct the interviews, easy access from the roadway, good lighting, and traffic volume. The site supervisor planned the layout of car entry, exit, position of bays for data collection, and site of blood draw van with law enforcement prior to the data collection activities (see Figure 3 for samples of site layout sketches).

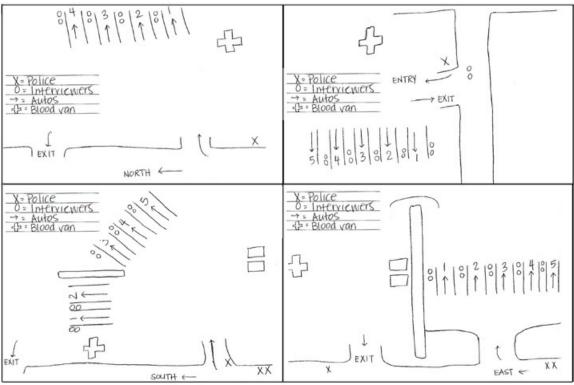



Figure 3. Site Supervisor's Sketches of Site Layouts

Data collectors and a phlebotomist arrived in time to meet the officers at the site prior to the data collection. Surveys were conducted between 10 p.m. and midnight and between 1 a.m. and 3 a.m. on both Friday and Saturday nights, for one weekend in each of the six selected States.

Once all parties were present at a site, an officer positioned a police vehicle at the side of the road with its overhead lights flashing so that approaching traffic could see it and with the vehicle's headlights illuminating the officer. Data collectors, working in an off-road parking lot, set up the activity with bays marked off by orange traffic cones, borrowed from the police agency. Data collectors unpacked their suitcases of supplies in preparation for vehicles. When ready, the site supervisor signaled the officer who flagged down the next vehicle that could be safely stopped, and then directed the driver into the interview site. After the vehicle entered the site, the driver had no further contact with the police officer. Commercial vehicles were excluded from the survey, but motorcycles were not.

#### **Driver Selection**

At the sites, drivers were selected from the traffic flow by an officer, who would signal the next car approaching the survey site after a data collector had completed a survey. This procedure is typically used in roadside surveys and results in a random selection of eligible vehicles that is not biased toward any particular class of driver. To insure unbiased selection of the first vehicle at each interview site, the third vehicle passing the site after initiation of the survey was chosen by an officer for the first interview. Police officers were provided with handheld counters to record all vehicles passing the site during an interview period so that driver selection probabilities could be estimated.

To ensure that a random sample of motorists was selected for the survey, it was necessary to bring the next available vehicle into the survey site when a data collector was ready for a subject. In practice, a few of the selected motorists were missed because they turned away from

the site or the officer was unable to signal them in time, or, having spoken with the motorist, the officer allowed the individual to proceed without entering the site, often because the driver indicated they were in a hurry. Few drivers refused to enter the site.

#### **Basic Survey Sequence**

As the motorist came to a safe stop in the bay, the data collector recorded basic demographics based on observation (e.g., the number of passengers, use of a safety belt by the driver, and the gender and ethnicity of the driver). These data were recorded so that we would have descriptive information of potential subjects who refused. The data collector then approached the vehicle and initiated contact with the driver using basic protocol, including an introduction explaining that participation is anonymous, voluntary, and can be ended at any time. Once oral consent for an interview (see Appendix A) was obtained, the subjects answered questions covering topics such as the subject's annual mileage, the origin and destination of that trip, drinking, drinking and driving, demographics, and whether they were acting as a designated driver (the survey appears in Appendix B). (Note: If subjects objected to answering survey items, we asked them to provide a breath sample before they exited the survey bay.)

During the interview, the data collector also obtained a passive alcohol sensor (PAS) reading on each subject (for more detail, see Appendix C). After the interview was complete, the data collector requested a breath test.

The data collector then requested an oral fluid sample, offering a \$10 incentive to the respondent to participate. (During the feasibility phase of the study, a variety of monetary incentives were experimented with for obtaining oral fluid and blood specimens and for obtaining participation in the AUD screener data collection. It was determined that the optimum, fiscally feasible, incentive schedule was \$10 for oral fluid, \$50 for blood, and \$5 for the AUD screen.) If the subjects agreed, a collection device was provided and they were asked to place the tab under their tongue. While the device was in their mouth, we presented them with a paper and pencil drug use questionnaire (Appendix D) for them to fill out. When that was completed, we asked them if they would answer a questionnaire about alcohol use (Alcohol Use Disorder [AUD] screener Appendix E) offering them an additional \$5.00. After the conclusion of the oral fluid collection, subjects were requested to provide a blood sample for an incentive of \$50. If they agreed, they were escorted to a phlebotomist a few feet away, who drew the blood sample. At the conclusion of the survey procedure they were escorted back to their vehicles and asked a few questions about their survey experience and how we could improve the survey procedures. They were then safety directed on their way. Incentive levels were determined during the feasibility phase of the study where a variety of incentive levels were tested. This combination of incentives was determined to be optimal within a reasonable cost frame.

#### **Field Data Recording**

Observational data, responses to the questions replicating the previous national roadside survey, AUD screener questions, questions about the survey procedure, and results from the PAS were recorded electronically in the field on a Personal Digital Assistant (PDA). We used the Sony Clié J2 model. Screen shots of the data entry pages in the PDA appear in Appendix F. Results of the breath test on the Portable Breath Test Device (PBT) were not displayed on the device but rather stored within the device and downloaded to a computer and merged with other data about the subject at a later date, so that no one in the field knew the BAC reading at the time, because the samples were anonymous and confidential.

#### **Breath Sample Collection Procedure**

The data collector obtained breath samples using a portable breath alcohol test (PBT) device (Intoxilyzer SD-400, for more detail, see Appendix G) (Figure 4). Because some subjects refuse to provide a breath test and others are not able to blow sufficient air to provide a valid sample, a PAS that can detect alcohol in the expired air around the face (Kiger, Lestina, & Lund, 1993) was also used. The PAS unit has the same fuel cell alcohol detector as the SD-400 unit. Rather than requiring a mouthpiece, however, it has a small electrical pump that pulls in air from in front of the subject's face (Cammisa, Ferguson, & Wells, 1996; Fiorentio, 1997). When the PAS is held within six inches of the face and the pump is activated, it provides a rough indication of the individual's BAC. We used the PAS Vr. for this purpose. It is a low cost, portable passive sensor (we did not use the more commonly known flashlight model which uses the same fuel cell technology), and has single-button control. The PAS displays a color-coded 9-element LED bar-graph and numeric display of the approximate alcohol level. After viewing the PAS



Figure 4. Portable Breath Alcohol Test (PBT) Device, Intoxilyzer S-400

level, the data collector enters the number of colored bars indicated into the handheld PDA.

If a driver appeared impaired, the data collector signaled the site supervisor who administered a breath test with a PBT which displayed the result. If the driver had a BAC of .05 or above we attempted to arrange a ride home for the driver from another occupant of the vehicle if that person passed a BAC test, from a friend or relative of the driver, or by taxi. The need for the research team to provide transportation was infrequent.<sup>3</sup>

#### **Oral Fluid Collection Procedure**

We obtained saliva samples from the subjects using the *Quantisal* device, offering a monetary incentive of \$10. During the oral fluid collection, the data collector asked the subject to complete a brief paper and pencil questionnaire regarding over-the-counter, prescription, and

<sup>&</sup>lt;sup>3</sup> During the pilot study, four subjects were found to be impaired; one in New Jersey, one in North Carolina, and two in Nebraska. Field supervisors and data collectors followed protocol for all incidents to ensure that subjects arrived at their destinations safely. In the first incident, the data collector smelled alcohol on the subject and got a high PAS reading; she then called for a supervisor. The supervisor talked to the subject and took a BAC reading with an unmasked PBT. As the subject did not have anyone to call for a ride and his home was only five miles from the site, one researcher drove him home in the subject's car while another followed in a rental car. The subject was very appreciative and said that he did not have any friends that would have done this for him. The researchers drove back together. In the second incident, the phlebotomist smelled alcohol on the subject and alerted a supervisor. The supervisor took an unmasked PBT reading of both the subject and her passenger, to determine if the passenger could drive the subject home; however, both exceeded the BAC limit. The supervisor drove the two women home, with another researcher following, and the researchers drove back together. In the third incident, a subject pulled her vehicle into a bay and the data collector, who found that the subject was visibly impaired, alerted the site supervisor. The subject agreed to call for a ride, but no one was available, so research staff gave her a ride home in her car with another supervisor following; again the researchers drove back together. In the last incident, as the officer directing traffic waved a subject in she had difficulty understanding the directions. The officer notified a supervisor, who took an unmasked PBT reading. The subject was given a choice of calling someone for a ride, or being driven home. She called someone and took the survey while waiting for her ride. She left her car in the private school parking lot that was being used for the site, to be retrieved later.

recreational drug use (see Appendix D). Subjects were assured that their answers were completely anonymous and confidential. The *Quantisal* device (see Appendix H), with the color change pad indicating sufficient fluid volume, reliably indicated when a sufficient sample had been collected.

#### **Blood Collection Procedure**

After the oral fluid collection, we then requested a blood sample with an additional \$50 incentive. If the subject agreed to give a blood sample, the vehicle was moved forward to clear the interview bay and to permit another interview to begin, and the subject exited the vehicle and was escorted to a van for the blood draw.

When available, we used a police command vehicle outfitted for blood drawing, including a well-lit interior, appropriate seating, and arm rest. We engaged a licensed phlebotomist to conduct the blood draws. However, when command vehicles were not available, the phlebotomist worked out of a rental van, setting up the blood collection area so that the donor sat in the van and the phlebotomist stood just outside the van with supplies. The phlebotomist was also trained to conduct interviews and participate in data collection when not involved with blood draws. During blood draws, one gray top tube of the subject's blood was drawn (5 mL). A gray top tube is a glass test-tube type container which holds a volume of up to 5 mL of blood and also contains a preservative of potassium oxalate/sodium fluoride that reduces the need for refrigeration but does not affect the ability to detect and quantify drugs.

We were not able to draw a full tube for all subjects because of small and difficult-to-locate veins. In those cases, the laboratory was able to conduct an initial screening test, but was not able to conduct a confirmatory analysis by GC/MS, due to the insufficient volume.

In summary, the following are the steps in the roadside survey pilot test (drivers could leave the survey at any time):

- Officer motions vehicle into research bay
- Researcher receives verbal consent from subject
- Researcher:
  - Collects observational data entered into PDA by researcher
  - Asks basic roadside survey questions entered into PDA by researcher
  - Reads PAS test
  - Requests breath test
    - Takes BAC with PBT
  - Requests oral fluid sample
    - Collects oral fluid sample taken
    - Gives subject incentive
  - Gives written drug questions self-reported on paper by participant
  - Asks AUD questions entered into PDA by researcher
    - Gives subject incentive for AUD
  - Requests blood sample
    - Collects blood sample
    - Gives subject incentive
- Subject directed back onto the roadway

### **Selection of Drugs**

PIRE staff and NHTSA staff developed an initial list of drugs to be screened for, based on the literature (Jones, R., Shinar, D., & Walsh, J., 2003; Couper, F., & Logan, B., 2004) and experience with drugged-driving research. The drugs were selected because of a combination of their potential impaired-driving effects, their likelihood of appearing in drivers, a cost-responsible number of potential positive screens (each positive result followed by a GC/MS confirmation test adds cost to the analyses), and in the case of oral fluid, the availability of scientific techniques to analyze oral fluid to detect and quantify the drug. NHTSA then provided this list to experts (both in the United States and internationally) in the field of epidemiology of drug use, driving, and toxicology. The experts responded to the list with additions and deletions, resulting in the entries in Table 4.

| Cocaine (including Benzoylecgonine and cocaethylene metabolites)                                             |
|--------------------------------------------------------------------------------------------------------------|
| Opiates (Heroin, 6-acetylmorphine; Morphine, codeine, morphine, hydrocodone, hydromorphone,                  |
| and oxycodone)                                                                                               |
| Amphetamines (including confirmatory tests for methamphetamine, MDA, MDEA, and MDMA)                         |
| Cannabanoids (THC metabolite)                                                                                |
| Phencyclidine (PCP)                                                                                          |
| Benzodiazepines (array of options for drug-specific confirmatory tests, e.g., rohypnol, diazepam)            |
| Barbiturates                                                                                                 |
| Methadone                                                                                                    |
| Ethyl Alcohol                                                                                                |
| GHB                                                                                                          |
| Propoxyphene                                                                                                 |
| Tramadol                                                                                                     |
| Sertraline (Zoloft) Fluoxetine (Prozac)                                                                      |
| Zolpidem                                                                                                     |
| Tricyclics (amitryptiline, nortryptiline, etc)                                                               |
| Carisoprodol and metabolite, meprobamate                                                                     |
| Drug esteration in hold constitute the National Institute of Drug Abuse (NIDA) five drug esteration of shupe |

#### Table 4. Drugs of Interest for the National Roadside Survey Pilot Test

Drug categories in bold constitute the National Institute of Drug Abuse (NIDA) five drug categories of abuse.

### **Oral Fluid**

The tubes from each data collection weekend were packaged and sent together overnight to a laboratory for analysis. Upon receipt of the specimens to the testing facility, screening analysis was carried out using enzyme linked immunosorbent assays (ELISA) at the cut-off concentrations described in Table 5. Screen positive specimens were then reanalyzed, using a separate sample of the fluid, using gas chromatography-mass spectrometry (GC/MS), according to standard operating procedures. All methods were fully validated according to good laboratory practices, and all standard operating procedures are on file at Immunalysis Corporation (Pomona, CA).

Instrumentation:

 Agilent Technologies 6890 gas chromatography - 5973 mass selective detector (GC/MSD); electron impact (EI) mode

#### Extraction:

• Oral fluid (1 mL) of diluted specimen (1:3 buffer) was extracted using mixed mode solid phase methods with drug specific column phases

#### Derivatization:

- Drug specific derivatives used for maximum detectability and stability
- Drugs included in the confirmation profile are shown in Table 6

### Blood

Upon receipt of the specimens to the testing facility, screening analysis was carried out using enzyme linked immunosorbent assays (ELISA) at the cut-off concentrations described in Table 5. Screen positive specimens were then sent to BioTox Laboratories, Riverside, California for confirmation using liquid chromatography- mass spectrometry – mass spectrometry (LC/MS/MS). All methods were fully validated according to good laboratory practices, and all standard operating procedures are on file at BioTox Laboratories (Riverside, CA).

#### Drugs

Instrumentation:

- Applied Biosystems: LC/MS/MS System, Model API 2000 Triple Quadropole
- Shimadzu: System Controller Model SCL-10A VP
- Liquid Chromatograph Pumps Model 10AD VP
- Degasser Model D-G4-11A Degasser/Autosampler Model SIL-20A
- Thermo Electron: 3 µm Hypersil GOLD, 50 mm x 2.1 mm HPLC column

#### Gradient HPLC system:

- Mobile Phase A: double deionized water + 0.01% Formic Acid
- Mobile Phase B: acetonitrile + 0.01% Formic Acid

#### Extraction:

- Oral fluid (1 mL of buffer) and blood samples (1 mL) were confirmed for drugs using LC/MS/MS
- Mixed mode solid phase extraction using drug specific column phases

#### Ethanol (Oral Fluid and Blood)

Instrumentation:

- Perkin-Elmer: Model F-45 Gas Chromatograph
- Flame ionization detector (FID)
- 0.2% Carbowax 1500 Graphpac-GC, 80/100 column (6 ft. x 1/8 in. ID)

Extraction:

- Whole blood or 3:1 buffered oral fluid (0.1 mL), add 1 mL double deionized water containing 0.1% propanol
- Analyzed using headspace GC/FID

More detailed descriptions of the oral fluid and blood analytic procedures appear in Appendix I.

| Drug Class                 | Cut-off Values<br>(ng/mL)<br>Oral fluid<br>Screening | Confirmation | Blood<br>Screening | Confirmation |
|----------------------------|------------------------------------------------------|--------------|--------------------|--------------|
| Cocaine, BZE               | 20                                                   | 8            | 25                 | 5            |
| Opiates                    | 40                                                   | 10           | 25                 | 5            |
| Oxycodone                  | 25                                                   | 10           | 25                 | 5            |
| Methamphetamine            | 50                                                   | 50           | 25                 | 5            |
| Amphetamine                | 50                                                   | 50           | 25                 | 5            |
| Cannabinoids               | 4                                                    | 2            | 10                 | 0.5          |
| Phencyclidine              | 10                                                   | 10           | 5                  | 5            |
| Benzodiazepines            | 20                                                   | 10           | 20                 | 1            |
| Barbiturates               | 50                                                   | 50           | 500                | 500          |
| Methadone                  | 50                                                   | 25           | 50                 | 5            |
| Ethyl alcohol              | .02%                                                 | .02%         | .02%               | .02%         |
| Tramadol                   | 50                                                   | 25           | 50                 | 5            |
| Sertraline                 | 50                                                   | 25           | 50                 | 5            |
| Fluoxetine                 | 50                                                   | 25           | 50                 | 5            |
| Zolpidem                   | 10                                                   | 10           | 10                 | 5            |
| Tricyclic anti-depressants | 25                                                   | 25           | 25                 | 5            |
| Methylphenidate            | 10                                                   | 10           | 10                 | 5            |
| Carisoprodol               | 100                                                  | 50           | 500                | 500          |

Table 5. Concentrations (ng/mL) used for Analysis in Oral Fluid and Blood

| Drug class                   | Oral fluid                                                                                           | Blood                                                                                                                                                                                                                                                                                                             |
|------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cocaine                      | Cocaine, benzoylecgonine                                                                             | Cocaine, benzoylecgonine, cocaethylene                                                                                                                                                                                                                                                                            |
| Opiates                      | 6-acetylmorphine, codeine, morphine, hydrocodone, hydromorphone                                      | 6-acetylmorphine, codeine, morphine,<br>hydrocodone, hydromorphone,<br>oxycodone                                                                                                                                                                                                                                  |
| Amphetamines                 | Methamphetamine, amphetamine,<br>MDMA, MDA, MDEA,<br>pseudoephedrine, phentermine                    | Methamphetamine, amphetamine,<br>MDMA, MDA, phenylpropanolamine,<br>phentermine, fenfluramine,<br>pseudoephedrine, phendimetrazine                                                                                                                                                                                |
| Cannabinoids                 | THC                                                                                                  | THC, 11-OH-THC, THC-COOH                                                                                                                                                                                                                                                                                          |
| Benzodiazepines              | Oxazepam, nordiazepam, lorazepam,<br>chlordiazepoxide, temazepam,<br>diazepam, alprazolam, triazolam | Oxazepam, nordiazepam, lorazepam,<br>chlordiazepoxide, norchlordiazepoxide,<br>flurazepam, desalkylflurazepam,<br>estazolam, temazepam, diazepam,<br>alprazolam, alpha-hydroxyalprazolam<br>clonazepam, flunitrazepam,<br>7-aminoflunitrazepammidazolam,<br>triazolam,alpha-hydroxytriazolam,<br>methylclonazepam |
| Barbiturates                 | Phenobarbital, pentobarbital, secobarbital, butalbital                                               | Phenobarbital, pentobarbital, secobarbital, butalbital                                                                                                                                                                                                                                                            |
| Methadone                    | Methadone                                                                                            | Methadone, EDDP                                                                                                                                                                                                                                                                                                   |
| Tramadol                     | Tramadol                                                                                             | Tramadol, Desmethyltramadol                                                                                                                                                                                                                                                                                       |
| Sertraline                   | Sertraline                                                                                           | Sertraline, Desmethylsertraline                                                                                                                                                                                                                                                                                   |
| Fluoxetine                   | Fluoxetine                                                                                           | Fluoxetine, Norfluoxetine                                                                                                                                                                                                                                                                                         |
| Tricyclic<br>antidepressants | Amitryptiline, nortriptyline                                                                         | Amitryptiline, nortriptyline, doxepin,<br>desmethyldoxepin, imipramine,<br>desipramine, trimipramine,<br>clomipramine, amoxapine, protriptyline,<br>maprotiline                                                                                                                                                   |
| Carisoprodol                 | Carisoprodol, meprobamate                                                                            | Carisoprodol, meprobamate                                                                                                                                                                                                                                                                                         |

Table 6. Drugs Included in Confirmation Profile in Oral Fluid and Blood

## Results

### **Data Collection and Management**

Overall, the data collection procedures developed during the feasibility phase of this project went quite smoothly. There are essentially three stages to the data collection site recruitment. Once sites had been randomly selected from the NASS-CDS primary sampling units, queries were made to the NHTSA regional offices soliciting help in obtaining cooperation from the States. Then, in turn, we asked the States for assistance in gaining the cooperation of local law enforcement agencies in the selected jurisdiction. One State was reluctant to have the survey activity occur in their State and thus, we had to resample to identify an additional site for potential recruitment. Once we had State agreement and assistance, we were successful in obtaining cooperation in every jurisdiction.

There was a learning curve involved in implementing this larger scale data collection activity as well as further development of dealing with logistical issues as we expanded the realm of data collection sites throughout the rest of the country, often involving air travel to the sites. Participation rates for each of the sites appear in Table 7. Additionally, there were some regional variations in the receptivity of the motoring public to the data collection requests. The most receptive population was that encountered in Alabama. The least receptive was the first jurisdiction in which we collected data in New Jersey.

### **Pilot Study Subject Recruitment Patterns**

Table 7 presents information on subject participation rates by jurisdiction. The lowest participation rate was in New Jersey, the first site where we collected data. We fared somewhat better in subsequent sites, probably because the survey team became more proficient. However, we also sensed a more general willingness to cooperate with the research activities in some areas. This was particularly true in the Alabama site where the public was very willing to "help out."

|                                  | NJ             | AL             | СА             | со             | NC             | NE             | Total | %<br>(Out of<br>Vehicles<br>Entering<br>Bays) | %<br>(Out of<br>Participants) |
|----------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|-----------------------------------------------|-------------------------------|
| Vehicles Entering Bays           | 170            | 116            | 163            | 158            | 165            | 187            | 959   |                                               |                               |
| # Participants                   | 136<br>(80.0%) | 108<br>(93.1%) | 138<br>(84.7%) | 141<br>(89.2%) | 142<br>(86.1%) | 153<br>(81.8%) | 818   | 85.30%                                        |                               |
| # Breath Samples<br>Provided     | 120<br>(70.6%) | 105<br>(90.5%) | 131<br>(80.4%) | 137<br>(86.7%) | 128<br>(77.6%) | 140<br>(74.9%) | 761   | 79.35%                                        | 93.03%                        |
| # AUD Surveys                    | 88<br>(51.8%)  | 62<br>(53.4%)  | 78<br>(47.9%)  | 95<br>(60.1%)  | 90<br>(54.5%)  | 103<br>(55.1%) | 516   | 53.81%                                        | 63.08%                        |
| # Oral Fluid Samples<br>Provided | 103<br>(60.6%) | 100<br>(86.3%) | 99<br>(60.7%)  | 116<br>(73.4%) | 119<br>(72.1%) | 105<br>(56.1%) | 642   | 66.94%                                        | 78.48%                        |
| # Blood Samples<br>Provided      | 54<br>(31.8%)  | 78<br>(67.2%)  | 59<br>(36.2%)  | 79<br>(50.0%)  | 69<br>(41.8%)  | 67<br>(35.8%)  | 406   | 42.34%                                        | 49.63%                        |

Table 7. Response Rates by Site and Survey Element

From Table 7 above, in the last two columns, we indicate the participation rate both in terms of the percentage of individuals initially recruited who participated in each of the main elements

of the survey and then the percentage of persons who initially agreed to participate who completed subsequent elements of the survey. Thus, 79.35 percent of the subjects we initially attempted to recruit provided a breath sample. However, 93.03 percent of those who had at least answered some of the initial questions agreed to provide a breath sample. The corresponding refusal rates for these two examples are 20.65 percent and 6.97 percent. Of interest is once a person has agreed to participate in the survey, nearly 80 percent provided an oral fluid sample and nearly 50 percent provided a blood sample.

