

National Highway Traffic Safety Administration

DOT HS 812 201

October 2015

Response to Peer Review Comments: Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study

Reports 1 and 2

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers' names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Suggested APA Format Citation:

Reinhart, T. E. (2015, October). Response to peer review comments: Commercial medium- and heavy-duty truck fuel efficiency technology study – reports 1 and 2. (Report No. DOT HS 812 201). Washington, DC: National Highway Traffic Safety Administration.

TECHNICAL REPORT DOCUMENTATION PAGE

		~	• · · ·
1. Report No. DOT HS 812 201	2. Government Accession No.		 Recipient's Catalog No.
4. Title and Subtitle			5. Report Date
Response to Peer Review Con	mments: Commercial Mediu	m- and Heavy-	October 2015
Duty Truck Fuel Efficiency Technology Study – Reports 1 and 2			
	interest study reports in		6. Performing Organization Code
7. Author(s)			8. Performing Organization Report No.
Thomas E. Reinhart, Institute I	Engineer		SwRI Project No. 03.17869
9. Performing Organization Name and Address			10. Work Unit No. (TRAIS)
Southwest Research Institute			
6220 Culebra Rd.			
San Antonio TX 78238			11 Contract or Grant No
San Antonio, 1X 76256			$GS_{23}F_{00}6M/DTNH22_{-}$
			12 = 0.0429
			12-1-00420
12. Sponsoring Agency Name and Address			13. Type of Report and Period Covered
National Highway Traffic Safe	ty Administration		Technical Report
1200 New Jersev Avenue SE	-		*
Washington DC 20590			14. Sponsoring Agency Code
			INHISA/INVS-132
15. Supplementary Notes			1
Prepared for:			
James MacIsaac (COR)	Corali	e Cooper	
Dr. John Whitefoot (Alternate	COR) US Γ	enartment of Tra	ansportation
US Department of Transporte	tion Volna	National Transp	artation Systems Contar
U.S. Department of Hansporta	uton voipe	National Transp	ortation Systems Center
National Highway Traffic Safe	ety Administration Energy	y Analysis and S	ustainability Division
Fuel Economy Division, NVS-	-132 55 Bro	badway	
1200 New Jersey Avenue SE.	Cambi	ridge, MA 02142	-1093
Washington, DC 20590		0	
16. Abstract			
This report documents the	comments and suggestions	s of the peer re	eviewers for two technical
reports on commercial medi	um- and heavy-duty truck	fuel efficiency	technologies. The authors
of these reports separate th	e neer review comments	and suggestion	s into discrete points and
than provide a regramme to	and point along with a 1-	anintian of are-	abangag mada to the first
men provide a response to e	ach point along with a des	scription of any	changes made to the final
report content.			
17 Key Words		18 Distribution State	ment
Fuel Consumption GHG Emi	ssions Medium Duty Heavy	Document is	available to the public from
Duty Engine Circulation	Johiolo Simulation III 1	the NI-4:-	1 Technical Jufermert
Duty, Engine Simulation, V	enicle Simulation, Hybrid	ine Nationa	i recnnical Information
Vehicles, Vocational Truck,	Truck Specification, Natural	Service www.	ntis.gov
Gas Truck, Natural Gas Truck	Cost		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	133	
		100	
Form DOT F 1700.7 (8-72)	Reproduction of c	ompleted page au	thorized

EXECUTIVE SUMMARY

The National Highway Traffic Safety Administration (NHTSA) competitively awarded a contract to Southwest Research Institute (SwRI) to conduct research in support of the next phase of Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles. The research project produced two technical reports that underwent independent external peer review before final publication. These independent peer reviews were organized by a separate contractor, Eastern Research Group, Inc. (ERG), with six reviewers for each report. Report #1 completed the peer review process during the December 2014 to January 2015 timeframe, and all details of the peer review such as the selection and conduction process, reviewer's biographies, charge questions, and the raw comments received are documented in a final peer review report.[1] Report #2 completed the same peer review process in the May to June 2015 timeframe, and all details are documented in a second peer review report.[2]

The authors of the two reports separate the peer review comments and suggestions into discrete points, and then provide a response to each point along with a description of any changes made to the final report content. The information in this report is organized in a tabular format. Reviewer comments and suggestions are listed in the left hand column on each page. The report author's responses, and a description of any changes made to the final report text are provided in the right side column. **Bold text** in the left hand column represents either a question from the list of prompts provided to the peer reviewers, or it represents bold text used by the reviewers in their comments. **Bold text** in the right hand column represents changes (if any) that were made in response to reviewer comments. Standard text in the right hand column provides the author's explanation for any changes that were made.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	ii
LIST OF ABBREVIATIONS AND ACRONYMS	iv
Report #1 Reviewer Comments and Responses	
Dana Lowell	1
Shawn Midlam-Mohler	7
William de Ojeda	13
Matthew Barth	
Susan Nelson	45
John Nuszkowski	
Report #2 Reviewer Comments and Responses	
Matthew Barth	
Susan Nelson	72
William de Ojeda	
Shawn Midlam-Mohler	
Dana Lowell	
John Nuszkowski	

LIST OF ABBREVIATIONS AND ACRONYMS

6X2	Tractor with a front axle, a drive axle, and a non-driven axle
6X4	Tractor with a front axle and dual drive axles (tandem)
A/C	Air Conditioning
AES	Automatic Engine Shutdown
AFR	Air/Fuel Ratio
ALVW	Vehicle test weight for pickup trucks equal to the empty weight plus half of the
	payload that can go in the bed, with no trailer
AMT	Automated Manual Transmission
APU	Auxiliary Power Unit
BMEP	Brake Mean Effective Pressure (A unit to compare the relative load on engines
	of different size)
BSFC	Brake Specific Fuel Consumption
BTE	Brake Thermal Efficiency
CAFE	Corporate Average Fuel Economy
CARB	California Air Resources Board
Cd	Coefficient of Drag (Aerodynamic drag)
CFD	Computational Fluid Dynamics
CH ₄	Methane
CILCC	Combined International Local and Commuter Cycle
CNG	Compressed Natural Gas
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
Crr	Coefficient of Rolling Resistance (Tire rolling resistance)
DD15	Detroit 15 liter heavy duty truck engine (formerly Detroit Diesel)
DEF	Diesel Exhaust Fluid (Urea mixture used in SCR catalysts)
DPF	Diesel Particulate Filter
E10	Gasoline with 10% ethanol content
ECM	Engine Control Module
EGR	Exhaust Gas Recirculation
EPA	United States Environmental Protection Agency
EVO	Exhaust Valve Opening (Valve timing)
F-650	Ford Class 5 and 6 truck model
FMEP	Friction Mean Effective Pressure (Unit for comparison of friction between
	different engines)
GDI	Gasoline Direct Injection
GEM	Greenhouse gas Emissions Model (EPA tool for determining compliance with
	truck GHG regulations)
GCW	Gross Combination Weight (Weight of the vehicle and trailer combined)
GHG	Greenhouse Gas (CO_2 , N_2O , CH_4 , and others. In this report, CO_2 is the focus)
GT-POWER	Commercial 1-dimensional engine simulation code. Part of GT-SUITE.
GVW	Gross Vehicle Weight
GVWR	Gross Vehicle Weight Rating (Vehicle mass with maximum allowed payload)
HCCI	Homogeneous Charge Compression Ignition

LIST OF ABBREVIATIONS AND ACRYONYMS (CONT'D)

HD	Heavy Duty (Typically refers to Class 8 trucks with engine of 10 liters or more displacement)
HPCR	High Pressure Common Rail (Diesel fuel system)
НРПІ	High Pressure Direct Injection (Natural gas is directly injected into the cylinder
	followed by a diesel pilot injection that serves to ignite the gas)
ICCT	International Council on Clean Transportation
IECT	International Energy Agency
ISB	Cummins 6.7 liter diesel engine (also available as a 4.5 liter 4-cylinder)
IVC	Intake Valve Closing (Valve timing)
	Light Duty (Typically refers to Class 2b and 3 trucks. Note that to passenger
	car manufacturers, Class 2b and 3 are called "Heavy Duty". This leads to
INC	considerable confusion between people with car and truck backgrounds.
LNG	Liquefied Natural Gas
	Low Temperature Combustion
MD	displacements below 10 liters)
mm	millimeter
MY	Model Year
N ₂	Nitrogen
N ₂ O	Nitrous Oxide
NOx	Nitrogen Oxides
NAS	National Academy of Science
NESCCAF	Northeast States Center for a Clean Air Future
NH ₃	Ammonia
NHTSA	National Highway Traffic Safety Administration (Responsible for fuel economy
	regulations)
NREL	National Renewable Energy Laboratory
NMHC	Non-Methane Hydrocarbons
NO	Nitric Oxide
NO ₂	Nitrogen Dioxide
NOX	Oxides of Nitrogen
O ₂	Oxygen
DOC	Diesel Oxidation Catalyst
ppm	Parts per Million
PFI	Port Fuel Injection
PM	Particulate Matter
RCCI	Reactivity Controlled Compression Ignition
rpm	revolutions per minute
SCR	Selective Catalytic Reduction
SwRI	Southwest Research Institute
T270	Kenworth Class 6 truck model
T700	Kenworth Class 8 long haul tractor model
TCPD	Turbocompound
VIUS	Census Bureau Vehicle Inventory and Use Survey
VMT	Vehicle Miles Traveled (per year)
VSL	Vehicle Speed Limiter (also called road speed governor)

LIST OF ABBREVIATIONS AND ACRYONYMS (CONT'D)

