Measurement of School Bus Pedal Dimensions

DISCLAIMER

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Suggested APA Format Citation:

Collins, W. D., \& Evans, L. (2015, June). Measurement of school bus pedal dimensions. (Report No. DOT HS 812 168). Washington, DC: National Highway Traffic Safety Administration.

Technical Report Documentation Page

1. Report No. DOT HS 812168	Government Accession No.		3. Recipient's Catalog No.
4. Title and Subtitle Measurement of School Bus Pedal Dimensions			5. Report Date June 2015 6. Performing Organization Code NHTSA/NVS-313
7. Author(s) William D. Collins, National Highway Traffic Safety Administration Larry Evans, Transportation Research Center Inc.			8. Performing Organization Report No.
9. Performing Organization Name and Address National Highway Traffic Safety Administration Vehicle Research and Test Center P.O. Box 37 East Liberty, OH 43319			11. Contract or Grant No.
12. Sponsoring Agency Name and Address National Highway Traffic Safety Administration 1200 New Jersey Avenue SE. Washington, DC 20590			13. Type of Report and Period Covered Draft Final Report 14. Sponsoring Agency Code
15. Supplementary Notes The authors thank Rory Austin of NHTSA for assistance in vehicle selection; Joshua Orahood, Tim Cleland, and Jim Clevenger of Transportation Research Center Inc. for their testing support.			
16. Abstract The National Transportation Safety Board (NTSB) investigated four crashes of school buses and one of a fire truck, all of which occurred from 2005 to 2009 and concluded that these accidents were consistent with pedal misapplication. Among the NTSB recommendations was that NHTSA analyze pedal configurations in heavy vehicles to determine the effect of pedal design on the driver's task. This research was performed at NHTSA's Vehicle Research and Test Center (VRTC), in East Liberty, Ohio, to provide an overview of the range of typical pedal dimensions in school buses. However, analysis to determine the effect of pedal design on the driver's task was beyond the scope of this study. NHTSA identified 21 dimensions based on the SAE J1100 standard and also developed a procedure capable of determining pedal position. Two additional dimensions were used for the analysis of the transit style buses to account for the steering column position. The dimensions for 24 Type C (conventional style) buses and 8 Type D (transit style) buses were measured and compared. Only the stepover distance, the seat cushion width, and the steering wheel width and height were not significantly different between the two types. The Type C buses measured were assembled by three different manufacturers, Bluebird Corporation, Fort Valley, GA; IC Corporation, Warrenville, IL (a subsidiary of Navistar); and Thomas Built Corporation, High Point, NC (a subsidiary of Daimler Trucks, N.A.). The Bluebird and Thomas Built buses were the most similar, but they had statistically significant differences in the brake pedal width and the stepover distance from the face planes of the pedals, as well as some differences in seating position. The IC buses were statistically different in 11 and 12 of 21 measurements from the Bluebird and Thomas Built buses, respectively. The dimensions for six Type D buses manufactured by Bluebird and two by Thomas were measured. The dimensions were statistically different in only 8 of the 23 dimension measured. Most of the differences were smaller distances from the pedals to the "tunnel" on the right side of the pedals for the Bluebird buses. The measurements for the 32 buses were compared to the dimensions of 101 passenger vehicles. Seventeen of the 21 dimensions were statistically different. Even though the means were different, the distributions of values had considerable overlap. The variables that had little overlap were that the bus accelerator and brake pedals had a shorter overall travel to the floor, and the steering wheel was farther from the floor and pedals for buses than for the passenger vehicles. The dimensions of both the Type C and Type D buses were compared to the average dimensions of the passenger cars. The measurements of Type D buses differed from passenger cars in nearly every dimension. Only the distance from the accelerator to the tunnel and the seat cushion width were not significantly different, and for 14 of the dimensions there was no overlap between the outliers of the 2 distributions. The Type C buses were more similar to passenger car dimensions, differing in 10 of the 21 dimensions measured, with only the height and size of the steering wheel having no overlap between the distributions.			
17. Key WordsPedal misapplication, unintended acceleration, stepover, school bus		18. Distribution Statement Document is available to the public from the National Technical Information Service www.ntis.gov.	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		22. Price

Form DOT F 1700.7 (8-72)
Reproduction of completed page authorized

TABLE OF CONTENTS

1. Executive Summary 1
2. Background 3
3. Three Dimensional (3D) Laser Scanning 6
4. Control Location Measurements 7
5. Pedal Dimensions Analysis 13
Dimensions by Bus Type 13
Type C Buses by Manufacturer 14
Type D Buses by Manufacturer 15
Buses Versus Passenger Vehicles 16
Buses Versus Passenger Vehicles by Type 17
6. Summary 19
7. Appendix A - Bus Measurements 20
8. Appendix B-T Test Comparisons of Dimensions by Bus Type 23
9. Appendix C - Comparison of Type C Bus Measurements by Manufacturer 44
10. Appendix D-T Test Comparison of Type D Buses by Manufacturer 86
11. Appendix E-T Test Comparison of Passenger Car and Bus Dimensions 109
12. Appendix F - Comparison of Passenger Car Dimensions to Type C and D Buses 130
13. Appendix G - Photos and Scans 173

LIST OF TABLES

Table 1 - List of Dimensions Analyzed 7
Table 2 - Average Dimensions of Bus Types C (Conventional Style) and Type D (Transit Style) 13
Table 3 - Average Dimensions of Type C Buses by Manufacturer 14
Table 4 - Average Dimensions of Type D Buses by Manufacturer 15
Table 5 - Average Dimensions of Buses and Passenger Vehicles 16
Table 6 - Comparison of Dimensions for Passenger Cars and Type C and D Buses 18
LIST OF FIGURES
Figure 1 - Typical Scanning Session. 6
Figure 2 - Dimensions A, B, C, D. 8
Figure 3 - Dimensions E, F, G 9
Figure 4 - Dimensions H, J, N, P, R, Pedal Arcs 10
Figure 5 - Dimensions L, Q 11
Figure 6 - Dimensions M, O, S, T 12

1. Executive Summary

The National Transportation Safety Board (NTSB) investigated four crashes of school buses and one of a fire truck, all of which occurred from 2005 to 2009 and concluded that these accidents were consistent with pedal misapplication. ${ }^{1}$ One NTSB recommendation was that NHTSA analyze pedal configurations in heavy vehicles to determine the effect of pedal design on the driver's task. This research was performed at NHTSA's Vehicle Research and Test Center (VRTC), in East Liberty, Ohio, to provide an overview of the range of typical pedal dimensions in school buses. However, analysis to determine the effect of pedal design on the driver's task was beyond the scope of this study.

Recently, NHTSA completed a study to analyze possible relationships in a limited number of cases between pedal design factors and the rate of pedal misapplication in passenger vehicles, specifically occurring when drivers intend to apply the brake but instead apply the accelerator. ${ }^{2}$ In that study, NHTSA identified 21 dimensions based on the SAE J1100 standard and also developed a procedure capable of determining precise pedal positions. Two additional dimensions were added to the current study to accommodate the Type D buses for a total of 23 different dimensions. These dimensions include pedal placement dimensions as well as dimensions such as the distance from the steering wheel to the floor plane that help define the driver's orientation to the pedals.

The dimensions for 24 Type C (conventional style) buses and 8 Type D (transit style) buses were measured. All the horizontal pedal dimensions were significantly different between the two types of buses. For the other pedal dimensions, only the perpendicular stepover distance was not significantly different. The driver position dimensions of seat cushion width and steering wheel width and height were not different.

[^0]The Type C buses measured were assembled by three different manufacturers, Bluebird Corporation, Fort Valley, GA; IC Corporation, Warrenville, IL (a subsidiary of Navistar); and Thomas Built Corporation, High Point, NC (a subsidiary of Daimler Trucks, N.A.). The Bluebird and Thomas Built buses were the most similar, but they had statistically significant differences in the brake pedal width and stepover in plane, (that is the perpendicular distance between the planes of the brake and accelerator pedal faces) as well as some differences in seating position. The IC buses were statistically different in 11 and 12 of 21 measurements from the Bluebird and Thomas Built buses, respectively.

The dimensions for six Type D buses manufactured by Bluebird and two by Thomas were measured. The dimensions were statistically different in only 8 of the 23 dimensions measured. Most of the differences were smaller distances from the pedals to the "tunnel" on the right side of the pedals for the Bluebird buses.

The measurements for the 32 buses were compared to the dimensions of 101 passenger vehicles previously reported by NHTSA. Seventeen of the 21 dimensions were statistically different on average. From inspection of the distributions, even though the means were different, the distributions of values had considerable overlap for most values. The variables that had little overlap were that the bus accelerator and brake pedals had a shorter overall travel to the floor and the steering wheel was farther from the floor and pedals for buses than for the passenger vehicles.

The dimensions of both the Type C and Type D buses were compared to the average dimensions of the passenger cars. The measurements of Type D buses differed from passenger cars in nearly every dimension. Only the distance from the accelerator to the tunnel (A) and seat cushion width (L) were not significantly different, and for 14 of the dimensions there was no overlap between the outliers of the 2 distributions. The Type C buses were more similar to passenger car dimensions, differing in 10 of the 21 dimensions measured, with only the height and size of the steering wheel having no overlap between the distributions.

2. Background

After the initial investigation of a school bus crash in May 2005 suggested that the cause may have been pedal misapplication, the National Transportation Safety Board carried out a special investigation into pedal misapplication in heavy vehicles. The NTSB investigated four crashes of school buses and one of a fire truck, all of which occurred from 2005 to 2009. The NTSB also reviewed work done by NHTSA in the 1980s after receiving claims of sudden unintended acceleration for certain passenger vehicles. ${ }^{3}$ The NTSB investigators found no mechanical failures of the braking system in the vehicles, no contributing medical conditions of the drivers, and no outside interference with the driver. The absence of these factors, along with other evidence, led the NTSB to conclude that these accidents were consistent with pedal misapplication. The NTSB recommended that national and State associations of pupil transportation include the risk of pedal misapplication in literature and training sessions.

The NTSB also made several specific recommendations to NHTSA:

- NHTSA should require the installation of brake transmission shift interlocks (BTSI) in heavy vehicles. ${ }^{4}$ Based on the documented success of brake transmission shift interlocks in preventing sudden unintended acceleration of light passenger vehicles during initial movement, (3) the NTSB concluded that the installation of BTSI on heavy vehicles would have prevented three of the five incidents they investigated.
- NHTSA should develop and implement industrial standards for onboard recording of bus crash data. ${ }^{5}$
- NHTSA should analze pedal configurations in heavy vehicles, including innovative designs, to determine the effect of pedal design on the driver's task. ${ }^{6}$
- Ultimately, NHTSA should publish pedal design guidelines for designers and manufacturers. ${ }^{7}$

[^1]This report is not intended to fully respond to the NTSB recommendation that NHTSA analyze pedal configurations in heavy vehicles, including innovative designs, to determine the effect of pedal design on the driver's task. Rather, the data compiled in this report analyzes pedal configurations in certain heavy vehicles.

Recently, NHTSA completed a study to analyze possible relationships between pedal design factors and the rate of pedal misapplication in passenger vehicles, specifically occurring when drivers intend to apply the brake but instead apply the accelerator, which can result in unintended acceleration (UA) of a vehicle. ${ }^{2,8}$ An example of a design factor is "lateral separation," the horizontal gap between the brake and accelerator pedals. Another example is "stepover," the distance between the surface plane of the brake pedal and the surface plane of the accelerator pedal. Previous research efforts into UA events hypothesized that pedal design factors may contribute to driver pedal error. The previous study used data from a North Carolina State Crash Database, ${ }^{9}$ selected because it offered detailed police accident report records with sufficiently specific vehicle make and model information for 2,411 UA events. This database was also recently used to study demographic information. ${ }^{10}$ The records covered a 5 -year period from 2004 to 2008.

A UA event is defined as any unintended powered acceleration of a motor vehicle. That is, acceleration powered by the engine and not intentionally commanded by the operator via the vehicle's controls. UA events included, but were not limited to, stuck throttle, engine surging, high idle speed, and sudden acceleration incidents (SAI).

An SAI is defined in the report "An Examination of Sudden Acceleration" ${ }^{11}$ as any "unintended, unexpected, high-power accelerations from a stationary position or very low initial speed accompanied by an apparent loss of braking effectiveness." The report was the result of a study conducted in the late 1980's to identify and evaluate factors that contribute to the occurrence of SAI. It also identified vehicle design factors such as pedal placement and pedal feedback as important variables in events that involve the unintentional misapplication of vehicle control pedals.