This entire procedure (survey, BAC, oral fluid sample, and blood sample) took approximately 20-25 minutes (see Table 8). The survey and BAC test alone averaged approximately 5-7 minutes. The survey with BAC and oral fluid test averaged approximately 10-12 minutes; adding the blood test increased the data collection time to 20-25 minutes.

| Test                                             | Combined Time |
|--------------------------------------------------|---------------|
| Survey and BAC                                   | 5-7 minutes   |
| Survey, BAC and one Oral Fluid Sample            | 10-12 minutes |
| Survey, BAC, Oral Fluid Sample, and Blood Sample | 20-25 minutes |

Table 8. Time Required per Subject for Roadside Data Collection

As mentioned earlier, taking this survey on the road involved a good deal of logistical planning in that not only was it necessary to obtain cooperation from participating law enforcement agencies and identify suitable data collection sites, but it also required transporting a data collection team and equipment to the data collection sites. A listing of the equipment required appears in Table 9.

|                    | Lab coats                                            |                                |  |  |  |  |  |  |
|--------------------|------------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| Outfits            | Reflecting safety vests                              |                                |  |  |  |  |  |  |
| ounis              | "Research Team" hats                                 |                                |  |  |  |  |  |  |
|                    | PDAs with survey                                     |                                |  |  |  |  |  |  |
|                    | PBTs (no display of BAC)                             |                                |  |  |  |  |  |  |
|                    | 1 PBT with display of BAC                            |                                |  |  |  |  |  |  |
| Equipmont          | PASs                                                 |                                |  |  |  |  |  |  |
| Equipment          | Breath tubes                                         |                                |  |  |  |  |  |  |
|                    |                                                      |                                |  |  |  |  |  |  |
|                    | Extra supply of batteries                            |                                |  |  |  |  |  |  |
|                    | Saliva collection devices                            |                                |  |  |  |  |  |  |
| Incentives         | Cash/Money orders                                    |                                |  |  |  |  |  |  |
|                    | Paper surveys (as backup, in case PDAs fail)         |                                |  |  |  |  |  |  |
|                    | Blood consent forms                                  |                                |  |  |  |  |  |  |
|                    | Drug questionnaires                                  |                                |  |  |  |  |  |  |
| Paper documents to | Numbered labels for blood, saliva, bags for tracking |                                |  |  |  |  |  |  |
| bring              | Supervisor Report Form                               |                                |  |  |  |  |  |  |
| Sing               | Consultant Agreement forms                           |                                |  |  |  |  |  |  |
|                    | Consultant Invoices                                  |                                |  |  |  |  |  |  |
|                    | Chain of Consent forms for saliva                    |                                |  |  |  |  |  |  |
|                    | Chain of Consent forms for blood                     |                                |  |  |  |  |  |  |
|                    | Signs for side of blood draw van                     | Stapler, scissors, tape        |  |  |  |  |  |  |
|                    | Traffic sign                                         | Velcro tape                    |  |  |  |  |  |  |
|                    | Orange traffic cones (if not                         | Duct tape                      |  |  |  |  |  |  |
| Also need          | provided by police)                                  | First aid kit                  |  |  |  |  |  |  |
| Also need          | TV-tray tables                                       | Extra batteries (AA, AAA, 9-V) |  |  |  |  |  |  |
|                    | Battery-operated table lamps                         | Gloves                         |  |  |  |  |  |  |
|                    | Garbage bags                                         | Hand warmers                   |  |  |  |  |  |  |
|                    | Car counters                                         | Headbands                      |  |  |  |  |  |  |

|                     | Stopwatches                                   | Paper towels                      |  |  |  |  |  |
|---------------------|-----------------------------------------------|-----------------------------------|--|--|--|--|--|
|                     | Pens, styli, golf pencils                     | Rain ponchos                      |  |  |  |  |  |
|                     | Clipboards                                    | Flashlights w/traffic wands       |  |  |  |  |  |
|                     | Index Cards                                   |                                   |  |  |  |  |  |
|                     | Quantisal oral fluid tests                    |                                   |  |  |  |  |  |
|                     | Needles (ask the lab what gage they           | prefer for adequate test results) |  |  |  |  |  |
|                     | A few butterfly needles                       |                                   |  |  |  |  |  |
|                     | Vacutainers (the plastic connector)           |                                   |  |  |  |  |  |
|                     | Gloves (powder-free latex may be preferred)   |                                   |  |  |  |  |  |
|                     | Gray-top tubes                                |                                   |  |  |  |  |  |
| Blood Sample and    | Pre-wrapped alcohol pads                      |                                   |  |  |  |  |  |
| Oral Fluid Sample   | Pre-wrapped sterile 2X2's gauze pac           | ls                                |  |  |  |  |  |
| Supplies            | Band-aids                                     |                                   |  |  |  |  |  |
|                     | Sharps container (for needles)                |                                   |  |  |  |  |  |
|                     | First aid kit                                 |                                   |  |  |  |  |  |
|                     | Tourniquets                                   |                                   |  |  |  |  |  |
|                     | Absorbent shipping pads (for blood specimens) |                                   |  |  |  |  |  |
| Cooler and blue ice |                                               |                                   |  |  |  |  |  |
|                     | Specified cardboard container for shipping    |                                   |  |  |  |  |  |

The process of merging the data was one of the more complex parts of this study. There were potentially six forms of data collected for each subject:

- PDA survey entered by the interviewer
- PAS sample
- PBT breath sample
- self-reported drug use survey filled out on paper by the participant
- oral sample
- blood sample

The PDA and self-report surveys were matched together based on a unique identifier created from the date, interviewer number, and case number. The PBT data were matched based on sample number, and the biological specimens were matched based on laboratory Chain of Custody (COC) numbers that were recorded in the PDA. (COC numbers are assigned by the laboratory and are used to maintain a documented link between sample collection and the laboratory, showing who has possession of the samples.)

The success of the data merging depended on the interviewers recording the identifying information (case, sample, and COC numbers) correctly. We were very successful in this respect. The data from the first few collections had some problems that we were able to resolve. These problems included the interviewers leaving some of the answers blank, or forgetting to enter the demographic observations about subjects who refused to do any part of the survey. These problems occurred less often at each successive collection.

### **Sample Characteristics**

Of the 754 drivers who entered the survey site and at minimum provided a BAC test, 62 percent were male. The majority of drivers (40.1%) were in the age category of 21–34 years of age, followed by 45 years and older (26.4%). See Table 10 for details. The total N's in this series of tables varies by table because of missing data on some data elements.

| 62.1%   |
|---------|
| 62.1%   |
|         |
| 37.9%   |
|         |
|         |
| ) 17.9% |
| 40.1%   |
| 15.5%   |
| 17.0%   |
| 6.6%    |
| 2.8%    |
|         |
|         |

Table 10. Gender and Age Group - NRS Pilot Study

As Table 11 shows, our interviewers' observations of race were highly accurate. The interviewers were able to correctly observe the race Black/African American 98.4 percent of the time, and the race White 99.2 percent of the time. They observed the race Asian correctly 89.2 percent of the time, but only observed the ethnicity Hispanic correctly 66.7 percent of the time. As these observations are fairly reliable, we will use observed race to fill in the self-reported race/ethnicity if it is missing. This could be useful in the full-scale study

|                  |          |                  |          | C                  | bserved Ra | ace/Ethnic | ity     |        |        |
|------------------|----------|------------------|----------|--------------------|------------|------------|---------|--------|--------|
|                  |          |                  |          | Black /<br>African |            |            |         |        |        |
|                  |          |                  | Asian    | American           | Hispanic   | Other      | Unknown | White  | Total  |
|                  |          | Count            | 33       | 0                  | 1          | 0          | 0       | 3      | 37     |
|                  | Asian    | % within Self-   |          |                    |            |            |         |        |        |
|                  |          | Reported         | 89.2%    | .0%                | 2.7%       | .0%        | .0%     | 8.1%   | 100%   |
|                  |          | Race             |          |                    |            |            |         |        |        |
|                  | Black /  | Count            | 0        | 61                 | 0          | 0          | 0       | 1      | 62     |
|                  | African  | % within Self    |          |                    |            |            |         |        |        |
| Self-            | American | Reported         | .0%      | 98.4%              | .0%        | .0%        | .0%     | 1.6%   | 100%   |
| Report           |          | Race             |          |                    |            |            |         |        |        |
| Race/            | Hispanic | Count            | 2        | 2                  | 50         | 0          | 0       | 21     | 75     |
| Ethnicity        |          | % within Self    |          |                    |            |            |         |        |        |
| · · · · <b>·</b> |          | Reported         | 2.7%     | 2.7%               | 66.7%      | .0%        | .0%     | 28.0%  | 100%   |
|                  |          | Race             |          |                    |            |            |         |        |        |
|                  | •        | Count            | 3        | 2                  | 2          | 15         | 3       | 7      | 32     |
|                  | Other    | % within Self    | <b>-</b> |                    |            |            |         | - / /  |        |
|                  |          | Reported         | 9.4%     | 6.3%               | 6.3%       | 46.9%      | 9.4%    | 21.9%  | 100%   |
|                  |          | Race             | •        | 4                  |            | •          | 2       | 400    | 400    |
|                  | 14/10:40 | Count            | 0        | 1                  | 1          | 2          | 0       | 489    | 493    |
|                  | White    | % within Self    | 00/      | 00/                | 00/        | 40/        | 00/     | 00.00/ | 1000/  |
|                  |          | Reported         | .0%      | .2%                | .2%        | .4%        | .0%     | 99.2%  | 100%   |
|                  | <u>.</u> | Race             | 38       | 66                 | 54         | 17         | 3       | E01    | 600    |
| Total            |          | Count            | 30       | 00                 | 54         | 17         | 3       | 521    | 699    |
| iotai            |          | % within Self    | 5.4%     | 9.4%               | 7.7%       | 2.4%       | .4%     | 74.5%  | 100%   |
|                  |          | Reported<br>Race | 0.4 /0   | 9.4 /0             | 1.1/0      | 2.4/0      | .4 /0   | 14.070 | 100 /0 |

## Table 11. Crosstabs of Observed Race/Ethnicity (Columns) Versus Self-Reported Race/Ethnicity (Rows)

### Trends

The following tables compare the 2005 pilot study results with the prior three year surveys (1973, 1986, and 1996). In some instances data were not available for comparison.

The number of interview and breath tests provided by drivers is shown in Table 12. As can be seen, in this 2005 pilot study, 959 motorists entered the site. Of these, 79.2 percent of drivers provided a valid breath measure. This is lower than previous years. Possible explanations to this difference are discussed in the summary conclusions.

|                                   | 1973          | 1986          | 1996          | 2005 Pilot  |
|-----------------------------------|---------------|---------------|---------------|-------------|
| Vehicles entering site            | 3,698         | 3,043         | 6,298         | 959         |
| Entered site and interviewed      | 3,353 (90.7%) | 2,971 (97.6%) | 6,045 (96.0%) | 731 (76.2%) |
| Entered site, valid breath sample | 3,192 (86.3%) | 2,850 (93.7%) | 6,028 (95.7%) | 761 (79.4%) |
| Entered site, no breath sample    | 506 (13.7%)   | 193 (6.3%)    | 270 (4.3%)    | 198 (20.6%) |

#### Table 12. Drivers Entering the Survey Sites

Table 13 presents the BACs of drivers in the four surveys by the time of night and weekend night. Note that the pilot study data assessed BACs at both the .10 and .08 levels in order to allow comparison between survey years. As was the case in the past three survey years, the greatest percentage of high BACs is in the 1 a.m.-3 a.m. time period and on Saturdays. When assessing total cases across each survey year, average BAC levels (at both  $\geq$ .05 and  $\geq$ .10 levels) are lowest in 2005.

|                      |       | 1973  |       |       | 1986  |      |       | 1996  |      |     | 2005  |      |      |
|----------------------|-------|-------|-------|-------|-------|------|-------|-------|------|-----|-------|------|------|
|                      | Ν     | ≥.05  | ≥.10  | Ν     | ≥.05  | ≥.10 | Ν     | ≥.05  | ≥.10 | Ν   | ≥.05  | ≥.10 | ≥.08 |
| Friday               |       |       |       |       |       |      |       |       |      |     |       |      |      |
| 10 p.m.–<br>midnight | 845   | 9.5%  | 3.0%  | 750   | 4.7%  | 1.6% | 1,842 | 4.2%  | 1.0% | 209 | 1.9%  | 0.5% | 0.5% |
| 1 a.m.–<br>3 a.m.    | 755   | 20.6% | 7.3%  | 648   | 11.9% | 5.0% | 1,492 | 13.1% | 4.0% | 175 | 9.1%  | 3.4% | 4.0% |
| Saturday             |       |       |       |       |       |      |       |       |      |     |       |      |      |
| 10 p.m.–<br>midnight | 841   | 9.5%  | 3.4%  | 833   | 6.7%  | 2.8% | 1,865 | 5.3%  | 2.4% | 203 | 1.0%  | 0.0% | 0.0% |
| 1 a.m.–<br>3 a.m.    | 751   | 21.6% | 10.1% | 619   | 15.0% | 5.5% | 1,281 | 16.4% | 6.7% | 174 | 12.1% | 5.2% | 6.9% |
| All Cases            | 3,192 | 13.7% | 5.1%  | 2,850 | 8.4%  | 3.2% | 6,480 | 7.7%  | 2.8% | 761 | 5.6%  | 2.1% | 2.6% |

Table 13. Comparison of High BAC Drivers in Relation to Time of Night and Weekend Night andOverall for Samples in 1973, 1986, 1996, and 2005

Table 14 provides a comparison between the four surveys on driver demographic characteristics including gender, ethnicity and age by BAC level. The percentage of female drivers participating in the study has steady increased from 17 percent in 1973, 26 percent in 1986, and 32 percent in 1996 to 38 percent in 2006. Further, the number of females in 2005 testing at the .10 BAC level or greater has increased since 1996. Male drivers testing at the .10 or greater level, however, have decreased from past years. In fact, females at this level even surpass males in 2006. This finding warrants further investigation during the full-scale survey.

Motorists identified as Hispanic have also grown in percentage at 11 percent in the 2005 pilot study, compared to 10 percent in 1996, 5 percent in 1986 and 1 percent in 1973. By age group, the percentage of 2005 participants age 20 and younger is similar to 1996 and 1986. There was a slight decrease in participants ages 21–34 and those in the 35-44 categories in the 2005 study as compared to previous years. In 2005, we recorded the age of older drivers in greater detail as illustrated at the bottom of Table 14. Examination of that portion of the table indicates that all high-BAC drivers over the age of 45 fell between the ages of 45-64, and were in the range of .05-.08.

|                     |       | 1973  |      |       | 1986  |      |       | 1996  |      |     | 2    | 005  |      |
|---------------------|-------|-------|------|-------|-------|------|-------|-------|------|-----|------|------|------|
|                     | Ν     | ≥.05  | ≥.10 | Ν     | ≥.05  | ≥.10 | Ν     | ≥.05  | ≥.10 | Ν   | ≥.05 | ≥.08 | ≥.10 |
| Gender              |       |       |      |       |       |      |       |       |      |     |      |      |      |
| Male                | 2,648 | 14.7% | 5.5% | 2,114 | 9.9%  | 3.9% | 4,229 | 8.7%  | 3.5% | 468 | 6.4% | 2.8% | 1.9% |
| Female              | 526   | 8.8%  | 3.0% | 728   | 3.9%  | 1.3% | 1,984 | 5.8%  | 1.5% | 286 | 4.5% | 2.4% | 2.4% |
| Race/Ethnicity      |       |       |      |       |       |      |       |       |      |     |      |      |      |
| White               | 2803  | 13.3% | 5.1% | 2352  | 7.4%  | 2.7% | 4362  | 7.1%  | 2.3% | 493 | 4.7% | 2.6% | 2.0% |
| African<br>American | 256   | 16.5% | 6.0% | 328   | 13.5% | 5.9% | 947   | 9.4%  | 3.6% | 62  | 4.8% | 3.2% | 3.2% |
| Hispanic            | 43    | 22.0% | 3.3% | 124   | 13.0% | 4.4% | 612   | 14.9% | 7.5% | 75  | 0%   | 0%   | 0%   |
| Asian               |       |       |      |       |       |      |       |       |      | 37  | 8.1% | 5.4% | 5.4  |
| Other               |       |       |      |       |       |      |       |       |      | 32  | 6.3% | 0%   | 0%   |
| Age Group           |       |       |      |       |       |      |       |       |      |     |      |      |      |
| <u>&lt;</u> 20      | 767   | 10.9% | 4.1% | 506   | 4.6%  | 2.7% | 977   | 2.8%  | 0.3% | 120 | 1.6% | .8%  | .8%  |
| 21 – 34             | 1,393 | 15.4% | 5.7% | 1,341 | 9.9%  | 3.3% | 2,634 | 11.3% | 3.8% | 269 | 9.2% | 5.9% | 4.8% |
| 35 – 44             | 419   | 15.9% | 5.8% | 497   | 9.4%  | 4.7% | 1,215 | 6.9%  | 3.7% | 104 | 3.9% | 1.0% | 1.0% |
| 45+                 | 559   | 12.1% | 4.1% | 489   | 6.8%  | 1.8% | 1,219 | 5.2%  | 1.7% | 177 | 1.7% | 0%   | 0%   |
| Further Age         |       |       |      |       |       |      |       |       |      |     |      |      |      |
| Breakdown           |       |       |      |       |       |      |       |       |      | N   | ≥.05 | ≥.08 | ≥.10 |
| 45-54               |       |       |      |       |       |      |       |       |      | 114 | 1.8% | 0%   | 0%   |
| 55-64               |       |       |      |       |       |      |       |       |      | 44  | 2.3% | 0%   | 0%   |
| 65-74               |       |       |      |       |       |      |       |       |      | 16  | 0%   | 0%   | 0%   |
| 75+                 |       |       |      |       |       |      |       |       |      | 3   | 0%   | 0%   | 0%   |

Table 14. Comparison of High BAC Drivers in Relation to Demographic Characteristics

Figure 5 provides a graphic illustration of how BAC levels have changed across the four decades. Of course, one should not overstate the findings from 2005 because the sample size is so much smaller. However, it is notable that the trend is to lower percentages over time in all categories of positive BAC drivers. Conversely, the proportion of drivers who are alcohol negative has been increasing, going from 64.0 percent in 1973, to 74 percent in 1986, to 82.8 percent in 1996, to 85.5 percent in 2005.

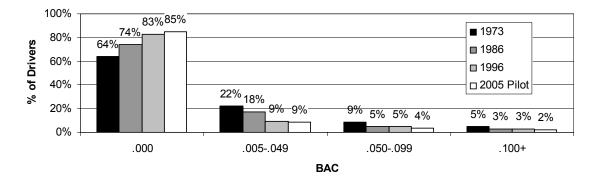
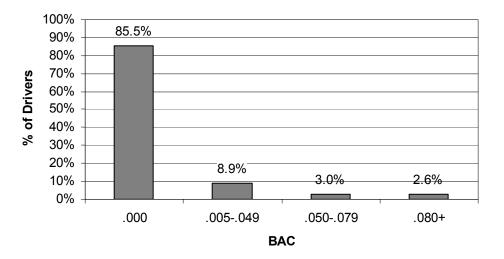



Figure 5. BACs of Drivers in National Surveys

#### **Pilot Study**

#### **Breath Test Alcohol Results**

As illustrated in Table 15-16 and Figure 6, BAC of drivers in 2005 reveal the greatest percentage of BAC-positive drivers under .05 levels, at 8.9 percent and the least in the .08 or higher category, at 2.6 percent. Of course the predominant category is the BAC-negative group (85.5%). We used a cutoff of .005 to identify BAC negative in order to provide a slight margin to reduce the possibility of false positives.


|                   | Ν   | %     |
|-------------------|-----|-------|
| < 0.005           | 650 | 85.5% |
| ≥ 0.005 and < .05 | 68  | 8.9%  |
| ≥ .05 and < .08   | 23  | 3.0%  |
| ≥ .08             | 20  | 2.6%  |
| Total # samples   | 761 | 100%  |

| Table | 15. | Breath | Test Results |
|-------|-----|--------|--------------|
|-------|-----|--------|--------------|

Table 16 presents the BAC distribution of drivers testing at or above .08. The majority of these 20 cases were at BACs from .100 to .149. The three highest BACs as measured in breath are .150, .154, and .183.

Table 16. Breath Test Results: Distribution of BACs above .08

| BAC Category   | Frequency | Percent |
|----------------|-----------|---------|
| .080099        | 4         | 20%     |
| .100149        | 13        | 65%     |
| .150 and above | 3         | 15%     |
| Total          | 20        | 100%    |





Tables 17 and 18 look at the BAC categories by race and ethnicity (including observational race/ethnicity where self reported race/ethnicity is missing). The first table uses the new BAC categories; the second table uses the BAC categories from the previous three studies.

|             |                     | _             |        | BAC     | Categories |       |         |       |
|-------------|---------------------|---------------|--------|---------|------------|-------|---------|-------|
|             |                     | _             | < .005 | .005049 | .050079    | .080+ | Missing | Total |
|             | Asian               | Count         | 30     | 2       | 1          | 2     | 2       | 37    |
| Afri<br>Ame |                     | % within Race | 81.1%  | 5.4%    | 2.7%       | 5.4%  | 5.4%    | 100%  |
|             | Black /             | Count         | 49     | 7       | 1          | 2     | 3       | 62    |
|             | African<br>American | % within Race | 79.0%  | 11.3%   | 1.6%       | 3.2%  | 4.8%    | 100%  |
|             | Hispanic            | Count         | 62     | 10      | 0          | 0     | 3       | 75    |
|             | •                   | % within Race | 82.7%  | 13.3%   | .0%        | .0%   | 4.0%    | 100%  |
| ony         | Other               | Count         | 24     | 0       | 2          | 0     | 6       | 32    |
|             |                     | % within Race | 75.0%  | .0%     | 6.3%       | .0%   | 18.8%   | 100%  |
|             | White               | Count         | 391    | 43      | 10         | 13    | 36      | 493   |
|             |                     | % within Race | 79.3%  | 8.7%    | 2.0%       | 2.6%  | 7.3%    | 100%  |
|             |                     | Count         | 556    | 62      | 14         | 17    | 50      | 699   |
| Total       |                     | % within Race | 79.5%  | 8.9%    | 2.0%       | 2.4%  | 7.2%    | 100%  |

Table 17. Race/Ethnicity by BAC Categories

|               |                     |               |        |         | -          |       |         |       |
|---------------|---------------------|---------------|--------|---------|------------|-------|---------|-------|
|               |                     | _             |        | BAC     | Categories |       |         |       |
|               |                     |               | < .005 | .005049 | .050099    | .100+ | Missing | Total |
|               | Asian               | Count         | 30     | 2       | 1          | 2     | 2       | 37    |
|               |                     | % within Race | 81.1%  | 5.4%    | 2.7%       | 5.4%  | 5.4%    | 100%  |
|               | Black /             | Count         | 49     | 7       | 1          | 2     | 3       | 62    |
|               | African<br>American | % within Race | 79.0%  | 11.3%   | 1.6%       | 3.2%  | 4.8%    | 100%  |
| Race/         | Hispanic            | Count         | 62     | 10      | 0          | 0     | 3       | 75    |
| Ethni<br>city | -                   | % within Race | 82.7%  | 13.3%   | .0%        | .0%   | 4.0%    | 100%  |
| ony           | Other               | Count         | 24     | 0       | 2          | 0     | 6       | 32    |

.0%

43

62

8.7%

8.9%

6.3%

2.6%

2.4%

13

17

.0%

10

14

2.0%

2.0%

18.8%

7.3%

7.2%

36

50

75.0%

79.3%

79.5%

391

556

% within Race

% within Race

% within Race

Count

Count

White

Total

Table 18. Race/Ethnicity by Previous BAC Categories

Assessment of PAS readings by BAC category indicates the greatest correspondence between devices (PAS and PBT) at the < .005 and .005 – 049 ranges. Unfortunately, due to administration difficulties, the PAS device was not used in 12 percent of the cases in our pilot test. Cases in the 050 - .079 and .080+ range showed the least correspondence. The PAS requires the surveyors to be fairly close to the driver in order to get an accurate reading. We suspect the discrepancy between the device results is due to surveyors not properly handling the PAS device. This needs further investigation. The results of this comparison appear in Table 19. The shaded areas highlight the subjects for which the two readings were fairly concordant. Given the sensitivity of the instruments we show .01 and 0 on the PAS tube concordant with the PBT.