- VVA.....Variable Valve Actuation (Variable lift and duration)
- VVTVariable Valve Timing (Typically cam phasing, but constant lift and duration)
- WHRWaste Heat Recovery
- WHSC......World Harmonized Steady-State Cycle (An engine dyno test cycle)
- WHTC......World Harmonized Transient Cycle (An engine dyno test cycle)
- WHVCWorld Harmonized Vehicle Cycle (Truck test cycle with urban, rural, and motorway segments)

Comment	Response
1.1 The literature review appears to be comprehensive and to include key data sources for most available fuel savings technologies for MD/HD vehicles and engines	No response required
1.1 Specifically for electric accessories (Section 2.4.2.7) there may be other data sources available detailing in- use experience with electric cooling fans on transit and coach buses, as this approach has become more common in the past five years	The literature review was completed in 2012 with the goal of informing the simulation modeling, and new additions were only made in areas related to the scope of the work completed in this study. No change to the text
 1.2 Other data sources on market segmentation may be available. For example, in 2009 the International Council on Clean Transportation produced information on market segmentation by vehicle type, based on vehicle registration data collected by R.L. Polk & Company (attached) 	This reference was added
1.2 It is difficult for the reader to assess the validity of the chosen CalHEAT market segmentation approach because the report does not contain sufficient information describing it. There should be examples of the types of vehicles that would be included in each of the six segments, especially the differences between segments 2, 3, and 4; i.e. what is the difference between a Vocational Work Truck and a Work Site Support Truck? Which of these segments would the following vehicle types fall into: transit bus, coach bus, school bus, refuse truck, dump truck, utility truck, concrete truck?	Text expanded in the Executive Summary to explain the six market segments in more detail.
1.2 Also, there should be some discussion of the percentage of in-use vehicles, annual miles, and annual fuel use accounted for by each of the six segments	This data would be very useful, but it is not available. Acquiring the data is outside of the project scope, so no change to the text
1.3 This section appears comprehensive with respect to the U.S., China and Japan, and mentions Canada, but does not include any discussion of other major vehicle markets including Mexico, Brazil, and especially the European Union.	No information was found regarding Mexico or Brazil. We recently learned that Mexico plans to start considering regulations in late 2015. A new section of text was added to cover the EU , which is only planning a fuel consumption labeling requirement at this time

Final Report #1 Dana Lowell Reviewer Comments and Responses

Comment	Response
1.3 It would be helpful to the reader to include a table that briefly summarizes current and future regulatory approaches in each country/region.	Because each country is taking a different approach and using different metrics, we were not able to create a useful table. No change to the text
1.2 In general I find the vehicle/engine combinations chosen for this study to be appropriate for the purpose of the analysis and to adequately cover the range of 2b – 8b vehicles, given understandable limitations of available time and money for the project. The RAM pickup, T-270 box truck and T- 700 tractor are clearly the three most important vehicles to include, as they fully and adequately represent vehicles responsible for the vast majority of annual fuel use from the medium- and heavy-duty fleet.	No change required
 1.2 The rationale for inclusion of the F-650 tow truck is less clear, and I believe it should be explored a bit more in the text. Presumably the T-270 box truck and F-650 tow truck are together intended to represent Class 3 – 8 Urban Vocational Work Trucks, Class 3 – 8 Rural/Intracity Work trucks, and Class 3 – 8 Work Site Support Trucks, in accordance with the CalHEAT market segmentation discussed in section 2.1. I agree that it is appropriate for both of the modeled vehicles representing these segments to be Class 6 vehicles, and that one of them should be a box truck. However, because there is very little discussion in the text about which types of vehicles and duty cycles cover each of these segments, it is hard for the reader to evaluate whether or not the chosen tow truck is an appropriate second vehicle to represent these segments along with a box truck. 	The reviewer correctly understands our intent. The tow truck was included because it helps flesh out the vocational vehicle classes, and because calibration data was available from an EPA project. New text added in the first paragraph of section 3.0 to add clarification
 1.2 In particular it would be helpful to understand the importance of PTO driven equipment on vehicles within any or all of these segments, and how/whether for this analysis the tow truck does (or does not) represent vehicles with PTO driven equipment. 	Data on the power demand and efficiency of PTO driven equipment would be very useful, but was not available in the literature. Acquiring this information was beyond the project scope. No change to the text

Comment	Response
1.2 The selected engine models, engine technologies, and vehicle technologies are suitable as a basis for this analysis, and I believe that they reasonably cover the full range of technologies that would be available to improve medium- and heavy-duty truck fuel economy after 2017.	No change required
2.1 The methodology used to evaluate the chosen engine and vehicle technologies was appropriate to the aims of the project, and was clearly described.	No change required
2.1 The methodology used to evaluate the chosen engine and vehicle technologies was comprehensive and robust enough to provide credible results	No change required
2.1 One area that requires further description/elaboration is the specific reasoning for the choice of vehicle models used for the analysis, and the choice of drive cycles modeled for each vehicle. Specifically, I believe that there should be text and a table which specifically maps the chosen vehicles and drive cycles to the six CalHEAT vehicle segments discussed in Section 2.1 – i.e. which vehicle(s) and which drive cycle(s) are meant to represent each of the six vehicle segments. To the extent that there is some portion or aspect of one or more vehicle segments that is not addressed by this analysis that should also be discussed briefly.	There is an almost infinite range of vehicle types and drive cycles. Some identical vehicles experience very different drive cycles, depending on how they are employed. The cycles used in this project were selected by SwRI with EPA, NHTSA, and CARB input, in an effort to be broadly representative. Several cycles can't be fit into any one specific vehicle category. No change required
2.1 Figures showing the speed/time trace for each drive cycle used in the analysis should be included in the body of the report or in an appendix. On page 34 it says that the drive cycles are "described in detail in Appendix C" but they are not.	Drive cycle descriptions have been added to Appendix C
2.2 The models used were appropriate for the analysis and appear to have been correctly applied	No change required
2.3 The assumptions used in the analysis appear to be reasonable	No change required
2.4 The findings and conclusions are adequately supported by the data.	No change required
3.1 This section [4] adequately reviews, summarizes and presents available data on fuel efficiency metrics	No change required

Comment	Response
3.1 The discussion of "power pack testing" on page 97 indicates that "The powertrain test cycle would include specification of the powertrain output shaft speed and torque as a function of time, to simulate a given vehicle drive cycle chosen by the regulators". While I agree that power pack testing is a relevant and useful method for certifying certain technologies, it should be noted that there are no generally accepted "powertrain test cycles" that correspond to any commonly used drive cycles such as those used for modeling in this project. While development of such a powertrain cycle is conceptually straightforward it would require making a number of assumptions about vehicle configuration, including power to weight ratio and transmission and rear end gear ratios. The use of different assumptions for these parameters would result in different shaft speeds and torques as a function of time. One might need to develop a series of powertrain cycles corresponding to different types/configurations of vehicle operating over the same drive cycle.	New paragraph added to address this comment in 4.2.1.
3.1 In sections 4.4.3 and 4.5.2 the authors recommend that EPA and NHTSA re-evaluate the use of the SET and FTP engine test cycles for certification of compliance with engine fuel use and GHG standards, in order to better match average in-use engine performance. While I do not disagree with this recommendation, I believe that the discussion should highlight the fact that these test cycles were chosen by EPA and NHTSA specifically to maintain a direct link between criteria pollutant and GHG certification test procedures. Breaking this link would create the potential for negative, unintended consequences and in my opinion would not be advisable. I would suggest that the appropriate recommendation would be for EPA to re-evaluate the use of SET and FTP for both criteria pollutant and GHG certification, but to maintain common procedures and test cycles for both.	Two lines added to the first paragraph of 4.4.3. to express the value of keeping criteria emissions cycles and fuel economy cycles common.

Comment	Response
 3.1 In section 4.5.1 the authors highlight some vehicle technologies that are not currently captured in GEM for vocational vehicles, but which could be used to further reduce fuel use from these vehicles. Several of these technologies could be simulated by GEM without structural changes to the simulation model (weight reduction, Cd reduction) but most could NOT. GEM specifically cannot simulate the effects of the most promising approaches (AMT, neutral idle, reduction in parasitic loads). The authors should make recommendations for how GEM should/could be modified to account for these technologies and/or offer thoughts on alternative certification approaches. 	New line added at the end of 4.5.1 to describe the potential limitations of the current GEM model. However, recommendations for how GEM could be modified were beyond the scope of the study.
4.1 It would be very helpful to the reader to include a table in the executive summary which summarizes the findings which are described in the text (range of % fuel reduction for each technology/approach modeled)	Table added in Executive Summary
4.1 Otherwise I believe that the report is well organized, clear, and readable. I do not believe any major changes are required.	No change required
4.2 The report and appendixes are very detailed and they thoroughly document the methodology and results of the study.	No change required
4.2 To aid the reader in fully understanding the context and implications of this study I recommend that additional information be added in the following areas: [repeat of comments shown above]	The list of additions is a repeat of those described above. No additional changes required
 4.3 The strongest part of this report is section 3, the discussion of the results of the engine and vehicle technology modeling. I also believe that section 3.4, the discussion of NOx/fuel economy trade-off, is very well presented and important. Section 4.6, discussion of effects of drive cycle on fuel economy benefit from different technologies, is also very well presented. 	No change required
4.3 The weakest part of this report is the description of how the vehicles and drive cycles that were modeled were chosen, and specifically the linkage to real- world vehicle segmentation, to provide appropriate context for the reader to understand the relevance and implications of the work. See response 4-2 for specific suggestions for improvement	Changes already addressed above

Comment	Response
 4.4 In section 3 there are a number of comparisons between the modeled fuel economy and fuel use of the same vehicle with both gasoline and diesel engines. The text points out that the efficiency differences between diesel and gasoline engines are not as large as implied by the stated differences in MPG, due to higher energy content of diesel relative to gasoline. However, the text does not mention the differences in projected CO2 emissions for the gasoline and diesel options. Given that this study is in support of joint EPA/NHTSA regulations of both fuel use and GHGs, I think that it would be instructive and helpful to the reader to include discussion of the relative GHG emissions (g/mile) from the gasoline and diesel engine options modeled 	New lines added in Section 3.0 comparing diesel and gasoline for energy content and CO ₂
4.4 On page 78 there appears to be a mistake in the text. The text says "Figure 3.26 below shows the fuel economy performance of the F-650 truck with the three engines in their baseline form, all evaluated at 50% payload" while the label on Figure 3.26 indicates that it shows fuel economy performance for the RAM pickup	Error corrected in text.
5.1 I find this report ACCEPTABLE WITH MINOR REVISIONS. See responses 4-2 and 4-4 for suggested changes. The analysis appears to be thorough and appropriate to the task, and the methodology and results are thoroughly and clearly described. The suggested minor revisions will provide the reader with better context to understand the relevance of the results to the real world fleet.	Changes described above.