[^2]Currently, there is no globally accepted standard to regulate pedal placement. The human factors science needed to better determine optimal locations of pedals has historically been limited and difficult to obtain. As a result, significant variation can be found in the locations of pedal controls among vehicle manufacturers. Overall variability has been asserted to be a contributing design factor in cases of UA events. In a memorandum report for NHTSA's Office of Defects Investigation (ODI) of activities in response to a request from the Minnesota State Patrol, the vehicle defects investigator noted that a "lack of consistency between the pedal cluster positions in the vehicle primarily operated by the driver and the subject vehicle may have contributed to the subject crash." ${ }^{12}$ It has been theorized that the variation in pedal placement may be a factor in the higher observed rate of pedal misapplication by drivers who were unfamiliar with the vehicle.

Another relevant design factor is stepover height, defined as the difference in height between the plane of the brake pedal face and the plane of the accelerator pedal face. Vehicles with little stepover height may cause the driver to inadvertently depress both pedals at the same time or to more likely confuse the pedal location. In 1983, Audi recalled 117,000 Model 5000 passenger cars (Recall $83 \mathrm{~V}-095^{13}$) due to insufficient stepover height and installed a brake pedal plate to increase the height of the pedal face.

There are two main types of pedal designs among the measured school buses: one is pedals that are mounted to the vertical firewall under the instrument panel, and the other is pedals that are mounted to and hinged at the floor.

The research program described in this report was performed at NHTSA's Vehicle Research and Test Center to provide an overview of the range of typical pedal dimensions in school buses.

[^3]
3. Three Dimensional (3D) Laser Scanning

The driver's seat was positioned in the full rearward position. If the vehicle was equipped with a tilt steering column, it was set to the position closest to the center of the arc of travel.

A hand-held 3D laser scanner was used to record the locations of the control pedals, driver's seat, and steering wheel. The scanner operated while tethered to a computer, and the data gathered was stored in a standard stereo lithography (*.stl) file format. A typical session of data being recorded is shown in Figure 1. The operator scanned the vehicle surfaces until the computer rendering showed that all required surfaces had been adequately covered. The accelerator pedal was scanned in three positions. The first was the static position, the second was the fully depressed wide open throttle position, and the third was a point of travel at the approximate center of the first two positions.

Figure 1 - Typical Scanning Session

4. Control Location Measurements

Twenty-one variables were identified, shown in Table 1, for which dimensional measurements were collected for analysis. Eighteen of these were identified in SAE J1100. ${ }^{14}$ Three other measurements were defined and appear in the table as variables M, Arc, Chord, Left and Wall. In addition to the measurements of pedal position in the vehicle, several variables were identified that were important for the orientation of the driver to the position of the pedals.

Table 1 - List of Dimensions Analyzed

Letter Identifier	SAE Variable	Description
A	PW-17	Accelerator to tunnel
B	PW-21	Lateral spacing right edge of brake to left edge accelerator (arc)
C	PW-27	Right edge of brake to tunnel - horizontal
D	PW-42	Left edge of brake to vertical panel on left
E	PW-82	Brake centerline to accelerator centerline
F	PW-92	Driver centerline to right edge of brake
G	PW-98	Driver centerline to accelerator horizontal centerline
H	PL-52	Stepover - brake to accelerator - shortest arc distance
I	PH-26	Bottom edge of undepressed brake pedal to floor
J	PH-16	Bottom edge of undepressed accelerator pedal to floor
L	SW-16	Seat cushion width
M	(not identified)	Steering centerline to brake pedal center
N	PL-1	Distance between the planes of brake and accelerator pedal faces
0	PW-47	Overall width of floorpan @ 150 mm above floor
P	H-17	Height of steering wheel from floor
Q	W-9	Width of steering wheel
R	L-6	Ball of foot accelerator pedal to front center of steering wheel
S	PW-22	Brake pedal width
T	PW-11	Accelerator pedal width
Are	(not identified)	Arc length of accelerator pedal
Chord	(not identified)	Chord length of accelerator pedal
Left*	(not identified)	Distance from left edge of brake pedal to steering column
Wall*	(not identified)	Distance from left edge of brake pedal to wall on left
* Dimensions added for Type D buses		

[^4]The data acquired by the 3D laser scan of the vehicle's driver controls was analyzed in a computer aided design (CAD) software program. The program allowed the 3D rendering of the vehicle to be rotated to the optimal viewing angle and measurements taken. A table of all measurement results can be found in Appendix A. Five views displaying the measurement results for each vehicle were identified, and examples are shown in Figure 2 to Figure 6. Images for each vehicle can be found in Appendix G.

Figure 2 - Dimensions A, B, C, D

Figure 3 - Dimensions E, F, G

Figure 4 - Dimensions H, J, N, P, R, Pedal Arcs

Figure 5 - Dimensions L, Q

Figure 6 - Dimensions M, O, S, T

5. Pedal Dimensions Analysis

Dimensions by Bus Type

The dimensions for 24 Type C (conventional style) buses and 8 Type D (transit style) buses were measured. The average dimensions are shown in Table 2. All the horizontal pedal dimensions were significantly different between the two types of buses. For the other pedal dimensions, only the stepover distance was not significantly different. The driver position dimensions of seat cushion width and steering wheel width and height were not different. A t test comparison of the measurements and the distributions are shown in Appendix B.

Table 2 - Average Dimensions of Bus Types C (Conventional Style) and Type D (Transit Style)

	Type C Buses			Type D Buses			Significantly Dimension
	Number of Vehicles	Average Dimension, $\mathbf{m m}$	Standard Deviation, $\mathbf{m m}$	Number of Vehicles	Average Dimension, $\mathbf{m m}$	Standard Deviation, $\mathbf{m m}$	Different, $\boldsymbol{(} \boldsymbol{t}$ test $\mathbf{0}$ $\mathbf{0}=\mathbf{0 . 0 5})$
A	24	58.1	22.2	8	41.2	12.5	Yes
B	24	89.4	18.2	8	30.4	11	Yes
C	24	197	22.6	8	139.4	11.5	Yes
D	24	234.9	51.2	8	396.3	32.4	Yes
E	24	157.3	16.6	8	108.6	5.7	Yes
F	24	63.2	34.8	8	185.5	25	Yes
G	24	170.5	33.6	8	256	21.1	Yes
H	24	30.5	22.5	8	18.7	16.8	No
I	24	106.4	17.7	8	22.8	3	Yes
J	24	76.3	15.6	8	25.7	7.8	Yes
L	24	502.5	18.9	8	501.7	29.2	No
M	24	19	18.5	8	135.4	36.1	Yes
N	24	35.4	23.8	8	26.3	19.9	No
O	24	515.7	54	8	625.2	32.6	Yes
P	24	808	41.2	8	795.5	21.5	No
Q	24	453.6	8	8	468.3	20.3	No
R	24	386.7	42.3	8	275.5	40.8	Yes
S	24	99.8	3.8	8	71.3	1.2	Yes
T	24	53.3	3.4	8	67.1	5.5	Yes
ARC	24	253.6	89.8	8	203.4	105.5	No
CHORD	24	65.4	16	8	80.5	18	No
WALL	0	\cdot	\cdot	8	39.9	18.6	NA
LEFT	0	\cdot	\cdot	8	249.4	32	NA

Type C Buses by Manufacturer

The Type C buses measured were assembled by three different manufacturers, Bluebird , IC, and Thomas Built. The average dimensions are shown in Table 3. The Bluebird and Thomas Built buses were the most similar, but they had statistically significant differences in the brake pedal width and stepover in plane, as well as some differences in seating position. The IC buses were statistically different in 11 and 12 of 21 measurements from the Bluebird and Thomas Built buses, respectively. All comparisons are shown in Appendix C.

Table 3 - Average Dimensions of Type C Buses by Manufacturer

Variable	Manufacturer									Statistical Differences*		
	BlueBird			IC			Thomas			$\begin{aligned} & \text { BB } \\ & \text { vs. } \\ & \text { IC } \end{aligned}$	$\begin{gathered} \text { BB } \\ \text { vs. } \\ \text { Th. } \end{gathered}$	$\begin{aligned} & \text { IC } \\ & \text { vs. } \\ & \text { Th. } \end{aligned}$
	N	Mean, mm	Std. Dev., mm	N	Mean, mm	Std. Dev., mm	N	Mean, mm	Std. Dev., mm			
A	13	64.3	27.5	9	45.9	2.4	2	71.9	1.7			
B	13	77.8	9.2	9	110.3	5.3	2	71.2	2.7	\checkmark		\checkmark
C	13	189.1	27.5	9	210.1	5	2	188.9	3.8			
D	13	265.5	35.1	9	179.9	12.9	2	282.8	13.7	\checkmark		\checkmark
E	13	146.9	7.4	9	176.8	2.4	2	137.2	0.9	\checkmark		\checkmark
F	13	56	31.1	9	55	10.7	2	147.1	0.5		\checkmark	\checkmark
G	13	151.8	29.4	9	182.7	9.6	2	237.2	2.5	\checkmark	\checkmark	\checkmark
H	13	16.9	14.1	9	55.5	1.5	2	6.5	3.5	\checkmark		\checkmark
I	13	99.1	17.3	9	121.3	4.6	2	86.9	0.4	\checkmark		\checkmark
J	13	76.9	14.1	9	83.4	3.7	2	40.2	1.2		\checkmark	\checkmark
L	13	491.3	18.2	9	516.1	8.9	2	514.8	1.8	\checkmark		
M	13	20.9	11.4	9	5.7	4	2	66.1	11.9	\checkmark	\checkmark	\checkmark
N	13	19.9	17.1	9	60.9	3.8	2	21.4	2.4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
0	13	540.4	56.3	9	472.2	13.4	2	551.3	15.4	\checkmark		
P	13	801.2	51.8	9	823.8	17.7	2	781.7	0.8			
Q	13	454.9	2.3	9	447	3.5	2	474.8	0.6	\checkmark	\checkmark	\checkmark
R	13	399.6	52.7	9	371	17	2	374.2	28.8			
S	13	101.5	3.3	9	99.3	0.9	2	91	1.7		\checkmark	\checkmark
T	13	52.6	3.1	9	53.2	1.4	2	58.4	9			
ARC	13	263.6	114.2	9	231.3	51.1	2	289.3	10			
CHORD	13	62.3	18.2	9	74	1.3	2	47.3	21.1			
* Statistically significant differences at $\alpha=0.05$ using Scheffe's test were indicated by a check $(\sqrt{ })$												

Type D Buses by Manufacturer

The dimensions for six Type D buses manufactured by Bluebird and two by Thomas were measured. The average dimensions are shown in Table 4. The dimensions were statistically different in only 8 of the 23 dimension measured. Most of the differences were smaller distances from the pedals to the "tunnel" on the right side of the pedals for the Bluebird buses. All comparisons are shown in Appendix D.

Table 4 - Average Dimensions of Type D Buses by Manufacturer

Dimension	Bluebird			Thomas			Significantly Different, (t test $\alpha=0.05$)
	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Vehicles } \end{gathered}$	Average Dimension, mm	Standard Deviation, mm	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Vehicles } \end{aligned}$	Average Dimension, mm	Standard Deviation, mm	
A	6	37.0	11.7	2	53.6	0.4	Yes
B	6	25.9	8.4	2	43.9	2.6	Yes
C	6	133.5	4.8	2	156.9	0.2	Yes
D	6	410.9	19.5	2	352.6	19.4	Yes
E	6	108.1	2.3	2	110.4	13.9	No
F	6	184.6	25.4	2	188.4	33.6	No
G	6	254.4	23.4	2	260.8	17.5	No
H	6	13.3	13.0	2	34.8	21.1	No
I	6	22.5	3.0	2	23.9	4.0	No
J	6	25.0	7.8	2	28.0	10.3	No
L	6	499.7	33.3	2	507.7	18.2	No
M	6	130.4	41.2	2	150.6	7.2	No
N	6	18.8	13.5	2	48.5	23.3	No
0	6	633.6	33.8	2	600.1	5.9	No
P	6	792.4	24.4	2	804.8	7.0	No
Q	6	457.4	1.6	2	501.2	0.6	Yes
R	6	291.1	32.5	2	228.7	22.8	Yes
S	6	71.5	1.3	2	70.9	0.5	No
T	6	69.5	3.8	2	60.1	1.1	Yes
ARC	6	173.4	86.7	2	293.5	136.8	No
CHORD	6	74.7	16.8	2	98.1	5.7	No
WALL	6	34.1	18.0	2	57.4	0.4	Yes
LEFT	6	266.3	9.9	2	198	11.2	No

Buses Versus Passenger Vehicles

The measurements for the 32 buses were compared to the dimensions of 101 passenger vehicles previously reported by NHTSA. ${ }^{2}$ The averages are shown in Table 5 and all comparisons are shown in Appendix E. Seventeen of the 21 dimensions were statistically different on average. The T test comparisons of the values and distributions are shown in Appendix E. From inspection of the distributions, even though the means were different, the distributions of values had considerable overlap for most values. The variables that had little overlap were that the bus accelerator and brake pedals had a shorter overall travel to the floor, and the steering wheel was farther from the floor and pedals for buses than for passenger vehicles.