100%

100%

100%

493

699

|         |          | -      | BAC Catego | ries from PB | Г     |       |
|---------|----------|--------|------------|--------------|-------|-------|
|         |          | < .005 | .005 –.049 | .050079      | .080+ | Total |
|         | 0        | 312    | 29         | 7            | 8     | 356   |
|         | .01      | 167    | 21         | 3            | 0     | 191   |
|         | .02      | 8      | 2          | 1            | 0     | 11    |
|         | .03      | 2      | 2          | 1            | 0     | 5     |
| PAS     | .04      | 0      | 0          | 0            | 1     | 1     |
| Reading | .05      | 2      | 1          | 0            | 0     | 3     |
|         | .06      | 0      | 0          | 0            | 1     | 1     |
|         | .08      | 0      | 0          | 0            | 1     | 1     |
|         | .10      | 1      | 0          | 0            | 0     | 1     |
|         | Not used | 64     | 7          | 2            | 6     | 79    |
| Total   |          | 556    | 62         | 14           | 17    | 649   |

Table 19. PAS Reading by BAC Categories – NRS Pilot Study

### **Drug Results**

Six hundred thirty-nine oral fluid samples were analyzed for drugs. Though 642 oral fluid samples were collected, 3 containers leaked during transport and sufficient volume to conduct analyses was available only for the remaining 639. Of these 639, there were also 394 blood samples available for analysis. Blood samples were provided by 406 subjects; however, 12 were unable to provide sufficient volume to permit analysis. Every subject who provided a blood sample also provided an oral fluid sample.

Table 20 provides a description of the number and percentage of positive drug and alcohol results as determined by oral fluid and blood specimens<sup>4</sup>. Of the 639 drivers who provided samples tested for drugs, 22.7 percent tested positive for drugs, alcohol, or drugs and alcohol combined. Interestingly, the majority were positive only for drugs. The lowest percentage had a combination of alcohol and drugs.

|                 | Ν   | %     |
|-----------------|-----|-------|
| Drug Only       | 85  | 13.3% |
| Alcohol Only    | 49  | 7.7%  |
| Drug & Alcohol  | 11  | 1.7%  |
| Negative        | 494 | 77.3% |
| Total # Samples | 639 | 100%  |

Table 20. Oral and Blood Specimen Results

Table 21 presents summary oral fluid and blood results by racial/ethnic group. The groups were quite similar in terms of the proportion testing negative. Because of small sample size, one should not draw any firm conclusions from these data.

| Race/Ethnicity         | Negative   | Drugs Only | Alcohol Only | Drugs &<br>Alcohol |
|------------------------|------------|------------|--------------|--------------------|
| Asian                  | 26 (78.8%) | 3 (9.1%)   | 4 (12.1%)    | 0                  |
| Black/African American | 46 (86.8%) | 3 (5.7%)   | 3 (5.7%)     | 1 (1.9%)           |

<sup>&</sup>lt;sup>4</sup> It is important to note that within this report, drug-positive refers only to the drugs examined (screened for) in this study. Participating drivers may have been positive for other drugs not covered within the scope of this project.

| Total    | 494         | <u> </u>   | <u>49</u> | 11        |
|----------|-------------|------------|-----------|-----------|
| White    | 338 (74.9%) | 68 (15.1%) | 35 (7.8%) | 10 (2.2%) |
| Other    | 23 (92.2%)  | 1 (4.0%)   | 1 (4.0%)  | 0         |
| Hispanic | 61 (79.2%)  | 10 (13.0%) | 6 (7.8%)  | 0         |

Tables 22 and 23 show the results of cross tabs conducted to assess self-reported use of any drugs that "may have affected driving in last year" (Table 22) and "tonight" (Table 23) versus the results of drivers who tested positive for drugs in oral fluid or blood. As can be seen in Table 22, approximately 5 percent of the respondents self-reported use in the past year of drugs they thought might impair their driving and also had a positive drug test result. Almost 10 percent did not self-report such drug use, but had a positive drug result on either the oral fluid or blood test. Thus, approximately two-thirds of those who tested positive for drugs on the night of the survey did not admit using impairing drugs during the previous year.<sup>5</sup>

|                                                           |     | DRUGPOS |       |     |  |
|-----------------------------------------------------------|-----|---------|-------|-----|--|
|                                                           |     | No      | Total |     |  |
| Have you taken any meds or<br>drugs in the past year that | Yes | 107     | 32    | 139 |  |
| you think may have affected your driving?                 | No  | 418     | 62    | 480 |  |
| Total                                                     | -   | 525     | 94    | 619 |  |

## Table 22. Have you taken any meds or drugs in the past year that you think may have affected your driving? by Drug Test Positive (DRUGPOS)

For both Table 22 and 23 the total number of positive drug tests is 94 rather than the 96 reported earlier. That is because two of the subjects who took a drug test did not answer the self-report question on the survey. Table 23 displays the results of the question about drug use the evening of the survey compared with the oral fluid and blood tests. Here the disparity between self-report and results of analyses of biological samples is even more dramatic. Of the 15.2 percent who tested positive for drugs, only 2 of 94 admitted having consumed impairing drugs that evening. Though many of the positive drug test results could have resulted from use in the prior day or days, the disparity of self report for the past year and evening from objective test results may speak to a limited accuracy of self-report of drug use for accurate measurement of actual drug use in situations such as these. This concern should be tempered by the understanding that some respondents may have felt that the drugs they were taking did not have an impairing effect. Additionally, self-report does have its merits when one is trying to measure changes over time in response patterns.

Table 23. Have you taken any meds or drugs tonight that you think may affect your driving? by Drug Test Positive (DRUGPOS)

|                                                         |          | DRUGPOS |     |       |  |  |
|---------------------------------------------------------|----------|---------|-----|-------|--|--|
|                                                         | <u>.</u> | No      | Yes | Total |  |  |
| Have you taken any meds or drugs tonight that you think | Yes      | 7       | 2   | 9     |  |  |
| may affect your driving?                                | No       | 518     | 92  | 610   |  |  |
| Total                                                   |          | 525     | 94  | 619   |  |  |

<sup>&</sup>lt;sup>5</sup> Note that respondents were responding to a question on drugs that they thought might "have affected your driving." It is possible that some drivers, for some of the drugs, may not have considered the drugs they took to have an impairing effect on driving.

Tables 24–29 compare drivers self-report drug use versus drug test results for four of the NIDA 5 drugs of abuse and diazepam. There were no positive test results for Phencyclidine (PCP) and thus we did not create a table for that drug. The same general pattern observed in the summary tables above appear when individual drug classes are the subject of the question. Marijuana was the most frequently identified drug in the biological samples and most frequently having self-reported use. However, self-report remained drastically lower than the objective results for this individual drug as well. Recent use of amphetamines including dietary supplements was more frequently reported than amphetamines alone, but again, dramatically underreported, when compared to the objective test results.

|                         |     |                                            |       | Sel         | f Report l   | Jsed Cocai    | ne             |         |       |
|-------------------------|-----|--------------------------------------------|-------|-------------|--------------|---------------|----------------|---------|-------|
|                         |     |                                            | Never | 1+<br>Years | Past<br>Year | Past<br>Month | Past 2<br>Days | Tonight | Total |
|                         | Na  | Count<br>% within Tested                   | 565   | 29          | 3            | 0             | 1              | 0       | 598   |
| Tested                  | No  | Positive for<br>Cocaine                    | 94.5% | 4.8%        | .5%          | 0             | .2%            | 0       | 100%  |
| Positive for<br>Cocaine |     | Count<br>% within Tested                   | 11    | 3           | 0            | 0             | 0              | 0       | 14    |
|                         | Yes | Positive for<br>Cocaine                    | 78.6% | 21.4%       | .0%          | 0             | .0%            | 0       | 100%  |
|                         | •   | Count                                      | 576   | 32          | 3            | 0             | 1              | 0       | 612   |
| Total                   |     | % within Tested<br>Positive for<br>Cocaine | 94.1% | 5.2%        | .5%          | 0             | .2%            | 0       | 100%  |

#### Table 24. Tested Positive for Cocaine by Self-Report Used Cocaine

|                         |          |                                         | Self Report Used Heroine, Morphine or Codeine |             |              |               |                |         |       |
|-------------------------|----------|-----------------------------------------|-----------------------------------------------|-------------|--------------|---------------|----------------|---------|-------|
|                         |          |                                         | Never                                         | 1+<br>Years | Past<br>Year | Past<br>Month | Past 2<br>Days | Tonight | Total |
|                         | <u>.</u> | Count                                   | 557                                           | 38          | 7            | 5             | 0              | 0       | 607   |
| Tested                  | No       | % within Tested<br>Positive for Opiates | 91.8%                                         | 6.3%        | 1.2%         | .8%           | 0              | 0       | 100%  |
| Positive for<br>Opiates | Yes      | Count                                   | 6                                             | 0           | 1            | 0             | 0              | 0       | 7     |
| opiates                 |          | % within Tested<br>Positive for Opiates | 85.7%                                         | .0%         | 14.3%        | .0%           | 0              | 0       | 100%  |
| Total                   |          | Count                                   | 563                                           | 38          | 8            | 5             | 0              | 0       | 614   |
|                         |          | % within Tested<br>Positive for Opiates | 91.7%                                         | 6.2%        | 1.3%         | .8%           | 0              | 0       | 100%  |

#### Table 25. Tested Positive for Opiates by Self-Report Used Heroin, Morphine, or Codeine

#### Table 26. Tested Positive for Amphetamines by Self-Report Used Amphetamines

|                  |     |                                                 |       | Self Report Used Amphetamines |              |               |                |         |       |
|------------------|-----|-------------------------------------------------|-------|-------------------------------|--------------|---------------|----------------|---------|-------|
|                  |     |                                                 | Never | 1+<br>Years                   | Past<br>Year | Past<br>Month | Past 2<br>Days | Tonight | Total |
|                  |     | Count                                           | 530   | 50                            | 12           | 6             | 4              | 2       | 604   |
| Tested Positive  | No  | % within Tested<br>Positive for<br>Amphetamines | 87.7% | 8.3%                          | 2.0%         | 1.0%          | .7%            | .3%     | 100%  |
| for Amphetamines |     | Count                                           | 11    | 0                             | 0            | 0             | 0              | 1       | 12    |
|                  | Yes | % within Tested<br>Positive for<br>Amphetamines | 91.7% | .0%                           | .0%          | .0%           | .0%            | 8.3%    | 100%  |
|                  |     | Count                                           | 541   | 50                            | 12           | 6             | 4              | 3       | 616   |
| Total            |     | % within Tested<br>Positive for<br>Amphetamines | 87.8% | 8.1%                          | 1.9%         | 1.0%          | .6%            | .5%     | 100%  |

|                  |     |                                                 | Self Report used Amphetamines<br>including Dietary Supplements |             |              |               |                |         |       |
|------------------|-----|-------------------------------------------------|----------------------------------------------------------------|-------------|--------------|---------------|----------------|---------|-------|
|                  |     |                                                 | Never                                                          | 1+<br>Years | Past<br>Year | Past<br>Month | Past 2<br>Days | Tonight | Total |
|                  |     | Count                                           | 335                                                            | 84          | 74           | 41            | 44             | 26      | 604   |
| Tested Positive  | No  | % within Tested<br>Positive for<br>Amphetamines | 55.5%                                                          | 13.9%       | 12.3%        | 6.8%          | 7.3%           | 4.3%    | 100%  |
| for Amphetamines |     | Count                                           | 7                                                              | 0           | 0            | 1             | 3              | 1       | 12    |
|                  | Yes | % within Tested<br>Positive for<br>Amphetamines | 58.3%                                                          | .0%         | .0%          | 8.3%          | 25.0%          | 8.3%    | 100%  |
|                  |     | Count                                           | 342                                                            | 84          | 74           | 42            | 47             | 27      | 616   |
| Total            |     | % within Tested<br>Positive for<br>Amphetamines | 55.5%                                                          | 13.6%       | 12.0%        | 6.8%          | 7.6%           | 4.4%    | 100%  |

## Table 27. Tested Positive for Amphetamines by Self-Report Used Amphetamines

### Table 28. Tested Positive for Cannabinoids by Self-Report Used Marijuana

|                  |     |                                                 | Self-Report Used Marijuana |             |              |               |                |         |       |
|------------------|-----|-------------------------------------------------|----------------------------|-------------|--------------|---------------|----------------|---------|-------|
|                  |     |                                                 | Never                      | 1+<br>Years | Past<br>Year | Past<br>Month | Past 2<br>Days | Tonight | Total |
|                  |     | Count                                           | 445                        | 94          | 19           | 9             | 2              | 1       | 570   |
| Tested Positive  | No  | % within Tested<br>Positive for<br>Cannabinoids | 78.1%                      | 16.5%       | 3.3%         | 1.6%          | .4%            | .2%     | 100%  |
| for Cannabinoids |     | Count                                           | 15                         | 11          | 2            | 7             | 6              | 3       | 44    |
|                  | Yes | % within Tested<br>Positive for<br>Cannabinoids | 34.1%                      | 25.0%       | 4.5%         | 15.9%         | 13.6%          | 6.8%    | 100%  |
|                  | •   | Count                                           | 460                        | 105         | 21           | 16            | 8              | 4       | 614   |
| Total            |     | % within Tested<br>Positive for<br>Cannabinoids | 74.9%                      | 17.1%       | 3.4%         | 2.6%          | 1.3%           | .7%     | 100%  |

|                        |     |                                                    | Self-Report Used Benzo |             |              |               |                |         |       |
|------------------------|-----|----------------------------------------------------|------------------------|-------------|--------------|---------------|----------------|---------|-------|
|                        |     |                                                    | Never                  | 1+<br>Years | Past<br>Year | Past<br>Month | Past 2<br>Days | Tonight | Total |
|                        |     | Count                                              | 546                    | 37          | 12           | 4             | 2              | 1       | 602   |
| Tested<br>Positive for | No  | % within Tested<br>Positive for<br>Benzodiazepines | 90.7%                  | 6.1%        | 2.0%         | .7%           | .3%            | .2%     | 100%  |
| Benzodiazepines        |     | Count                                              | 5                      | 3           | 1            | 0             | 1              | 0       | 10    |
|                        | Yes | % within Tested<br>Positive for<br>Benzodiazepines | 50.0%                  | 30.0%       | 10.0%        | .0%           | 10.0%          | .0%     | 100%  |
|                        |     | Count                                              | 551                    | 40          | 13           | 4             | 3              | 1       | 612   |
| Total                  |     | % within Tested<br>Positive for<br>Benzodiazepines | 90.0%                  | 6.5%        | 2.1%         | .7%           | .5%            | .2%     | 100%  |

#### Table 29. Tested Positive for Benzodiazepines by Self-Report Used Benzodiazepines

## **Objective Measures of Drug Use**

#### Summary

As noted earlier, 639 oral fluid samples were analyzed for drugs. Though 642 oral fluid samples were collected, 3 containers leaked during transport and sufficient volume to conduct analyses was available only for the remaining 639. Of these 639, there were also 394 blood samples available for analysis. Blood samples were provided by 406 subjects; however, 12 were unable to provide sufficient volume to permit analysis. Every subject who provided a blood sample also provided an oral fluid sample.

Drugs were detected in 96 cases:

- 33 paired samples (34.4%) were positive via oral fluid and blood
- 28 (29.2%) were positive via oral fluid where blood was refused
- 29 (30.2%) were positive via blood only
- 6 (6.2%) were positive via oral fluid only

In the subjects where blood only was positive for therapeutic drugs, the concentrations detected were all in the therapeutic range and would not be considered at a high enough level to cause impairment.

Drugs known to cause impairment were detected in many of the specimens and included marijuana, benzodiazepines (diazepam, alprazolam), carisoprodol, the narcotics (oxycodone, codeine, hydrocodone), methadone, tramadol, and cocaine.

#### Antidepressants

The antidepressants/selective serotonin uptake inhibitors (SSRIs) such as fluoxetine and sertraline can cause impairment in rare circumstances where extremely high blood concentrations are measured. The data reviewed does not suggest that the concentrations found would have a significant effect on one's ability to operate a motor vehicle. Fluoxetine and its metabolite norfluoxetine were found in four blood samples with corresponding oral fluid negative samples; and in four paired samples. Sertraline was found in five blood samples with

correspondingly negative oral fluid specimens; and in five pairs of samples both were positive for the drug.

## Benzodiazepines

Benzodiazepines are known to cause impairment in traffic cases when present at high level. There were four cases in which alprazolam was reported, however, in two of the subjects, the concentrations were so low (1 ng/mL and 4 ng/mL) it is highly unlikely that the direct pharmacological effects of the drug would cause impairment. In the other two cases (27 ng/mL and 19 ng/mL in the presence of THC), while the concentrations were within the therapeutic concentration range, it should be noted that the desired/therapeutic effect of alprazolam is sedation - which would have a detrimental effect on driving a motor vehicle.

In both of these subjects, corresponding oral fluid analysis did not detect alprazolam and it is likely that the cross-reactivity on immunoassay tests for alprazolam is low. However, it is known that benzodiazepines do not appear in the oral fluid in very high quantity due to their high level of protein binding.

The most common benzodiazepine, diazepam (Valium<sup>™</sup>) and/or its metabolites nordiazepam, oxazepam and temazepam were detected in 4 blood samples and not in the corresponding oral fluid specimens. Diazepam and nordiazepam were found in one oral fluid sample, the corresponding blood sample was refused.

## Carisoprodol

In one case, carisoprodol (Soma<sup>TM</sup>) and its metabolite meprobamate were detected in both blood and oral fluid. Even at therapeutic concentrations, this may cause driving impairment as the desired effect is sedation.

## Marijuana

The most prevalent drug detected was marijuana. There appeared to be a strong positive correlation between the oral fluid and blood tests, the only discrepancies (negative oral fluid and a positive blood) are from 10 cases where the inactive metabolites were detected in blood, and not the active tetrahydrocannabinol (THC).

A positive metabolite result (THCA) with a negative parent compound (THC) is consistent with remote use - in these cases a negative oral fluid would not miss an impaired driver.

THC or its metabolites were detected in 37 oral fluid cases and in 23 blood specimens. Thirteen had corresponding positive oral fluid samples; 10 contained only inactive THC metabolites, as described above.

In oral fluid, the active parent compound, tetrahydrocannabinol (THC) was detected in all cases where marijuana use was determined. In 22 samples where THC was detected in oral fluid, a blood collection was refused.

## Cocaine

Cocaine or its metabolites were detected in 14 oral fluid samples and only 4 blood samples, hence oral fluid appears to be a better specimen type for the detection of recent cocaine use. Of the other 10 oral fluid positive samples, 5 had corresponding blood samples which were negative, and 5 subjects refused to give blood.

There was only one blood sample containing parent cocaine, whereas oral fluid detected 13 positives. The presence of parent drug, (cocaine) in either specimen indicated the presence of active drug in the system.

#### **Other Stimulants**

Methamphetamine, amphetamine, pseudoephedrine, phenylpropanolamine and phentermine are members of the same sympathomimetic stimulant group of drugs. They were detected in a small number of cases.

#### **Other Drugs**

The other drugs detected (butalbital, amitryptiline) were only present in one or two cases, and given the reported concentrations, none at a concentration to cause impairment. Overall:

- oral fluid specimen collection compliance was considerably better than blood
- oral fluid accounted for more total drug positives than blood
- there were significantly more positive results for the impairing drugs cocaine and THC in oral fluid compared to blood
- low saliva:plasma ratio continues to cause difficulty in oral fluid detection of benzodiazepines

Table 30 presents each of the drug positive results for both oral fluid and blood, and Table 31 summarizes those results.

| 1NegativeTHC-COOH 52NegativeSertraline 313NegativeAlprazolam 14NegativeAlprazolam 45NegativeDiazepam 15; Nordiazepam 96NegativeDiazepam 582, Nordiazepam 881, Oxaze7NegativeFluoxetine 14; Norfluoxetine 138NegativeFluoxetine 17; Norfluoxetine 149NegativeOxycodone 10; Pseudoephedrine 6 | pam 140,               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 3NegativeAlprazolam 14NegativeAlprazolam 45NegativeDiazepam 15; Nordiazepam 96NegativeDiazepam 582, Nordiazepam 881, Oxazepam 317NegativeFluoxetine 14; Norfluoxetine 138NegativeFluoxetine 17; Norfluoxetine 149NegativeOxycodone 10; Pseudoephedrine 8                                    | pam 140,               |
| 4NegativeAlprazolam 45NegativeDiazepam 15; Nordiazepam 96NegativeDiazepam 582, Nordiazepam 881, Oxaze7NegativeTemazepam 317NegativeFluoxetine 14; Norfluoxetine 138NegativeFluoxetine 17; Norfluoxetine 149NegativeOxycodone 10; Pseudoephedrine 6                                          | pam 140,               |
| 5NegativeDiazepam 15; Nordiazepam 9<br>Diazepam 582, Nordiazepam 881, Oxaze<br>Temazepam 316NegativeTemazepam 317NegativeFluoxetine 14; Norfluoxetine 138NegativeFluoxetine 17; Norfluoxetine 149NegativeOxycodone 10; Pseudoephedrine 8                                                    | pam 140,               |
| Diazepam 582, Nordiazepam 881, Oxaze6Negative7Negative8Negative9Negative0Section 14; Norfluoxetine 149Negative0Negative9Negative0Section 10; Pseudoephedrine 6                                                                                                                              | pam 140,               |
| 6NegativeTemazepam 317NegativeFluoxetine 14; Norfluoxetine 138NegativeFluoxetine 17; Norfluoxetine 149NegativeOxycodone 10; Pseudoephedrine 8                                                                                                                                               | pam 140,               |
| 8     Negative     Fluoxetine 17; Norfluoxetine 14       9     Negative     Oxycodone 10; Pseudoephedrine 8                                                                                                                                                                                 |                        |
| 9 Negative Oxycodone 10; Pseudoephedrine 8                                                                                                                                                                                                                                                  |                        |
|                                                                                                                                                                                                                                                                                             |                        |
|                                                                                                                                                                                                                                                                                             | 87                     |
| 10 Negative Oxycodone 7                                                                                                                                                                                                                                                                     |                        |
| 11 Negative Sertraline 19                                                                                                                                                                                                                                                                   |                        |
| 12 Negative Fluoxetine 88, NorFluoxetine 178                                                                                                                                                                                                                                                | 3                      |
| 13 Negative Phentermine 19 ; THC-COOH 14                                                                                                                                                                                                                                                    | 1                      |
| 14 Negative Pseudoephedrine 340; Phenylpropanola                                                                                                                                                                                                                                            | i <mark>mine 16</mark> |
| 15 Negative Pseudoephedrine 46 Pseudoephedrine 46                                                                                                                                                                                                                                           |                        |
| 16 Negative Alprazolam 27                                                                                                                                                                                                                                                                   |                        |
| 17 Negative Hydrocodone 11                                                                                                                                                                                                                                                                  |                        |
| 18 Negative Pseudoephedrine 19                                                                                                                                                                                                                                                              |                        |
| 19 Negative Pseudoephedrine 19                                                                                                                                                                                                                                                              |                        |
| 20 Negative Pseudoephedrine 160; Phenylpropanola                                                                                                                                                                                                                                            | imine 12               |
| 21 Negative THC-COOH 17                                                                                                                                                                                                                                                                     |                        |
| 22 Negative THC-COOH 18                                                                                                                                                                                                                                                                     |                        |
| 23 Negative THC-COOH 9                                                                                                                                                                                                                                                                      |                        |
| 24 Negative THC-COOH 11                                                                                                                                                                                                                                                                     |                        |