Final Report #1 Shawn Midlam-Mohler Reviewer Comments and Responses

Comment	Response
 1.1 The document does not contain an extensive literature review on market segmentation – there are only two non-CalHEAT references. It describes that the CalHEAT approach was adopted with input from NHTSA. Some additional info should be included justifying the reasons for adopting the CalHEAT segments (of which I am sure there are good ones.) Basically, explain in a little more detail why adopting CalHEAT segments was the right decision for the work reported on in this document. 	New text added in Literature Review.
1.1 The discussion of the fuel economy regulations has numerous references but does not aggregate/summarize them into any useful form to allowing the reader to gain knowledge. It basically states that the references exist with little information being given to the reader. This is in contrast to the technology section which provides a snapshot summary of the cited reference.	New text added in Literature Review.
1.1 There is no specific discussion of the European Union in this section of the document in regards to fuel economy regulations.	At the time of the literature review, there was no regulatory activity in Europe. Because of its importance, Section 4.3.3 has been added to cover European regulatory activity.
1.1 The fuel saving technologies section appears to have sufficient selection references. There are almost always more references out there – this appears to cover the topics with an appropriate amount.	No change required
1.2 The process used in conducting this part of the literature review is not well stated. If the process is felt to be important (which I think it is) then there should be a brief description of the methodology used. For instance, documenting the search terms and the databases used to search at a minimum. Also some idea of the overall goal, such as: 1) Find technologies capable of >X% improvements in the > 2018 time frame; 2) Find at least two credible references for each technology; 3) Included references will be biased towards more recent and more reputable organizations ; <i>etc.</i> From this, it would be clear how the technologies reported on were arrived at.	The literature review was conducted by several individuals, each working his field of expertise. As a result, there was not a common approach between topics. Redoing the literature review with a common, pre-defined approach is out of the project scope. No change to the text.

Comment	Response
1.2 In terms of technologies, I feel that the list serves as a	No change required
suitable basis for the analysis.	
1.2 At times, there is a need to better distinguish which	New text added in sections 2.3.2.1,
fuel certain technologies apply to. For instance, in	2.3.2.5, 2.3.2.6, and 2.3.2.7
2.3.2.1 EGR is discussed. The statement is accurate	
for Diesel engines but not for gasoline engines which	
generally have efficiency gains with moderate	
amounts of EGR. This is more of an issue of	
technical clarity than accuracy.	
2.1 The approach used is credible as it explores a wide	No change required
range of drive conditions and vehicle states (payload.)	
2.1 A recommendation would be a limited sensitivity	The authors agree that a sensitivity
analysis to understand how model calibration errors	analysis on model calibration errors
would propagate through the process. In a project like	would be useful, but the project time
this that require a great deal of model assumptions	and resources did not allow for it.
and understanding how these effect results is	No change to the text.
important. I do not think a sensitivity analysis of	
every single case is likely possible or necessary,	
however, a "spot check" of a few of the (highest	
performing?) technologies would be appropriate. I	
think this would improve the overall conclusions.	
2.1 The report provides a great deal of data and succinct	An overall summary section has
discussions of each relevant case. I feel that a strong	been added (Section 5).
overall summary of the technologies is necessary to	
provide a clear statement of the efficacy of the	
different technologies. This could simply be a bar that	
shows the average impact of the technology on each	
of the cycles, average for the highway and city	
cycles, or some kind of cycle weighted average based	
on an expected mission profile for the particular	
vehicle class.	
2.2 The engine and vehicle modeling approach is	No change required
reasonable for the scope of the analysis. Like all	
models, sufficient validation must be conducted in	
order to have confidence in results. When extending	
the model beyond the initial calibration, it is doubly	
important to have good confidence in the model and	
that the model be of appropriate fidelity to capture the	
effects of the extensions (<i>i.e.</i> added technology) or	
modifications (i.e. changing displacement, friction,	
etc.) There are some potential concerns addressed in	
charge question 2-3 regarding the calibration and	
application of the model – however, the models	
chosen for the study are deemed appropriate.	

Comment	Response	
2.3 On A-2, the data used to calibrate the 3.5L engine	The reviewer may have misread this	
is listed as six signals. This list is quite short and is	section. The six experimentally	
missing some key parameters, such as throttle. The	measured parameters were not used	
same concern exists for the other three engines. I	to calibrate the model – they were	
assume this is an oversight – if not then some	used as direct inputs to the model.	
explanation needs to be given on the approach. In the	On Page A-3, a total of 17	
validation plots, agreement in air mass is required to	parameters are listed that were used	
demonstrate model accuracy. The quality of the air	to validate the GT model against	
agreement of the model is not specified, only that it	experimental data. No change	
was "close to the experimental data." With the	required	
approach taken, adjustments to the heat transfer		
model could very easily mask significant errors that		
have a root cause in issues with the air modeling.		
This would weaken conclusions made from the		
model. The same comments exist for A-17, section		
2.1, regarding the baseline V-8.		
2.3 On A-10, there is insufficient information to	New text added on page A-15	
evaluate the approach to developing the GDI engine		
model. There is no discussion in particular of how the		
stratified charge mode would be handled from a		
combustion perspective. There is also some		
optimization that needs to occur for the mode		
transitions and within the mode regarding AFR which		
should be discussed as well.		
2.3 On A-12, there is insufficient information to evaluate	New text added at the bottom of	
the approach in modeling the HEDGE. Some "rule-	page A-17, and on A-18	
based" guidelines are provided for modifying the		
combustion model the basis of which is not provided.		
The same argument applies to EGR selection and cam		
phasing. I understand that fully modeling this is		
outside the scope of the work, but there needs to be		
additional explanation and a validation that		
demonstrates that the assumptions led to results		
comparable to experimental work. The same		
comments here apply to section 2.3 on A-20.		
2.3 The approach used in Appendix section 1.2, 1.3, 1.6,	No change required	
1./ and 1.8 appears sound given the constraints of the		
study.		

Comment	Response
 2.3 On A-19, section 2.2, the approach used regarding modeling of the GDI engine is not described in sufficient detail. I understand the limitations of GT-Power and difficulty in modeling combustion, however, the assumptions made are not backed up by any data. What is the added pump load and why? Why decrease combustion efficiency by precisely 2%? Furthermore, the resulting BSFC map without any kind of validation. I would think it possible to cite a reference that says you should get a ~2% change in BSFC on average (or whatever your target is.) 	New text added on page A-24
2.3 The approach used in section 2.6 (A-25) requires the same type of justification.	New text added on page A-33
2.3 The approach used in Appendix section 2.4 and 2.5 appears sound given the constraints of the study.	No change required
2.3 The approach used in section 2.7 (A-27) needs some basis for the friction reduction. Why is a reduction of 10% FMEP a valid number? This should be explained.	The 10% FMEP reduction value was taken from the literature on gasoline engine friction reduction. References ET-1, ET-2, ET-11, ET- 13, ET-17, and ET-19 were considered in determining this value. No specific feature list was created. No change required
2.3 Figure quality in B1a and B1b (B-4) is poor	Font sizes increased in Fig. B1a. Figure B1b is limited by fixed output limits in GT-Power.
2.3 In 1.1 (B-3) the accuracy of the air agreement needs to be shown in addition to the BSFC error. With this type of model it is easy to match torque independently of air by altering heat transfer, friction, <i>etc.</i> This comment is similar to that stated previously with the gasoline engines.	Air flow agreement is shown in the plot at the top of page A-6. New text added just above Figure B1c.

Comment	Response
2.3 The approaches used in appendix B appear valid	No change required
provided the baseline model is accurate. The changes	
described are all consistent with the capabilities of	
this class of model and should yield appropriate	
results. There is not a great deal of info provided on	
many of these so it is difficult to truly ascertain the	
validity of the approach without going into great	
detail – but I have no reason to doubt the approach	
and execution from what is presented.	
2.4 I have no reason to disagree with conclusions made in	Changes described above
this section of the report. Per comments above, I do	
feel that there could be a greater level of validation	
provided to give greater confidence in the ability of	
the modeling approach to yield accurate results.	
3.1 Engine/vehicle efficiency test procedures: There is a	Given that the regulatory changes in
general review of engine/vehicle efficiency test	many countries are still under
procedures. It would be helpful to have an additional	development, it is not possible to
section that summarizes the approaches from each of	compare them fully. No change to
the regulatory groups discussed. As it is, the	the text
information is relatively diffuse and future readers	
could benefit greatly from an overall summary	
comparing/contrasting the different approaches	
3.1 Engine/vehicle efficiency simulation. There is not a	GT-POWER is widely used and well
strong discussion of engine/vehicle efficiency	known in the industry for engine
simulation approaches. This issue is dispersed	simulation. GEM is an application
throughout the section and not dealt with in great	for simulating vehicle compliance to
detail. I would recommend a separate section be	a known set of standards. The in-
devoted to this and relevant information pulled into it	house vehicle simulation code used
and summarized. Of particular interest would be the	for this project has far more
type of models used and how they compare to	capability than GEM, and could be
something familiar in the US like GEM	compared to GT-DRIVE. No
	change to the text
3.1 Overall: This section is not as well-written as other	No change required
parts of the report. It has a lot of good references and	
discussion but could benefit from being refocused on	
the specific tasks.	Nie alter za menster 1
4.1 with the exception of the section 4, I feel that the	No cnange required
accument is fairly well organized and readable. I	
made comments previously regarding section 4 with	
some specific recommendations.	

