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GLOSSARY OF TERMS

ANOVA — Analysis of variance.

Additional driver — Family or friends of the primary driver who drove the subject’s vehicle and
were not involved with the in-processing.

Associative Factors — Any environmental or vehicular factor where direct causation to crashes,
near-crashes, or incidents is not possible to attain but correlation may be determined.

Backing crash — A crash that occurs while the driver’s vehicle is in reverse gear.

Chase vehicle — Vehicle designated for locating (through GPS or other means) and downloading
data from subject vehicles.

Contributing factors — Any circumstance that leads up to or has an impact on the outcome of
the event. This term encompasses driver proficiency, willful behavior, roadway infrastructure,
distraction, vehicle contributing factors, and visual obstructions.

Crash — Any contact with an object, either moving or fixed, at any speed in which kinetic energy
is measurably transferred or dissipated. Includes other vehicles, roadside barriers, objects on or
off of the roadway, pedestrians, cyclists, or animals.

Crash-Relevant Event — Any circumstance that requires a crash avoidance response on the part
of the subject vehicle, any other vehicle, pedestrian, cyclist, or animal that is less severe than a
rapid evasive maneuver (as defined above), but greater in severity than a “normal maneuver” to
avoid a crash. A crash avoidance response can include braking, steering, accelerating, or any
combination of control inputs. A “normal maneuver” for the subject vehicle is defined as a
control input that falls outside of the 95 percent confidence limit for control input as measured
for the same subject.

Conflict Type — All crashes, near-crashes, crash-relevant conflicts and proximity conflicts were
categorized based on the initial conflict that lead to the crash that occurred or would have
occurred in the case of near-crashes and incidents. There were 20 types of conflicts used which
are as follows: conflict with lead vehicle, following vehicle, oncoming traffic, vehicle in
adjacent lane, merging vehicle, vehicle turning across subject vehicle path (same direction),
vehicle turning across subject vehicle path (opposite direction), vehicle turning into subject
vehicle path (same direction), vehicle turning into subject vehicle path (opposite direction),
vehicle moving across subject vehicle path (through intersection), parked vehicle, pedestrian,
pedalcyclist, animal, obstacle/object in roadway, single vehicle conflict, other, no known
conflict, unknown conflict. This list was primarily NASS GES Accident Types.

DAS — Data Acquisition System.

Driver Impairment — The driver’s behavior, judgment, or driving ability is altered or hindered.
Includes drowsiness, use of drugs or alcohol, illness, lack of, or incorrect use of medication, or
disability.
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Driver Proficiency — Whether the individual’s driving skills, abilities, or knowledge are
inadequate. This specifically refers to whether the driver appeared to be aware of specific traffic
laws (i.e., no U-turn), whether the driver was incompetent to safely perform a driving maneuver
(i.e., check for traffic before pulling out on a roadway), unaware of the vehicle’s turning radius,
or performs driving maneuvers under the incorrect assumption that it is safe, (i.e., drives over a
concrete median).

Driver-Related Inattention to the Forward Roadway — Inattention due to a necessary and
acceptable driving task where the subject is required to shift attention away from the forward
roadway. (e.g., checking blind spots, center mirror, instrument panel).

Driver Reaction — The evasive maneuver performed in response to the precipitating event.
Driver Seat Belt Use — Variable indicating if the subject is wearing a seat belt during an event.

EDR — Electronic data recorder.

Epoch — Typically, a 90-second period of time around one or more triggers in the data; can
include one or more events.

Event — a term referring to all crashes, near-crashes, and incidents. The “event” begins at the
onset of the precipitating factor and ends after the evasive maneuver.

Event Nature — Classification of the type of conflict occurring in the event (e.g., Conflict with
lead vehicle, Conflict with vehicle in adjacent lane).

Event Severity — Classification of the level of harm or damage resulting from an event. The 5
levels were crash, near-crash, crash-relevant, proximity, and nonconflict.

FARS — Fatality Analysis Reporting System.
FOV - Field of view.

FV - Following vehicle.

GPS — Global Positioning System — used by reductionists to locate participant vehicle for
information on an event.

Inattention Event — Any event where drowsiness, driver-related inattention to the forward
roadway, driver secondary tasks, or nonspecific eyeglance away from the forward roadway were
identified as a contributing factors to the event.

Incident — Encompasses the event severities of crash-relevant conflicts and proximity conflicts.

IVI — Intelligent Vehicle Initiative.

IR LEDs — Infrared light emitting diode.
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Invalid Trigger — Any instance where a pre-specified signature in the driving performance data
stream is observed but no safety-relevant event is present. See Appendix B for a more complete
definition of triggers.

LV — Lead vehicle.
MVMT - Million vehicle miles traveled.
NHTSA — National Highway Traffic Safety Administration.

Naturalistic — Unobtrusive observation; observation of behavior taking place in its natural
setting.

Near-crash — Any circumstance that requires a rapid, evasive maneuver by the subject vehicle,
or any other vehicle, pedestrian, cyclist, or animal to avoid a crash. A rapid, evasive maneuver is
defined as a steering, braking, accelerating, or any combination of control inputs that approaches
the limits of the vehicle capabilities.

Non-Conflict — Any incident that increases the level of risk associated with driving, but does not
result in a crash, near-crash, or incident as defined above. Examples include driver control error
without proximal hazards being present, driver judgment error such as unsafe tailgating or
excessive speed, or cases in which drivers are visually distracted to an unsafe level.

Non-Subject Conflict — Any incident that gets captured on video, crash-relevant, near-crash, or
crash, that does not involve the subject driver. Labeled as a non-subject conflict but data
reduction was not completed.

ORD - Observer Rating of Drowsiness; measured on a scale from 0 to 100 in increasing severity
of drowsiness. Based on Wierwille and Ellsworth, 1994.

Precipitating factor — The driver behavior or state of the environment that initiates the crash,
near-crash, or incident and the subsequent sequence of actions that result in an incident, near-
crash, or crash.

Proximity event — Any circumstance resulting in extraordinarily close proximity of the subject
vehicle to any other vehicle, pedestrian, cyclist, animal, or fixed object where, due to apparent
unawareness on the part of the driver(s), pedestrians, cyclists or animals, there is no avoidance
maneuver or response. Extraordinarily close proximity is defined as a clear case where the
absence of an avoidance maneuver or response is inappropriate for the driving circumstances
(including speed, sight distance, etc.).

Pre-Incident Maneuver — The maneuver that our driver was performing immediately prior to
the event. The importance of this is to record what our driver was doing before the precipitating
event occurred.

Secondary Task — Task, unrelated to driving, which requires subjects to divert attentional
resources from the driving task, e.g., talking on the cell phone, talking to passenger, eating, etc.

XX



Rear-end striking — Refers to the subject vehicle striking a lead vehicle.
Rear-end struck - Refers to the subject vehicle being struck by a following vehicle.

Sideswipe — Refers to either a vehicle in the adjacent lane changing lanes into the subject vehicle
or the subject vehicle changing lanes into a vehicle in the adjacent lane.

SV — Subject vehicle.

Trigger/Trigger Criteria — A signature in the data stream that, when exceeded, 90 seconds of
video data (60 seconds prior and 30 seconds after the data excedence) and the corresponding
driving performance data are copied and saved to a database. Trained data reductionists assess
these segments of video and driving performance data to determine whether this segment of data
contains a safety-relevant conflict (i.e., crash, near-crash, or incident) or not. Examples of
triggers include a driver braking at 0.76 g longitudinal deceleration or swerving around an
obstacle obtaining a 0.8 g lateral acceleration. For a more complete description of triggers, see
Appendix B.

USDOT - United States Department of Transportation.

Valid Event or Valid Trigger — Those events where a specific signature in the data stream was
identified, viewed by a data reductionist, and deemed to contain a safety-relevant scenario. Data
reductionists record all relevant variables and store this data in the 100-Car Database.

Vehicle Run-Off-Road — Describes a situation when the subject vehicle departs the roadway.
VDOT - Virginia Department of Transportation.

Virginia Tech Motor Pool — An extension of the Virginia Tech Office of Transportation.

VTTI - Virginia Tech Transportation Institute.

Visual Obstruction — This variable refers to glare, weather, or an object obstructing the view of
the driver that impacts the event in any way.

Willful Behavior — The driver knowingly and purposefully drives in an unsafe or inappropriate

manner. Includes aggressive driving, purposeful violation of traffic laws, use of vehicle for
improper purposes (i.e., intimidation).
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EXECUTIVE SUMMARY

The 100-Car Naturalistic Driving Study is the first instrumented vehicle study undertaken with
the primary purpose of collecting large-scale naturalistic driving data. Drivers were given no
special instructions, no experimenter was present, and the data collection instrumentation was
unobtrusive. In addition, the majority of the drivers drove their own vehicles (78 out of 100
vehicles). As described throughout this document, there is every indication that the drivers
rapidly disregarded the presence of the instrumentation. Thus, the resulting database contains
many extreme cases of driving behavior and performance, including severe drowsiness,
impairment, judgment error, risk taking, willingness to engage in secondary tasks, aggressive
driving, and traffic violation (just to name a few) that have been heretofore greatly attenuated by
other empirical techniques.

Since the study was the first of its kind, new techniques had to be created and existing methods
modified to make the study successful. The data collection effort resulted in the following
dataset contents:

e Approximately 2,000,000 vehicle miles of driving.

e Almost 43,000 hours of data.

e 241 primary and secondary driver participants.

e 12 to 13 month data collection period for each vehicle; 18 month total data collection

period.
e Five channels of video and many vehicle state and kinematic variables.

An “event” database was created, similar in classification structure to an epidemiological crash
database, but with video and electronic driver and vehicle performance data appended to it. The
events in this case are crashes, near-crashes, and other “incidents” that represent less severe
conflicts. This approach allows the video and electronic data to be replayed multiple times and
at varying frame rates in order to fully understand the nature of the event. This approach allows
the classification of the following:

e Pre-event maneuver.
Precipitating factor.
Event type.
Contributing factors.
Associative factors.
Avoidance maneuver.
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The scope of the current project specified 10 initial, high priority objectives or goals addressed
through the initial analysis of the event database. This report addresses the first 9 of these 10
goals, which include:

Goal 1: Characterization of crashes, near-crashes, and incidents for the 100-Car study

Goal 2: Quantification of near-crash events

Goal 3: Characterization of driver inattention

Goal 4: Driver behavior over time

Goal 5: Rear-end conflict causal factors and dynamic conditions

Goal 6: Lane change causal factors and dynamic conditions

Goal 7: Inattention for rear-end lead-vehicle scenarios

Goal 8: Characterize the rear-end scenarios in relation to Heinrich’s Triangle

Goal 9: Evaluate performance of hardware, sensors, and the data collection system.

Goal 10: Evaluate the data reduction plan, triggering methods, and data analysis

Some of the most important findings addressed as part of the high priority goals analyzed for this
report are presented below:

e This study allowed, perhaps for the first time, the capture of crash and collision events
that included minor, non-property-damage contact. These low severity collisions provide
very valuable information and occur much more frequently than more severe crashes. As
a result, crash/collision-involvement was much higher than expected in that 82 total
crashes/collisions were reported in this study, while only 15 of these crashes were
reported to the police. For urban/suburban settings, this suggests that total crash/collision
involvement may be over five times higher than police-reported crashes.

e Almost 80 percent of all crashes and 65 percent of all near-crashes involved the driver
looking away from the forward roadway just prior to the onset of the conflict. Prior
estimates related to “distraction” as a contributing factor have been in the range of 25
percent.

¢ Inattention, which was operationally defined as including: (1) secondary task distraction;
(2) driving-related inattention to the forward roadway (e.g., blind spot checks); (3)
moderate to extreme drowsiness; and (4) other non-driving-related eyeglances, was a
contributing factor for 93 percent of the conflict with lead-vehicle crashes and minor
collisions. In 86 percent of the lead-vehicle crashes/collisions, the headway at the onset
of the event was greater than 2.0 seconds.

e For scenarios involving conflict with a lead vehicle, the most frequent cases of lower
severity conflicts (i.e., incidents and near-crashes) occurred in lead-vehicle moving
scenarios, while 100 percent of the crashes (14 total) occurred when the lead vehicle was
stopped. This indicates that drivers have sufficient awareness and ability to perform
evasive maneuvers when closing rates are lower and/or expectancies about the flow of
traffic are not violated.

e The rate of inattention-related crash and near-crash events decreases dramatically with

age, with the rate being as much as four times higher for the 18-to-20 age group relative
to some of the older driver groups (i.e., 35 and up).
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e The use of hand-held wireless devices (primarily cell phones but including a small
amount of PDA use) was associated with the highest frequency of secondary task
distraction-related events. This was true for both events of lower severity (i.e., incidents)
and for events of higher severity (i.e., near-crashes). Wireless devices were also among
the categories associated with the highest frequencies of crashes and minor collisions,
along with looking at/reaching for an object in vehicle and passenger-related secondary
tasks.

e Drowsiness also appears to affect crashes and collisions at much higher rates than is
reported using existing crash databases. Drowsiness was a contributing factor in 12
percent of all crashes and 10 percent of near-crashes, while most current database
estimates place drowsiness-related crashes at approximately 2 to 4 percent of total
crashes.

e The lead-vehicle crash and near-crash data clearly shows that development of purely
quantitative near-crash criteria (i.e., not requiring at least some degree of verification by a
human analyst) is not currently feasible. A primary reason for this was that vehicle
kinematics associated with near-crashes were virtually identical to common driving
situations that were not indicative of crash risk. Thus, qualitative and quantitative criteria
are dependent upon one another to some degree. Fortunately, advances in digital video
compression and storage technology, and the advancement of data reduction software,
have made video verification feasible for large numbers of events.

e Results from the analysis investigating driver adaptation to instrumented vehicles indicate
that even when the same driver was switched from a private vehicle to a leased vehicle,
there were still more events per mile in the leased vehicle than in the private vehicle. If
there was an effect of adaptation, it was extinguished before the first week of driving was
completed. In addition, drivers appeared to adapt to the presence of the unobtrusive
instrumentation within the first hour of driving.

In addition to the 10 high-priority goals addressed as part of this report, there are three additional
research contracts in place to perform further data reduction and analysis efforts for the purpose
of addressing another 8 goals. There is also considerable interest in using the data for even more
purposes from researchers in several disciplines. Progressing toward this potential for a
multipurpose, highly flexible and adaptable tool for driving safety may be the most important
aspect of this study.

The naturalistic approach fills a void in our existing driving safety research methods.
Specifically, it provides much greater information regarding the pre-crash and crash events than
is currently available, even after a detailed crash investigation. Furthermore, the data provides
much greater external validity relative to the larger context of driving than do empirical methods
such as test tracks or simulators.

Despite the massive scope of the current effort, it was designed to also serve as a pilot to a much
larger future study. From an epidemiological viewpoint, the study was small with the presence
of 15 police-reported and 82 total crashes and minor collisions. Furthermore, drivers were
represented from only one area of the country (Northern Virginia/Washington, DC, metro area).
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One purpose of a larger-scale study would be to have a statistically representative sample of
crashes (perhaps 2,000) and a more representative subject/environment sample.

Since a primary purpose of the 100-Car Study was to serve as a pilot for a larger-scale study
(e.g., 5,000-car study), a goal was to evaluate the process and results of the 100-Car Study to
assess the feasibility of such an undertaking. Based upon the results of the evaluations
conducted, it is believed that a large-scale database would be an enormous asset and would be
used by transportation researchers to address many transportation safety problems. Such an
undertaking would allow researchers to gain insight and understanding into a wide array of
driving behavior issues and potentially serve as a basis for decision making and program
development in both the public and private sectors. This belief is based upon the robustness of
these pilot results and the anticipation that these data will continue to be analyzed and the results
made available from a variety of researchers and research organizations. Clearly, a large-scale,
nationally-representative study, that includes a statistically significant number of police-reported
crashes, would provide tremendous insight into issues that have eluded the highway safety
community for many years.
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REPORT OVERVIEW
INTRODUCTION

The 100-Car Naturalistic Driving Study is the first instrumented vehicle study designed to collect
a large volume of naturalistic driving data for a large number of drivers over an extended period
of time. The Virginia Tech Transportation Institute (VTTI) installed instruments and sensors in
100 vehicles that were then driven as ordinary vehicles by ordinary drivers for one year. Drivers
were given no special instructions, no experimenter was present, and the data collection system
was unobtrusive. In addition, drivers’ own vehicles were instrumented for 78 out of the 100
vehicles. Drivers apparently adapted rapidly to the instrumentation, probably within the first
hour. The resulting database contains many extreme cases of driving behavior and performance,
including severe drowsiness, impairment, judgment error, risk taking, willingness to engage in
secondary tasks, aggressive driving, and traffic violation (just to name a few) that have been
difficult to examine using other techniques.

As with any innovative new research method, new techniques had to be developed and existing
methods modified. The resulting dataset contained:
e approximately 2,000,000 vehicle-miles of driving;
almost 43,000 hours of data;
data on 241 primary and secondary drivers;
a 12- to 13-month data collection period for each vehicle; and

five channels of video and numerous vehicle state and kinematic variables for any given
point in time.

Despite the apparent large scope of the current effort, the study was also designed to also serve
as a pilot to a much larger future study. From an epidemiological viewpoint, the study was small
(15 police-reported and 82 total crashes, including minor collisions). Furthermore, drivers from
only one area of the country were represented (the Northern Virginia/Washington, DC, metro
area). One purpose of a larger-scale study would be to have a statistically representative sample
of perhaps 2,000 crashes as well as a more representative subject/environment sample.

Figure RO.1 shows how the approach used in the 100-Car Naturalistic Driving Study can fill in
the gaps from existing driving safety research methods. On one hand, the 100-Car Study
approach provides much greater information regarding the pre-crash and crash events than is
currently available in crash databases, even those containing detailed crash investigation
variables. On the other hand, the data provides much more naturalistic driving data than data
obtained on test tracks or in simulators.
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Figure RO.1. The relationship between empirical, naturalistic, and epidemiological
methods in driving safety research.

Precise analysis of the events leading up to a crash or near-crash is possible with the 100-Car
Study dataset since both video and electronic sensor data are available. In contrast, police
reports and crash investigations rely on eyewitness accounts, and such data have been shown to
be limited in accuracy. For example, drivers often do not remember specific, rapidly-occurring
events as a crash or near-crash scenario unfolds. There are also cases in which the drivers or
passengers are in shock or injured in a crash event, or in which they are trying to hide the details
of what occurred (due either to embarrassment or fear of prosecution/litigation).

The 100-Car Study also marks the first time that detailed information on near-crash events has
been collected. Near-crashes have two important advantages over crashes. First, they occur
much more frequently (e.g., 15 times more often than crashes). Second, every near-crash event
demonstrates a driver successfully performing an evasive maneuver. This may provide
additional insight into effective defensive driving techniques and factors, as well as insight into
potential countermeasures for these driving situations.

Unlike test track and simulator studies, naturalistic studies consider the larger context of driving.
Furthermore, as demonstrated repeatedly in the 100-Car Study, the absence of an experimenter
avoids potential modification of the driver’s performance and behavior that may occur when a
driver is directly observed.
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One of the more notable contributions of the 100-Car Study is the creation of an “event”
database. This database is similar in classification structure to an epidemiological crash
database, but with video, driver, and vehicle data appended. The video and electronic data can
be replayed multiple times and at varying frame rates in order to fully understand the nature of
each event. The events in the dataset are crashes, near-crashes, and other “incidents” that
represent less severe conflicts. Examples of reduced variables include:

e pre-event maneuver;
precipitating factor;
event type;
contributing factors;
associative factors; and
avoidance maneuver.

One real advantage to this naturalistic approach is that the video allows direct viewing of all of
the pre-event and during-event parameters, including the pre-event driver behaviors such as
distraction, drowsiness, and error. In addition, this approach allows the precise calculation of
parameters such as vehicle speed, vehicle headway, time-to-collision, and driver reaction time.

The resulting database should be useful for a variety of investigations for the next several years.
In addition, the initial event database described above can be enhanced over time, since all of the
video and electronic data for the entire study have been archived. The current project specified
10 objectives or goals to be addressed through the initial analysis of the event database. This
report addresses the first 9 of these 10 goals. At the time this report is being written, three
additional data reduction and analysis efforts are underway, and there is also considerable
interest in using the data for additional research questions. The creation and improvement of this
multi-purpose, flexible, and adaptable tool for driving safety may be one of the most important
contributions of this study.

METHOD

Instrumentation

The 100-Car Study instrumentation package was engineered by VTTI to be rugged, durable,
expandable, and unobtrusive. The system was the seventh generation of hardware and software
that has been developed over the past 15 years. Previous iterations of the system have been
deployed for a variety of traffic safety purposes. The system consisted of a Pentium-based
computer that received and stored data from a network of sensors distributed around the vehicle.
Data were stored on the system’s hard drive, which could store several weeks of driving data
before it needed to be downloaded.

Each of the sensing subsystems within a vehicle was independent, so that any failures were
constrained to a single sensor type. Sensors included a box to obtain data from the vehicle
network, an accelerometer box for longitudinal and lateral acceleration, a system to provide
information on distance to lead and following vehicles, a system to detect conflicts with vehicles
to either side of the subject vehicle, an incident box to allow drivers to flag incidents for the
research team, a video-based lane tracking system to measure lane keeping behavior, and video
to validate any sensor-based findings. The video subsystem was particularly important as it
provided a continuous window into the happenings in and around the vehicle. There were 5
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camera views monitoring the driver’s face and driver’s side view of the road, the forward road
view, the rear road view, the passenger side road view, and an over-the-shoulder view for the
driver’s hands and surrounding areas. The video system was digital, with software-controllable
video compression capability. This feature allowed synchronization, simultaneous display, and
efficient archiving and retrieval of 100-Car Study data. A frame of compressed 100-Car Study
video data is shown in Figure RO.2.

Figure RO.2. A compressed video image from the 100-Car Study data. The driver’s face
(upper left quadrant) has been distorted to protect the driver’s identity. The lower right
quadrant is split between the left-side view (top) and the rear view (bottom).

The 100-Car Study system had other capabilities that provided the research team with additional
important information. These capabilities included automatic collision notification to inform the
research team of possible collisions; cellular communications used by the research team to
determine system status and vehicle position; system initialization equipment to automatically
control system status; and a GPS positioning subsystem to collect information on vehicle
position. The GPS positioning subsystem was 1 of 10 used in conjunction with the cellular
communication subsystems to track and locate vehicles for repair and data downloading.

The main Data Acquisition System (DAS) unit was mounted under the package shelf for the
sedans and behind the rear seat in the SUVs (Figures RO.3 and RO.4). Doppler radar antennas
were mounted behind special plastic license plates on the front and rear of the vehicle (Figure
RO.5) in the hope that this would make them inconspicuous to other drivers.
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Figure RO.3. The main Data Acquisition System (DAS) unit mounted under the “package
shelf” of the trunk.

Figure RO.4. The 100-Car Study DAS main unit shown without the top and front covers.
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Figure RO.5. Doppler radar antenna mounted on the front of a vehicle, covered by one of
the plastic license plates used for this study.

Other major components were mounted above and in front of the center rear-view mirror
(Figures RO.6 and RO.7). These included an “incident” pushbutton that the subject could press
whenever an unusual driving event occurred. An unobtrusive miniature camera for the driver
face view was also contained in the housing for the pushbutton. The camera was invisible to the
driver since it was mounted behind a “smoked” Plexiglas cover. The forward-view camera and
the glare sensor were mounted behind the center mirror (Figure RO.7). This location was
selected because it was unobtrusive and did not occlude the driver’s normal field of view.

Figure RO.6. The incident push button box mounted above the rearview mirror. The
portion on the right contains the driver face/left road view camera hidden by a smoked
Plexiglas cover.

XXX1



Figure RO.7. The mounting for the glare sensor behind the rearview mirror. Note the
forward view camera as part of the same mounting assembly.

Subjects

One-hundred drivers who commuted into or out of the Northern Virginia/Washington, DC,
metropolitan area were recruited as primary drivers for this study. They could either have their
private vehicles instrumented or receive an instrumented leased vehicle to drive for the duration
of the study. Drivers were recruited with flyers and classified ads. Drivers under the age of 30
who did not drive a vehicle of an appropriate make and model were given a leased vehicle (22
vehicles), while drivers who drove the appropriate makes and models had their private vehicles
instrumented (78 vehicles). For allowing their vehicle to be instrumented, these participants
received $125 per month and a bonus at the end of the study. Leased-vehicle drivers received
free use of the vehicle, including standard maintenance, and the same bonus at the end of the
study.

A few drivers were replaced for various reasons (for example, a move from the study area or
repeated crashes in leased vehicles), so a total of 109 primary drivers were included in the study.
Other family members and friends occasionally drove the instrumented vehicles, so data was also
collected on 132 secondary drivers.

One goal of this study was to record as many crash and near-crash events as possible; this was
facilitated by selecting subjects with higher than average crash- or near-crash risk exposure.
Exposure was manipulated through the selection of a larger sample of drivers below the age of
25 and by the selection higher mileage drivers. The age and gender distribution of the primary
drivers is shown in Table RO.1, while the distribution of miles driven by the subjects during the
study is shown in Table RO.2. Although the data may be somewhat biased compared to the
national averages in each case, a reasonably representative distribution was felt to be attained.
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Table RO.1. Driver age and gender distributions.

Gender

Age Bins N Grand
% of total | Female Male Total

18-20 9 7 16
8.3% 6.4% 14.7%

21-24 11 10 21
10.1% 9.2% 19.3%

25-34 7 12 19
6.4% 11.0% 17.4%

35-44 4 16 20
3.7% 14.7% 18.3%

45-54 7 13 20
6.4% 11.9% 18.3%

55+ 5 8 13
4.6% 7.3% 11.9%

Total N 43 66 109
Total Percentage | 39.4% 60.6% 100.0%

Table RO.2. Actual miles driven during the study.

Number of Percentage of

Actual miles driven Drivers Drivers
0-9,000 29 26.6
9,001-12,000 22 20.2%
12,001-15,000 26 23.9%
15,001-18,000 11 10.1%
18,001-21,000 8 7.3%
More than 21,000 13 11.9%

The 100-Car Study data sample was collected at one site (i.e., Northern Virginia/Metro
Washington, DC) due to the need to restrict the geography such that vehicles could be “chased”
(as previously explained) for data download. This area represents primarily urban- and suburban
driving conditions, often in moderate to heavy traffic. Thus, rural driving, as well as differing
demographics within the United States, are not well represented. The Northern Virginia/ Metro
Washington, DC, was chosen as the data collection site primarily because the urban driving
environment would provide a higher crash risk than rural areas, and also because of its close
proximity to Blacksburg, VA.

A goal of the recruitment process was to avoid extreme drivers in either direction (i.e., very safe
or very unsafe). Self-reported traffic violation and crashes data are provided for each age group
in Figures RO.8 and RO.9. These data indicates that a diverse distribution of drivers was
obtained. Note, however, that for the number of years they have driven (2 to 8), younger drivers
have a similar number of violations and crashes as drivers who self-reported for 10 years. This
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observation that younger drivers have a higher violation and crash rate is observed in database
analyses.
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Figure RO.8. Number of self-reported traffic violations in the past S years as a percentage
of driver age group.

90%

80% —
MZero Olor2 [@3ormore
70% —

60% A

50% A

40% A

Percent of Participants

30% A

20% A

10% A

0% -
18-20 21-24 25-34 35-44 45-54 55+
Age Grouping

Figure RO.9. Number of self-reported traffic crashes in the past 10 years as a percentage
of driver age group.
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Vehicles

The number of vehicle types was limited for this study, since the complexity of the hardware
required a number of custom mounting brackets to be manufactured. Six different vehicle
models were selected based upon their prevalence in the Northern Virginia area. These included
5 sedan models (Chevrolet Malibu and Cavalier, Toyota Camry and Corolla, and Ford Taurus)
and one SUV model (Ford Explorer). The model years were limited to those with common body
types and accessible vehicle networks (generally 1995 to 2003). The distribution of these
vehicle types is shown in Figure RO.10.

Chevy Cavalier
Toyota Corolla 17%
18%

Toyota Camry
17% Chevy Malibu
21%

Ford Explorer

Ford Taurus
15%

12%

Figure RO.10. Distribution of vehicle makes and models driven during the study.

Results for the Initial 10 Project Goals

Ten specific goals were addressed as part of the initial data reduction and analysis of the 100-Car
Study dataset. The results of each of the 10 analyses are summarized in the following sections.

GOAL 1: CHARACTERIZATION OF CRASHES, NEAR-CRASHES, AND INCIDENTS
FOR THE 100-CAR STUDY

The purpose of the goal was to provide a “top-down” characterization of the reduced events.

The events were characterized into three different levels of severity. Table RO.3 shows the
relative frequency of each crash, near-crash, and incident for each conflict type (See Glossary of
Terms). Of the 82 crashes, 13 either occurred during the initial computer 90-second initialization
period, or contained incomplete data for other reasons (e.g., camera failure). There were a total
of 69 crashes, 761 near-crashes, and 8,295 incidents for which data could be completely reduced.
The first 8 conflict types shown in Table RO.3 accounted for all of the crashes, 87 percent of the
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near-crashes, and 93 percent of the incidents. Therefore, these 8 conflict types were the focus of
much of the Goal 1 analysis.

Table RO.3. Number of crashes, near-crashes, and incidents for each conflict type.

Contflict Type Crash | Near-crash | Incident
Single vehicle 24 48 191
Lead vehicle 15 380 5783
Following vehicle 12 70 766
Object/obstacle 9 394
Parked vehicle 4 5 83
Animal 2 10 56
Vehicle turning across subject vehicle path in opposite direction 2 27 79
Adjacent vehicle 1 115 342
Other 0 2 13
Oncoming traffic 0 27 184
Vehicle turning across subject vehicle path in same direction 0 3 10
Vehicle turning into subject vehicle path in same direction 0 28 90
Vehicle turning into subject vehicle path in opposite direction 0 0 1
Vehicle moving across subject vehicle path through intersection 0 27 158
Merging vehicle 0 6 18
Pedestrian 0 6 108
Pedalcyclist 0 0 16
Unknown 0 1 3

Unlike crash databases, all crashes are shown in Table RO.3, including non-police-reported, low-
speed collisions. A “crash” was operationally defined for this study as “any measurable
dissipation or transfer of energy due to the contact of the subject vehicle with another vehicle or
object.” One advantage of the naturalistic approach is that all of these events were recorded;
however, it was necessary to develop crash severity categories in order to better understand the
data. The 69 crashes were thus reviewed and placed into the following four levels:

Level I: Police-reported air bag deployment and/or injury.

Level II: Police-reported property damage only.

Level III: Non-police-reported property damage only.

Level IV: Non-police-reported low-g physical contact or tire strike (greater than 10
mph).

Therefore, the reader should keep crash severity in mind when reviewing this data. For example,
75 percent of the single-vehicle crashes were low-g-force physical contact or tire strikes. This
type of crash, while indicative of loss of vehicular control, is not currently present in any crash
database. This lack of representation is particularly important when considering the relationship
between crashes, near-crashes, and incidents in Table RO.3. The breakdown of crash severity by
crash type is shown in Table RO.4. As shown, the level I and II crashes provide a more
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consistent ratio relative to near-crash events. These relationships were analyzed in much greater
detail as part of other goals in this report.

Table RO.4. Crash type by crash severity category.

Level Level Level Level

Conflict Type Total | 11 111 10%
Single vehicle 24 1 0 5 18
Lead vehicle 15 1 3 5 6
Following vehicle 12 2 2 5 3
Object/obstacle 9 0 1 3 5
Parked vehicle 4 0 0 2 2
Animal 2 0 0 0 2
Vehicle turning across subject vehicle

path in opposite direction 2 1 1 0 0
Adjacent vehicle 1 0 0 1 0

The ability to detect crashes regardless of severity made it possible to examine the number of
subjects who experienced a single crash versus the number who experienced multiple crashes
during the 12- to 13-month data collection period. The number of crashes, near-crashes, and
incidents experienced by the drivers is summarized in Table RO.5. As shown, 7.5 percent of
drivers never experienced an event of any severity. In contrast, 7.4 percent of the drivers
experienced many incidents and three or 4 crashes. As discussed in much greater detail as part
of Chapter 4, Goal 1, a handful of subjects were very risky drivers and a handful of subjects were
very safe drivers, reflecting a relatively normal distribution of events among drivers.
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Table RO.5. Number and percentage of drivers involved in multiple events.

Number of

Number of | Percentage Near- Percentage | Number of | Percentage
Crashes of Drivers crashes of Drivers | Incidents | of Drivers

0 64.5% 0 16.8% 0 7.5%

1 21.5% | 7.5% 1-5 9.3%

2 6.5% 2-4 27.1% 6-10 3.7%

3 3.7% 5-8 27.1% 11-15 0.9%

4 3.7% 9-12 3.7% 16-20 3.7%

More than 4 0.0% 13-24 13.1% 21-25 5.6%

25-50 2.8% 26-30 4.7%

More than 1.9% 31-40 8.4%

50 41-50 7.5%

51-100 16.8%

101-150 16.8%

151-200 11.2%

More than 3.7%

200

Tree diagrams, like the one shown in Figure RO.11, were constructed to show the distribution of
events. These diagrams outline the factors recorded for each conflict type. Additional diagrams

for all conflict types are discussed in Chapter 4, Goal 1. Due to its size (over 400 pages), the full
tree structure for the 100-Car Study events is shown in Appendix C.
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Figure RO.11. An example of a tree diagram used to delineate the
contributing and associative factors for the 100-Car Study.
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GOAL 2: QUANTIFICATION OF NEAR-CRASH EVENTS

The purpose of this research goal was to determine if near-crashes could be identified
quantitatively using driving performance data. The 100-Car Study was the first study to capture
a large set of near-crash events (there were over 800 near-crashes). Previous studies have
operationally defined near-crashes based on subjective criteria to a large degree. This was also
true for the current study. Near-crashes in the 100-Car Study were defined as a conflict event
requiring a “rapid, evasive maneuver” in order to avoid a crash, although this definition was
supplemented by quantitative guidelines to help data analysts decide when an event was a near-
crash (e.g., a longitudinal deceleration of at least 0.5 g). However, many safety applications
would greatly benefit from a reliable, purely quantitative definition of a near-crash event.

An analytical attempt was made to develop a near-crash criterion for several applications,
including:
1) An in-vehicle trigger to collect data on near-crash events in a large scale study where
continuous data collection would not be feasible.
2) An in-vehicle trigger to warn a driver of a severe conflict scenario (i.e., for a collision
avoidance warning system).

These analyses were somewhat successful in developing a near-crash data-based trigger for a
large-scale data collection effort, but were not successful in determining a crash warning
boundary.

One reason for suboptimal near-crash boundary performance was simply noisy sensor data. In
some cases, radar units missed the critical target because the target did not appear in the radar’s
field of view. This phenomenon commonly occurs during lane changes when the lead vehicle is
lost as the subject vehicle turns into the new lane. A specific example of this occurred during the
telephone pole crash where the driver swerved to the right to miss the lead vehicle and hit a
telephone pole instead. As the subject vehicle grazed the rear corner of the lead vehicle, the lead
vehicle left the radar unit’s field of view. Alternatively, radar units detected non-critical targets,
such as guard rails, when the road geometry was off-angle. For these cases, the current level of
false alarms and misses might be reduced with more sophisticated technology and algorithms.

Nevertheless, the data clearly showed that development of purely quantitative near-crash criteria
is not currently feasible for most cases. One major reason is that the kinematic signatures
associated with near-crash events are virtually identical to many common driving situations that
are not indicative of crash risk. An example of this is shown in Figure RO.12. Shown is a
range/range rate plot that includes three boundary types: the two green lines are approximations
of graded warning and advisory boundaries used in recent research (Kiefer et al., 2003). The
black line is a minimum error boundary that could be used to automatically detect near-crash
events in a large scale study. As shown, there are many invalid cases (red dots indicating no
conflict present), particularly above the minimum error boundary of the range/range rate plot.

The implication of this analysis for large-scale naturalistic data collection is that video data
verification of dynamically triggered events will likely be necessary, at least for the foreseeable
future. However, as discussed in the report Goal 10: Evaluation of the Performance of the 100-
Car Naturalistic Driving Sudy Data Reduction Plan, Triggering Methods, and Data Analysis
(separate report), such verification is neither difficult nor expensive relative to the overall
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collection effort of such large-scale field tests, given current video technology. From a large-
scale naturalistic study perspective, crash detection is reasonably straightforward since there is
often a greater than 1.0 g peak deceleration when a crash occurs. The detection of near-crash
cases is more problematic. However, depending on the size of the study, it may be reasonable to
make an a priori decision to capture in the range of 70 percent of 25,000 or 30,000 near-crash
events if the false alarm rate can be reduced to around 10 percent. Even with a higher false
alarm rate, the cost of each false alarm would be fairly low given data reduction tools similar to
those used in this study. For the current study, a trained reductionist was able to distinguish
between valid and invalid conflicts at the rate of about 50 per hour using video data. This topic
is further discussed in the Goal 10 Report (separate report).
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Figure RO.12. Point of greatest threat with lead vehicle for all crashes and near-crashes,
and a random sample of invalid events. The boundaries shown are approximations of
warning and conflict boundaries used as part of a forward collision warning algorithm

(Kiefer et al., 2003) and a minimum error boundary calculated for this dataset.

GOAL 3: CHARACTERIZATION OF DRIVER INATTENTION

Historically, driver distraction has typically been associated with secondary tasks such as dialing
a cell phone, conversing with a passenger, and adjusting the radio. Driver distraction has been
said to lead to driver inattention. Drowsiness has been described as another cause of driver
inattention. With the video data available in this study, new categories of “ driver inattention”
were discovered. The two new categories were “driving-related inattention to the forward
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roadway” and “nonspecific eyeglance.” “Driving-related inattention to the forward roadway”
involves the driver checking the speedometer, rear-view mirrors, or blind spots. This new
category was added after viewing numerous events for which the driver was clearly paying
attention to the driving task, but was not paying attention to the critical aspect of the driving task
(i.e., the forward roadway) at an inopportune moment.

Further eyeglance analysis was performed manually by data reductionists using only crashes and
near-crashes in the 100-Car Study database. The “nonspecific eyeglance away from the forward
roadway” describes cases for which the driver briefly glances away from the roadway, but at no
discernable object or person. For this project, eyeglance reduction was performed for crash and
near-crash events only, so this category can only be used for the more severe events. The four
inattention categories combined (secondary task, drowsiness, inattention to forward roadway,
and nonspecific eyeglance) suggest that driver’s glances away from the forward roadway may
contribute to a much greater percentage of events than has been found in previous studies
(Campbell, Smith, and Najm, 2003). As shown in Figure RO.13, 78 percent of the crashes and
65 percent of the near-crashes had one of these four inattention categories as a contributing
factor.
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Figure RO.13. Percentage of events for attention by severity level.