#### Table 30. Specimens Positive for Drugs\*

| 25 | Negative                           | THC-COOH 12; Sertraline 158                            |
|----|------------------------------------|--------------------------------------------------------|
| 26 | Negative                           | THC-COOH 26                                            |
| 27 | Negative                           | Fluoxetine 39; Norfluoxetine 40                        |
| 28 | Negative                           | Sertraline 17                                          |
| 29 | Negative                           | THC-COOH 5                                             |
| 30 | Amitriptyline 23; Nortriptyline 12 | Amitryptyline 15; Nortriptyline 6                      |
| 50 | Amphetamine 23, Methamphetamine    | Annu yptymie 10, Noruptymie 0                          |
| 31 | 37                                 | Negative                                               |
| 32 | Amphetamine 122                    | Amphetamine 48                                         |
| 33 | Butalbital 446; Codeine 86         | Refused                                                |
| 34 | Butalbital 456                     | Refused                                                |
| 35 | BZE 3.5; COC 12.1                  | Refused                                                |
| 36 | BZE 56                             | Negative                                               |
| 37 | Carisoprodol 18; Meprobamate >1000 | Carisoprodol 100; Meprobamate 2000                     |
| 38 | COC > 1000 ; BZE >1000; THC 11     | Refused                                                |
| 39 | COC > 500; BZE 303                 | COC 54; BZE 132; Cocaethylene 10                       |
| 40 | COC 22; BZE 20                     | BZE 65                                                 |
| 41 | COC 23; BZE 97                     | BZE 157; THC-COOH 29                                   |
| 42 | COC 4                              | Negative                                               |
| 43 | COC 87; BZE 19                     | Negative                                               |
| 44 | COC 9.4                            | Negative                                               |
| 45 | COC 9; BZE 3                       | Negative                                               |
| 46 | Fluoxetine 35                      | Fluoxetine 71; Norfluoxetine 148                       |
| 47 | Fluoxetine 40, THC 82              | Fluoxetine 36; Norfluoxetine 89                        |
| 48 | Fluoxetine 51; Norfluoxetine 55    | Fluoxetine 54; Norfluoxetine 99                        |
| 49 | Fluoxetine 71                      | Fluoxetine 211; Norfluoxetine 169                      |
| 50 | Hydrocodone 20, Oxycodone 4        | Hydrocodone 14                                         |
| 51 | Hydrocodone 36                     | Refused                                                |
| 52 | Hydrocodone 88                     | Hydrocodone 7                                          |
| 53 | Methadone > 1000                   | Refused                                                |
| 54 | Methamp 677, Amp 71, THC 420       | Refused                                                |
|    | Methamphetamine 4876;              |                                                        |
| 55 | Amphetamine 541                    | Methamphetamine 942; Amphetamine 117                   |
| 56 | Nordiazepam 9; Diazepam 8          | Refused                                                |
| 57 | Phentermine > 100; THC 1.3         | Phentermine 129                                        |
| 58 | Pseudoephedrine > 100; THC 72.6    | Pseudoephedrine 50; THC 2; OH-THC 0.8; THC-COOH 30     |
| 59 | Sertraline 18.4                    | Sertraline 79; Diazepam 34, Nordiazepam 45, Oxazepam 8 |
| 60 | Sertraline 22                      | Sertraline 18                                          |
| 61 | Sertraline 24                      | Sertraline 112                                         |
| 62 | Sertraline 62                      | Sertraline 203                                         |
| 63 | THC 6.6                            | Refused                                                |
| 64 | THC > 100                          | Refused                                                |
| 65 | THC > 100                          | THC 3.8; 11-OH-THC 1.2; THC-COOH 144                   |
| 66 | THC > 400                          | Refused                                                |
| 67 | THC > 500                          | THC 27; 11-OH-THC 13; THC-COOH 247                     |
| 68 | THC 0.9                            | Refused                                                |
| 69 | THC 1.3                            | THC 1.4; 11-OH-THC 1; THC-COOH 89                      |
| 70 | THC 1.7                            | THC-COOH 12                                            |

| 71 | THC 10.6                      | THC 0.5; 11-OH-THC 0.6; THC-COOH 29                 |  |  |
|----|-------------------------------|-----------------------------------------------------|--|--|
| 72 | THC 10.6                      | Refused                                             |  |  |
| 73 | THC 10.8                      | Refused                                             |  |  |
| 74 | THC 11.5; Meth >500, AMP >500 | Methamp 175; Amp 59; THC-COOH 29                    |  |  |
| 75 | THC 13.7                      | Refused                                             |  |  |
| 76 | THC 14.1; COC 8; BZE 25       | Refused                                             |  |  |
| 77 | THC 15.6                      | Refused                                             |  |  |
| 78 | THC 168; COC 9                | Refused                                             |  |  |
| 79 | THC 19                        | Refused                                             |  |  |
| 80 | THC 2.3                       | Refused                                             |  |  |
| 81 | THC 21.2                      | THC 0.8; THC-COOH 41                                |  |  |
| 82 | THC 21.2; COC 75, BZE 10      | BZE 104; THC 3.8; 11-OH-THC 2.2; THC-COOH 209       |  |  |
| 83 | THC 23.4; Sertraline 8        | THC 1.6; 11-OH-THC 0.6; THC-COOH 61; Sertraline 17  |  |  |
| 84 | THC 24.7                      | Refused                                             |  |  |
| 85 | THC 3.8                       | THC 0.5; THC-COOH 13                                |  |  |
| 86 | THC 37.9                      | Refused                                             |  |  |
| 87 | THC 4.4                       | Refused                                             |  |  |
| 88 | THC 53.9; COC >500; BZE 422   | Refused                                             |  |  |
| 89 | THC 6.7                       | Refused                                             |  |  |
| 90 | THC 62.2                      | Refused                                             |  |  |
| 91 | THC 65                        | Refused                                             |  |  |
| 92 | THC 7.4                       | Refused                                             |  |  |
| 93 | THC 7.8                       | THC 0.8; THC-COOH 31                                |  |  |
| 94 | THC 9.8                       | Alprazolam 19, THC 3.6; 11-OH-THC 6.1; THC-COOH 124 |  |  |
| ~- |                               | Diazepam 6, Tramadol 19; Desmethyltramadol 28,      |  |  |
| 95 | Tramadol 160.4                | Sertraline 32                                       |  |  |
| 96 | Tramadol 1724                 | Tramadol 130; Desmethyltramadol 22                  |  |  |

\*See color key in Table 31.

## Table 31. Summary of Total Drug Positive Results by Matrix Tested

| Color Key                          |    |  |  |  |  |
|------------------------------------|----|--|--|--|--|
| Both Oral Fluid & Blood Positive   | 33 |  |  |  |  |
| Oral Fluid Positive                | 6  |  |  |  |  |
| Blood Positive                     | 29 |  |  |  |  |
| Oral Fluid Positive; Blood Refused | 28 |  |  |  |  |
| Total                              | 96 |  |  |  |  |

In Table 32, the overall results for drug positives are summarized by drug and sample type.

| Table 32. Overall Drug | ı Results (Include | s Specimens Positiv | e for Multinle Drugs) |
|------------------------|--------------------|---------------------|-----------------------|
| Tuble of Overall Drug  | 11000100 (11101000 |                     | c for manapic brags,  |

|                             | Positive S | amples |
|-----------------------------|------------|--------|
| Drug Class                  | Oral Fluid | Blood  |
| Amitriptyline/nortriptyline | 1          | 1      |
| Amphetamine/methamphetamine | 4          | 3      |
| Barbiturates                | 2          | 0      |
| Benzodiazepines             | 1          | 6      |
| Carisoprodol/meprobamate    | 1          | 1      |
| Cocaine and metabolites     | 14         | 1      |
| Fluoxetine                  | 4          | 8      |
| Methadone                   | 1          | 0      |

| Opiates (hydrocodone, oxycodone, codeine)       | 4  | 4  |
|-------------------------------------------------|----|----|
| Pseudoephedrine/phentermine/phenylpropanolamine | 2  | 8  |
| Sertraline                                      | 5  | 9  |
| THC                                             | 37 | 20 |
| Tramadol                                        | 2  | 2  |
| Total                                           | 78 | 66 |

In Table 33, we summarize the combined results of the oral fluid and blood tests for drugs other than alcohol. Successful laboratory analyses were conducted on 639 drivers. Oral fluid was analyzed for all of these drivers and blood for 394 of them. All drivers who provided blood also provided oral fluid. Thus, 14 of these 639 drivers, or 2.2 percent tested positive for cocaine. The most frequently encountered drug was cannabinoids, with 47 or 7.4 percent of drivers having THC or a metabolite of that substance on board. One must bear in mind that metabolites of THC appear in blood well after the active phase of its potentially impairing effect. Cannabinoids were followed in frequency of appearance by two stimulants, cocaine and amphetamines, each of which presented 2.2 percent of the time in tested drivers. Benzodiazepines (Valium and its relatives) 1.6 percent, Sertraline (Zoloft) 1.6 percent, Fluoxetine (Prozac) 1.3 percent were the next most frequently encountered drugs. Opiates were encountered in 1.1 percent of the tested drivers. Other drugs appeared much less frequently. As indicated in Table 33, many drivers tested positive for more than one drug. Thus we provide as the last line of this table the number of drivers who tested positive for any drug, 96. This constitutes 15.0 percent of the total group who provided oral fluid or oral fluid and blood.

| Drug                                             | N  | % (Out of Valid Drug<br>Tests = 639) |
|--------------------------------------------------|----|--------------------------------------|
| Cocaine                                          | 14 | 2.2%                                 |
| Opiates                                          | 7  | 1.1%                                 |
| Amphetamines                                     | 14 | 2.2%                                 |
| Cannabanoids                                     | 47 | 7.4%                                 |
| Benzodiazepines                                  | 10 | 1.6%                                 |
| Barbiturates                                     | 2  | 0.3%                                 |
| Methadone                                        | 1  | 0.2%                                 |
| Tramadol                                         | 2  | 0.3%                                 |
| Sertraline                                       | 10 | 1.6%                                 |
| Fluoxetine                                       | 8  | 1.3%                                 |
| Tricyclic Antidepressants                        | 1  | 0.2%                                 |
| Carisoprodol                                     | 1  | 0.2%                                 |
| Driver tested positive for<br>any of above drugs | 96 | 15.0%                                |

Table 33. Drivers Testing Positive for Drugs other than Alcohol in either Oral Fluid or Blood

#### Ethanol

The results for ethanol are given in Tables 34 and 35. Some specimens correlate well between the breath, oral fluid, and blood samples, while others are difficult to explain.

Saliva has been shown to equilibrate rapidly with blood in terms of its alcohol content, being slightly higher on average than whole blood. Saliva/whole blood ethanol concentration ratios have been reported on average to be 1.08 for male subjects (n=48) within the first six hours after drinking (range: 0.84-1.36) (Jones, 1979). Other studies have reported similar ratios:

- 1.10 (n=13; range 0.97-1.31) (Jones, 1993)
- 1.20+/-0.13 (n=6; range 1.10-1.40) (Ferrara et al., 1994)
- 1.12 (n=244])and 1.10 (n=21) (Haeckel & Bucklitsch, 1987)

On the whole, the data appear to correlate well with the paired blood/breath, with some outliers. There were three cases where breath was negative, yet blood was positive at .03, .04 and .08 (oral fluid negative in all these cases).

In seven subjects, the breath was negative, and oral fluid was positive between .02 and .28. In these seven cases, blood was refused four times, and three paired breath and blood samples were negative. Such discrepancies are difficult to explain, as breath/blood correlation in particular is widely studied.

#### Issues

These discrepancies could be related to possible collection issues particularly for oral fluid. In the early part of the study, the volatility of ethanol was not addressed. In the later location collections, the specimens were frozen as soon as possible after collection, and sent to the laboratory on dry ice. At the laboratory, improved sampling processes were implemented involving recapping and freezing the specimens as soon as sufficient sample volume was removed for testing. In this way, the loss of ethanol was minimized and correlation between the breath/blood and oral fluid improved as the study progressed.

When oral fluid is collected, the swab is placed into a transportation buffer; the device is capped, and sent to the laboratory for testing. The volume of the transportation buffer is 3 mL, therefore when one milliliter (1 mL) of saliva is placed into the tube, the total amount of sample volume for testing is 4 mL, and the drug and ethanol content in the sample is diluted by four. In the ethanol testing, it is possible when correcting for the dilution, a value below the limit of quantitation (LOQ) of the assay was multiplied by four, to give the final result. At the low end of the range (.005–.02), the correlation to the breath test was 17.3 percent; in the range above .02, the correlation to the breath test improved to 35/87 = 40.2 percent. This was also true with the blood samples, with 8.6 percent correlation at the low end of the testing range, improving to 19/87 (21.8%) above .02.

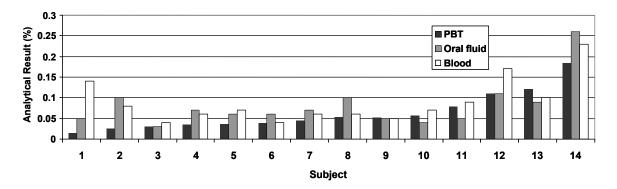
Table 34 presents, for those subjects who were positive for any alcohol in any matrix, the results for breath alcohol (%), oral fluid ethanol (%), and blood ethanol (%). Table 35 summarizes those data.

| Breath Alcohol (%) | Oral Fluid Ethanol (%) | Blood Ethanol (%) |
|--------------------|------------------------|-------------------|
| 0                  | 0                      | .03               |
| 0                  | 0                      | .04               |
| 0                  | 0                      | .08               |
| 0                  | .02                    | 0                 |
| 0                  | .02                    | 0                 |
| 0                  | .04                    | Refused           |
| 0                  | .05                    | Refused           |
| 0                  | .09                    | Refused           |
| 0                  | .16                    | 0                 |
| 0                  | .28                    | Refused           |
| .005               | 0                      | 0                 |
| .005               | Refused                | Refused           |
| .006               | 0                      | 0                 |
| .007               | 0                      | 0                 |
| .008               | 0                      | Refused           |
| .008               | 0                      | Refused           |
| .009               | 0                      | 0                 |
| .011               | 0                      | Refused           |
| .012               | 0                      | 0                 |
| .012               | 0                      | Refused           |
| .012               | .02                    | Refused           |
| .013               | 0                      | 0                 |
| .013               | 0                      | Refused           |
| .014               | 0                      | 0                 |
| .014               | .03                    | Refused           |
| .015               | .05                    | 0.14              |
| .016               | Refused                | Refused           |
| .017               | Refused                | Refused           |
| .018               | 0                      | 0                 |
| .018               | 0                      | Refused           |
| .019               | 0                      | .03               |
| .019               | .03                    | Refused           |
| .019               | Refused                | Refused           |
| .02                | 0                      | 0                 |
| .02                | Refused                | Refused           |
| .02                | 0                      | 0                 |
| .021               | 0                      | Refused           |
| .021               | 0                      | Refused           |
| .021               | 0                      | Refused<br>0      |
|                    | 0                      | Refused           |
| .022               |                        |                   |
| .023               | .05                    | 0                 |
| .024               | 0                      | 0                 |
| .024               | .03                    | 0<br>Defined      |
| .024               | .03                    | Refused           |
| .025               | 0                      | 0                 |

Table 34. Specimens Positive for Ethanol in at Least One Matrix

| .025 | .03     | Refused |
|------|---------|---------|
| .025 | .10     | .08     |
| .026 | 0       | .03     |
| .026 | .05     | Refused |
| .027 | 0       | Refused |
| .028 | .02     | Refused |
| .029 | 0       | 0       |
| .029 | .03     | .04     |
| .03  | Refused | Refused |
| .03  | Refused | Refused |
| .03  | .09     | 0       |
| .032 | Refused | Refused |
|      | Refused | Refused |
| .033 |         |         |
| .034 | 0<br>0  | 0       |
| .034 |         | .03     |
| .035 | .07     | .06     |
| .036 | 0       | Refused |
| .037 | .06     | .07     |
| .037 | Refused | Refused |
| .038 | 0.04    | Refused |
| .039 | 0       | Refused |
| .039 | 0       | Refused |
| .039 | .06     | .04     |
| .039 | .06     | Refused |
| .039 | .06     | Refused |
| .041 | 0       | Refused |
| .041 | Refused | Refused |
| .043 | 0       | Refused |
| .044 | 0       | Refused |
| .044 | .07     | .06     |
| .045 | Refused | Refused |
| .05  | 0       | .05     |
| .052 | .07     | Refused |
| .052 | 0.1     | .06     |
| .052 | Refused | Refused |
| .052 | Refused | Refused |
| .053 | .05     | .05     |
| .053 | Refused | Refused |
| .056 | Refused | Refused |
| .058 | .04     | .07     |
| .059 | 0       | 0       |
| .059 | .07     | Refused |
| .062 | Refused | Refused |
| .064 | 0       | .09     |
| .065 | 0       | .10     |
| .066 | 0       | 0       |
| .067 | .03     | Refused |
| .067 | .13     | Refused |
|      |         |         |

| .069 | Refused | Refused |
|------|---------|---------|
| .072 | Refused | Refused |
| .074 | Refused | Refused |
| .075 | 0       | Refused |
| .078 | .05     | .09     |
| .078 | Refused | Refused |
| .081 | .13     | Refused |
| .081 | Refused | Refused |
| .093 | 0       | Refused |
| .099 | Refused | Refused |
| .103 | Refused | Refused |
| .108 | .11     | Refused |
| .11  | .11     | .17     |
| .112 | 0       | .13     |
| .118 | .15     | Refused |
| .122 | .09     | 0.10    |
| .128 | .14     | Missing |
| .128 | Refused | Refused |
| .132 | .21     | Refused |
| .133 | .27     | Refused |
| .134 | Refused | Refused |
| .143 | .21     | Refused |
| .146 | Refused | Refused |
| .15  | Refused | Refused |
| .15  | Refused | Refused |
| .154 | .07     | Refused |
| .183 | .26     | .23     |
| N/A  | .06     | Refused |
| N/A  | .12     | Refused |
|      |         |         |


 Table 35. Specimens Positive for Ethanol in at Least One Matrix

| Breath # Breath |         | Oral Fluid |          | Blood   |          |          |                        |
|-----------------|---------|------------|----------|---------|----------|----------|------------------------|
| Result          | Samples | Positive   | Negative | Refused | Positive | Negative | <b>Refused/Missing</b> |
| N/A             | 2       | 2          | 0        | 0       | 0        | 0        | 2                      |
| 0               | 10      | 7          | 3        | 0       | 3        | 3        | 4                      |
| .005–.019       | 23      | 4          | 15       | 4       | 2        | 8        | 13                     |
| .02–.079        | 66      | 24         | 25       | 17      | 15       | 12       | 39                     |
| <u>&gt;</u> .08 | 21      | 11         | 2        | 8       | 4        | 0        | 17                     |
| Total           | 122     | 48         | 45       | 29      | 24       | 23       | 75                     |

When breath was positive over the legal limit (.08), oral fluid was positive in 11 cases (11/21 = 52.3%); negative in 2 cases (9.5%) and 8 subjects refused to give a specimen (38%). Blood was positive in 4 cases (4/21 = 19%) and subjects refused to give blood in all the other 17 cases.

The total refusal rate for blood was much higher than in oral fluid. From 110 subjects testing positively for alcohol via breath (>0.005), 68 (61.8%) refused to donate a blood sample (one blood sample was missing). In contrast, only 29 (26.4%) refused to give oral fluid.

Fourteen subjects were positive via all matrices (Figure 7).



## Figure 7. Pattern of BAC Test Results by Biological Matrix

The collection rate for oral fluid was higher than blood. Initial problems with ethanol volatility during collection and storage have been addressed, and correlation between breath and oral fluid results should improve in future studies.

## **Alcohol Use Disorder Results**

While subjects were providing an oral fluid sample, a screening instrument was administered to those who were over 18 years of age. To determine whether it was appropriate to administer the screening instrument to the subjects, they were first asked if they had had a drink in the past year. Five hundred and sixteen people met that criterion. Those persons were administered the remainder of the screener.

To assess alcohol use disorders, a 15-item screener was constructed. The first three items were derived from the Alcohol Use Disorders Identification Test (AUDIT) and represent the AUDIT consumption subscale, also known as the AUDIT-C (Chung et al., 2002; Conley, 2001; Babor, de la Fuente, Saunders, & Grant, 1992). Scores of 6 or more signal heavy drinking for men and scores of 5 or more signal heavy drinking for women using the AUDIT-C. The values that correspond to AUDIT-C response options are included on the AUDIT-C Screener (See Appendix E, attached).

Items 4-7 on the screener are derived from the Alcohol Use Disorders and Associated Disabilities Diagnostic Interview Schedule (AUDADIS; Grant & Dawson, 1997; Cottler et al., 1997; Pull et al., 1997). The way the AUDADIS is constructed, there is one item per DSM-IV symptom. A positive response to any of these items signals alcohol abuse.

Items 8-15 on the screener are also derived from the AUDADDIS. Items 8 and 9 both tap into the domain of tolerance. Items 10-15 are each representative of one DSM-IV diagnostic symptom. A total therefore of 7 diagnostic symptoms are represented across the 8 items. A positive response to 3 of any of the 7 symptoms signals alcohol dependence.

## **Response Rates and Sample Size**

As a first step in determining eligibility for applying the AUD screening instrument, Englishspeaking roadside survey participants aged 18+ were asked if they had consumed alcohol in the previous year. Of the 959 drivers who entered the survey sites, 530 met these preliminary eligibility criteria and answered that they had consumed alcohol in the last year. 516 of those individuals then answered the 15-item AUD screener. Thus, of those who met the selection criteria, there was a 97.4 percent response rate. These data are presented in tabular form in Table 36.

| Vehicles<br>Entering<br>Site | Number of Drivers<br>Ineligible | Number of Past<br>Year<br>Drivers/Drinkers<br>Eligible for AUD<br>Screener | AUD Sample<br>Size | Response Rate*  |
|------------------------------|---------------------------------|----------------------------------------------------------------------------|--------------------|-----------------|
| 959                          | 429 (44.7%)                     | 530 (55.3%)                                                                | 516 (53.8%)        | 516/530 = 97.4% |

\*Response rate calculated based on number of respondents eligible. Eligibility criteria included being English speaking, aged 18 and older, and reporting past year consumption of alcohol.

## **Alcohol Use Disorder Estimates**

As summarized in Table 37, based on the 15-item screener data obtained at the roadside, binge drinking within the past year was the most prevalent alcohol-related diagnosis with 35.7 percent of all respondents reporting binge drinking in the past year (n=184/516). Alcohol abuse was the second most reported problem drinking behavior with 8.3 percent of respondents meeting criteria for non-dependent alcohol abuse (n=43). An estimated 6.8 percent of respondents met criteria for alcohol dependence (n=35). These AUD estimates, based on self-report from a stratified random sample of the nighttime driving population, converge with other estimates from the general population derived from national household surveys (SAMHSA, 2004); they are also based on symptoms occurring and co-occurring in the past year.

The AUD results, including information on the BACs of drivers, are discussed separately in an article in preparation for submission to the Journal of Studies on Alcohol.

| AUD                | Ν   | Prevalence |
|--------------------|-----|------------|
| Binge Drinking     | 184 | 35.7%      |
| Alcohol Abuse      | 43  | 8.3%       |
| Alcohol Dependence | 35  | 6.8%       |

Table 37. AUD Screener Prevalence Estimates. n= 516

# **Discussion and Recommendations**

The primary goal of this study was to develop and test data collection and biological sampling and analysis procedures to determine whether it was practical to conduct a full-scale national roadside survey in the United States which would include testing for the presence of drugs other than alcohol in the nighttime driving population. The general conclusion is that such an endeavor is feasible.

