

ANL Project Final Deliverables Meeting GT Power Study – BSFC Maps of Multiple Engine Concepts

IAV Northville, 2/27/2014

Phillip Bonkoski, Heiko Schilling

Agenda proposed by ANL

- 1. Wrap up presentation from IAV
 - o Data delivered
 - Final summary of assumptions
 - Process overview
 - o Conclusions
- 2. Review maps and efficiency values post processed by ANL
- 3. Additional project related questions/ discussions
- 4. Joint presentation to the USDRIVE ACEC tech team
- 5. Any additional open items/ final wrap-up

ANL Project Final Deliverables Meeting Original Overview Diagram

ANL Project Final Deliverables Meeting Final Overview Diagram

ANL Project Final Deliverables Meeting Summary of Data Delivered

- Engine speed, BMEP, brake torque, fuel flow rate, PMEP and FMEP data provided in a standardized format for all simulated engines 1-16*
- These channels were provided from 1000RPM to the max engine speed and from 0bar BMEP to full load to provide a full operation map
- Fuel flow rates at zero output torque for engines 1-16 are provided separately from 650RPM (defined idle) to 6000 RPM
- Negative torque data provided (EngSpd, BMEP, Brake_torque, Fuel_flow, PMEP, Throttle)
 - Minimum fueled torque curve from baseline engine concept
 - Unfueled motoring curves from baseline concept (Throttle% 0, 0.4, 2.6, 6.3, 11.5, 18.2, 100)
 - Unfueled motoring curve from cylinder deactivation concept at WOT
- Measurement data from diesel engine (Eng17) with EngSpd, BMEP, Brake_torque, Brake_power, bsfc channels provided

*Data delivered in 4 packages (some with overlapping content): 1.Engine1.xlsx 2.NA_MapsDelivered.xlsx 3.FinalMapsDelivered.xlsx 4. Final_maps_FMEP

ANL Project Final Deliverables Meeting Assumptions / Constants

Gasoline engine simulations

- All maps use gasoline with LHV = 41.3 MJ/kg but the naturally aspirated (NA) concepts were calibrated with 87 (R+M)/2 rating fuel and the TC engines used 93 octane
- All NA engines concepts were derived from the same parent model (Engines 1-8c)
- All turbocharged gasoline concepts were derived from the same parent model (Eng12-16)
- Ambient conditions were fixed at T=25C / P= 990 mbar
- Stoichiometric ratio lambda=1 held throughout the majority of the operating regions
- Slight enrichment was added to improve NA full load curve and extra fuel is added to protect exhaust components at some high loads based on model predicted exhaust temperatures
- VVT camshaft phaser ranges of motion honored throughout valve timing optimizations
- Predictive combustion models allowed a spark controller to target optimal phasing with allowance for a knock controller override where knocking was predicted

- All simulation results were completed using software within GT-Suite developed by Gamma Technologies
- Parent models Eng1(NA) and Eng12(TC) were calibrated using engine test data and all other concepts were derived from them (the following process is repeated for each parent model)

Modeling process/details

- Relevant engine geometries/parameters are measured and modeled with friction/flow losses, heat transfer, etc. and calibrated to match measurements
- Displacement normalized mechanical friction is modeled as a function of engine speed and specific load
- A combustion model is trained to predict fuel heat release rate in response to physical effects such as cylinder geometries, pressure, temperature, turbulence, residual gas concentration, etc.
- A knock correlation based on in-cylinder conditions and fuel octane rating predicts if knock will occur and at what intensity
- A combustion stability threshold prediction is trained using covariance of IMEP data and is used for understanding EGR tolerance especially at low loads
- Load controllers are developed for fuel/air path actuators and targeting controllers drive optimal and knock limited combustion phasing just as in a physical engine
- Careful modeling practice is used to provide confidence that calibrations will scale and predict reasonable /reliable predictions as parameters are changed throughout the various technology concept studies

Eng1 - gasoline, 2.0l, 4 cyl, NA, PFI, DOHC, dual cam VVT

- Calibrations fully optimized for best bsfc and maximum torque (comb. phasing, valve timing, lambda, etc)
- Eng2* VVL system was added to the intake valves on Eng1
 - Valve lift and timing optimized
 - Benefit (1) Reduced pumping work at low loads (2) More torque at low speeds from reduced intake duration
 - Eng3* Eng2 (PFI) converted to direct injection
 - Comp ratio raised from 10.2 to 11.0 and injection timing optimized
 - Benefit DI provides greater knock tolerance, allowing higher comp ratio and increased efficiency over entire map
 - Eng4* Cylinder deactivation added to engine Eng3
 - Engine fires only 2 cylinders at low loads and at speeds below 3000 RPM by deactivating valves on 2 cylinders
 - Benefit Effective load doubled on 2 cylinders providing less pumping work and higher efficiency