An analysis of these types of inattention revealed that secondary task distraction was the largest
of the four categories (see Appendix D for more complete descriptions of the inattention
categories). The secondary tasks that generally contributed to the highest percentages of events
(Figure RO.14 for crashes and near-crashes) were wireless devices (primarily cell phones),
internal distractions, and passenger-related secondary tasks (primarily conversations). It is
important to note that exposure is not considered in these data. An analysis of frequency of
device use is currently being conducted for a future report that will quantify exposure-based risk.

Figure RO.15 shows a breakdown of the wireless device tasks (see Appendix D for more
thorough descriptions of cell phone categories). All of the crashes and a majority of the near-
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crashes and incidents associated with wireless devices occurred during a cell phone conversation,
although the dialing task was also relatively high in term of total conflicts. Although these data
do demonstrate factors that contribute to these wireless task events, there is still a need for
exposure data to adequately assess the risk associated with these wireless device tasks.
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Figure RO.14. Comparison of crashes and near-crashes the frequency of occurrences of
the presence of a distracting agent as a contributing factor.
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Figure RO.15. Frequency of events for which the contributing factor was wireless device
use.

GOAL 4: DRIVER BEHAVIOR OVER TIME

The questions addressed in this goal were intended to explore issues of whether driver behavior
in an instrumented vehicle changed over time. The units of time used were weeks (weeks 1
through 50) and hours (the first 50 hours). The issues explored were: (1) driver behavior in a
newly instrumented leased vehicle in the first weeks as compared to the last few weeks of the
study; (2) driver behavior in the first few hours of driving; and (3) driver behavior for the same
driver in four weeks of leased vehicle driving versus four weeks of private vehicle driving. The
relative risk (RR) analysis technique was borrowed from the field of epidemiology, and required
that there be both an exposed and unexposed condition and a comparison and baseline time
period. For these questions, the exposed condition was the leased vehicle and the unexposed
condition was the private vehicle, since the private vehicle drivers kept driving their usual
vehicles while the leased vehicle drivers were exposed to a new vehicle.

For the 100-Car Study dataset, one of the primary questions in calculating RR was the decision
regarding which period or periods of time to use as a control period for each question of interest.
A preliminary examination of the frequency data indicated the presence of random fluctuations
in the frequency of these events for any given day or month. These random fluctuations are a
result of the relatively infrequent occurrence of crashes, near crashes, and incidents. To control
for these random fluctuations, a decision was made to use an average of the final time periods for
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each question of interest as the control time period. The baseline time periods were an average
of weeks 41-50 for the yearly comparison, hours 41-50 for the hourly comparison, and weeks 2-4
for the leased versus private vehicle comparisons.

There was a potential confound between leased vehicles and driver age, in that none of the leased
vehicle drivers were over the age of 30, so any results from the leased vehicle analyses may have
been confounded by age. An age analysis confirmed that younger drivers did indeed have an
elevated RR as compared to older drivers, but that the effect was not as large as the effect for
leased versus private vehicles. However, there were approximately 25 younger drivers of both
leased and private vehicles. The age distributions of these two groups were quite similar, so this
age-matched set of drivers was used for questions relating to weekly data. A similar matched set
of younger drivers was used for hourly data, while the vehicle adaptation questions used a
matched set of switch drivers (those who moved from a private vehicle to a leased vehicle at the
end of the study).

Driving Behavior Over the Course of a Year

The issue of interest here was the driver adaptation process for leased vehicles and privately-
owned vehicles with instrumentation over the course of the study. It was expected that drivers
would be most adapted to their vehicles and to the instrumentation by the end of the study, so
weeks 41-50 were used as the baseline time period. Adaptation to the vehicle instrumentation
was explored in terms of the both the average number of events per vehicle and the number of
events per mile for private and leased vehicles.

When the number of events were examined, it became obvious that although there was not any
appreciable change in the number of events over the course of the year, there was a consistently
higher risk for leased vehicle drivers as compared to private vehicle drivers (Figure RO.16). The
calculated RRs for this graph were above 1 for every time period, and sometimes above 1.5, but
the 95" percentage lower CI of the RR is below 1, so these differences are likely not significant.
However, the trends seen for every analysis performed for Goal 4 were noticeable in magnitude,
were consistent over time, and always showed the same effect (leased vehicle higher than private
vehicle).
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Figure RO.16. Mean number of events for a matched set of younger drivers for leased and
private vehicles over weeks 1-50 of the study.

It was hypothesized that leased vehicle drivers may be willing to take risks leading to near-
crashes and incidents with these vehicles, since they were not responsible for insurance or
repairs, and had no ownership interest in the vehicles. The crash data supported this hypothesis
in that the RR was lower for crashes than near-crashes and incidents. Based on these results, one
might expect that if one were to transfer the leased vehicle drivers into their own private vehicles
in which they would be responsible for repairs, insurance, etc., that their event levels would drop
to the same levels shown for private vehicle drivers.

Driving Behavior Over the First 50 Hours

The next questions were designed to determine whether drivers experienced an increase in valid
events over the first few hours of driving a newly instrumented vehicle. It was hypothesized that
the drivers would drive more carefully and experience fewer events when they were aware of the
cameras, and that they would revert to normal behavior as time went on. If a point in time can be
identified at which drivers adapted and began acting more naturally, this would be useful
information for future instrumented vehicle studies of naturalistic driving. Previous experience
at VTTI has indicated that drivers adapt amazingly quickly to the instrumented vehicle (perhaps
within minutes, even in an unfamiliar vehicle), but the question has never been empirically
analyzed as was attempted here. A matched set of younger drivers was also used for these
questions.

As before, even when controlling for age to the degree possible, leased vehicles experienced a
greater mean number of events for nearly every time period studied. The only exceptions were

hours 1 and 4, in which the leased and private vehicles experienced nearly identical mean
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numbers of events. It did appear that drivers of both vehicle types were being very careful
during the first hour with a newly instrumented vehicle. These results provided support for the
thesis that drivers are more careful when first using an instrumented vehicle, although the effect
appears to wear off after the first hour. The dataset did not provide a breakdown by minutes, so
it was not possible to tell whether this occurred within the first 5 minutes, the first half hour, or at
the end of the first hour.

Performance for Same Driver for Four Weeks in Private and Leased Vehicles

The purpose of these questions was to investigate the driver adaptation process to an unfamiliar
vehicle for the same driver in a leased vehicle versus a privately-owned vehicle (both
instrumented). Only switch drivers for whom matched data were available for each week were
used, resulting in a perfectly matched set of drivers for each week.

The data did not indicate any clear trend of adaptation to a new vehicle. When examining the
leased versus private vehicle question, however, the analyses using perfectly matched sets of
switch drivers had similar results to the previous analyses. Even when the same driver was
switched from a private vehicle to a leased vehicle, there were still a greater number of events in
the leased vehicle than in the private vehicle. As shown in Figure RO.17, the same younger
drivers had a consistently higher mean number of events over weeks 1-4 when driving the leased
vehicle as compared to weeks 1-4 in their private vehicle.

If the increased number of events in leased vehicle driving for the same driver was due to vehicle
unfamiliarity, this effect was not extinguished over the first four weeks. Based on the yearly
results, the higher numbers for leased vehicles likely had very little to do with adaptation since
after 50 weeks there were still more events for leased vehicles as compared to private vehicles.
The results of the per mile analysis were in close agreement with the per vehicle analysis.

In order to further explore the issue of adaptation to a new vehicle, switch driver data were also
examined over the first 10 hours of driving. Six of the switch drivers had data for each of the
first 10 hours. There were no events in the first hour of driving for either leased or private
vehicle driving for these 6 drivers, providing support for drivers being more careful during the
first hour after beginning to drive an instrumented vehicle, but not providing real support for
adaptation to a new vehicle. Altogether, these 6 drivers experienced 9 events in the first 10
hours of driving their own private vehicle and 18 events in the first 10 hours after switching over
to a leased vehicle. Six of the 9 private vehicle events and all 18 of the leased vehicle events
involved younger drivers, providing evidence that individual younger drivers may have more
trouble adapting to a new vehicle.
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Figure RO.17. Matched set of younger switch drivers: leased versus private vehicle mean
number of events for weeks 1-4.

GOAL 5: REAR-END CONFLICT CAUSAL FACTORS AND DYNAMIC CONDITIONS

A primary purpose of this research was to examine the contributing and associative factors for
rear-end events (specifically, conflict with lead vehicle and conflict with following-vehicle
events). Recall that the 100-Car Study instrumentation had both forward and rear facing radars
and cameras, allowing analysis of both types of data. Nonetheless, much more data were
available for “conflict with lead vehicle” cases, since other sensors and cameras were available in
the subject vehicle relative to the following vehicle.

The frequency of lead vehicle and following-vehicle events by level of severity was determined
for the driver data included in the analyses. For the lead vehicle conflict case, the resulting
dataset contained 13 crashes, 268 near-crashes, and 4,747 incidents. For the following-vehicle
conflict case, the resulting dataset contained 9 crashes, 30 near-crashes, and 239 incidents.

The four questions answered for this goal addressed driver characteristics, kinematic
characteristics, contributing factors, and corrective action for RE events. All data were presented
in the form of event rate per million vehicle miles traveled (MVMT). The 5 RE scenarios
considered were LV accelerating, LV moving at slower constant speed, LV decelerating, LV
stopped less than or equal to 2 seconds, and LV stopped greater than 2 seconds. A summary of
some of the most important findings is outlined here. The full set of results is shown in Chapter
9, Goal 5.
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The frequency of lead-vehicle events for each of 5 lead-vehicle scenarios is shown in Table
RO.6. It can be seen that the most common scenario for incidents was LV decelerating, followed
by LV stopped greater than 2 seconds. For near-crashes, the most common scenario was again
LV decelerating, followed this time by LV stopped less than or equal to 2 seconds. It is
noteworthy that although LV decelerating was the most common scenario for incidents and near-
crashes, there were no crashes for this scenario. All of the crashes occurred in circumstances for
which the LV was stopped when the crash occurred, either more than 2 seconds (6 crashes) or 2
seconds or less (7 crashes). There were a fairly small number of incidents and near-crashes for
LVs moving at a slower, constant speed. There were only 8 incidents for LV accelerating, and
no crashes or near-crashes for this scenario.

Table RO.6. Frequencies for the 5 RE lead-vehicle scenarios by event severity.

LV moving
slower,
LV constant LV LV stopped | LV Stopped

Severity accelerating speed decelerating <2s >2s
Incident 8 119 2,436 989 1,195

Near-Crash 0 5 148 74 41

Crash 0 0 0 7 6

Following Vehicle Data

As was true for the lead-vehicle scenarios, the following-vehicle events were concentrated in the
SV decelerating scenario. The next most common scenarios of SV stopped less than or equal to
2 seconds and SV stopped greater than 2 seconds were nearly equal in terms of frequency.
Recall that for this scenario, the 100-Car Study subject vehicle (SV) was considered to be the
lead vehicle and was struck from behind by a following vehicle. Table RO.7 presents the overall
number of following-vehicle events. Note that in this case, unlike the lead-vehicle case, the
subject vehicle was still decelerating at the time of a collision in 4 of the 10 crash cases. In the
other 6, like the lead-vehicle case, the subject vehicle was stationary.

Table RO.7. Frequencies for the S RE following-vehicle scenarios by event severity.

SV moving
slower,
Sv constant Sv SV stopped | SV Stopped
Severity accelerating speed decelerating <2s >2s
Incident 1 21 207 48 63
Near-Crash 1 0 26 15 0
Crash 0 0 4 2 4

Driver characteristics were examined to assess the role of age and gender for lead-vehicle and
following-vehicle events. The only distinct trend in the lead-vehicle age data was that 18-20-
year-olds had the highest rate of incidents and near-crashes per mile for each of the 5 scenarios.

The next analyses considered the kinematic conditions for RE lead-vehicle events. The

kinematic data at the onset of the precipitating factor was used for these analyses. For lead-
vehicle events, incidents and near-crashes had the highest rates for moderate speeds during the
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event epoch of 21-40 mph, while crashes had the highest rates at lower speeds of 0-20 mph. The
high incident and near-crash rates for the moderate speed ranges likely reflect the prevailing
speed limits and high traffic density present in the northern Virginia area where the study was
conducted.

For the most common following-vehicle scenario of SV decelerating, the speed ranges of 11-20
and 21-30 mph had the highest rates of incidents. This is a somewhat lower speed range than
was found for the lead-vehicle incidents. For near-crashes, the speed ranges for the LV
decelerating scenario with the highest rates were 21-30 and 31-40 mph, which may be an
indicator that increasing event onset speed results in increased event severity

The environmental and roadway contributing factors for lead-vehicle RE events was considered
next. Traffic density was related to the highest incident rate by far of any of the environmental
and roadway contributing factors for all 5 RE lead-vehicle scenarios. Relation to junction had
the next highest rate for all 5 scenarios, followed by traffic control, light, and then weather. The
relative rank of rates within each scenario was very consistent.

Corrective actions for lead-vehicle events were considered next. For the lead-vehicle LV
decelerating and stopped scenarios, braking (no lockup) dominated the rate data by factors of
around 10 to 1. The next highest rates were for braked and steered to right, braked and steered to
left, and braking (lockup unknown). When the LV in a RE event was stopped, the SV response
overwhelmingly involved some sort of braking activity, usually without steering. For LV
decelerating, steering left and steering right also had fairly high rates, although the
overwhelming choice was still braking. For LV moving at slower constant speed, a quite
different kinematic situation, braking (no lockup) still had the highest rate, but it was nearly
equaled by braked and steered to right and no avoidance maneuver.

Additional insight into RE events can be found in Chapter 10, Goal 6, and Chapter 11, Goal 7.
The relationships between the relative frequency of crashes, near-crashes, and incidents for RE
events are explored using Heinrich’s Triangles in Chapter 12, Goal 8.

GOAL 6: LANE CHANGE CAUSAL FACTORS AND DYNAMIC CONDITIONS

As stated in Goal 5, a primary goal for the 100-Car Study was to determine the causes and
contributing factors associated with RE crashes. Understanding the pre-event maneuvers and
precipitating factors that, in conjunction with other contributing factors, lead to RE crashes is
important for fully understanding the rear-end crash problem. The purpose of the analyses for
Chapter 10, Goal 6 was to understand the degree to which lane change events, such as cut-ins,
lead to rear-end conflicts. This has important implications for the design of future forward
collision warning systems, since a cut-in vehicle may not provide a radar signature until very late
in a conflict scenario. To begin to understand this issue, the RE conflict data were analyzed for
both lead-vehicle (i.e., subject vehicle as following vehicle) and following-vehicle (i.e., subject
vehicle as lead vehicle) scenarios. Frequency distributions were generated to identify the rate
that these types of scenarios occurred per MVMT, the initial kinematic conditions that occurred
for each, and the contributing factors that played a role for each type of scenario.

No crashes occurred when there was a lane change as a precipitating factor in front of the subject
vehicle or when there was a lane change behind the subject vehicle. There were, however, 64
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near-crashes and 324 incidents that occurred when there was a cut-in to the lane in front of the
subject vehicle as compared to only 4 near-crashes and 77 incidents for which the SV changed
behind a lead vehicle. As will be described in a later chapter of this report, the subject vehicle
drivers were judged to more often be impaired (30 incidents more), distracted (44 incidents
more) and make proficiency-related errors (e.g., inappropriate reaction; 55 more) for the near-
crashes and incidents in which they were cut-off than cut-off events in which they were attentive.
This seems to support the finding that at least two elements are required for a conflict to occur; a
precipitating factor plus another contributing factor (often driver state-related). In this case,
there were fewer events when the subject vehicle was the cut-in vehicle because the drivers were
presumably more alert and attentive when they were actively performing the lane change
maneuver.

The lane-change-related SV striking events were analyzed according to age group. For lane
change incidents, the 18-to-20-year-olds had the highest rate for LV lane changein front of SV,
while the other age categories had fairly equal rates for this scenario. For the SV lane change
behind LV scenario, the 21-to-24-year-olds had the highest rate, although the rates were fairly
even across age groups. For near-crashes (Figure RO.18), 18-to-20-year-olds again had the
highest rate for the LV lane change in front of SV scenario by a factor of nearly 2 to 1 over the
next highest age group (35-to-44 year olds). Rate data for SV striking events by both age and
gender were considered next. The only clear pattern that emerged was for the 45+ age group.
The male drivers in this age group had a rate that was more than twice as high as that for female
drivers for both SV lane change behind LV and LV lane change in front of SV. The gender
comparisons were fairly even across the other age groups. Almost all of the near-crashes were
of the LV lane change in front of SV type. Males had a noticeably higher near-crash rate than
females for this scenario in the 18-to-24 and 45+ age groups, while females had a higher rate in
the 25-to-44 age group.

For lane-change-related SV struck events, three age categories (18-to-20, 25-to-34, and 35-to-44)
had incident rates that were 1.5 to 3.5 times as high as the other three age groups (Figure RO.19).
For near-crashes, the three younger age groups had rates 1.5 to 4 times as high as the three older
age groups. When both age and gender were considered, females had at least twice the rate as
males for each of the three age groups. A similar pattern was observed for near-crashes, except
that the 18-to-24-year-old males and females had virtually identical rates and the remaining
differences for the other age groups were by at least a 4 to 1 margin (females higher than males).
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Roadway and infrastructure factors were considered next. Traffic density was the factor with the
highest incident rate for all four lane-change-related scenarios, by a factor of at least four in all
but one case. Going back to the frequency data, 90 percent of all lane-change-related incidents
were coded with traffic density as a contributing factor. Light, traffic control, and relation to
junction were second, third, or fourth most important for all four scenarios. For the non-lane-
related incidents, the highest rates were observed for traffic density, relation to junction, traffic
control, and then light, quite a different pattern than was seen for the lane-change-related
incidents. When the near-crash data were examined, the lane-change-related scenarios followed
similar patterns as for incidents. For near-crashes, the non-lane-related rate pattern was more
closely aligned to the lane-change-related near-crash data than to the non-lane-related incident
data.

Driver contributing factors were also examined. Driver proficiency (as defined in the glossary)
showed up as a prominent factor for the SV struck incident scenarios (higher than the next
highest driver factor rate by 4 to 1). For the SV striking scenarios, the incident rates for driver
factors were fairly even within each scenario, and driver proficiency was not even the top factor
for the SV lane change behind LV scenario (the highest rated factor was willful behavior). When
the near-crash rates were examined, driver proficiency and driver distraction also had the highest
rates.

GOAL 7: INATTENTION FOR REAR END LEAD-VEHICLE SCENARIOS

The prevalence of distraction was of particular interest in the analyses of rear-end conflict
contributing factor. The degree to which an unalerted driver can be warned and make a proper
response is an important factor in developing rear-end crash countermeasures. The 100-Car
Study data can provide great insight into the degree to which distraction is an issue in such
conflicts. The important finding in this regard is that 93 percent of all lead-vehicle crashes (14
out of 15) involved inattention to the forward roadway as a contributing factor (Figure RO.20).
Note also that a majority of the near-crashes have inattention listed as a contributing factor.
Approximately one-third of the incidents have inattention listed as a contributing factor. The
effect is nearly perfectly linear, and seems to indicate a strong correlation between inattention
and increased severity for lead-vehicle rear-end events.
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Figure RO.20. Percentage of lead-vehicle events for which inattention was listed as a
contributing factor (includes the nonspecific eyeglance events for crashes and near-
crashes).

Figures RO.21 and RO.22 shows the breakdown of the lead-vehicle conflict kinematic scenarios
for the crash and near-crash events, respectively. As shown in figure RO.21, in 13 of the 14
conflict with lead-vehicle crashes the driver was inattentive, and all 14 crashes the lead vehicle
was stopped when struck. For the near-crash events (Figure RO.22), the majority of the drivers
were inattentive, but the largest lead-vehicle kinematic category was lead vehicle decelerating.

Taken together these results indicate that drivers have sufficient awareness and ability to perform
evasive maneuvers when closing rates are lower and/or expectancies about the flow of traffic are
not violated.

Figure RO.22 shows the frequency of each source of inattention for all secondary task categories.
This allows comparison of the actual contribution of each of these sources of inattention to lead-
vehicle conflicts. Wireless devices (primarily cell phones, but including a few PDA events) were
the most frequent contributing factor for lead-vehicle events, followed by passenger-related
inattention. The trend was very similar for near-crashes. Interior distractions were the most
frequent source of inattention for crashes. Cell phone use was a dramatically more frequent
contributor to incidents and near-crashes than any other secondary task, but did not contribute to
any lead-vehicle conflict crashes. Nonetheless, cell phone use did contribute to several crashes
of other types, as reported in other chapters of this report.
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Figure RO.21. Frequency of crashes by driver attention and lead-vehicle kinematic
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Figure RO.23. Frequency of secondary task inattention sources for lead-vehicle events.

GOAL 8: CHARACTERIZE THE REAR END SCENARIOS IN RELATION TO
HEINRICH’S TRIANGLE

The purpose of Goal 8 was to understand the relationship between the rates of crash, near-crash
and incident events in order to potentially use near-crashes and incidents as safety surrogates in
future empirical studies since they occur much more frequently than crash events. If proven
reliable, such safety surrogates could be used in practice, for the first time, to predict the rate of
crashes in a much more cost-effective manner than the collection of a statistically representative
sample of crash events.

The premise behind Heinrich’s triangle for both the original industrial safety application and the
subsequent driving application is that the frequency of occurrence of “unsafe acts,” or in the case
of near-crashes and incidents, is related to the frequency of crashes. This has been shown to be
the case in non-driving applications. For driving, the theory is that a crash most often is caused
by a series of events including:

e a precipitating event;
contributing factors; and
the absence of a successful evasive maneuver.

Thus, in theory, joint probability models underlie the relative frequency of incidents, near-
crashes, and crashes. That is, as we have operationally defined it, a precipitating event occurs,
the associated presence of contributing factors determine whether it is responded to early
(incident), late (near-crash, requiring evasive maneuver), or ineffectively (crash). The data in the
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triangles, and the associated confidence limits, support the existence of such a possible
underlying theory, although more data is needed to determine whether the associated frequencies
are in fact stable to the point of having predictive value. The Heinrich’s triangle for the lead-
vehicle conflicts for this study is shown as Figure RO.24.

RE Lead Vehicle Conflict
16 Crashes

RE Lead Vehicle Conflict

293 Near Crashes
RE Lead Vehicle Conflict
5236 Incidents

Figure RO.24. Heinrich’s triangle for rear-end conflicts in the 100-Car Study.

Table RO.8 summarizes the rates of the differing severities of lead-vehicle conflicts and provides
the 95 percent confidence limits modeled as a Poisson distribution for each category.

Table RO.8. Rates and confidence limits for each lead-vehicle conflict severity category.

Lower 95 Upper 95
Exposure Rate percent CI | percent CI
per per Variance | STD for for
Count | MVMT | MVMT (rate) (rate) | rate/MVMT | rate/MVMT
RE Crashes 16 1.84 8.70 4.73 2.17 4.43 12.96
RE Near-Crashes 293 1.37 213.87 156.11 12.49 189.38 238.36
RE Incidents 5,236 1.37 3,821.90 | 2,789.71 | 52.82 3,718.38 3,925.42

These calculations suggest that lead-vehicle crashes occur at a rate of approximately 9 per
MVMT within an approximate confidence interval of 4 to 12. This study observed 16 lead-
vehicle crashes, which seems reasonable as the number of vehicle miles traveled is approaching
2 million VMT. Note the numerical stability, as indicated by the narrow confidence limits for
the near-crash and incident data. Even though the number of crashes was fairly low, the crash
confidence intervals are also approaching reasonable stability. While this data by itself is
valuable, it indicates that such an approach may ultimately prove extremely useful when
additional crash data is considered. That is, there is every indication that the approach of
measuring less severe conflict surrogates may provide reasonable estimates of crash risk,
particularly if a larger-scale naturalistic study can be conducted.

The types of analyses applied in this chapter were also conducted by Tijerina (2004) in his
application of the Hazard Analysis Technique to data collected in the ADVANCE study (Dingus,
1997). Tijerina’s application was unsuccessful; however, there are a couple reasons for this lack
of success. First, as noted by Tijerina, the estimation of exposure was weak, since the
ADVANCE database contained only 487 vehicle miles of data while the 100-Car Study collected
1.84 million vehicle miles.

Second, the crash data used in the analysis by Tijerina were taken from archival records for the
preceding year based on 75.5 million vehicle miles. This is in contrast to the 487 vehicle miles
for the near-crash and incident data. For the analyses in this chapter, the event data was taken
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from the same database using the same drivers, meaning that the rates from the 100-Car Study
are less prone to error. This inference seems to be confirmed through inspection of the
confidence intervals for each rate estimate. As opposed to the Tijerina example, no rate
estimates for which events were observed have confidence intervals that span zero.

GOAL 9: EVALUATE PERFORMANCE OF HARDWARE, SENSORS, AND DATA
COLLECTION SYSTEM

Since a primary purpose of the 100-Car Study was to serve as a pilot for a larger scale (e.g.,
5,000-car) study, one project goal was to understand the performance of the data collection
system to assess the feasibility of such an undertaking. Thus, an analysis and utility of the
various sensors and system components was performed.

Reliability was assessed in two ways. First major and catastrophic failures resulting in
significant data loss were catalogued and analyzed. Second, minor failures, including the loss of
a single data channel were analyzed. Catastrophic and major failure rates per sensor or
subsystem are shown in Table RO.9. Sensors and subsystems not mentioned in the table did not
exhibit any catastrophic or major failures. A total of 4,554 vehicle-weeks of data collection was
used in the calculations. In addition, three weeks of downtime is assumed. This assumption is
based on adding estimates for the time required to detect a failure (~1 week) and estimates for
the time to perform a repair (~2 weeks). This estimate is somewhat conservative, since in many
instances it took fewer than 3 weeks to detect and repair a fault, especially in the latter part of the
study. Thus, the failure rates presented in this section represent a ceiling for the hardware used
in the study.

Table RO.9. Catastrophic or major failure rates by sensor or subsystem.

Failing Sensor/Subsystem Instances Failure Rate (%)
Power Control
Battery Backup 33 2.2
Acquisition Software 67 4.4
Remote Download 17 1.1
Real-time Video 22 1.4

Minor failure rates per sensor or subsystem are shown in Table RO.10. An assumption of three
weeks downtime is used, along with a total data collection period of 4,554 vehicle-weeks. These
268 minor failures represent 804 vehicle-weeks of incomplete data. This means the overall
minor failure rate (assuming independent failures and the downtime assumptions used before)
was 17.7 percent. A total of 324,816.0 miles of data were incomplete, based on the assumed
weekly mileage rate for the study of 404.0 miles per vehicle week. In some cases, this data
could still be used in data reduction because a redundant source of data was available.
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Table RO.10. Minor failure rates by sensor or subsystem.

Failing Sensor/Subsystem Instances | Failure Rate (%)

Power Control 6 04
Battery Back-up )

Real-Time Video 97 6.4
Headway Detection 45 3.0
Vehicle Network 43 2.8
Lane Tracker 46 3.0
Remote Vehicle Tracking 8 0.5

Analyses were also conducted to determine the ability to develop a priori multivariate triggers to
identify conflict events, including crashes, in a large-scale study. Recall that a 5,000-plus
vehicle study will preclude the collection of continuous data due to the sheer volume of data and
the necessity for video data to be present. Results for the analyses pointed to several conclusions
that are relevant for a large-scale naturalistic data collection effort. First, crashes and near-
crashes should be the focus of such an effort. Incidents are observed at a much higher rate than
crashes and near-crashes; a total of 90.9 percent of all valid events were classified as incidents.
Including incidents would likely overwhelm any data reduction effort for a large-scale study.
Incidents are also closer in terms of kinematic signature to many invalid events than are crashes
and near-crashes, making their discrimination more difficult.

Second, assuming that crashes and near-crashes are the focus of a large-scale study, tradeoffs
concerning loss of valid events should focus on losing a minimal number of near-crashes. Based
on the results of the discriminant analyses, changes in the sensitivity of the analysis had minimal
effects on the number of crashes detected, but affected to a larger extent the number of near-
crashes detected. Maximizing the number of near-crashes detected while minimizing the number
of invalid events also tends to maximize the number of crashes detected.

Third, it seems that tailoring the triggering algorithms to particular individuals is a feasible
partial solution to minimizing the number of invalid triggers collected, when it is combined with
appropriately selected expected probabilities. This process was very effective in reducing the
number of invalid events detected. Assuming that the 40" percentile longitudinal acceleration
threshold is used to filter data, along with expected probabilities based on our current sample, the
accuracy of a trigger algorithm could reach the levels shown in Table RO.11

Table RO.11. “Confusion matrix” showing hits, misses, false alarms, and correct rejections
for the classification of near-crash events based upon multivariate trigger criteria.

Event classified as:
Invalid Valid
Event was: Invalid 79.8 20.2
Valid 28.1 71.9

It would also be expected that the majority of the valid events lost would be near-crashes, rather
than crashes, given particular aspects of the crash event severity (e.g., longitudinal acceleration
spikes) that make them easy to identify.

Achieving this tailoring process in a large-scale study would require some initial data collection
on each participant’s driving habits that would then be used to tailor the triggers for that driver,
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which should always be the primary driver for the vehicle. This data collection period might be
as short as a week, based on the data obtained for this study. While a small additional
investment would be required to achieve this goal, the benefit gained by shortening the data
reduction effort seems attractive.

The DAS used in this study purposefully contained a large number of sensors, some of which
were redundant, with the goals of maximizing the level of redundancy within the system and
obtaining a dataset that represented a nearly best-case scenario of data availability. This large
number of sensors may not be needed for a larger-scale study. The events of interest may be
more narrowly targeted or the magnitude of the data large enough that missing a few valid events
is not as important as minimizing the number of invalid events that contaminate the dataset.

A larger-scale study would also magnify any system repair and/or maintenance needs. Thus,
reducing the number of sensors and selecting sensors with low associated failure rates would be
an important aspect of such an effort. Most of the sensors used in the data collection effort
reported herein had very low failure rates, which will likely be even lower as technology
progresses. The most problem-prone sensors were video and radar.

Given the advantages of video, however, it seems that its place as a sensor in a larger-scale study
is necessary, although a smaller number of cameras might be acceptable. While the performance
of the sensors in discriminating between valid and invalid events can be increased by data
analysis methods, this increase is not large enough to warrant the elimination of the only method
available for event verification.

The failure rate for radar was lower than for video. While there are problems with radar data, the
radar units have to be carefully installed and they are usually damaged in crashes. The relative
position and speed of leading traffic are important factors to consider for triggering to obtain
valid events. Thus, despite the failure rate, the technology would be needed for a larger-scale
study. Of course, if other technologies could sense the same data with a lower failure rate, they
should be considered. At this time, however, no such technology exists at a reasonable price.

Other sensors, including accelerometers and gyros (for yaw rate), had negligible failure rates,
undetectable for the current study. These sensors also provided data that proved very useful for
valid event discrimination. These sensors should be included in the sensor suite for a large-scale
study.

The triggers used in such an array of sensors would likely take values similar to those discussed
in this goal, and the discrimination process using aggregate data would likely be equivalent.
However, some of these triggers may become more stringent if higher accuracy sensors are used
or if the data collection rate for some of the sensors is increased. The numbers suggested in this
section for future use thus represent good starting values, although their performance should be
tested within the final system in which they are included.
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CHAPTER 1: INTRODUCTION
BACKGROUND

There are two traditional approaches to collecting and analyzing human factors data related to
driving. The first approach is to use data gathered through epidemiological studies (often
collected on a national level). These databases, however, lack sufficient detail to be helpful for
many applications, such as the development of countermeasure systems or the assessment of
interactions between contributing factors that lead to crashes. The second approach, empirical
methods, including newer, high-fidelity driving simulators and test tracks, is necessarily
contrived and does not always capture the complexities of the driving environment or of natural
behavior. For example, test subjects are often more alert and more careful in a simulation
environment or when an experimenter is present in a research vehicle than when they are driving
alone in their own cars. Thus, although empirical methods are very useful in other contexts, they
provide a limited picture of the likelihood of a crash in a given situation or the potential
reduction of that likelihood by a given countermeasure. State-of-the-art empirical approaches
can only assess the relative safety of various countermeasures or scenarios. They cannot be used
to predict the effect of a safety device or policy change on the crash rate.

Advances in sensor, data storage, and communications technology have led to the development
of a hybrid approach to data collection and analysis that uses very highly capable vehicle-based
data collection systems. This method of data collection has been used by some auto
manufacturers since the introduction, several years ago, of electronic data recorders (EDRs).
EDRs collect a variety of vehicular dynamic and state data that can be very useful in analyzing a
crash. However, they currently lack sufficient measurement capability to assess many human
factors issues.

Because of the shortcomings of traditional methods of data collection, it is becoming
increasingly apparent that data collection in a “naturalistic” setting may be an effective approach
for obtaining crash-related human factors data. Given the variability and complexity of driver
behavior and performance, the random and rare nature of crashes, and the lack of adequate pre-
crash data in today’s crash record, it is especially important to collect real-world data that
includes the crash experience and crash-relevant events in sufficient detail and depth. Such a
dataset would make clear the conditions and driver behaviors that precipitate crashes as well as
support the development and refinement of crash countermeasures.

In order to collect such a dataset, the National Highway Traffic Safety Administration (NHTSA)
and the Virginia Department of Transportation (VDOT) contracted with the Virginia Tech
Transportation Institute (VTTI) to conduct the “100-Car Naturalistic Driving Study.” The study
was a three-phased effort designed to meet the following objectives: Phase I, Conduct Test
Planning Activities; Phase II, Conduct a Field Test; and Phase III, Prepare for Large-Scale Field
Data Collection Effort. The Phase III effort will be completed and a report forthcoming prior to
the end of the current contract. The large-scale field data collection effort is Phase IV, which is
not being conducted under the current contract. This report describes the research methods,
analyses, and results of Phase II.



Since Phase I included the foundation efforts for Phase II, a brief description of the tasks
conducted under Phase I is first provided. A complete description of the 15 tasks, including task
definition, methods, and results conducted under Phase I is provided in Neale et al. (2002).

PHASE I. CONDUCT TEST PLANNING ACTIVITIES

Task 1: Establish Intelligent Vehicle Initiative (IVI) Data Needs

The objective of Task 1 was to specify the details of the pre-crash and near-crash data to be
gathered during the data collection phase. Pre-crash data involves all aspects of the driver’s
behavior and vehicle performance measures that occur prior to and leading up to a crash. Near-
crash data involves the collection of driver behavior and vehicle performance data that occur in
an event where the driver reacts appropriately so as to avoid a crash. Research questions
involving analysis of pre-crash and near-crash data were generated and refined by the NHTSA
Task Order Manager (TOM), interested NHTSA researchers, and other stakeholdersin this
project (Table 1.1).



Table 1.1. List of research goals organized by research category and subcategory.

General Research Category: Driver Behavior and Performance
Subcategory: Crash/Near-Crash/Conflict Events

Chapter 5, Classify and quantify contributing factors and dynamic scenarios involved in each event
Goal 1 category.

Chapter 6, Operationally define a “near-crash” using quantitative measures.

Goal 2

Subcategory: Inattention Issues

Chapter 7, Characterize driver inattention as it relates to incidents, near-crashes, and crashes.

Goal 3

Subcategory: Baseline Driving and Data Collection Issues

Chapter 8, Characterize the differences in driving behavior and/or driver performance between:
Goal 4 One week of field data and one year of naturalistic driving data, and

One month in leased versus owned vehicle.

General Research Category: Distribution of Events
Subcategory: Rear-End Event Analysis
Chapter 9, Determine rear-end contributing factors and dynamic conditions. For each of the 4 rear-end
Goal 5 (RE) lead-vehicle scenarios (stopped >2 s, decelerating, accelerating, moving at a slower
constant speed), determine the frequency distribution of the following: crashes, near-crashes,
and incidents: (i) per vehicle mile traveled (VMT); (ii) in relation to contributing factors; (iii)
in relation to corrective actions; and (iv) in relation to transition events.
Chapter 10, | Determine RE dynamics and precipitating factors -- specifically determine the frequency
Goal 6 distribution for the following variables:
Per VMT; initial kinematic condition; primary contributing factor.
Crossed with these variables:
Conflict with lead or following vehicle (crash, near-crash, incident);
Conflict with lead or following vehicle when lead-vehicle changed lanes in front of
subject vehicle;
Conflict with lead or following vehicle when subject vehicle changed lanes behind lead
vehicle;
Contflict with lead or following vehicle when subject vehicle took corrective action.
Subcategory: Inattention Issues

Chapter 11, | Determine the distribution of inattention types for each RE lead-vehicle scenario (stopped >2
Goal 7 s, decelerating, accelerating, moving at a slower constant speed).

Subcategory: Baseline Driving and Data Collection Issues

Chapter 12, | Characterize each of the 4 RE lead-vehicle scenarios in relation to Heinrich’s triangle.

Goal 8

General Research Category: Phase III Evaluations
Subcategory: Vehicle Instrumentation

Chapter 13, | Evaluate the performance of the hardware, sensors, and data collection system used in data
Goal 9 gathering (Phase II) in preparation for a future large-scale field study (Phase IV).
Subcategory: Data Reduction and Analysis

Goal 10 Evaluate the performance of the data reduction plan, triggering methods, and data analysis in
(Separate preparation for a future large-scale field study (Phase IV).

Report)

The general categories of research goals addressed driver behavior and performance, the
distribution of collected driving events, and design of a future large-scale field study (which
would be considered as Phase IV). The research goals lead to a set of candidate measures
derived through a variety of methods including a literature review, a review of database variables



(e.g., police report form variables), and consultations with the TOM. The final set of 10 research
goals are reported as separate chapters in this document.

Task 2: Develop Phase I Test Requirements

The Phase I test requirements were developed iteratively by VTTI with the cooperation of the
TOM and stakeholders of this project. The primary Phase I test requirements addressed issues
such as the number of cars to be instrumented, the number of camera views, the number of
vehicle makes and models to be used, and the rate at which data was to be collected.

Task 3: Select Candidate Test Areas and Evaluate Crash Frequency Data

The objective of Task 3 was to determine the number of sites from which data could be
collected, the rear-end crash frequency at various geographic locations, and the optimal location
of the data collection site from the perspective of project resources. After consideration of these
factors, the decision was made to collect data in the Washington, DC/Northern Virginia
metropolitan area.

Task 4: Determine Crash Sampling Requirements

A goal of this study was to collect naturalistic data on approximately 10 rear-end crashes. In
assessing the utility of the dataset, it was decided that continuous rather than triggered data
would prove a greater value to the IVI program, other stakeholder organizations, and the
development of the Phase IV protocol. From an operational and financial resource perspective, it
was determined that 100 vehicles would be instrumented for continuous data collection.
Although the number of crashes and other events to be captured could not be predicted with
certainty, it was expected that this number of vehicles, driven by high-exposure drivers, would
provide a sufficient number of crashes and other events (both general and of the rear-end type).