Comment	Response
4.2 I have no further comment then those made earlier.	No change required
The most critical point would be to add as much	
validation and justification of assumptions as possible	
to the baseline engine models as these drive the	
accuracy of the technology assessment. I was also	
suggest that wherever possible the results from the	
analysis be compared against experimental data in as	
clear as manner as possible. This lends great	
confidence in the modeling approach to extrapolate	
beyond the baseline model.	
4.3 From having done similar simulation work, I feel that	No change required
this represents a very serious investment of	
engineering effort and, despite some requests for	
clarification, believe the work is quite sound	
technically.	
4.3 The weakest part is really the converse of this, in that	This would make a good report
the modeling approach is quite complicated and	topic, but is beyond the project
based on many assumptions. Without literally sifting	scope. No change to the text
through the model and validation data, it is difficult to	
conclude that each and every simulation case is	
without fault. The best way to address this is to	
provide as much validation points as possible,	
whenever possible. If a paper exists that suggests a	
6% improvement in FE and the simulation shows 5-	
9% - that is a good indication that the approach is	
valid and this should cited. This is done in many	
cases but not in others.	
5.1 I feel this report is acceptable with minor revisions	Changes described above
for: 1) clarity (section 4 mainly); 2) documentation of	
assumptions; and 3) additional validation as discussed	
above. I would state that there is nothing in the report	
that appears inaccurate, however, in a guiding	
document like this results should be well vetted as	
possible. Specific suggestions are described in the	
previous sections of this review.	

Final Report #1 William de Ojeda Reviewer Comments and Responses

Comment	Response
 1.1 The Engine Technologies section (2.3) provides a brief overview of major technologies that have risen in the last years and have made their way into the LD and HD markets. The treatment is consistent: the report is brief, highlights one or two significant points, and makes one to three references for each category. The approach is adequate given the very extensive literature available. 1.1 This section may be improved by indicating the relative success 	No change required
or the acceptance of these technologies onto OEM products.	which refers to reports published by NACFE on market acceptance and technology performance in field operation
 1.1 This first part of this section focuses on spark ignition engines before transitioning to Diesel. Under the gasoline category, other systems could be included. A few suggestions are given here for more completeness: VVA, Atkinson cycle, Miller cycle (addressed in part on 2.3.1.4). 	Added material on Miller cycle, asymmetric turbochargers, and VVA (throttle-free operation)
1.1 The Vehicle Technologies section (2.4) is also very concise across the technologies reviewed, with few representative references quoted. Review of these references fails to give any useful information to the reader. Some examples are given below.	Summarizing the findings of all papers would require an extensive expansion of the literature review.
- On page 15. The authors can give more detail as to what technologies are considered. "In a study by Saricks various technologies is considered [VT-10]. A base case, in which innovation proceeds at its current pace, and an accelerated implementation pace, are considered Both engine and vehicle technologies are considered."	The descriptions provided are adequate to allow the reader to decide if the paper is of interest. No change to the text
- On page 15. The authors discuss the type of study rather than provide a useful summary to the reader. "A particular medium duty vehicle was evaluated in an Argonne study [VT-13]. Technologies including aerodynamic drag reduction, rolling resistance reduction, transmission improvements, and vehicle weight reduction were applied to a baseline vehicle. Each technology was considered individually, and then various technology groupings were studied."	

Comment	Response
1.2 This [market segmentation] appears to be the area addressed in	The introduction was
Specific Requirement (SR 3), which according to the statement on	revised to remove
top of page 3, was not completed.	references to SR
	numbers, and to delete
	references to tasks that
	were removed from the
	project scope. The
	report now only
	references the work
	completed.
1.2 Only brief references to market segmentations are given in the	Discussion of market
text.	segmentation has been
	expanded.
1.2 The report would have gained a lot from the documented	Added Section 2.5,
performance and fuel consumption on a wider range of products.	which refers to reports
As this effort continues, this may be manageable by contacting a	published by NACFE
number of well known fleets that track very carefully these	on market acceptance
benchmarks. The information would complement the more detail	and technology
data made available from the chosen platforms.	performance in field
	operation. Additional
	study or surveys are out
	of the scope of this
	project.
1.2 This reviewer finds the review of fuel economy regulations very	Fuel economy
weak.	regulations section
	expanded, description
	of EU approach added.
1.2 In section 2.2.1, pertaining North American Fuel Economy	The Phase 1 regulations
regulations, further discussion is needed on EPA/NHTSA Phase 1	are complex, with many
regulations (page iii, 1, 5). This being such a significant	targets by vehicle and
grounding point for the work undertaken, rather than limiting to a	engine type, so a
reference to the EPA website, the present report should describe	summary table was not
and outline here the 1 st and second stages. Specifically:	added. A line was
a. Insert a tabular representation the GHG targets.	added in 2.2.1,
b. Indicate how did OEM companies comply with GHG targets.	referring to the
c. Show GHG standards with industry average, high and low	discussion of
market entries.	regulatory approaches
d. Tabulate GHG emissions for these engines vs. technologies	in section 4.3. Data to
that are being carried	meet suggestions b, c,
	and d is not available.

Comment	Response
1.2 In Section 2.2.2 Worldwide FE regulations, Chinese and Japanese	Added a paragraph
regulations are discussed. A summary with CO2 g/bhp-hr	describing the
benchmarks should be included as noted in the earlier North	difficulties in
American section and inserted in tabular form. Insert references.	comparing different
	country's regulations,
	and added description
	of the Japanese
	standards.
1.2 The report could be enhanced (specially the review section) by	Added Section 2.5
highlighting what technologies have the major OFMs adopted and	describing the NACFE
their relative fuel improvements towards the 2014 and 2017 GHG	reports that are now
targets.	available.
1.2 Page 7 insert "of refeference [R-7]" in sentence Pages 23 through	Typo fixed.
28 "of reference [R-7]" discuss	
1.2 Page 9: "viable in the 20105 time frame"	Typo fixed.
1.2 Page 9: "de Ojeta [Ojeda] reports"	Typo fixed.
1.2 Finish sentence on page 9: "eclectic power, then [whereupon it is]	Typo fixed.
re-condensed [prior to pumping it again into the boiler unit]."	
1.2 Sentence on page 12 mixes EGR /air handling aspects with	Wording revised to
aftertreatment. Should be deleted or corrected. "Sisken projects a	avoid confusion
two percent fuel efficiency improvement through reduced EGR	
(thinner wall DPF, improved SCR cell density, and catalyst	
<i>material optimization)</i> [ET-18]".	
1.2 There is considerable overlap in section 2.3.5.1 Variable	The water pump
Displacement Lube Pump with the previous section. Earlier	discussion was moved
section addresses several references that benchmarked variable off	Irom 2.3.5.1 to 2.3.5
yariable speed water pumps, also covered in earlier section	
Authors may want to revisit these sections	
1.2 Overall the technologies chosen follow a rather well established	No change required
criteria of technologies considered in earlier similar studies (NRC	110 change required
CalHEAT NHTSA etc.) No technology presented here is a	
"surprise" technology but all are well established and recognized	
The report in this regards appears in the conservative side.	

Comment	Response
2.1 The study's modeling work does not consider some technologies	Due to the low market
that are either entering the transportation market in specific	penetration of
segments or are making attempts to enter. The study could have	alternative fuels, and a
on the one hand gained a <i>broader scope</i> and <i>provided incentives</i>	lack of experimental
for future directions of research and developments if it	data to calibrate the
considered:	models, alternative fuels
- natural gas (specially as municipal fleets begin to require a	were beyond the project
minimum population in their new acquisitions to be powered by	scope. Text added in
natural gas),	the 3 rd paragraph of
- LPG (where significant fleets of school buses are been fit up with	section 3.0 to explain.
these engines),	
- Dual Fuel technologies (a significant technology to reduce	
particular matter when Diesel is used to ignite natural gas, and to	
reduce fueling cost), and Dual Fuel technologies being available	
in the retrofit market.	
- Alternative Fuels, specially fuels that have the potential in the	
long run to be viable substitutes to fossil fuels and provide	
significant advantages towards cleaner burning and simpler	
engine platforms (simpler fuel injection systems, aftertreatment	
systems).	
Dealing with these areas would enhance the breath of the report.	
There may be good reasons not to be present in the final count of	
the technologies to be assessed but these reasons can be given	
(e.g. owing to the little government endorsement in the US.)	
2.1 The process is adequate. The criteria for evaluation is the percent	No change required
in fuel efficiency improvement.	
2.2 The report may have used a criteria that aligns with the GHG and	The units used in our
fuel regulations, Grams of CO2 per ton-mile, Gallons per 1000	report (% fuel saved)
ton-miles. This approach may lead to technology recipes that	translate directly to %
match future target standards.	reductions in grams of
	emissions or gallons per
	ton-mile fuel
	consumption. Text
	added in section 3.3
2.2 This reviewer would have opted to include an overall summary	New summary
table or chart providing in the x-axes the vehicle class and in the	section 5 added.
y-axes the technology package. This would give a clear indication	
of the applicability of the technologies. In each category (block	
within the x-y plot) a range of efficiency improvement may be	
included based on the discussion of the literature review. The	
above summary could then put into perspective both the	
echnology selection of the report's Section 3 and now the	
autions estimates compare with the surveyed merature.	