However, based on the experience in this study, certain observations should be made. Most salient is that the response rate for this pilot study was lower than that achieved in previous national roadside surveys. We believe that this is partly due to the fact that the collection of the additional information and biological samples for this study made the survey much longer for individual subjects and the setting more intimidating. We attempted to mitigate this effect some by administering the basic roadside survey and breath test at the beginning of the interview. In some of the previous national roadside surveys, a single data collector was sometimes paired with an individual officer and motorists were simply flagged down, a few questions were asked, a breath sample was requested, and then the subjects were sent on their way. In this study, the survey sites typically involved eight researchers and two law enforcement officers, the survey itself required 15-20 minutes, and additionally, biological samples (oral fluid and blood) were requested. Thus, even though monetary incentives were offered, subjects may have felt that the survey would take too long. The sheer size of the operation may have been intimidating to some potential respondents. And the public may just be more wary of such activities than they were a decade ago. For example, some potential respondents asked us if we were going to be testing for their DNA. Nonetheless, the response rate for the BAC testing was higher than many telephone surveys, and that for blood was comparable to many mail surveys.

It is important for comparison with previous national roadside surveys that we obtain as high a percentage of alcohol tests as possible. One way to accomplish this, even if the active breath test is refused, is through a reading on the Passive Alcohol Sensor (PAS). For this study, we used a smaller PAS (using the same basic technology) which was in a small black box we could attach to the PDA. We did this because we thought it would be less obvious and intimidating than the larger flashlight-based passive sensors. However, in practice, we did not obtain as many PAS readings as in the past. This was partly due to the fact that it was more awkward to put the PDA and PAS close to the face of the respondent when a sample was being taken by activating the pump, and partly because the PAS was not only less obtrusive to the subject but to the data collector as well. This resulted in a number of cases in which the interviewer failed to activate the PAS, even though there was a prompt on the PDA screen. Thus, we recommend that, for future roadside surveys, the researchers revert back to the flashlight type device for passive sensor measures.

Approximately two-thirds of the drivers we approached to participate in the survey provided oral fluid samples and, of those, approximately two-thirds provided a blood sample. Thus there is a sizeable fraction of drivers that we have both types of biological samples and for which toxicological test results may be compared between the two matrixes. This comparison on a larger sample of drivers than obtained in the pilot study could provide insight on the relative values obtained from blood and oral fluid in a naturally occurring sample of the driving population. This information would be useful for a variety of reasons. For example, blood remains the "gold standard" and additional information relating oral fluid results to blood results. Additionally, if NHTSA or others were to undertake a crash risk study relating drug use

patterns in the population at risk to those in crashes, one approach would be to use fatally injured drivers as the crash population. In that case, the driver biological samples would likely be blood, and, in all likelihood, that in the population at risk would be oral fluid. Data relating oral fluid and blood results in the same person obtained from the national roadside survey would provide information useful in conducting comparisons between case and control test results used to develop risk estimates in the hypothetical study. For these reasons, we recommend that NHTSA consider obtaining both blood and oral fluid in a sizeable subsample of the next national roadside survey.

We believe that it is important NHTSA retain breath testing as a measure of BAC in future national roadside survey activities. The first reason is because the response rate is highest for breath testing. Second, with a sufficient sample size, estimates of BAC for persons who refuse the PBT but for whom a PAS reading was obtained could be developed. Third, as discussed earlier, because of a variety of factors, mostly involving the logistics of field collection (including the possibility of residual mouth alcohol from recently ingested drinks), sample storage and shipment and laboratory procedures, there is not a one-to-one relationship between BAC levels determined by the three mechanisms for samples collected in the field. Thus, when one wishes to compare results from previous roadside surveys with future ones it would be best to have used the same breath testing approach and biological matrix.

Another component of this pilot test was to examine the feasibility of using a brief screening survey to assess the extent to which persons with alcohol use disorders (AUDs) presented in the nighttime driving population. This is important because little is known about that specific issue and much of the policy debate has focused on whether problem drinkers are significantly overrepresented in the drinking and driving and alcohol-related crash-involved population. Our study indicates that it is indeed feasible to conduct such a screening at the roadside. The preliminary results obtained from this pilot study indicate that the nighttime driving population is quite similar to the population as a whole in terms of AUDs (SAMSA, 2004). Of course, this remains to be confirmed from the more comprehensive sample which would be obtained from a full scale national roadside survey. This brief screening tool would also be useful in comparing AUD profiles between the population at risk, impaired driving arrestees, and crash-involved drivers.

Though this study is just a pilot test and the sample size is relatively small, it is of interest to examine the general results in relation to previous national roadside surveys. These are presented in Figure 8 below and are generally quite encouraging. The long term trend has been for an ever-increasing proportion of survey respondents to have zero BAC readings and for fewer to have positive readings at each level of BAC reading. That seems to have held true in this pilot test, conducted nearly a decade after the most recent national roadside survey. However, because of the small sample size in the pilot study, one cannot say definitively that that is the true trend. Such a conclusion is best left for the next full-scale national roadside survey. To reiterate, the intent of this Pilot Test was to develop and test procedures that would be used in the next full-scale national roadside survey. It was not designed to yield a nationally-representative sample of the nighttime weekend driving population; thus the results are not representative of the United States as a whole.

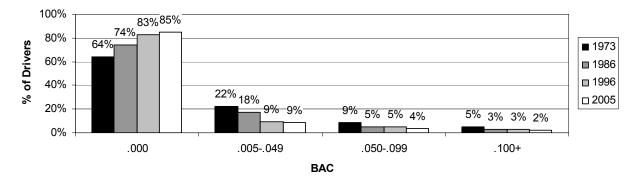



Figure 8. Blood Alcohol Concentrations of Drivers in National Surveys

The major focus of this study was to determine whether is was feasible and practical to collect oral fluid and blood from the nighttime driving population and analyze them for drugs. We determined that it is feasible to do so, with a lower response rate than that achieved for breath tests of alcohol. However, one should bear in mind that the overall response rates achieved (67% for oral fluid and 42% for blood) are in line with many telephone and mail surveys, which of course are based on self-report. Results of the analyses of the specimens obtained indicated that approximately 16 percent of these nighttime drivers tested positive for drugs other than alcohol. Additionally, the results of the chemical analyses indicated a much higher use rate than that obtained for the same subjects based on self-report. The most frequently encountered drug was marijuana and its metabolites, followed by cocaine and amphetamines.

In summary, the results of this pilot test indicate that it is practical to expand the traditional roadside survey to include self-report based measures of alcohol use disorder and biological measures of drug use. The objective biological measures, either through oral fluid or blood, are much to be desired over reliance on self-report of alcohol and/or drug use, which is often contextually illegal.

## References

- Babor, T. F., de la Fuente, J. R., Saunders, J., & Grant, M. (1992). *AUDIT: The alcohol use disorders identification test: Guidelines for use in primary health care*. Geneva, Switzerland: World Health Organization.
- Bates, M., Brick, J., & White, H. (1993). Correspondence between saliva and breath estimates of blood alcohol concentration: advantages and limitations of the saliva method. *Journal of Studies on Alcohol*, 54(1), 17-22.
- Cammisa, M., Ferguson, S., & Wells, J. (1996). *Laboratory evaluation of PAS III sensor with new pump design*. Arlington, VA: Insurance Institute for Highway Safety (IIHS).
- Chung, T., Colby, S. M., Barnett, N. P., & Monti, P. M. (2002). Alcohol use disorders identification test: Factor structure in an adolescent emergency department sample. *Alcoholism: Clinical and Experimental Research*, 26(2), 223–231.
- Cone, E. J., Presley, L., Lehrer, M., Seiter, W., Smith, M., Kardos, K., Fritch, D., Salamone, S. J., & Niedbala, R. (2002). Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations. *Journal of Analytical Toxicology*, 26(8), 541-546.
- Conley, T. B. (2001). Construct validity of the MAST and AUDIT with multiple offender drunk drivers. *Journal of Substance Abuse Treatment*, 20(4), 287–295.
- Cottler, L. B., Grant, B. F., Blaine, J., Mavreas, V., Pull, C., Hasin, D., Compton, W. M., Rubio-Stipec, M., & Mager, D. (1997). Concordance of DSM-IV alcohol and drug use disorder criteria and diagnoses as measured by AUDADIS-ADR, CIDI and SCAN. *Drug and Alcohol Dependence*, 47(3), 195–205.
- Couper, F. J., & Logan, B. K. (2004). *Drugs and human performance fact sheets* (DOT HS 809 725). Washington, DC: National Highway Traffic Safety Administration.
- Donelson, A., Marks, M., Jones, R., & Joscelyn, K. (1980). *Drug research methodology* (Final Report DOT HS 805 374).). Washington, DC: National Highway Traffic Safety Administration.
- Ferrara, S., Zanbaner, S., & Giorgetti, R. (1994). Low blood alcohol concentrations and driving impairment. A review of experimental studies and international legislation. *International Journal of Legal Medicine*, 106(4), 169-177.
- Fiorentino, D. (1997). A laboratory study of passive alcohol sensors. In C. Mercier-Guyon (Ed.), Alcohol, drugs and traffic safety: Proceedings of the 14th International Conference on Alcohol, Drugs, and Traffic Safety (pp. 539–545). Annency, France: CERMT Centre d'Etudes et de Recherches en Médecine du Trafic.
- Grant, B. F., & Dawson, D. A. (1997). Prevalence and correlates of alcohol use and DSM-IV alcohol dependence in the United States: Results of the National Longitudinal Alcohol Epidemiologic Survey. *Journal of Studies on Alcohol*, *58*(5), 464–473.
- Haeckel, R., & Bucklitsch, I. (1987). The comparability of ethanol concentrations in peripheral blood and saliva. The phenomenon of variation in saliva to blood concentration ratios. *European Journal of Clinical Chemistry and Biochemistry*, 25(4), 199-204.
- Hold, K., de Boer, D., Zuidema, J., & Maes, R. (1999). Saliva as an analytical tool in toxicology. *International Journal of Drug Testing*, 1(1), 1-36.
- Jones, A. (1979). Distribution of ethanol between saliva and blood in man. *Clinical and Experimental Pharmacology and Physiology*, 6(1), 53-59.
- Jones, A. (1993). Pharmacokinetics of ethanol in saliva: comparison with blood and breath alcohol profiles, subjective feelings of intoxication, and diminished performance. *Clinical Chemistry*, *39*(9), 1837 1844.

- Jones, R. K., Shinar, D., & Walsh, J. M. (2003). *State of knowledge of drug-impaired driving* (Final Report DOT HS 809 642). Washington, DC: National Highway Traffic Safety Administration.
- Kiger, S., Lestina, D., & Lund, A. (1993). Passive alcohol sensors in law enforcement screening for alcohol-impaired drivers. *Alcohol, Drugs and Driving*, *9*, 7–18.
- Kintz, P., Cirimele, V., & Ludes, B. (2000). Detection of cannabis in oral fluid (saliva) and forehead wipes (sweat) from impaired drivers. *International Journal of Drug Testing*, 24(7), 557-561.
- Lestina, D. C., Greene, M., Voas, R. B., & Wells, J. (1999). Sampling procedures and survey methodologies for the 1996 survey with comparisons to earlier National Roadside Surveys. *Evaluation Review*, 23(1), 28–46.
- Lund, A. K., & Wolfe, A. C. (1991). Changes in the incidence of alcohol-impaired driving in the United States, 1973-1986. *Journal of Studies on Alcohol*, 52(4), 293–301.
- Lunn, E., Hedlund, J. H., Brick, M., Fell, J., Meyer, E., Parsons, G., Roberts, V., & Smith, R. (1979). *The National Accident Sampling System (NASS)*. Vol. III: Implementation (DOT HS 804 029). Washington, DC: National Highway Traffic Safety Administration.
- National Highway Traffic Safety Administration. (1979). *The National Accident Sampling System* (*NASS*). *Vol. I: Objectives* (DOT HS 804 027). Washington, DC: National Highway Traffic Safety Administration.
- National Highway Traffic Safety Administration. (1991). *Alcohol limits for drivers: A report on the effects of alcohol and expected institutional responses to new limits* (DOT HS 807 692). Washington, DC: Department of Transportation.
- National Highway Traffic Safety Administration. (1995). NASS/CDS. National accident sampling system/crashworthiness data system: Analytical users manual. Washington, DC: National Highway Traffic Safety Administration.
- National Highway Traffic Safety Administration. (2005). *Fatality Analysis Reporting System* (*FARS*). National Highway Traffic Safety Administration. Available: <u>http://ftp.nhtsa.dot.gov/fars/</u> [2005, August 25].
- Pull, C. B., Saunders, J. B., Mavreas, V., Cottler, L. B., Grant, B. F., Hasin, D. S., Blaine, J., Mager, D., & Ustun, B. T. (1997). Concordance between ICD-10 alcohol and drug use disorder criteria and diagnoses as measured by the AUDADIS-ADR, CIDI and SCAN: Results of a cross-national study. *Drug and Alcohol Dependence*, 47(3), 207–216.
- Samyn, N., & van Haeren, C. (2000). On-site testing of saliva and sweat with Drugwipe, and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. *International Journal of Legal Medicine*, *113*(3), 150-154.
- Samyn, N., Verstraete, A., van Haeren, C., & Kintz, P. (1999). Analysis of drugs of abuse in saliva. *Forensic Science Review*, 11(1), 2–19.
- Schramm, W., Smith, R. H., Craig, P. A., & Kidwell, D. A. (1992). Drugs of abuse in saliva: A review. *Journal of Analytic Toxicology*, 16(1), 1–7.
- Substance Abuse and Mental Health Services Administration. (2004). *National Survey on Drug Use & Health, formerly called the National Household Survey on Drug Abuse (NHSDA)*. U.S. Department of Health and Human Services, Substance Abuse and Mental Health Services Administration. Available:

http://www.oas.samhsa.gov/24K/youthDUI/youthDUI.htm [2004, December 31].

- Voas, R. B., Wells, J., Lestina, D., Williams, A., & Greene, M. (1998). Drinking and driving in the United States: The 1996 National Roadside Survey. *Accident Analysis and Prevention*, 30(2), 267–275.
- Wolfe, A. C. (1974). *US national roadside breath testing survey: Procedures and results*. Ann Arbor, MI: University of Michigan Safety Research Institute.

Yacoubian, G., Wish, E. D., & Pérez, D. M. (2001). A comparison of saliva testing to urinalysis in an arrestee population. *Journal of Psychoactive Drugs*, 33(3), 289–294.

#### Appendix A National Roadside Survey Pilot Test Verbal Interview Consent

Hi! My name is \_\_\_\_\_\_. We are conducting a paid survey on nighttime driving and you were selected at random. You have not committed any violation. Your responses are voluntary and anonymous. The survey takes just a few minutes and consists of some questions and a breath sample. In addition, you will have the opportunity to earn up to \$65 for completing some other components of the survey if you chose to do so. You are free to leave at any time.

Appendix B National Roadside Survey Pilot Test Instrument Time: \_\_\_\_: \_\_\_: \_\_\_\_

#### Selected Vehicle:

- $\Box$  Failed to stop for police officer
- □ Stopped but police officer let it go
- □ Turned off before reaching officer
- □ Turned around before reaching officer

Vehicle Type:

- □ Car
- □ SUV
- □ Minivan
- 🗆 Van
- □ Pickup
- $\Box$  Other

#### Driver's Age:

- □ 16-20
- □ 21-34
- □ 35+
- □ Unknown
- Driver's Sex:
  - $\square$  Male
  - □ Female
  - □ Unknown

#### Driver's ethnicity:

- □ White
- □ Black
- □ Hispanic
- □ Native American
- □ Asian/Pacific Islander
- $\Box$  Other

#### Safety Belts

#### Driver Passenger

- $\Box$   $\Box$  Lap and shoulder belts
- $\Box$   $\Box$  Shoulder belt only
- $\Box$   $\Box$  Lap belt only
- $\Box$   $\Box$  None
- □ □ Unknown

 $\Box$  Not applicable

#### Number of Passengers:

0 1 2 3 4 5 6+

#### Passengers under age 18 present:

- □ Yes
- □ No
- □ Unknown

Intro: Hi! My name is \_\_\_\_\_\_. We are conducting a paid survey on nighttime driving and you were selected at random. You have not committed any violation. Your responses are voluntary and anonymous. The survey takes just a few minutes and consists of some questions and a breath sample. In addition, you will have the opportunity to earn up to \$65 for completing some other components of the survey if you chose to do so. You are free to leave at any time.

#### 1. The average driver drives about 12,000 miles a year. Would you say you drive:

- $\Box$  More than average
- $\Box$  Average
- Less than average
- $\Box$  No answer

#### 2. About what percent of your total driving takes place at night?

- □ 0-20%
- □ 21-40%
- □ 41-60%
- □ 61-80%
- □ 81-100%  $\Box$  No answer

\_\_\_\_\_

## **[ASSESS INTOXICATION LEVEL]**

- □ Highly intoxicated
- □ Moderately intoxicated
- □ Slightly intoxicated
- $\Box$  Not intoxicated
- □ Unknown

#### 3. About how many miles away are you now from where you live?

- $\square$  0-5
- □ 6-10
- □ 11-20
- $\Box$  More than 20
- $\Box$  No answer

#### **[ACTIVATE PAS]**

#### 4. Where are you coming from?

#### Where are you going to?

- From To Place
- Own home
- Someone else's home
- Work
- Restaurant/eating place
- Bar. tavern. club
- School/church
- П Sport or rec facility/park
- Store or gas station
- Hotel/motel
- Other
  - П No answer

#### 5. About how many miles is it between those two places?

- $\square$  0-5
- □ 6-10
- □ 11-20
- $\Box$  More than 20

□ No answer

| 6.            | Now I have a question about your use of alcohol. Do you ever drink alcoholic beverages such as beer, wine, or liquor? |
|---------------|-----------------------------------------------------------------------------------------------------------------------|
|               | $\Box \text{ No} [GO TO Q. 13]$                                                                                       |
| 7.            | About how many alcoholic beverages do you consume in an average week?                                                 |
|               |                                                                                                                       |
|               |                                                                                                                       |
|               |                                                                                                                       |
|               |                                                                                                                       |
|               | $\square 8-14$                                                                                                        |
|               | □ More than 14                                                                                                        |
|               | □ No answer                                                                                                           |
| 8.            | Have you had anything to drink today?                                                                                 |
|               | $\Box \operatorname{No} [GO TO Q. 12]$                                                                                |
|               | $\square \text{ No answer } [GO TO Q. 12]$                                                                            |
| 9.            | How long ago did you finish your last drink?HoursMinutes                                                              |
| 10.           | . Was that beer, wine, liquor, or a combination?                                                                      |
|               | □ Beer                                                                                                                |
|               | □ Wine                                                                                                                |
|               |                                                                                                                       |
|               |                                                                                                                       |
|               | Other Malt beverage                                                                                                   |
|               | □ Wine cooler                                                                                                         |
|               | □ Hard cider                                                                                                          |
|               |                                                                                                                       |
| 11            | No answer . Could you estimate your breath alcohol level?                                                             |
|               |                                                                                                                       |
| 12.           | In the past 12 months, did you ever drive after drinking enough that you might be considered                          |
| # <b>8</b> >> | to legally have had too much to drink and drive?<br>□ Yes> How many times did that happen would you say? times        |
|               | $\square$ No                                                                                                          |
|               |                                                                                                                       |
| 13.           | . Tonight, are you, or have you been, a designated driver?                                                            |
| #6>>          | □ Yes<br>□ No                                                                                                         |
|               | □ Unknown                                                                                                             |
|               | $\Box$ No answer                                                                                                      |
| [P            | ASSIVE SENSOR READING]                                                                                                |
| [* 4          | $\square$ Red 3                                                                                                       |
|               | $\square$ Red 2                                                                                                       |
|               | $\square$ Red 1                                                                                                       |
|               | □ Yellow 4                                                                                                            |
|               | □ Yellow 3                                                                                                            |
|               | □ Yellow 2                                                                                                            |
|               | □ Yellow 1                                                                                                            |
|               | Green 2                                                                                                               |

□ Green 1

 $\begin{array}{c|c} \square & 00 \\ \square & \text{Not used} \end{array}$ 

## 14. Compared to a year ago, is enforcement of impaired driving laws in County: $\Box$ Much stronger $\Box$ A little stronger $\Box$ About the same $\Box$ A little weaker Much weaker $\Box$ No answer Now I have a few background questions for statistical purposes: 15. What is your age? \_\_\_\_\_ years 16. What is your zip code? \_\_\_\_\_ 17. How far have you gone in school? □ Less than high school graduation $\Box$ High school grad $\Box$ Some college $\Box$ College grad Some graduate work $\Box$ No answer 18. Are you currently employed, unemployed, retired, on disability, a homemaker, a student, or other? □ Employed □ Unemployed □ Retired $\Box$ On disability □ Homemaker □ Student Other $\Box$ No answer 19. Are you Hispanic or Latino? $\Box$ Yes □ No $\Box$ No answer 20. To which racial group would you say you belong? (all that apply) $\square$ White □ Black or African American □ Indian or Alaska Native □ Asian □ Native Hawaiian or other Pacific Islander □ Other $\square$ NA

Thank you for participating in this survey

### Appendix C National Roadside Survey Pilot Test Passive Alcohol Sensor (PAS) Specifications

## FEATURES AND BENEFITS

- D.O.T. Approved Omnibus Bill CFR 49, part 40 for workplace testing
- Active, Direct or Passive Sampling Mode --- The flexible sampling design allows the operator to switch between passive (non-invasive), or active alcohol detection, to direct alcohol breath testing using a mouthpiece with the flip of a switch
- Ideal for Zero Tolerance applications
- Single-button control
- Heated electrochemical fuel cell
- Visual prompts
- Pocketsize, lightweight, and rugged
- Color-coded display and numeric readout in % BAC
- Approximately 600 tests per alkaline battery (9 volt)
- Passive Mode: Turn it on, set to the passive mode. Press control button and quickly release; sample is automatically collected and processed
- Active Direct Mode: Turn it on, set active mode. Attach mouthpiece, subject blows; press control button, sample automatically collected and processed
- "Sniffs" breath and open containers or enclosed spaces for the presence of alcohol

## **TECHNICAL SPECIFICATIONS**

| Product Name   | P.A.S. Vr. Alcohol Screening & Verification System                                                                                                                                     |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Function       | Combines both direct and passive testing for detecting low levels of alcohol in exhaled breath or the environment                                                                      |  |  |
| Alcohol Sensor | Electrochemical fuel cell generates an electrical current in response to<br>alcohol vapor                                                                                              |  |  |
| Cell Heater    | Built-in heater regulates fuel cell temperature at 104 (40 C)                                                                                                                          |  |  |
| Calibration    | Performed at the factory. Calibration checks are recommended every six months or more frequently if the unit appears to be losing sensitivity                                          |  |  |
| Accuracy       | Meets D.O.T. requirements at 0.020% BAC (± .005)                                                                                                                                       |  |  |
| Specificity    | Fuel cell detects only alcohol. It is unaffected by acetone, paint and glue fumes, foods, confectionery, methane, and practically any other substance likely to be found in the breath |  |  |



| Breath Sample                                   | Pump runs for 5 seconds and draws in a 1 cu. in. (15ml) air sample (nominal figures)                             |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Display                                         | Color-coded 9-element LED bar-graph and numeric display of alcohol level                                         |
| Peak Reading                                    | 05-20 sec's at 104 F (40 C); longer at low temperatures unless fuel cell heater on                               |
| Recovery Time                                   | 1-2 minutes after a positive reading; longer if fuel cell overloaded or heater off                               |
| Power Supply                                    | 9 volt alkaline battery                                                                                          |
| Battery Capacity                                | Approximately 600 tests without heater                                                                           |
| Environmental<br>Operating temperature<br>range | 0 to 104 F (-18 to +40 C). The P.A.S. Vr. housing is weather resistant                                           |
| Dimensions                                      | 2.75" (6.8cm) w x 4.60" (11.5cm) h x 1.50" (3.8cm)                                                               |
| Weight                                          | 6.5oz (0.2kg) with battery                                                                                       |
| Accessories                                     | Disposable mouthpieces for sanitary direct testing<br>9 volt alkaline batteries<br>Wet bath simulator w/cal-pump |

## **GENERAL INFORMATION**

#### Description

- The P.A.S. Vr. is a hand-held, rapid alcohol detection and screening instrument which uses a platinum electrochemical fuel cell sensor of high alcohol specificity, accuracy, and stability.
- Designed to satisfy DOT and zero-tolerance specifications.
- The operator-controlled sampling system guarantees accurate detection of alcohol, and is especially suited for quick subsequent measurements.