Task 5: Determine Driver/Vehicle Demographic Requirements

After a review of literature summarizing the driver factors that contribute to rear-end crashes, an
ideal age and gender distribution was determined. Other recruiting factors, such as high-mileage
drivers, roadway types traveled, and vehicle types were also determined. In addition, this task
was conducted iteratively with Task 9: recruiting drivers, which provided further information for
the driver selection criteria.

VTTI began determining the vehicle requirements by first establishing the primary criteria that
should be considered in selecting vehicles. The task of choosing vehicle makes, model, and
model years was conducted iteratively with Task 8: vehicle trade study, which provided further
criteria for vehicle selection.

Task 6: Determine Near-Crash Statistical Power Requirements

In order to determine the near-crash statistical requirements, VTTI researchers reviewed four
previous research studies that all used an instrumented vehicle in a natural driving environment.
The frequency counts for crashes, near-crashes, and incidents were compared between these
studies. The methods used to obtain these events were also compared, leading to the



development of estimates for the number of crashes, near-crashes, and incidents that could
potentially be collected in this study.

Task 7: Conduct Trade Study — Research Design Parameters/ Sampling Rates/Formats
Concept

A goal of 20 leased vehicles and 80 privately owned vehicles was set for the study. The final
count was 22 leased vehicles and 78 privately owned vehicles. Research goals that NHTSA
wanted to address by using these two groups of vehicles were: (1) the length of time required for
the driver to adapt to an unfamiliar vehicle, and (2) the feasibility of using leased vehicles in the
Phase IV large-scale data collection effort. Also, as one of the primary project goals was to
collect pre-crash data for at least 10 rear-end crashes, the amount of data collected was
paramount to the success of the study. These factors were incorporated into the experimental
design.

Task 8: Conduct Trade Study to Determine Vehicle Types

Several factors were considered when determining the optimal vehicle types. The most critical
factors included vehicle type, vehicle demographics, vehicle location, data collection system
installation issues, information that could be obtained from the in-vehicle network, and the make
and model requirements.

With regard to the model year of the privately owned vehicles, a review of model year revisions
for each of the four selected vehicles indicated the following:
e The Toyota Camry was selected from the 1997 — 2001 model years. The Toyota Camry
model design was static through 2001 with a new model in 2002.
e The Toyota Corolla was selected within model years 1993 — 2002.
e The Ford Explorer was chosen with model years 1995 — 2000 and model year 2001 (if
manufactured by November 2, 2000).
e The Ford Taurus design was static over years 1996 — 1999, and a significantly different
model was on sale for the years 2000 — 2002. In order to recruit sufficient drivers, both
model sequences were used.

In addition, the Mercury Mountaineer is made on the same assembly line and has the same body
style as the Ford Explorer; therefore, the Mercury Mountaineer could be included in the study for
the same model years as the Ford Explorer. Likewise, the Mercury Sable is the same body style
as the Ford Taurus, and could also be included in the list of potential vehicles.

Two additional makes and models were added as part of the leased vehicle portion of the fleet.
Twenty vehicles were to be leased from the Virginia Tech Motor Pool - 10 model year 2002
Chevrolet Malibus and 10 model year 2002 Chevrolet Cavaliers. Obtaining the leased vehicles
via the Motor Pool state contract was done to save project resources and reduce significant
logistical problems (licensing, leasing agreements, etc.).

Task 9: Develop Participant Recruiting Specification

When developing the specifications for subject recruitment, the factors considered were:
participant age, participant gender, vehicle types driven, the number of miles driven per year, and



location of either permanent residence or place of work. Participant age, gender, and annual
mileage had important implications when considering the number of rear-end crashes expected to
occur during the data collection period. The location of the participant’s residence or work place
was important when considering the difficulties of locating and downloading the data from the
vehicles. Vehicle type was very important for private vehicle subjects as each vehicle had to be
either be a Toyota (Camry or Corolla) or Ford (Taurus or Explorer). A hypothetical participant
recruitment specification plan was developed based on the vehicle type, age group, and gender.
Other issues addressed as part of this task were the example screening, classification questions,
and issues of informed consent. Drivers who had been in many crashes were not given
preferential treatment for inclusion in the study.

Task 10: Develop Test Data Collection Plan

Task 10 was a report requirement synthesizing Tasks 1 through 9. Comments were received
from the contract sponsor and requested revisions were then made prior to continuation of this
phase.

Task 11: Develop Test Reduction, Archiving, and Analysis Plan

The approach to data reduction for the Phase II study took advantage of an incident/near-crash
data reduction method represented by Table 1.2, as well as current database information.
Continuous data were collected and the incident/near-crash method was applied to the data
(events were located in the dataset via optimized triggers that were determined through a
sensitivity analysis). A data analysis plan was developed based on the research questions
presented in Table 1.1.

The hardware aspects of data collection, back-up, and archiving were also described as part of
this task, as well as the procedure for retrieving and organizing the data as they were obtained
from the vehicles. A plan for long term data storage was also determined.

Table 1.2. Severity levels for the 100-Car Study.

Crash Any contact with an object, either moving or fixed, at any speed, in which kinetic energy is
measurably transferred or dissipated. Includes other vehicles, roadside barriers, objects on or off the
roadway, pedestrians, cyclists, or animals.

Near- Any circumstance that requires a rapid, evasive maneuver by the subject vehicle (or any other vehicle,
Crash pedestrian, cyclist, or animal) to avoid a crash. A rapid, evasive maneuver is defined as steering,
braking, accelerating, or any combination of control inputs that approaches the limits of the vehicle’s
capabilities. As a guide, subject vehicle braking greater than 0.5g or steering input that results in a
lateral acceleration greater than 0.4g to avoid a crash, constitutes a rapid maneuver.

Crash- Any circumstance that requires a crash avoidance response on the part of the subject vehicle or any
relevant other vehicle, pedestrian, cyclist, or animal that is less severe than a rapid evasive maneuver (as
conflict defined above), but greater in severity than a “normal maneuver” to avoid a crash. A crash avoidance

response can include braking, steering, accelerating, or any combination of control inputs. A “normal
maneuver” for the subject vehicle is defined as a control input that falls outside of the 99 percent
confidence limit for control input as measured for the same subject.

Proximity | Any circumstance resulting in extraordinarily close proximity of the subject vehicle to any other
Conflict vehicle, pedestrian, cyclist, animal, or fixed object when, due to apparent unawareness on the part of
the driver, pedestrians, cyclists or animals, there is no avoidance maneuver or response.
Extraordinarily close proximity is defined as a clear case in which the absence of an avoidance
maneuver or response is inappropriate for the driving circumstances (e.g., speed, sight, distance, etc.).




Non- Any event that increases the level of risk associated with driving, but does not result in a crash, near-
conflict crash, or conflict as defined above. Examples include driver control error without proximal hazards
event being present, driver judgment error such as unsafe tailgating or excessive speed, or cases in which
drivers are visually distracted to an unsafe level.

Task 12: Development of Data Collection System Requirements

The results of Task 12 followed from the combined performance of Tasks 2 through 11.
Additionally, Task 12 results were iterated and integrated with those of Tasks 13 and 15 to drive
the Hardware/Software Design Specification. The data system requirements were categorized
into four major areas:

Schedule Requirements;

General Design Requirements.;

Performance Requirements; and

Test Vehicle Profile.

b=

Task 13: Review/Test of Technology/Sensor Alternatives

Tasks 13 and 15 were conducted in parallel to determine the most suitable hardware and
software alternatives for each subsystem component. The data handling and software integration
subsystems were addressed in Task 11. The remaining components were addressed in Tasks 13
and 15.

Task 14: Review/Test of Trigger Criteria Methods

Since it was decided early in the Phase I process that continuous data collection was desired, a
triggered dataset was not needed. Instead, events in the dataset were to be located post hoc with
editable triggers, which would result in a comprehensive database that could be filtered, scanned,
sampled, and so forth, according to researchers’ needs. The sensitivity analysis to determine the
post hoc trigger levels was explained as part of Task 11.

Task 15: Trade Study Analysis of Hardware/Software Alternatives

Task 13 determined the available technologies and their relevant factors to meet the data
collection system requirements determined as part of Task 12. Task 15 completed that effort.
This task listed the subsystem component options considered in trade study analysis (as
determined in Task 13), the evaluation performed to evaluate the component, the evaluation
results, and the decision made for final component selection. The sensors and instruments to
measure specified variables were discussed.

It may be noted that several variables were not meant to be collected through hardware. Driver
classification and demographic variables were collected with questionnaires. Detailed vehicle
information was collected prior to the study. Additional information on crashes was collected
via police report forms.
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CHAPTER 2: METHOD FOR PHASE II - THE 100-CAR FIELD TEST
DRIVERS

One hundred drivers who commuted into or out of the Northern Virginia/Washington, DC
metropolitan area were initially recruited as primary drivers to have their vehicles instrumented
or receive a leased vehicle for this study. Drivers were recruited by placing flyers on vehicles as
well as by placing newspaper announcements in the classified section. Drivers who had their
private vehicles instrumented received $125 per month and a bonus at the end of the study for
completing necessary paperwork. Drivers who received a leased vehicle received free use of the
vehicle, including standard maintenance, and the same bonus at the end of the study for
completing necessary paperwork. Drivers of leased vehicles were insured under the
Commonwealth of Virginia policy.

As some drivers had to be replaced for various reasons (for example, a move from the study area
or repeated crashes in leased vehicles), 109 primary drivers were included in the study. Since
other family members and friends would occasionally drive the instrumented vehicles, data was
collected on 148 additional drivers. Chapter 3 presents an exhaustive review of driver
demographics.

THE 100-CAR DATA ACQUISITION SYSTEM

The 100-Car Study instrumentation package was designed and developed in-house by the VTTI
Center for Technology Development. This system operated continuously after the system
initialization period (or computer boot-up period, which required approximately 90 seconds after
the ignition was turned on) until the driver turned the ignition off. Any commercial off-the-shelf
components that were integrated into the instrumentation package are specifically noted in the
following system description.

The core of the data acquisition system was a Pentium-based PC104 computer. The computer
ran custom data acquisition software and communicated with a distributed data acquisition
network. Each node on the network contained an independently programmable microcontroller
capable of controlling or measuring a moderate number of signals. This system configuration
maximized flexibility while minimizing the physical size of the system. Although capable of
being expanded to 120 nodes, the vehicles were configured with 10 nodes. A schematic
representation of the system appears in Figure 2.1.
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Figure 2.1. 100-Car Study data hardware collection system schematic.

This system of distributed data acquisition provided a very flexible and maintainable hardware
data collection system. The main unit was mounted in the trunk under the “package shelf”
(Figures 2.2 and 2.3). The vehicle network box was located under the front dashboard. The
incident box was mounted above the rearview mirror. Wiring was run though the normal wire
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chases on a vehicle to all the various network nodes, as well as to the cameras. All the

microprocessor boards, including the firmware and data collection software, were developed at
VTTL

Figure 2.2. The main DAS unit mounted under the “package shelf” of the trunk.

Figure 2.3. The 100-Car Study DAS.

Node 1: Vehicle Network Box

This node was responsible for interfacing with the OBDII network in the vehicle. Various data
elements were pulled off the network if they were available. Several sensors were hardwired
such as the radio frequency sensor, the left turn signal, the right turn signal, and the brake light.

11



Node 2: Accelerometer Box

This node was responsible for collecting the lateral and longitudinal acceleration of the vehicle,
along with the turning rate. MEMs based sensors were used.

Nodes 3-4: Headway Detection

These nodes were responsible for interfacing with an EATON VORAD EVT300 Doppler radar.
Figure 2.4 shows the computer board for the node. The radars were mounted on the front and
rear of the vehicles and were concealed behind plastic license plates (Figure 2.5).

Figure 2.5. Radar unit mounted on the front of a vehicle, covered by a license plate.

Node 5: Side Obstacle Detection

These nodes were responsible for interfacing with a proprietary Doppler radar. These radars
were capable of detecting targets at 30 ft and 180 degrees of span.

Node 6: GPS Data Node

This node was responsible for interfacing with a standard automotive GPS unit.
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Node 7: Automatic Collision Notification

This node detected the possibility of a collision by sensing three accelerations. It would trigger a
call to a dispatcher if it detected a crash.

Node 8: Cellular Communications

This node served as an interface between the computer and a standard cell phone. It was capable
of receiving a call and connecting that call with the on-board computer, and likewise, the
computer could call out.

Node 9: Incident Box

This node concentrated several data variables. It contained an incident pushbutton (shown
mounted above the rear-view mirror in Figure 2.6) that the driver could press which would open
an audio channel for the driver to verbally record an incident. It also housed the face camera, IR
LEDs, and the glare sensor (shown mounted behind the rear-view mirror in Figure 2.7).

Figure 2.6. The incident pushbutton box mounted above the rearview mirror.
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Figure 2.7. The mounting for the glare sensor behind the rearview mirror. Note the
forward view camera as part of the same mounting assembly.

Node 10: System Initialization.

This node was responsible for qualifying the operating conditions, turning the computer on and
off, and charging the cellular telephone backup battery. It also contained a watchdog
functionality to maintain correct system operation, and a real-time clock for periodic system
checkups.

Lane Tracking System

The lane tracking system incorporated a high resolution frame grabber and a full size image of
the forward roadway. The data collection software ran an embedded version of a custom in-
house machine-vision lane tracking system.

Video Data

There were 5 cameras located in the vehicle (Figure 2.8). One camera monitored the driver’s
face and the left side of the vehicle. A second camera monitored a 68° field of view (FOV) out
the forward windshield. A third camera monitored a 68° FOV of the rear-view. The fourth
camera monitored the passenger’s side of the vehicle. Finally, the fifth camera monitored the
driver’s hands, instrument panel, and center console of the vehicle.
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Figure 2.8. The 5 camera views recorded in the instrumented vehicle: (1) forward, (2)
driver’s face/left side of vehicle, (3) rear-facing, (4) over the driver’s shoulder capturing
the driver’s hands and feet, the steering wheel, and the instrument panel, and (5) right side
of vehicle.

Infrared lighting was used to illuminate the vehicle cab so that the driver’s face and hands could
be viewed on camera during nighttime driving. Figure 2.9 shows the placement and viewing
angles of all 5 cameras in the quad-split image presented to allow data reductionists to monitor
all 5 channels of video simultaneously.

Driver Face and Left Side View Forward View
(60° Horizontal) (68° Horizontal)
Right Side View
Over-the-Shoulder View (Pinhole, 70° Diagonal)
(Pinhole, 70° Diagonal)
Rearview
(68° Horizontal)

Figure 2.9. The double quad, split video image.

All video on board the 100-Car Study data collection system was compressed using MPEG 1
compression. This allowed greater storage of video on board the vehicle hard drives and
required less server space to store the raw video data. While the initial data stream was
recording at 30 Hz, the compression algorithm reduced the actual number of unique frames to
approximately 7.5 frames per second (Figure 2.10).
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Figure 2.10. A video image from the 100-Car Study data. The driver’s face has been
distorted to protect the driver’s identity.

Driving Performance Data

Driving performance data were collected continuously and events were identified using specific
values of driving performance dependent variables. Eleven main hardware sensor components
were incorporated into the data collection system, as shown and described in Table 2.1 and
depicted in Figure 2.1. In addition, relative lane position was derived using a combination of
hardware on the instrumented vehicle and software written by VTTI computer programmers.
This lane tracking system used machine vision based on input to the forward camera (prior to
video compression). All data were stored in the data collection system in real-time.
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Table 2.1. Description of Sensor Components.

Sensor Component Description

Vehicle Network box Collection of data directly from the in-vehicle network box. Some data
includes vehicle speed, brake application, percent throttle, turn signal,
etc.

Acceleration Collection of lateral, longitudinal, and gyro.

Forward headway detection | Collection of radar data (range, range-rate, azimuth, etc.) to indicate the

presence of up to 7 targets in front of the vehicle.

Rear headway detection Collection of radar data (range, range-rate, azimuth, etc.) to indicate the

presence of up to 7 targets behind the vehicle.

Side vehicle detection Collection of radar data indicating the presence of a vehicle on the sides

of the vehicle.

Global Positioning System | Collection of latitude, longitude, and horizontal velocity as well as other

GPS-related variables.

Automatic Collision High bandwidth collection of acceleration to detect a severe crash.

Notification System

Cellular communications Communication system designed for vehicle tracking and system
diagnostics.

Driver Identified Collection of lux value (for night-time conditions only) as well as event

Events/Glare sensor button.

System Initialization Overall system operation.

DATA COLLECTION, ARCHIVAL AND STORAGE

Demographic and Questionnaire Data

Prior to the installation of the data collection system in the participant’s vehicle or acquisition of
a leased vehicle, each participant met with a VTTI researcher at the UVA/VT Northern Virginia
Center in Falls Church, VA. During this meeting, a VTTI researcher:

Obtained informed consent from the private-vehicle or leased-vehicle participant, and
explained that a Certificate of Confidentiality had been obtained from the National
Institute of Mental Health for the participant’s protection.

Explained that the study was investigating traffic in northern Virginia.

Explained the logistics of data collection system installation and maintenance.

Asked the participant to agree to a vision and hearing exam.

Asked the participant to complete questionnaires and take two computer-based tests.

The tests and questionnaires, as well as whether these were completed prior to or after data
collection, are listed in Table 2.2. Full text versions of the informed consent form, tests, and
questionnaires are located in Appendix A.
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Table 2.2. Description of all tests and questionnaires administered to study participants.

When
Test/Questionnaire Test Type Administered | Brief Description

1. Visual Acuity Test Performance test Before data Used the Snellen Eye Chart to test

using verbal report collection driver’s visual acuity.

2. Audiogram Air Examination using Before data Assessed hearing levels at a frequency
Conduction Test an audiometer collection range of 125-8000 Hz.

3. Medical Health Questionnaire Before data Obtained any information on prior
Assessment collection health problems that may relate to

driving performance.

4. Walter Reed Army Questionnaire Before data Measured and recorded subject’s sleep
Institute of Research collection habits and problems that may cause
Preliminary Sleep drowsiness.

Questionnaire

5. Dula Dangerous Questionnaire Before data Classified driver’s level of aggressive
Driving Index collection driving behavior.

6. Driver Stress Questionnaire Before data Used a 10-point Likert Scale to obtain
Inventory collection information about driver’s general

attitudes toward driving on a variety of
roadways and in traffic congestion.

7. Life Stress Inventory | Questionnaire Before and Obtained information about the types
after data of stress and changes that the subject
collection may have experienced in the past year

to determine the risk level for illness.

8. NEO FFI Questionnaire Before data Measured the five dimensions of
(Neuroticism collection normal personality: neuroticism;
Extraversion extraversion; openness; agreeableness;
Openness Five and conscientiousness.

Factor Model)
9. Way Point PC-based Before data Used to identify drivers who may be at
performance test collection high risk for crashes by measuring
their information processing speed and
aptitude for vigilance.

10. Useful Field of View | PC-based Before data Used to measure a driver’s risk for

(UFOV) performance test collection crash involvement by using the
driver’s central vision and processing
speed, divided attention, and selective
attention.

11. Debriefing Questionnaire After data List of questions collecting
Questionnaire collection information on driver’s recollections

about events that occurred during the
last year, seat belt use, alcohol use, etc.

12. Driver Demographic | Questionnaire Before data List of questions collecting
Information collection information on driver’s age, gender,

level of education, occupation, etc.

13. Driving History Questionnaire Before data List of questions collecting
collection information on driver’s traffic

violations and accident history, type,
etc.

14. Post-Crash Interview | Interview In the event of | Used to collect driver’s description of
Form questionnaire a crash crash

15. Seatbelt Questionnaire Before data Assessed seatbelt use and attitudes

collection

toward seatbelt use.
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Instrumentation

The instrumentation of vehicles was orchestrated by the VITI’s Center for Technology
Development. The 22 leased vehicles were instrumented at VTTI and the 78 private vehicles
were instrumented by a Northern Virginia company. Using a phased approach, it took four
months to get all 100 vehicles on the road. Since the data collection system automatically
powered on and off, data collection began on each vehicle as soon as it was instrumented.

Data Retrieval and Storage

To collect the data from the experimental vehicles, “chase vehicles” were used to track the
vehicle, go to the location, and download data. The chase vehicle drivers “called” the vehicle
using a cellular telephone and laptop configuration. In-house software then displayed a map
showing icons for the chase vehicle and experimental vehicle locations. The chase vehicle driver
then drove to the location of the instrumented vehicle and downloaded the data from the
experimental vehicle (downloading required a data transfer cable connected to an outlet near the
rear license plate of the instrumented vehicle, which was connected to a data storage device).
After each download, data integrity was verified. Data were again duplicated in Northern
Virginia onto DVDs, one copy was sent to VITI and the other copy was kept in Northern
Virginia.

As the data arrived at VTTI, the triggering software was run on each DVD (see “Data
Reduction’) and the resulting relevant event epochs were saved. Event epochs were copied and
saved on the networked attached storage server (NAS) at VITI. The remainder of the video and
raw data contained on the DVD remained on the DVD.

Once the triggered data were copied to the NAS at VTTI, the data were deleted from the
experimental vehicle hard drive using in-house software. Once the data arrived at VTTI a fourth
copy was created on the NAS before the on-board data were deleted. The purpose of this
detailed duplication and storage scheme was to maintain a minimum of two data copies at all
times.

PROCEDURE FOR DATA REDUCTION

Sensitivity Analysis

As stated previously, data were collected continuously to optimize the trigger criteria values after
driving performance data were collected. If the triggers had been set prior to data collection,
valuable events may have been lost without any method of recovery. One method of efficiently
establishing trigger criteria is to perform a sensitivity analysis.

Figure 2.11 shows the data reduction plan in a flow chart format. Raw data from the vehicles
was saved on the NAS at VTTI until approximately 10 percent of the data expected to be
collected for the entire study was stored on the NAS. At that time, a sensitivity analysis was
performed to establish post-hoc trigger criteria.
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Figure 2.11. Flow chart of the data reduction process.

The sensitivity analysis was conducted by making iterative adjustments to the trigger values to
ensure that most of the valid events were identified with only a few invalid events also being
identified. The list of dependent variables ultimately used as event triggers is presented in Table
2.3.

Table 2.3. Dependent variables used as event triggers.

Trigger Type Description
1. Lateral Acceleration e  Lateral motion equal to or greater than 0.7 g.
2. Longitudinal e  Acceleration or deceleration equal to or greater than 0.6g.
Acceleration e  Acceleration or deceleration equal to or greater than 0.5 coupled with a

forward TTC of 4 seconds or less.

e All longitudinal decelerations between 0.4g and 0.5g coupled with a
forward TTC value of <4 seconds and that the corresponding forward
range value at the minimum TTC is not greater than 100 ft.

3. Event Button e Activated by the driver by pressing a button located on the dashboard
when an event occurred that he/she deemed critical.
4. Forward Time-to- e  Acceleration or deceleration equal to or greater than 0.5 coupled with a
Collision forward TTC of 4 seconds or less.

e All longitudinal decelerations between 0.4g and 0.5g coupled with a
forward TTC value of <4 seconds and that the corresponding forward
range value at the minimum TTC is not greater than 100 ft.

5. Rear Time-to- e Any rear TTC trigger value of 2 seconds or less that also has a

Collision corresponding rear range distance of < 50 feet AND any rear TTC
trigger value in which the absolute acceleration of the following vehicle
is greater than 0.3g

6. Yaw rate e Any value greater than or equal to a plus AND minus 4 degree change

in heading (i.e., vehicle must return to the same general direction of

travel) within a 3 second window of time.

A sensitivity analysis was performed by setting the trigger criteria to a very liberal level,
reducing the chance of a missed valid event to a minimal level while allowing a high number of
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invalid events (false alarms) to be identified (see Figure 2.12). Data reductionists then viewed
all of the events produced from the liberal trigger criteria and classified each event as valid or

invalid. The number of valid events and invalid events that resulted from this baseline setting

was recorded.

"Optimized" Phase IV Trigger Liberal Phase Il Trigger
Goal: Minimize False Alarms Goal: Minimize misses

Distribution of
Invalid Critical
Incidents

istribution of
Valid Critical
Incidents

Figure 2.12. Graphical depiction of trigger criteria settings for Phase II and Phase 1V
using the distribution of valid events. Note that this distribution and criterion placement is
unique for each trigger type.

The trigger criteria for each dependent variable was then set to a slightly more conservative level
and the resulting number of valid and invalid events was counted and compared to the first
frequency count. The trigger criteria were made more and more conservative and the number of
valid and invalid triggers counted and compared until an optimum trigger criteria value was
determined (a level which results in a minimal amount of valid events lost and a reasonable
amount of invalid events identified). The goal in this sensitivity analysis was to obtain a miss
rate of less than 10 percent and a false alarm rate of less than 30 percent.

Based on data from past VTTI studies, it was originally hypothesized that as many as 26 crashes,
520 near-crashes, and over 25,000 incidents (crash-relevant conflicts and proximity conflicts)
would be collected; however many of these early estimates were based on long-haul truck
driving data. It was soon discovered, after the sensitivity analysis process began, that the
variability in light vehicle drivers” braking, acceleration, and steering behavior is much larger
than with truck drivers. It is likely that this is due to differences in vehicle dynamics and the
more uniform driving skill of commercial truck drivers.

Given the large variability in light vehicle driving performance, the sensitivity analysis proved to
be challenging. VTTI researchers determined that the best option was to accept a very low miss
rate while accepting a fairly high false alarm rate to ensure that few valid events were missed.
This resulted in viewing over 110,000 events in order to validate 10,548 events. The distribution
of the total number of reduced events by severity is shown in Table 2.4.
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Table 2.4. The total number of events reduced for each severity level.

Event Severity Total Number

Crash 69
(plus 13 without complete data)

Near-Crash 761

Incidents (Crash-relevant Conflicts and Proximity 8,295

Conflicts)

Non-Conflict Events 1,423

Once the trigger criteria were set for Phase I, data reductionists watched 90-second epochs for
each event (one minute prior to and 30 seconds after), reduced and recorded information
concerning the nature of the event, driving behavior prior to the event, the state of the driver, the
surrounding environment, etc. The specific variables recorded in the data reduction process are
described in detail in the data reduction software framework section of this chapter.

Recruiting and Training Data Reductionists

Based upon past experience, it was estimated that reductionists would be able to reduce an
average of 4 events per hour. Eleven data reductionists were recruited by posting flyers and
notices to various graduate student listserves on the Virginia Tech campus. The data reduction
manager interviewed, hired and trained the data reductionists on how to access the data from the
server and operate the data reduction software, and provided training on all relevant operational
and administrative procedures (approximately 4 hours of training). The manager gave each data
reductionist a data reduction manual to guide them in learning the software and reduction
procedures. All analyst trainees practiced data reduction procedures with another trained analyst
prior to reducing data independently. After each trainee felt comfortable with the process, the
trainee worked alone under the supervision of the data reduction manager. Once the trainee and
manager felt confident of the analyst’s abilities, the analyst began working independently, with
“spot check” monitoring from the project leader and other reductionists. The data reductionists
were responsible for analyzing a minimum number of events per week, and were required to
attend weekly data reduction meetings to discuss issues that arose in data reduction.

The data reductionists performed two general tasks for this project. On the first 10 to 15 percent
of the data, they performed a preliminary data reduction task in which they viewed events to
determine whether the event was valid or invalid and to determine the severity of the event.
After the trigger criteria for Phase II was set using the results from the sensitivity analysis, the
data reductionists then validated the data, determined severity, and performed a full data
reduction. For the full data reduction, they recorded all of the required variables (discussed
below) for the event type. To ascertain severity of the event, reductionists used the decision tree,
as shown in Figure 2.13.
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Figure 2.13. Decision tree used to classify event severity.

Data Reduction Software Framework

The data reduction framework was developed to identify various driving behavior and
environmental characteristics for four levels of event severity: crashes; near-crashes; crash-
relevant conflicts; and proximity conflicts. The variables recorded were selected based upon past
instrumented vehicle studies (Hanowski et al., 2000; Dingus et al., 2002), national crash
databases (General Estimates System and Fatality Accident Reporting System), and questions on
Virginia State Police Accident Reports. Using this technique, the reduced database can be used
to directly compare crash data from GES and FARS to those crashes, near-crashes, and incidents
(crash-relevant conflicts and proximity conflicts) identified in this dataset.

The general method for data reduction was to have trained data reductionists view the video data
and record the battery of variables for all valid events. The data reduction manager and project
manager performed all data reduction on the near-crashes and crashes. Varying levels of detail
were recorded for each type of event. Crash-relevant conflicts and proximity conflicts have the
least amount of information recorded and near-crashes and crashes have the most information
recorded. A total of four areas of data reduction were recorded for each event type. These four
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areas include: vehicle variables; event variables; environmental variables; and driver state
variables. Table 2.5 defines each area of data reduction, provides examples, and describes
additional features of the data reduction. The complete list of all variables reduced during data
reduction is shown in Appendix B.

Table 2.5. Areas of data reduction, definition of the area, and examples.

Area of Data Definition Example
Reduction
Vehicle Variables | All of the descriptive variables including the vehicle Vehicle ID, Vehicle type, Driver

identification number, vehicle type, ownership, and
those variables collected specifically for that vehicle
(VMT).

type (leased or private), and
VMT.

Event Variables

Description of the sequence of actions involved in
each event, list of contributing factors, and safety or
legality of these actions.

Nature of Event/ Crash type, Pre-
event maneuver, Precipitating
Factors, Corrective
action/Evasive maneuver,
Contributing Factors, Types of
Inattention, Driver impairment,
etc.

Environmental
Variables

General description of the immediate environment,
roadway, and any other vehicle at the moment of the
incident, near-crash, or crash. Any of these variables
may or may not have contributed to the event, near-
crash or crash.

Weather, ambient lighting, road
type, traffic density, relation to
junction, surface condition,
traffic flow, etc.

Driver’s State

Description of the instrumented vehicle(s) driver’s
physical state.

Hands on wheel, seat belt usage,
fault assignment, eyeglance,
PERCLOS, etc.

Driver/Vehicle 2 | Description of the vehicle(s) in the general vicinity of Vehicle 2 body style, maneuver,
the instrumented vehicle and the vehicle’s action. corrective action attempted, etc.

Narrative Written description of the entire event.

Dynamic Creation of an animated depiction of the event.

reconstruction

Data Reduction Inter- and Intra-Rater Reliability

Training procedures were implemented to improve both inter- and intra-rater reliability, given
that data reductionists were asked to perform subjective judgments on the video and driving data.
Reliability testing was then conducted to measure the resulting inter- and intra-rater reliability.

First, data reductionist managers performed spot checks of the reductionists’ work, monitoring
both event validity judgments as well as recording all database variables. Reductionists also
performed 30 minute’s worth of spot-checks of their own or other reductionists’ work every
week. This was done to ensure accuracy but also to allow reductionists the opportunity to view
other reductionists’ work. It was anticipated that this would encourage each reductionist to
modify their own work and to improve consistency in decision-making techniques across all
reductionists. Mandatory weekly meetings were held to discuss issues concerning data reduction
techniques. Issues were usually identified by the spot-checking activities of the reductionist
managers and the reductionists, or specific difficult events that the reductionists had encountered.
These meetings provided iterative and on-going reduction training throughout the entire data

reduction process.
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To determine how successful these techniques were, an inter- and intra-rater reliability test was
conducted during the last three months of data reduction. Three reliability tests were developed
(each containing 20 events) for which the reductionist was required to make validity judgments.
Three of these 20 events were also fully reduced. Three of the test events on Test 1 were
repeated on Test 2 and 3 other events were duplicated between Tests 2 and 3 to obtain a measure
of intra-rater reliability.

Using the expert reductionists’ evaluations of each epoch as a “gold” standard, the proportion of
agreement between the expert and each rater was calculated for each test. The measures for each
rater for each testing period, along with a composite measure, can be found in Table 2.6.

Table 2.6. Percentage agreement with expert reductionists.

Rater Test 1 Percent Test 2 Percent | Test 3 Percent
1 78.3 87.5 91.3
2 65.2 70.8 78.3
3 100 91.7 95.7
4 100 91.7 87.0
5 100 83.3 87.0
6 95.7 87.5 91.3
7 91.3 87.5 91.3
8 91.3 91.7 91.3
9 95.7 70.8 91.3
10 95.7 91.7 87.0
11 95.7 87.5 100
12 78.3 87.5 87.0
13 87.0 83.3 96.0
14 78.3 83.3 91.3

Average
(across all tests) 88.4

The Kappa statistic was also used to calculate inter-rater reliability. Although there is
controversy surrounding the usefulness of the Kappa statistic, it is viewed by many researchers
as the standard for rater assessment (e.g., Cicchetti and Feinstein, 1990). The Kappa coefficient
(K =0.65, p <0.0001) indicated that the association among raters is significant. While the
coefficient value is somewhat low, given the highly subjective nature of the task, the number of
raters involved, and the conservative nature of this statistic, the Kappa calculation probably errs
on the low side.

A tetrachoric correlation coefficient is a statistical calculation of inter-rater reliability based on
the assumption that the latent trait underlying the rating scale is continuous and normally
distributed. Based on this assumption, the tetrachoric correlation coefficient can be interpreted
in the same manner as a correlation coefficient calculated on a continuous scale. The average of
the pair-wise correlation coefficients for the inter-rater analysis is 0.86. The coefficients for the
intra-rater analysis were extremely high with 9 raters achieving a correlation of 1.0 among the
three reliability tests and 5 raters achieving a correlation of 0.99.
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Given these three methods of calculating inter-rater reliability, it appears that the data reduction
training coupled with spot-checking and weekly meetings proved to be an effective method for
achieving high inter- and intra-rater reliability.

Database Creation

All of the data analyses in this report are based on (1) driving performance data derived from the
raw data collected on-board the vehicles, (2) reduced data resulting from the event analysis, and
(3) subjective questionnaires filled out by subjects pre- and post-data collection. These data
were copied, created, or edited into MySQL databases and linked using identification codes (i.e.,
vehicle or epoch identification numbers). Using these databases, it was then possible to identify,
for example, the number of near-crashes and crashes for male drivers under age 24 compared to
males drivers over age 45 for relationship to crash involvement.

BY THE NUMBERS - TOP LEVEL PROJECT STATISTICS

The final top-level statistics for the 100-Car Study are provided in Table 2.7. Note that 109
primary drivers drove 100 vehicles, of which 78 were personal vehicles, and 22 were leased
vehicles. More than 100 primary drivers were used because some drivers dropped out of the
study and others were replaced for various reasons. Altogether there were 241 total drivers
(primary drivers plus secondary drivers). Over 6 terabytes of data were collected and stored on
over 1,300 DVDs. Altogether, there were 82 crashes. Of those, complete data were available for
69. Also, of the 82 crashes, 49 were low g events, such as struck or ran over curb, median,
parking blocks, or small animal). There were 761 near-crashes and over 8,000 incidents.

Table 2.7. Top-level 100-Car Study statistics.

Parameter Statistic

Participants: 109 primary drivers
241 total drivers

Vehicles: 78 personal, 22 leased

Miles driven: 2,025,000

Hours of driving data collected: 47,382.65

Average speed: 29 mph

Overall duration of data collection in 18.5

months:

Amount of data in terabytes: 6.4 TB

Amount of data in DVDs: 1,361 DVDs

Crashes (see Table 2.8): 82 (69 with complete data)

Near-Crashes: 761

Incidents: 8,295

The 82 crashes are summarized in Table 2.8 in terms of crash type and whether or not the crash
was reported to police. The most common crash types were Rear-End Striking (29 percent of
total) and Rear-End Struck (25 percent of total). Single Vehicle Run-Off-Road was the third
most common at 18 percent of the total. The other main contributor to the overall total was
Backing, at 13 percent of the total; however, none of these Backing crashes were police reported,
while at least some of all the other most common types were police reported.
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Table 2.8. Summary of crashes.

Type Police Reported* Number Percentage of Total
Single Vehicle Run-off-Road No 29 35%
Single Vehicle Run-off-Road Yes 3 4%
Rear-end, striking No 11 13%
Rear-end, striking Yes 5 6%
Rear-end, struck No 12 15%
Rear-end, struck Yes 3 4%
Backing No 8 10%
Backing Yes 0 0%
Left Turn Across Path No 0 0%
Left Turn Across Path Yes 2 3%
Sideswipe No 2 3%
Sideswipe Yes 0 0%
Lane Change No 1 1%
Lane Change Yes 0 0%
Hit by object No 1 7%
Hit by object Yes 0 0%

* Crashes were counted as non-police-reported when this was not known.

The ratios of police reported crashes to non-police reported crashes varied considerably
depending on crash type. For example, none of the Backing crashes were police reported. The
overall ratio of non-reported to reported crashes was 2.9 to 1 (i.e., there were 2.9 non-reported
crashes for every reported crash). Several categories of crashes were all police reported (Rear-
End Striking and Struck, Left Turn across Path, and Lane Change), while other categories were
not reported at all (Backing, Sideswipe, and Hit By Object). Categories in which some crashes
were reported and some crashes were not reported included Single Vehicle Run-Off-Road, Rear-
End Striking, and Rear-End Struck. There were 38 crashes in the three most common crash type
categories, and the ratio of non-reported to reported crashes for these three categories was 3.2 to

I.

Table 2.9. Ratios of non-police-reported to police reported crashes.

Category Numbers

Overall ratio of non-reported crashes to reported crashes 2.7:1
Non-police reported or unknown if police reported | 41
Known police reported 14

Ratio by crash type:
Single Vehicle Run-off-Road 2:1
Rear-end, striking 22:1
Rear-end, struck 12:1
Rear-end, struck & striking All police reported
Backing All non-police reported
Left Turn Across Path All police reported
Sideswipe All non-police reported
Lane Change All police reported
Hit by object All non-police reported

Three most common crash types (37 crashes)

32:1
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When comparing these statistics to the expected crash rates as cited in the 100-Car Phase I
Report, there were significantly more rear-end crashes than were expected. Using Crash Rate
Calculation 4 from the Phase I Report, the calculation was based on the following sources or
assumptions:

1. Northern Virginia/ Washington, DC, metropolitan area crash rate statistics.

2. Assuming 2.88 MVMT.

3. Biasing the sample towards younger drivers.

4. Higher crash rate in an urban area.

These sources and assumptions suggested that there would be data for 6.94 police-reported rear-
end crashes and potentially 10 rear-end crashes accounting for all of the non police-reported
crashes.

The final numbers for rear-end crashes were as follows:
e 31 total striking and struck rear-end crashes (reported or identified in the 100-Car
Study database).
e 8 police-reported rear-end striking and struck rear-end crashes.
e 23 crashes were non-police reported.

Note that 1.4 MVMT were collected during the 100-Car Study and that the driver sample was
only slightly biased toward younger drivers with 50 percent of the drivers under age 35. These
results suggest that police-reported crash statistics greatly underestimate the actual number of
crashes that occur.