Comment			Response		
2.	2 The sel	lection of 5 engine con	figurations (and t	two additional	No change required
	"model	led engine versions") a	ppears adequate	and well aligned to	
	the sele	ection of four vehicles.	The reviewer rec	cognizes the work	
	involve	ed in the comprehensiv	ve modeling of ea	ch of the vehicle	
	models	s is very extensive. Des	pite of it, the repo	ort is very	
-	reasona	able in size and reads v	well.		
2.	2 This re	viewer recommends cr	reating a structure	e to help understand	New tables and text
	the inte	erface of engine-vehicl	e-class designation	on as the report uses	added in Section 3
	differen	nt engines for different	t applications, suc	ch as the one given	
	here:				
	Class	Vehicle	Diesel	Gasoline	
	2a				
	2b	Dom Diale un	6.7 385HP	3.5L V6	
	3	Kalli Fick-up	4.5L model	6.2L V8	
	4				
	5				
	6	T270 BOX	6 7L 20011D	3.5L V6	
	0	F-650 Tow Truck	0./L 300HP	6.2L V8	
	7				
	0	T700	DD15		
	8	1700	12.3L model		
2.	2 Note th	hat the modeled 8.9L	(8 cylinder version)	on model of the ISB	References to the 8.9
6.7L) appears not to be used in the analysis. It is only described in			liter diesel have been		
page 25 but does not appear elsewhere.			removed		
4.1 Quality of the report is regarded as high			No change required		
4.3 Strong points:			No change required		
• The expertise behind the report. The authors show a deep					
understanding of engine and vehicle technologies, the impacts of					
various technologies on efficiency and emission, implications on					
vehicle installation;					
•	• The very consistent analysis across the engines and vehicles;				
• Selection of a wide range of engines and vehicles.					

Comment	Response
4.3 Weak points:	No numerical output
• The number of cycles used adds significant information but the	will be removed.
report may suffer from excessive numerical output at the expense	Determining which
of not highlighting the more interesting technologies moving	technologies are most
forward after 2018.	likely to be applied
• There is no cost-benefit analysis such as "pay-back" period.	beyond 2019 is beyond
• There is no fuel efficiency consideration taking into account	the project scope. A
freight.	separate cost report has
	been provided, and the
	cost information will be
	used by the agencies to
	evaluate cost/benefit.
	Text added at the end
	of Section 3.2 to
	describe the weight
	impact of certain
	this can have freight
	officiency
4.4 Seense is very adaguate. The study considered a wide range of	No abango required
engine and vehicle technologies, which are listed in tabular forms	No change required
for each engine and vehicle	
4.4 Methodology is rigorous. This is illustrated in the systematic	No change required
approach of adding technology content on the baseline engine and	ito chunge requirea
vehicle and reporting the impact on fuel economy	
4 4 Page 35. "Appendix D cannot provide the actual the actual	Typo fixed
input data used in the simulation runs."	-) Po
4.4 The method is clearly described in Section 3.2. Specifically:	Appendix A revised to
• Baseline of engine performance is carried out. This is more	include comparison of
clearly seen on the Diesel engines however where tests and	3.5 V-6 simulation
simulations for key parameters are shown side-by-side. This is	results to experimental
not the case for the gasoline engines.	data. The V-8 model is
• The models are run for <u>existing</u> technologies which could be	proprietary, so
implemented with specified improvements (e.g. improvement on	comparison data cannot
turbocharger efficiency, improvement on drag coefficient).	be provided.
• The models are also run with <u>new technologies</u> (previously not	
present on that platform) and very informative discussions are	
included (e.g. the application of GDI on a PFI style engine, lean	
GDI, VVA, etc.)	
4.4 Yes, the results are in line with former studies (such as the	No change required
NESCCAF 2009 report).	_

Comment	Response
4.4 The report could be enhanced by providing a more comprehensive	New Section 5 added.
summary of the technologies. For example, the results of engine	
and vehicle could be combined in a mpg or even better freight	
efficiency g/mil-ton. Results too could be overlaid with current	
2017 EPA standards.	
4.4 Yes. This reports benefits very much on the work and	No change required
benchmarking programs that SWRI has conducted on these	
engines and vehicles. The overall report is highly enhanced by	
this.	N 1 · 1
4.4 <u>On the engine side</u> , the engines and engine technologies were	No change required
modeled with GIPower – a well accepted tool in the industry.	
Baseline models were callorated with experimental engine data.	
instances used. The approach allows for accurate representation of	
overall fuel consumption and CO2 emissions (typically within +/	
3% and more accurate representation of small changes in fuel	
consumption and CO2 as a result of a technology change (within	
1%)	
4.4 Some limitations exist particularly in the availability of	No change required
turbocharger efficiency maps as an input Actual maps were not	rio enange requirea
available. The simulations employ "generic maps" and use a	
scaling factor to match the engine flow requirements. This	
approach is adequate.	
4.4 On the Vehicle side, the engine maps generated, including fuel	No change required
consumption, were fed into SwRI Vehicle Simulator tool. This	3
tool handles a wide range of vehicle technologies including	
automatic transmissions, automated manual transmissions, and	
hybrid systems, etc.	
4.4 The following cycles were examined:	No change required
• For Ram Pickup: FTP City, FTP Highway, US06, SC03, WHVC,	
65 MPH	
• For the T-270 Box Truck and F-650 Tow Truck: GEM Cycles,	
CILCC, Parcel Delivery Cycle, WHVC	
• For the T-700 Tractor: GEM Cycles, WHVC, NESCCAF Long	
Haul Cycle	
These cycles are described in Chapter 3 and in greater detail in	
Appendix C.	

	Comment	Response
2.3	Yes. The report provides clear assumptions. There are many	No change required
	examples.	
•	The section of Technology #5 (page 41) does an excellent job in	
	showing the assumptions and tradeoffs. The removing of	
	Turbocompounding is discussed in light of the requirement to	
	drive EGR (by means of various pathways such as re-matching of	
	the turbocharger, and addition of an intake throttle) or reliance of	
	heavy SCR for NOx control.	
•	The reduced energy content of gasoline with respect to Diesel is	
	explained (such as in page 56) which allows the reader to put in	
	context the thermal efficiency of the gasoline engines when the	
	reports are given in mpg.	
•	The important feature of "auto neutral at stop" is very well	
	explained (pages 56-57). This feature absent in a Diesel cycle	
	compromises its fuel efficiency. Representative torque numbers	
	are given as well.	
•	For the downspeeding option, the report states that torque curves	
	are increased to provide identical vehicle performance at the	
	lower engine speed. It also points out that the higher BMEP	
	requires upgrades to the engine to tolerate higher cylinder	
	pressure. In practice, as it is pointed out, these are likely to be all-	
	new engines (page 84).	
٠	The paper makes a very good attempt to assess the engine out	
	NOx that engine manufacturers will gravitate to (page 88). This is	
	a particularly valuable statement to encourage the research and	
	industrial groups to continue to work on fundamental combustion.	
	As the SCR was introduced there has been a considerable	
	slowdown on this work area, under the assumption that NOx	
	provides efficiency. The brief combustion discussion that follows	
	in page 89 is very appropriate.	

	Comment	Response
2.3	There are several areas however noted that the study does not	These are good points
	consider in depth but are important and challenging to OEM	about aftertreatment
	development teams:	heat management and
		fuel penalties, but there
0	Aftertreatment heat management and the fuel penalties associated	is very little information
	with them (DPF, SCR units have very strict requirements to	in the literature on the
	maintain exhaust temperatures). This is only touched upon briefly	fuel penalties associated
	(e.g. page 91) but it is believed to require more attention;	with aftertreatment. A
0	Start-up and light off of aftertreatment devices and specially what	paragraph was added
	technologies play significant roles in this area;	at the end of Section
0	Weight and packaging of components, with special mention to	3.2 describing the heat
	implications in freight efficiency.	management / fuel
		consumption issue.
		Another paragraph
		was added in Section
		3.2 to describe the
		weight issues caused
		by aftertreatment and
		efficiency technologies.
2.3	The selection of a DD15 engine on the T-700 vehicle (rather than	New paragraph added
	the ISX engine which is what the T-700 actually has) is explained	at the end of Section
	but still lingering to this reviewer it the fact that there is no	3.0
	model-to-hardware true benchmarks of the actual vehicle-	
	package. For example, the fuel economy number of figures 3.2	
	and 3.3 are not compared with real world numbers.	
2.2	The authors could have included turbo-charger VNT technology ,	VNT turbocharger maps
	though this may have been "inserted" under Technology 12 -	were not made available
	higher efficiency turbo.	to the authors. An
		explanation was added
		in Appendix B.
2.4	The discussion on removal of the APT unit, and the removal of	When the power turbine
	the APT and EGR, show a reduction on pumping of	and EGR systems are
	approximately 0.5bar across the lug curve. Nevertheless the BSFC	removed, pumping work
	remains nearly unchanged. A change of 0.5 over 17 is	is reduced, but the
	approximately 3%. Where may this be going?	power contributed by
		the power turbine is lost.
		At part load, the net
		trade-off is positive. At
		full load, there is a slight
		penalty. New text
		added in Appendix B,
		section 1.7