Table 5 - Average Dimensions of Buses and Passenger Vehicles

Dimension	Buses			Passenger Vehicles			Significantly Different, (t test $\alpha=0.05$)
	Number of Vehicles	Average Dimension, mm	Standard Deviation, mm	Number of Vehicles	Average Dimension, mm	Standard Deviation, mm	
A	32	53.8	21.4	101	41.5	15.8	Yes
B	32	74.7	30.8	101	75.4	10.7	No
C	32	182.6	32.4	101	167.1	14.8	Yes
D	32	275.2	85.0	101	236.1	25.9	Yes
E	32	145.1	25.9	101	154.1	11.8	No
F	32	93.8	62.7	101	61.9	26.9	Yes
G	32	191.9	48.5	101	152.7	33.5	Yes
H	32	27.6	21.6	101	50.2	11.5	Yes
I	32	85.5	39.8	101	154.5	13.9	Yes
J	32	63.7	26.2	101	113.4	13.2	Yes
L	32	502.3	21.4	101	527.8	41.1	Yes
M	32	48.1	56.3	101	25.6	20.7	Yes
N	32	33.1	22.9	101	51.5	12.9	Yes
O	32	543.1	68.8	101	526.6	41.9	No
P	32	804.9	37.3	101	628.2	28.5	Yes
Q	32	457.2	13.5	101	381.6	8.0	Yes
R	32	358.9	64.0	101	561.8	33.8	Yes
S	32	92.7	13.0	101	120.7	16.2	Yes
T	32	56.8	7.2	101	46.5	8.6	Yes
ARC	32	241.1	94.8	101	205.1	83.9	No
CHORD	32	69.2	17.5	101	62.4	12.3	Yes

Buses Versus Passenger Vehicles by Type

The dimensions of both the Type C and Type D buses were compared to the average dimensions of the passenger cars previously measured by NHTSA. The average values and comparisons are shown in Table 6 and the comparisons are shown in Appendix F. The measurements of Type D buses differed from passenger cars in nearly every dimension. Only the distance from the accelerator to the tunnel (A) and seat cushion width (L) were not significantly different, and for 14 of the dimensions there was no overlap between the outliers of the 2 distributions. The Type C buses were more similar to passenger car dimensions, differing in 10 of the 21 dimensions measured, with only the height and size of the steering wheel having no overlap between the distributions.

Table 6 - Comparison of Dimensions for Passenger Cars and Type C and D Buses

Variable	Vehicle Category									Statistical Differences*		
	Type C Bus			Type D Bus			Passenger Car			$\begin{gathered} \text { C } \\ \text { vs. } \\ \text { D } \end{gathered}$	$\begin{gathered} \text { C } \\ \text { vs. } \\ \text { Car } \end{gathered}$	$\begin{gathered} \text { D } \\ \text { vs. } \\ \text { Car } \end{gathered}$
	N	Mean, mm	Std. Dev., mm	N	Mean, mm	Std. Dev., mm	N	Mean, mm	Std. Dev., mm			
A	24	58.1	22.2	8	41.2	12.5	101	41.5	15.8		\checkmark	
B	24	89.4	18.2	8	30.4	11.0	101	75.4	10.7	$\sqrt{ }$	\checkmark	\checkmark
C	24	197.0	22.6	8	139.4	11.5	101	167.1	14.8	$\sqrt{ }$		\checkmark
D	24	234.9	51.2	8	396.3	32.4	101	236.1	25.9	\checkmark		\checkmark
E	24	157.3	16.6	8	108.6	5.7	101	154.1	11.8	$\sqrt{ }$		\checkmark
F	24	63.2	34.8	8	185.5	25.0	101	61.9	26.9	$\sqrt{ }$		$\sqrt{ }$
G	24	170.5	33.6	8	256.0	21.1	101	152.7	33.5	\checkmark		\checkmark
H	24	30.5	22.5	8	18.7	16.8	101	50.2	11.5		\checkmark	\checkmark
I	24	106.4	17.7	8	22.8	3.0	101	154.5	13.9	\checkmark	\checkmark	\checkmark
J	24	76.3	15.6	8	25.7	7.8	101	113.4	13.2	$\sqrt{ }$	\checkmark	$\sqrt{ }$
L	24	502.5	18.9	8	501.7	29.2	101	527.8	41.1		\checkmark	
M	24	19.0	18.5	8	135.4	36.1	101	25.6	20.7	\checkmark		\checkmark
N	24	35.4	23.8	8	26.3	19.9	101	51.5	12.9		\checkmark	\checkmark
0	24	515.7	54.0	8	625.2	32.6	101	526.6	41.9	\checkmark		\checkmark
P	24	808.0	41.2	8	795.5	21.5	101	628.2	28.5		\checkmark	\checkmark
Q	24	453.6	8.0	8	468.3	20.3	101	381.6	8.0	\checkmark	\checkmark	\checkmark
R	24	386.7	42.3	8	275.5	40.8	101	561.8	33.8	$\sqrt{ }$	\checkmark	\checkmark
S	24	99.8	3.8	8	71.3	1.2	101	120.7	16.2	$\sqrt{ }$	\checkmark	\checkmark
T	24	53.3	3.4	8	67.1	5.5	101	46.5	8.6	$\sqrt{ }$	\checkmark	\checkmark
ARC	24	253.6	89.8	8	203.4	105.5	101	205.1	83.9			
CHORD	24	65.4	16.0	8	80.5	18.0	101	62.4	12.3	$\sqrt{ }$		\checkmark
* Statistically significant differences at $\alpha=0.05$ using Scheffe's test were indicated by a check ($\sqrt{ }$)												

Summary

All of the horizontal pedal dimensions were significantly different between Type C and Type D buses. Only the stepover distance, seat cushion width, steering wheel width, and height were not different for Type C and Type D buses.

For Type C buses, the Bluebird and Thomas Built buses were the most similar, but they had statistically significant differences in the brake pedal width and stepover distance between the face planes of the pedals, as well as some differences in seating position. The IC buses were statistically different in 11 and 12 of 21 measurements from the Bluebird and Thomas Built buses, respectively.

The dimensions for Type D buses manufactured by Bluebird and by Thomas were statistically different in only 8 of the 23 dimension measured. Most of the differences were smaller distances from the pedals to the "tunnel" on the right side of the pedals for the Bluebird buses.

The measurements for the 32 buses were compared to the dimensions of 101 passenger vehicles. Seventeen of the 21 dimensions were statistically different on average. Even though the means were different, most of the distributions of values had considerable overlap. The variables that had little overlap were that the bus accelerator and brake pedals had a shorter overall travel to the floor, and the steering wheel was farther from the floor and pedals for buses than for the passenger vehicles.

The dimensions of both the Type C and Type D buses were compared to the average dimensions of the passenger cars. The measurements of Type D buses differed from passenger cars in nearly every dimension. Only the distances from the accelerator to the tunnel and seat cushion width were not significantly different, and for 14 of the dimensions there was no overlap between the outliers of the 2 distributions. The Type C buses were more similar to passenger car dimensions, differing in 10 of the 21 dimensions measured, with only the height and size of the steering wheel having no overlap between the distributions.
6. Appendix A - Bus Measurements

Type	A	B	C	D	E	F	G	H	I	J	L	M	N	0	P	Q	R	S	T	ARC	CHORD	ALL LEFT
	70.7	73.1	186.2	292.5	137.8	147.4	238.9	4	86.6	39.3	513.5	74.5	23.1	562.2	781.1	475.2	353.8	92.2	52	296.3	32.4	
C	73.1	69.3	191.6	273.1	136.5	146.7	235.4	8.9	87.1	41	516	57.7	19.7	540.4	472.3	474.3	394.5	89.8	64.7	282.2	62.3	
C	31	80.3	160.8	265.1	147.2	54	153.6	16.2	116.1	76.8	486.4	24.7	11.8	513	804.1	454.5	352.5	98.6	51.6	223.8	37.2	
C	53.7	77.6	173.3	243.3	149.9	34.5	134.3	13	117	77.9	485.1	30	11.1	501	775.3	453.5	392.5	99.6	52.2	253.5	81.4	
C	35	84	163.9	232.1	153.4	42	144.6	15.7	107.3	50.6	473.8	21.3	22.3	481.4	4668.6	454.7	485.7	99.4	51	260.2	33	
C	99.8	74.3	217.9	260.5	144.5	67.7	159	8.3	73.8	90.3	471.9	4.5	19.6	564.9	9818.6	458	423.8	105.8	84.4	289.9	56.9	. .
C	87.5	82.9	219.3	254.9	145.4	83.7	175.1	3.5	73.6	94	471.5	2.4	11.4	559.2	258	457.5	473.2	106.8	53.8	302.9	43.9	. .
C	83.6	80.3	214.7	253.1	145.8	43.4	137.5	7.8	83.2	87.1	481.4	2.6	4.7	560.8	850.5	457.2	461.8	105.2	25.6	281.2	65.5	.
C	101.7	80.3	230	340.1	145.2	135.7	228.5	19.6	77.4	68	527.7	37.6	24.3	652.3	332.2	457.4	410.4	104.7	49.3	208.7	74.6	.
C	104.9	74.1	228	339.6	143.3	92.2	179.8	31.5	86.9	70.8	527.1	17	34.2	651.7	730.7	451.2	385.8	103.8	80.6	185.6	72.7	. .
C	37.8	92.4	171.6	236.7	162.6	36.1	148.3	0.3	110.8	89.8	484.2	29	0.5	495.6	6826.9	457.2	305.3	99	51.5	259.1	56.8	. .
C	36.9	86.5	171.	236.9	156.4	37	143.2	7	110.7	90.6	491.2	31.5	2.5	495.8	8830.7	453.9	347.4	99.4	60.2	254.4	56.9	. .
C	48.4	78	170.8	271.9	143.6	30.4	125.6	10.4	119.3	84.3	498.9	21.2	11.6	527.4	4809.8	453.8	360.6	99.7	52.2	248	61.3	.
C	54.9	57.5	170.2	263.7	138.1	33.2	121.5	45.1	106.8	58.1	491	25.9	54.5	517.1	1820.2	452.6	386.4	97.1	53.3	588.3	99.3	.
C	60.9	63.5	166.3	254	134.6	38.5	122.2	41.2	104.9	61.5	496.7	24.4	49.9	504.8	789.8	451.8	409.3	100.2	57.1	70.6	70	. .
C	46.9	100.3	203.7	192.9	172.9	66.5	189	57.1	120.5	85.1	518.8	9.5	56.9	478.6	825.1	444.7	370.1	99.5	54	247.7	75	. .
C	45.6	119.5	214.1	165.7	180.9	48.9	182.2	53.1	125	82.9	525.3	7.2	64.3	460.5	5814.6	450	382	98.1	51.4	191	72.5	. .