The numbers of primary drivers involved in incidents of various types is shown in Table 2.10.
The weekly dataset developed for Chapter 8, Goal 4 was used in this analysis. There were data
available for 107 0f the 109 primary drivers in this dataset. It can be seen that over 35 percent of
drivers were involved in at least one crash, while over 80 percent experienced at least one near-
crash and over 90 percent were involved in at least one incident. Table 2.11 presents the percent
of drivers who were involved in multiple crashes, near-crashes, and critical incidents. Note that
close to 50 percent of primary drivers had more than 50 incidents over the course of the study
(about one per week) and about 15 percent had more than 150 (about three per week).

Table 2.10. Number and percentage of drivers involved in at least one of the various
event types.

Event Type Number of Drivers Percentage of Drivers
At least 1 Crash 38 35.5%
At least 1 Near-crash 89 83.2%
At least 1 Incident 99 92.5%
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Table 2.11. Number and percentage of drivers involved in multiple events.
Number of Percentage Number of Percentage Number of Percentage
Crashes of Drivers Near-crashes of Drivers Incidents of Drivers

0 64.5% 0 16.8% 0 7.5%

1 21.5% 1 7.5% 1-5 9.3%

2 6.5% 2-4 27.1% 6-10 3.7%

3 3.7% 5-8 27.1% 11-15 0.9%

4 3.7% 9-12 3.7% 16-20 3.7%

More than 4 0.0% 13-24 13.1% 21-25 5.6%

25-50 2.8% 26-30 4.7%

More than 50 1.9% 31-40 8.4%

41-50 7.5%

51-100 16.8%

101-150 16.8%

151-200 11.2%

More than 3.7%

200

In viewing the above tables, it becomes clear that some participants might make an outsized
contribution to the frequency and rate of events. Further exploration of the matter revealed four
participants who might be considered to be outliers when their data is considered on a rate per
mile traveled basis. Event rates were calculated for all participants based on event type divided
by miles traveled. The rank percentile was then calculated for each event type for each
participant. In order to be considered an outlier, a participant had to been > 95™ percentile in two
of three severity categories and > 90™ percentile on the third severity category. Descriptive data
for the four participants meeting these criteria are found in Table 2.12. Note that three of the
four participants appear to have extremely low miles traveled; for drivers 124, 308, and 311, the
miles are an accurate reflection of miles driven. For driver 204, however, there were outages
with the data collection system that resulted in apparently low miles traveled. However, the
events shown here for driver 204 happened during the miles recorded, so the event rates shown
are accurate. Note that the outlier group includes two males and two females, and that four age
groups are represented. Driver 311 was one of only 4 female drivers in the 35-to-44 age group,
so she might be expected to have a larger influence when age and gender rate calculations are
conducted in ensuing chapters of this report. The remaining participants only made up 8 to 11
percent of their respective age and gender categories. The decision was made to include events
from these outliers in the remaining sections of this report, with added footnote reminders
regarding driver 311 when the 35-to-44 female rates seem unusually high.
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Table 2.12. Description of four outlier participants in terms of crash, near-crash, and
incidents rates per miles traveled.

Participant # 124 204 308 311
Age Group 21-24 25-34 18-20 35-44
Gender M M F F
Percentage of age/gender group 10% 8% 11% 25%
Miles Data Recorded 5,241 2,603 4,131 19,833
Incidents 103 60 171 456
Incident rate/mile 0.020 0.023 0.041 0.023
Incident percentile rank 97% 99% 100% 98%
Near-Crashes 7 4 19 56
Near-crash rate/mile 0.001 0.002 0.005 0.003
Near-crash percentile rank 90% 92% 100% 98%
Crashes 3 1 1 4
Crash rate/mile 0.0006 0.0004 0.0002 0.0002
Crash percentile rank 100% 98% 95% 91%
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CHAPTER 3: DRIVER AND VEHICLE DEMOGRAPHICS
AGE AND GENDER

Recall that the project goal called for a distribution of driver age and gender, which would slant
the study slightly toward the male (60%) and younger (60 percent younger than age 25) end of
the spectrum. The original recruiting goals are shown below:
e Age 18-20 years: drivers = 18 males and 12 females.
Age 21-24 years: drivers = 18 males and 12 females.
Age 25-34 years: drivers = 6 males and 4 females.
Age 35-44 years: drivers = 6 males and 4 females.
Age 45-54 years: drivers = 6 males and 4 females.
Age 55-64 years: drivers = 6 males and 4 females.

As shown in Table 3.1, the project was successful in achieving the gender distribution goal (60
percent male and 40 percent female). However, the age group recruiting goals were not met.
Only 34 percent of participants were under age 25, as opposed to the goal of 60 percent. This
was primarily due to the difficulty in trying to recruit participants who drove many miles per
year (primarily by commuting). Commuters tend to be older, and younger people tend not to
drive as many miles. Those younger participants who were recruited were typically college
students who commuted to campus from some distance away. Table 3.2 provides a direct
comparison between recruiting goals and achieved distributions for each age and gender
grouping. The final distribution did have an advantage, however. As shown in Figure 3.1, the
final age distribution was very balanced across the various age groups. As stated previously,
some family members and friends would occasionally drive the instrumented vehicles, therefore,
data were collected on 148 additional drivers for whom demographic data are not available.

Table 3.1. Participant age and gender distributions.

Gender
Age Bins N Grand
% of total Female Male Total
18-20 9 7 16
8.3% 6.4% 14.7%
21-24 11 10 21
10.1% 9.2% 19.3%
25-34 7 12 19
6.4% 11.0% 17.4%
35-44 4 16 20
3.7% 14.7% 18.3%
45-54 7 13 20
6.4% 11.9% 18.3%
55+ 5 8 13
4.6% 7.3% 11.9%
Total N 43 66 109
Total Percent 39.4% 60.6% 100.0%

31



Table 3.2. Comparison of age and gender distribution to project goals.

Male Male Female Female Overall | Overall
Age Bin Goal | Actual Goal Actual Goal Actual
18-20 18 7 12 9 30 16
21-24 18 10 12 11 30 21
25-34 6 12 4 7 10 19
35-44 6 16 4 4 10 20
45-54 6 13 4 7 10 20
55-64 6 8 4 5 10 13
Total 60 66 40 43 100 109
Total Percent 60% | 60.6% 40% 39.4% NA NA

18-20
15%

20% -

55+
12%

25-34
17%

45-54
18%

35-44
18%

Figure 3.1. Distribution of participant age.

Self-Reported Years of Driving Experience

As seen in Figure 3.2, participants reported a wide variety of years of driving experience. The
most experienced group reported greater than 50 years of driving experience (3% of
participants), while the largest group was in the 5-to-9 years of experience range (26% of
participants). As might be expected, there was a close correlation between driver age and self-
reported years of experience, and this relationship is discussed in the next section.
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Figure 3.2. Distribution of participant self-reported years of driving experience.

Driver Age as Compared to Self-Reported Years of Driving Experience

In general, self-reported years of driving experience seemed to agree with driver age (Figure
3.3). Note that points above the line represent cases in which the driver began before the average
age, and points below the line represent cases in which the driver began after the average age.
There are a few data outliers below the line which indicate that 7 or 8§ participants began driving
three to 5 years after most of their peers, while the one data outlier above the line indicates a
driver who self-reported that he/she began driving at age 6. Most likely, this was a mistake on
the part of the participant, who probably meant to report 41 years of driving experience rather
than 51 years. However, there are cases of people who begin driving at such a young age,
especially if they grew up on farms and were required to drive at an early age to help out with the
farm work. Females reported beginning to drive at an average age of 17.1 years (SD = 3.51
years), while males began driving at an average age of 16.2 years (SD = 1.94 years). Overall,
this pool of drivers began driving at an average age of 16.6 years (SD = 2.69 years).
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Figure 3.3. Distribution of participants across self-reported years of driving experience

Ethnicity

bins.

As shown in Figure 3.4, the pool of participants was largely Caucasian (78% versus 32% non-
Caucasian). Table 3.3 shows a comparison of the ethnic makeup of the Northern Virginia area
with the participant pool. These data were obtained from a document called “Minority Issues
Plan” issued by George Mason University in 2000 (http://www.gmu.edu/departments/
provost/accredit/Final%20MINORITY %20ISSUES%20PLAN.doc ). Note that the makeup of

the participant pool was a fairly close match with the population base of the northern Virginia
area, even though no special attempt was made to recruit based on ethnicity.
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Figure 3.4. Distribution of participants across self-reported ethnic groups.

Table 3.3. Ethnic background of northern Virginia residents and 100-Car Study

participants.
NOVA Ethnic 100-Car
Ethnic Group Makeup Participant Pool
White 76.8% 78.9%
African American 9.4% 6.4%
Asian American 6.5% 3.7%
Hispanic American 6.9% 2.8%
Native American 0.2% 0.0%
Other 1.0% 8.2%

Occupation

During the initial screening, participants were asked about their occupations. Their self-reported
answers were then placed into related categories as shown in Table 3.4 and Figure 3.5. The
categories in Table 3.4 are presented in alphabetical order. The greatest percentage of
participants was in the technical field (engineers, drafting, etc. at 18.3% overall), while there
were very few who reported being involved in food service, religious, or retired/unemployed
(1.8% each). Large differences were noted in the occupations of the participants between
genders. For example, of the female participants, 20.9 percent were students, while only 7.6
percent of male participants were students. The situation was almost reversed for the technical
category, with 25.8 percent of males in this category and only 7.0 percent of females. Other
categories with large differences in gender representation included education (11.6% of females

35



versus 4.5% of males), legal/military/government (2.3% of females versus 9.1% of males),
medical (9.3% of females versus 1.5% of males), and retail/real estate (11.6% of females versus
19.7% of males).

Table 3.4. Occupation categories of participants by gender.

Gender
Occupation Category Female Male Grand Total
Education 11.6% 4.5% 7.3%
Financial 7.0% 4.5% 5.5%
Food Service 2.3% 1.5% 1.8%
Legal/Military/Government 2.3% 9.1% 6.4%
Management/Administrative 16.3% 12.1% 13.8%
Medical 9.3% 1.5% 4.6%
Religious 2.3% 1.5% 1.8%
Retail/Real Estate 11.6% 19.7% 16.5%
Retired/Unemployed 2.3% 1.5% 1.8%
Self-employed/Homemaker 4.7% 7.6% 6.4%
Student 20.9% 7.6% 12.8%
Technical 7.0% 25.8% 18.3%
Transportation 2.3% 3.0% 2.8%
Grand Total 100.0% 100.0% 100.0%
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Figure 3.5. Distribution of participants across job categories.

Education

Overall, the participant pool was highly educated (Figure 3.6), with every participant having
graduated from high school, and only 2 percent of participants not having at least some college.
In fact, 60 percent of the participants reported having at least a 4-year degree, and 19 percent
reported having a master’s degree, professional degree, or doctoral degree. This is despite the
fact that 13 percent of participants were students (presumably working on 4-year degrees) during
the time they participated in the study. The overall educational level attained by the participants
is probably due to the fact that an attempt was made to recruit automobile commuters. One
would expect that automobile commuters would make a fairly good living. They would typically
be able to afford housing in the suburbs, a reliable vehicle, and have enough money to purchase
fuel for these vehicles. The assumption would then be that people who have attained a higher
level of education would obtain jobs that pay adequately to support these items. One would
expect that those with lower levels of education might have lower paying jobs, might live closer
to work, and if they commuted, they might be more likely to do so via public transportation than
by automobile.
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Figure 3.6. Distribution of participants with regard to years and type of education.

Self-Reported Violations

Participants were asked to self-report the number of violations they had received in the past 5
years. The 109 participants reported 163 violations during this time frame, for an average of
approximately 0.7 violations per participant in 5 years (0.13 violations/year/participant). As
shown in Figure 3.7, the most common category was speeding (63% of violations) and the
second most common category was red light violations and stop sign/traffic sign violations (12%
each). These three categories accounted for 87 percent of violations reported, with the other 13
percent split among four lesser categories. One participant reported 16 violations, all speeding,
while the next highest number for a single individual was 9 violations (all red light running
violations). There were 37 participants (34%) who reported no violations during the past 5 years,
and 2 participants who did not answer the question.
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Figure 3.7. Distribution of type of self-reported traffic violations in the past S years.

Gender differences were noted in the distribution of the number of self-reported violations
(Figure 3.8). About 25 percent of females reported no violations in the past 5 years, as compared
to about 40 percent of males. Over half of females reported having 1 or 2 violations in this time
frame as compared to about 40 percent for males. Males and females reported having three or
more violations at about the same rate (around 20%). Since these violations were self-reported,
there is no way to ensure the accuracy of these figures.
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Figure 3.8. Percentage of participants by gender for number of self-reported traffic
violations in the past S years.

Some interesting age trends were also noted with regard to self-reported violations. There was a
distinct split between those younger than age 35 and those 35 or older, as shown in Figure 3.9.
For each of the three age groups younger than 35, fewer than 20 percent reported having had 0
violations in the past 5 years. In contrast, the three age groups aged 35 or over had 45 percent or
more of participants reporting no violations during this time span. The three or more violations
category peaked in the 21- to 24-year-old age group, at nearly 50 percent. Note that for a 21-
year-old, the past 5 years encompasses their entire driving history, assuming that they began
driving at age 16. The three violations or more category was lowest between the ages of 35-55,
at 5 percent or less.
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Figure 3.9. Percentage of participants in each age bin for number of self-reported traffic
violations in the past S years.

Self-Reported Crashes

A similar question asked participants to report the number of traffic crashes they had been
involved in over the past 10 years. Overall, 35 percent of drivers reported no crashes over this
time span, 50 percent reported one or two crashes, 13 percent reported 3 or more crashes, and 2
percent did not answer the question. Unlike for violations, there was close agreement among the
genders for this question (Figure 3.10).

There were also age trends for this question, but the differences were not as pronounced as for
the violations question (Figure 3.11). For the zero crashes category, the peak age group was 45-
to 54-year olds at 60 percent and the lowest age group was 25- to 34-year olds, with only 10.5
percent of this age group reporting no crashes over the past 10 years. Of the 21- to 24-year-olds,
29 percent reported having been in 3 or more crashes over the past 10 years. In all cases, this
likely represents their complete driving history, even for those who might have started driving at
a younger age. In contrast, only 5 percent of 45- to 54-year-olds reported 3 or more crashes over
this time frame.
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Figure 3.10. Percentage of participants by gender for number of self-reported traffic
crashes in the past 10 years.
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Figure 3.11. Percentage of participants in each age bin for number of self-reported traffic
crashes in the past 10 years.
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Self-Reported Annual Mileage

Participants were asked how many miles they typically drove in a 12 month period, in keeping
with the desire to recruit high mileage commuters for the project (Figure 3.12). Over three-
fourths of participants reported driving more than 15,000 miles per year, but these numbers were
shown to be inflated based on mileage driven during the study period. Table 3.5 presents the
number of drivers for each of several actual mileage bins. As can be seen, in reality only 30
percent of participants drove more than 15,000 miles during the course of the study, and one-
fourth of participants drove 9,000 miles or less during the study. Nevertheless, the project goals
in terms of numbers of crashes, near-crashes, and crash-relevant conflicts were met, so this
inflation of miles driven did not turn out to be important to the outcome of the study.

15K-25K
76%

Not Specified
1%

8%

Figure 3.12. Distribution of participants across self-reported annual mileage categories.

Table 3.5. Actual miles driven during the study.

Number of Percentage of
Actual miles driven participants Participants
0-9,000 29 26.6%
9,001-12,000 22 20.2%
12,001-15,000 26 23.9%
15,001-18,000 11 10.1%
18,001-21,000 8 7.3%
More than 21,000 13 11.9%
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Vehicle Demographics

Overall, 78 vehicles were privately owned and 22 were leased vehicles loaned to the participants
in return for their participation in the study. As can be seen in Figure 3.13, there was quite a
large difference in the distribution of leased versus privately owned vehicles with regard to age
groups. Younger drivers were more likely to be motivated to participate in the study by the
prospect of having a vehicle to drive with no car payments due, while older participants were
less likely to want to give up the familiarity of their own vehicles. No drivers age 30 or over
used a leased vehicle, while over 60 percent of the 18- to 20-year-olds drove leased vehicles,
falling to just over 25 percent for participants in the 25-34 year age category.

100%
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M Leased

70% OPersonal —

60% - —

50% - —

40% A

30% A

20% -

10% A

0% - T T T T T
18-20 21-24 25-34 35-44 45-54 55+
Age Groups

Figure 3.13. Percentage of participants for each age group driving personal versus leased
vehicles for the study.

An attempt was made to have the chosen vehicle type makes and models evenly represented in
the study. As can be seen in Figure 3.14, this goal was achieved, with a 12-20 percent share for
each make/model combination. Likewise, the three manufacturers were fairly evenly
represented, with 38 percent Chevrolet, 27 percent Ford, and 35 percent Toyota.
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Figure 3.14. Distribution of participants across vehicle makes/models driven during the
study.
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CHAPTER 4: LESSONS LEARNED IN CONDUCTING THE 100-CAR STUDY
BACKGROUND

The logistics and theoretical implications of conducting a field experiment of the scope and
complexity of the 100-Car Study proved to be challenging from the beginning to the end of the
project. Essentially, every aspect of the project differed from the norm either because of the
number of vehicles, the amount of data gathered, or because new software reduction techniques
had to be developed to take full advantage of the data gathered. When challenges arose,
solutions were promptly created to overcome them with minimal impact on the dataset. In
addition to the current and future value of the dataset, there was a substantial amount of
organizational knowledge created as part of this effort, which can best be presented as a series of
lessons learned.

These lessons learned should serve as recommendations to ease the performance and
management of any future naturalistic driving studies of similar or larger scope. The remainder
of this chapter discusses the challenges encountered in the study as well as recommendations to
address them in future efforts. This discussion is framed within the following broad categories:

1) Subject Recruitment and Compliance

2) DAS Installation

3) Hardware and Software Maintenance

4) Data Downloading

5) Data Reduction

6) Data Analysis

7) Other Logistics

SUBJECT RECRUITMENT AND COMPLIANCE

The recruitment of subjects to participate in the study was challenging due to a combination of
several screening factors. One factor was the selection of only six different makes and models of
vehicles to be included in the study. During Task 8 of Phase I, the vehicle types were chosen to
limit the number of customized bracket types that had to be created. Although VTTI
purposefully chose vehicle makes and models that were popular in the northern Virginia area,
this selection still narrowed the number of drivers who could have their private vehicles
instrumented. The participant pool was further reduced due to the driver’s ages that were
needed, the requirement that a high number of miles were typically driven, and the limit on the
targeted geographical area. The reduced participant pool made the participant recruitment
process somewhat difficult.

Furthermore, the vehicle models selected for inclusion in the study were typically not driven by
younger participants. Even when the younger drivers drove the particular type of vehicle, the
vehicle was typically an older model year with a different body style requiring the creation of
different mounting brackets. Rather than continue to create brackets that would only be used for
a couple of vehicles, leased vehicles were used by a large portion of this study group. This
option represented the most efficient way of incorporating the younger driving population within
the study. Any future studies should be aware of the importance of a large and diverse subject
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pool, and avoid geographical areas with relatively small populations, unless the experimenters
are prepared to customize the DAS for a large number of vehicles makes and models.

Driver attrition and/or removal of the driver from the study were also important aspects of
subject management and required additional drivers to be recruited throughout the study. Apart
from a small number of drivers who exercised their right to withdraw from the experiment, four
particular cases are indicative of the complexity of the issues that can arise when participants are
tracked for long periods of time:
e A driver moved away from the study area.
e A driver was arrested during the course of the study and could no longer participate.
e A driver of a leased vehicle was in three crashes and Virginia Tech Office of Risk
Management no longer wanted to cover the insurance.
e A driver of a private vehicle that experienced a catastrophic mechanical failure and it
was not economically feasible to repair it, therefore, the driver could no longer
participate.

Future studies should always have a small number of “reserve” participants who can be called on
relatively short notice to replace any drivers removed from the study. Thus, participant
recruitment and initial screening should continue beyond the placement of the desired number of
vehicles on the road.

Subject compliance issues were also present in the study. Despite numerous efforts to explain
the study protocol to drivers and to relay the importance of their compliance, several drivers
chose not to do so completely. Some interesting examples include:
e A driver of a leased vehicle loaned the vehicle to an unlicensed driver, thus violating
the study protocol.
e A few drivers would not come in for the final debriefing, even though they would be
paid $150.00 for less than an hour of their time.
e Some drivers would not report damage to the leased vehicles, even though failure to
file a police report required payment of a deductible that they would not otherwise
have to pay.

These examples point to the importance of the person or persons who are in direct contact with
the participants and who serve as the interface between the participants and the organization
performing the study. These employees should be well trained in working with participants and
with the resolution of the unique issues that are likely to arise in a study of this length and
magnitude.

DAS INSTALLATION

The 100-Car Data Acquisition System was highly capable and complex, yet had to be installed in
privately owned vehicles without any permanent vehicle modifications. To achieve this, VTTI
engineers developed customized brackets to utilize existing mounting holes in the frame of the
vehicle. However, in some cases the tolerances for the placement of these mounting holes were
larger than expected. Therefore, brackets that should fit a particular vehicle sometimes did not
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and required a certain amount of customization. Prevention of this problem requires the
introduction, within the bracket system, of a certain amount of adjustability.

Installation quality control issues also arose due to the hiring of a subcontractor to assist with
installations. If a subcontractor is hired to perform installation, maintenance, or repairs, the
selection process should carefully consider the capabilities of the contractor, their willingness to
receive specialized training, and their typical level of customer service (i.e., timeliness of work,
craftsmanship, politeness, and attention to detail). In addition, strict guidelines as to who will be
responsible for repair and payment for an installation problem, detailed instructions for
installations, and explicit expectations for the installation timeframe are all critical. It was found
that if participants were asked about their experiences during the installation, and subsequent
feedback was provided to the garage, the subcontractor performance levels improved.
Regardless of the care with which the installer is selected, or even if the systems are installed by
in-house personnel, these surveys should continue for any future studies. It might also be useful
to institute random inspections of recently instrumented vehicles to catch any systematic
problems with the installation that require further training or information to the installer. These
inspections may be useful even when the installations are performed by in-house personnel.

Some sensor installation issues also existed, especially related to crash survivability. The
VORAD units and brackets, installed in front of the bumpers, were destroyed or damaged in
most of the crashes, even when the crash was relatively minor. While other installation options
could be explored to place the radar unit behind the bumper or grille, the particular placement of
the radar was a cost effective solution for this study.

With regard to the radar, standard license plates could not be used since the radar could not “see”
through the metal. VTTI staff worked with the Virginia Department of Motor Vehicles (DMV)
to have special plastic plates manufactured. The downside of the plastic plates was that the
plates were fragile and had to be replaced on multiple occasions for many different cars.

HARDWARE AND SOFTWARE MAINTENANCE

The single most important lesson learned regarding system maintenance for the 100-Car Study
was to have a maintenance person permanently located within the northern Virginia area near the
study vehicles. Initially, hardware and software maintenance was performed periodically by in-
house personnel, who would travel to the northern Virginia area to perform repairs on the
vehicles that needed them. These employees took replacement parts and tools with them, but
had to perform the repairs on the road, wherever the vehicle was parked at the time that it was
intercepted. Having personnel in the area was helpful in that they were able to respond to
problems more quickly, had more familiarity with the roads on the area, and had a permanent
space in which to make repairs, reducing the time that had to be spent with the car and the
possibility of inconveniencing participants.

Equipment repair and adjustment times were also reduced by allowing data downloaders to
perform minor work on the cars. This work was typically performed during the time that data
were being downloaded. This approach reduced the work load of repair personnel, whose effort
could then be focused on more complex repairs that required higher levels of technical expertise.
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Hardware

The 100-Car Study DAS had a unique remote tracking capability that allowed study personnel to
determine, based on GPS coordinates, the location of a vehicle. This functionality was essential
when data downloaders had to locate the vehicles. The system was also able to transmit limited
amounts of data from the vehicle that could be used for fault detection. In some cases, the
system also allowed for the remote completion of small repairs to the system, especially those
that involved resetting particular pieces of equipment. This capability should be maintained or
expanded in future systems, if feasible.

Repairing the system posed several substantial problems. The design of the DAS as a closed
system had the advantage of making the DAS fairly unobtrusive and reduced the possibility of
equipment tampering. However, it also posed problems for repair personnel, since removing the
DAS was not a simple task. Unfortunately, all repairs involving a component residing within the
box required that the box be removed. Future iterations of the system should, despite any
possible improvements in the ruggedness and robustness of the components, provide for an
easier DAS removal process. This could be achieved via alternative mounting approaches or by
the use of special mounting tools available only to system maintenance personnel. Another
option would be to modularize system components so that they can be added or removed through
access doors to the DAS. This would also reduce the overall time required for a repair.

Similarly, the internal layout of the system was not optimal in allowing quick repairs.
Replacement of the boards located lower within the system (e.g., the motherboard, video board,
and quad splitter) required complete DAS disassembly. Future designs will likely integrate more
of these functions within a single board, thereby reducing the number of separate components.
They will also streamline the DAS layout to allow for faster repairs.

Hard drive management was also a substantial maintenance challenge. While the hard drives
were fairly robust, there were a number of failures resulting in lost data. As hard drive
technology improves, their failure rate should decrease, but losing data will still be a possibility.
Alternative data storage methods not involving moving parts could be explored, along with the
possibility of redundant data storage. Alternatively, the hard drive could be placed so that it is
accessible to repair personnel without removal of the DAS. However, the downtime due to
failures of this type, and consequently the amount of data lost, was relatively small, as discussed
in Chapter 13, Goal 9.

Despite substantial efforts to prevent it, several data acquisitions systems drained the batteries of
the cars in which they were installed. Safeguards to prevent this problem included the provision
of an internal battery backup system that could be used to operate the system while the vehicle
was turned off (e.g., when data were being downloaded), the inclusion of a software switch that
turned the DAS off if the voltage of the car battery dropped below 11 V, and the inclusion of a
“suicide” feature that automatically shut the DAS down when the vehicle was turned off (except
for data download purposes). However, these safeguards failed in some cases. For example, the
system would keep running after the car was turned off, which occurred when the operating
system was not working properly. In those instances, the system kept resetting the CPU to
restart the operating system, thereby draining the vehicle battery in the process. These incidents
inconvenienced the participants, and should be avoided to the largest extent possible in future
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efforts. Better sensors and more robust system shutdown algorithms can be created to address
the majority of these issues, and should be implemented in the future.

Another minor issue concerned system time, which could be off by several hours after a few
months of data collection. It is not known at this time whether this particular problem was due to
the operating system or to the motherboard. This problem should be addressed and tested in
future DAS designs. A more severe version of the problem occurred when some motherboard
jumpers shifted off of their intended positions, resetting the system time. Hard-wiring the two
terminals solved the problem permanently. In the future, hard-wiring any potential moving parts
within the motherboard should be performed prior to DAS deployment.

A final hardware aspect had to do with the proper installation of all sensing equipment. When
necessary, installation verification tools should be created and used to ensure consistency
between vehicles. For example, between-vehicle consistency of radar alignment could be
improved. Radar units were not checked for perfect alignment or orientation, although the errors
were less than 3 deg. Since azimuth of target was used as an exclusion criterion, it is possible
that headway trigger performance (which used the radar sensor) could have been improved by
ensuring that the radar units were perfectly aligned.

Software

The main software-related challenge was to make the DAS work on a Microsoft Windows™ 98
operating system. This operating system is not designed as a real-time operating system, thereby
creating some issues with data synchronization, output, and storage. The operating system also
had a relatively slow data transfer rate for networking operations. Given that the data download
process was performed though a network link, it tended to be a lengthy process, which in turn
could drain the car battery, as discussed in the previous section. The Windows™ 98 operating
system was also susceptible to power failures and/or system crashes, and in some circumstances,
resulted in disk boot errors. Finally, the operating system also allowed the hard drives, on
occasion, to continue to collect data until all of the disk space was used. This prevented the
operating system from booting and, in some cases, caused the corruption of the data within the
hard drive. These catastrophic failures, while problematic, were not a frequent occurrence.

All of these software problems with the operating system suggest the use of a different operating
system for future systems. This operating system will likely be Linux-based, since these
operating systems solve many of the problems that were evident when using Windows™ 98.
Linux-based DASs are already in operation and will likely be used in any future experiments of
this type.

Another software-related challenge was the number of DAS software versions released,
especially during the initial stages of data collection. Despite numerous efforts to debug the
system before initial use, minor modifications were necessary. These modifications were
completed as needed and downloaded into the vehicles gradually, but this implied that many
different versions of the data collection program (XCAR) were operating in the data acquisition
vehicles at the same time. Understandably, this caused confusion as to which was the latest or
most appropriate version of the software. Several improvements to this process can be
suggested. The most obvious is to increase the test time before systems are deployed. Future
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systems should benefit greatly from the expertise gained in this project so that the number of
software bugs in future data collection systems will be greatly reduced. Another improvement
would be to schedule software releases instead of sending out new versions meant to fix a single
bug. While this would not be recommended for a major bug (e.g., a bug which prevents data
collection), it might be possible for relatively minor fixes, therefore allowing more time to ensure
that all systems are updated before a new software version becomes available.

DATA DOWNLOADING

The main difficulty with data downloading consisted of gaining access to vehicles. Some
participants did not fully cooperate with the data downloaders when it was time to download. In
most instances, downloaders did not need access to the vehicles or direct communication with
the driver since the cars could be located remotely and data downloaded unobtrusively.
Something that aided in this respect was to obtain the participants’ regular schedules in advance.
This allowed downloaders to schedule their visits in advance with minimal inconvenience to the
drivers (who were unlikely to need the vehicle during that time). However, in situations in
which the downloader needed access to the car to fix a sensor (e.g., correct the orientation of a
camera), they needed to interact with the driver to obtain access to the car. Some drivers were
more cooperative, in this regard, than others.

In a related issue, detailed logs had to be kept of the data downloads for each of the vehicles.
This allowed the downloader to prioritize vehicles according to the amount of data not yet
downloaded, thereby minimizing the risk of data lost due to a full hard drive. Thus, the decision
of when to download which vehicles was not only dependent on a participant’s schedule but on
the amount of data stored in the vehicle. In addition, downloaders had to work a flexible
schedule that allowed them to access some cars in the evening hours when participants were less
likely to be using the vehicles.

The data downloading process also requires careful consideration of data security, archiving, and
storage issues. Server managers kept detailed logs of the data sent from the northern Virginia
location and the data received in Blacksburg. These logs were periodically compared to ensure
that no data were missing. In addition, backup copies of the data were maintained in various
locations in order to minimize the risk of data loss. Downloader laptops were cleared of data
within one day of the data download. The main lesson learned in this respect is that close
communication and interaction is needed between data managers and server managers to ensure
a smooth and complete data flow.

Finally, the geographical area encompassed must be considered when determining the location
and number of downloaders. If the geographical area of future studies is large, then multiple
downloader “bases” could be considered to reduce response times.

Note that these issues would not be directly applicable to a large-scale naturalistic study, as the
download process in that case will likely be different. For such a large number of vehicles, data
download stations would be set up, and participants would return to the station at the end of their
time in the study. While this would eliminate a large portion of the problems related to
“chasing” cars, some of the data downloading lessons learned as part of this study (e.g.,
maintaining detailed repair logs) still apply.
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DATA REDUCTION

The data reduction process for this study was developed to record epidemiological data, similar
to the GES crash database, as well as record data that has typically been collected in other
instrumented vehicle studies, thus greatly augmenting both types of data collection. The 5
channels of video were primarily used to record these variables. However, the data reduction
software, developed in-house, allowed the data reductionists to access time plots of the various
vehicle sensors (i.e., longitudinal deceleration, vehicle speed) and could be used to record certain
other variables as well, e.g., a complete list of data reduction variables is located in Appendix B.

Even with driving performance data and video greatly enhancing the data reduction process,
many reduction variables still required a judgment call or subjective analysis on the part of the
data reductionist. Many steps were taken to ensure inter-rater reliability and reduce subjectivity
among the data reductionists for these types of variables. First, a two-week training process was
provided for each reductionist to allow them to:
e Learn the data reduction software,
e Practice viewing all 5 channels of video,
e Understand the trade-offs of using the video versus using the driving performance time
plots, and
e  Work with both the lab manager and other trained reductionists to develop a broad
understanding of the types of judgments that needed to be made.

Second, all data reductionists were expected to attend weekly meetings in which questions and
issues about various data reduction topics were discussed. Third, the lab manager(s) performed
spot-checks of all reductionists’ work and provided individual feedback to the reductionists.
Reductionists were also required to spend 30 minutes each week spot-checking other
reductionists’ work and providing feedback/discussions to these reductionists. This step was
useful for two reasons: (1) it improved accuracy in the database, and (2) it allowed the
reductionists to observe other’s work and conduct a comparison to their own work, thereby
increasing consistency among all reductionists. Finally, three inter-rater reliability tests were
conducted in which the reductionists were all required to validate the same 20 events (per test)
and fully reduce two of the twenty events. The test results indicated that there was 88 percent
inter-rater reliability for validation of events and 99 percent intra-rater reliability for recording all
of the reduction variables. An interesting anecdote is that the inter-rater reliability tests proved
to be a very beneficial training tool and will be used from the earliest stages of future data
reduction efforts.

Because more information was available to the data reductionists than to the GES analysts who
enter information from police-accident reports into the GES database, many of the GES variables
were expanded for this study. The GES database is for crashes only, so some of the GES
variables were not included in the 100-Car Study database because they were not applicable
(e.g., occupant injury, EMS response times). As the reduction process began, the high variability
among the events and among the drivers became more apparent. Nevertheless, coding a pre-
incident maneuver, precipitating factors, contributing factors, and evasive maneuvers for each
event, as well as coding a pre-incident maneuver and evasive maneuver for each vehicle
involved and surrounding the event, appeared to adequately capture the pertinent information for
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the vast majority of the events. Having the data reductionists write a narrative, or written
description of each event, allowed other useful information to be recorded and used for future
analyses.

Incorporating 5 video channels were incorporated into the 100-Car Study DAS was done to
ensure the capture of as much of the drivers’ view surrounding the vehicle as possible (forward
view, rear-view, rear-facing passenger window, and outside the driver’s window, via the angled
face camera), as well as driver behavior (face view and over-the-shoulder view). There are
trade-offs associated with these 5 camera views, which include size of video files and resolution
of the video. Five channels of video increased the bandwidth of the video data, which forced
VTTI engineers to decrease the level of resolution of the video so that storage issues would not
become problematic. However, the resolution level provided by the system still allowed
eyeglance reduction to be performed. The resolution levels had a higher effect on discriminating
objects and obstacles outside the vehicle. Potholes, for example, were very difficult to identify.
Street signs (i.e., speed limit signs) were not readable. Objects inside the vehicle were also
sometimes difficult to identify in the camera views. Any problems due to resolution were
compounded by nighttime hours (in which visibility is lower) and sunlight glare (which “washes-
out” the camera). These aspects also made eyeglance reduction much more difficult, although
still possible in most cases. While technological advancements in video have already addressed
many of these problems, the usefulness of all 5 video channels should be addressed prior to a
large-scale study and trade-offs between video resolution and additional channels of video
should be weighed carefully.

DATA ANALYSIS

The data analysis process for this amount of data proved to be challenging, time-intensive, and
complex. The main lesson is to allow enough time for databases to be created. When variables
were derived from the raw data (i.e., vehicle miles traveled), substantial processing time was
required (as much as one week of processing time in some cases). Also, different analyses used
different subsets of subjects. For example, demographic data were only collected for primary
drivers of vehicles; therefore, if age or gender was necessary in the analysis, only 109 subjects’
data could be used. If simple frequency calculations were used, then all drivers would be eligible
for the dataset. Therefore, 241 subjects would be used in the analysis. These differences have
implications for frequency and rate counts for crashes, near-crashes, and incidents.

Given that different analyses required different subsets of data, the decision was made to keep
the data centralized, so that only one or two people conducted queries and performed statistical
analyses. While this procedure may seem inefficient, having one person in control of producing
datasets was imperative to maintain consistency throughout the report. This process only works
when enough time is allotted to conduct analyses as the database manager can quickly become a
bottleneck in the flow of analysis and report writing.

Even with a single person in charge of the query process, the number of people who worked with
the resultant data turned out to be large. This made the analysis revision process much more
difficult when errors were found or changes made to the database or the reduction structure. A
formal communication structure is suggested in the future so that all relevant personnel are
informed of changes. In addition, a log for these changes should be created and maintained by
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the data manager(s) so that a record exists of any changes made to the data or database and as
well as the reasons for the changes.

Finally, in some instances it would have been useful to observe certain kinematic variables at a
higher sampling rate. This capability is suggested for the future, even if it requires that only

triggered data are stored (to reduce needed data storage capacity). This is certainly compatible
with the trigger based data collection system that is foreseen for any future larger-scale studies.

OTHER LOGISTICS

The use of leased cars (owned by the Motor Pool department at Virginia Tech) was useful in
many regards, but proved to be a hindrance in many other ways. Significant problems had to be
overcome in order to obtain the vehicles and then change their registrations so the vehicles did
not use state plates. This last action was necessary because some participants were aware of the
benefits of using a vehicle with state plates (e.g., reserved parking spots at state universities) and
misused them. In addition, maintenance for the leased cars, a responsibility of the participants,
was sometimes neglected. The Motor Pool at Virginia Tech has rather strict maintenance
schedules in place, and the leased cars had to adhere to these schedules. When a vehicle was
overdue for maintenance (e.g., an oil change), substantial time and effort had to be invested in
either getting the participant to service the car or intercepting the car so that our personnel could
service the vehicle.

Another aspect of using leased vehicles was the necessity of keeping a log of miles traveled per
month, information required by Virginia Tech’s Motor Pool department. Obtaining this
information from drivers every month proved to be a very difficult and time consuming task.

These drawbacks should be considered in any future efforts of a similar or larger scale. While
there are advantages to leasing cars for the study, there is a large procedural overhead that
accompanies the leasing of such vehicles, given that the Motor Pool is a department within an
entity in the Commonwealth of Virginia, and thus constrained by governmental protocols.