Comment	Response
2.4 The discussion on <i>weight distribution</i> is given significant	New text and table
treatment and can be followed well (page 50). The resistance	added in Appendix C,
values associated with these are not explained however (at least	section C2.3
this reviewer did not follow). Maybe this can be done in the	
revised version.	
2.4 Little discussion is given to weight of the technologies (e.g. in	Paragraph added in
the waste heat recovery), where as freight efficiency should have	Section 3.2. Also, there
been addressed.	is existing text on this
	topic in Section 3.3.1.20
2.4 Page 48: These results are shown in Figure 3.6 3.7 below.	Typo fixed
2.4 Page B-14, B-16, B-18, B-22, B-36: GROSS IMEP on figures should read PMEP	Typo fixed
2.4 There should be a study funded on VVA technologies for Diesel	This was actually done
engines This technology is largely omitted in the report given the	but was not reported in
poor understanding of the impact of the technology on the engine	the draft report New
performance	Section 1.15 added to
r	Appendix B covering
	Diesel VVA
2.4 Whereas the modeling results for the Diesel engine baselines are	3.5 V-6 validation
well documented in Appendix B (includes experimental vs. model	added to Appendix A
results of key parameters such as BSFC, pressures, temperatures,	
flows), the gasoline engines in Appendix A are not	
benchmarked. Would the authors be able to update the report	
with a similar treatment?	
2.4 Section 3.3.3.1: When discussing the base engine technologies a	New Table 3.2 added
summary table that includes the ISB, V8, and V6 engine	in Section 3.0
performance (best BSFC point, peak and rated TQ and speed)	
may prove to be helpful. It may include salient technology	
contents as well, as CR, fuel system, air system, EGR, turbo.	
2.4 Section 3.3.3.1: The reports in this section are given in mpg	This information would
comparisons. Would the authors consider providing the results in	be useful, but it is
BSFC (in addition to what is presented) for a engine	beyond the project
evaluation/comparison?	scope. No change to
	the text
2.4 Section 3.3.3.2: May chose to bold the V6 and V8 comparison	Suggested change
to the baseline ISB on table 3.1/. It will help to assess the	made (table number is
relative contributions of the following technology additions.	Norm (11, 11, 11, 11, 11, 11, 11, 11, 11, 11
2.4 Section 5.5.5.4: The selection of 10 to 55% friction reduction	New text added in
(at night and low loads respectively) needs better treatment on Annendix D (need D 22). This particular section could list	Section 3.3.3.4
Appendix B (page B-55). This particular section could list	
technologies that contribute to the values chosen.	

Comment	Response
2.4 Section 3.3.3.9: For the lean burn GDI, is it possible for the report	This information would
to be more specific as to how much pumping losses and spark	be useful, but would
timing contribute to the gains presented? These settings may be	require creating new
included in Appendix A (near page A-10). Were other	fuel maps, and so is out
contributors part of this gain, such as reduced heat transfer?	of the project scope. No
	change to the text.
2.4 Section 3.3.3.9 and 3.3.3.15: What temperature values were	Description of
selected to allow for optimum aftertreatment durability and	temperatures and
conversion efficiency? How accurately is the GT power modeling	limits added to
regarding exhaust temperatures? Appendix B-40 shows 25 to 50C	Appendix A, section
deviation for the ISB case.	1.4
2.4 Section 3.3.3.10: What is the effect of added EGR on combustion	EGR results in slower
efficiency and would this affect the efficiency numbers presented	heat release, which has a
here?	negative effect on
	efficiency. Line added
	in 3.3.3.10
2.4 Section 3.3.3.14: The statement that "The benefit from the	Additional information
compression ratio increase is partly offset by a reduction in	and a reference added
combustion efficiency" is not clear and may not be accurate.	in Appendix A, Section
Authors may want to explain or reconsider statement.	2.2.
2.4 Section 3.3.4.2: The reduction in Cd of 15% may be further	New text added in
elaborated in Appendix C (page C-13). What are the	Section 3.3.4.2
technologies that contribute to this reduction? Can these be	
inserted in the Appendix?	
2.4 Page 61: "in this case, 600 to $\frac{6,000}{5,500}$ 5,500RPM". [Data in	Typo corrected
appendix reports 5,500rpm for the V6 engine).	
2.4 <u>CLASS 6 F-650 Truck:</u> This section follows closely on T-270	This recommendation
Truck discussion. Same comments apply here as to the earlier	was applied to Final
section. Addressing these on the 1-270 section would be	Report #2. No change
sufficient.	to the text
2.4 Section 3.3.5 Page 69: The first paragraph is identical, and the	These paragraphs are
following one nearly identical, to that of page 54. May read better	redundant, but were
if referenced to the earlier section.	retained to allow each
	section to stand alone.
	No change to the text
2.4 Figure 3.24 shows the Y-axes and title overlapping. Please	Figure modified
24 CLASS 2h 2 Trucks Dam Dialaun Truck: This spatian tas	Some percerante are
2.4 <u>CLASS 20-5 THUCKS - Kall Flokup Thuck.</u> This section 100 follows closely the CLASS 6 sections	rodundant but wara
ionows closely life CLASS 0 sections.	retained to allow each
	section to stand on its
	own No change to the
	toxt
	ιτλί

	Comment	Response
2.4	Section 3.3.6.2 Page 82: The discussion could be improved by	Text modified to
	making explicit references to the engine under consideration. The	improve clarity
	discussion on each of the engines follows the figures, but the text	
	could be more explicit stating what engine is being discussed.	
2.4	The paragraph starting "As with the medium duty vehicles" in	Text modified to
	page 83 should start by making reference that the discussion	improve clarity
	pertains to the V8. The later "large engine" would be better	
	understood.	
3.1	TRADEOFF BETWEEN FUEL CONSUMPTION AND NOX:	
	This portion of the report is short but very informative. The report	
	could be improved by adding:	
•	Representative fuel usage required by SCR and DPFs (fuel	Data on aftertreatment
	required to maintain the functional minimum temperature	fuel use is not available,
	requirements, fuel required to bring the DPF to temperature on	but text was added at
	typical regeneration events), including the estimation regeneration	the end of Section 3.2
	duty cycles associated with the drive cycles selected here	describing the issue.
	(page 86).	
•	It is unclear why the tradeoff study is focused on the larger	
	vehicles only (page 86). Could this be extended to MD sector ?	
•	The discussion on the 0.2gNOx engine out NOx needs to be	Evaluation of medium
	properly referenced . The response of NOx to BSFC will depend	duty NOx / BSFC trade-
	much on the technologies that the engine bears, such as fuel	off was beyond the
	injection pressure range, close coupled injections, the air and	project scope. No
	cooling system, the combustion bowl-to-injector match, etc. (page	change to the text.
	86). The 20% appears to be too large of a number for the reader to	Track - dd - d to 2nd
	walk with. Data is available from the DEER meetings by	Text added in 2
	Cummins, CAT, and Navistar that show less of a gap, and a gap	paragraph of Section
	that depends on technology content.	5.4
•	The discussion on Key Limiting Issues (page 88) is excellent. The	Now toxt added below
	authors on point 1 make a very revealing comment regarding the	Figure 3 34
	best engine efficiency point versus the "real world" operation	1 igui e 5.54
	point of the regulatory cycle point. The paper could further	
	elaborate on this, specifically, now to limit the gap between the	
	second and unitd, the first, being more of the OEMs effort to align	
<u>/</u> 1	The report is your therough systematically listing the first are	No ahanga required
4.1	tachnology. The report focuses on the quantitative assessment of	no change required
	technologies across anging and valials. During the nerretive, the	
	authors make insightful remarks pertaining to each estagory	
<u>/</u> 1	The report however does not provide conclusions or 'final	New Section 5 added
4.1	remarks ²	ivew Section 5 added
• 4.1	 a). The 2078 appears to be too large of a number for the reader to walk with. Data is available from the DEER meetings by Cummins, CAT, and Navistar that show less of a gap, and a gap that depends on technology content. The discussion on Key Limiting Issues (page 88) is excellent. The authors on point 1 make a very revealing comment regarding the best engine efficiency point versus the "real world" operation point or the "regulatory cycle point". The paper could further elaborate on this, specifically, how to limit the gap between the second and third, the first, being more of the OEMs effort to align engine and vehicle modes of operation. The report is very thorough, systematically listing the findings per technology. The report focuses on the quantitative assessment of technologies across engine and vehicle. During the narrative, the authors make insightful remarks pertaining to each category. The report however does not provide conclusions or 'final remarks'. 	Text added in 2 nd paragraph of Section 3.4 New text added below Figure 3.34 No change required New Section 5 added

	Comment	Response
4.1	For example, the authors make significant remarks to understand	No change required
	the context of the technologies examined. <i>This contribution and</i>	
	its importance to industry and regulators cannot be	
	undermined.[underestimated?]	
-	It cautions the reader in several instances of the implications	
	rendered by removing the EGR loop, where the result of reducing	
	the pumping losses will need to be assessed with very high NOx	
	output from the engine and the greater requirements expected	
	trom the aftertreatment systems.	
-	Identifies current cost comparisons between the MD diesel and	
	gasoline engines (e.g. in the case of the F-650 Class truck,	
	approximately \$9,000), and the issues with the application of	
	gasoline technologies onto more severe applications.	
-	similarly, the authors present the implications of E10 on fuel	
	Many other examples are sited	
- 1 2	However as noted there are no conclusions section in the report	New Section 5 added
4.2	The report should include a conclusion section different than the	New Section 5 added
	summary provided in the executive section. Offentimes reports	
	limit the conclusions by summaries of the findings (such as done	
	here in the Executive Summary), but we hope the authors can	
	provide more value by synthesizing conclusions, a verdict on the	
	technologies assessed.	
3.1	The report attaches on Table 4.1 the "type of regulation" and the	A table summarizing all
	"metric" used. The table would be more informative if also	of the required values
	included the requirements (values). Suggested references:	would be very large, and
	Regulatory Document 40 CFR Part 1037 (e.g. show the	references are available
	requirements per Table 1037.105-6 for Vocational Vehicles and	with all the
	Tractors).	requirements.
		No change to the text
3.1	The discussion [on metrics] that follows is informative, as it	No change required
	illustrates the disadvantages of the miles-per-gallon metric (it is a	
	not linear metric over a range of fuel mileage and is correlated	
2 1	One-to-one with fuel consumptions).	No abanga raguinad
3.1	Metrics for units of work are discussed, including ton-mile,	No change required
	used to illustrate the payload effect in a long combination vehicle	
	Later in this section, the report concludes with a revisit to the	
	simulations of Section 3 with an emphasis to show the	
	dependency of technologies on both drive cycles and navload	
	The discussion is particularly insightful to show that some	
	technologies have a large dependency on these two parameters.	