Type	A	B	C	D	E	F	G	H	I	J	L	M	N	0	P	Q					HORD	WALL	EFT
C	47.9	114.4	213.6	178	179.6	38.6	168.3	55	121.5	80.5	5519.6	61.5	62.3	473.4	4817.4	450.4	4380.9	100	54.9	214.5	71.9		
C	47.8	109.1	208.2	189.1	174.2	55.5	182.3	57.5	122.5	83.2	2516	10.6	62.2	481.7	7850.6	449.5	5342.7	100.1	151.5	160.9	73		
C	46.4	108.	209.9	186.6	176.9	64.5	191.1	54.7	109.9	75.7	7498.9	99.8	54.9	479.1	1796.1	442.9	386.4	99.8	52.5	218.7	74.1		
C	45.8	110	208.5	185	177.2	41.1	168.2	55.6	124.4	88.8	8519.9	$9 \quad 0.4$	57.9	473.1	1813.9	444	389.8	99.5	53.2	207.2	74.7		
C	43.6	110	206.9	189.2	176.8	56.8	184.3	53.9	124.9	84.6	6503.3	31.4	60.4	480	851.6	441.7	7344.7	97.7	53.2	337.6	76.1		.
C	48.5	107.4	219.9	179.8	176.3	68.5	197	55.7	122.4	84.4	4519.9	96.7	67.2	482.2	2825.3	449.6	6369.5	100.1	155.5	231.6	74.2		.
C	40.8	113.	205.8	153	176.4	54.5	181.8	57.1	120.6	85.7	7522.9	94	61	. 4	4819.7	449.8	8372.5	99	53	272.7	74.2		.
D	37.9	20.2	128.2	434.	10	195.1	263.2	10.7	23.3	16.4	4459.5	5201.2	4.3	673.1	1824.7	458.4	4260.8	69.5	73.1	243.3	72.9	58.5	263.6
D	49.7	17.5	134.6	394.5	107.1	178.9	249.8	2.6	24.9	24.2	2513.5	5105.6	17.2	608.8	8795	457.9	307.4	71.6	66.6	6240.5	63.3	21.5	258.4
D	50	21.8	141	396.1	110.3	193.6	263	7.4	23.6	25.4	4475.7	7108.4	16.4	615.5	5813.6	456.2	250.9	73.1	68.5	5239.9	64.7	26.1	258.5
D	19.3	41.1	128.4	437.3	110.3	224.	291	38.8	20.1	20	477.5	5160	44.4	681.1	1758.9	458.9	9277.9	70.5	63.8	54.1	108	55.9	283.8
D	33.1	27.6	134.2	403.2	106.9	155.5	228.3	7.5	17.6	39.2	2531.3	399	13	611.5	5774.4	458	328.4	71.5	72.8	76.4	67.6	22.8	271.8
D	32.2	27.2	134.8	400	109.3	160.3	231.2	13	25.3	24.7	7540.4	4108.1	17.5	611.8	8787.9	454.8	321.3	72.7	72.2	2186.3	71.4	19.9	261.7
D	53.3	42	157	366.3	100.6	212.1	273.2	19.9	26.7	35.3	3494.8	8155.7	32	604.2	2799.8	500.7	7212.5	71.2	60.8	390.2	94	57.1	206.5
D	53.8	45.7	156.7	338.9	120.2	164.6	248	49.7	21.1	20.7	7520.5	5145.5	65	595.9	9809.7	501.6	6244.8	70.5	59.3	3196.8	102.1	57.6	190.6

7. Appendix B - T Test Comparisons of Dimensions by Bus Type

Variable: A

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 58.0500 | 22.2351 | 4.5387 | 31.0000 | 104.9 |
| Type D | 8 | 41.1625 | 12.4898 | 4.4158 | 19.3000 | 53.8000 |
| Diff (1-2) | 16.8875 | 20.3823 | 8.3210 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	2.03	0.0514
Satterthwaite	Unequal	22.097	2.67	0.0141

Variable: B

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	89.4458	18.1528	3.7054	57.5000	119.5
Type D	8	30.3875	10.9911	3.8859	17.5000	45.7000
Diff (1-2)	59.0583	16.7578	6.8413			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	8.63	$<.0001$
Satterthwaite	Unequal	20.387	11.00	$<.0001$

Variable: C

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 197.0 | 22.6314 | 4.6196 | 160.8 | 230.0 |
| Type D | 8 | 139.4 | 11.5219 | 4.0736 | 128.2 | 157.0 |
| Diff (1-2) | 57.5917 | 20.5827 | 8.4028 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	6.85	$<.0001$
Satterthwaite	Unequal	24.333	9.35	$<.0001$

Variable: D

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	234.9	51.2014	10.4515	153.0	340.1
Type D	8	396.3	32.4460	11.4714	338.9	437.3
Diff (1-2)	-161.4	47.4924	19.3887			

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-8.33	$<.0001$
Satterthwaite	Unequal	19.38	-10.40	$<.0001$

Variable: E

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	157.3	16.5962	3.3877	134.6	180.9
Type D	8	108.6	5.7021	2.0160	100.6	120.2
Diff (1-2)	48.6750	14.7903	6.0381			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	8.06	$<.0001$
Satterthwaite	Unequal	29.867	12.35	$<.0001$

Variable: F

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 63.2250 | 34.8106 | 7.1057 | 30.4000 | 147.4 |
| Type D | 8 | 185.5 | 24.9877 | 8.8345 | 155.5 | 224.1 |
| Diff (1-2) | | -122.3 | 32.7829 | 13.3836 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-9.14	$<.0001$
Satterthwaite	Unequal	16.841	-10.79	$<.0001$

Variable: G

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	170.5	33.5647	6.8514	121.5	238.9
Type D	8	256.0	21.0686	7.4489	228.3	291.1
Diff (1-2)	-85.5375	31.1014	12.6971			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-6.74	$<.0001$
Satterthwaite	Unequal	19.587	-8.45	$<.0001$

Variable: H

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 30.5083 | 22.4624 | 4.5851 | 0.3000 | 57.5000 |
| Type D | 8 | 18.7000 | 16.7983 | 5.9391 | 2.6000 | 49.7000 |
| Diff (1-2) | 11.8083 | 21.2761 | 8.6859 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	1.36	0.1841
Satterthwaite	Unequal	16.091	1.57	0.1350

Variable: I

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	106.4	17.7478	3.6228	73.6000	125.0
Type D	8	22.8250	3.0231	1.0688	17.6000	26.7000
Diff (1-2)	83.5583	15.6084	6.3721			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	13.11	$<.0001$
Satterthwaite	Unequal	26.518	22.12	$<.0001$

Variable: J

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	76.2917	15.5622	3.1766	39.3000	94.0000
Type D	8	25.7375	7.7618	2.7442	16.4000	39.2000
Diff (1-2)	50.5542	14.1326	5.7696			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	8.76	$<.0001$
Satterthwaite	Unequal	24.784	12.04	$<.0001$

Variable: L

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	502.5	18.8916	3.8562	471.5	527.7
Type D	8	501.7	29.1709	10.3135	459.5	540.4
Diff (1-2)	0.8917	21.7295	8.8710			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	0.10	0.9206
Satterthwaite	Unequal	9.0403	0.08	0.9372

Variable: M

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 18.9750 | 18.5358 | 3.7836 | 0.4000 | 74.5000 |
| Type D | 8 | 135.4 | 36.1271 | 12.7729 | 99.0000 | 201.2 |
| Diff (1-2) | -116.5 | 23.8316 | 9.7292 | | | |

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-11.97	$<.0001$
Satterthwaite	Unequal	8.263	-8.74	$<.0001$

Variable: N

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 35.3750 | 23.7791 | 4.8539 | 0.5000 | 67.2000 |
| Type D | 8 | 26.2500 | 19.8985 | 7.0352 | 4.3000 | 65.0000 |
| Diff (1-2) | 9.1250 | 22.9324 | 9.3621 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	0.97	0.3375
Satterthwaite	Unequal	14.267	1.07	0.3034

Variable: O

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	515.7	54.0421	11.0313	441.4	652.3
Type D	8	625.2	32.6212	11.5333	595.9	681.1
Diff (1-2)	-109.5	49.8737	20.3609			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-5.38	$<.0001$
Satterthwaite	Unequal	20.456	-6.86	$<.0001$

Variable: P

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	808.0	41.1724	8.4043	668.6	858.0
Type D	8	795.5	21.5246	7.6101	758.9	824.7
Diff (1-2)	12.5458	37.5198	15.3174			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	0.82	0.4192
Satterthwaite	Unequal	23.74	1.11	0.2796

Variable: Q

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	453.6	8.0218	1.6374	441.7	475.2
Type D	8	468.3	20.3116	7.1812	454.8	501.6
Diff (1-2)		-14.7542	12.0664	4.9261		

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-3.00	0.0055
Satterthwaite	Unequal	7.7404	-2.00	0.0813

Variable: R

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 386.7 | 42.2774 | 8.6298 | 305.3 | 485.7 |
| Type D | 8 | 275.5 | 40.7994 | 14.4248 | 212.5 | 328.4 |
| Diff (1-2) | 111.2 | 41.9372 | 17.1208 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	6.50	$<.0001$
Satterthwaite	Unequal	12.423	6.62	$<.0001$

Variable: S

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 99.7958 | 3.7888 | 0.7734 | 89.8000 | 106.8 |
| Type D | 8 | 71.3250 | 1.1865 | 0.4195 | 69.5000 | 73.1000 |
| Diff (1-2) | 28.4708 | 3.3666 | 1.3744 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	20.71	$<.0001$
Satterthwaite	Unequal	29.994	32.36	$<.0001$

Variable: T

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 53.3208 | 3.4330 | 0.7007 | 48.4000 | 64.7000 |
| Type D | 8 | 67.1375 | 5.4526 | 1.9278 | 59.3000 | 73.1000 |
| Diff (1-2) | -13.8167 | 3.9966 | 1.6316 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-8.47	$<.0001$
Satterthwaite	Unequal	8.9246	-6.74	$<.0001$

Variable: ARC

style	N	Mean	Std Dev	Std Err	Minimum	Maximum
Type C	24	253.6	89.8428	18.3391	70.6000	588.3
Type D	8	203.4	105.5	37.3091	54.1000	390.2
Diff (1-2)	50.1708	93.7372	38.2681			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	1.31	0.1998
Satterthwaite	Unequal	10.603	1.21	0.2537

Variable: CHORD

| style | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Type C | 24 | 65.4125 | 15.9885 | 3.2636 | 32.4000 | 99.3000 |
| Type D | 8 | 80.5000 | 17.9584 | 6.3492 | 63.3000 | 108.0 |
| Diff (1-2) | -15.0875 | 16.4693 | 6.7235 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	30	-2.24	0.0324
Satterthwaite	Unequal	10.955	-2.11	0.0583

8. Appendix C-Comparison of Type C Bus Measurements by Manufacturer
Dependent Variable: A

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 2217.70752 | 1108.85376 | 2.54 | 0.1025 |
| Error | 21 | 9153.47248 | 435.87964 | | |
| Corrected Total | 23 | 11371.18000 | | | |

R-Square Coeff Var Root MSE A Mean
$\begin{array}{llll}0.195029 & 35.96508 & 20.87773 & 58.05000\end{array}$

Scheffe's Test for A

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	435.8796
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.			
mfg Comparison	Difference Between Means	Simultaneous 95 Lim	fidence
Thomas - BB	7.585	-34.172	49.341
Thomas - IC	25.978	-16.998	68.953
BB - Thomas	-7.585	-49.341	34.172
BB - IC	18.393	-5.445	42.232
IC - Thomas	-25.978	-68.953	16.998
IC - BB	-18.393	-42.232	5.445

Dependent Variable: B

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	2	6331.867618	3165.933809	$53.31<.0001$	
Error	21	1247.191966	59.390094		
Corrected Total	23	7579.059583			

| R-Square | Coeff Var | Root MSE | B Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.835442 | 8.615825 | 7.706497 | 89.44583 |

Distribution of B

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	59.39009
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.				
mfg Comparison	Difference Between Means	Simultaneous 9 Lim	nfidence	
IC - BB	32.466	23.666	41.265	***
IC - Thomas	39.089	23.225	54.952	***
BB-IC	-32.466	-41.265	-23.666	***
BB - Thomas	6.623	-8.790	22.036	
Thomas - IC	-39.089	-54.952	-23.225	***
Thomas - BB	-6.623	-22.036	8.790	

Dependent Variable: C

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 2475.98266 | 1237.99133 | 2.79 | 0.0840 |
| Error | 21 | 9304.13692 | 443.05414 | | |
| Corrected Total | 23 | 11780.11958 | | | |

R-Square Coeff Var Root MSE C Mean
$\begin{array}{lllll}0.210183 & 10.68718 & 21.04885 & 196.9542\end{array}$

Scheffe's Test for C

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	443.0541
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$ $\mathbf{m f g}$ Comparison	Difference Between Means	Simultaneous 95\% Confidence Limits	
IC - BB	20.951	-3.083	44.985
IC - Thomas	21.167	-22.161	64.495
BB - IC	-20.951	-44.985	3.083
BB - Thomas	0.215	-41.883	42.314
Thomas - IC	-21.167	-64.495	22.161
Thomas - BB	-0.215	-42.314	41.883

Dependent Variable: D

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 43988.97009 | 21994.48504 | 28.32 | $<.0001$ |
| Error | 21 | 16307.56325 | 776.55063 | | |
| Corrected Total | 23 | 60296.53333 | | | |

R-Square Coeff Var Root MSE D Mean
$\begin{array}{llll}0.729544 & 11.86488 & 27.86666 & 234.8667\end{array}$

Scheffe's Test for D

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	776.5506
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 95\% Confidence Limits		
Thomas - BB	17.27	-38.47	73.00	
Thomas - IC	102.88	45.52	160.24	$* * *$
BB - Thomas	-17.27	-73.00	38.47	
BB - IC	85.61	53.79	117.43	$* * *$
IC - Thomas	-102.88	-160.24	-45.52	$* * *$
IC - BB	-85.61	-117.43	-53.79	$* * *$

Dependent Variable: E

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 5634.138173 | 2817.069087 | $84.41<.0001$ | |
| Error | 21 | 700.808077 | 33.371813 | | |
| Corrected Total | 23 | 6334.946250 | | | |