Another important logistical issue was the coordination with the Virginia Department of Motor
Vehicles (DMV) to obtain approval for the plastic plates and the need to re-register participant’s
vehicles under the plastic plates (and then back to the original plates once the study ended). A
related issue was that the plastic plates did not have a retro-reflective coating since this caused
distortion of the radar signal. As a precaution, VTTI staff coordinated with the Virginia DMV to
have a letter from the DMV commissioner stating that the driver of the vehicle was a participant
in a study and the plastic plates were sanctioned by the DMV. Setting up this process was very
time consuming, as the decision to approve all of these measures had to be taken by central
office personnel at the DMV. Several DMV offices then had to coordinate efforts in order to
make the registration process quick and simple. However, once the registration process was
established and contacts were made with key people, it went smoothly and registration materials
for new plates were obtained within a few days of the original request. In most cases,
participants received all the necessary DMV materials the same day that the installation took
place.
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Finally, important lessons were learned with regard to protecting the confidentiality of the
drivers in the study. To protect the drivers in the event of a crash, it was deemed important to
obtain a Certificate of Confidentiality from the National Institutes of Mental Health (NIMH).
The purpose of this certificate was to prevent the data collected in the study from being
subpoenaed so that it could not be used against a subject in court. However, obtaining the
certificate imposed a constraint on the study. Specifically, it was an original goal of the study to
instrument the vehicles to collect video of the entire cab of the vehicle as well as to collect audio
continuously to better understand the effect of passengers on driver distraction. Nonetheless,
administrators at NIMH felt that it was important to protect the confidentiality of anyone in the
vehicle who could be recorded via video or audio recordings. To have the driver administer and
submit informed consent forms (or assent forms for minors) for every person who may get into
the vehicle during the course of the year was considered infeasible and inappropriate. Posting a
message inside the vehicle telling every person that they were being recorded was thought to
have a negative effect on the naturalistic data collection approach with regard to the driver.
Therefore, the choice was made to use camera placement and angles that would only collect data
on the driver and to only have audio recording active when the driver activated the incident push
button. Obviously, from the perspective of understanding the degree to which passengers are
creating a distraction in the vehicle, the data collected are not as complete as initially desired.

DISCUSSION

These aspects represent the major issues that had to be addressed throughout the data collection
and analysis period. While sizable, they were all addressed satisfactorily, and should not, in the
majority of cases, present significant issues in future studies, even if the study is of a larger
magnitude. Every study brings new challenges, and perhaps the most important lesson to learn
from this substantial effort was that the organizational desire and determination to correctly
address issues is alive and well within the organizations that came together to perform this work.
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CHAPTER 5: GOAL 1, CLASSIFY AND QUANTIFY CAUSAL FACTORS AND
DYNAMIC SCENARIOS INVOLVED IN EACH CONFLICT CATEGORY.

DATA ANALYSIS OVERVIEW

For this research goal, the crashes, near-crashes, and incidents were parsed into the following 18
conflict categories. These conflict categories are found in many crash databases and provide a
common, consistent method to stratify the data.

e Conflict with a lead vehicle
Conflict with following vehicle
Conflict with oncoming traffic
Conflict with a vehicle in adjacent lane
Conflict with merging vehicle
Conlflict with a vehicle turning across subject vehicle path (same direction)
Conlflict with a vehicle turning across subject vehicle path (opposite direction)
Conflict with a vehicle turning into subject vehicle path (same direction)
Conflict with a vehicle turning into subject vehicle path (opposite direction)
Conflict with a vehicle moving across subject vehicle path (through intersection)
Conflict with a parked vehicle
Conflict with a pedestrian
Conflict with a pedalcyclist
Conflict with an animal
Conflict with an obstacle/object in roadway
Single-vehicle conflict
Other (specity)
Unknown conflict

Within each conflict type there were factors that precipitated the event, that contributed to the
event, and that were associated with the event. These factors are grouped into pre-event
maneuvers, precipitating factors, contributing factors, associated factors, and avoidance
maneuvers. The example of the relationship between these factors (for a lead vehicle, near-crash
events) is shown in Figure 5.1.
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Figure 5.1. Example of the relationship between the analyzed factors for the 100-Car Study.
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Recall from Chapter 2, Method, that a segment of time extending from 30 seconds prior and 10
seconds after the onset of the precipitating factor, was analyzed for each event, in order to catch
any pre-event maneuvers, such as going straight at constant speed or changing lanes. The
precipitating factor is the action that initiates the sequence of actions and circumstances that
comprise the event. An example of a precipitating factor would be an animal in the roadway or a
vehicle stopped for greater than 2 seconds in the traffic lane. The list of precipitating factor
classifications for this study is shown in Table 5.1.

Table 5.1. Precipitating Factors Used to Classify 100-Car Study Events.

This Vehicle Loss of Control Due to:
001 = Blow out or flat tire
002 = Stalled engine
003 = Disabling vehicle failure (e.g., wheel fell off)
004 = Minor vehicle failure
005 = Poor road conditions (puddle, pothole, ice, etc.)
006 = Excessive speed
007 = Other or unknown reason
008 = Other cause of control loss
009 = Unknown cause of control loss
This Vehicle Traveling:
018a = Ahead, stopped on roadway more than 2 seconds
018b = Ahead, decelerated and stopped on roadway 2 seconds or less
021 = Ahead, traveling in same direction and decelerating
022 = Ahead, traveling in same direction with slower constant speed
010 = Over the lane line on the left side of travel lane
011 = Over the lane line on right side of travel lane
012 = Over left edge of roadway
013 = Over right edge of roadway
014 = End departure
015 = Turning left at intersection
016 = Turning right at intersection
017 = Crossing over (passing through) intersection
019 = Unknown travel direction
020a = From adjacent lane (same direction), over left lane line behind lead vehicle, rear-end crash
threat
020b = From adjacent lane (same direction), over right lane line behind lead vehicle, rear-end crash
threat
Other Vehicle in Lane:
050a = Ahead, stopped on roadway more than 2 seconds
050b = Ahead, decelerated and stopped on roadway 2 seconds or less
051 = Ahead, traveling in same direction with slower constant speed
052 = Ahead, traveling in same direction and decelerating
053 = Ahead, traveling in same direction and accelerating
054 = Traveling in opposite direction
055 = In crossover
056 = Backing
059 = Unknown travel direction of the other motor vehicle
Another Vehicle Encroaching into This Vehicle’s Lane:
060a = From adjacent lane (same direction), over left lane line in front of this vehicle, rear-end crash
threat
060b = From adjacent lane (same direction), over |eft lane line behind this vehicle, rear-end crash
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threat

060c = From adjacent lane (same direction), over left lane line, sideswipe threat

060d = From adjacent lane (same direction), over right lane line, sideswipe threat

060e = From adjacent lane (same direction), other

061a = From adjacent lane (same direction), over right lane linein front of this vehicle, rear-end
crash threat

061b = From adjacent lane (same direction), over right lane line behind this vehicle, rear-end crash
threat

061c = From adjacent lane (same direction), other

062 = From opposite direction over left lane line.

063 = From opposite direction over right lane line

064 = From parallel/diagonal parking lane

065 = Entering intersection—turning in same direction

066 = Entering intersection—straight across path

067 = Entering intersection — turning into opposite direction

068 = Entering intersection—intended path unknown

070 = From driveway, alley access, etc — turning into same direction

071 = From driveway, alley access, etc — straight across path

072 = From driveway, alley access, etc — turning into opposite direction

073 = From driveway, alley access, etc — intended path unknown

074 = From entrance to limited access highway

078 = Encroaching details unknown

Pedestrian, Pedalcyclist, or other Non-Motorist:

080 = Pedestrian in roadway

081 = Pedestrian approaching roadway

082 = Pedestrian in unknown location

083 = Pedalcyclist/other non-motorist in roadway

084 = Pedalcyclist/other non-motorist approaching roadway

085 = Pedalcyclist/or other non-motorist unknown location

086 = Pedestrian/pedalcyclist/other non-motorist—unknown location

Object or Animal:

087 = Animal in roadway

088 = Animal approaching roadway

089 = Animal unknown location

090 = Object in roadway

091 = Object approaching roadway

092 = Object unknown location

099 = Unknown critical event

The associated factors provide a description of the driving environment and infrastructure that
surrounds the event but were not judged by the trained reductionists to contribute to that event.
The infrastructure category includes the factors that were fixed and did not change with the
environment. The infrastructure category was further separated into the following 5 categories:

Trafficway flow, including items such as one-way traffic and divided roadway.
Traffic control device, including items such as traffic signal and yield sign.

Locality, including items such as interstate and residential areas.

Roadway alignment or road profile, including items such as straight, level, curve, and
hillcrest.

Relation to junction, including items such as intersection and entrance/exit ramp.
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Driving environment consists of conditions that change on a daily or hourly basis. The traffic or
driving environment is further separated into the following four categories:
e Surface condition, including wet and snowy.
¢ Lighting, including conditions such as streetlamps and daylight.
e Traffic density, including conditions such as stable flow, restricted speed, and restricted
flow.
e Atmospheric conditions, including clear and raining.

Contributing factors were those factors that were judged by the trained data reductionists as
directly influencing the presence or severity of a crash, near-crash, or incident. These
contributing factors were further grouped into infrastructure/driving environment factors, driver
factors, and vehicle factors. The infrastructure/driving environment factors were the same as
described above as part of the associated factors, but in this case were judged as contributing to
the event. For example, rain may obscure the visibility of an obstacle in the road, resulting in an
event. This factor would be considered contributing and would also be included in the associated
category. However, raining during a single-vehicle, run-off-road event when the driver fell
asleep, would only be classified as an associated factor given that traction was not an issue.

Driver factors included willful behavior such as aggressive driving and driver impairments such
as drowsiness, driver inattention, and driver proficiency errors. These driver factors provided
information about any driver behaviors that most likely contributed to the severity of the event.

Vehicle factors included things such as flat tires and vehicle breakdowns. Although vehicle
factors were considered in each incident, it was rarely a contributing factor, with less than 10
occurrences for all crashes, near-crashes, and incidents assessed in this study.

The factors associated with crashes, near-crashes, and incidents were extracted from the database
and placed in tree diagrams. Separate tree diagrams were developed for each conflict type, event
severity, and factor category. These diagrams are used to illustrate the relative frequency of each
of the contributing factors for each conflict type. These diagrams include both the frequency
count and the percentage to a tenth of a percentage for each factor. The percentage value is used
so that comparisons for different factors between different event severities can be easily
described. In the description, the percentages are rounded to the nearest percentage point.
Caution should be taken when considering percentages with small frequency counts. One data
point can have a large effect with a frequency count of 4, for example (i.e., 25%). Therefore the
percentages should be considered along with the total frequency count when reviewing the
results of this objective. A full set of the tree diagrams for all the conflicts can be found in
Appendix C.
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Question 1: What Are The Relative Frequencies Of Primary And Contributing Factors
For Each Conflict Category?

Table 5.2 shows the relative frequency of each crash, near-crash, and incident for each conflict
type. As stated earlier, there were a total of 69 crashes, 761 near-crashes, and 8,295 incidents for
which data could be completely reduced. The first 8 conflict types shown in Table 5.2 accounted
for all of the crashes, 87 percent of the near-crashes, and 93 percent of the incidents. Therefore,
these 8 conflict types will be the focus of Question 1. Question 2 for this objective, which
considers frequency of the primary and contributing factors in crashes, near-crashes, and
incidents, will include all conflicts types.

The factors for each of the 8 conflict types will be described for each of the three levels of
severity (i.e., crash, near-crash, and incident). The focus will be on the precipitating factor,
contributing factors, and the avoidance maneuver. However, the pre-event maneuver will be
discussed when it is relevant to a conflict type along with some of the associated factors.

Note that for the purpose of this objective, the factors are grouped together for each severity
level of each conflict type. This gross grouping does not allow detailed deciphering of the chain
of specific factors that led to a specific event. Some of the later objectives provide this detailed
analysis for some categories of conflicts.

Table 5.2. Number of crashes, near-crashes, and incidents for each conflict type.

Conflict Type Crash | Near-crash | Incident
Single vehicle 24 48 191
Lead vehicle 15 380 5783
Following vehicle 12 70 766
Object/obstacle 9 394
Parked vehicle 4 5 83
Animal 2 10 56
Vehicle turning across subject vehicle path in opposite direction 2 27 79
Adjacent vehicle 1 115 342
Other 0 2 13
Oncoming traffic 0 27 184
Vehicle turning across subject vehicle path in same direction 0 3 10
Vehicle turning into subject vehicle path in same direction 0 28 90
Vehicle turning into subject vehicle path in opposite direction 0 0 1
Vehicle moving across subject vehicle path through intersection 0 27 158
Merging vehicle 0 6 18
Pedestrian 0 6 108
Pedalcyclist 0 0 16
Unknown 0 1 3
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Also, it is important to note that not all of these crashes were serious. For example, 75 percent of
the single vehicle crashes were low g force physical contact or tire strikes. All 69 crashes were
reviewed and parsed into the following four levels:

e Level I: Police-reported air bag deployment and/or injury.

e Level II: Police-reported property damage only.

e Level III: Non-police-reported property damage only.

e Level IV: Non-police-reported low-g physical contact or tire strike (greater than 10

mph).

Therefore, when reviewing this data the reader should keep in mind the severity of the crashes
that are being described. The breakdown of crash severity by crash type is shown in Table 5.3.
The individual Level I, II, and III crashes are described in more detail in Question 3 in this
section.

Table 5.3. Crash type by crash severity category.

Level Level Level Level

Conflict Type Total 1 11 111 v
Single vehicle 24 1 0 5 18
Lead vehicle 15 1 3 5 6
Following vehicle 12 2 2 5 3
Object/obstacle 9 0 1 3 5
Parked vehicle 4 0 0 2 2
Animal 2 0 0 0 2
Vehicle turning across subject vehicle

path in opposite direction 2 1 1 0 0
Adjacent vehicle 1 0 0 1 0

Sngle Vehicle Conflicts

Single vehicle conflicts are conflicts that primarily involve a single vehicle departing the
roadway and, in the case of a crash, colliding with an object. Single vehicle conflicts accounted
for 35 percent of the crashes, 6 percent of the near-crashes, and 2 percent of the incidents. Of the
24 crashes, 22 were road departures to the left or right. The smaller percentage of near-crashes
and incidents is likely due to the lack of a detected kinematic signature. As will be described in
later sections, the trigger criteria for road departure events was purposely set to capture only the
most severe cases that included an evasive maneuver primarily because it was difficult to
distinguish planned driving maneuvers from road departure near-crashes.

Single Vehicle Crashes. The pre-event maneuver provides some additional insight into the
single vehicle crash events. One third of the crashes were turning to the left or right as the pre-
event maneuver (Figure 5.2). Another 17 percent were going straight while accelerating, and
another 25 percent were going straight at a constant speed. One crash each was associated with
the following pre-event maneuvers: changing lanes; making a U-turn; maneuvering to avoid a
vehicle; decelerating in traffic lane; and entering a parking position. The tree diagram for single
vehicle crashes is shown in Figure 5.2.
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Figure 5.2. Pre-event maneuvers for single vehicle crashes

Out of the 24 single-vehicle crashes, the most common precipitating factors were the subject
vehicle being over the right edge of the road (58%), over the left edge of the road (17%), loss of
control due to poor road conditions (17%), and lost of control due to excessive speed (8%).
Therefore, being off the edge of the road accounted for three quarters of the crashes and loss of
control constituted the remaining 25 percent.

When considering driving factors, 20 percent of the single-vehicle crashes were classified as
aggressive driving, 20 percent were classified as drowsiness-related, and 33 percent included
driving proficiency error as a contributing factor. Inattention to the forward roadway was a
factor in 46 percent of the single vehicle crashes. Of these 11 crashes, three were cell phone
talking/listening, three had passengers in the vehicle, and three were attending to an object in the
vehicle. The other two crashes included the driver drinking from an open container and
talking/singing.

In only two crashes (8%) did drivers fail to attempt to avoid the crash. The majority (75%)
steered in some manner to avoid the crash. Only 33 percent applied brakes during the avoidance
maneuver. It is somewhat interesting that highest avoidance maneuver was steering to the left
without braking (42%).

Infrastructure and driving environment were considered to be contributing factors in 29 percent
of the single-vehicle crashes. Weather and visibility was a factor in 8 percent of the crashes.
Roadway alignment was a factor in 13 percent of the crashes, and roadway delineation was a
factor in the remaining 8 percent of the crashes. Glare was considered a contributing factor in
two of the crashes. In one of these the glare was due to sunlight; in the other it was reflected
glare. Another crash was due to a visual obstruction.
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When considering other factors associated with the single vehicle crashes, 29 percent were on
non-dry roads, and one-third of the crashes were at night (Figure 5.3). Two-thirds of the crashes
were on straight roads, and 30 percent were on curves. One-half of the crashes were
intersection-related.
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Figure 5.3. Breakdown of driving environment variables for single vehicle crashes.

Single-Vehicle Near-Crashes. There were 48 single-vehicle near-crashes identified in this
analysis. As in the single-vehicle crashes, the majority of the drivers’ pre-event maneuver were
going straight, with 13 percent accelerating and 50 percent maintaining a constant speed. Six
percent were turning left as the pre-event maneuver, and the remaining 17 percent were
negotiating a curve.

Although excessive speed was a factor in 8 percent of the crashes, it was not a factor in any of
the near-crashes (Figure 5.4). The most common precipitating factor was running off of the road
(81%) followed by loss of control due to poor road conditions (15%).
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Figure 5.4. Breakdown of precipitating factors for near-crashes involving a single vehicle.

When considering driver factors, aggressive driving (4%) appeared to be less of a problem than
in the crashes, whereas driver proficiency (50%) appeared more of a problem. Drowsiness
(23%) was relatively the same between crashes and near-crashes.

Inattention to the forward roadway was a factor in over half of the near-crashes. Cell phone use
(15%), internal, not vehicle-related distractions (10%), and vehicle-related system use (10%)
accounted for the majority of the secondary task distraction (Figure 5.5). In all of these
secondary tasks, it is most likely that eyes off the forward roadway contributed to the event, even
for wireless device use as dialing and cell-phone other account for .
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Figure 5.5. Breakdown of secondary task distractions for near-crashes involving a single vehicle.
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Since the majority of these near-crashes were caused by the vehicle going off the road, steering
was the most common avoidance maneuver (90%). Most drivers steered alone, with only 27
percent combining the steering with braking. No drivers braked alone during the maneuver.

The infrastructure and driving environment were considered to be a contributing factor in 23
percent of the single vehicle near-crashes. Roadway alignment (14%) was the biggest
contributor in this category. Weather and visibility was a factor in 4 percent of the near-crashes,
and road sight distance was a factor in one near-crash. Glare (4%) was considered a contributing
factor in two of the crashes. An additional near-crash was due to a visual obstruction.

For the associated factors, 19 percent were on non-dry roads, and 54 percent were classified as
during daylight (Figure 5.6). Surprisingly, 46 percent of the near-crashes occurred on curves,
which is a large percentage when considering the high percentage of straight roads in the
Northern Virginia/Washington, DC, area. (Figure 5.7). Higher traffic density was not associated
with 88 percent of the near-crashes occurring in free-flow conditions. Intersection or
intersection-related was associated with 23 percent of the near-crashes.

Single-Vehicle Incidents. There were 191 single-vehicle incidents. Similar to the crashes and
near-crashes, going straight accounted for over 60 percent of the pre-event maneuvers, with 13
percent accelerating and 44 percent at a constant speed.

The most frequent precipitating factors were drivers going off the road (42%) and loss of control
(41%) (Figure 5.8). The loss of control was much higher in the incidents than in the crashes and
near-crashes. This loss of control was due to excessive speed (8%) and poor road conditions
(16%). Although less of a factor in either the crashes or the near-crashes, turning in an
intersection was a precipitating factor in 9 percent of the incidents.

Driver proficiency (63%) played a big role in the incidents, with aggressive driving (16%) and
drowsiness (16%) also being contributing factors. Inattention to the forward roadway (34%) was
less of a factor in the incidents than in the crashes and near-crashes. The inattention was fairly
uniform across the categories, with passenger-related distraction (7%) and cell phone use (8%)
being represented the most (Figure 5.9). Internal, vehicle-related, and external distractions each
account for approximately 4 percent of the incidents.

Nine percent of the drivers had no avoidance maneuver, and another 9 percent braked without
steering. However, as with the near-crashes, the majority steered to avoid a crash. Most drivers
steered alone (50%), with 22 percent combining the steering with braking. No drivers locked up
the brakes during the maneuver.
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Figure 5.6. Breakdown of driving environment for incidents involving single vehicles.
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Figure 5.7. Breakdown of infrastructure variables for incidents involving single vehicles.
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Figure 5.9. Breakdown of secondary tasks for incidents involving single vehicles.
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The infrastructure and driving environment were considered to be a contributing factor in 10
percent of the single vehicle incidents. Roadway delineation (6%) was the biggest contributor in
this category. Weather and visibility was a factor in 2 percent of the incidents. Roadway
alignment was a factor in two incidents, and road sight distance was a factor in one incident.
Glare (4%) was considered a contributing factor in 7 incidents, with 5 being due to sunlight and
two being due to headlamps. An additional incident was due to visual obstruction due to a hill or
curve.

For the associated factors, similar to near-crashes, 17 percent were on non-dry roads and only 57
percent were classified as during daylight (Figure 5.10). The infrastructure-associated factors
indicated that 27 percent of the incidents occurred on curves and 31 percent were intersection or
intersection-related (Figure 5.11). Higher traffic density was more strongly associated with
incidents than near-crashes, with 27 percent being in restricted flow conditions.
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Figure 5.11. Breakdown of the infrastructure variables for incidents involving single
vehicles.

Lead-Vehicle Conflicts

Lead-vehicle conflicts involve those events when an interaction occurs between the subject
vehicle and the vehicle directly in front of the subject vehicle. Lead-vehicle conflicts accounted
for 22 percent of the crashes, 50 percent of the near-crashes, and 70 percent of the incidents.
This conflict accounted for the second largest number of crashes, but by far, accounted for the
largest number of near misses and incidents. As will be discussed in later sections, the large
number of near-crashes and incidents in this initial database is due in part to the presence of
forward radar and establishment of trigger criteria to ensure that sufficient lead-vehicle events
were categorized to address the goals of interest for this report (5 of the 10 goals were rear-end
crash-related). Particularly in the case of incidents, more accurate sensors, coupled with setting
the triggers more liberally (to a point) can affect the number of valid events detected. Therefore,
for many of the conflict types, the incident data represent only samples of the total number
present.
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Lead-Vehicle Crashes. Of the 15 lead-vehicle crashes, 14 were a rear-end strike, and 1 was a
road departure (i.e., lead vehicle stopped in lane and subject braked, steered off-road, and hit a
telephone pole.

As the precipitating factor in 7 of the 15 lead-vehicle crashes (47%), the struck vehicle was
stopped for greater than 2 seconds in the traffic lane. For another 8 of these lead-vehicle crashes
(53%), the struck vehicle was stopped less than 2 seconds. This stopped greater-than- or less-
than-2 seconds lead way indicates that inattention played a role in at least some of these crashes.
The final crash was precipitated by a lane change.

Ninety-three percent of these crashes were categorized as having inattention to the forward road
as a contributing factor (Figure 5.12). In 11 of the 15, the driver’s eyes were away from the
forward roadway just prior to, or during the onset of, the precipitating factors. Four of the 15
were driving-related inattention, with drivers looking out the left window (20%) or mirror (7%).
In another 4 of the crashes, drivers were interacting with an object in the vehicle (27%). In an
additional two crashes, drivers were dining (13%). When considering other factors, two of these
crashes were classified as drowsiness or drug/alcohol-related, and two were classified as having
driver proficiency error. It is interesting that no cell phone-related lead-vehicle crashes were
present for this study, even though cell phone-related secondary tasks was the most commonly
observed secondary task across all of the incidents and the second most common for near-
crashes.

For two of the lead-vehicle crashes the driver was judged to be “daydreaming” or “lost in
thought.” “Lost in thought” for this study was operationally defined as the driver glancing
around somewhat randomly, but not dwelling upon any particular object. These cases were not
particularly common, but it was apparent in these cases that the driver was actively thinking
about something other than driving.

The inattention to the forward roadway discussed earlier may explain why almost half of the
drivers (47%) had no avoidance reaction. Seven of the 15 drivers (47%) did brake prior to
crashing as an avoidance maneuver. Only one of the 7 locked up the brake, and only one steered
while braking.

Environmental factors were not judged to be a strong contributing factor, with only one crash
being due to weather and visibility. This is somewhat surprising when reviewing the associated
factors, which indicated that over 40 percent of the crashes included inclement weather and wet
or snowy surface conditions (Figure 5.13). Not surprisingly, traffic flow was fairly strongly
associated with the lead-vehicle crashes, with only 33 percent being in free flow conditions. The
infrastructure associated with the crashes was straight and level in most of the crashes (87%),
with one third of the crashes being intersection-related (Figure 5.14). A single crash indicated
that reflected glare was a contributing factor.
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Lead-Vehicle Near-Crashes. There were 380 lead-vehicle near-crashes. The most common pre-
event maneuvers for the lead-vehicle near-crashes were the subject vehicle decelerating in the
traffic lane (21%) and going straight at a constant speed (47%). The next two most common pre-
event maneuvers were the subject vehicle going straight while accelerating (16%) and the subject
vehicle changing lanes (10%).

Unlike crashes, the precipitating factor associated with the lead-vehicle near-crashes was
primarily lead-vehicle decelerating (42%) while lead-vehicle stopped for greater than 2 seconds
and less than 2 seconds comprised 12 percent and 22 percent of the cases respectively (Figure
5.15). Finally, 18 percent of the near-crashes involved the lead vehicle changing lanes into the
subject’s lane of travel. These lane changes were equally representative from the left and the
right.

Although still prevalent, inattention to the forward roadway was not as prevalent a factor for the
near-crashes (45%) as for the crashes. Being more attentive is likely one reason some of the
near-crashes did not become crashes. It may also explain why the prevalence of stopped lead-
vehicle events was not as overwhelming as it was in the lead-vehicle-crash/conflict description.
As described in other chapters, this study shows that drivers are more attentive when following
moving vehicles at shorter headways (i.e., in “coupled” circumstances). In these cases when a
driver is more attentive, a rapid deceleration by the lead vehicle in these cases would more likely
result in a near-crash than a crash circumstance.

Although none of the lead-vehicle crashes had a cell phone contributing factor, cell phone use
(10%) was the most frequent secondary task contributor to forward roadway inattention for near-
crashes (Figure 5.16). Most of these cases were during a conversation (i.e., cell phone —
talking/listening) as opposed to dialing or answering. Consistent with the above discussion, it is
apparent that the cell phone conversation played a role in the event severity, but since the drivers
were generally looking forward, the ultimate results, at least for the lead-vehicle conflict case,
were not crashes. It is likely that this delay in reaction time contributed to near-crashes with lead
vehicles, but not to the point in which the driver was unable to avoid a crash.

Driving-related inattention was a contributing factor in 13 percent of the lead-vehicle near-
crashes, with drivers looking out the left window (5%), at the center mirror (3%), and out the
right window (3%) being the biggest contributors. Internal distractions and not vehicle-related
(6%) and passenger-related distractions (6%) were the two next most frequent contributors. The
other driver factors appeared to be bigger contributing factors in near-crashes than crashes.
Aggressive driving (14%), drowsiness (10%), and driving proficiency (48%) were all likely
contributing factors.

Given that the operational definition of a near-crash event included an evasive maneuver, the
result that all the lead-vehicle near-crashes involved an avoidance maneuver was expected. By
far the most common maneuver included braking (97%). The majority of drivers braked alone
(70%), but 9 percent also steered left and 18 percent also steered right. This result supports other
findings (e.g., CAMP Report) that drivers braked first and then tended to steer if needed to avoid
the crash.
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None of the driving environment factors were identified as contributing, and only 1 percent of
the infrastructure factors were identified as contributing. Three near-crashes identified road
delineation as a contributing factor.

Weather was not as strongly associated with the near-crashes as with the crashes, with only 8
percent of the near-crashes including inclement weather and 12 percent including wet surface
conditions (Figure 5.17). Only 21 of the near-crashes were identified as free-flow traffic, again
showing the prevalence of heavy traffic as an associative factor for lead-vehicle conflicts. As in
the crashes, the road was straight and level in most of the lead-vehicle near-crashes (87%).
Approximately 22 percent of the lead-vehicle near-crashes were intersection-related (Figure
5.18).
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Figure 5.15. Breakdown of precipitating factor for near-crashes involving lead vehicles.
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Figure 5.16. Breakdown of secondary tasks for near-crashes involving a lead vehicle.
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Figure 5.18. Breakdown of infrastructure variables for near-crashes involving lead vehicles.



Lead-Vehicle Incidents. As mentioned earlier, lead vehicles were involved in the largest number
of incidents by far (5,783) of any of the conflicts. As described previously, this was partially
attributable to the selection of trigger criteria to fulfill the objectives of these initial goals.

The most common pre-event maneuvers for the lead-vehicle incidents were the subject vehicle
decelerating in the traffic lane (31%) and going straight at a constant speed (44%) (Figure 5.19).
The next two most common pre-incident maneuvers were the subject vehicle going straight
while accelerating (16%) and the subject vehicle changing lanes (5%).

The precipitating factor in 47 percent of the incidents was the lead vehicle decelerating. Twenty-
three percent of the lead-vehicle incidents were the lead vehicle stopped for greater than 2
seconds and in another 19 percent of the incidents, the lead vehicle had been stopped less than 2
seconds (Figure 5.20). Finally, 6 percent of the incidents involved the lead vehicle changing
lanes into the participant’s lane of travel.

Inattention to the forward roadway was much less of a factor for the incidents than for the
crashes or the near-crashes. Driving-related inattention was a contributing factor in 4 percent of
the incidents, with drivers looking out the left window (2%), at the center mirror (1%), and out
the right window (1%) being the biggest contributors (Figure 5.21). Although none of the lead-
vehicle crashes had a cell phone contributing factor, cell phone use (8%) was the most prevalent
secondary task contributor to forward roadway inattention for incidents (Figure 5.22). Talking
on the cell phone accounted for 6 percent of the incidents. Passenger-related tasks and internal,
not vehicle-related inattention were the next largest contributors with 5 percent and 2 percent,
respectively.

As shown in Figure 5.23, driver state appeared to be a bigger contributing factor in lead-vehicle
incidents than in lead-vehicle crashes. Aggressive driving (10%), drowsiness (8%), and driving
proficiency (61%) were all judged as likely contributing factors.

As with near-crashes, most of the lead-vehicle incidents involved an avoidance maneuver (99%)
(Figure 5.24). By far the most common maneuver included braking (95%). The majority of
drivers braked alone (85%), but 4 percent also steered left, and 5 percent also steered right.
These avoidance maneuvers were very similar to those seen in the near-crashes.

For the driving environment, weather was not as large of a contributing factor, with 5 percent of
the incidents including inclement weather and 8 percent including wet surface conditions as
associative factors (Figure 5.25). As in the crashes and near-crashes, the road was straight and
level in most of the lead-vehicle incidents (92%). Approximately 30 percent of the lead-vehicle
incidents were intersection-related.
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Figure 5.19. Breakdown of all pre-event maneuvers that occurred prior to incidents involving lead vehicles.
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Figure 5.20. Breakdown of precipitating factors for incidents involving lead vehicles.
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involving lead vehicles.
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Figure 5.25. Breakdown of the driving environment variables that contribute to incidents
involving lead vehicles.
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Following-Vehicle Conflicts

Following vehicle conflicts are conflicts that occur with the subject vehicle and the vehicle
directly behind the subject vehicle. Following vehicle conflicts accounted for 18 percent of the
crashes, 9 percent of the near-crashes, and 9 percent of the incidents. This conflict had the third
highest number of crashes with 12. All 12 crashes involved the rear end of the subject vehicle
being struck. While the frequency of lead and following-vehicle conflicts should theoretically be
similar, data reductionists experienced some difficulties when validating these events. The rear
camera was located on the rear dash of the vehicle and was turned at an angle to capture a greater
portion of the passenger-side space surrounding the vehicle. Placing the camera this far away
from the driver’s view-point made it difficult to gauge the severity of the event (i.e., how close
the following vehicle came to the subject’s vehicle). Turning the camera at an angle also
presented difficulties in determining the proximity of the following vehicle. Therefore, the
trigger criteria were set much more conservatively to ensure that all of the incidents and near-
crashes in this category were valid.

Following-Vehicle Crashes. For the following-vehicle crashes, the events were examined in two
ways — whether the following vehicle was at fault or whether our driver contributed to the event.

As the precipitating factor in 5 of the 12 following-vehicle crashes (42%), the SV was stopped
for greater than 2 seconds in the traffic lane. In an additional 4 of the crashes, the SV was
decelerating (33%). The remaining three crashes were precipitated by the subject vehicle
stopped less than 2 seconds. With this information, the stimulus response time (SRT) of the
following vehicle was calculated for 5 following-vehicle level I, 11, and III crashes based on data
from the rear radar (Table 5.4).

Table 5.4. Stimulus response time and crash times for following-vehicle level I, II, ITI
crashes.

Epoch # SRT Crash Time Comments

0040403061354014200 51s 6.7 Women may have hit husband i.ntentionally (one of two
consecutive rear-end crashes with her husband)

FV appears to accelerate into accident. Perhaps due to
0120404081309002412 N/R 23s inattention as the SV was not expected to stop during a left-
turn yield maneuver

FV appears to start decelerating and then accelerates into

0180310281755018936 2.1s 49s crash, perhaps thinking that the heavy traffic was surging
forward
0520305062218000000 N/R 11s SV was always on the brake, so point at which SV stopped

was used instead. No apparent FV reaction

FV begins to decelerate quickly, but insufficiently to avoid

0820310311144005225 1.6s 46s .
the accident

* N/R = No crash avoidance reaction indicated by radar pattern

SRT was defined as the time from when the SV driver contacted the brake pedal until the
following vehicle (FV) first began to decelerate. The crash time was also calculated. Crash time
is operationally defined as the time from when the participant first contacted the brake until the
impact began. The average SRT and crash times as well as the average crash time for
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participants that did not react were also calculated (Table 5.5). The no-reaction crash time was
calculated because it indicates that the driver of the following vehicle was unable to react in the
time prior to impact.

Table 5.5. Average stimulus response time and crash times for following-vehicle level 1, 11,
III crashes.

N=3, Average SRT= | 2.9
N=3, Average Crash Time w/SRT= | 54 s

N=2, Average Crash Time w/o SRT= | 1.7 s

The short average crash time without an SRT indicates that the crash happened so quickly that
the driver basically could not respond. This is highlighted by the fact that the average SRT was
2.9 seconds, which was more than a second longer than the crash time without an SRT. In
addition, there were three crashes for which problems associated with the rear radar precluded
the response calculations. The omitted data points and the reason for omission are shown in
Table 5.6.

Table 5.6. Omitted epics in SRT and crash time calculations for following-vehicle level I,
IL, III crashes.

Epoch # Reason not used

0030304091846007000 Insufficient radar track. FV not picked up until only 20 feet away

0040403061354013156 Radar tracking other vehicle, FV not tracked

0630311251458003137 Rear radar malfunction, no data

The following-vehicle crashes for which the SV driver contributed was also examined. Driving
proficiency was identified as a contributing factor in 33 percent of the crashes. Aggressive
driving (8%) and drowsiness (8%) were contributing factors in one crash each.

Seven of the 12 drivers (58%) in the following-vehicle crashes had no reaction. In most of these
cases the subject vehicle was likely stopped. Of the remaining 5 crashes one braked and steered
left, and the other 4 braked alone.

None of the driving environment factors were identified as contributing, and only one crash
infrastructure factor (i.e., roadway delineation) was identified as contributing.

Weather was not a large associated factor, with no inclement weather and only two wet surface
associated conditions (Figure 5.26). Only 4 of the 12 crashes were in free flow conditions. As
shown in Figure 5.26, roadway alignment may have played a role, with 42 percent of the crashes
being on curves. Two-thirds of the crashes were intersection-related.

Following-Vehicle Near-Crashes. Not surprisingly, there were more varied precipitating factors
for the 70 following-vehicle near-crashes than for the following-vehicle crashes (Figure 5.27). A
third of the near-crashes in this conflict were due to a subject vehicle decelerating. In 23 percent
of the near-crashes the subject vehicle was stopped for less than 2 second. Although no
following-vehicle crashes were associated with the subject vehicle changing lanes, 24 percent of
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the near-crashes included the subject vehicle into the traffic lane of the conflict. The maneuver
was to the left in 14 percent of the near-crashes and to the right in 10 percent of the near-crashes.

DRIVING ENVIRONMENT
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|
A A A A
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-
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Figure 5.26. Breakdown of driving environment variables for crashes involving following
vehicles.
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Figure 5.27. Breakdown for precipitating factors for near-crashes involving following
vehicles.

Driving proficiency was identified as a contributing factor in more of the near-crashes (49%)
than the crashes (33%). Aggressive driving (17%) and drowsiness (13%) were also contributing
factors in these following-vehicle near-crashes.

Thirty percent of the drivers in the following-vehicle near-crashes had no reaction. Although the
majority of the drivers braked alone (49%), some drivers braked and steered (13%), steered alone
(3%), or accelerated (4%). Interestingly, over 8 percent of the driver avoidance maneuvers
included steering and/or accelerating to avoid the conflict.

Although weather was not a contributing factor, it was an associated factor with over 12 percent
of the near-crashes, including inclement weather and wet surface conditions (Figure 5.28). Only
23 percent of the near-crashes were associated with a free-flow of traffic. Roadway alignment
may have played less of a role with near-crashes than with crashes in this conflict type, with 11
percent of the near-crashes being on curves as compared to 42 percent of the crashes being on
curves. Twenty-seven percent of the crashes were intersection-related (Figure 5.29
infrastructure).

When looking for other contributing factors, visual obstructions were present in 6 crashes. Three
were sunlight glare, one was a moving vehicle, and one was road sight distance due to a curve or
hill.
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Figure 5.28. Breakdown of driving environment variables for near-crashes involving
following vehicles.
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Figure 5.29. Breakdown of infrastructure-related variables for near-crashes involving following vehicles.



Following Vehicle Incidents. More varied precipitating factors were found for the 776
following-vehicle incidents than for the following-vehicle crashes or near-crashes (Figure 5.30).
Although no following-vehicle crashes and 24 percent of the near following-vehicle crashes were
associated with the subject vehicle changing lanes, 46 percent of the incidents included the
subject vehicle moving into the traffic lane of the conflict. As with the near-crashes, the
maneuver was more common to the left (27%) than the right (18%) for the incidents. In 31
percent of the incidents, the subject vehicle was decelerating. In 10 percent of the incidents, the
subject vehicle was stopped for more than 2 seconds. An additional 7 percent were stopped for
less than 2 seconds as the precipitating factor for the following-vehicle incidents.
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Figure 5.30. Breakdown for precipitating factors for incidents involving following vehicles.
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Forty-six percent of the drivers in the following-vehicle incident had no reaction for the
avoidance maneuver. As with the near-crashes the majority of the incident avoidance maneuvers
were braking alone (38%); some drivers braked and steered (5%), steered alone (4%), or
accelerated (7%).

The only other contributing factors that were greater than 1 percent were 33 glare incidents due
to sunlight (4%) and 9 visibility decrement incidents (1%) due to things such as rain, snow, dust,
etc. The frequency of the other contributing factors leading to a visibility decrement is as
follows: inadequate roadway lighting (1); moving vehicle (1); road infrastructure (1); and other
obstructions (2). Roadway delineation was a contributing factor in 5 of the incidents, and
roadway alignment was a contributing factor in three incidents.