Comment	Response
3.1 This reviewer agrees with the assessment that the metric of	Reference added
gallon/100 bhp-hr may not be the most adequate and may not be	
an improvement over the earlier metric of g/bph-hr. Suggested	
reference to be placed in the text at this point is the Federal	
Register Vol. 76. Sep 15, 2011, Rules and Regulations (page	
57141). A web link will be useful.	
3.1 The engine efficiency test procedures are covered well by	No change required
subdividing them in three categories, (1) technologies where the	
current tests certification procedures do well, (2) technologies	
where too small of an impact would compete with the uncertainty	
of the of the certification tests, yet an estimate can be made via	
accurate bench testing (e.g. oil pumps) or modeling (e.g. adding a	
clutch in an air compressor) and (3) specific technologies that	
would not appear on an engine-only certification, the example	
provided here is downspeeding.	
3.1 A side comment $-$ in the realm of HD engines the application of	Properly addressing this
variable water pumps and oil pumps can be significant and its	comment would require
impact recorded in the certification cycle. The report may state	an extensive review of
that these technologies can be lumped into category (1) above.	the off-cycle credit
Suggested references: Same as used in the interature review on these common and hypothese and Newister	process, which is
these components by Daimier and Navistar.	beyond the project
	the text
3.1 The vehicle power demand section describes the GEM model and	No change required
its inputs. The report offers particular insight of VSL and AFS to	ito change required
real-world application. The discussion continues to technologies	
that are not directly captured in the GEM model. As with the	
engine discussion many of these technologies can be	
benchmarked on dedicated stands to calculate the fuel savings	
3.1 Section 4.4.3 deals with SET test points. The data represented in	New text added in 3 rd
this section from a VOLVO sample of HD long-haul trucks is	paragraph of Section
very informative but needs to be better described and put in the	4.3.3
greater context of other manufacturers. The data reflects a	
significant downshifting. There are many HD applications that	
will show a different histogram (inter-city, hills, mountains, etc.)	
3.1 The SET test points are in principle a good and simple approach	No change required
to estimate the overall power plant efficiency. This reviewer	~ .
agrees that the right weights need to be updated. Engine and	
vehicle engineers oftentimes asses drive cycle fuel economy with	
specific weights to each point according to the drive cycle their	
vehicles operate in.	

Comment	Response
3.1 Similarly, Section 4.5.2 which deals with the FTP test points. The	Added a line above
report shows another sample of VOLVO vocational trucks. The	Figure 4.4 stating that
data is informative but it would be best to have a wider sample	no additional public
from other manufacturers.	domain data was
	available
3.1 One [thought] is the opportunity to provide tools to customers, be	This suggestion is
it large or smaller fleets, to optimize the specifications of vehicles,	beyond the project
similarly to what OEMs have developed. Rather than stand-alone,	scope. No change to
these tools could be tied into the regulatory process to better	the text
match engine rating, transmission type, axle ratio, payloads	
typically used, drive cycles driven.	
3.1 Second, is the introduction of accurate instant and 'averaged' fuel	This suggestion is
performance estimates by the vehicle. Its implementation would	beyond the project
need to be studied in detail, especially when needing to update the	scope. No change to
load of the vehicle. This could be expressed as stated in the	the text
regulations (e.g. grams CO2/ton-miles or gallons/ton-miles for the	
vehicle or per bhp-hr for the engine). This may be done with	
accurate flow meters or a reliable fuel map tables (which may not	
be always very accurate).	
3.1 Page 98, * CFD analysis, or [Constant speed testing]	Typo corrected
3.1 Page 98, • Constant speed testing Steer	Typo corrected
3.1 Page 100, routes where smart of [or] GPS-based cruise control	Typo corrected
3.1 Page 102, Section 7.2 4.2	Typo corrected
3.1 Page 103, Section 7.2 4.2	Typo corrected
3.1 Page 105, were evaluated in Section 5 4.2.2	Typo corrected
3.1 Page 111, the FPT FTP cycle clearly over-represents	Typo corrected
4.1 Organization: The organization follows a logical structure,	No change required
providing a review of regulations, review of engine and vehicle	
technologies, and a detailed performance analysis of technologies	
beyond 2018 model year products. The review closes with an	
evaluation of testing and simulation approaches, and	
recommendations for tractor-trailer and vocational vehicles.	
4.1 Readability and clarity: The report reads well. The more technical	No change required
discussions are added in the appendices, which are well	
documented.	
4.1 The report needs a Conclusion Section (different than the	Section 5 added
Executive Summary).	

Comment	Response
4.2 Suggestions regarding formatting:	
 Generally, figures may be formatted to match the text font size (and style optionally). The legends, titles, and numbers appear to large. Other figures which appear from other sources, have very small font axis titles (e.g. Figure 4.1). Figure and Table titles are capitalized and holded. The sheer size 	Font sizes on many figures cannot be changed. No change to the text
of the these titles "hide" the report section titles. Consider reducing the font size of the figure titles or not capitalizing nor bolding.	This is done in accordance with the SwRI report format standard. No change to the text
4.2 A detailed list of suggestion were provided under the "Performance Analysis of Technologies". Here we collect suggestions for the "Executive Summary".	
 HD pickup truck table shows 10,000lb GVWR. An asterisk may be inserted to indicate that it was examined at 25,000lb when pulling a trailer (page v). The 6.7L Diesel referred in paragraph 3 appears to be the high H 	This is described in the text just below the table. No change to the text
application – please clarify as there are two rating for this engine (page vi).	Clarification added
- Mention of a 4 cylinder version of the Diesel is made, but this is the first time. May clarify that this is a 'modeled' based on the ISB (page viii).	Clarification added
 Subsequent paragraphs beginning with "Section 4.x" could provide more of a summary. Sentences like "some technologies perform best on drive cycles that emphasize low speed, light load engine operation, while others prefer high speeds and loads" (Section 4.6) should be avoided. A more explicit address of what technologies apply would be best. 	After review, it was decided to retain the existing text. Adding full backup to the t descriptive sentences would greatly increase the size of the report. No change to the text
4.1 Generally, the report does a very good job in providing the necessary detail to adequately understand the impact of the technologies in the fuel efficiency improvement roadmap. The text is well coordinated with the appendices – which are very we organized, describing both engines and vehicle modeling efforts	No change required
Comment	Response
---	---
4.2 The report could be enhanced by providing additional detail in	
- Fuel penalties associated with the aftertreatment;	Data not available – No change
- The actual technologies and hardware used to Appendix C to account for the Cd and Crr improvements (page C-13,14),	No specific hardware recipe, but technology menu added to Appendix C, sections C2.2, C2.3, and C2.4
- How are the weight reductions accomplished, what components contribute to the weight reduction, what materials are being introduced (page C-15)?	No specific hardware recipe, but technology menu added to Appendix C, sections C2 2, C2 3, and C2 4
- Incorporate and document in the report the effect of weight in the estimation of fuel efficiency.	Data not available – No change
4.3 [Report] Strengths:	No change required
 Excellent simulation study throughout a very comprehensive list of engine and vehicle technologies. The expertise behind the report is manifested as the authors show the impacts of various technologies on efficiency and emissions, and implications on vehicle installation; Very consistent analysis across the engines and vehicles; Very informative, brief background descriptions at the technologies presented; Methodology used is thorough as illustrated in the systematic approach of adding technology content on the baseline engine and vehicle and reporting the impact on fuel economy; The models are run for existing technologies which could be implemented with specified improvements (e.g. improvement on turbocharger efficiency, improvement on drag coefficient). The models are also run with new technologies previously not present on that platform and are accompanied by very informative discussions (e.g. the application of GDI on a PFI style engine, lean GDI, VVA, etc.); Engines and engine technologies were modeled very well with GTPower. Baseline models were calibrated with experimental engine data, including heat release data from engine testing; Engine maps were fed into SwRI Vehicle Simulator tool. This tool handles a wide range of vehicle technologies including automatic transmissions and automated manual transmissions. 	