R-Square Coeff Var Root MSE E Mean
$\begin{array}{llll}0.889374 & 3.672203 & 5.776834 & 157.3125\end{array}$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	33.37181
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.				
mfg Comparison	Difference Between Means	Simultaneous 9 Lim	nfidence	
IC - BB	29.877	23.281	36.473	***
IC - Thomas	39.650	27.759	51.541	***
BB-IC	-29.877	-36.473	-23.281	*
BB - Thomas	9.773	-1.781	21.327	
Thomas - IC	-39.650	-51.541	-27.759	***
Thomas - BB	-9.773	-21.327	1.781	

Dependent Variable: F

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F	
Model	2	15336.60342	7668.30171	12.85	0.0002	
Error	21	12534.28158	596.87055			
	Corrected Total	23	27870.88500			

R-Square	Coeff Var	Root MSE	F Mean
0.550273	38.64126	24.43093	63.22500

Scheffe's Test for F

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	596.8706
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 95 Lim	nfidence	
Thomas-BB	91.019	42.156	139.882	***
Thomas - IC	92.061	41.771	142.351	**
BB - Thomas	-91.019	-139.882	-42.156	***
BB-IC	1.042	-26.854	28.938	
IC - Thomas	-92.061	-142.351	-41.771	***
IC - BB	-1.042	-28.938	26.854	

Dependent Variable: G

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 14775.01544 | 7387.50772 | 13.93 | 0.0001 |
| Error | 21 | 11136.59081 | 530.31385 | | |
| Corrected Total | 23 | 25911.60625 | | | |

| R-Square | Coeff Var | Root MSE | G Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.570208 | 13.50747 | 23.02854 | 170.4875 |

Scheffe's Test for G

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	530.3138
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.				
mfg	Difference	Simultaneous 95	nfidence	
Comparison	Between Means	Lim		
Thomas - IC	54.461	7.058	101.864	**
Thomas - BB	85.365	39.307	131.423	***
IC - Thomas	-54.461	-101.864	-7.058	***
IC - BB	30.904	4.610	57.199	***
BB - Thomas	-85.365	-131.423	-39.307	**
BB-IC	-30.904	-57.199	-4.610	***

Dependent Variable: H

\[\)| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>\text { F }$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 9199.00855 | 4599.50427 | 40.15 | $<.0001$ |
| Error | 21 | 2405.84979 | 114.56428 | | |
| Corrected Total | 23 | 11604.85833 | | | |

\]

| R-Square | Coeff Var | Root MSE | H Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.792686 | 35.08376 | 10.70347 | 30.50833 |

Scheffe's Test for H

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	114.5643
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 9 Lin	nfidence	
IC - BB	38.630	26.408	50.851	***
IC - Thomas	49.072	27.040	71.105	***
BB - IC	-38.630	-50.851	-26.408	***
BB - Thomas	10.442	-10.965	31.850	
Thomas - IC	-49.072	-71.105	-27.040	***
Thomas - BB	-10.442	-31.850	10.965	

Dependent Variable: I

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 3462.577564 | 1731.288782 | 9.61 | 0.0011 |
| Error | 21 | 3782.095769 | 180.099799 | | |
| Corrected Total | 23 | 7244.673333 | | | |

$$
\begin{array}{rrrr}
\text { R-Square } & \text { Coeff Var } & \text { Root MSE } & \text { I Mean } \\
0.477948 & 12.61488 & 13.42013 & 106.3833
\end{array}
$$

Scheffe's Test for I

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	180.0998
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg	Difference	Simultaneous 95	fidence	
Comparison	Between Means	Lim		
IC - BB	22.238	6.915	37.562	*
IC - Thomas	34.450	6.825	62.075	*
BB-IC	-22.238	-37.562	-6.915	**
BB - Thomas	12.212	-14.629	39.052	
Thomas - IC	-34.450	-62.075	-6.825	***
Thomas - BB	-12.212	-39.052	14.629	

Dependent Variable: J

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 3076.404103 | 1538.202051 | 12.95 | 0.0002 |
| Error | 21 | 2493.794231 | 118.752106 | | |
| Corrected Total | 23 | 5570.198333 | | | |

R-Square Coeff Var Root MSE J Mean
$\begin{array}{llll}0.552297 & 14.28379 & 10.89734 & 76.29167\end{array}$

Scheffe's Test for J

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	118.7521
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 9 Lim	fidence	
IC - BB	6.526	-5.917	18.968	
IC - Thomas	43.283	20.852	65.715	***
BB - IC	-6.526	-18.968	5.917	
BB - Thomas	36.758	14.963	58.553	***
Thomas - IC	-43.283	-65.715	-20.852	***
Thomas - BB	-36.758	-58.553	-14.963	***

Dependent Variable: L

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 3587.293333 | 1793.646667 | 8.15 | 0.0024 |
| Error | 21 | 4621.245000 | 220.059286 | | |
| Corrected Total | 23 | 8208.538333 | | | |

R-Square Coeff Var Root MSE L Mean
$\begin{array}{llll}0.437020 & 2.951874 & 14.83440 & 502.5417\end{array}$

Scheffe's Test for L

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	220.0593
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 95 Lim	fidence	
IC - Thomas	1.317	-29.219	31.852	
IC - BB	24.767	7.828	41.705	***
Thomas - IC	-1.317	-31.852	29.219	
Thomas - BB	23.450	-6.219	53.119	
BB-IC	-24.767	-41.705	-7.828	***
BB - Thomas	-23.450	-53.119	6.219	

Dependent Variable: M

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 6082.601752 | 3041.300876 | 35.10 | $<.0001$ |
| Error | 21 | 1819.643248 | 86.649678 | | |
| Corrected Total | 23 | 7902.245000 | | | |

R-Square Coeff Var Root MSE M Mean
$\begin{array}{llll}0.769731 & 49.05708 & 9.308581 & 18.97500\end{array}$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	86.64968
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 9 Lim	nfidence	
Thomas - BB	45.169	26.552	63.787	***
Thomas - IC	60.422	41.261	79.583	***
BB - Thomas	-45.169	-63.787	-26.552	***
BB - IC	15.253	4.624	25.882	*
IC - Thomas	-60.422	-79.583	-41.261	***
IC - BB	-15.253	-25.882	-4.624	***

Dependent Variable: N

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 9361.50192 | 4680.75096 | 26.98 | $<.0001$ |
| Error | 21 | 3643.76308 | 173.51253 | | |
| Corrected Total | 23 | 13005.26500 | | | |

R-Square Coeff Var Root MSE N Mean
$\begin{array}{llll}0.719824 & 37.23651 & 13.17242 & 35.37500\end{array}$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	173.5125
Critical Value of F	3.46680

Dependent Variable: O

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	2	27468.84085	13734.42043	7.26	0.0040
Error	21	39703.77248	1890.65583		
Corrected Total	23	67172.61333			

R-Square Coeff Var Root MSE O Mean
$\begin{array}{llll}0.408929 & 8.431038 & 43.48167 & 515.7333\end{array}$

Dependent Variable: P

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 4237.09377 | 2118.54689 | 1.28 | 0.2988 |
| Error | 21 | 34751.82581 | 1654.84885 | | |
| Corrected Total | 23 | 38988.91958 | | | |

R-Square Coeff Var Root MSE P Mean
$\begin{array}{lllll}0.108674 & 5.034347 & 40.67983 & 808.0458\end{array}$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	1654.849
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.			
mfg Comparison	Difference Between Means	Simultaneous 95\% Confidence Limits	
IC - BB	22.63	-23.82	69.08
IC - Thomas	42.11	-41.63	125.85
BB - IC	-22.63	-69.08	23.82
BB - Thomas	19.48	-61.88	100.85
Thomas - IC	-42.11	-125.85	41.63
Thomas - BB	-19.48	-100.85	61.88

Dependent Variable: Q

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	2	1312.883419	656.441709	82.48	$<.0001$
Error	21	167.134915	7.958805		
Corrected Total	23	1480.018333			

R-Square Coeff Var Root MSE Q Mean
$\begin{array}{lllll}0.887072 & 0.622001 & 2.821135 & 453.5583\end{array}$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	7.958805
Critical Value of F	3.46680

Comparisons significant at the 0.05 level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 9 Lim	nfidence	
Thomas - BB	19.881	14.238	25.523	***
Thomas - IC	27.794	21.987	33.602	*
BB - Thomas	-19.881	-25.523	-14.238	*
BB-IC	7.914	4.692	11.135	*
IC - Thomas	-27.794	-33.602	-21.987	*
IC - BB	-7.914	-11.135	-4.692	***

Dependent Variable: R

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 4706.71688 | 2353.35844 | 1.36 | 0.2789 |
| Error | 21 | 36402.93645 | 1733.47316 | | |
| Corrected Total | 23 | 41109.65333 | | | |

$$
\begin{array}{rrrrr}
\text { R-Square } & \text { Coeff Var } & \text { Root MSE } & \text { R Mean } \\
0.114492 & 10.76582 & 41.63500 & 386.7333
\end{array}
$$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	1733.473
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.			
mfg Comparison	Difference Between Means	Simultaneous 95\% Confidence Limits	
BB - Thomas	25.44	-57.83	108.71
BB - IC	28.64	-18.90	76.18
Thomas - BB	-25.44	-108.71	57.83
Thomas - IC	3.19	-82.51	88.90
IC - BB	-28.64	-76.18	18.90
IC - Thomas	-3.19	-88.90	82.51

Dependent Variable: S

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	2	193.9237714	96.9618857	$14.95<.0001$	
Error	21	136.2458120	6.4878958		
Corrected Total	23	330.1695833			

R-Square Coeff Var Root MSE S Mean
$\begin{array}{llll}0.587346 & 2.552346 & 2.547135 & 99.79583\end{array}$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	6.487896
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
mfg Comparison	Difference Between Means	Simultaneous 9 Lim	nfidence	
BB-IC	2.1735	-0.7349	5.0819	
BB - Thomas	10.4846	5.3902	15.5790	*
IC - BB	-2.1735	-5.0819	0.7349	
IC - Thomas	8.3111	3.0680	13.5543	***
Thomas - BB	-10.4846	-15.5790	-5.3902	***
Thomas - IC	-8.3111	-13.5543	-3.0680	***

Dependent Variable: T

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 2 | 57.3923611 | 28.6961806 | 2.82 | 0.0822 |
| Error | 21 | 213.6672222 | 10.1746296 | | |
| Corrected Total | 23 | 271.0595833 | | | |

R-Square Coeff Var Root MSE T Mean
$\begin{array}{lllll}0.211733 & 5.982220 & 3.189770 & 53.32083\end{array}$

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	10.17463
Critical Value of F	3.46680

Comparisons significant at the 0.05 level were indicated by ***.			
mfg Comparison	Difference Between Means	Simultaneous 95 Lim	fidence
Thomas - IC	5.106	-1.460	11.672
Thomas - BB	5.750	-0.630	12.130
IC - Thomas	-5.106	-11.672	1.460
IC - BB	0.644	-2.998	4.287
BB - Thomas	-5.750	-12.130	0.630
BB - IC	-0.644	-4.287	2.998

Dependent Variable: ARC

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	2	8296.5655	4148.2827	0.49	0.6188
Error	21	177353.0329	8445.3825		
Corrected Total	23	185649.5983			

R-Square Coeff Var Root MSE ARC Mean
$\begin{array}{llll}0.044689 & 36.23649 & 91.89876 & 253.6083\end{array}$

Scheffe's Test for ARC

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	8445.383
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$ $\mathbf{m f g}$ Comparison	Difference Between Means	Simultaneous 95\% Confidence Limits	
Thomas - BB	25.70	-158.10	209.50
Thomas - IC	57.93	-131.24	247.10
BB - Thomas	-25.70	-209.50	158.10
BB - IC	32.23	-72.70	137.16
IC - Thomas	-57.93	-247.10	131.24
IC - BB	-32.23	-137.16	72.70

Dependent Variable: CHORD

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	2	1439.513558	719.756779	3.40	0.0524
Error	21	4440.052692	211.431081		
Corrected Total	23	5879.566250			

R-Square Coeff Var Root MSE CHORD Mean

0.244833	22.22919	14.54067	65.41250

Alpha	0.05
Error Degrees of Freedom	21
Error Mean Square	211.4311
Critical Value of F	3.46680

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$			
mfg Comparison	Difference Between Means	Simultaneous 95\% Confidence Limits	
IC - BB	11.697	-4.905	28.300
IC - Thomas	26.617	-3.315	56.548
BB - IC	-11.697	-28.300	4.905
BB - Thomas	14.919	-14.163	44.001
Thomas - IC	-26.617	-56.548	3.315
Thomas - BB	-14.919	-44.001	14.163

9. Appendix D-T Test Comparison of Type D Buses by Manufacturer

Variable: A

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 37.0333 | 11.6845 | 4.7702 | 19.3000 | 50.0000 |
| Thomas | 2 | 53.5500 | 0.3536 | 0.2500 | 53.3000 | 53.8000 |
| Diff (1-2) | -16.5167 | 10.6674 | 8.7099 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	-1.90	0.1067
Satterthwaite	Unequal	5.0273	-3.46	0.0179