Although inclement weather was a contributing factor in approximately one percent of the
incidents, it was an associated factor in 5 percent of the incidents, and wet surface conditions
were associated factors in 7 percent (Figure 5.31). Daylight was associated with 75 percent of
the incidents, and only 11 percent were in free flow traffic conditions.

Less than 6 percent of the incidents were on curves as compared to 42 percent of the crashes
being on curves. Twenty-four percent of the incidents were intersection-related (Figure 5.32).
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Object/Obstacle Conflicts

Object or obstacle conflicts involve events in which there is an object or obstacle in the lane of
travel that subjects must respond to in order in the attempt to avoid a crash. An inappropriate
response or failure to respond resulted in a crash or collision with obstacle. Object/obstacle
conflicts accounted for 12 percent of the crashes, 1 percent of the near-crashes, and 5 percent of
the incidents. Of the 9 crashes, 7 were classified as other, one was backing into a fixed object,
and the last one included departing the road. The crashes classified as other included parking
gate, debris flying in roadway, and so forth.

Object/Obstacle Crashes. [diagrams cover multiple object sections] The subject vehicle in three
out of the 9 obstacle crashes (33%) was going straight at a constant speed. Two were
decelerating in the traffic lane, two were turning right, one was making a u-turn, and the final
one was backing but not parking.

For the precipitating factor in 5 of the 9 crashes (56%), the obstacle was in the road. Two of the
9 (22%) crashes had excessive speed as a contributing factor. One of the crashes had the subject
over the right lane line. The final crash was an end departure as the precipitating factor, such as
driving through the dead end portion of a roadway.

Inattention to the forward road was a contributing factor in 5 of the 9 crashes (55%). Two of the
crashes included driving-related inattention, with drivers looking out the left window (22%).
Two of the crashes included drivers talking on the cell phone (22%), and the final crash included
drivers interacting with an object in the vehicle. In other driver factors, driver proficiency was a
contributing factor in 4 of the 9 of the crashes (44%). Three of the crashes had aggressive
driving as the contributing factor (33%), and one of these crashes was classified as drowsiness-
related.

Not surprisingly, 7 of the 9 drivers did brake prior to crashing as an avoidance maneuver. Two
of the 9 combined braking with steering to the left. Only one of the 9 had no reaction to the
obstacle.

Three of the 9 crashes had an infrastructure contributing factor. One was roadway alignment,
one was roadway delineation, and the other was related to traffic control device. Visual
obstructions were present in two of the 9 crashes. A moving vehicle and trees/crops/vegetation
were the two obstructions cited.

For the associated factors only 2 of the 9 were during daylight (Figure 5.33). Weather was not an
associated factor, and surface condition was only an associated factor in one of the crashes
(snowy surface condition). The associated infrastructure included a curve in two of the crashes,
and three of these crashes were in parking lots (Figure 5.34).

Object/Obstacle Near-Crashes. For all drivers, the pre-incident maneuver of the obstacle near-
crashes included presence in the traffic. Five vehicles were going straight at a constant speed,
and one was decelerating.
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For the precipitating factor in 5 of the 6 obstacle near-crashes (83%), the obstacle was in the
road.

When considering driver-associated factors, 2 of the 6 near-crashes had aggressive driving as a
contributing factor, and one had driver proficiency as a contributing factor.

DRIVING ENVIRONMENT
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Figure 5.33. Breakdown of driving environment variables involving crashes with
obstacles/objects.
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Inattention to the forward road was a contributing factor in 2 of the 6 near-crashes. In
one near-crash the driver was dining, and in the other near-crash the driver had a
passenger in the adjacent seat.

All 6 drivers braked as the avoidance maneuver. Three drivers also steered right and 2
also steered left.

The other contributing factors indicated that roadway alignment, roadway delineation,
and glare due to sunlight were each associated with a near-crash.

As for the associated factors all the near-crashes were associated with clear weather, dry
surface condition, straight roadway alignment, and were non-intersection-related. Only 1
of the 6 crashes was in free-flow conditions.

Object/Obstacle Incidents. There were 394 obstacle-related incidents identified. Ten
percent of the objects were in an unknown location due to video resolution or nighttime
conditions. Prior to the crash, the vast majority of the subject vehicles were going
straight (91%). The pre-incident maneuver included going straight at a constant speed
(50%), going straight and accelerating (22%), and decelerating in the traffic lane (19%).

For the precipitating factor in 70 percent of the incidents, the obstacle was in the road.
Poor road conditions were the precipitating factor in 18 percent of the incidents.

Inattention to the forward road was a contributing factor in 16 percent of the incidents.
Two percent of the incidents included driving-related inattention, with drivers looking out
the left window (3 incidents) and the right window (3 incidents). The remaining driver-
related inattention included looking at the center mirror. As shown in Figure 5.35, the
remaining 14 percent were due to secondary task distraction, with the biggest
contributing factors being cell phone use (5%) and a passenger in the vehicle (5%). As in
the other conflicts, talking or listening accounted for the majority of the cell phone-
related inattention (4%). As for the other driving-related factors, driver proficiency was a
contributing factor in 20 percent of the incidents. Only 2 percent of the incidents were
aggressive-driving-related, and 5 percent of the incidents were drowsiness-related.

Steering alone was a surprisingly common avoidance maneuver. Twenty-seven percent
steered to the left, and 19 percent steered to the right. An additional 14 percent combined
braking with steering to the left and 10 percent combined braking with steering to the
right. Another 16 percent only braked to avoid the obstacle, and 11 percent had no
reaction.

Infrastructure played a contributing role in approximately one third of the incidents.
Roadway alignment (7%), roadway delineation (25%), and traffic control devices (1%)
each contributed to these incidents (Figure 5.36). Reduced visibility due to rain or snow
was a contributing factor in three of the incidents (1%). Glare due to sunlight was a
contributing factor in 7 of the incident (2%), and glare due to headlights contributed in
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one incident. Three incidents were classified as including inadequate roadway lighting,
and two incidents had visual obstruction due to trees/crops/vegetation.

Also shown in Figure 5.36, inclement weather was an associated factor in 8 percent of the
incidents, and non-dry surface conditions were an associated factor in 17 percent of the
incidents. One third of the incidents were during non-daylight, and one third were in
non-free flow traffic conditions. For fixed infrastructure, 11 percent of the incidents were
on curves, and 10 percent of the incidents were intersection-related (Figure 5.37).
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Figure 5.37. Breakdown of infrastructure-related variables for incidents involving

obstacles or objects.

111



Animal Conflict
Animal conflicts accounted for 3 percent of the crashes, 1 percent of the near-crashes, and 1
percent of the incidents.

Animal Crashes. Prior to both crashes the driver was going straight at a constant speed. Not
surprisingly, the precipitating factor in the two animal crashes was an animal in the road.
Inattention to the forward roadway, drowsiness, and aggressive driving did not contribute to
these crashes. During both crashes the driver braked alone to attempt to avoid the animal.
Infrastructure and driving environment did not contribute to either. There were no relevant
associated weather conditions, surface conditions, and roadway alignment to these crashes either.
This lack of contributing factors is expected with this type of crash.

Animal Near-Crashes. Prior to the near-crashes the driver was going straight at a constant speed
(7), going straight accelerating (1), negotiating a curve (1), or turning left (1). Not surprisingly,
the precipitating factor in the 10 animal near-crashes was also an animal in the road in 9 of the
near-crashes. In the remaining near-crash the animal was approaching the roadway. Inattention
to the forward roadway was a contributing factor in three of the near-crashes. In two near-
crashes, a passenger was in the adjacent seat, and in the other near-crash, the driver was
talking/listening on the cell phone. As with the crashes, aggressive driving did not contribute to
these near-crashes. However, drowsiness was a contributing factor in 4 of the near-crashes.
During all of the near-crashes, the driver braked alone to avoid the animal. The only other
contributing factor was in one crash when there was limited sight distance due to a hill or
obstruction.

For the associated factors, 9 of the 10 near-crashes were in darkness, but 3 were lighted. Only
clear weather and dry surface conditions were associated with these near-crashes. Three of these
near-crashes were on a curve.

Animal Incidents. Of the 56 animal incidents, 75 percent had animals in the road as the
precipitating factor. In 23 percent of the incidents, the animal was approaching the roadway.
Prior to the incidents, the driver was going straight at a constant speed (66%), going straight
accelerating (20%), negotiating a curve (7%), changing lanes (4%), or turning right (2%).

Inattention to the forward roadway was a contributing factor in 5 of the incidents (9%). The 5

incidents had 5 different secondary task distractions, including a passenger in the adjacent seat,
reaching for an object, talking/listening on the cell phone, eating with utensils, and an external

distraction. As with the crashes and near-crashes aggressive driving did not contribute to these
incidents. However, drowsiness was a contributing factor in 13 percent of the incidents, and 5

percent of the incidents had driver proficiency errors.

Unlike the crashes and the near-crashes, drivers avoided these incidents by steering. In 13

percent of the incidents, drivers steered to the left, and in 4 percent of drivers steered to the right
to avoid the animal. In an additional 13 percent of the incidents, drivers braked and steered to
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the left, and in 7 percent, drivers braked and steered to the right to avoid the animal. In the
remaining 64 percent of the incidents, drivers braked alone to avoid the animal.

Only two of the 56 incidents had any other contributing factor. One was limited sight distance
due to curve or hill. The other was glare due to sunlight.

For the associated factors, many of the incidents were in darkness (63%) and lit darkness (16%).
Inclement weather and surface conditions were present in only two of the incidents. Eight
percent of the incidents were in free flow traffic conditions. As for road infrastructure, 20
percent of the incidents were on a curve, and one was intersection-related.

Parked Vehicle Conflicts

Parked vehicle conflicts accounted for 6 percent of the crashes, 1 percent of the near-crashes, and
1 percent of the incidents. Two of the 4 crashes were backing into a fixed object. One was
backing into traffic, and the other was being sideswiped in the same direction.

Parked Vehicle Crashes. Four different precipitating factors were associated with the 4 crashes.
One crash had participant over the left road edge, another had the subject vehicle attempting a
lane change, another was backing from the driveway, and the remaining one was an end
departure. In two crashes, the driver braked alone attempting to avoid the crash. In one crash,
there was no reaction, and the remaining crash was classified as “other.”

Inattention to the forward roadway was a contributing factor in 2 crashes. In one crash, the
inattention was a cognitive distraction, and in the other, it was a passenger in the adjacent seat.
For the other driver factors, one of the crashes had aggressive driving as a contributing factor,
and one had driver proficiency as a contributing factor. Drowsiness did not contribute to these
crashes.

Roadway delineation contributed to one crash, and a parked vehicle provided a visual obstruction
for another crash. No other contributing factors were present.

Inclement weather, wet surface conditions, and curved roadway alignment were not associated
with these crashes either. This lack of contributing factors is expected with this type of crash.

Parked Vehicle Near-Crashes. Four different precipitating factors were associated with the 5
near-crashes. Two of the near-crashes involved another vehicle backing, and one had another
vehicle leaving a parallel diagonal parking lane. One of the other near-crashes had a lead vehicle
stopped in the roadway more than 2 seconds, and the remaining near-crash involved a pedestrian
approaching the roadway.

Aggressive driving, driver proficiency errors, and drowsiness were not contributing factors.
However, inattention to the forward roadway was a factor in three of the 5 near-crashes. There
were two driving-related inattention contributing factors. One of the factors was the left mirror;
the other was the right mirror. The remaining inattention contributing factor was looking at a
pedestrian. There were no other contributing factors present.
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Braking was the most common avoidance maneuver. In two near-crashes the driver braked
alone, and in another two near-crashes the driver braked and steered left to avoid the crash. In
the remaining near-crash the driver steered left without braking to avoid the crash.

As with crashes, inclement weather and surface conditions were not associated with these near-
crashes. Two of the near-crashes occurred in a parking lot.

Parked Vehicle Incidents. There were 83 incidents found for parked vehicle conflicts. Of those
83 incidents, a lead vehicle stopped on the roadway more than 2 seconds was the largest
precipitating factor (46%) (Figure 5.38). These events were caused by vehicles either stopped or
parked in a travel lane. Another vehicle pulling out from a parallel diagonal parking lane was the
second biggest precipitating factor (17%). The subject vehicle off the roadway was the next
biggest contributing factor (14%).

Although these driver factors, other than driver inattention, were not identified as contributing to
the near-crashes, aggressive driving (16%), driver proficiency errors (39%), and drowsiness (5%)
were contributing factors in the parking incidents. Inattention to the forward roadway was also a
contributing factor (25%). There were three driving-related inattention contributing factors. One
of the factors was the left mirror, the other two were the right mirror. Secondary tasks were a
contributing factor in 22 percent of the incidents, with cell phone use accounting for half the
contributing factors (Figure 5.39).

Steering as an avoidance maneuver was the most common, with over three-quarters of the
incidents including a steering maneuver. Steering to the left (36%) and steering to the left and
braking (23%) were the largest avoidance maneuvers. Steering to the right (7%) and steering to
the right and braking (6%) were also avoidance maneuvers. Only 18 percent used braking alone
as the avoidance maneuver. An additional 5 percent accelerated and steered, and 2 percent had
no reaction.

Roadway alignment (6%), roadway delineation (8%), and roadway sight distance (1%) were all
identified as contributing factors. In addition to the roadway sight distance, there were visual
decrements due to rain, snow, or fog (2%), inadequate roadway lighting (1%), glare due to
sunlight (2%), and trees, crops, or vegetation (1%).

For the associated factors wet or snowy surface conditions (10%), rain (2%), and restricted flow

were each associated with 57 percent of the incidents. Curved roadway (15%) and intersection-
related (6%) were also associated factors.
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Figure 5.38. Breakdown of precipitating factors for incidents involving a parked vehicle.
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Conflict with Vehicle Turning Across Subject Vehicle Path in Opposite Direction
A vehicle turning across subject vehicle path in opposite direction accounted for 3 percent of the
crashes, 4 percent of the near-crashes, and 1 percent of the incidents.

Crashes with Other Vehicle Turning Across Subject Vehicle Path in Opposite Direction. Of the
two LTAP/OD crashes, one occurred on a congested roadway with offset intersection approaches
(no signal) and the other occurred at a signalized intersection when the other driver made a left
turn on a red arrow.

The precipitating factor for the crash that occurred at a signalized intersection, was that the other
vehicle entered the intersection making a left turn across subject vehicle’s path. This driver
attempted to brake without locking up the wheels to avoid the crash. This crash also occurred in
the rain on a lit roadway at night. The traffic congestion was labeled free flow.

The precipitating factor for the crash that occurred at an offset intersection was subject vehicle
attempting a left turn. This attempt occurred after the other vehicle was approaching (head-on
crash). There was no reaction by this driver.

Considering the driver factors, there was no aggressive driving, no driver impairments, and no
driver proficiency errors. However, both drivers were not attentive to the forward roadway. One
driver had a passenger in vehicle, and the other was looking out the right window.

This crash occurred during daylight hours in stable traffic flow. Roadway alignment was
identified as a contributing factor for this crash, but not surprisingly there were no visual
obstructions.

Near-Crashes with Other Vehicle Turning Across Subject Vehicle Path in Opposite Direction.
Out of 27 near-crashes, 74 percent involved a vehicle turning left across the subject vehicle’s
path, and 19 percent involved a vehicle turning the opposite direction to that of subject vehicle’s
path. Only 4 percent of near-crashes involved the subject vehicle passing through other vehicle’s
path at an intersection. An additional 4 percent involved the subject vehicle doing a lane change.

For the driver factors, 26 percent of the near-crashes were classified as driver proficiency errors.
An additional 11 percent of near-crashes were classified as aggressive driving, and 11 percent
were classified as drowsiness-related. Inattention to forward roadway was a contributing factor
in 37 percent of the near-crashes. These factors included adjusting the radio (7%), passenger in
vehicle (4%), and cell phone talking or listening (4%). Seven percent of near-crashes were due
to driving-related inattention when drivers were checking their left or right side-view mirrors.

Because the majority of near-crashes occurred when subject vehicles were going straight, the
drivers commonly reacted by braking with no lockup (44%); other times, drivers mostly
responded by steering either left or right and combining braking and steering both as avoidance
maneuvers.
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Visual decrements were a contributing factor in over 30 percent of the near-crashes. These
factors included glare due to sunlight (4%), moving vehicles (11%), and parked vehicles (7%).
Road sight distance was also a contributing factor in one near-crash.

The associated factors for near-crashes, as with crashes, were primarily clear weather (82%)
under daylight (63%) conditions. Eighty-six percent of near-crashes were intersection-related.
Nearly three-fourths of the near-crashes occurred in a business or industrial locality, while only 4
percent occurred on interstate roadways and 11 percent in residential areas. Eighty-six percent
of the time, the road alignment was straight. The surface condition of roads was dry during 82
percent of near-crashes. Thirty-three percent of near-crashes were due to restricted traffic flow,
while 44 percent occurred in free flow conditions. Moreover, 78 percent of near-crashes
occurred in non-divided traffic flow conditions.

Incidents with Other Vehicle Turning Across Subject Vehicle Path in Opposite Direction. Out of
79 incidents, not surprisingly the biggest precipitating factors occurred when other vehicles were
entering an intersection (81%) and when other vehicles were moving from a driveway into the
subject vehicle’s path (15%).

Driver proficiency was less of an issue, accounting for only 17 percent of the incidents. Driver’s
aggressive driving behavior accounted for 3 percent of the incidents, and only 4 percent of
incidents were drowsiness-related. Inattention to forward roadway was less of a factor in
incidents than in near-crashes and crashes. Only 3 percent of incidents accounted for driving-
related inattention. Distraction due to cell phone operations (6%) and passenger in vehicle (5%)
were more representative than other distraction categories.

For avoidance maneuvers, a majority of drivers braked without locking up their wheels (58%),
while others combined both braking and steering to left (15%) or braking and steering right
(14%). Only one driver exhibited no reaction to another vehicle turning across the subject
vehicle’s path in the opposite direction.

The driving environment, as with crashes and near-crashes, was primarily clear weather (72%)
during daylight hours (67%), with 70 percent of incidents in a business or industrial locality and
20 percent in residential areas. Out of 79, there was only 1 incident due to snow, and 7 percent
were due to wet surface conditions, while the rest occurred on dry roads (91%). Approximately,
62 percent of incidents occurred at an intersection, and 11 percent were intersection-related.
Over 92 percent of the incidents occurred on straight roads and 6 percent on curves. Only 4
percent of the incidents were due to sunlight glare, and there were no visual obstructions 91
percent of the time. Half of the incidents occurred in restricted traffic flow conditions, and 34
percent of the incidents occurred in free flow conditions. Four percent of incidents occurred due
to roadway alignment.

Conflict with Vehicle in Adjacent Lane

Adjacent vehicle conflicts accounted for 1 percent of the crashes, 15 percent of the near-crashes,
and 4 percent of the incidents. The conflict with an adjacent vehicle occurred more commonly
when either the other vehicle was changing lanes ahead of the subject vehicle or when the
subject vehicle was changing lanes.
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Crash with Vehicle in Adjacent Lane. There was only one crash with a vehicle in an adjacent
lane, and the incident type was left sideswipe in same direction with the subject vehicle changing
lanes as the pre-incident maneuver.

The driver’s aggressive behavior was the only factor in the left sideswipe collision with other
vehicle in the adjacent lane. There were no other contributing factors. The driver did attempt to
avoid the crash by braking and steering to the right.

For the associated factors, the collision occurred at an intersection on a straight, level business or
commercial area in dry conditions during daylight hours and clear weather.

Near-Crashes with Vehicle in Adjacent Lane. Out of 115 near-crashes with an adjacent vehicle,
48 percent near-crashes occurred when other vehicles were changing lanes. When the other
vehicle was changing lanes, 26 percent were with a right sideswipe threat and 14 percent were
with a left sideswipe. There were 43 (37%) near-crashes when the subject vehicle was changing
lanes with 19 percent being left sideswipe threat and 14 percent being a right sideswipe threat.

The subject vehicle or other vehicle changing lanes as the largest precipitating factor is not
surprising considering blind spots and lane change maneuvers with more likelihood of left and
right sideswipe threats with vehicles in another lane.

For driver contributing factors, 16 percent of near-crashes were classified as aggressive driving,
and only 6 percent were classified as drowsiness-related. Nearly 42 percent of the near-crashes
were classified as driver proficiency errors. Over one-fourth of the near-crashes had inattention
to forward roadway as contributing factor. Four percent of the near-crashes were driving-related
inattention, which included looking at the center mirror (1%), right window (2%) or left window
(1%). The majority of secondary task inattention was due to a passenger in the vehicle (10%)
and cell phone usage (7%), as shown in Figure 5.40.

Since the majority of near-crashes occurred when either another vehicle or the subject vehicle
was changing lanes, the subject drivers mostly reacted by braking and steering either to left
(31%) or right side (24%), while a few reacted by braking with no lockup (19%). Only 5 percent
of drivers did not exhibit any avoidance maneuver.
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The other contributing factors included sunlight glare (4%), rain (1%), a moving vehicle,
(1%), roadway alignment (1%), and roadway delineation (2%).

When considering the driving environment associative factors, the road was wet/snowy in
13 percent of the near-crashes and it was raining in 8 percent of the near-crashes. Ninety
percent of near-crashes were on straight roads and 10 percent were on curves. Nearly
half of the near-crashes were in a business or commercial locality, while 40 percent were
on interstate roadways. Thirty-one percent of near-crashes occurred in restricted traffic
flow, while 28 percent occurred in free flow conditions. Moreover, 72 percent of near-
crashes occurred in divided traffic flow conditions.

Incidents with Vehicle in Adjacent Lane. There were 342 incidents with other vehicles in
an adjacent lane.

Similar to near-crashes, the biggest precipitating factors occurred when another vehicle
was changing lanes (43%) and when the subject vehicle was changing lanes (34%). Only
8 percent of incidents corresponded to incidences when the subject vehicle moved off the
roadway over the left lane line (3%) or over the right lane line (5%).

Driver proficiency was very similar between the near-crashes and incidents. Driver
proficiency (33%), aggressive driving (16%) and driver drowsiness (6%) were all present
for the incidents.

Inattention to forward roadway due to secondary tasks (15%) was less of a factor in
incidents than in near-crashes with another vehicle in an adjacent lane. Distraction due to
cell phone operations (4%) and a passenger in the vehicle (4%) were more representative
than other distraction categories (Figure 5.41).

Eight percent of drivers had no avoidance maneuver, and 18 percent steered either to left
or right without braking. Unlike with near-crashes, only a few drivers braked and steered
to left (13%) or right (15%). The majority braked without locking up their wheels (33%).
Interestingly only a few accelerated and steered either left (2%) or right (1%) as an
avoidance maneuver.

However, there were more other contributing factors present in the incident than in the
near-crashes. Roadway alignment (5%), road delineation (2%), weather-related visibility
(1%), sunlight glare (4%), and traffic control devices (1%) were all present.

The driving environment, as with crashes and near-crashes, was primarily clear weather
(82%) during daylight hours (77%), with 47 percent of incidents in a business or
industrial locality and 38 percent on interstate roadways. Wet surface conditions (14%)
were associated with some of the incidents. Compared to near-crashes, the intersection-
related (7%) incidents were less of a factor. However, 11 percent of incidents occurred at
entrance or exit ramps. Over 84 percent of the conflicts were on a straight road and 12
percent on a curve. Restricted traffic flow (41%) conditions were associated with the
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incidents, and an additional 32 percent were in restricted speed conditions. Eighteen
percent of incidents corresponded to conflicts at traffic signals, while others occurred
when there were no traffic control devices (76%).
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Question 2. What Are The Relative Frequencies Of Primary And Contributing Factors For
Each Level Of Severity?

All the contributing and associated factors used in this study were parsed into crashes and near-
crashes. Tables are provided to group all the factors underneath the factor type categories listed
in Table 5.7. This provides a mechanism to look at the relationship of these factors in crashes
and near-crashes.

Table 5.7. Factor Type Categories.

Pre-event maneuver

Drivers’ avoidance maneuver
Driver’s willful behavior
Driver impairments

Driver proficiency error
Hands on wheel

Inattention to forward roadway
Surface condition

Relation to junction

Road alignment

Locality

Lighting

Visual obstruction

Weather

Trafficway flow

Traffic density

Traffic control device
Vehicle factors

Infrastructure

For the associative variables, GES data will be added to the tables to provide a comparison
between the 100-Car Study data and GES data. This will only be done for the associative
variables as these represent the entire event and are not dependent upon driver as are variables
such as pre-event maneuver or avoidance maneuvers. While comparisons between avoidance
maneuvers are possible between the GES and 100-Car Study database, this analysis would
require more reduction and is beyond the scope of this current analysis. Table 5.8 below
presents a comparison between the percentage of 100-Car Study crash and near-crash types to
the percentage of GES crashes. These percentages demonstrate the generalizability of the 100-
Car Study database to the GES crash database. Note that comparisons are presented for all 100-
Car Study crashes, the 100-Car Study police reported crashes, and GES crashes. The results
indicate that there is a large discrepancy between police-reported and non-police reported events.
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Table 5.8. Comparison of crash types for 100-Car Crashes, Near-crashes, Police-Reported
Crashes, and GES Crashes.

100-Car
Police- 100-Car 100-

100-Car 100-Car | Reported Near- Car Near- GES
Conflict Type Crash Crash Crash Crash Crash GES Crash | Crash
(100-Car) Frequency | Percent Percent | Frequency | Percent Frequency | Percent
Single Vehicle 24 34.8 8.3 48 6.3 2,740 4.6
Rear-End
Striking and
Rear-End Struck 27 39.1 66.7 450 59.1 14,722 24.9
Angle Collision 1 1.4 0.0 142 18.7 18,091 30.6
Sideswipe
Opposite 2 2.9 16.7 27 3.5 480 0.8
Sideswipe Same 0 0.0 0.0 37 4.9 2,977 5.0
Head-On 0 0.0 0.0 27 3.5 1,879 3.2
Object/obstacle 9 13.0 8.3 6 0.8 11,063 18.7
Parked vehicle 4 5.8 0.0 5 0.7 2,027 34
Animal 2 2.9 0.0 10 1.3 1,515 2.6
Pedestrian 0 0.0 0.0 6 0.8 1,702 2.9
Pedalcyclist 0 0.0 0.0 0 0.0 1,085 1.8
Unknown 0 0.0 0.0 1 0.1 220 0.4
Other 0 0.0 0.0 2 0.3 655 1.1
Totals 69 100% 100% 761 100% 59,156 100%

Pre-Event Maneuver

When comparing crashes and near-crashes for the pre-event maneuver, the top three factors were
ranked in the same order for both crashes and near-crashes (Table 5.9). These three factors
accounted for 54 percent of the crashes and 80 percent of the near-crashes. For the top
associated factor, 22 percent of crashes occurred when subject vehicle drivers were going
straight at constant speed. The percentage of near-crashes (44%) was twice as high as that of
crashes for this factor. The second highest factor, which was when the subject vehicle was
decelerating in the traffic lane, was similar between crashes (22%) and near-crashes (20%). The
third factor, going straight and accelerating, was slightly higher for near-crashes (16%) than
crashes (10%). Turning right crashes (10%), the fourth highest factor, was more representative
than turning right near-crashes (1%). When turning left, 6 percent were crashes, and 2 percent
were near-crashes.
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Table 5.9. Pre-event maneuver, crash, and near-crash.

Crash Crash Near-Crash | Near-Crash
Pre-event maneuver Frequency | Percent Frequency Percent
Going straight, constant speed 15 21.7 331 43.5
Decelerating in traffic lane 15 21.7 155 20.4
Going straight, accelerating 7 10.1 120 15.8
Turning right 7 10.1 8 1.1
Stopped in traffic lane 5 7.3 24 3.2
Turning left 4 5.8 18 2.4
Starting in traffic lane 3 4.4 14 1.8
Merging 3 4.4 10 1.3
Changing lanes 2 2.9 60 7.9
Entering a parked position 2 2.9 0 0.0
Making U-turn 2 2.9 0 0.0
Maneuvering to avoid a vehicle | 1.5 1 0.1
Backing up (not parking) 1 1.5 0 0.0
Leaving a parked position 1 1.5 0 0.0
Unknown 1 1.5 0 0.0
Negotiating a curve 0 0.0 20 2.6

Avoidance Maneuvers

Table 5.10 lists the different avoidance maneuvers used by the drivers. In 27 percent of the
crashes there was no reaction; that is, the driver did not execute any avoidance maneuver. Only
4 percent of near-crashes had no reaction. Braking alone without lockup was the most common
avoidance maneuver for near-crashes (45%) and crashes (25%). However, it was 20 percent
more likely for near-crashes than crashes. Fifteen percent of drivers steered left as the avoidance
maneuver in a crash. Only 6 percent of the near-crashes used this maneuver. The near-crashes

(33%) were twice as likely to brake and steer as an avoidance maneuver as compared to the
crashes (16%).
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Table 5.10. Drivers’ avoidance maneuver, crash, and near-crash.

Crash Crash Near-crash | Near-crash
No | Avoidance maneuver Frequency Percent Frequency Percent
1 | No reaction 19 27.5 30 3.9
2 | Braking(no lockup) 17 24.6 342 44.9
3 | Steered to left 10 14.5 44 5.8
4 | Braked and steered left 7 10.1 112 14.7
5 | Braked and steered right 4 5.8 138 18.1
6 | Braking(lockup unknown) 4 5.8 42 5.5
7 | Unknown if action was attempted 3 4.4
8 | Steering to right 2 2.9 32 4.2
9 | Other actions 2 2.9 5 0.7
10 | Braking(lockup) | 1.5 6 0.8
11 | Accelerating and steering right 4 0.5
12 | Accelerating 3 0.4
13 | Accelerating and steering left 3 0.4
Willful Behavior

As shown in Table 5.11, aggressive driving (16%) contributed slightly more for crashes than for

near-crashes (13%).

Table 5.11. Driver’s willful behavior, crash, and near-crash.

Crash Crash Near-Crash Near-Crash
No Willful Behavior Frequency Percent Frequency Percent
No willful behavior 58 84.1 658 86.5
2 | Aggressive driving 11 15.9 103 13.4

Driver Impairments

As shown in Table 5.12, a total of 17 percent of crashes and 13 percent of near-crashes occurred
with driver impairment as a contributing factor. Drowsiness was the most common impairment
with 14 percent of the crashes and 11 percent of the near-crashes. Drugs or alcohol contributed

to 2 percent of crashes.
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Table 5.12. Driver impairments, crash, and near-crash.

Crash Crash | Near-Crash | Near-Crash
No | Driver Impairments Frequency | Percent | Frequency Percent
1 | None apparent 23 39.0 400 54.4
2 | Unknown 36 52.2 268 35.2
3 | Drowsy, sleepy, asleep 8 13.6 79 10.7
4 | Drugs, alcohol 1 1.7 0 0.0
5 | Other 1 1.7 0 0.0
6 | Angry 0 0.0 10 1.4
7 | Other emotional state 0 0.0 4 0.5

Driver Proficiency

When comparing crashes and near-crashes, the driver proficiency error factor contributed to

fewer crashes (28%) than near-crashes (43%). It is not clear why this 15 percent difference was

present (Table 5.13).

Table 5.13. Driver proficiency error, crash, and near-crash.

Crash Crash Near-Crash Near-Crash
No | Driver Proficiency Frequency Percent Frequency Percent
1 | None 50 72.5 437 57.4
2 | Driver proficiency error 19 27.5 324 42.6

Driver’s Hands on Wheel

For the top associated factor, driving with left hand only, the percentages of crashes (30%) and
near-crashes (32%) were similar (Table 5.14). When comparing crashes and near-crashes for
hands-on-wheel categories, they were in the same ranked order. These three associated factors
account for 41 percent of crashes and 53 percent of near-crashes. For the third factor, 25 percent
of crashes occurred when subject vehicle drivers were driving with both hands. The percentage
of near-crashes (35%) was higher than that of crashes for this factor. The percentage of near-
crashes (16%) with right hand only was slightly higher than that of crashes (12%). The fifth
factor, when subject vehicle drivers were driving with no hands on the wheel, was slightly more
representative for crashes (5%) than near-crashes (3%).

Table 5.14. Hands on wheel, crash, and near-crash.

Crash Crash Near-Crash Near-Crash
No Hands on wheel Frequency Percent Frequency Percent
1 | Left hand only 21 304 241 31.7
2 | Unknown 20 29.0 115 15.1
3 | Both hands 17 24.6 267 35.1
4 | Right hand only 8 11.6 118 15.5
5 | No hands on wheel 3 4.4 20 2.6
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Driver Secondary Task Distraction and Inattention to Forward Roadway

For the distraction contributing factors shown in Table 5.15, more than one factor could be
identified for each event. Therefore, the driver could be distracted both by talking on the cell
phone and adjusting the radio during the event. For the purpose of this analysis, all the
distractions were counted even if there were two for event. There were 2 distractions identified
in 3 of the crashes and in 27 of the near misses. Distraction was not present in 39 percent of the
crashes or in 61 percent of the near-crashes. This 22 percent difference may be why similar
events became crashes instead of near-crashes.

Driving-related inattention to the forward roadway was a contributing factor in 14 percent of the
crashes and 7 percent of the near-crashes. The largest portion of these crashes (10%) and near-
crashes (3%) was attributable to looking out the left window.

The highest secondary task inattention to the forward roadway for crashes was drivers
talking/listening cell phone (8%). Talking on a cell phone was the second highest distraction for
near-crashes (4.8%). There were no crashes when drivers were either dialing a hand-held cell
phone locating, reaching for, or answering a cell phone, operating a PDA, or performing other
cell phone operations. On the other hand, over 3 percent of the near-crashes were due to these
activities.

A passenger in the adjacent seat was the second highest crash secondary task contributing factor
(7%) and the highest near-crash secondary task factor (6%). When passengers were seated in
rear seats, drivers were involved in 1 percent of crashes and one near-crash. With a child in the
rear seat there were no crashes and only one near-crash.

Animals or objects in the vehicle contributed to crashes (7%) as much as passengers in the
adjacent seat. However, only 1 percent of the near-crashes were contributed to by this factor.
An additional 3 percent of the crash inattention and 1 percent of the near-crash inattention was
due to reaching for an object. For a more in depth discussion of distraction in crashes and near-
crashes, read Chapter 7, Goal 3 or Chapter 11, Goal 7.

129



Table 5.15. Inattention to forward roadway, crash, and near-crash.

Crash Crash | Near-Crash | Near-Crash
Frequency | Percent | Frequency Percent
Not distracted 28 38.9 481 61.0
Left window 7 9.7 25 32
Talking/listening 6 8.3 38 4.8
Passenger in adjacent seat 5 6.9 48 6.1
No data 5 6.9 12 1.5
Animal/Object in Vehicle — Other 5 6.9 9 1.1
Reaching for object (not cell phone) 2 2.8 10 1.3
Cognitive — Other 2 2.8 5 0.6
Drinking from open container 2 2.8 0.1
Eating without utensils 1 1.4 15 1.9
Center mirror 1 1.4 14 1.8
Right window 1 1.4 14 1.8
Talking/singing 1 1.4 11 14
Other external distraction 1 1.4 10 1.3
Left mirror 1 1.4 9 1.1
Lost in thought 1 1.4 5 0.6
Moving object in vehicle 1 14 2 0.3
Passenger in rear seat 1 1.4 | 0.1
In-vehicle controls — Other 1 1.4 0 0.0
Dialing hand-held cell phone 0 0.0 14 1.8
Adjusting radio 0 0.0 10 1.3
Reading 0 0.0 10 1.3
Cell phone — Other 0 0.0 7 0.9
Other personal hygiene 0 0.0 7 0.9
Adjusting other devices integral to vehicle 0 0.0 5 0.6
Applying makeup 0 0.0 5 0.6
Dancing 0 0.0 3 0.4
Locating/reaching/answering cell phone 0 0.0 2 0.3
Looked but did not see 0 0.0 2 0.3
Right mirror 0 0.0 2 0.3
Child in rear seat 0 0.0 1 0.1
Combing or fixing hair 0 0.0 1 0.1
Drinking 0 0.0 1 0.1
Eating 0 0.0 1 0.1
Insect in vehicle 0 0.0 1 0.1
Inserting/retrieving CD 0 0.0 1 0.1
Looking at an object 0 0.0 1 0.1
Looking at pedestrian 0 0.0 1 0.1
Looking at previous crash or incident 0 0.0 1 0.1
Operating PDA 0 0.0 1 0.1
Smoking cigar/cigarette 0 0.0 1 0.1
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Visual Obstructions

The visual obstructions category included factors that contributed in some way to the crashes or
near-crashes. Not surprisingly most of the crashes (86%) and near-crashes (89%) had no visual
obstruction. Only 7 total crashes had visual obstruction contributing factors. Reflected glare
contributed to two crashes but did not seem to contribute near-crashes. On the other hand 5
percent of the near-crashes had sunlight as a contributing factor, but only one of the near-crashes
did. Moving and parked vehicle visual obstructions were similarly representative between
crashes and near-crashes (Table 5.16).

Table 5.16. Visual obstruction, crash, and near-crash.

Crash Crash Near-Crash | Near-Crash
No | Visual obstructions Frequency | Percent | Frequency Percent

1 | No obstruction 59 85.5 675 88.7

2 | Reflected glare 2 2.9 2 0.3

3 | Sunlight glare 1 1.4 39 5.1

4 | Moving vehicle 1 1.4 18 2.4

5 | Parked vehicle 1 14 9 1.2

6 | Other obstruction 1 14 3 0.4

7 | Trees, crops, vegetation 1 1.4 0 0.0

8 | Rain, snow, fog, smoke, sand, dust 0 0.0 4 0.5

Roadway infrastructure such as building,

9 | billboard, signs, embankments, etc. 0 0.0 3 04
10 | Curve/hill 0 0.0 2 0.3
11 | Headlight glare 0 0.0 1 0.1
12 | Unknown 3 4.3 5 0.7

Road Surface Condition

When comparing crashes and near-crashes on different surface conditions, the top four factors
have the same ranked order for both crashes and near-crashes in the 100-Car Study database and
GES database. Not surprisingly, dry surface conditions were the most common associated
factor, with fewer crashes in both the 100-Car Study database (74%) and GES database (76%)
than near-crashes (86%). In the wet, snowy, and icy conditions, there were more crashes, both
100-Car Study and GES, in each factor than near-crashes. Even though these were not
necessarily classified as contributing factors, it seems that the reduced traction from non-dry

roads may have contributed to these events becoming crashes instead of remaining near-crashes
(Table 5.17).

Table 5.17. Surface condition, crash, and near-crash.