#### Technology

- Platinum electrochemical fuel cell with integrated heater.
- Specificity detector is unaffected by acetone, confections, methane, and all other substances likely to be found in the human breath which would distort test results.
- Accuracy The P.A.S. Vr. Is accurate to ± 0.005 BAC. Meets DOT requirements at 0.020 BAC.
- Detects low breath alcohol levels from 0.01 BAC and up.
- Custom calibration levels available for medical or other applications.
- Response time seconds from sampling.

#### Sampling

- Breath sample automatically taken during 4-8 second blow (reaching deep lung air).
- Passive, active, or mouthpiece sampling with single push of button.
- Sanitary disposable mouthpieces for sanitary testing.
- Non-intrusive passive sampling.

#### **Physical Characteristics**

- Display color coded LEDs and numeric readout
- Instrument Status five LEDs indicate current status
- Dimensions 2.75" (6.8 cm) W x 4.60" (11.5cm) H x 1.50" (3.8 cm) D
- Weight approximately 6.5 oz. (.2 kg)

#### **Operating Temperature**

- Warm-up time approximately 30 seconds after initial turn on at temperatures of 59°F (15°C) or more
- Heated Fuel Cell approximately 0°F (-18°C) to 105°F (40°C)
- Use outside or inside

#### **Power Supply**

- 9-volt alkaline battery
- Battery life approximately 1,000 samples

#### P.A.S. System and Warranty

The P.A.S. Vr. is available in a convenient, protective case containing several disposable mouthpieces and a 9-volt alkaline battery is installed. Additional batteries and mouthpieces may be purchased separately; please see accessories. Warranty covers one year parts and labor with the exception of the proprietary platinum electrochemical fuel cell which carries a full two-year warranty.

#### Sensitivity Check and Calibration

Our Quality Assurance Plan calls for a sensitivity check to be performed once every month (minimum) and full calibration once every six months (minimum) or if a sensitivity check shows the unit out of calibration. The P.A.S. Vr. may be calibrated with a NHTSA approved Wet Simulator.

Manufactured in the United States

#### **USE EXAMPLES**

## LAW ENFORCEMENT

#### How Used

The P.A.S. Vr. Alcohol Screening and Verification System is an advanced portable breath alcohol tester (PBT) that features both passive alcohol screening and direct measurements to verify alcohol concentration (deep lung) with the flip of a switch. This hand-held analyzer provides both color coded LEDs and numeric readout.

The P.A.S. Vr. is used to check breath alcohol levels with or without a subject's direct participation. When used without the subject's direct participation it is known as passive sampling, as opposed to active or direct testing where the subject blows directly into a mouthpiece or the intake port.

### Where Used

The P.A.S. Vr is designed specifically for use by law enforcement, correctional officers, security personnel and school officials. It can be operated with one hand, leaving the other completely free. The instrument is easy to use, and has been designed to withstand the physical conditions experienced in operational situations. It is resistant to adverse weather conditions and mechanical shocks.

## What advantage does the P.A.S. Vr. have over other PBTs?

Standard PBTs are strictly direct testing devices, which require the use of expensive disposable mouthpieces. The P.A.S. Vr. offers direct testing (using a mouthpiece to obtain an exact BrAC with DOT approved accuracy); and the additional flexibility of passive sampling, or active sampling (which do not require the use of mouthpieces). The P.A.S. Vr. may be used as a rapid screening device to detect alcohol in human breath or in the environment, such as in the case of open containers or spilled liquids. The sensitivity of the P.A.S. Vr. allows it to detect background levels of alcohol in enclosed spaces such as vehicles, rooms, lockers, etc. This is useful for detecting drinking by minors in cars or at social gatherings, without sampling each individual's breath, or in work-release programs and treatment centers.

The passive sampling mode (used without the subject's direct participation) is also ideal for use in emergency situations. For example when a crash victim is unconscious, it can be important to know whether he or she has been drinking. This will often determine the best course of emergency medical treatment. It is also important to know whether alcohol might have contributed to the accident. PBTs require the crash victim to blow into a mouthpiece; with the P.A.S. Vr. even an unconscious subject could be sampled using the passive sampling mode's proprietary sample pump to draw in the sample.

## SCHOOLS

## How Used

The P.A.S. Vr. Alcohol Screening and Verification System is an advanced portable breath alcohol tester (PBT) that features both passive alcohol screening and direct measurements to verify alcohol concentration (deep lung) with the flip of a switch. This hand-held analyzer provides both color coded LED's and numeric readout.

The P.A.S. Vr. is used to check breath alcohol levels with or without a subject's direct participation. When used without the subject's direct participation it is known as passive sampling, as opposed to active or direct testing where the subject blows directly into a mouthpiece or the intake port.

#### Where Used

Every school system has an interest in preventing drug and alcohol abuse in its student populations. The school years are the time when the physical, psychological, and addictive effects of drugs and alcohol are most severe. Children grow chemically dependent faster than adults and their record of successful recovery is extremely poor. Children's lost educational opportunities will affect the rest of their lives. The effect of drug and alcohol abuse is not limited to the abuser; the student body, the faculty, and the entire educational process are all victims.

A proven important benefit to any alcohol awareness program, the Vr. provides "real time" evidence that alcohol is present. Whenever alcohol use or the presence of alcohol is suspected, this instrument, with the push of a button, will sample and measure the presence and concentration of alcohol. The product may be used in any situation where alcohol use or presence is not allowed, e.g., zero tolerance. For example, introducing passive alcohol testing (P.A.S.) in schools has resulted in a marked decrease in alcohol use at school activities, such as dances, sporting events, proms and verification testing in "reasonable suspicion" cases during school hours. The use of this testing capability has clearly influenced student behavior in many schools and universities. (Specific school references are available upon request.)

#### What advantage does the P.A.S. Vr. have over other PBTs?

The use of P.A.S. test systems in a school's "alcohol awareness" program reduces classroom disruptions and disruptions at school functions, saving untold amounts of teacher/supervisor time, injury, property damage, insurance claims and loss of lives. These savings may amount to hundreds of millions of dollars, according to the National Highway Traffic Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS).

Standard PBTs are strictly direct testing devices, which require the use of expensive disposable mouthpieces. The P.A.S. Vr. offers direct testing (using a mouthpiece to obtain an exact BrAC with DOT approved accuracy); and the additional flexibility of passive sampling, or active sampling (which do not require the use of mouthpieces). The P.A.S. Vr. may be used as a rapid screening device to detect alcohol in human breath or in the environment, such as in the case of open containers or spilled liquids. The sensitivity of the P.A.S. Vr. allows it to detect background levels of alcohol in enclosed spaces such as vehicles, rooms, lockers, etc. This is useful for detecting drinking by minors in cars or at social gatherings, without sampling each individual's breath.

#### DOT

#### How Used

The P.A.S. Vr. Alcohol Screening and Verification System is a DOT-approved alcohol screener. The P.A.S. Vr. is an advanced portable breath alcohol tester (PBT) that features both passive alcohol screening and direct measurements to verify alcohol concentration (deep lung) with the flip of a switch. This hand-held analyzer provides both color coded LEDs and numeric readout.

The P.A.S. Vr. is used to check breath alcohol levels with or without a subject's direct participation. When used without the subject's direct participation it is known as passive

sampling, as opposed to active or direct testing where the subject blows directly into a mouthpiece or the intake port.

## Where Used

The American Medical Association has demonstrated that a blood alcohol concentration (BAC) of 0.040% impairs any individual to some degree. Impairment can occur at even lower levels in some individuals. As a result, industries that test for alcohol have chose to use either 0.04 or zero BAC as maximum acceptable levels in the workplace.

The P.A.S. Vr. has been used very successfully as a deterrent in industry. When used as a rapid screening device to detect alcohol in human breath the P.A.S. Vr. will help you decide whether to use an evidential breath tester (EBT) in individual employee cases. The P.A.S. Vr. designed for industry and transportation agencies complies with the U.S. Department of Transportation requirements for workplace testing regulations according to 49 CFR, Part 40.

#### What advantage does the P.A.S. Vr. have over other PBTs?

Standard DOT approved PBTs are strictly direct testing devices, which require the use of expensive disposable mouthpieces. The P.A.S. Vr. offers direct testing (using a mouthpiece to obtain an exact BrAC with DOT approved accuracy); and the additional flexibility of passive sampling, or active sampling (which do not require the use of mouthpieces). The P.A.S. Vr. may be used as a rapid screening device to detect alcohol in human breath or in the environment, such as in the case of open containers or spilled liquids. The sensitivity of the P.A.S. Vr. allows it to detect background levels of alcohol in enclosed spaces such as vehicles, rooms, lockers, etc. This is useful for detecting drinking by minors in cars or at social gatherings, without sampling each individual's breath.

## DRUG TREATMENT AND MEDICAL FACILITIES

#### How Used

The P.A.S. Vr. Alcohol Screening and Verification System is an advanced portable breath alcohol tester (PBT) that features both passive alcohol screening and direct measurements to verify alcohol concentration (deep lung) with the flip of a switch. This hand-held analyzer provides both color coded LED's and numeric readout.

The P.A.S. Vr. is used to check breath alcohol levels with or without a subject's direct participation. When used without the subject's direct participation it is known as passive sampling, as opposed to active or direct testing where the subject blows directly into a mouthpiece or the intake port.

#### Where Used

This design has often been selected by Alcohol Safety Action Program (ASAP) Directors, (or similar private programs) to monitor the court referred subjects. By checking each subject, each time they enter for counseling the behavioral impact is much greater than random checking. The passive mode allows much more cost-effective screening than the typical portable breath tester (PBT).

Without this cost-effective device, the centers usually are limited to random testing. That is often insufficient to influence behavior because the odds of being the random subject is so infrequent, many habitual drinkers are more than willing to take the risk.

#### What advantage does the P.A.S. Vr. have over other PBTs?

Standard PBTs are strictly direct testing devices, which require the use of expensive disposable mouthpieces. The P.A.S. Vr. offers direct testing (using a mouthpiece to obtain an exact BrAC with DOT approved accuracy); and the additional flexibility of passive sampling, or active sampling (which do not require the use of mouthpieces). The P.A.S. Vr. may be used as a rapid screening device to detect alcohol in human breath or in the environment, such as in the case of open containers or liquids. The sensitivity of the P.A.S. Vr. allows it to detect background levels of alcohol in enclosed spaces such as vehicles, rooms, lockers, etc. This is useful for detecting drinking by minors in cars or at social gatherings, without sampling each individual's breath, or in work-release programs and treatment centers.

The passive sampling mode (used without the subject's direct participation) is also ideal for use in emergency situations. For example when a crash victim is unconscious, it can be important to know whether he or she has been drinking. This will often determine the best course of emergency medical treatment. It is also important to know whether alcohol might have contributed to the accident. PBTs require the crash victim to blow into a mouthpiece; with the P.A.S. Vr. even an unconscious subject could be sampled using the passive sampling mode's proprietary sample pump to draw in the sample.

## MANUFACTURED BY:

PAS Systems International, Inc. P.O. Box 330 Fredericksburg, Virginia 22404 Telephone: 540-372-3431 | 800-660-SNIF FAX: 540-372-7647

### Appendix D National Roadside Survey Pilot Test Drug Questionnaire

The following questions ask about use of medications and drugs and driving. This is for research purposes only. All of your responses are completely anonymous.

Have you ever taken any of the following medications/drugs? (please check all that apply)

- Over-the-counter medications (cough medicines, dietary supplements, etc.)
- Prescription drugs (anti-biotics, muscle relaxant, anti-depressant, etc.)
- Recreational drugs

Do you believe any of the medications/drugs you have taken (or are taking) could effect your driving?

• Yes • No

Have you taken any medications or drugs in the past **YEAR** that you think may effected your driving?

• Yes • No

Have you taken and medications or drugs **TONIGHT** that you think may effect your driving?

• Yes • No

Have you ever NOT driven because you were on a medication/drug?

• Yes • No

# The following is a list of medications/drugs or types of drugs people may use. Please indicate when was the last time you used that particular medication/drug.

|                                              | Never | 1 Plus | Past | Past  | Past 2 | Tonight |
|----------------------------------------------|-------|--------|------|-------|--------|---------|
|                                              |       | years  | year | month | days   |         |
| Cough Medicines (Robitussin, Benadryl, etc.) | •     | •      | •    | •     | •      | •       |
| Amphetamines (Ritalin, Aderall, etc.)        | •     | •      | •    | •     | •      | •       |
| Muscle relaxants (Somo, Miltown, etc.)       | •     | •      | •    | •     | •      | •       |
| Dietary supplements                          | •     | •      | •    | •     | •      | •       |
| Anti-depressant (zertek, prozac, etc.)       | •     | •      | •    | •     | •      | •       |
| Marijuana (dope, bomb, weed, pot, hash)      | •     | •      | •    | •     | •      | •       |
| Cocaine (crack or coke)                      | •     | •      | •    | •     | •      | •       |
| Ecstasy ("E", Extc, MDMA, "X)"               | •     | •      | •    | •     | •      | •       |
| GHB                                          | •     | •      | •    | •     | •      | •       |
| Phencyclidine (PCP)                          | •     | •      | •    | •     | •      | •       |
| Diazepam (valium, etc.)                      | •     | •      | •    | •     | •      | •       |
| Rohypnol (Ruffies)                           | •     | •      | •    | •     | •      | •       |
| Methamphetamine (meth)                       | •     | •      | •    | •     | •      | •       |
| Heroin, Morphine, codeine                    | •     | •      | •    | •     | •      | •       |
| Ketamine (Special K)                         | •     | •      | •    | •     | •      | ٠       |

# Appendix E National Roadside Survey Pilot Test Alcohol Use Disorder (AUD) Survey Instrument

# AUD Screener

ASK: I'd like to ask you a question about your use of alcohol in the past year. Just to be sure, have you had a drink of any type of alcoholic beverage in the past year? Please do not include times when you only had a sip or two from a drink. (PAUSE and clarify if respondent hesitates) By a "drink," I mean a can or bottle of beer, a glass of wine or a wine cooler, a shot of liquor, or a mixed drink with liquor in it.

**[IF ANSWERED NO]** That ends the survey portion of the interview. (Proceed to Drug Questionnaire).

**[IF ANSWERED YES]** ASK: I can offer you an additional \$5 to answer a few more questions about your use of alcohol in the past year. Your answering these questions is completely voluntary and you can end the interview at any time. This will take approximately five more minutes of your time. There is no risk to you from answering these questions. Unless you have any questions I'd like to continue. (PAUSE) [If no, thank and proceed to Drug Questionnaire).

- 1. In the past year, how often did you have a drink containing alcohol?
  - □ Never
  - □ Monthly or less
  - □ 2-4 times/month
  - □ 2-3 times/week
  - $\Box$  4 or more times/week
- 2. In the past year, how many drinks containing alcohol did you have on a typical day when you were drinking?
  - □ 1-2
  - □ 2-4
  - □ 5 or 6
  - □ 7-9
  - □ 10 or more
- 3. In the past year, how often did you have six (five for a woman) or more drinks on one occasion?
  - □ never
  - $\hfill\square$  less than monthly
  - □ monthly
  - □ weekly
  - □ daily/almost daily
- 4. Did your drinking often interfere with taking care of your home or family or cause you problems at work or school?
  - □ yes
  - □ no
  - □ no answer
- 5. Did you more than once get into a situation while drinking or after drinking that increased your chances of getting hurt—like driving a car or other vehicle or using heavy machinery after having had too much to drink?
  - □ yes
  - 🗆 no
  - $\Box$  no answer
- 6. Did you get arrested, held at a police station, or have legal problems because of your drinking?
  - □ yes
  - no no
  - □ no answer
- 7. Did you continue to drink even though it was causing you trouble with your family or friends?
  - □ yes
  - □ no
  - □ no answer
- 8. Have you found that you have to drink more than you once did to get the effect you want?
  - □ yes
  - □ no
  - $\Box$  no answer
- 9. Did you find that your usual number of drinks had less effect on you than it once did?
  - □ yes
  - 🗆 no
  - □ no answer

- 10. Did you more than once want to try to stop or cut down on your drinking, but you couldn't do
  - it?
  - □ yes
  - 🗆 no
  - □ no answer
- 11. Did you end up drinking more or drinking for a longer period than you intended?
  - □ yes
  - 🗆 no
  - □ no answer
- 12. Did you give up or cut down on activities that were important to you or gave you pleasure in order to drink?
  - □ yes
  - no no
  - □ no answer
- 13. When the effects of alcohol were wearing off, did you experience some of the bad aftereffects of drinking – like trouble sleeping, feeling nervous, restless, anxious, sweating or shaking, or did you have seizures or sense things that weren't really there?
  - □ yes
  - no no
  - $\Box$  no answer
- 14. Did you spend a lot of time drinking or getting over the bad after effects of drinking?
  - □ yes
  - □ no
  - □ no answer
- 15. Did you continue to drink even though it was causing you to feel depressed or anxious or causing a health problem or making one worse?
  - □ yes
  - 🗆 no
  - □ no answer

# **Appendix F:**

# National Roadside Survey Pilot Test: Screenshot

| Appendix F<br>National Roadside Survey<br>Pilot Test<br>Screenshots                                                                                                                                                                                                                                                                                                                                                                                    | NRS Case<br>Date Time Case                                                                                                                                                                                                       | Obs         Login         X         >         ?           #0         \$ 10 / 50         Nonpartic FSLG TO(TA)         NA           Veh: CSMVPTMot0         -                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The initial screen of the database may<br>be in table view. Because no records<br>are in the database, the table is empty.<br>To start data entry, tap on the New<br>button at the bottom of the screen to<br>open a new record. | The Obs screen will be the first<br>screen viewed at the beginning of<br>each record. Because this is the first<br>record, the first step is to Login by<br>tapping on the button at the top of<br>the screen.                                                                                                                                                                                                                                                                                                                                                                    |
| Login1 🛛 🔀 < ᠵ 😢                                                                                                                                                                                                                                                                                                                                                                                                                                       | Login1 🛛 🛛 🖉 📀 🕐                                                                                                                                                                                                                 | Login2 🛛 🖄 < 👂 🕐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| State #   Site #     1 Alabama   7 8 9     2 California   4 5 6     3 Colorado   1 2 3     4 Michigan   0 C     5 Nebraska   0 C     6 New Jersey   1 Friday     2 Saturday                                                                                                                                                                                                                                                                            | State # 5Site # 41 Alabama7 8 92 California4 5 63 Colorado1 2 34 Michigan0 €5 NebraskaNight # 26 New Jersey1 Friday2 SaturdayNext ↑                                                                                              | Interviewer # Case # d<br>789<br>456<br>123<br>0 C<br>Next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The Login1 screen is used to enter the<br>elements of the location ID—State, Site<br>#, and Night #. Tap on the light green<br>buttons to enter the information as<br>instructed by the site supervisor.<br>Tapping on the buttons for State and<br>Night will replace the information in the<br>respective fields; for Site, however, the<br>buttons append to what is in the field.<br>Use the blue C button to clear the Site<br>field if necessary | An example of the Login1 screen filled in.                                                                                                                                                                                       | Each night of data collection, each<br>interviewer will be assigned a<br>number by the supervisor., which is<br>entered on Login2. The beginning<br>Case # is also set on this screen.<br>Case # will autotmatically increment<br>for each new record until reset to a<br>different number. For the first record<br>for a night of data collection, set the<br>Case # to 1. As a general rule, when<br>changing to a different PDA during<br>the night, use the same interviewer<br>number and set the Case # to 1<br>greater than the last Case # on the<br>previously used PDA. |

| Login2                                  |                                                                 | Login3                                                                                                                                                                    |                                                                                                                                                                                                                                                   | Login3                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interviewer #<br>7<br>789<br>456<br>123 | Case # 1<br>789<br>456<br>123<br>0C                             | Interviewer:<br>Amanda<br>Carmen<br>Christine<br>Dale<br>Ian<br>Jeane<br>Maria<br>♥<br>Participant #                                                                      | PBT number:<br>789<br>456<br>123<br>00<br>5042.701<br>Next                                                                                                                                                                                        | Interviewer:<br>Amanda<br>Carmen<br>Christine<br>Dale<br>Ian<br>Jeane<br>Maria<br>♥<br>Participant #                                                                                             | PBT number:<br>4589<br>789<br>456<br>123<br>0 C<br>5042.701<br>Next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| An example of th in.                    | e Login2 screen filled                                          | entered on Login<br>digit is the State (<br>second and third<br>the fourth digit is<br>(2=Saturday). The<br>of the decimal po<br>number. On a nig<br>these first five dig | ted from the fields<br>1 and Login2. The first<br>(5=Nebraska), the<br>digits are the site (04),<br>the night<br>e first digit to the right<br>int is the interviewer<br>ht of data collection,<br>jits will stay constant<br>2 digits, which are | box at the left. If y<br>the box, enter you<br>Grafitti or with an<br>(tap on the "a" in<br>Grafitti screen to<br>appear). The num<br>on the PBT sense<br>tapping on the ap<br>in the keypad. Th | onscreen keyboard<br>the lower left of the<br>get the keyboard to<br>aber from the label<br>or is entered by<br>propriate numbers<br>e blue C button will<br>mber and you can<br>is an example of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Login4                                  | 🗙 < ⋗ 🕐                                                         | Login4                                                                                                                                                                    | 🛛 < 🔁 🕐                                                                                                                                                                                                                                           | Obs Lo                                                                                                                                                                                           | gin) 🛛 🔇 ⋗ 🕐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PASNumber:<br>789<br>456<br>123<br>00   | PDA number:<br>789<br>456<br>123<br>0 C                         | PASNumber:<br>90024<br>789<br>456<br>123<br>0 C                                                                                                                           | PDA number:<br>228325<br>789<br>456<br>123<br>0 C                                                                                                                                                                                                 | #3<br>Nonpartic FSU<br>Veh: CSMVF<br>Dr age: 1621<br>sex: MFU<br>race:WBH0                                                                                                                       | \$ 10 / 50<br>_G(TO(TA) VA<br>D(TMot)<br>35)650 V<br>(appHNU V<br>LapHNU V<br>L |
| the appropriate n                       | en works similarly—tap<br>umbers from your<br>PAS) and the PDA. | An example of the                                                                                                                                                         | e Login4 screen filled                                                                                                                                                                                                                            | interviewer chang<br>After Login, the n<br>collector and the<br>appear at the bot                                                                                                                | ed to all following<br>ould always be<br>ning of data<br>never equipment or<br>ges.<br>ame of the data<br>PBT being used will<br>tom of the Obs<br>int, data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Obs       Login       X       > ?         Car       \$ 10 / 50         SUV       -GTOTA       NA         SUV       -GTOTA       NA         Minivan       -GTOTA       NA         Van       -GTOTA       NA         Pickup       -GTOTA       NA         Truck       -GTOTA       -         Motorcycle       -GTOTA       -         Other       -       -         Edit Popup List       -       -         Dap HNU       -       -         P#:       0123456+U       -         Amanda       PBT: 4589       Next                                                                                                                                                                                             | Obs       Login       X       > ?         16-20       \$ 10 / 50         21-34       -GTOTA       NA         35-64       -GTOTA       NA         65+                                                | RS1 ASK BAO X < ?<br>Start timing<br>INCENTIVE: \$10<br>The average driver drives about<br>12,000 miles a year. Would you<br>say you drive:<br>More than average<br>Average<br>Less than average<br>No answer<br>Ref1 Next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| There are of methods of entering data:<br>Method 1 is to tap on a button which<br>enters the caption into the field and<br>Method 2 is to bring up the popup menu<br>by tapping on the downward arrow and<br>selecting the desired option from the<br>list. To cram as much information into<br>one screen, the captions on the buttons<br>are abbreviated, but the captions do<br>correspond with the possible selections<br>in the popup menu. Here the popup<br>menu for Vehicle is displayed and you<br>can see how the C S M V P T Mot O<br>buttons match up. Tapping the buttons<br>is preferred because that method will be<br>much faster once you have become<br>familiar with the abbreviations. | For driver age, only the first number in<br>the range is in the button, as shown in<br>the popup menu below. Tap on the<br>Next button to go to the next screen<br>and start the survey.            | The RS1 screen has the first<br>question of the survey. Before<br>reading it, introduce yourself and tell<br>something about the survey itself. A<br>suggested spiel is available by<br>tapping the ASK button at the top.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Introduction\$ \$10<br>Hi! My name is Amanda<br>We are conducting a paid survey<br>on nighttime driving and you<br>were chosen at random. You<br>have not committed any<br>violation. Your responses are<br>voluntary and anonymous.<br>The survey takes<br>just a few minutes and will<br>consist of questions, a breath<br>sample and a saliva sample. You<br>are free to leave at any time.<br>Return                                                                                                                                                                                                                                                                                                   | RS1 ASK BAC X > ?   Start timing   INCENTIVE: \$10   The average driver drives about 12,000 miles a year. Would you say you drive:  More than average Average Less than average No answer Ref1 Next | Choose Time: 12:00 am         Hours       Minutes         12a       12p       0       0         1       2       2       2       2         3       3       3       3       3         4       4       4       5       5         6       7       7       8       9         0       0       1       1       1       1         0       0       1       1       1       1       1         2       3       3       3       3       3       3       3       3         4       4       5       5       6       6       6       6       7       7       8       9       9       10       10       10       9       9       10       11       11       0       0       0       0       0       10       11       11       0       0       0       10       11       11       11       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 |
| The Intro is personalized with the interviewer's name. Tap on the Return button to go back to RS1 screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | To record how long the survey takes tap the "Start timing" button, which will bring up                                                                                                              | the Choose Time screen. Tap on<br>Current Time to return to the RS1<br>screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| RS1 ASK BAC C ?   Start timing 10:25 pm   INCENTIVE: \$10   The average driver drives about 12,000 miles a year. Would you say you drive:     More than average   Average   Less than average   No answer   Ref1   Next                                                                                                                                   | Some explanation about the other<br>buttons on this screen that reappear on<br>many other screens:<br>BAC—jumps to PBT2 screen. If a<br>driver refuses to continue with the<br>survey at any time, ask them for a<br>breath sample.<br>X—jumps to Options screen<br><—goes back to previous screen<br>>—goes to next screen in sequence<br>?—goes to Help screen<br>Ref1—tap on this button when driver<br>refuses to answer any more questions<br>(not just a refusal or don't know for a<br>single question)<br>Next—goes to next screen in sequence | RS1 ASK BAC X > ?   Start timing 10:25 pm   INCENTIVE: \$10   The average driver drives about   12,000 miles a year. Would you   say you drive: Average   More than average   Average   Less than average   No answer   Ref1                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upon return to RS1, the current time<br>appears to the right of the button. After<br>you get proficient with the survey, you<br>will probably be able to say your spiel<br>and enter the start time simultaneously.                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The procedure is to read the<br>question and then the possible<br>answers in the light green buttons.<br>Don't read any answers in red text<br>and gray background. Record the<br>answer by tapping on the desired<br>button or selecting the appropriate<br>answer from the popup menu. After<br>entering the answer, tap on the Next<br>button to go to the RS2 screen. |
|                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                           |
| RS2       BAC       X < > ?         About what percent of your         total driving takes place at         night?       —         0-20%       61-80%         21-40%       81-100%         41-60%       No answer         [Assess intoxication]       —         High Mod Slight Not Unk       Ref2         Next       The RS2 screen has a question to be | RS3 BAC X < ?<br>About how many miles away are<br>you now from where you live?<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS4a       PAS       BAC       X       >       ?         Where are you coming from?       [PAS on]       ✓                                                                                                                                                                                                                                                                |