Variable: B

| $\boldsymbol{m f g}$ | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 25.9000 | 8.4318 | 3.4423 | 17.5000 | 41.1000 |
| Thomas | 2 | 43.8500 | 2.6163 | 1.8500 | 42.0000 | 45.7000 |
| Diff (1-2) | -17.9500 | 7.7709 | 6.3449 | | | |

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-2.83	0.0300
Satterthwaite	Unequal	5.8608	-4.59	0.0039

Variable: C

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 133.5 | 4.7693 | 1.9471 | 128.2 | 141.0 |
| Thomas | 2 | 156.9 | 0.2121 | 0.1500 | 156.7 | 157.0 |
| Diff (1-2) | -23.3167 | 4.3547 | 3.5556 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	-6.56	0.0006
Satterthwaite	Unequal	5.0586	-11.94	$<.0001$

Variable: D

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	410.9	19.5002	7.9609	394.5	437.3
Thomas	2	352.6	19.3747	13.7000	338.9	366.3
Diff (1-2)	58.2667	19.4794	15.9048			

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	3.66	0.0105
Satterthwaite	Unequal	1.7495	3.68	0.0813

Variable: E

	mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	108.1	2.3339	0.9528	104.4	110.3	
Thomas	2	110.4	13.8593	9.8000	100.6	120.2	
Diff (1-2)	-2.3500	6.0459	4.9364				

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	-0.48	0.6509
Satterthwaite	Unequal	1.019	-0.24	0.8503

Variable: F

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	184.6	25.3822	10.3623	155.5	224.1
Thomas	2	188.4	33.5876	23.7500	164.6	212.1
Diff (1-2)	-3.7667	26.9240	21.9834			

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-0.17	0.8696
Satterthwaite	Unequal	1.4068	-0.15	0.9025

Variable: G

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	254.4	23.4047	9.5549	228.3	291.1
Thomas	2	260.8	17.5362	12.4000	248.4	273.2
Diff (1-2)	-6.3667	22.5330	18.3981			

Method	Variances	DF	\boldsymbol{t} Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-0.35	0.7411
Satterthwaite	Unequal	2.3728	-0.41	0.7180

Variable: H

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 13.3333 | 12.9617 | 5.2916 | 2.6000 | 38.8000 |
| Thomas | 2 | 34.8000 | 21.0718 | 14.9000 | 19.9000 | 49.7000 |
| Diff (1-2) | -21.4667 | 14.6290 | 11.9446 | | | |

Method	Variances	DF	\mathbf{t} Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-1.80	0.1224
Satterthwaite	Unequal	1.2641	-1.36	0.3674

Variable: I

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	22.4667	3.0071	1.2276	17.6000	25.3000
Thomas	2	23.9000	3.9598	2.8000	21.1000	26.7000
Diff (1-2)		-1.4333	3.1857	2.6011		

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	-0.55	0.6015
Satterthwaite	Unequal	1.411	-0.47	0.7014

Variable: J

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	24.9833	7.7652	3.1701	16.4000	39.2000
Thomas	2	28.0000	10.3238	7.3000	20.7000	35.3000
Diff (1-2)	-3.0167	8.2469	6.7336			

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-0.45	0.6699
Satterthwaite	Unequal	1.4028	-0.38	0.7541

Variable: L

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	499.7	33.2576	13.5774	459.5	540.4
Thomas	2	507.7	18.1726	12.8500	494.8	520.5
Diff (1-2)	-8.0000	31.2533	25.5182			

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-0.31	0.7645
Satterthwaite	Unequal	3.5854	-0.43	0.6931

Variable: M

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	130.4	41.1609	16.8039	99.0000	201.2
Thomas	2	150.6	7.2125	5.1000	145.5	155.7
Diff (1-2)	-20.2167	37.6898	30.7736			

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	-0.66	0.5356
Satterthwaite	Unequal	5.7209	-1.15	0.2955

Variable: N

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 18.8333 | 13.4683 | 5.4984 | 4.3000 | 44.4000 |
| Thomas | 2 | 48.5000 | 23.3345 | 16.5000 | 32.0000 | 65.0000 |
| Diff (1-2) | -29.6667 | 15.5535 | 12.6994 | | | |

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-2.34	0.0582
Satterthwaite	Unequal	1.2314	-1.71	0.3010

Variable: O

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 633.6 | 33.8313 | 13.8116 | 608.8 | 681.1 |
| Thomas | 2 | 600.1 | 5.8690 | 4.1500 | 595.9 | 604.2 |
| Diff (1-2) | 33.5833 | 30.9764 | 25.2922 | | | |

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	1.33	0.2325
Satterthwaite	Unequal	5.7108	2.33	0.0609

Variable: P

mfg	N	Mean				Std Dev
Std Err	Minimum	Maximum				
BlueBird	6	792.4	24.3556	9.9432	758.9	824.7
Thomas	2	804.8	7.0004	4.9500	799.8	809.7
Diff (1-2)	-12.3333	22.4165	18.3030			

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-0.67	0.5255
Satterthwaite	Unequal	5.9562	-1.11	0.3096

Variable: Q

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	457.4	1.5526	0.6339	454.8	458.9
Thomas	2	501.2	0.6364	0.4500	500.7	501.6
Diff (1-2)		-43.7833	1.4410	1.1765		

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	-37.21	$<.0001$
Satterthwaite	Unequal	4.9822	-56.32	$<.0001$

Variable: R

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 291.1 | 32.4881 | 13.2632 | 250.9 | 328.4 |
| Thomas | 2 | 228.7 | 22.8395 | 16.1500 | 212.5 | 244.8 |
| Diff (1-2) | 62.4667 | 31.0887 | 25.3838 | | | |

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	2.46	0.0491
Satterthwaite	Unequal	2.57	2.99	0.0707

Variable: S

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 71.4833 | 1.3423 | 0.5480 | 69.5000 | 73.1000 |
| Thomas | 2 | 70.8500 | 0.4950 | 0.3500 | 70.5000 | 71.2000 |
| Diff (1-2) | | 0.6333 | 1.2419 | 1.0140 | | |

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	0.62	0.5552
Satterthwaite	Unequal	5.4099	0.97	0.3716

Variable: T

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 69.5000 | 3.8220 | 1.5603 | 63.8000 | 73.1000 |
| Thomas | 2 | 60.0500 | 1.0607 | 0.7500 | 59.3000 | 60.8000 |
| Diff (1-2) | | 9.4500 | 3.5158 | 2.8706 | | |

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	3.29	0.0166
Satterthwaite	Unequal	5.981	5.46	0.0016

Variable: ARC

mfg	N	Mean	Std Dev	Std Err	Minimum	Maximum
BlueBird	6	173.4	86.7393	35.4112	54.1000	243.3
Thomas	2	293.5	136.8	96.7000	196.8	390.2
Diff (1-2)	-120.1	96.8851	79.1064			

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-1.52	0.1798
Satterthwaite	Unequal	1.2816	-1.17	0.4162

Variable: CHORD

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 74.6500 | 16.7534 | 6.8395 | 63.3000 | 108.0 |
| Thomas | 2 | 98.0500 | 5.7276 | 4.0500 | 94.0000 | 102.1 |
| Diff (1-2) | -23.4000 | 15.4714 | 12.6323 | | | |

Method	Variances	DF	\mathbf{t} Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	6	-1.85	0.1134
Satterthwaite	Unequal	5.6487	-2.94	0.0277

Variable: LEFT

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 266.3 | 9.8813 | 4.0340 | 258.4 | 283.8 |
| Thomas | 2 | 198.6 | 11.2430 | 7.9500 | 190.6 | 206.5 |
| Diff (1-2) | 67.7500 | 10.1210 | 8.2637 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	8.20	0.0002
Satterthwaite	Unequal	1.5606	7.60	0.0323

Variable: WALL

| mfg | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BlueBird | 6 | 34.1167 | 18.0149 | 7.3546 | 19.9000 | 58.5000 |
| Thomas | 2 | 57.3500 | 0.3536 | 0.2500 | 57.1000 | 57.6000 |
| Diff (1-2) | -23.2333 | 16.4459 | 13.4281 | | | |

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	6	-1.73	0.1343
Satterthwaite	Unequal	5.0115	-3.16	0.0251

10. Appendix E-T Test Comparison of Passenger Car and Bus Dimensions

Variable: A

| vehtype | \mathbf{N} | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 53.8281 | 21.3830 | 3.7800 | 19.3000 | 104.9 |
| Pas | 101 | 41.5327 | 15.7795 | 1.5701 | 4.5000 | 83.8000 |
| Diff (1-2) | 12.2955 | 17.2706 | 3.5035 | | | |

Method	Variances	DF	\mathbf{t} Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	3.51	0.0006
Satterthwaite	Unequal	42.23	3.00	0.0045

Variable: B

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 74.6813 | 30.7707 | 5.4396 | 17.5000 | 119.5 |
| Pas | 101 | 75.4129 | 10.7408 | 1.0688 | 49.6000 | 97.1000 |
| Diff (1-2) | | -0.7316 | 17.6671 | 3.5839 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-0.20	0.8386
Satterthwaite	Unequal	33.424	-0.13	0.8958

Variable: C

vehtype	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	182.6	32.4337	5.7335	128.2	230.0
Pas	101	167.1	14.8079	1.4734	129.7	200.4
Diff (1-2)		15.4810	20.4039	4.1391		

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	131	3.74	0.0003
Satterthwaite	Unequal	35.182	2.62	0.0130

Variable: D

vehtype	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	275.2	85.0104	15.0279	153.0	437.3
Pas	101	236.1	25.9236	2.5795	188.5	313.2
Diff (1-2)		39.1181	47.1504	9.5648		

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	131	4.09	$<.0001$
Satterthwaite	Unequal	32.845	2.57	0.0151

Variable: E

vehtype	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	145.1	25.8894	4.5766	100.6	180.9
Pas	101	154.1	11.8187	1.1760	121.2	181.8
Diff (1-2)	-8.9315	16.2862	3.3038			

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-2.70	0.0078
Satterthwaite	Unequal	35.181	-1.89	0.0670

Variable: F

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 93.8000 | 62.7297 | 11.0891 | 30.4000 | 224.1 |
| Pas | 101 | 61.9356 | 26.9239 | 2.6790 | 0.8000 | 126.0 |
| Diff (1-2) | 31.8644 | 38.5298 | 7.8160 | | | |

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	131	4.08	$<.0001$
Satterthwaite	Unequal	34.688	2.79	0.0084

Variable: G

vehtype	\mathbf{N}	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	191.9	48.4997	8.5736	121.5	291.1
Pas	101	152.7	33.5422	3.3376	32.0000	211.1
Diff (1-2)		39.1798	37.6228	7.6320		

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	5.13	$<.0001$
Satterthwaite	Unequal	40.817	4.26	0.0001

Variable: H

| vehtype | \mathbf{N} | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 27.5563 | 21.5652 | 3.8122 | 0.3000 | 57.5000 |
| Pas | 101 | 50.2495 | 11.5284 | 1.1471 | 22.0000 | 77.6000 |
| Diff (1-2) | | -22.6933 | 14.5432 | 2.9502 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-7.69	$<.0001$
Satterthwaite	Unequal	36.774	-5.70	$<.0001$

Variable: I

vehtype	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	85.4938	39.8386	7.0425	17.6000	125.0
Pas	101	154.5	13.9274	1.3858	103.8	188.5
Diff (1-2)		-68.9944	22.8833	4.6420		

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-14.86	$<.0001$
Satterthwaite	Unequal	33.432	-9.61	$<.0001$

Variable: J

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 63.6531 | 26.2287 | 4.6366 | 16.4000 | 94.0000 |
| Pas | 101 | 113.4 | 13.2135 | 1.3148 | 76.9000 | 167.3 |
| Diff (1-2) | | -49.7192 | 17.2068 | 3.4905 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-14.24	$<.0001$
Satterthwaite	Unequal	36.113	-10.32	$<.0001$

Variable: L

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 502.3 | 21.3798 | 3.7794 | 459.5 | 540.4 |
| Pas | 101 | 527.8 | 41.1022 | 4.0898 | 458.3 | 716.6 |
| Diff (1-2) | | -25.4525 | 37.3868 | 7.5842 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-3.36	0.0010
Satterthwaite	Unequal	102.53	-4.57	$<.0001$

Variable: M

| vehtype | \mathbf{N} | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 48.0906 | 56.3456 | 9.9606 | 0.4000 | 201.2 |
| Pas | 101 | 25.5970 | 20.7130 | 2.0610 | 0.7000 | 79.6000 |
| Diff (1-2) | 22.4936 | 32.8451 | 6.6629 | | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	3.38	0.0010
Satterthwaite	Unequal	33.692	2.21	0.0339