Surface Crash Crash Near-Crash | Near-Crash | GES Crash GES Crash
No .
condition Frequency | Percent Frequency Percent Frequency Percent
1 | Dry 51 73.9 654 85.9 45171 76.4
2 | Wet 13 18.8 98 12.9 10039 17.0
3 | Snowy 4 5.8 4 0.5 1766 3.0
4 | Icy 1 1.5 4 0.5 1347 23
5 | Unknown 0 0.0 1 0.1 692 1.2
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Relation to Junction

When comparing crashes and near-crashes for relation to junction, note that the general
relationship between all variables is the same for 100 Crashes, GES crashes, and 100-Car Study
near-crashes is similar. The top 5 factors have the same ranked order for crashes in both 100-Car
Study and GES database and 100-Car Study near-crashes (Table 5.18). The 5 associated factors
account for 96 percent of 100-Car Study crashes, 93 percent of GES crashes, and 97 percent of
near-crashes. For the biggest factor, non-junction, the percentage of near-crashes (60%) was
one-half times higher than 100-Car Study crashes (38%) and slightly less than one-half than the
GES crashes (47%). Intersection crashes in both 100-Car Study (25%) and GES (23.5%), the
second highest factor, was more representative than near-crashes (20%). The intersection-related
events, the third highest factor accounted for 100-Car Study crashes (16%) and GES crashes
(15%), was one and one-half times higher than near-crashes (10%). For the fourth highest factor,
the entrance or exit ramp 100-Car Study crashes (9%) and GES crashes (0.2%) did not match but
100-Car Study crashes were more similar to near-crashes (5%). In parking lots, the percentage
of 100-Car Study crashes (9%) and GES crashes (8%) was four times higher than that of near-
crashes (2%). Note that GES had a relatively high percentage of crashes on interchanges that the
100-Car Study database did not. This could be due, in part, to difficulty in determining whether
the vehicle was in an “interchange” using video only.

Table 5.18. Relation to junction, crash, and near-crash.

. ‘ Crash Crash Near- Near- GES GES
No Relation to Junction Frequency | Percent Crash Crash Crash Crash
Frequency | Percent | Frequency | Percent
1 | Non-junction 26 37.7 456 59.9 27498 46.5
2 | Intersection 17 24.6 149 19.6 13904 23.5
3 | Intersection-related 11 15.9 76 10 8989 15.2
4 | Entrance/exit ramp 6 8.7 40 53 133 0.2
5 | Parking lot 6 8.7 14 1.8 4437 7.5
Driveway, alley access,

6 | etc. 2 2.9 8 1.1 0 0.0
7 | Other 1 1.5 0.1 759 1.3
8 | Interchange area 0 0.0 16 2.1 2907 4.9
9 | Unknown 0 0.0 1 0.1 529 0.9

Roadway Alignment
As expected, straight, level roads and curved, level roads accounted for the majority of 100-Car
Study crashes (94%) and near-crashes (97%) but only 49 percent of GES crashes. This is due
primarily to lack of GES information as 35 percent of all GES crashes, alignment is unknown.
Further comparisons of GES to 100-Car Study data will not be made for the roadway alignment
category. The straight, level roads factor for near-crashes (84%) was slightly higher than for
100-Car Study crashes (75%), whereas the curve level for 100-Car Study crashes (19%) was
slightly higher than for near-crashes (13%). The curve grade was also higher for crashes (4%)
than for near-crashes (one%). Although not a strong association, it is interesting that curves
were more associated with crashes than with near-crashes (Table 5.19).
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Table 5.19. Road alignment/road profile, crash, and near-crash.

Road alignment/road Crash Crash | Near-crash Near- GES Crash GES
No. Crash Crash
profile Frequency | Percent | Frequency Percent Frequency Percent
1 | Straight level 52 75.4 638 83.8 26265 44.4
2 | Curve level 13 18.8 99 13 2898 4.9
3 | Curve grade 3 4.4 7 0.9 3048 5.2
4 | Straight grade 1 1.5 15 2 5582 9.4
5 | Unknown 0 0.0 1 0.1 20460 34.6
6 | Straight hillcrest 0 0.0 1 0.1 594 1.0

Locality of Event

The “locality of event” variable was adopted from the Virginia State Police Accident Report, not
the GES database; therefore, no GES data will be presented for this variable. When comparing
crashes and near-crashes in different localities, the top two factors are very similar. These two
factors account for 64 percent of crashes and 62 percent of near-crashes. The business or
industrial area was the most common location for both crashes (45%) and near-crashes (44%).
The business or industrial area is likely a common driving environment in the northern Virginia
area, and these large percentages are not surprising. The second highest factor, driving on open
country roads, was the same between crashes (18%) and near-crashes (18%). The percentage of
crashes (16%) in residential areas was twice the percentage of near-crashes (8%). On the other
hand, the near-crashes (28%) that occurred on interstate roads were more representative than
crashes (12%). This difference between crashes and near-crashes is likely due to the higher
percentage of rear-end near-crashes as compared to crashes (Table 5.20). These rear-end near-
crashes are likely to be more associated with interstate driving.

Table 5.20. Locality, crash, and near-crash.

Crash Crash Near-Crash | Near-Crash
No Locality Frequency | Percent | Frequency Percent
1 | Business/industrial 31 44.9 335 44.0
2 | Open Country 13 18.8 138 18.1
3 | Residential 11 15.9 60 7.9
4 | Interstate 8 11.6 212 279
5 | Other 5 7.3 3 0.4
6 | Construction zone 1 1.5 11 1.5
7 | Church 0 0.0 1 0.1
8 | Unknown 0 0.0 1 0.1

Lighting

As shown in Table 5.21, the top two lighting factors are ranked in the same order for 100-Car
Study crashes, GES crashes, and 100-Car Study near-crashes. These two factors account for 87
percent of 100-Car Study crashes, 84 percent of GES crashes, and 83 percent of near-crashes.
Most 100-Car Study crashes (62%), GES crashes (67%) and near-crashes (66%) occurred during
day or daylight conditions. Driving in darkness with lighted conditions was more representative
for 100-Car Study crashes (25%) than GES crashes (17%) or near-crashes (17%). The unlit
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darkness factor was similar between crashes (7%) and near-crashes (7%) but was almost twice as
high for GES crashes (12%). For the dusk factor the percentage of near-crashes (9%) was twice
as high as the percentage of crashes (4%) and even more for GES crashes (2%).

Table 5.21. Lighting, crash, and near-crash.

Near- GES E
No Lighting Crash Crash | Near-crash crash Crash (g"assh
Frequency | Percent | Frequency Percent | Frequency | Percent
1 | Daylight 43 62.3 502 66 39526 66.8
2 | Darkness lighted 17 24.6 126 16.6 9930 16.8
3 | Darkness not lighted 5 7.3 54 7.1 7040 11.9
4 | Dusk 3 4.4 65 8.5 1302 22
5 | Dawn 1 1.5 14 1.8 932 1.6
Weather

In the weather category, the clear weather factor was associated with the same percentage of
100-Car Study crashes (78%), GES crashes (83%), and near-crashes (78%). The second most
associated weather factor was rain. When raining, the drivers had a slightly higher percentage of
crashes (12%) than near-crashes (8%). The 100-Car Study crash percentage (12%) and GES
crash percentage (11%) are similar. When comparing the 100-Car Study crashes and GES
crashes to near-crashes, the differences may be due to the potentially reduced traction and
visibility associated rain playing a role in drivers’ inability to avoid a crash. Snow followed a
similar pattern, however only one 100-Car Study crash occurred with snow as an associated
factor. Cloudy weather was associated with more near-crashes (13%) than crashes (9%) (Table
5.22).

Table 5.22. Weather, crash, and near-crash.

No Weather . Crash Crash | Near-crash | Near-crash C(i' Essh C(i' Essh
requency | Percent | Frequency Percent Frequency | Percent
1 | Clear 54 78.3 599 78.7 49107 83.0
2 | Raining 8 11.6 57 7.5 6616 11.2
3 | Cloudy 6 8.7 99 13 0 0.0
4 | Snowing 1 1.5 3 0.4 1915 3.2
5 | Fog 0 0.0 1 0.1 218 0.4
6 | Mist 0 0.0 1 0.1 0 0.0
7 | Unknown 0 0.0 1 0.1 835 1.4

Trafficway Flow

Not surprisingly, the majority of crashes in the 100-Car Study, GES crashes, and near-crashes
occurred on divided or non-divided trafficways because these are the most common types of
roadways. As shown in Table 15, the non-divided trafficway was associated with more 100-Car
Study crashes (46%) and GES crashes (49%) than the near-crashes (36%). On the other hand
more near-crashes (59%) were associated with divided roadways than 100-Car Study crashes
(42%) or GES crashes (32%). The third highest associated factor (one-way traffic flow)
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accounted for 9 percent of 100-Car Study crashes, only 5 percent of GES crashes, and 3 percent
of the near-crashes. For the fourth factor, when the subject vehicle drivers were driving in traffic
with no lanes, the percentage of crashes (three%) was three times higher than the percentage of
near-crashes (one%). Please note that 15 percent of all GES crashes, the trafficway flow variable
is unknown (Figure 5.23).

Table 5.23. Trafficway flow, crash, and near-crash.

Crash Crash Near- Near- GES GES
No Trafficway_Flow Frequency | Percent crash crash Crash Crash
Frequency | Percent | Frequency | Percent
1 | Not divided 32 46.4 277 36.4 29,001 49.0
2 | Divided (median strip or barrier) 29 42 449 59 18,609 31.5
3 | One-way traffic 6 8.7 26 34 2,925 4.9
4 | No lanes 2 2.9 8 1.1 0 0.0
5 | Unknown 0 0.0 1 0.1 8,621 14.6
Traffic Density

The traffic density variable (Level of Service variable) is also not used in the GES database;
therefore, no GES comparisons will be discussed. When comparing crashes and near-crashes for
the traffic density, all seven factors are the same rank order for both crashes and near-crashes
(Table 5.24). All these factors account for 100 percent of crashes and 100 percent of near-
crashes. Free flow was the top associated factor, with crashes (60%) being almost twice as
represented as near-crashes (32%). This difference between crashes and near-crashes is likely
due to the higher percentage of rear-end near-crashes as compared to crashes. These rear-end
near-crashes are likely to be more associated with flow restrictions. The higher percentage of
near-crashes as compared to crashes is shown for the first four flow restrictions. It is also
interesting that these first 5 flow restrictions are also ranked in Table 5.24 with each consecutive
factor being more restrictive.

Table 5.24. Traffic density, crash, and near-crash.

Crash Crash | Near-Crash | Near-Crash
No | Traffic density Frequency | Percent | Frequency Percent

Free flow 41 59.4 244 32.1

2 | Flow with some restrictions 14 20.3 233 30.6
Stable flow, maneuverability and speed

3 | more restricted 7 10.1 191 25.1
Unstable flow, temporary restrictions

4 | slow driver 4 5.8 64 8.4
Flow is unstable, vehicles are unable to

5 | pass temporary stoppages, etc. 2 2.9 26 34
Forced traffic flow condition with low
speeds and traffic volumes that are
below capacity 1 1.5 2 0.3
Unknown 0 0.0 1 0.1
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Traffic Control Devices

Almost twice as many crashes (46%) in the 100-Car Study had traffic control devices than did
near-crashes (24%) (Table 5.25). GES crashes were not similar to either 100-Car Study crashes
or near-crashes as 33 percent of all GES crashes occurred in the presence of a traffic control
device. Traffic signals were the most common traffic control device for 100-Car Study crashes
(28%), GES crashes (20%), and near-crashes (17%). The remaining traffic control devices were
similar between 100-Car Study crashes than near-crashes. The stop signs accounted for three
times more 100-Car Study crashes (6%) and 5 times more for GES crashes (10%) than the near-
crashes (2%). When comparing the crashes and near-crashes for traffic control device, the
fourth, fifth, and sixth factors in Table 5.24 are the same rank order for 100-Car Study crashes,
GES crashes, and near-crashes. These three factors account for 10 percent of the crashes 3
percent of GES crashes and 5 percent of the near-crashes. These three factors were: traffic lanes
marked; other; and yield signs. Note that for 4 percent of GES crashes, the presence of a traffic
control device is unknown.

Table 5.25. Traffic control device, crash and near-crash.

No Traffic C‘ontrol Crash Crash Near-crash 1:::;; GES Crash (i l;sSh
Device Frequency | Percent Frequency Percent Frequency Percent
1 | None 37 53.6 574 75.4 36,506 61.7
2 | Traffic signal 19 27.5 130 17.1 11,709 19.8
3 | Stop sign 4 5.8 16 2.1 5,954 10.1
4 | Traffic lanes marked 3 4.4 20 2.6 0 0.0
5 | Other 2 2.9 9 1.2 1,179 2.0
6 | Yield sign 2 2.9 8 1.1 637 1.1
7 | Officer or watchman 2 2.9 1 0.1 119 0.2
8 | Unknown 0 0.0 2 0.3 2,456 4.2
9 | Slow or warning sign 0 0.0 1 0.1 596 1.0

Vehicle Factors

For vehicle factors, some unknown factor contributed to 2 percent of crashes and even smaller
percentage of near-crashes (0.1%). Due to the small numbers in the 100-Car Study database, no
comparisons will be made between the two databases (Table 5.26).

Table 5.26. Vehicle factors, crash and near-crash.

No Near-
Crash Crash Near-crash crash
Vehicle factors Frequency Percent Frequency Percent
None 68 98.6 760 99.9
2 Unknown 1 1.5 1 0.1
Infrastructure

This infrastructure variable was adopted from the Light Vehicle/Heavy Vehicle technical report
(Hanowski, et al, 2000). GES does not use this variable; therefore no comparisons can be made.
With infrastructure, the majority of crashes (80%) and the majority of near-crashes had no
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infrastructure contributing factor (Table 5.27). When comparing the crashes and near-crashes,
the top two contributing factors for each were in the same rank order. These two factors
(roadway geometry and delineation) accounted for 15 percent of crashes and 3 percent of near-
crashes. The roadway sight distance factor was not representative of crashes, and it contributed
to less than 1 percent of near-crashes.

Table 5.27. Infrastructure, crash and near-crash.

No Crash Crash Near-Crash Near-Crash
Infrastructure Frequency Percent Frequency Percent

1 | None 55 79.7 727 95.5

2 Roadway geometry 5 73 17 2.2

3 Roadway delineation 5 73 7 0.9

4 Traffic control device 1 1.5 1 0.1

5 Roadway sight distance 0 0.0 4 0.5

6 | Unknown 3 4.4 5 0.7

Question 3. What are the dynamic reconstructions of each crash and near-crash, and what
are the stimulus-response times associated with each?

In addition to the analysis of coded data relevant to near-crashes and crashes, dynamic
reconstructions and animated representations of the events accompany this document. The
reconstructions span the period from 10 seconds prior to impact (or successful crash avoidance)
to 2 seconds after impact or avoidance. A scenario timeline is provided that captures vehicle
pre-event actions, driver actions, speeds, ranges, range rates, braking, steering (if applicable),
and trajectories.

By way of a brief description for the crashes, Table 5.28 is provided. This table includes event
nature, crash number, a narrative description, and a graphical depiction of each crash. These 33
crashes include all level I, II, and III crashes for which video was available (level IV crashes
were not included).
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CHAPTER 6: GOAL 2, OPERATIONALLY DEFINE A NEAR-CRASH USING
QUANTITATIVE MEASURES

DATA ANALYSIS OVERVIEW

For this study, near-crashes and crashes were operationally defined based upon the a priori

criteria described below:

e Crash: Any contact with an object, either moving or fixed, at any speed in which kinetic
energy is measurably transferred or dissipated. Includes other vehicles, roadside barriers
(curbs and tire strikes), objects on or off of the roadway, pedestrians, cyclists, or animals.

e Near-Crash: Any circumstance that requires a rapid, evasive maneuver by the subject
vehicle, or by any other vehicle, pedestrian, cyclist, or animal, to avoid a crash. A rapid,
evasive maneuver is defined as steering, braking, accelerating, or any combination of control
inputs that approaches the limits of the vehicle capabilities. As a guide, a subject vehicle
braking greater than 0.5 g or steering input that results in a lateral acceleration greater than
0.4 g to avoid a crash, constitutes a rapid maneuver.

As shown, while these criteria were based somewhat upon quantitative kinematic criteria, they
were subjective in nature. While such definitions were useful for purposes such as classifying
video data, they were not useful for precisely defining events or as criteria for other purposes,
such as warning algorithms. Therefore, a goal of the 100-Car Study, given that it contains more
crash, near-crash, and incident data than ever before collected, was to explore the feasibility of
creating more useful operational definitions of near-crash events.

Near-crashes can be defined quantitatively based upon time-to-collision, acceleration, or
proximity criteria. However, the results of this and other studies have shown that there is
inherent “ Nnoise” present in such criteria. Thus, there are inherent difficulties associated with
both quantitative and qualitative approaches. For example, the qualitative definitions required
explanations in quantitative terms (How rapid is a “ rapid maneuver” ?), and the quantitative
definitions at some level must be based upon a subjective assessment (Does a TTC of 0.1 s
second constitute a near-crash when such values occur regularly on interstates at rush hour?).

Indeed, all attempts to quantify events strictly on the basis of somewhat simple quantitative
kinematic criteria for this study led to a number of false positives. As described in more detail as
part of Chapter 13, Goal 9, there were many instances in which a sensor provided a data
signature that was misinterpreted by an algorithm. In addition, there were many instances in
which a “ normal” driving maneuver by a participant produced a kinematic signature that was
virtually identical to the criteria used to identify a near-crash.

The most common example of a false sensor signature was a misinterpreted radar target. Despite
considerable time and effort spent attempting to filter radar data, there were many occasions in
which the identified target was not in the vehicle travel lane due to road geometry or other
factors. While such events could be readily identified as being “false positives” upon video
review of the event, filtering based upon objective kinematic data alone was more problematic.
This finding and some of the methods used to help alleviate the problem are discussed in more
detail below.
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The most common example of a driver behavior that mimicked a near-crash signature was a
“flying pass.” A typical “ flying pass’ event occurred when a driver rapidly approached a string
of stopped vehicles and made a planned lane change into a right/left dedicated turning lane.
From the perspective of reviewing near-crash signatures, this scenario produced a very high
range rate and a very short range, as would a near-crash event. However, upon video review it
could be readily seen that the driver is fully alert, making a planned maneuver and taking very
little risk, particularly when the lead vehicle had completely stopped and the range could be
accurately gauged.

Consequently, the experience of this study was that qualitative and quantitative criteria were
dependent upon one another to some degree. A qualitative criterion must incorporate both
quantitative criteria as well as crash risk. Similarly, a quantitative criterion alone will not suffice
without qualitative information regarding the validity of the near-crash based upon context
information such as the presence of a planned versus an unplanned maneuver. Use of both
quantitative and qualitative criteria led to the creation of a database of “ valid” and “ invalid”
(i.e., false positive for reasons of sensor or behavior) events that could be used to test and refine
classification criteria to quantitatively define and capture near-crashes.

Several recent studies (e.g., Smith, Najm, and Lam, 2003) have attempted to quantify safety
surrogates including near-crash and less severe events using quantitative criteria, such as range
and range rate to create near-crash and conflict boundaries. Some of these approaches used
range/range rate trajectories, while others used a single-point approach that represented the
greatest crash threat in a trajectory. For the purposes of this analysis, we did not distinguish
between the two approaches mathematically since the greatest threat in a range/range rate
trajectory would drive the categorization of an event. We did, however, include graphs depicting
both approaches for two reasons: (1) more sophisticated analysis can be employed using the
trajectories (e.g., by requiring some degree of sample continuity to filter radar data), and, as a
result, it may be useful to see the trace data; and (2) trace data are sometimes hard to follow
graphically and the point data often aids in visualization.

Data Included in the Analyses

The data included in this section and used for the analyses to define near-crashes represents only
conflicts with lead and following vehicles and not the other conflict types. There were two
reasons for this: radar data for all 100 cars was only available for the front and rear of the
vehicle, and it proved to be very difficult to discriminate between valid and invalid events for
dynamically complex events. A dynamically complex near-crash has been operationally defined
for this analysis as an event in which the kinematic data is incomplete or unclear due to sensor
availability or signal quality. An example of a dynamically complex near-crash would be an
event for which the driver is making a lane change in stop-and-go traffic. A dynamically simple
near-crash is one for which the kinematic data is complete and clear (e.g., a rear-end striking
conflict for which the range-range/rate information and video is present for the duration of the
conflict). In other words, what was defined as simple or complex was an artifact of the vehicle
sensor suite and system capabilities.
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The range/range rate quantification approach analyzed lead and following-vehicle conflicts
separately. We assessed the threat points and trajectories for the valid crashes and near-crashes
as well as all of the invalid events. The data were constrained in the following manner:

1) The most relevant (closest range) target was used to compute time-to-collision using a
constant acceleration equation.

2) The lead or following vehicle had a range that was less than 50 meters at some point in
the trajectory.

3) The range rate became negative for at least one frame (1/10 second).

For the lead-vehicle conflict case, the resulting dataset contained 11 valid crash events and 290
valid near-crash events for a total of 309 valid events. Also used in the lead-vehicle analysis
were 6,186 invalid events. For the following-vehicle conflict case, the data contained 9 crash
events and 52 near-crash events for a total of 61 valid events. There were 157 invalid events
used in the following-vehicle analysis.

Question 1. What kinematic variables best predict the occurrence of crashes and near-
crashes?

Conflicts with Lead vehicles
Using the range/range rate approach, the valid and invalid events were categorized based upon a
number of criteria. First, crash and near-crash boundaries were estimated in terms of
range/range-rate based on a forward collision warning project conducted by the Collision
Avoidance Metrics Partnership (CAMP) (Kiefer et al., 2003). Since the boundary equations
were not provided in the cited paper, these boundaries were estimated from graphs shown in the
paper. The approximations were:

Warning Boundary: Range = -RangeRate * 3.5

Conflict Boundary: = Range = -RangeRate * 4 + 10

It is important to note that while these were good approximations, they do not represent the exact
curves provided in the paper. This is particularly true of the conflict boundary equation, which
appeared to have a second order term.

The purpose of the boundaries described above was to provide criteria for forward crash
warnings for drivers. As such, they necessarily must weight the cost of a “miss’ (i.e., no
warning provided when a threat is present) much higher than a false alarm (i.e., a warning is
provided in which there is no imminent threat).

Another purpose of creating quantitative criteria for a near-crash was for the potential detection
of near-crash events in large naturalistic driving databases. In this case, the detection criteria did
not need to be weighted so heavily toward very few misses. However, missing near-crash or
crash events is also not desirable in naturalistic data collection, even though it does not have the
safety implications present in forward crash warning systems. Thus, a third boundary was
calculated that attempted to minimize the overall error rate (i.e., misses + false alarms) to show
what might be possible for this application. The equation used for this boundary condition for
the lead-vehicle conflict case was:
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Minimum Error Boundary: Range = -RangeRate*1.3x + 0.5

Note that more sophisticated multivariate modeling to discriminate between valid crash and near-
crashes as well as invalid events for the purposes of triggering event data collection for a large-
scale study is included as part of Chapter 13, Goal 9, Determine Rear-End Contributing Factors
and Dynamic Conditions.

A separate analysis was also conducted as part of this goal to determine the degree to which the
three criteria described above could capture the crash events collected in the 100-Car Study. For
this analysis, the crash trajectories were stopped 2.0 seconds prior to the crash event to determine
whether or not the trajectory had crossed each of the boundaries. This provided some insight
into the validity of the various approaches for detecting crash events in sufficient time to warn a
driver.

The analysis of the lead-vehicle conflict case using the approaches described above is shown in
Table 6.1. The data used in this analysis included: 11 valid crash events, 290 valid near-crash
events, and 6,186 invalid events. It is important to understand the nature of an invalid event in
this context. An invalid event is an event that was triggered by a signature associated with a
possible lead-vehicle event. These event triggers included short time-to-collisions, high
longitudinal decelerations, or some combination of the two. As described above in Chapter 2,
trained analysts reviewed each of these events and determined that a conflict was not present.
However, these events should not be construed as “normal” driving cases and instead represented
the most difficult cases for discrimination purposes since they themselves represented the
extremes of range and range rate from the roughly 43,000 hours of data collected for this study.

Table 6.1. Percentage of hits and false alarms for each boundary model for a conflict with
a lead vehicle.

Conflict with Valid crash + near-crash hit Invalid false alarm

Forward Vehicle rate rate Diff | Crash hit rate
Minimum Error 74% 20% 54% 10/ 11
~Warning 90% 73% 17% 10/11
~Conflict 97% 97% 0% 11/11

Some of the lead- and following-vehicle crashes and near-crashes used in the calculations shown
in Table 6.1 were discovered using triggers other than those based upon time-to-collision. This
was because in some cases the radar did not correctly identify the crash/near-crash target that
constituted the greatest threat. Thus, some of the events were captured by deceleration (or other)
triggers. In these cases, the points may have been misclassified based on range/range rate
calculations and therefore were not accurate depictions of the actual threat. Although the exact
number of these points was not currently known, it was estimated to be in the range of 10
percent.

As shown in Table 6.1, the approximations of the CAMP warning and conflict boundaries
provided very high hit rates for both crash and near-crash events and detected all of the crashes
with the exception of one case. However, the false alarm rate was also very high, which
indicated difficulty in discriminating valid versus invalid events as defined here. In contrast, the
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minimum error boundary had a much lower false alarm rate, but at the expense of a 26 percent
miss rate.

The results in Table 6.1 are depicted graphically in Figure 6.1. Each point on the graph
represents the point of greatest threat with the lead vehicle, which is defined as the moment at
which the two vehicles are closest during the event as determined by the radar signature. The red
points represent a random sample of the invalid events and the blue points are valid crash and
near-crash events. The area above each boundary line indicates events that would not be
triggered using the kinematic equation represented by each boundary. Alternatively, the area
below each boundary line indicates events that would be triggered. The red points above a
boundary represent correct rejections. The red points below the line are false alarms. Likewise,
the blue points above a boundary line represent misses, while blue points below a line would
indicate a hit (correctly providing a warning).
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Figure 6.1. Point of greatest threat with lead vehicle for all crashes and near-crashes, and a
random sample of invalid events. The boundaries shown are approximations of the
warning and conflict boundaries used as part of the forward collision warning algorithm
(Kiefer et al., 2003) and a minimum error boundary calculated for this dataset.

As another means to visualize the data, Figure 6.2 shows the trajectories of the selected events.

Trajectories show the timeline of a vehicle for up to 8 seconds prior to the trigger. The point at
which the trajectory crosses a boundary is the point of a hypothetical warning. As before, the
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color blue indicates a valid event and the color red indicates an invalid event. A blue line
crossing the boundary would be considered a correctly identified valid event. A red trajectory
crossing a boundary would be a false alarm. Blue trajectories that do not cross a boundary are
misses. To enhance data visualization, Figure 6.3 provides a random sample of the trajectories.
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Figure 6.2. Range/range rate trajectories of vehicles approaching a lead vehicle including
crashes and near-crashes, and a random sample of invalid events. The boundaries shown
are approximations of the warning and conflict boundaries used as part of the forward
collision warning algorithm (Kiefer et al., 2003) and a minimum error boundary calculated
for this dataset.
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Figure 6.3. Range/range rate trajectories of vehicles approaching a lead vehicle. This data
includes a random sample of crashes and near-crashes, and invalid events to improve
visualization. The boundaries shown are approximations of the warning and conflict

boundaries used as part of the forward collision warning algorithm (Kiefer et al., 2003) and

a minimum error boundary calculated for this dataset.

With regard to warning timing, Figure 6.4 provides range/range rate trajectories for the crash
events. The large blue points on each trajectory represent the time during the trajectory that was
at least 2 seconds prior to the collision and during which the crash could have been predicted.
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Figure 6.4. Range/range rate trajectories for all crashes. Trajectories include the data
points up to 2 seconds prior to the crash. The boundaries shown are approximations of the
warning and conflict boundaries used as part of the forward collision warning algorithm
(Kiefer et al., 2003) and a minimum error boundary calculated for this dataset.

Figure 6.4 also provides some insight into the utility of the radar signature. If a crash occurred,
one would expect that the range value of the trajectory would end at zero. However, noise in the
data precluded this from happening. For example, the left most trajectory in the graph represents
a case in which a driver, in order to attempt to avoid the vehicle in front of her, swerved off the
road and ran into a telephone pole. She actually clipped the right corner of vehicle in front of
her, but at the point of impact, the vehicle was heading to the right of the lead vehicle such that
the radar on the front of the vehicle did not have the lead vehicle in its field of view. In addition,
the telephone pole was not detected by the radar in a timely manner. For these reasons, the
range/range rate never got to zero in the data stream.

Therefore, the limitations of currently available (and affordable) radar, in addition to complex
lead-vehicle scenarios, caused considerable noise in the data. The result was somewhat
unreliable data classification, regardless of the ultimate use of the data.

Attempts were also made to classify the crash trajectory data further out than 2 seconds from the
ultimate crash event. As shown in Table 6.2, the ability of any of the boundary equations to
accurately classify the event as a crash decreased dramatically. This finding created some
difficulty with regard to the development of collision warning systems. Drivers must be
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provided the warning with sufficient time to perceive the warning, assess the threat, and respond
accordingly. In some lower range/higher range rate scenarios there was little time available for
such a driver response.

Table 6.2. Number of lead-vehicle crashes detected by each crash boundary based upon
the number of seconds prior to the crash.

Seconds Prior To Crash
0 1 2 3 4
Minimum Error 10 6 0 0 0
Warning 10 9 4 2 0
Conflict 11 10 7 5 3
All in scenario 11 10 7 6 3

Following Vehicle Conflicts

For following-vehicle conflicts, there were 9 crash and 52 near-crash events comprising the 61
valid events. For analysis purposes, 157 invalid events that met the criteria discussed previously
were included. Note that there were fewer following-vehicle events compared to lead-vehicle
events. This was due to the differences in the radar signatures for a forward versus a rear-facing
radar. Essentially, a forward-facing radar had many more objects to discern since gaining range
on any static object could potentially be a threat. Alternatively, a rear-facing radar only needed
to produce a signature for objects moving toward the vehicle since all other targets were
increasing in range as the vehicle moved forward.

Therefore, a boundary for following-vehicle events was calculated in an attempt to minimize the
overall error rate (i.e., misses + false alarms). The crash boundary for Following Vehicle
conflicts was:

Minimum Error Boundary: y =-0.9x + 0.7

Table 6.3 provides the hit and false alarm rates for the minimum error boundary. Once again, the
minimum error boundary provided some discrimination between valid and invalid events, but at
the cost of missing two crashes.

Table 6.3. Percentage of hits and false alarms for each boundary model for a conflict with
a following vehicle.

Conflict with Valid crash + near-crash hit Invalid false alarm Diff | Crash hit rate
Following Vehicle rate rate
Minimum Error 67% 33% 34% 7/9

Figure 6.5 represents the point of greatest threat with the Following Vehicle for the valid events
and a random sample of invalid events. The boundary shown is the minimum error boundary
calculated for this dataset.
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Figure 6.5. Point of greatest threat with Following Vehicle for all crashes and near-
crashes, and a random sample of invalid events. The boundary shown is the minimum
error boundary calculated for this dataset.

Figure 6.6 shows the trajectories of the Following Vehicle conflict data. As shown previously
with Lead-Vehicle conflicts, trajectories show the timeline of a vehicle for up to 8 seconds prior
to the trigger. The point at which the trajectory crossed the boundary was the point of
discrimination. As before, the color blue indicates a valid event and the color red indicates an
invalid event. A blue line crossing the boundary would be considered a correctly identified valid
event. A red trajectory crossing a boundary would be a false alarm. Blue trajectories that do not

cross a boundary are misses.
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Figure 6.6. Range/range rate trajectories for following vehicles including crashes and near-
crashes, and a random sample of invalid events. The boundary shown is a minimum error
boundary calculated for this dataset.
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To enhance the visualization, Figure 6.7 provides a random sample of the trajectories in Figure
6.6. An interesting note with regard to the signature of many of the trajectories in Figure 6.7 is

that the signature of the valid and the invalid events are very similar.
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Figure 6.7. Range/range rate trajectories for following vehicles including a random sample
of crashes and near-crashes, and invalid events. The boundary shown is the minimum
error boundary calculated for this dataset.
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As with lead-vehicle conflicts, the efficacy of providing a following-vehicle pre-crash prediction
based upon the minimum error boundary is discussed. Figure 6.8 provides range/range rate
trajectories for the crash events. The blue points on each trajectory represent that time during the
trajectory that was at least 2 seconds prior to the collision and during which the crash could be

predicted. Intuitively, one could deduce that 2 seconds is not sufficient time to evade a following
vehicle that is rapidly closing in.
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Figure 6.8. Range/range rate trajectories for all following-vehicle crash events. The crash
prediction trajectory shown includes the data points up to 2 seconds prior to the crash.
The boundary shown is a minimum error boundary calculated for this dataset.
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Establishing a Speed Threshold

Another aspect of a quantitative crash/near-crash boundary is the role of vehicle speed on the
correct classification of radar signatures. A speed threshold is often established to reduce the
number of false alarms; that is, sensor data acquired below a speed criterion is disregarded. As
shown in Table 6.4 the difference between correct classifications of invalid and valid events did
not improve for lead-vehicle events with the inclusion of a speed threshold. In fact, these
numbers generally decreased for the Minimum Error Boundary, held fairly steady for the
approximated Warning threshold, and slightly improved for the Conflict boundary.

Note that the data in Table 6.4 indicate that a speed threshold greatly reduced the number of
captured crash events. One issue that becomes apparent is that many rear-end crashes in the 100-
Car Study occurred at low speed. While one could argue that these crashes are much less
important since the likelihood of an injury is very low, they may be more important from driver
acceptance, property damage, and crash-caused delay points of view.
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Table 6.4. The number and percentage of events that would be correctly classified with the

addition of a speed threshold for each boundary equation for lead-vehicle conflicts.

Speed Threshold
by Boundary Boundary
Types Equation Number of Events Percent

-m b | invalid valid | crash invalid valid diff crash
Speed =0
Min error 1.3 0.5 1,272 224 10 20.56 74.42 53.86 90.91
Warn 3.5 0 4,540 270 10 73.39 89.70 16.31 90.91
Conflict 4 10 5,985 292 11 96.75 97.01 0.26 100.00
All in scenario 0 50 6,186 301 11 100.00 100.00 0.00 100.00
Speed =5
Min error 1.3 0.5 1,260 217 6 20.37 72.09 51.72 54.55
Warn 3.5 0 4,513 263 6 72.96 87.38 14.42 54.55
Conflict 4 10 5,929 287 8 95.85 95.35 -0.50 72.73
All in scenario 0 50 6,121 296 8 98.95 98.34 -0.61 72.73
Speed =10
Min error 1.3 0.5 1,141 200 4 18.44 66.45 48.00 36.36
Warn 3.5 0 4,280 248 4 69.19 82.39 13.20 36.36
Conflict 4 10 5,696 268 5 92.08 89.04 -3.04 45.45
All in scenario 0 50 5,890 277 5 95.22 92.03 -3.19 45.45
Speed =15
Min error 1.3 0.5 952 172 3 15.39 57.14 41.75 27.27
Warn 3.5 0 3,805 226 3 61.51 75.08 13.57 27.27
Conflict 4 10 5,240 250 4 84.71 83.06 -1.65 36.36
All in scenario 0 50 5,445 259 4 88.02 86.05 -1.97 36.36
Speed =20
Min error 1.3 0.5 752 135 3 12.16 44.85 32.69 27.27
Warn 3.5 0 3,159 194 3 51.07 64.45 13.38 27.27
Conflict 4 10 4,551 215 3 73.57 71.43 -2.14 27.27
All in scenario 0 50 4,767 226 3 77.06 75.08 -1.98 27.27
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Establishing a Deceleration Threshold

Another method for potentially filtering this data is to establish a filter that removes the data for
events in which the driver did not exceed a pre-specified longitudinal deceleration. The logic
here is that lead-vehicle conflicts generally are associated with higher longitudinal decelerations.
Therefore the filtering of lower decelerations may reduce the noise present without eliminating
many of the valid events of interest. The results are shown in Table 6.5 for deceleration
thresholds greater than 0.0, 0.2, 0.3, 0.4, and 0.5g. The threshold eliminated only those events in
which the driver held a constant speed or accelerated throughout the event. Therefore only a
limited number of cases were available for elimination..

As shown in Table 6.5, increasing the deceleration filtering threshold did reduce the number of
false alarms in some cases, particularly for the minimum error threshold. In all cases, the
deceleration filtering above 0.5 g reduced the number of false alarms. However, this gain was
made at the cost of eliminating a number of crash and near-crash cases of interest.
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Table 6.5. The number and percentage of events that would be correctly classified with the
addition of a deceleration threshold for each boundary equation for lead-vehicle conflicts.

Deceleration
Threshold by Boundary
Boundary Types Equation Number of Events Percent

-m b | invalid | valid | crash invalid valid diff crash
Decel > 0g
Min error 1.3 0.5 1,054 214 8 17.04 71.10 54.06 72.73
Warn 3.5 0] 4,240 260 9 68.54 86.38 17.83 81.82
Conflict 4 10 ] 5,640 279 10 91.17 92.69 1.52 90.91
All in scenario 0 50| 5,842 288 10 94.44 95.68 1.24 90.91
Decel > 0.2g
Min error 1.3 0.5 691 192 8 11.17 63.79 52.62 72.73
Warn 3.5 0] 3,587 232 8 57.99 77.08 19.09 72.73
Conflict 4 10 ] 4,909 248 9 79.36 82.39 3.04 81.82
All in scenario 0 50| 5,093 255 9 82.33 84.72 2.39 81.82
Decel > 0.3g
Min error 1.3 0.5 542 185 7 8.76 61.46 52.70 63.64
Warn 3.5 0] 3,152 225 7 50.95 74.75 23.80 63.64
Conflict 4 10 ] 4,388 240 8 70.93 79.73 8.80 72.73
All in scenario 0 50 | 4,566 245 8 73.81 81.40 7.58 72.73
Decel > 0.4g
Min error 1.3 0.5 344 178 6 5.56 59.14 53.58 54.55
Warn 3.5 0] 2,464 217 6 39.83 72.09 32.26 54.55
Conflict 4 10| 3,547 229 7 57.34 76.08 18.74 63.64
All in scenario 0 50| 3,713 233 7 60.02 77.41 17.39 63.64
Decel > 0.5¢
Min error 1.3 0.5 71 156 5 1.15 51.83 50.68 45.45
Warn 3.5 0 431 189 5 6.97 62.79 55.82 45.45
Conflict 4 10 588 197 5 9.51 65.45 55.94 45.45
All in scenario 0 50 620 199 5 10.02 66.11 56.09 45.45

DISCUSSION

Throughout this chapter, several reasons were noted for why the crash boundary methods did not
perform perfectly. One reason was simply noise in the sensor data. In some cases, radar units
missed the critical target. In the example given previously of the driver who swerved, clipped a
lead vehicle, then hit a telephone pole, the lead vehicle at the point of impact and the telephone
pole never appeared as targets. Alternatively, radar units detected non-critical targets, such as
guardrails, when the road geometry was off angle. For these cases, more sophisticated
technology and algorithms would reduce the current level of false alarms and misses.