*All inputs/parameters are held constant unless specifically mentioned

DOHC

- 1. VVT (baseline)
- 2. VVL
- 3. GDI
- 4. Cylinder deactivation

SOHC (no friction change) 5a. VVT (fixed overlap)	(Red friction –Stage1) 5b. VVT 6a. VVL 7a. GDI 8a. Cyl deact	(Red friction –Stage2) 5c. VVT 6b. VVL 7b. GDI 8b. Cyl deact	4	DOC FOX 1 FOX 2 F
	8a. Cyl deact	8b. Cyl deact		ado a behiding vir big i Pér precisio y di Adri Emissioni di 17. Desat angle + 2.2, 4cyl VYT, VVS

- Eng5a* Eng1 converted to SOHC (gasoline, 2.0I, 4 cyl, NA, PFI, single cam VVT)
 - Valve timing optimized for fixed overlap camshaft with standard friction model from DOHC concepts
 - Benefit Potential friction reduction (not added in Eng5a) at the expense of maximum power
- Eng5b/ Eng6a/ Eng7a/ Eng8a* Reduced friction from Eng5a/ Eng2/ Eng3/ Eng4 respectively
 - Engine FMEP reduced by 0.1 bar over entire operation range to understand friction benefit from SOHC
 - Benefit (1) Reduced friction improves efficiency at all load points (2) Raises full load line
- Eng5c/ Eng6b/ Eng7b/ Eng8b* Reduced friction from Eng5a/ Eng2/ Eng3/ Eng4 respectively
 - Engine FMEP reduced by 25% over entire operation range to understand potential of 'extreme' friction reduction (this is a "what if" study which doesn't necessary represent what is currently possible)
 - Benefit (1) 25% friction reduction shows large improvements in efficiency especially at higher speeds where friction is very high (2) Raises full load line

*All inputs/parameters are held constant unless specifically mentioned

DOHC Turbo**

Downsize Level1 → 1.6l, 4cyl,18bar bmep
Downsize Level2 → 1.2l, 4cyl, 24bar bmep
Downsize Level2 → 1.2l, 4cyl, 24bar bmep, cooled EGR
Downsize Level3 → 1.0l, 4cyl, 27bar bmep, cooled EGR
Downsize Level3 → 1.0l, 3cyl, 27bar bmep, cooled EGR

- Eng12 gasoline, 1.6l, 4 cyl, turbocharged, DI, DOHC, dual cam VVT, intake VVL
 - Calibrations fully optimized for best bsfc (comb. phasing, valve timing, lambda, etc)
- Eng13* Eng12 downsized to 1.2l
 - Turbocharger maps scaled to improve torque at low engine speeds
- Eng14* High pressure cooled EGR added to Eng13
 - Cooled EGR target set points optimized
- Eng15* Eng14 downsized to 1.01
 - Cooled EGR target set points re-optimized and turbocharger maps re-scaled
- Eng16* Eng15 converted to 3cyl, 1.0l concept
 - Intake and exhaust piping scaled to account for larger mass flows through each cylinder and cooled EGR target set points re-optimized

Benefits summarized on the following page

^{*}All inputs/parameters are held constant unless specifically mentioned

DOHC Turbo**

Downsize Level1 → 1.6l, 4cyl,18bar bmep
Downsize Level2 → 1.2l, 4cyl, 24bar bmep
Downsize Level2 → 1.2l, 4cyl, 24bar bmep, cooled EGR
Downsize Level3 → 1.0l, 4cyl, 27bar bmep, cooled EGR
Downsize Level3 → 1.0l, 3cyl, 27bar bmep, cooled EGR

Overview of benefits

- Downsizing Allows for operation at a higher engine load point (increased efficiency) at a given vehicle torque demand
- Cooled EGR (1) Cooled burned gas lowers in-cylinder temperatures causing a reduced knock tendency and thus improved combustion phasing (2) Reduced in-cylinder temperatures lead to reduced exhaust temperatures and therefore a reduced need for enrichment to protect exhaust components

Other modeling notes

• Bore/stoke ratio was held constant in Eng12-16 with compression ratio of 10.5

ANL Project Final Deliverables Meeting Conclusions

Important assumptions/conclusions

- Predictive friction equation (FMEP) calibrated from test data used in Engines 1-8b to allow for a smooth and systematic friction study but may under predict FMEP at high loads with late combustion phasing
- Map based FMEP lookup compiled from test data used for Engines 12-16
- Due to different methods we cannot draw direct conclusions on NA vs downsized engine friction
- Compression ratio / combustion system/ bore stroke sizing optimization would further improve fidelity of downsizing and CEGR findings
- Maximum torque line on boosted engines is adjustable based on boost pressure (Eng12 especially could have higher torque potential)
- NA engines should be considered as comparable to boosted engines even considering lower max torque because boosted engines suffer from slower torque response

Potential future study suggestions

- Transient performance analysis could improve understanding of performance tradeoffs of various concepts
 - Turbocharger / torque response comparisons for NA vs downsized vs extreme downsized engines
- Continued simulation of new engine concepts
 - Variable compression ratio, SI lean, HCCI, eboosting systems, cylinder deactivation via crankshaft decoupling, ect.

Thank You

IAV Automotive Engineering Inc. 15620 Technology Drive Northville, MI 48168

Phone: +1 734 233-3300 info@iav-usa.com