| PAS       BAC       X       ?         PASreading:          0.12       Not used         0.12       Not used         0.08       0.06         0.05       0.04         0.02       0.01         [blank]       Return                                                                                                                         | RS4b PAS BAD X > ?   Where are you going to?   Work Comeone else's home   Work Restaurant/eating place   Bar, tavern, club School/church   Sport or rec facility/park   Store/gas station Hotel/motel   Other No answer   Ref4b Next | RS5 PAS BAC C C C   About how many miles is it   between those two places? <ul> <li>0-5</li> <li>6-10</li> <li>11-20</li> <li>More than 20</li> <li>No answer</li> </ul> Ref5 Next |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The PAS screen can be displayed by<br>tapping on the PAS button from many<br>of the survey screens. After recording<br>the reading, tap on the Return button to<br>go back to the previous screen.<br>RS6 PAS BAC X < >?<br>Now I have a question about                                                                                 | RS7 PAS BAC X < > ?<br>About how many alcoholic                                                                                                                                                                                      | RS8 PAS BAC X < > ?<br>Have you had anything to                                                                                                                                    |
| your use of alcohol. Do you ever<br>drink alcoholic beverages such<br>as beer, wine, or liquor?<br>Yes No N/A                                                                                                                                                                                                                           | beverages do you consume in an<br>average week? ▼<br>0 8-14<br>1-2 More than 14<br>3-4 No answer<br>5-7 Next                                                                                                                         | Yes No N/A                                                                                                                                                                         |
| On RS6, the answer buttons are bright<br>green like a Next button and there is no<br>Next button. If a driver answers No to<br>this question, there's no point in asking<br>more questions about drinking. Tap on<br>the No button for the No answer and<br>jump to RS13. Similarly, the Yes button<br>records Yes answer jumps to RS7. |                                                                                                                                                                                                                                      | As on RS6, the Yes and No buttons<br>on RS8 record the answer and jump<br>to the appropriate screen (RS9 or<br>RS12).                                                              |

| RS9 PAS BAC X > ?   How long ago did you finish your last drink?   Hrs: Mins: Image: Comparison of the second | RS10 PAS BAC X > ?   Was that beer, wine, liquor, or a combination? Beer Wine cooler Wine Hard cider Liquor Other Combination Other malt bever age No answer Ref10 Next | RS11 PAS BAC S C Could you estimate your<br>breath alcohol level or BAC?<br>7 8 9 N/A<br>4 5 6<br>1 2 3<br>0 C %<br>DK concept<br>DK level<br>Ref11 Next<br>In response to the question on<br>RS11, drivers may say they don't<br>know. The two buttons below the<br>number pad distinguish between<br>those who don't know the concept of<br>BAC and those who don't know their<br>level of BAC. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RS12 PAS BAC C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS12b PAS BAC X > ?   How many times did that happen would you say? (of driving after drinking)                                                                         | RS13 PAS BAC X < ? ?<br>Tonight, are you, or have you<br>been, a designated driver?<br>Yes<br>No<br>Unknown<br>No answer<br><q6<br><q12 next<br="" ref13="">RS13 is the target of the No buttons<br/>on RS6 and RS12. You can use the<br/>yellow buttons in the lower left to go<br/>back to those questions as needed.</q12></q6<br>                                                             |

| RS13b       BAC       X       > ?         PAS reading:          0.12       Not used         0.10       0.08         0.06       0.05         0.04       0.03         0.02       0.01         [blank]       Next | RS14 PAS BAC X < 2 ?<br>Compared to a year ago, is<br>enforcement of impaired<br>driving laws in this area:<br>Much stronger •<br>A little stronger<br>About the same<br>A little weaker Don't know<br>Much weaker No answer<br>Ref14 Next | RS15 PAS BAC X < > ?<br>Now I have a few background<br>questions for statistical<br>purposes: 789<br>What is your age? 456<br>123<br>0 C<br>Gender • N/A<br>Male Female<br>Ref15 Next 1                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Although the PAS reading may already<br>be recorded, this screen appears in the<br>sequence as a reminder in case the<br>PAS malfunctioned earlier or was not<br>used.                                         |                                                                                                                                                                                                                                            | Record age and gender information<br>again and don't go back to correct<br>the information from the Obs screen.                                                                                                                                                                    |
| RS16       PAS       BAC       X       > ?         What is your zipcode?       7       8       9         4       5       6       1       2       3         0       C       N/A       N/A                       | RS17 PAS BAC X < > ?   How far have you gone in school? —   < High school graduation                                                                                                                                                       | RS18 PAS BAC C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                   |
| RS19 PAS BAC 🛛 C S ?<br>Are you Hispanic or Latino?<br>Ves<br>No<br>No answer<br>Ref19 Next                                                                                                                    | RS20 PAS BAC X < ?<br>To which racial group would you<br>say you belong? (all that apply)<br>White Black/African American<br>American Indian/Alaska Native<br>Nat.Hawaiian/Other Pac.Isl<br>Asian Other No answer<br>Clear<br>Ref20 Next   | RS20 PAS BAC X < 2 2<br>To which racial group would you<br>say you belong? (all that apply)<br>White Black/African American Asian<br>White Black/African American<br>American Indian/Alaska Native<br>Nat. Hawaiian/Other Pac. Isl<br>Asian Other No answer<br>Clear<br>Ref20 Next |
|                                                                                                                                                                                                                | The RS20 question allows multiple responses. Tapping on a light green button will append the caption to the field.                                                                                                                         | An example of how RS20 might appear if the driver mentions several races.                                                                                                                                                                                                          |

| PBT (ASK) 🛛 < > ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Breath Test Prompt                                                                                                                                                                                                                          | PBT ASK 🗴 < 😕 🕐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PBT       ASK       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X <td>Breath Test Prompt<br/>Now I'd like to ask you to<br/>provide a breath sample.<br/>Again, the results are<br/>confidential and anonymous.<br/>Please take a deep breath<br/>and blow.<br/>Return<br/>Sample spiel for introducing the breath</td> <td>PBT       ASK       X       &lt;       2         Sample #       BAC         21       .014         789       789         456       456         123       123         0       0       0         Result:       Provided         Provided       Refused       No test         Manual       Error       Next         After the driver has given a breath       No test</td> | Breath Test Prompt<br>Now I'd like to ask you to<br>provide a breath sample.<br>Again, the results are<br>confidential and anonymous.<br>Please take a deep breath<br>and blow.<br>Return<br>Sample spiel for introducing the breath        | PBT       ASK       X       <       2         Sample #       BAC         21       .014         789       789         456       456         123       123         0       0       0         Result:       Provided         Provided       Refused       No test         Manual       Error       Next         After the driver has given a breath       No test                                                                                                                                                                                                                                                                       |
| expect when giving a breath sample.<br>Tap on the ASK button for a sample<br>spiel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | test.                                                                                                                                                                                                                                       | sample, record the sample number<br>(review on the PBT if needed) and<br>enter the PBT reading if it appears.<br>At the bottom of the screen, indicate<br>whether the driver provided a breath<br>sample or explicitly refused to give<br>one. In cases where a driver does<br>not provide sufficient air for a valid<br>sample, ask them to try again and at<br>their peak blowing, press the Manual<br>button on the PBT. Use the Error<br>button when the PBT gives an error<br>message. Use the "No test" button to<br>indicate that the PBT was not used<br>for some reason (out of tubes, not<br>turned on, overlooked, etc.). |
| Oral Fluid       ASK       X       X       Y         Test used       Sample #         Qua       Int       7       8       9         Incentive \$       10       4       5       6         was in intro spiel       1       2       3         Provided       0       C       Refused         No test       Next       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oral Fluid Prompt<br>Another part of our study is to<br>gather saliva samples from<br>drivers to test for other<br>substances. It takes about 2<br>minutes and again, the results<br>are anonymous and won't be<br>known tonight.<br>Return | Oral FluidASK>>Test usedSample #~ Quantisal2145QuaInt789Incentive \$ ~ 10456was in intro spiel123Provided0 CRefused0 CNo testNext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tap on ASK button for a spiel about the<br>oral fluid sample. The standard device<br>used for oral fluid samples is the<br>Quantisal, but the Intercept device can<br>be used. The default for the incentive is<br>\$10, but can be changed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                             | The Sample # is taken from the<br>preprinted labels and will also be<br>used for the paper-and-pencil drug<br>survey and for the blood sample.<br>Once entered, it will reappear at the<br>appropriate places on following<br>screens.                                                                                                                                                                                                                                                                                                                                                                                               |

| AudScreen<br>Have you had a drink of any<br>type of alcoholic beverage in<br>the past year? Please do not<br>include times when you only had<br>a sip or two from a drink. //By a<br>drink, we mean a can or bottle<br>of beer, a glass of wine or wine<br>cooler, a shot of liquor, or a<br>mixed drink with liquor in it.<br>Yes No N/A<br>RefAud | Audit1 ASK X > ?<br>In the past year, how often<br>did you have a drink containing<br>alcohol?<br>Never<br>Monthly or less<br>2-4 times/month<br>2-3 times/week<br>4 or more times/week<br>RefAud1                                 | Audit2a<br>In the past year, how many<br>drinks containing alcohol did<br>you have on a typical day when<br>you were drinking?<br>1 or 2<br>2-4<br>5-6<br>7-9<br>10 or more<br>RefAud2                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| After the Oral Fluid sample come the<br>Audit questions. (This section may be<br>revised.) If the driver answers No on<br>AudScreen, the rest of the Audit<br>questions are skipped.                                                                                                                                                                | Drivers who admit drinking are asked a<br>series of 3 screening questions.<br>Depending on their responses to those<br>questions, they may be asked more<br>questions.                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Audit3a<br>In the past year, how often<br>did you have 6 (5 for a woman)<br>or more drinks on one occasion?<br>Never<br>Less than monthly<br>Monthly<br>Weekly<br>Daily/almost daily<br>RefAud3                                                                                                                                                     | AudAbuse1<br>X C S ?<br>In the past year, did your<br>drinking often interfere with<br>taking care of your home or<br>family or cause you problems at<br>work or school?<br>Yes No N/A<br>< <audcheck<br>RefAB1 Next</audcheck<br> | AudCheck       X       Y       Y         If all answers match, tap on       "Skip" button.         1       2-3 times/week       =       Never         or Monthly or less       or 2-4 times/month       2       5-6         =       1 or 2       3       Monthly         =       Never       Next                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                     | The < <audcheck button="" on="" the<br="">AudAbuse1 screen allows you to<br/>review the answers to the three<br/>screening questions.</audcheck>                                                                                   | The AudCheck screen (accessible<br>from the AudAbuse1 and Drug Qs<br>screens) shows the combinations of<br>answers that result in skipping the<br>rest of the Audit questions. With this<br>set of responses (drinks 2-3<br>times/week, 5-6 drinks per typical<br>episode, and Monthly episodes of 6<br>or more drinks), the full Audit would<br>be asked. The Skip> button will go to<br>the Drug Qs screen and the Next<br>button will go to the AudAbuse1<br>screen. |

| AudAbuse2<br>No market in the past year, did you more than once get into a situation while drinking or after drinking that increased your chances of getting hurtlike driving a car or other vehicle or using heavy machinery after having had too much to drink?<br>Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AudAbuse3<br>In the past year, did you get<br>arrested, held at a police<br>station, or have legal problems<br>because of your drinking?<br>Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AudAbuse4<br>Note: A set of the past year, did you continue to drink even though it was causing you trouble with your family or friends?<br>Yes No N/A                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefAB2       Next         AudDep1       In the past year, have you found that you have to drink more than you once did to get the the effect you want?         Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RefAB3       Next         AudDep2       X < > ?         In the past year, did you find that your usual number of drinks had less effect on you than it once did? <ul> <li>Yes</li> <li>No</li> <li>N/A</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RefAB4       Next         AudDep3       X < 2 (2)                                                                                                                                                                                                                                                                                                                                          |
| RefDep1       Next         AudDep4       Image: Image | RefDep2 Next     AudDep5 <ul> <li> <li> <li> <li> <ul> <li> <li> <ul> <li> <ul></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></li></ul></li></li></li></li></ul> | RefDep3       Next         AudDep6       RefDep6       X       > ?         In the past year, when the effects of alcohol were wearing off, did you experience some of the bad after effects of drinkinglike trouble sleeping, feeling nervous, restless, anxious, sweating, or shaking, or did you have seizures or sense things that weren't really there?         Yes       No       N/A |

| AudDep7       In the past year, did you spend a lot of time drinking or getting over the bad after effects of drinking?         Yes       No         Yes       N/A                                                        | AudDep8       Image: Constraint of the past year, did you continue to drink even though it was causing you to feel depressed or anxious or causing a health problem or making one worse?         Yes       No         No       N/A         RefDep8       Next                                                                                                                   | Drug Qs ASK X S 2<br>Administer the drug questions<br>on paper forms<br>Enter/check participant #<br>2145<br>7 8 9<br>4 6 6<br>1 2 3<br>< <audscreen<br>0 C<br/>&lt;<audcheck< td=""></audcheck<></audscreen<br>                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                 | After the Audit questions, administer<br>the paper and pencil survey about<br>drug use. If the Sample # was<br>entered on the Oral Fluid screen, it<br>will reappear here as the participant<br>#. Because this screen is the target<br>after skipping the Audit questions,<br>the yellow buttons in the lower left<br>can be used to jump back. |
| Blood Test ASK X < 2 2<br>Incentive Sample #<br>\$ \$ 50 2145<br>7 8 9<br>Result • 4 5 6<br>Provided 1 2 3<br>Refused 0 C<br>No test Next                                                                                 | Blood Test Prompt<br>There is one more test we'd<br>like you to take. We would like<br>to offer you \$50 to provide<br>us a quick blood screen. This<br>is completely voluntary. We<br>have a licensed phlebotomist<br>available; she is very skilled and<br>it should take only another 5<br>minutes. Would you be willing<br>participate in this part of the<br>study? Return | Blood Test (ASK) (X) (>) (2)<br>Incentive Sample #<br>\$ ~ 50 2145<br>(7 8 9)<br>Result ~ Provided (4 5 6)<br>(Provided (1 2 3)<br>(No test 0 C)<br>(Next)                                                                                                                                                                                       |
| If the Sample #/Participant # was<br>entered on the Oral Fluid screen or the<br>Drug Qs screen, it will reappear on the<br>Blood Test screen. The default<br>incentive for the Blood Test is \$50, but<br>can be changed. | When asking the driver about the blood<br>test, be clear that you are asking for a<br>sample. A suggestion that we are<br>asking them to donate blood, which<br>implies a pint of blood, is likely to evoke<br>a refusal.                                                                                                                                                       | In most cases, if you get to the point<br>of asking for a blood sample, the<br>only answer on the Blood Test<br>screen that needs to be filled in is<br>the Result—Provided, Refused, or<br>No test.                                                                                                                                             |

| Rxn1       ASK       X       > ?         Saliva \$10       Blood \$50         What is the minimum incentive you would have accepted to provide a saliva test?         7       8       9         4       5       6         1       2       3         0       C       Not poss         RefRxn1       Next 1                                   | Rxn2       X < > ?         What is the minimum incentive you would have accepted to provide a blood test?         7 8 9         4 5 6         1 2 3         0 . C         Not poss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rxn3       Image: Constraint of the state o                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Most people will not have anything to<br>suggest in response to this question.<br>If they do, write it on a piece of paper<br>and identify it with a participant<br>number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Summary       Solution         Stop timing         Write time on bag:       10:25 pm         Elapsed time:         Check entries in these fields:         PBT sample:       Provided         PBT sample #       21         Participant #       2145         Saliva sample:       Provided         Blood sample:       Provided         Next | Choose Time: 12:00 am         Hours       Minutes         12a       12p       0       0         1       1       2       2       3       3         1       2       2       3       3       4       4         2       2       3       3       4       4       5       5       6         Current Time       5       5       5       6       6       7       7       8       9       9       9       9       9       9       9       10       10       10       10       10       To $\checkmark 0 \checkmark 0$ $\checkmark 0 \checkmark 0$ $\checkmark 0$ $\land 0$ <td>SummaryImage: Constraint of the second s</td> | SummaryImage: Constraint of the second s |
| After finishing Rxn3, release the driver.<br>On the summary screen, tap the Stop<br>timing button and                                                                                                                                                                                                                                       | then the Current Time button on the Choose Time screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The ending time will then appear on<br>the screen as well as the elapsed<br>time of the survey. If any data is<br>missing from the 5 fields below the<br>line, it should be entered now. Three<br>fields have options for popup menus;<br>tapping on the answers for PBT<br>sample # or Participant # will bring<br>up the PBT2 screen or the Oral Fluid<br>review screen, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| PBT2                                                                             | Oral Fluid review                                  | Options                                                              |
|----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|
| Sample # BAC                                                                     | Test used Sample #                                 | Save the current record and:                                         |
| 21 .014                                                                          | ▼ Quantisal 2145                                   | Create new Close forms                                               |
| 789 789                                                                          | Qua (Int) (7)(8)(9)                                | Jump to section:                                                     |
| 466 466                                                                          | Incentive \$ = 10 (4)56                            | (Observations) (AUDIT)                                               |
| 123 123                                                                          | was in intro spiel<br>Result <b>v</b> Provided 123 | Survey Drug Qs                                                       |
|                                                                                  |                                                    | (PASResult) (Blood Test)                                             |
|                                                                                  | Refused                                            | (PBT Test ) (Reactions )                                             |
| Result:   Provided                                                               | Notest                                             | Oral Fluid Summary                                                   |
| Provided Refused No test                                                         | Return                                             | Return                                                               |
| ( <u>Manual</u> )( <u>Error</u> )( <mark>Return</mark> )                         |                                                    |                                                                      |
| The PBT2 screen is also used as the                                              |                                                    | The Options screen is the last                                       |
| target of the BAC button on the RSx                                              |                                                    | screen in the survey. It is also                                     |
| screens. Tapping on the Return button                                            |                                                    | available from any other screen by                                   |
| will go back to the previous screen.                                             |                                                    | tapping the white X button. When data entry on a driver is complete, |
|                                                                                  |                                                    | save the record and create a new                                     |
|                                                                                  |                                                    | record or go back to table view by                                   |
|                                                                                  |                                                    | closing the forms. To access a                                       |
|                                                                                  |                                                    | section of the record, tap on the appropriate button. Tapping on the |
|                                                                                  |                                                    | Return button will take you back to                                  |
|                                                                                  |                                                    | whatever screen this was accessed                                    |
|                                                                                  |                                                    | from.                                                                |
| Incentives 🛛 🛛 🤇                                                                 |                                                    |                                                                      |
| Incentive levels for:                                                            |                                                    |                                                                      |
| Saliva test Blood test                                                           |                                                    |                                                                      |
| ▼ 10 ▼ 50                                                                        |                                                    |                                                                      |
| 0 25                                                                             |                                                    |                                                                      |
| 5 50                                                                             |                                                    |                                                                      |
| 10 75                                                                            |                                                    |                                                                      |
| 15 100                                                                           |                                                    |                                                                      |
| 20                                                                               |                                                    |                                                                      |
| Candy                                                                            |                                                    |                                                                      |
| ( <mark>Return</mark> )                                                          |                                                    |                                                                      |
| Defaults for monetary incentives are set                                         |                                                    |                                                                      |
| at \$10 for the oral fluid sample, and \$50                                      |                                                    |                                                                      |
| for the blood test. The defaults can be                                          |                                                    |                                                                      |
| adjusted on the Oral Fluid and Blood                                             |                                                    |                                                                      |
| Test screen respectively.; as well as by tapping on the default values appearing |                                                    |                                                                      |
| at the top of the Obs screen and                                                 |                                                    |                                                                      |
| displaying the Incentives screen.                                                |                                                    |                                                                      |
| Changing the defaults works only for                                             |                                                    |                                                                      |
| the current record and needs to be done for each record.                         |                                                    |                                                                      |
|                                                                                  |                                                    |                                                                      |

# Appendix G National Roadside Survey Pilot Test Portable Breath Alcohol Tester (PBT) Specifications

# FEATURES AND BENEFITS

The PA-400 uses an ethanol specific electrochemical sensor that operates in conjunction with a precision, electronically controlled pump. The pump draws a breath sample into the sample chamber where it is read by an electrochemical sensor that analyzes the sample for ethanol. A microprocessor controls all internal aspects of the sampling process. The sensors sample at a point where the deepest lung air is being blown out. The deep lung air best correlates to the person's actual blood alcohol concentration. Thus, this is why the sensors take the sample upon a drop in blow volume (the subject is running out of air).