Despite potentially correctable imperfections in the radar sensor, this data clearly showed that
development of purely quantitative near-crash criteria (i.e., not requiring at least some degree of
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verification by a human analyst) is not currently feasible for most cases. A primary reason for
this was that the kinematic signatures associated with near-crash events were virtually identical
to many common driving situations that were not indicative of crash risk. Thus, qualitative and
quantitative criteria are dependent upon one another to some degree. A qualitative criterion must
be based on quantitative criteria that are based on crash risk. Similarly, a quantitative criterion
alone will not suffice without qualitative information regarding the validity of the near-crash
based upon context information such as the presence of a planned versus an unplanned
maneuver.

The implication for large naturalistic data collection is that to ensure proper identification of
valid and invalid events there will likely be a need, at least in the foreseeable future, for video
data verification of dynamically triggered events. However, as discussed in the report Goal 10:
Evaluation of the Performance of the 100-Car Naturalistic Driving Study Data Reduction Plan,
Triggering Methods, and Data Analysis (separate report), given current video technology, such
verification is neither difficult nor expensive relative to the overall collection effort of such
large-scale field tests. It is important to understand in reviewing these results that from a large-
scale naturalistic study perspective, crash detection is reasonably straightforward since there is
often a greater than 1.0g peak deceleration when the crash occurs. More problematic is the
elimination of near-crash cases. However, depending on the size of the study, it may be
reasonable to make an a priori decision to capture about of 70 percent of 25,000 or 30,000 near-
crash events if the false alarm rate can be reduced to the 10 percent range. Alternatively, as will
be discussed in greater detail in the Goal 10 Report (separate report), the cost of a false alarm is
fairly low given the capability of the data reduction tools used in this study. Specifically, a
trained reductionist can sort between the presence or absence of a valid conflict using video data
at the rate of about 50 per hour.

The implications of these results also highlight the difficulties for deploying forward crash
warning systems in the near term. Admittedly, the analysis presented is cursory and the
boundary equations simplistic. Nevertheless, the sheer number of misclassified events and the
relative range/range rate position of valid and invalid events indicates that a feasible, beneficial
and acceptable countermeasure system might require more sophisticated information (e.g.,
whether or not the driver is looking forward) or possibly braking authority instead of a simple
warning.
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CHAPTER 7: GOAL 3, CHARACTERIZATION OF DRIVER INATTENTION AS IT
RELATES TO INCIDENTS, NEAR-CRASHES, AND CRASHES

DATA ANALYSIS OVERVIEW

Secondary task distraction and other sources of inattention have been issues in driving for many
years. More recently, the increased use of cellular telephones (cell phones) and personal digital
assistants (PDAs) by drivers has again raised the issue of tasks that can be safely performed in an
automobile while driving. While data collected in controlled settings such as test tracks and
simulators suggest that driving while performing many tasks, including cell phones, can degrade
driving performance, other research suggests that driving performance when dialing a cell phone
is less affected than driving performance when talking to passengers, eating, or looking for an
object in the vehicle (Stutts, et al., 2003).

This chapter addresses four types of driving inattention, which have been operationally defined
as:

e Secondary task distraction — driver behavior that diverts the driver’s attention away
from the driving task. This may include talking/listening to cell phone, eating, talking
to a passenger, etc. A complete list of all secondary task distractions is provided in
Appendix D.

e Driving-related inattention to the forward roadway — driver behavior that is directly
related to the driving task but diverts driver’s attention away from the forward field of
view. This includes such items as checking the speedometer, checking blind spots,
observing adjacent traffic prior to or during a lane change, looking for a parking spot,
and checking mirrors.

e Drowsiness— driver behavior that included eye closures, minimal body/eye
movement, repeated yawning, and/or other behaviors based upon those defined by
Wierwille and Ellsworth (1994).

e Nonspecific eyeglance away from the forward roadway -- cases in which the driver
glances, usually momentarily, away from the roadway, but at no discernable object or
person. Eyeglance reduction and analysis of these cases was accomplished for crash
and near-crash events only.

A two-step data reduction process was conducted to create a database for the data described
above. First, the data reductionists assessed whether inattention was a contributing factor to the
presence or severity of the event in question. This assessment required the presence of two
separate criteria: (1) The reductionists looked for instances in which the presence of driver
inattention occurred within 3 seconds of the onset of the conflict or at the onset of the conflict,
and (2) The reductionists assessed whether the presence of the inattention contributed to the
presence or severity of the event. This was accomplished by assessing factors such as driver
reaction time to determine whether the driver’s initial performance or subsequent response was
consistent with the inattention in question. Examples of some of the most common situations
include: an inopportune glance away from the roadway to check a blind spot at the precise
moment of an unexpected forward event, an inappropriate level of secondary task engagement
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leading to a lane tracking error in the presence of other traffic, or a case of drowsiness resulting
in a delayed reaction time.

A second data reduction process occurred using eyeglance analysis for all near-crash and crash
events. For this analysis, eyeglances away from the forward roadway were reduced to determine
driver eyeglance location and duration. These cases also included inattention analysis regardless
of whether inattention was judged to be a contributing factor in the analysis described above.
This was accomplished because there were a number of cases of short glances away from the
forward roadway that probably contributed to the presence or severity of events that were not
apparent during the initial review process. For this analysis, the last eyeglance location away
from the forward roadway that occurred during a window of 3 seconds prior and 1 second after
the onset of the conflict was used for classification. If the eyeglance was to a specified location
(rear-view mirror, toward passenger, or toward cell phone), the eyeglance is categorized as either
driving-related inattention or secondary task distraction as defined above. If the eyeglance is
toward an internal or external location and the source is unknown, then the eyeglance is
categorized as “non specific.”

Driver Data Included in the Analyses

As discussed in Chapter 2, Method, 109 primary drivers were recruited to participate in this
study; however, data reduction was effectively conducted on 241 participants since many of the
primary drivers allowed family members and friends to drive their vehicles. There was no
unobtrusive, feasible method of determining driver identification in the raw data, so driver
identification was performed during data reduction. Demographic information for the additional
drivers was not obtained.

For data analyses that do not consider driver age, gender, or vehicle miles traveled (VMT), data
from all 241 participants was used in the analyses. For data analyses that included age and
gender, the 109 primary drivers were used (those with fewer than 1,000 VMT were excluded,
leaving 98 drivers in the analyses).

VMT per driver was estimated only for primary drivers. Estimates were calculated based on
video reduction during which reductionists viewed a sample of 100 trip files for each vehicle and
recorded whether the primary driver was operating the vehicle. The proportion of trip files that
the primary driver was behind the wheel was multiplied by the total VMT for that vehicle to
arrive at a VMT estimate for each primary driver. VMT was not calculated for secondary drivers
since speed sensor data for this group indicated that they drove fewer than 1,000 miles for the
year.

Overall Rate of Events by Driver

Figure 7.1 provides an overview of the total number of events per driver per vehicle mile
traveled. Rate is calculated with the frequency of events for each driver divided by their VMT.
To obtain the rate of events per million vehicle miles traveled (MVMT), the total of events was
multiplied by 1,000,000. As shown in Figure 7.1, the rate of events per driver was highly
variable. It is important to consider this variability in considering the analyses described in this
section.
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Figure 7.1. Number of events per MVMT (N=98).
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Figure 7.2 below shows the subject variability in the rate of inattention-related event
occurrences. In each of the events below, the driver was either labeled by data reductionists to
be engaging in a secondary task, inattentive to the forward roadway, drowsy, or looked away
from the forward roadway at a nonspecific object or person (for crashes and near-crashes only).
The range in variability, while still very high, is somewhat reduced from the overall subject
variability rate of occurrence of total events.
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Figure 7.2. Frequency of inattention-related events per MVMT in which inattention is due
to: (1) drowsiness, (2) inattention to the forward roadway, (3) secondary task, (4) specific
eyeglance away from forward roadway (for crashes and near-crashes only) or (5)
nonspecific eyeglance away from forward roadway (for crashes and near-crashes only).
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Question 1. What is the relative frequency of events for which driver inattention was a
contributing factor? What is the relative frequency of occurrence of driver inattention
events versus non-driver inattention events for incidents, near-crashes, and crashes?

Figure 7.3 shows the total frequency of crashes, near-crashes, and incidents for which drivers
were inattentive versus those events for which the driver was attentive. Note that the frequency
of incidents is two orders of magnitude higher than the frequency of crashes; percentages of total
crashes and near-crashes will be used when appropriate for the remainder of this chapter to aid in
readability.
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Figure 7.3. Frequency of crashes, near-crashes, and incidents for which drivers were
inattentive versus attentive (Driver N = 241).

Percentage of Attentive versus I nattentive-Related Events by Severity Level

It was determined that the relative frequency of events for which driver inattention was a
contributing factor versus the relative frequency of events for which driver inattention was not a
contributing factor. Inattentive events included those cases for which the reductionists identified
the driver as being in one of the four categories of inattention: secondary task; driver-related
inattention to the forward roadway; drowsiness; or nonspecific eyeglance away from the forward
roadway (crashes and near-crashes only). Attentive drivers were not engaged in these behaviors.

The percentage of events of differing severities identified in the 100-Car Study database as
having driver inattention listed as a contributing factor is shown in Figure 7.4 (i.e., The crashes
that were marked as inattentive plus the crashes that were marked attentive is equal to total
number of crashes). The overall percentage of driver inattention-related events decreased with
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decreasing event severity. For the least severe, incident category, the majority of events (i.e.,
71%) did not involve inattention. An important finding that will be discussed in several sections
of this report is that the most severe events generally had multiple factors associated with them.
As indicated in Figure 7.4, the majority of the crash and near-crash cases involved a combination
of factors that included a precipitating event (which was commonly present) in conjunction with
some form of driver inattention to the forward roadway. Conversely, incidents often occurred
after a precipitating event, but while the driver was attentive. Thus, these results indicate that
inattention often leads to increased incident severity, leading to more near-crash and crash
circumstances. It also indicates that there is at least one important conceptual difference between
incidents versus near-crashes/crashes. Specifically, incidents may not be as predictive of the
combinations of factors that lead to crashes, but may be more predictive of the presence of
precipitating events.

An important finding of this report is that almost 80 percent of all crashes and 65 percent of all
near-crashes involved the driver looking away from the forward roadway just prior to the onset
of the conflict. Further analyses of eyeglances for incidents are underway and will be reported in
a follow-up report.
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Figure 7.4. Percentage of events that drivers were inattentive versus attentive by severity
level (Driver N = 241).

Percentage of Events for which Inattention was a Contributing Factor

As stated previously, the majority of crashes and near-crashes identified in the 100-Car Study
database had at least one type of driver inattention listed as a contributing factor. Obtaining the
frequency of events was conducted by calculating the frequency of each category of inattention
as well as each combination of attention types as there were many crashes, near-crashes, and
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incidents that contained more than one type of inattention (e.g., one crash had drowsiness listed
as a contributing factor as well as driving-related inattention to the forward roadway). Given that
this is the first dataset where it is possible to determine a single or multiple sources of driving
inattention, all combinations will be presented and discussed.

Figure 7.5 shows the frequency of each inattention type for crashes and near-crashes. Note that
combinations of factors are also presented. As shown, secondary task distraction was associated
with the highest percentage of crash and near-crash events followed by driving-related
inattention to the forward roadway. It is important to note that these data represent percentages
derived from raw frequencies, thus exposure is not accounted for. Specifically, one needs to
determine the frequency and duration with which each of these categories of inattention are
present during normal, non-event, driving in order to make judgments about relative risk. As of
this writing, an additional analysis is underway that will establish exposure and make such
relative risk comparisons.

Figure 7.5 and Figure 7.6 also show that for the inattention-related events, that there is a
significant component of drowsiness. Over 10 percent of the inattention-related crashes and
near-crashes had driver drowsiness as a contributing factor. An interesting additional
observation for these cases is that the majority of the events occurred during the day, many
during the morning commute.

Nonspecific eyeglances also contributed to a relatively high number of crash and near-crashes.
Figure 7.6 shows that almost 10 percent of the inattention-related crashes and almost 20 percent
of the inattention-related near-crashes involved cases where the driver looked away from the
forward roadway, but not to any apparent location.

An important aspect of the data shown in Figure 7.6 is the degree to which the crash percentages
mirror the near-crash percentages. In fact the three highest single-case categories, secondary
task distraction, driving-related inattention and drowsiness, are all very close in this regard. The
case where crash and near-crash percentages differ the most is the nonspecific eyeglance
category (Figure 7.6). One possibility is that the level of inattention associated with this
category is somewhat lower than some of the other inattention categories (either singly or in
combination) perhaps resulting in a higher percentage of successful evasive maneuvers.
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Figure 7.5. The frequency of crashes and near-crashes in which these types of inattention
were identified as a contributing factor.

@ Crash

m Near Crash

'S'N
+ SSBUISMOI( + YSeL Alepuodss
‘'S'N
+ uonuaneu| "y'g + ysel Arepuodss
- ssauIsmolq
+ uonuaneu| parejey-buing

9oue|9 9A3 *N + Sssauismolqg

2oue|9 9k3 'S'N + uonuaneu| ¥-a

uonuspeu| ¥-q + ysel Arepuodas

9oue|9 akg ay10ads UoN

ssauismoig

99ue|9 9A3'S'N + Mse Arepuodas

uonuaneu| payepy-buinlg

yse] Alepuodss

!

19]
[32)

I
7T
Q 1 O nw O 1w O
® N &

sayseld

IeaN pue saysel) pare|ay-uoiuaieu| Jo 1usdiad

Type of Inattention
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were identified as a contributing factor.
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Figure 7.7 shows the breakdown of the types of inattention to the forward roadway for incidents.
As was discussed previously, no eyeglance analysis was conducted for the incidents as part of
this study, so the nonspecific eyeglance categories are not provided. Note that the majority of
the inattention-related incidents involved secondary task engagement, followed by drowsiness,
and driving-related inattention to the forward roadway.
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Figure 7.7. The frequency of incidents in which these types of inattention were identified as
a contributing factor.
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Rate of Events for Severity Level by Attention
The number of events for each driver was divided by their VMT to account for exposure. This

number was then averaged across drivers and multiplied by 1,000,000 to determine rates per
MVMT.

Please note that the rate of inattention-related events is higher for both crashes and near-crashes,
but as discussed previously, only 29 percent of the incidents have inattention listed as a
contributing factor. Again, the nonspecific eyeglance data is not included in the incident
category since these data were not reduced as part of the scope of this project. However, it is
hypothesized that the number of incidents with inattention as a contributing factor will be higher
once it is possible to include these events. Regardless, the results shown in Figure 7.8
demonstrate that inattention affects a higher proportion of crashes and near-crashes than
incidents.
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Figure 7.8. Comparison of inattention and attention-related events by severity level per
MVMT (Driver N = 98).
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Rate of Events per MVMT for Age by Attention

The rate of events for each age group was calculated in a similar manner as the rate of events by
each level of severity level (Figure 7.9). The rate of attentive events is higher for all age groups,
however, the overall rate of event occurrence as well as the rate of occurrence of inattentive
events is significantly higher for the 18- to 20-year-old age group than for any other age group, F
(5,91)=4.44, p <0.01. This finding is not surprising as it is a well-documented finding that
younger drivers are involved in more crashes than are in age groups. It is also not surprising that
the younger age group was involved in more inattentive events as Stutts et al. (2003) reported
that younger drivers were more distracted by participants in the vehicle than other age groups as
well as by other types of secondary tasks.
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Figure 7.9. The rate of inattentive versus attentive events per MVMT by age group.

The rates of attentive versus inattentive drivers by age are also shown for crash (Figure 7.10) and
near-crash (Figure 7.11) events. As shown, the rate of inattention-related crash and near-crash
events decreases dramatically with age, with the rate being as much as four times higher for the
18- to 20-year-old age group relative to some of the older driver groups. This again supports the
need to develop countermeasures that limit distractions and perhaps educate younger drivers of
the hazards associated with inattention to the forward roadway form all of the sources shown in
the section.
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Inattentive versus Attentive Crashes
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Figure 7.10. The rate of inattentive versus attentive crashes per MVMT by age group.
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Question 2. What is the relative frequency of types of inattention involved in incidents,
near-crashes, and crashes? Do some types of inattention result in more severe driving
events?

To address Question 2, the frequencies and percentages will be presented for “occurrences”
instead of by “events.” As was shown in the prior section, more than one category of inattention
was sometimes classified for a single event. To account for this, we included the inattention
classification in both categories instead of presenting combinations (i.e., for readability due to
the number of categories) or prioritizing one classification over another. Thus, the total number
of occurrences, as depicted in the following figures, will exceed the total number of events
depicted in the figures presented up to this point.

The analyses for Question 2 used the data from all of the drivers (driver N = 241). Figure 7.12
shows the frequency of each type of secondary task inattention-related occurrence. Note that
wireless devices, including primarily cell phones and personal digital assistants (PDAs), account
for the highest frequency of inattention-related occurrences, while passenger-related inattention
was the next most frequent secondary task.
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Figure 7.12. Comparison of the number of occurrences of the presence distracting agent as
a contributing factor (Driver N = 241).
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Figure 7.13 shows the secondary task distraction types broken out for crash and near-crash
events. As shown, the most frequent secondary tasks contributing to crashes were internal
distractions, wireless devices, and passengers. The most frequent types of inattention for near-
crashes and incidents were wireless devices and passenger-related tasks.
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Figure 7.13. Comparison of crashes and near-crashes the frequency of occurrences of the
presence, either alone or in combination, of the distracting agent as a contributing factor
(Driver N = 241).

Figure 7.14 shows the frequency of driving-related inattention occurrences involving glances
away from the forward roadway for each level of severity. Left window and right window
glances were the most frequent contributors to the total number of inattention-related incidents.
However, center mirror glances occurred most frequently during near-crash events and left
window glances occurred the most during driving-related inattention crash events. As was stated
previously, it is important to note that these numbers represent raw frequencies and do not
account for exposure in terms of frequency of glances in non-event driving.
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Figure 7.14. Frequency of occurrence of driving-related inattention to forward roadway,

alone or in combination, by level of severity (Driver N = 241).

Frequency of Secondary Tasks

Figures depicting the numbers of occurrences for each type of secondary task are presented in
the following section. Please note that a few of the figures may exceed the y-axis. These bars
contain an “explosion mark” with the frequency shown in numerical form. This was done to

improve the readability of some of the lower frequency occurrences.

Wireless Devices. Figure 7.15 shows a frequency distribution of all the wireless device tasks

recorded by the data reductionists. The categories were all defined by name except for the cell
phone — other category. This category was added to include all the events for which the driver

was clearly not dialing or talking on the cell phone but rather looking at the display as if

screening phone calls or reading text messages. Talking/listening on a cell phone was most
frequently cited as a contributing factor to conflicts while dialing or answering the cell phone
was the second most frequent contributing factor. While this finding could be an artifact of task
duration or exposure, a considerable body of research suggests that dialing degrades driving
performance more than talking or having a conversation (Jenness, et al., 2002). While this may
be true, these results suggest that drivers are involved in more traffic conflicts while engaged in

cell phone conversations than while dialing.
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In-Vehicle-System-Related Secondary Tasks. Figure 7.16 shows the distribution of in-vehicle-
system-related secondary tasks. This category was a compilation of events directly related to the
operation of in-vehicle system devices (i.e., radio or HVAC system). The category adjusting
other in-vehicle system operations included events for which the reductionists could either: (1)
not distinguish whether the driver was adjusting either the radio or the HVAC system; or (2) the
driver was adjusting an added in-vehicle system component. Drivers were involved in more
near-crashes and incidents while adjusting the radio than any other in-vehicle system operation,
including inserting cassettes or compact discs. Only one crash occurred while the driver was
either adjusting the radio or the HVAC system.
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Figure 7.16. Frequency of occurrences for which the contributing factor was a vehicle-
related task.
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Passenger-Related Secondary Tasks. As shown previously (figures 7.12 and 7.13), passenger-
related secondary tasks were the second most frequent cause of inattention associated with
crashes, near-crashes, and incidents. The breakdown of the type (i.e., adult or child) and location
of the passengers is shown in Figure 7.17. While it was somewhat difficult to ascertain, due to
camera views, whether there were passengers, it was often possible to observe a hand reach
across the camera views or view a leg in the passenger’s seat in the over-the-shoulder camera
view. It was also possible at times to identify the strong possibility of a passenger if the driver
was clearly speaking/gesturing and looking towards the passenger seat. When this was possible,
the reductionists marked passenger in the adjacent seat as the cause of inattention. If the driver
was clearly vocalizing but did not frequently glance over at the passenger seat or in the rear seat
of the vehicle, reductionists would mark this talking/singing. Therefore, in the talking/singing
category, it is unknown whether or not there was a passenger in the vehicle. It was sometimes
difficult to determine if there were children in the back seat, so some of the general
talking/singing may fall into this category.

The frequency of events for which there was a passenger in the adjacent seat was by far the most
common for all levels of severity. Other studies have found that children in the rear passenger
seats are a frequent distracter (Stutts, et al., 2003). Since many of the subjects in this study were
younger and because it was difficult to ascertain whether a child was in the rear seat, these
factors may have contributed to the low occurrence of events for this category.
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Figure 7.17. Frequency of occurrences in which the contributing factor was passenger-
related secondary tasks. (Driver N = 241).

There was only one crash that occurred while the driver was vocalizing with no apparent
passenger present, however there were 100 incidents and 12 near-crashes that occurred (Figure
7.18). Again, while a passenger may have been present in these events as well, it was sometimes
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difficult to ascertain this during reduction. Please recall, as discussed in the Chapter 2: Method
for Phase Il Field Test that due to the IRB and Certificate of Confidentiality requirements, no
other passengers could be captured on video to maintain the anonymity of uninformed
participants.
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Figure 7.18. Frequency of occurrences in which the contributing factor was
talking/singing: no passenger apparent secondary tasks. (Driver N = 241).
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External Secondary Tasks. External secondary tasks involved drivers who became interested in
something outside the vehicle such as a crash or a construction zone. Appendix D lists
descriptions for each of the tasks listed in Figure 7.19. Note that one crash and 10 near-crashes
were listed under other external distraction meaning that the reductionists could not determine
what the driver was observing outside the vehicle. Generally, this category was identified in a
relatively low number of events, which contradicts other studies of this type (e.g., Stutts et al.,
2003). This may have been partly due to the difficulty in determining whether the driver was
observing something specific outside the vehicle or randomly gazing out the window. However,
even when considering the external nonspecific eyeglance locations for crash and near-crash
events, this category is still lower than other studies have indicated.
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Figure 7.19. Frequency of occurrences in which the contributing factor was an external
secondary task (Driver N = 241).
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Internal Secondary Tasks: Not Vehicle or Passenger-Related. The internal secondary task
category involved the drivers manipulating or locating miscellaneous objects in the vehicle that
were not related to in-vehicle systems, other passengers, wireless devices, or specified secondary
tasks (such as eating or smoking, which are located under dining and smoking categories). The
task types under this category were less frequent compared to other categories (i.e., well under
100 occurrences for each type). All of these categories are defined in Appendix D. Note that
both reaching for an object having an object or animal in the vehicle, and moving object in
vehicle contributed to crashes. The first two of these categories, plus reading, were the primary
contributors to near-crashes (Figure 7.20).
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Personal Hygiene. This category of secondary tasks pertained to the driver engaging in any
grooming, cleaning, or attending to themselves as opposed to being attentive to a miscellaneous
object. Again, note that all of the personal hygiene categories are defined in Appendix D. While
the overall frequency for this type of secondary task is not as high as other categories, this
category is of interest when determining whether drivers are remembering that they are in an
instrumented vehicle. No crashes occurred while drivers were engaged in personal hygiene, but
a number of near-crashes occurred (Figure 7.21).
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Figure 7.21. Frequency of occurrences in which the contributing factor was a personal
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Dining. For the secondary task category of dining, a distinction was made between drinking out
of a covered versus open container (i.e., with or without a lid) and eating with or without
utensils. Note that in Figure 7.22, eating without utensils and drinking from an open container
both contributed to more crashes and near-crashes than drinking from covered containers or
eating with utensils. It is intuitive that drinking from an open container would contribute to more
overall events since it is a more difficult task than drinking from a container with a lid.

However, it also makes intuitive sense that eating with utensils would be more difficult than
eating without utensils, and yet the frequencies show more higher-severity events when eating
without utensils. Given that most meals in a vehicle are eaten without utensils, there are
probably different levels of exposure for these two tasks.
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Figure 7.22. Frequency of occurrences in which the contributing factor was a dining task
(Driver N = 241).
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Smoking. Few occurrences listed smoking as a contributing factor (Figure 7.23). Note that the
act of smoking was a contributing factor more often than lighting or reaching for a cigar or
cigarette. Incidentally, one rear-end struck collision was caused by a driver in the other vehicle
who was lighting a pipe. The driver admitted this to the police officer; however, that event is not
recorded here as all events are based upon the instrumented vehicle driver. For the one near-
crash that occurred, the driver was smoking a cigar/cigarette and looked away from the forward
roadway prior to the onset of the conflict.
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Daydreaming. Figure 7.24 shows the number of occurrences for which the reductionists
believed the driver was either lost in thought or looked in the direction of but did not observe the
conflict (see Appendix D for more detailed definitions of these categories). The low frequency
counts reflected the difficulty in assessing whether a driver was daydreaming by simply
examining the video. Therefore, the true frequency of daydreaming is probably higher than
shown in Figure 7.24.
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Figure 7.24. Frequency of occurrences in which the contributing factor was a daydreaming
task (Driver N = 241).

Question 3. For the incidents, near-crashes, and crashes for which inattention was a
contributing factor, what is the prevalence of other driving behaviors occurring such as
willful behavior, driver impairment, or drowsiness?

This analysis was conducted to determine if the occurrence of any particular driver (e.g.,
aggressive driving) behavior tended to increase the level of severity of the event. Also, did the
occurrence of inattention plus aggressive driving lead to a near-crash or crash event? For this
analysis, percentage values were calculated based upon the total number of events (regardless of
attention level).

Data reductionists identified those events for which the driver was demonstrating willful
behavior, which was one or a combination of several of the following: aggressive driving, willful
violation of traffic laws, or use of vehicle for purposes of intimidation. Driver proficiency was
recorded by data reductionists when they observed drivers violating traffic laws or controlling
the vehicle in a manner such that it was assumed that the driver lacked knowledge. Examples
included consistently driving in an unsafe manner (i.e., stopping or braking suddenly without
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cause) and attempting to perform maneuvers for which the vehicle was not designed (i.e.,
attempting a U-turn without enough available roadway). Driver drowsiness was briefly
discussed previously, but is also discussed in this section in conjunction with driver
physical/mental impairment. Driver physical/mental impairment, similar to GES variable D3,
Driver Physical/Mental Condition, was recorded by reductionists to include drowsiness as well
as anger, other emotional states, drug or alcohol use, etc. Reductionists only specified drug or
alcohol use when it was explicit or when the driver admitted to the behavior during the
debriefing process.

Figure 7.25 shows the frequency of willful behavior, driver impairment, and driver proficiency
events. The figure shows that driver proficiency appeared to be more problematic than
aggressive driving or driver impairment for all levels of severity.
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Figure 7.25. Frequency of driver inattention, willful behavior, and driver impairment on
the total number of crashes, near-crashes, and incidents in the 100-Car Study database.
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Figure 7.26 shows the frequency of the various levels of driver impairment. Please note that
drowsiness generally accounted for 22 percent of all events whereas the rest of the impairments
were fairly infrequently identified. Without actual interviews for each event, this type of
information was difficult to obtain via video reduction.
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Figure 7.27 shows the frequency of inattention plus driver behavior for crashes, near-crashes,
and incidents. While inattention and driving proficiency were paired together frequently,
inattention and willful behavior or driver impairment were less so, although 5 crashes were
attributed to the combination of inattention and willful behavior.
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Figure 7.27. The percentage of events that included both inattention and willful behavior,
driver proficiency, or driver impairment.

Question 4. Do drivers conversing on cell phones exhibit poorer driving performance than
drivers not using cell phones?

While comparisons could potentially be made of drivers on the cell phone to an estimated
baseline dataset, it would be more appropriate to address this question using actual baseline
driving data. Baseline driving data will be identified and reduced as part of a follow-on effort.
Specifically, events will be reduced for which no conflicts occurred and reductionists will record
whether the driver is or is not talking on a cell phone.

DISCUSSION

Historically, driver distraction, as well as possibly driver drowsiness, has been typically
discussed as a secondary task engagement. In this paper the definition of driver distraction has
been expanded to a more encompassing “ driver inattention” construct by including three new
categories, “driving-related inattention to the forward roadway,” and “nonspecific eyeglance'.
“Driver-related inattention to the forward roadway” involves the driver checking rear-view
mirrors or their blind spots. This new category was added after viewing multiple crashes, near-
crashes, and incidents for which the driver was clearly paying attention to the driving task, but
was not paying attention to the critical aspect of the driving task (i.e., forward roadway).
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A second analysis of the crashes and near-crashes in the 100-Car Study database was also
conducted using the eyeglance analysis performed manually by data reductionists. The “ non
specific eyeglance away from forward roadway” describes cases in which the driver glances,
usually momentarily, away from the roadway at a non-discernable object. Cases where the
object could be identified were classified as either driving-related inattention to the forward
roadway or secondary task distraction depending on what the driver was looking at. For this
project, eyeglance reduction was accomplished for crash and near-crash events, so this category
can only be used for the more severe categories. This analysis suggested that driver’s glances
away from the forward roadway potentially contribute to a much greater percentage of events
than the first three categories of inattention suggest.

Thus, with the addition of these two categories, driver inattention has been operationally defined
as including drowsiness, engagement in secondary tasks, driving-related inattention to the
forward roadway (checking blind spots), and nonspecific eyeglance way from the forward
roadway. All of these events were identified by reductionists viewing the driver’s behavior
surrounding the onset of the event.

It is important to note that the data presented in this section represents raw frequencies or
percentages derived from raw frequencies, thus exposure is not accounted for. Specifically, one
needs to determine the frequency and duration with which each of these categories of inattention
are present during normal, non-event, driving in order to make judgments about relative risk. As
of this writing, an additional analysis is underway that will establish exposure and make such
relative risk comparisons.

Several very important results were identified as part of this analysis.

e For the crashes and near-crashes, the driver looked away from the forward roadway at
least once in a 4 seconds window surrounding the events (3 seconds prior and 1 second
post-event onset) in almost 80 percent of the crash cases and 65 percent of the near-crash
cases.

e The rate of inattention-related crash and near-crash events decreases dramatically with
age, with the rate being as much as four times higher for the 18- to 20-year-old age group
relative to some of the older driver groups (i.e., 35 and up).

e The use of hand-held wireless devices (primarily cell phones but including a small
presence of PDA use) was associated with the highest frequency of secondary task
inattention-related events. This was true for both events of lower severity (i.e., critical
incidents) and for events of higher severity (i.e., near-crashes). Wireless devices were
also among the categories associated with the highest frequencies of crashes and minor
collisions, along with looking/reaching for an object in vehicle and passenger-related
secondary tasks.

e Drowsinessand driving-related inattention to forward roadway were also listed among
the most frequent contributors to crashes and near-crashes. The driving-related
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inattention to the forward roadway category: looking out the left window was associated
with the highest number of events for this classification. Both of these categories were
higher than expected based upon previous research or conventional wisdom.

Driver inattention did not appear to combine meaningfully with driver mental/physical
impairment, willful behavior, or driver proficiency to contribute to events, although these
behaviors on their own did contribute to many of the events in the 100-Car Study database.

A few issues should be noted when interpreting the above results. Secondary tasks, drowsiness,
and inattention to forward roadway were recorded by reductionists as objectively as possible.

For example, passenger in vehicle was recorded when a reductionist observed the presence of a
passenger in conjunction with the driver reacting either late or in an inappropriate manner.
Therefore, the fact that an event occurred with a passenger in the vehicle cannot be interpreted as
a cause of the event; instead, the presence of a passenger can only correlated with an event. This
is true for every secondary task, including the use of a cell phone. These correlations will be
further analyzed in follow-on work. Driver performance during inattention and baseline events
will be used to perform statistical tests for which inferences can then be discussed.

Eyeglance analysis, while manually performed by reductionists, is an objective task that is
somewhat less prone to human error. Nevertheless, a driver’s glance direction, even if focused
on the onset of an event, provides no guarantee that the driver will see or perceive the situation
appropriately. While human error cannot be entirely removed from this type of data collection,
reductionists determination of inattention and eyeglance data are both required to shed light on
the problem of driving inattention.
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CHAPTER 8: GOAL 4, DRIVER PERFORMANCE IN INSTRUMENTED VEHICLES
OVER TIME: OVER THE FIRST FEW HOURS, OVER THE FIRST YEAR, AND
OVER ONE MONTH FOR SAME DRIVER IN PRIVATE VERSUS LEASED
VEHICLES

DATA ANALYSIS OVERVIEW

The questions addressed in Chapter 8, Goal 4 were intended to explore issues of whether driver
behavior in an instrumented vehicle changed over time. The units of time used were weeks
(weeks 1 through 50) and hours (the first 50 hours). The issues explored were driver behavior in
a newly instrumented leased vehicle in the first weeks as compared to driver behavior in the first
few hours of driving, and driver behavior for the same driver in four weeks of leased vehicle
driving and four weeks of private vehicle driving by the end of the study.

The analyses discussed in this chapter were conducted using epidemiological methods. The
definitions and formulas presented are from Greenberg et al. (1993). Some of the terms and
assumptions have been modified to fit the current dataset and analyses. The 100-Car Study was
deemed to most closely fit the definition of a cohort study, in which investigators identify an
initial population and determined their initial exposure status. Groups were then exposed to
different conditions and tracked over time. So in the case of the 100-Car Study, the initial cohort
was the group of drivers who agreed to participate. If the exposure of interest was exposure to a
leased vehicle (as opposed to the private vehicles they had all been driving up to this time), then
some of the drivers would be exposed to a leased vehicle while others would remain in their
private vehicles. Driving behavior would then be tracked over time.

According to Greenberg et al. (1993), the appropriate analysis for this type of study is the risk
ratio (sometimes called relative risk; it will be referred to as RR in this report). This requires the
data to be put into the form shown in Table 8.1.

Table 8.1. Example data matrix for calculating risk ratio. A, B, C, and D are the numbers
of cases satisfying each criteria.

QOutcome Exposed Unexposed Total
Week of Interest A B A+B
Control Week C D C+D
Total A+C B+D A+B+C+D
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The formula for calculating RR is:

RR:M Eq.

R(unexposed)

in which Rexposedy = the risk of an outcome for an exposed person and R unexposed) = the risk of an
outcome for an unexposed person. The formula for calculating these risks takes the form:

A

=— Eq. 2
R(exposed) A + C q

in which A and C are obtained from Table 8.1. The formula for calculating RR can thus be
expressed as:

rRr= A(A+C) Eq. 3
B/(B+ D)
For each RR calculated in this way, the 95™ percentage confidence intervals can then be
calculated using the following formula:
95%Cl =expil.96\/l_A/EAA+C)+1_B/(BB+D) Eq. 4

These confidence intervals tend to be asymmetric for RR calculations (with a lower bound of 0
and no upper bound).

For the 100-Car Study dataset, one of the primary questions in calculating RR was the decision
regarding which period(s) of time to use as a control period for each question of interest. A
preliminary examination showed that the data were rather noisy over time, so a decision was
made to use an average of the final 10 time periods for each dataset as the control period. For
the analyses performed by week, weeks 41-50 were used, while for the analyses by hour, hours
41-50 were used.

With regard to the research questions for Chapter 8, Goal 4, the first set of three questions
attempts to characterize these differences based on raw numbers (actual numbers of valid events,
without regard to exposure), while the second set of three questions does the same on a per mile
basis (attempting to control for exposure).

Data Included in the Analyses

The analyses for Chapter 8, Goal 4 included incidents recorded for all primary drivers of
vehicles. There were 109 primary vehicle drivers, but due to data outages, the number of drivers
available for any given week ranged from a high of 107 in week 1 to a low of 60 in week 49.
There were 64 drivers in week 50. Altogether, there were 8,229 events available for the weekly
analyses (weeks 1 through 50). Of these, 7,472 were incidents, 696 were near-crashes, and 61
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were crashes. For the hourly analyses, there were 974 events available in hours 1 through 50.
Of these, 845 were incidents, 118 were near-crashes, and 11 were crashes.

Relevant variables used during the analyses included: age (younger and older, in which younger
is 30 or younger and older is older than 30); leased vehicle versus private vehicle, switch driver
versus non-switch driver (in which a switch driver is a private vehicle driver who was given a
leased vehicle for four to eight weeks at the end of the study); and event severity (crashes, near-
crashes, and incidents, defined as usual in this report).

Question 1. Based on the number and type of valid events, is there a significant difference
in the relative risk of driving over the course of a year for drivers in a familiar vehicle with
instrumentation installed (leased and private vehicles)?

The purpose of this question is to investigate the driver adaptation process for leased vehicles
and privately owned vehicles with instrumentation over the course of the study. It was desired
that the control time period be near the end of the study, when drivers would have become most
adapted to their vehicles. Thus, relative risk was calculated using an average of weeks 41-50 as
the control time period.

Figure 8.1 shows the mean number of incidents for private versus leased vehicles for the entire
time period of interest in this analysis (weeks 1-50). It was originally proposed that weeks 1, 4,
12, and 26 be used as the weeks of interest for the RR analysis for this research question.
However, as shown in Figure 8.1, the data is quite noisy and the patterns shown by such an
analysis will vary depend on which weeks are chosen. For example, Figure 8.2 shows the RR for
weeks 1, 4, 12, 26, and 49, with week 50 as the control week. Figure 8.2 can be compared to
Figures 8.3 and 8.4 in which different comparison weeks were chosen. The patterns are quite
different in the three cases. Therefore, some smoothing of the data was desired for this analysis.
The following time periods were thus selected for subsequent analysis and graphing: Week 1;
Week 2; Week 3; Week 4; Weeks 1-4; Weeks 5-8; Weeks 9-12; Weeks 13-16; Weeks 17-20;
Weeks 21-24; Weeks 25-28; Weeks 29-32; Weeks 33-36; Weeks 37-40; Weeks 41-44; Weeks
45-48; and baseline weeks 41-50. Weeks 1 through 4 were examined individually, as well as
averaged, so that the effect of vehicle adaptation to a strange vehicle would not be masked, if
such an effect were indeed present.
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Figure 8.1. Mean number of events per vehicle for weeks 1-50 for leased and private
vehicles.
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