Variable: N

| vehtype | \mathbf{N} | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 33.0938 | 22.9139 | 4.0506 | 0.5000 | 67.2000 |
| Pas | 101 | 51.4941 | 12.8654 | 1.2802 | 17.4000 | 79.6000 |
| Diff (1-2) | | -18.4003 | 15.8303 | 3.2113 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-5.73	$<.0001$
Satterthwaite	Unequal	37.386	-4.33	0.0001

Variable: O

vehtype	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	543.1	68.7606	12.1553	441.4	681.1
Pas	101	526.6	41.9284	4.1720	451.2	627.9
Diff (1-2)		16.4787	49.6067	10.0631		

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	1.64	0.1039
Satterthwaite	Unequal	38.568	1.28	0.2074

Variable: P

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 804.9 | 37.3201 | 6.5973 | 668.6 | 858.0 |
| Pas | 101 | 628.2 | 28.5108 | 2.8369 | 561.1 | 689.2 |
| Diff (1-2) | | 176.7 | 30.8237 | 6.2528 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	28.26	$<.0001$
Satterthwaite	Unequal	43.068	24.61	$<.0001$

Variable: Q

vehtype	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	457.2	13.5290	2.3916	441.7	501.6
Pas	101	381.6	8.0037	0.7964	339.3	399.9
Diff (1-2)		75.6320	9.6028	1.9480		

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	38.83	$<.0001$
Satterthwaite	Unequal	38.111	30.00	$<.0001$

Variable: R

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 358.9 | 64.0058 | 11.3147 | 212.5 | 485.7 |
| Pas | 101 | 561.8 | 33.7973 | 3.3630 | 474.3 | 645.6 |
| Diff (1-2) | | -202.8 | 42.9117 | 8.7049 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	-23.30	$<.0001$
Satterthwaite	Unequal	36.63	-17.18	$<.0001$

Variable: S

vehtype	\mathbf{N}	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	92.6781	12.9559	2.2903	69.5000	106.8
Pas	101	120.7	16.2191	1.6139	81.8000	150.0
Diff (1-2)		-27.9981	15.5090	3.1461		

Method	Variances	DF	t Value	$\operatorname{Pr}>\|\mathbf{t}\|$
Pooled	Equal	131	-8.90	$<.0001$
Satterthwaite	Unequal	64.498	-9.99	$<.0001$

Variable: T

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 56.7750 | 7.2392 | 1.2797 | 48.4000 | 73.1000 |
| Pas | 101 | 46.5198 | 8.5872 | 0.8545 | 27.2000 | 75.3000 |
| Diff (1-2) | | 10.2552 | 8.2881 | 1.6813 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	6.10	$<.0001$
Satterthwaite	Unequal	61.041	6.66	$<.0001$

Variable: ARC

vehtype	N	Mean	Std Dev	Std Err	Minimum	Maximum
Bus	32	241.1	94.8178	16.7616	54.1000	588.3
Pas	100	205.1	83.9152	8.3915	18.1000	438.0
Diff (1-2)		36.0146	86.6397	17.5966		

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	130	2.05	0.0427
Satterthwaite	Unequal	47.552	1.92	0.0607

Variable: CHORD

| vehtype | N | Mean | Std Dev | Std Err | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bus | 32 | 69.1844 | 17.5084 | 3.0951 | 32.4000 | 108.0 |
| Pas | 101 | 62.3535 | 12.3307 | 1.2269 | 23.5000 | 92.3000 |
| Diff (1-2) | | 6.8309 | 13.7334 | 2.7859 | | |

Method	Variances	DF	t Value	Pr $>\|\mathbf{t}\|$
Pooled	Equal	131	2.45	0.0155
Satterthwaite	Unequal	41.193	2.05	0.0466

11. Appendix F - Comparison of Passenger Car Dimensions to Type C and D Buses

Dependent Variable: A

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 268651.3291 | 89550.4430 | 311.58 | $<.0001$ |
| Error | 130 | 37362.5009 | 287.4039 | | |
| Uncorrected Total | 133 | 306013.8300 | | | |

R-Square Coeff Var Root MSE A Mean
$\begin{array}{llll}0.125970 & 38.10433 & 16.95299 & 44.49098\end{array}$

Scheffe's Test for A

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	287.4039
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.				
Type C Bus - Pass. Car	16.517	6.984	26.050	*
Type C Bus - Type D Bus	16.887	-0.251	34.026	
Pass. Car - Type C Bus	-16.517	-26.050	-6.984	**
Pass. Car - Type D Bus	0.370	-15.048	15.789	
Type D Bus - Type C Bus	-16.887	-34.026	0.251	
Type D Bus - Pass. Car	-0.370	-15.789	15.048	

Dependent Variable: B

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 773797.7884 | 257932.5961 | 1679.82 | $<.0001$ |
| Error | 130 | 19961.2416 | 153.5480 | | |
| Uncorrected Total | 133 | 793759.0300 | | | |

R-Square Coeff Var Root MSE B Mean
$\begin{array}{lllll}0.511969 & 16.46992 & 12.39145 & 75.23684\end{array}$

Dependent Variable: C

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 3905685.874 | 1301895.291 | 4886.30 | $<.0001$ |
| Error | 130 | 34636.906 | 266.438 | | |
| Uncorrected Total | 133 | 3940322.780 | | | |

| R-Square | Coeff V | Root
 MSE | C Mean |
| :--- | :--- | ---: | ---: | ---: |
| 0.426177 | 9.556745 | 16.32292 | 170.8000 |

Scheffe's Test for C

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	266.4377
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.				
Type C Bus - Pass. Car	29.879	20.700	39.058	*
Type C Bus - Type D Bus	57.592	41.091	74.093	***
Pass. Car - Type C Bus	-29.879	-39.058	-20.700	*
Pass. Car - Type D Bus	27.713	12.867	42.558	***
Type D Bus - Type C Bus	-57.592	-74.093	-41.091	***
Type D Bus - Pass. Car	-27.713	-42.558	-12.867	***

Dependent Variable: D

\[\)	Source	DF	Sum of Squares	Mean Square	F Value	Pr $>\text { F }$
Model	3	8210720.702	2736906.901	2638.10	$<.0001$	
Error	130	134869.158	1037.455			
Uncorrected Total	133	8345589.860				

\]

R-Square Coeff Var Root MSE D Mean

$\begin{array}{llll}0.589338 & 13.11897 & 32.20955 & 245.5188\end{array}$

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	1037.455
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
Type D Bus - Pass. Car	160.193	130.899	189.487	*
Type D Bus - Type C Bus	161.433	128.872	193.994	***
Pass. Car - Type D Bus	-160.193	-189.487	-130.899	*
Pass. Car - Type C Bus	1.240	-16.872	19.352	
Type C Bus - Type D Bus	-161.433	-193.994	-128.872	***
Type C Bus - Pass. Car	-1.240	-19.352	16.872	

Dependent Variable: E

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| Model | 3 | 3086007.567 | 1028669.189 | 6513.50 | $<.0001$ |
| Error | 130 | 20530.753 | 157.929 | | |
| Uncorrected Total | 133 | 3106538.320 | | | |

| R-Square | Coeff Var | Root MSE | E Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.440347 | 8.271757 | 12.56698 | 151.9263 |

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	157.9289
Critical Value of F	3.06584

Comparisons significant at the 0.05 level were indicated by $* * *$.				
Type C Bus - Pass. Car	3.237	-3.829	10.304	
Type C Bus - Type D Bus	48.675	35.971	61.379	***
Pass. Car - Type C Bus	-3.237	-10.304	3.829	
Pass. Car - Type D Bus	45.438	34.008	56.867	***
Type D Bus - Type C Bus	-48.675	-61.379	-35.971	***
Type D Bus - Pass. Car	-45.438	-56.867	-34.008	***

Dependent Variable: F

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 758732.2383 | 252910.7461 | 313.93 | $<.0001$ |
| Error | 130 | 104731.4317 | 805.6264 | | |
| Uncorrected Total | 133 | 863463.6700 | | | |
| | | | | | |

| R-Square | Coeff Var | Root MSE | F Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.522099 | 40.77965 | 28.38356 | 69.60226 |

Scheffe's Test for F

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	805.6264
Critical Value of F	3.06584

Comparisons significant at the 0.05 level were indicated by $* * *$. vehtype Difference Simultaneous 95\% Confidence Comparison Between

Limits
Means

Type D Bus - Type C Bus	122.300	93.607	150.993	$* * *$
Type D Bus - Pass. Car	123.589	97.775	149.404	$* * *$
Type C Bus - Type D Bus	-122.300	-150.993	-93.607	$* * *$
Type C Bus - Pass. Car	1.289	-14.671	17.250	
Pass. Car - Type D Bus	-123.589	-149.404	-97.775	$* * *$
Pass. Car - Type C Bus	-1.289	-17.250	14.671	

Dependent Variable: G

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 3576776.085 | 1192258.695 | 1095.15 | $<.0001$ |
| Error | 130 | 141527.055 | 1088.670 | | |
| Uncorrected Total | 133 | 3718303.140 | | | |

| R-Square | Coeff Var | Root MSE | G Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.364580 | 20.35236 | 32.99499 | 162.1188 |

Scheffe's Test for G

	Alpha		0.05		
	Error	Degrees of Fr	reedom 130		
	Error	Mean Square	1088.67		
	Critic	Value of F	3.06584		
Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.					
vehtype Comparison		Difference Simultaneous 95\% Confidence Between Limits Means			
Type D Bus - Type C Bus		85.538	52.182	118.893	**
Type D Bus - Pass. Car		103.333	73.324	133.341	**
Type C Bus - Type D Bus		-85.538	-118.893	-52.182	***
Type C Bus - Pass. Car		17.795	-0.758	36.349	
Pass. Car - Type D Bus		-103.333	-133.341	-73.324	***
Pass. Car - Type C Bus		-17.795	-36.349	0.758	

Dependent Variable: H

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 280162.0092 | 93387.3364 | $451.81<.0001$ | |
| Error | 130 | 26870.4508 | 206.6958 | | |
| Uncorrected Total | 133 | 307032.4600 | | | |

| R-Square | Coeff Var | Root MSE | H Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.331939 | 32.09888 | 14.37692 | 44.78947 |

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	206.6958
Critical Value of F	3.06584

Comparisons significant at the 0.05 level were indicated by ***. vehtype
Comparison

Pass. Car - Type C Bus	19.741	11.657	27.826	$* * *$
Pass. Car - Type D Bus	31.550	18.474	44.625	$* * *$
Type C Bus - Pass. Car	-19.741	-27.826	-11.657	$* * *$
Type C Bus - Type D Bus	11.808	-2.725	26.342	
Type D Bus - Pass. Car	-31.550	-44.625	-18.474	$* * *$
Type D Bus - Type C Bus	-11.808	-26.342	2.725	

Dependent Variable: I

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 2686310.236 | 895436.745 | 4358.85 | $<.0001$ |
| Error | 130 | 26705.874 | 205.430 | | |
| Uncorrected Total | 133 | 2713016.110 | | | |

| R-Square | Coeff Var | Root MSE | I Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.855076 | 10.39454 | 14.33282 | 137.8880 |

Scheffe's Test for I

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	205.4298
Critical Value of F	3.06584

Comparisons signifi vehtype Comparison	ant at the 0 Difference Between Means	05 level were in Simultaneous Li	by ***. onfidence	
Pass. Car - Type C Bus	48.105	40.045	56.164	***
Pass. Car - Type D Bus	131.663	118.628	144.699	***
Type C Bus - Pass. Car	-48.105	-56.164	-40.045	***
Type C Bus - Type D Bus	83.558	69.069	98.048	***
Type D Bus - Pass. Car	-131.663	-144.699	-118.628	**
Type D Bus - Type C Bus	-83.558	-98.048	-69.069	***

Dependent Variable: J

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| Model | 3 | 1443169.991 | 481056.664 | 2666.67 | $<.0001$ |
| Error | 130 | 23451.499 | 180.396 | | |
| Uncorrected Total | 133 | 1466621.490 | | | |

R-Square	Coeff Var	Root MSE	J Mean
0.762774	13.24445	13.43116	101.4098

Scheffe's Test for J

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	180.3961
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.
vehtype
Comparison

Pass. Car - Type C Bus
Pass. Car - Type D Bus
Type C Bus - Pass. Car
Type C Bus - Type D Bus
Type D Bus - Pass. Car
Type D Bus - Type C Bus

Difference Simultaneous 95\% Confidence Between Limits Means

37.081	29.528	$44.633^{* * *}$	
87.635	75.419	$99.850^{* * *}$	
-37.081	-44.633	$-29.528^{* * *}$	
50.554	36.976	$64.132^{* * *}$	
-87.635	-99.850	-75.419	***
-50.554	-64.132	-36.976	***