The PA-400 sensors record the date, time, sample number, and the BAC results of all samples in an internal memory computer chip. With the configuration software that comes with these breath test devices, one can either allow the BAC result to display or the display



can be turned off. In most research surveys, the BAC is not displayed so as to keep this information out of the hands of any law enforcement in the area where the survey is being conducted. Only the Field Supervisor has the authority and ability to turn the display on or off. The roadside surveys to take place in Tennessee will have the display turned on since the researchers are working with the police who have agreed to allow the researchers find safe transportation home for any driver who has a BAC of .050 or higher.

# **TECHNICAL SPECIFICATIONS**

| Product Name                         | Intoxilyzer 400PA                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function                             | On-the-spot measurement of breath alcohol concentration.                                                                                                                                                                                                                                                                                               |
| Alcohol Sensor                       | Electrochemical fuel cell                                                                                                                                                                                                                                                                                                                              |
| Instrument Control                   | By microcontroller                                                                                                                                                                                                                                                                                                                                     |
| RF Interference                      | Case is impregnated with RFI shielding material for RFI protection                                                                                                                                                                                                                                                                                     |
| Calibration                          | Secure calibration using either dry gas or wet bath simulator                                                                                                                                                                                                                                                                                          |
| Accuracy                             | $\pm.005$ BrAC up to .100 BrAC and $\pm5\%$ above .100 BrAC, which meets DOT specifications                                                                                                                                                                                                                                                            |
| Specificity                          | Fuel cell sensor is unaffected by acetone, paint and glue fumes, foods, confections, methane, and practically any other substance found in the human breath                                                                                                                                                                                            |
| Breath Sample                        | Automatic after the subject blows for 4-6 seconds.                                                                                                                                                                                                                                                                                                     |
| Display                              | Four-digit LCD                                                                                                                                                                                                                                                                                                                                         |
| Visual Indicator                     | Four LED lights indicate status (Wait, Ready, Flow, Analyzing)                                                                                                                                                                                                                                                                                         |
| Audible Indicator                    | Beeper signals fault conditions and changes in instrument status                                                                                                                                                                                                                                                                                       |
| <b>Communications Port</b>           | Two-channel, RS-232 serial interface to printer or PC                                                                                                                                                                                                                                                                                                  |
| Reset Time                           | Immediate at zero alcohol reading, up to two minutes after a positive breath test. Within five seconds of sampling, depending on alcohol concentration                                                                                                                                                                                                 |
| Power Supply                         | Five AA alkaline batteries (included)                                                                                                                                                                                                                                                                                                                  |
| Memory Function                      | Stores 500 test results including date and time. Recalls last breath test even if instrument has been switched off and back on. Stored tests can be downloaded to the printer or a PC                                                                                                                                                                  |
| Recommended<br>Operating Temperature | 23° to 104°F (-5° to 40°C)                                                                                                                                                                                                                                                                                                                             |
| Dimensions                           | $3\frac{1}{4}$ " wide x $1\frac{3}{4}$ " deep x $6\frac{3}{4}$ " high (sensor) (8.3 cm wide x 4.4 cm deep x 17.1 cm high)                                                                                                                                                                                                                              |
| Weight                               | One pound (.45 kg)                                                                                                                                                                                                                                                                                                                                     |
| Accessories                          | Data 400 software for downloading of results to a PC for data management<br>and/or printing<br>Online 400 software allows for factory customization to a wide range of<br>testing protocols thermal or impact printer<br>expanded memory to store up to 10,000 test results<br>reusable sample cups<br>rechargeable power unit<br>12-volt power supply |
| Included                             | Storage case<br>Illustrated operator's manual<br>Five mouthpieces                                                                                                                                                                                                                                                                                      |
| Warranty                             | One year, parts and labor                                                                                                                                                                                                                                                                                                                              |
|                                      |                                                                                                                                                                                                                                                                                                                                                        |

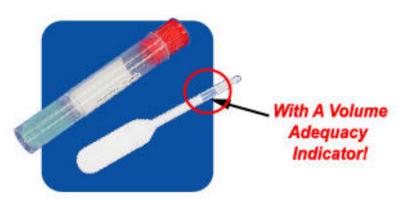
To Use the Portable Breath Tester (PBT):

1. Turn on the instrument using the large button on the upper left front of the instrument. The instrument performs a diagnostic test and displays the time and date. The sensor's WAIT (red) light will stay on briefly, and then the READY (green) light will come on. The sensor is now ready for the respondent to blow. The sample number

is displayed on the LED briefly after the last sample clears — the display will show the time, the date, and then the sample number (example: 0001) — and then the display will go blank. To recall the upcoming sample number simply press turn the unit off and on and watch for the sample number (the unit will take about 20 seconds to go through the diagnostic sequence and then display the sample number for a split second). Keep the sample number in mind.

- 2. Record the sample number on the questionnaire or into your PDA.
- 3. Prepare to take the sample by taking a sterile mouthpiece and opening it so as not to touch the end the respondent's lips will touch, leaving the plastic wrapper on. Insert the tiny "T" appendage into the sensor.
- 4. Instruct the respondent to take a deep breath and blow out slowly and steadily as if blowing out candles on a birthday cake or blowing up a balloon.
- 5. Position the PA-400 so that the respondent can blow into the mouthpiece so that the breath will not strike you in the face. Ask the respondent to remove the plastic wrapper and place his/her lips around the end of the tube. Have the respondent take deep breath and blow, as stated above in #4.
- 6. The sensor will take the sample automatically, providing the subject blows correctly. The sample is taken when the subject's flow rate begins to drop; approximately 5 seconds.
- 7. When the respondent blows correctly, the FLOW (yellow) light will come on and you will hear a soft whining sound as the pump takes in the sample. Data Collectors must position the sensor so as to see the lights. When the sample is taken, the sensor's WAIT (red) along with the ANALYZING (orange) lights come on and you will hear a double beep (beep, beep). You must watch for these lights.
- 8. The display will begin to register a sample and if alcohol is present it should peak in about 20 seconds.
- 9. If the driver fails to blow long and steady enough, or blows in two or more different ways (such as blowing lightly followed by sucking in), the PA-400 should beep and go back to the READY (green) mode or it may stick and make a continuous beep. Pull the sensor away and re-instruct the driver on how to blow and again attempt to gather his/her breath sample.
- 10. If the driver has asthma, a cold, or other respiratory problems that prevents providing enough breath for the PA-400 to sample automatically, you should attempt one, or maybe two, more times to take the sample automatically. Otherwise, ask the driver to blow one more time and take the sample manually. To take a manual sample, have the driver again blow into the tube and as the FLOW (yellow) light registers, hit the button labeled "Man." You must indicate if the sample was taken manually since such a sample does not reflect the deep lung air and likewise does not reflect the person's actual BAC level.

11. Warning Indicators and Error Messages: please refer to your owner's manual. The Data Collectors must tell the Field Supervisor if any warning sounds, lights or messages appear while using their PA-400


Appendix H National Roadside Survey Pilot Test Quantisal Oral Fluid Specifications

# FEATURES AND BENEFITS



The saliva sampler is intended for the collection and the transport of oral fluid for forensic and research purposes.

**Collection:** A saliva specimen is collected by placing a cellulose pad affixed to a polypropylene stem (Collector) under the tongue of an individual until a define



volume of saliva has saturated the cellulose pad. The defined volume taken up by the cellulose pad is indicated by coloration (blue) in a window on the stem (volume adequacy).

**Preservation:** The collector is transferred into a provided polypropylene tube containing a preservative buffer. The tube is stopped with a provided cap. The specimen is ready for storage or transport.

**Volume adequacy:** The cellulose pad placed under the tongue for collection is extended into a cellulose tail accommodated in the interior of the polypropylene stem. Blue dye is placed on the cellulose tail below the window in the stem. Upon saturating the cellulose pad with specimen, aqueous medium migrates along the cellulose tail by capillary action and dissolves the dye. Upon further migration of liquid, the dye becomes visible in the window of the stem.

# Materials provided:

a) Saliva collector with volume adequacy indicator.

b) Transport tube with snap cap. The tube contains 3 mL of buffer with non azide preservative.

## INSTRUCTIONS

Warning do not put buffer fluid of transport tube into mouth.

1) Do not use device beyond expiration date printed on package.

2) Record patient information and collection date on tube label.

3) Remove collector from pouch.

**4)** Position collector under tongue. Close mouth. DO NOT CHEW OR SUCK ON PAD! Do not move pad during collection.

5) The collector should remain under tongue until indicator turns completely blue. Blue color indicates collector is saturated with 1 ml of saliva. The collection time may take from 2 - 10 minutes. If the indicator has not turned blue within 15 minutes the pad should be removed from the mouth and discarded. Recollection with a new device may begin immediately but only after saliva has accumulated in the mouth. The collector may be place in the same position.
6) Open mouth and lift tongue. Remove collector from mouth.

7) Remove cap from transport tube. Insert the saturated collector into the tube. Do not place collector into mouth after it has been in the buffer liquid.

**8)** Carefully place cap over the top of the collector stem in tube. FORCEFULLY PUSH CAP DOWNWARD UNTIL CAP "SNAPS" FLUSH WITH TOP OF TUBE.

9) Mix saturated collector with buffer by gently shaking tube.

**10)** Ship saliva specimen to laboratory as soon as possible.

### **PERFORMANCE CHARACTERISTICS:**

Saliva collection volume and collection time: The collection volume is 1 mL., with a variation of about 10 percent. It takes on an average about 3 minutes to collect this volume (n=302; first time users) The individual collection time may exceed 10 minutes (2 cases in 302)

| INSTRUCTIONS FOR QUANTISAL                                                                           |                                                    |                                                                                                                              |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                      | A                                                  |                                                                                                                              |
|                                                                                                      | Peel open package and remove collector.            | Place collector under the<br>tongue and close mouth.<br>When indicator window turns<br>blue, remove collector from<br>mouth. |
|                                                                                                      |                                                    | SNAP                                                                                                                         |
| Uncap transport tube in<br>upright position and hold<br>tube in hand. DO NOT<br>STAND TUBE ON TABLE. | Insert collector into the uncapped transport tube. | SNAP CAP firmly for transport.                                                                                               |

### Appendix I National Roadside Survey Pilot Test Oral Fluid and Blood Analytic Procedures

#### Introduction

Within the criminal justice system, urine has traditionally been used as the biological specimen for analysis. However, there are numerous products available which are designed to render a urine drug test inaccurate (gluteraldehyde, oxidants, nitrites etc.) as well as simple dilution of the specimen by the donor, with tap or toilet water. Unless a collection is observed, the possibility of a diluted, adulterated or substituted urine specimen is increased. While laboratories are able to test for some of these adulterants, obviously further testing increases overall costs.

As a result, interest in an alternative specimen for testing has increased. Advancing technology has allowed laboratories to measure lower amounts of drug in biological specimens, allowing drug testing programs to incorporate the unique benefits offered by alternative biological fluids, at a comparable cost.

When drugs are ingested, smoked, or injected, they travel through the body, and over time, convert into drug metabolites, which are subsequently excreted from the body. The highest concentrations of these drugs and metabolites is in the urine, but they are also present in measurable quantities in blood, saliva, sweat, tears, hair and even finger and toenails. Improved instrumentation has allowed laboratories to measure drugs in these "alternative" matrices.

# Due to its ease of collection, oral fluid has emerged as the specimen of choice to replace urine in many applications of testing for drugs of abuse

#### Advantages of Oral Fluid Testing

1. Collection

Saliva is easy to collect, handle, transport and store. Since the collection is observed, the chance of adulteration or substitution of the sample is minimized, and there is no embarrassment or requirement for a same sex observer as there is with urine. The entire collection process is rapid, taking perhaps 2-3 minutes.

Applications specifically based on ease of collection include:

- a) Criminal justice, parole and probation testing where often observed urine collection is required. There is no same sex observation requirement using saliva, and the dignity of the donor is preserved.
- b) Drug court, where a high number of specimens are often required to be collected, handled, and shipped in a short space of time.
- c) Staffing agencies, requiring a rapid specimen collection for pre-employment purposes.

#### 2. Adulteration

Since collection is observed, there is a limited opportunity for the donor to adulterate or substitute the sample. It is difficult to hold in the mouth anything which may affect the test for any length of time, particularly if engaged in conversation when filling out drug testing forms, providing personal information and interacting with the collector.

In contrast to urine, the drug concentration in saliva is unaffected by liquid intake.

#### 3. Window of detection

For most drugs, the detection time after use, using urine as the specimen, is approximately 2-4 days. (*Note: An exception is marijuana, where in some cases, chronic marijuana smokers can be detected up to 2-3 weeks after last use*).

For oral fluid, the detection window is generally shorter, although for some drugs it can approach 2 days, overlapping the urine window. The advantage of this is that very recent drug use can be detected by employing saliva as the test specimen. Since saliva is thought to reflect blood levels at a given time point, the presence of a parent drug (for example, cocaine) can be interpreted as an indication of being "under the influence" of cocaine at that specific time. It is generally not possible to interpret a urine test result as being "under the influence" of a drug, and this critical information would be lost using urine as the test specimen.

Applications specifically based on the ability of saliva to show a person to be "under the influence" of a drug include:

- a) Probation and Parole settings, where using illegal drugs is a violation of parole
- b) "Reasonable suspicion", "For cause" or "Post accident" testing, when there is an incident or a suspicious activity in the workplace, which may be due to drug or alcohol use
- c) Methadone maintenance and pain management centers, requiring a rapid answer as to whether the individual recently ingested the prescription drug

#### 4. Profile of drugs

The profile of drugs analyzed using saliva is somewhat wider, and considerably more useful than those in the standard urine panel.

- *Opiates:* Recent data has shown a very high prevalence of 6-acetylmorphine (a metabolite of heroin) in saliva specimens testing positively for morphine. The selection of oral fluid as the test specimen increases the opportunity of identifying heroin users. Under the urine program, 6-AM is not even tested for unless over 2000 ng/ml of morphine are present, severely reducing the number of heroin users identified by urinalysis.
- *Marijuana:* Marijuana metabolites take 3-6 hours after smoking to be detectable in urine. However, the active compound, tetrahydrocannabinol (THC) will be present almost immediately in saliva, likely due to its presence in the mouth following marijuana smoking, therefore very recent use can be identified.
- *Cocaine:* In urine testing, only a metabolite, benzoylecgonine is detectable using the SAMHSA guidelines. A positive urine finding gives no information on the state of the individual donor. In contrast, for oral fluid analysis, both parent cocaine and benzoylecgonine are identified. The presence of cocaine in the sample can be interpreted as very recent use of cocaine and possibly "under the influence" of the drug. The detection of benzoylecgonine lengthens the window of detection for cocaine use in saliva.
- *Amphetamines*: Under proposed guidelines for both urine and oral fluid, the inclusion of Ecstasy and its metabolite will be allowed in the amphetamine panel.

#### 5. Cost savings:

The major cost saving in converting from urinalysis to oral fluid testing is in the collection:

- No same sex observers are required
- No special facilities or conditions are needed (for example, "blueing" agent in toilet water)
- The cost of specimen transport and storage is significantly reduced
- There are no added costs to determine "adulteration" of the specimen

• In workplace settings, there is a significant reduction in time wasted travelling to and from the collection site, since collections can be performed anywhere

#### 6. "On-site" tests

Oral fluid lends itself very well to "on-site" testing, in terms of obtaining a rapid result, with no requirement for skilled personnel or special facilities. Rapid tests have been reported to perform well for opiates, methadone, amphetamines, and to some extent, cocaine. However, the main problem with all "on-site" oral fluid tests at this time, is the difficulty of achieving the required sensitivity for marijuana testing.

The proposed "cut-off" levels can be achieved using laboratory based testing, which also has the added advantages of improved quality control, confirmed results using GC/MS or MS/MS techniques and formal reporting.

#### Disadvantages of Oral Fluid Testing

Of course, nothing is perfect, and there are disadvantages to using oral fluid as a test specimen.

#### a) Collection Devices:

There are several variations in collection device and it has been reported that the method of collection influences the test result. Some devices consist of a pad attached to a stick (like a popsicle) which is placed into the mouth for a given time (e.g. Intercept <sup>TM</sup>). The saliva absorbs onto the pad and is then placed into a buffer for transport to the laboratory. The problem with this is that it is not known exactly how much oral fluid was actually collected, so there is a potential for erroneous results, most likely false negatives based on insufficient sample volume. Cut-off concentrations based on such a device are not relevant or applicable to other types of collectors.

Other devices (e.g. Quantisal<sup>TM</sup>) have a blue volume indicator on the collector showing when 1 mL has been collected. This is an improvement over the Intercept<sup>TM</sup> collection system, however, both of these devices are then placed into a buffer for transportation, and it is difficult to determine precisely how much drug is eluted from the pad into the buffer.

Some manufacturers are now requiring donors to "spit in a cup" which is often not too pretty to observe!

#### b) Specimen Volume

A problem related to the type of device is the collection of adequate volume for screening and confirmation, particularly if more than one drug confirmation is required.

Generally, a much lower volume of saliva than urine is provided by a donor. This brings up the issues of re-testing of the specimen (in the event of a batch failure) and "split-sample" testing (when another laboratory is required to confirm the first result). An adequate volume of specimen is critical for a valid test. In some collection devices, drugs may absorb onto the collection pad, and it is not clear how much drug is removed from the pad by the buffer.

Some "on-site" screening tests require the collection of an additional specimen to be sent to the laboratory for confirmation, but the same issues regarding collection device are valid.

#### c) Federal Workplace Testing

The Division of Workplace Programs, within the Substance Abuse and Mental Health Service Administration (SAMHSA), has yet to approve any alternative specimens for federal workplace testing, but saliva, hair and sweat are currently under consideration for approval in workplace programs. Guidelines have been drafted and are in the process of implementation.

However, certified laboratories are currently offering oral fluid testing and carrying out its analysis under good laboratory practice conditions, including chain-of-custody, quality control, batch review and formal reporting requirements. There are accrediting agencies specifically inspecting oral fluid procedures, so that the quality of the result is ensured.

# Summary

*Oral fluid* offers a simple, dignified, observed collection. It provides a relatively short history of drug use, therefore is an excellent specimen choice for **"reasonable suspicion**", "**post-accident**" or "**for cause**" testing, where identification of the parent drug shows that the donor was "under the influence" of the drug at the time the sample was taken. It is particularly useful for the identification of heroin users, and those under the influence of marijuana.

As oral fluid testing becomes more popular, the costs associated with its analysis are approaching those of urine, providing an excellent opportunity for drug testing programs to benefit from the analysis of alternate specimens.

| Matrix     | Advantages                                                                                                                                                                                                                                                                                 | Disadvantages                                                                                                                                                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| URINE      | <ol> <li>Most widely tested specimen</li> <li>Drugs are generally in high<br/>concentration</li> <li>Adequate volume for testing and<br/>re-testing by a second laboratory</li> <li>Federal standard cut-offs, testing<br/>protocols and laboratory</li> </ol>                             | <ol> <li>Easy to adulterate</li> <li>Collection not observed</li> <li>More costly for shipping and<br/>storage</li> <li>No relationship between drug<br/>concentration and impairment</li> </ol>                                                                                                                          |
| SALIV<br>A | <ol> <li>Easy to collect</li> <li>Difficult to adulterate since<br/>collection is observed</li> <li>Presence of parent drug shows<br/>"under the influence"</li> <li>Useful for the detection of recent<br/>drug use</li> <li>Useful for the identification of<br/>heroin users</li> </ol> | <ol> <li>Short drug history</li> <li>Marijuana levels are low, and likely<br/>due to THC in the mouth following<br/>smoking</li> <li>Specimen volume may be device<br/>dependent and is generally low</li> <li>No standard cut-offs, testing or<br/>collection protocols, or laboratory<br/>procedures (yet !)</li> </ol> |

# Standard Drug Confirmation Panel

| Urine Profile                                                                                                                                                | Oral Fluid Profile                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cocaine: Benzoylecgonine                                                                                                                                     | <b>Cocaine</b> : Cocaine <b>and</b><br>benzoylecgonine                                                                                                                       |
| <ul> <li>Opiates:</li> <li>codeine</li> <li>morphine</li> <li>(Note: Over 2000 ng/ml morphine then requires further testing for 6-acetylmorphine)</li> </ul> | <ul> <li>Opiates:</li> <li>codeine</li> <li>morphine</li> <li>6-acetylmorphine (heroin metabolite)</li> <li>hydrocodone</li> <li>hydromorphone</li> <li>oxycodone</li> </ul> |
| Amphetamines: <ul> <li>methamphetamine</li> <li>amphetamine</li> </ul>                                                                                       | Amphetamines:<br><ul> <li>methamphetamine</li> <li>amphetamine</li> <li>MDMA (Ecstasy)</li> <li>MDA</li> </ul>                                                               |
| Marijuana: Carboxy-THC                                                                                                                                       | Marijuana: THC                                                                                                                                                               |
| Phencyclidine                                                                                                                                                | Phencyclidine                                                                                                                                                                |

Screening Assays

# Oral Fluid

#### Sample Preparation

The oral fluid specimens were collected using a Quantisal<sup>TM</sup> collection device (Immunalysis, Pomona CA). When the absorbent collection pad had absorbed 1 mL of neat oral fluid (+-10%), a blue dye was visible in the indicator window on the plastic stem of the collection pad. The pad was placed in a polypropylene transport tube containing 3 mL of extraction buffer solution, capped and sent to the laboratory.

The sample volume of oral fluid used for screening was analyte dependent. The desired concentration range is shown below. An aliquot of the oral fluid + buffer was added to the micro-plate wells for analysis according to the manufacturer's instructions in the package insert (representative insert included). A specimen was considered to be presumptively positive if it screened higher than the cut-off concentrations.

#### Blood

#### Sample Preparation

The blood specimens were collected into gray top tubes and transported to the laboratory. Upon receipt the specimens were diluted 1:10 with bovine serum albumin.

The sample volume of diluted blood used for screening was analyte dependent. The desired concentration range is shown below. An aliquot of the diluted blood was added to the micro-plate wells for analysis according to the manufacturer's instructions in the package insert (representative insert included). A specimen was considered to be presumptively positive if it screened higher than the cut-off concentrations.

| KIT                         | Picograms / well | Analyte           |
|-----------------------------|------------------|-------------------|
| Amphetamine 209             | 50-150           | d-amphetamine     |
| Barbiturates 210            | 40-80            | Secobarbital      |
| Carisoprodol 231            | 5000             | Carisoprodol      |
| Benzodiazepines 214         | 40-80            | Oxazepam          |
| Benzoylecgonine 206         | 150-300          | Benzoylecgonine   |
| Cocaine/benzoylecgonine 212 | 200-300          | Benzoylecgonine   |
| Methamphetamine 211         | 50-150           | d-methamphetamine |
| Morphine Specific 213       | 80-120           | Morphine          |
| Oxycodone 221B              | 150-250          | Oxycodone         |
| PCP 208                     | 7.5-15           | РСР               |
| Cannabinoids 224            | 40 - 60          | Carboxy-THC (l)   |
| Cannabinoids 205            | 40-60            | Carboxy-THC (1)   |
| Methadone 232               | 100-200          | Methadone (d,l)   |
| Fluoxetine 234              | 750-1200         | Fluoxetine        |
| Sertraline 235              | 500 -1000        | Sertraline        |
| Tramadol 225                | 700-1200         | Tramadol          |
| Zolpidem 233                | 40-60            | Zolpidem          |

# DOSE RESPONSE IN CONCENTRATION PER MICRO-WELL FOR ELISA

DOT HS 810 704 January 2007



U.S. Department of Transportation National Highway Traffic Safety Administration