Dependent Variable: L

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| Model | 3 | 36207172.50 | 12069057.50 | 8568.78 | $<.0001$ |
| Error | 130 | 183103.87 | 1408.49 | | |
| Uncorrected Total | 133 | 36390276.37 | | | |

R-Square Coeff Var Root MSE L Mean
$\begin{array}{llll}0.079193 & 7.194491 & 37.52987 & 521.6474\end{array}$

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	1408.491
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.				
vehtype Difference Simultaneous 95\% Confidence Comparison Between Limits				
Pass. Car - Type C Bus	25.230	4.126	46.333	***
Pass. Car - Type D Bus	26.121	-8.012	60.254	
Type C Bus - Pass. Car	-25.230	-46.333	-4.126	***
Type C Bus - Type D Bus	0.892	-37.048	38.831	
Type D Bus - Pass. Car	-26.121	-60.254	8.012	
Type D Bus - Type C Bus	-0.892	-38.831	37.048	

Dependent Variable: M

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 221563.7471 | 73854.5824 | 160.17 | $<.0001$ |
| Error | 130 | 59941.4529 | 461.0881 | | |
| Uncorrected Total | 133 | 281505.2000 | | | |

R-Square Coeff Var Root MSE M Mean
$\begin{array}{llll}0.609801 & 69.24747 & 21.47296 & 31.00902\end{array}$

Dependent Variable: N

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 303361.3286 | 101120.4429 | 406.63 | $<.0001$ |
| Error | 130 | 32328.6414 | 248.6819 | | |
| Uncorrected Total | 133 | 335689.9700 | | | |

R-Square Coeff Var Root MSE N Mean
$\begin{array}{llll}0.212568 & 33.50474 & 15.76965 & 47.06692\end{array}$

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	248.6819
Critical Value of F	3.06584

Comparisons significant at the 0.05 level were indicated by ***. vehtype
Comparison

Pass. Car - Type C Bus	16.119	7.252	24.987	$* * *$
Pass. Car - Type D Bus	25.244	10.902	39.586	$* * *$
Type C Bus - Pass. Car	-16.119	-24.987	-7.252	$* * *$
Type C Bus - Type D Bus	9.125	-6.817	25.067	
Type D Bus - Pass. Car	-25.244	-39.586	-10.902	$* * *$
Type D Bus - Type C Bus	-9.125	-25.067	6.817	

Dependent Variable: O

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 37522244.93 | 12507414.98 | 6492.93 | $<.0001$ |
| Error | 130 | 250420.87 | 1926.31 | | |
| Uncorrected Total | 133 | 37772665.80 | | | |

| R-Square | Coeff Var | Root MSE | O Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.238765 | 8.271800 | 43.88980 | 530.5955 |

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	1926.314
Critical Value of F	3.06584

Comparisons significant at the 0.05 level were indicated by ***.				
Type D Bus - Pass. Car	98.607	58.690	138.524	***
Type D Bus - Type C Bus	109.504	65.135	153.873	
Pass. Car - Type D Bus	-98.607	-138.524	-58.690	***
Pass. Car - Type C Bus	10.897	-13.782	35.577	
Type C Bus - Type D Bus	-109.504	-153.873	-65.135	***
Type C Bus - Pass. Car	-10.897	-35.577	13.782	

Dependent Variable: P

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| Model | 3 | 60590355.42 | 20196785.14 | 21256.6 | $<.0001$ |
| Error | 130 | 123518.64 | 950.14 | | |
| Uncorrected Total | 133 | 60713874.06 | | | |

| R-Square | Coeff Var | Root MSE | P Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.860169 | 4.595777 | 30.82440 | 670.7113 |

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	950.1434
Critical Value of F	3.06584

Comparisons significant at the 0.05 level were indicated by ***.				
Type C Bus - Type D Bus	12.546	-18.615	43.707	
Type C Bus - Pass. Car	179.853	162.520	197.186	***
Type D Bus - Type C Bus	-12.546	-43.707	18.615	
Type D Bus - Pass. Car	167.307	139.272	195.341	***
Pass. Car - Type C Bus	-179.853	-197.186	-162.520	***
Pass. Car - Type D Bus	-167.307	-195.341	-139.272	***

Dependent Variable: Q

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 21400316.05 | 7133438.68 | 86073.7 | $<.0001$ |
| Error | 130 | 10773.87 | 82.88 | | |
| Uncorrected Total | 133 | 21411089.92 | | | |

| R-Square | Coeff Var | Root MSE | Q Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.928690 | 2.276976 | 9.103623 | 399.8120 |

Distribution of Q


```
Scheffe's Test for Q
```

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	82.87596
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.
vehtype
Comparison

Difference Simultaneous 95\% Confidence Between

Limits Means

Type D Bus - Type C Bus	14.754	5.551	23.957	$* * *$
Type D Bus - Pass. Car	86.698	78.418	94.977	$* * *$
Type C Bus - Type D Bus	-14.754	-23.957	-5.551	$* * *$
Type C Bus - Pass. Car	71.943	66.824	77.063	$* * *$
Pass. Car - Type D Bus	-86.698	-94.977	-78.418	$* * *$
Pass. Car - Type C Bus	-71.943	-77.063	-66.824	$* * *$

Dependent Variable: R

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| Model | 3 | 36069305.70 | 12023101.90 | 9359.99 | $<.0001$ |
| Error | 130 | 166987.72 | 1284.52 | | |
| Uncorrected Total | 133 | 36236293.42 | | | |

\author{

R-Square Coeff Var Root MSE R Mean
 | 0.865438 | 6.987011 | 35.84021 | 512.9549 |
| :--- | :--- | :--- | :--- |

}

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	1284.521
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.				
Pass. Car - Type C Bus	175.023	154.870	195.177	*
Pass. Car - Type D Bus	286.256	253.660	318.853	***
Type C Bus - Pass. Car	-175.023	-195.177	-154.870	
Type C Bus - Type D Bus	111.233	75.002	147.465	***
Type D Bus - Pass. Car	-286.256	-318.853	-253.660	*
Type D Bus - Type C Bus	-111.233	-147.465	-75.002	*

Dependent Variable: S

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	3	1750557.232	583519.077	2846.88	$<.0001$
Error	130	26645.828	204.968		
Uncorrected Total	133	1777203.060			

| R-Square | Coeff Var | Root MSE | S Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.472971 | 12.56514 | 14.31670 | 113.9398 |

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	204.9679
Critical Value of F	3.06584

Comparisons significant at the 0.05 level were indicated by ***.		
vehtype	Difference	Simultaneous 95\% Confidence
Comparison	Between	Limits
	Means	

Pass. Car - Type C Bus	20.880	12.830	28.931	$* * *$
Pass. Car - Type D Bus	49.351	36.330	62.372	$* * *$
Type C Bus - Pass. Car	-20.880	-28.931	-12.830	$* * *$
Type C Bus - Type D Bus	28.471	13.998	42.944	$* * *$
Type D Bus - Pass. Car	-49.351	-62.372	-36.330	$* * *$
Type D Bus - Type C Bus	-28.471	-42.944	-13.998	$* * *$

Dependent Variable: T

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 322867.5113 | 107622.5038 | 1781.55 | $<.0001$ |
| Error | 130 | 7853.2387 | 60.4095 | | |
| Uncorrected Total | 133 | 330720.7500 | | | |

| R-Square | Coeff Var | Root MSE | T Mean |
| ---: | ---: | ---: | ---: | ---: |
| 0.320321 | 15.86609 | 7.772357 | 48.98722 |

Scheffe's Test for T

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	60.40953
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***. vehtype Difference Simultaneous 95\% Confidence Comparison Between Limits Means

Type D Bus - Type C Bus	13.817	5.959	21.674	$* * *$
Type D Bus - Pass. Car	20.618	13.549	27.687	$* * *$
Type C Bus - Type D Bus	-13.817	-21.674	-5.959	$* * *$
Type C Bus - Pass. Car	6.801	2.431	11.172	$* * *$
Pass. Car - Type D Bus	-20.618	-27.687	-13.549	$* * *$
Pass. Car - Type C Bus	-6.801	-11.172	-2.431	$* * *$

Dependent Variable: ARC

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 6079298.273 | 2026432.758 | 272.09 | $<.0001$ |
| Error | 129 | 960734.567 | 7447.555 | | |
| Uncorrected Total | 132 | 7040032.840 | | | |

R-Square Coeff Var Root MSE ARC Mean
$\begin{array}{llll}0.046210 & 40.36789 & 86.29922 & 213.7818\end{array}$

Alpha	0.05
Error Degrees of Freedom	129
Error Mean Square	7447.555
Critical Value of F	3.06639

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by ***.			
vehtype Comparison	Difference Between Means	Simultaneous 95\% Confidence Limits	
Type C Bus - Pass. Car	48.56	-0.02	97.14
Type C Bus - Type D Bus	50.17	-37.08	137.42
Pass. Car - Type C Bus	-48.56	-97.14	0.02
Pass. Car - Type D Bus	1.61	-76.91	80.14
Type D Bus - Type C Bus	-50.17	-137.42	37.08
Type D Bus - Pass. Car	-1.61	-80.14	76.91

Dependent Variable: CHORD

| Source | DF | Sum of Squares | Mean Square | F Value | Pr $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 3 | 547216.5025 | 182405.5008 | 1015.90 | $<.0001$ |
| Error | 130 | 23341.6775 | 179.5514 | | |
| Uncorrected Total | 133 | 570558.1800 | | | |

R-Square Coeff Var Root MSE CHORD Mean

0.096733	20.93798	13.39968	63.99699

Distribution of CHORD

Scheffe's Test for CHORD

Alpha	0.05
Error Degrees of Freedom	130
Error Mean Square	179.5514
Critical Value of F	3.06584

Comparisons significant at the $\mathbf{0 . 0 5}$ level were indicated by $* * *$.				
Type D Bus - Type C Bus	15.088	1.542	28.633	*
Type D Bus - Pass. Car	18.147	5.960	30.333	*
Type C Bus - Type D Bus	-15.088	-28.633	-1.542	*
Type C Bus - Pass. Car	3.059	-4.476	10.594	
Pass. Car - Type D Bus	-18.147	-30.333	-5.960	***
Pass. Car - Type C Bus	-3.059	-10.594	4.476	

U.S. Department of Transportation National Highway Traffic Safety Administration

[^0]: ${ }^{1}$ National Transportation Safety Board. (2009, September 1). Pedal misapplcations in heavy vehicles. (Special Investigation Report. Report No. NTSB/ST-0902 PB2009-917003, Notation 1841A). Washington, DC: Author. Available at www.ntsb.gov/doclib/safetystudies/SIR0902.pdf
 ${ }^{2}$ Collins, W., Evans, L., \& Hughes, R.. (n.a.) An analysis of the relationship between driver brake and accelerator controls and reported pedal misapplication rates in North Carolina. (Unpublished NHTSA report). Washington, DC: National Highway Traffic Safety Administration.

[^1]: ${ }^{3}$ Pollard, J., \& Sussman, E. D. (1989, January). An examination of sudden acceleration. (Report No. DOT HS 807 367). Washington, DC: National Highway Traffic Safety Administration. Available at www.autosafety.org/sites/default/files/1989\%20NHTSA\%20SA\%20Study\%20Report\%20\&\%20Appendices\%20AD(1).pdf
 ${ }^{4}$ Recommendation H-09-01, page 37and H-99-53, page 38
 ${ }^{5}$ Recommendation H-99-54, page 38
 ${ }^{6}$ Recommendation H-09-12, page 37
 ${ }^{7}$ Recommendation $\mathrm{H}=09-13$, page 37

[^2]: ${ }^{8}$ Collins, Evans, \& Hughes (n.a.)
 ${ }^{9}$ Lococo, K. H., Staplin, L., Martell, C. A., \& Sifrit, K. J. (March 2012). Pedal Application Errors. (Report No. DOT HS 811 597). Washington, DC: National Highway Traffic Safety Administration.
 ${ }^{10}$ Ibid.
 ${ }^{11}$ Pollard, \& Sussman (1989.

[^3]: ${ }^{12}$ National Highway Traffic Safety Administration. (1999, January). Investigation of Sudden Acceleration Incident in Minneapolis, MN, by Bob Young. (Office of Defect Investigation, Memorandum Report MF99-002, pp 8).
 Washington, DC: Author.
 ${ }^{13}$ NHTSA Campaign ID Number:83V095000.

[^4]: ${ }^{14}$ Society of Automotive Engineers. (2009). SAE J1 100 surface vehicle recommended practice, (R) Motor Vehicle Dimensions, Rev. 2009. Warrendale, PA: Author.