	Comment	Response
4.3	[Report] Weaknesses: The engine simulations are generally more detailed than the vehicle side. For example, no detail (what features) is given regarding the percent reduction in aero drag or rolling resistance;	Engine simulation was intentionally more detailed than vehicle simulation. New paragraph added above Fig. 3.1 added to explain
-	The report present savings with respect to miles per gallon. Yet the regulations are prescribed in terms of gallons per ton-millage. The presentation of results with respect to ton-millage would seem more appropriate and useful;	Line added to clarify that results are all in terms of fuel consumption (gallons per 100 miles), not fuel economy (mpg). Information is not available to put all results in terms of gallons per 1000 ton- miles
-	There is little consideration to weight and packaging of components, with special mention to implications in freight efficiency;	New discussion added in Section 3.2
-	There is no cost-benefit analysis such as "pay-back" period;	A separate cost report is part of the project. The agencies will conduct their own cost/benefit analysis. No change to the text
-	There is no quantitative analysis of aftertreatment heat management and the fuel penalties associated (DPF, SCR units have very strict requirements to maintain exhaust temperatures), start-up and light off and technologies, impact on certification. All these play significant roles in product development;	This is beyond the project scope. No change to the text Discussion of aftertreatment thermal management added to text

	Comment	Response
4.4	The report could have added more innovative technologies that	
	may be seen in production:	
-	Some level oh hybrid, e.g. the mild-hybrid concept program	Three levels of hybrid
	evaluated by John Deere and International under the DOE	system are evaluated in
	program (Electric Turbo Compounding A Technology Who's	Final Report #2. No
	Time Has Come, EERE, 2006 DEER Session) ; hydraulic hybrid	change required
	(ref. Hydraulic Hybrid Vehicle Technologies , Clean	
	Technologies Forum, Sacramento, CA, September 9, 2008)	
-	The report should have dealt with CNG. CNG fuel is taking up a	Discussion on natural
	larger role in the MD sector and should be considered. The	gas added in Section
	authors could provide a section comparing the merits and	3.0
	challenges that CNG brings.	D' '
-	The report should have considered alternative fuels. This is a bit	Discussion on
	of a disappointment in many ways: the more strict GHG, tuel	alternative fuels added
	economy, and emission legislations have made our engines more	in Section 3.0
	maintenance. OFMs for the most part have limited their effort on	
	the hardware side while not considering the henefits that better	
	fuel formulations could bring. With a little more foresight the	
	fuel properties and future fuel resources based on bio-derived	
	sources could be aligned with future legislation at this point in	
	time The efforts of Volvo Isuzu and others on the use of	
	Dimethyl Ether is an a good example of the potential	
	simplification that this oxygenated fuel can bring to	
	transportation industry. Ref. ORNL/TM-2014/59 Emissions and	
	Performance Benchmarking of a Prototype Dimethyl Ether-	
	Fueled Heavy-Duty Truck, February 2014.	
-	No mention of "Dual Fuel Technologies" is made here though it	Discussion of dual
	has been shown to both contribute to significant simplifications of	fuels added in Section
	aftertreatment and improving the combustion cycle efficiency.	3.0
	Refer to	
	http://www1.eere.energy.gov/cleancities/pdfs/cap_dual_fuel_tech.	
	pdf.	
5.1	I find the report acceptable with minor revisions.	Changes discussed
<u> </u>		above
3.1	I ne report presents an excellent simulation study throughout a	No change required
	very comprehensive list of engine and vehicle technologies. It is	
	very informative as the report includes valuable background	
51	The process and aritaria for evaluation is the percent in feel	Now noregraph added
5.1	afficiency improvement. This is adoquate yet the report may have	ahovo Table 2.1 to
	used a criteria that aligns with the CHC and fuel regulations (a c	abuve fable 3.1 10
	grams of CO2 per ton-mile Gallons per 1000 ton miles)	fuel consumption which
	grams of CO2 per ton-mile, Ganons per 1000 ton-miles).	is proportional to GHC
		and regulatory units
		and regulatory units

Comment	Response
7. The selection of 5 engine configurations (and three additional	No change required
"modeled engine versions") appears adequate and well aligned to	
the selection of four vehicles.	
3.1 Metrics for units of work are discussed, including ton-mile,	No change required
passenger-mile, and cubic-volume-mile. A practical example is	
used to illustrate the payload effect in a long combination vehicle.	
The report finishes showing the dependency of technologies on	
both drive cycles and payload. The discussion is particularly	
insightful to show that some technologies have a large	
dependency on these two parameters.	
3.1 Engine efficiency test procedures are covered well by subdividing	No change required
them in three categories: technologies where the current tests	
certification procedures do well; technologies where too small of	
an impact would compete with the uncertainty of the of the	
certification tests, yet an estimate can be made via accurate bench	
testing or modeling; and finally, specific technologies that would	
not appear on an engine-only certification. Examples are used to	
illustrate these categories.	NY 1
3.1 Examination of The SET test points in a portion of data for Long	No change required
Haul trucks (limited to one manufacturer with downspeeding	
technology) show that there is a need to reconsider the right	
weights. FTP cycle too is compared real world data from	
differences, though not as menogeneous as with the Long Haul	
unterences, though not as pronounced as with the Long-Haul	
venicie data	Descuse the magulations
1.1 The interature review, when addressing the current regulations,	Because the regulations
them. The table should include US and other major regulations	are hard to compare a
(FII Japan China). It is also recommended that they be	table is not feesible
accompanied by the industry average numbers and ranges from	Discussion of the FU
current model years (2014 interim)	regulatory plans was
	added.

Comment	Response
1.2 The technologies chosen are in the in the conservative side, rathe	r
well established, there being no "surprise" technology. Th	9
review could considered other technologies that have had som	e
presence in the MD-HD vehicle market. This should be a "minor	"
revision, possibly an added section on the review chapter:	
• Natural Gas – the report can provide important benchmarks	Addressed above
and balanced guidance regarding NG vehicles with respect to	
capital investment):	
• Liquid Petroleum Gas power plants currently being offered in	Addressed above
fleets of school buses, have less power than Diesels, are quiet.	
clean, and provide a good cost of operation – the same	
benchmark as above would provide much value.	
 Dual Fuel technologies which provides a significant 	Addressed above
technology to reduce particular matter and reduce or eliminate	,
the DPF when Diesel is used to ignite natural gas, and can	
reduce fueling costs,	
• Alternative Fuels, specially fuels that have the potential in the	Addressed above
long run to be viable substitutes to fossil fuels and provide	
and simpler fuel injection systems	
aftertreatment systems). One such example being DMF	
• A technology like Dual Fuel in the sight of this reviewer	Data to evaluate this
would be as competitive or more feasible than the Rankine	claim is not available.
waste heat recovery".	No change to the text
• Dealing with these areas would enhance the report. It would	0
contribute to the long term perspective of highlighting	Addressed above
technologies that can significantly impact transportation	
efficiency.	

		Comment		Response
1.2 Create a table to help understand the engine-vehicle-class designation used in the report. Also clarify if the 8.9L modeled engine is used – if not used it may be best remove the statements on the 8.9L engine from page 25.			Tables 3.1 and 3.2added, with new text.References to the 8.9liter engine removed.	
Class	Vehicle	Diesel	Gasoline	
2a				
2b	Dam Diale un	6.7 385HP	3.5L V6	
3	Kalli Pick-up	4.5L model	6.2L V8	
4				
5				
6	T270 BOX	6 71 300HP	3.5L V6	
0	F-650 Tow Truck	0.71.500111	6.2L V8	
7				
8	T700	DD15 12.3L model		
5.1 The differ	report should includ rent from the Executi	e a conclusion s ve Summary	section. This should be	New Section 5 added

	Commont	Besnonse
1 1		Kesponse
1.1	Overall, the literature review provided in the report seems fairly	No change required
	complete. A few comments are provided below.	
1.1	The engine and vehicle fuel savings technology ((1) listed above)	
	seems fairly complete, with some commentary below:	
•	Section 2.3.1.4: nicely written. I wonder if there are some references	No new references
	that show how downsizing and turbocharging benefits vary across	found No change to
	different driving cycles	the text
	unrerent unving cycles.	the text.
		Type fired
•	Section 2.3.1.5: misspelling of 2025 (20205)	1 ypo fixed
•	Section 2.3.1.6 [•] idle reduction is now a hot topic particularly in the	No post-2012
	light duty "start-stop technology" arena I wonder if additional	references added
	references beyond the single truck reference can be provided:	unless judged critical.
	references beyond the single track reference can be provided,	No change to the
		text.
•	Section 2.3.3: shouldn't there be a section on lean-burn control	There are no post-
	technology, and the trade off with NOx emissions? Maybe this is in a	2002 references The
	different section This could also be highlighted in Section 2.3.4	topic is discussed in
		more detail in Section
		5.5.5.15.
•	Is the paragraph in section 2.3.5 on engine downspeeding in the right	No change to the text
	place?	Moved to a new
		Section 2.3.5.3
•	In section 2.3.5.2 any mention of potential fuel economy	Modified description
	improvements?	of reference R2
	improvements:	of reference R2
•	In section 2.4.2.2, there are now some more recent truck	No post-2012
	aerodynamic studies, sponsored by CARB, being conducted by	references added
	NREL and UCR CE-CERT. It would be good to reference these.	unless judged critical.
		No change to the text
•	Section 2.4.2.3: similarly, there has been a significant amount of new	No post-2012
	research results on hybrid drivetrains since 2012; visiting the DOE	references added
	Vehicle Technology Research website cites many of these new	unless judged critical.
	studies.	No change to the text
1 1	The approach and references for market segmentation $((2))$ listed	No change required
1.1	above) seem appropriate using the most up to date sources. This	110 change required
	above) seem appropriate, using the most up-to-date sources. This	
	reviewer does not know of any other sources that may be better.	1

Final Report #1 Matthew Barth Reviewer Comments and Responses

	Comment	Response
1.1	For the worldwide fuel efficiency regulations ((3) listed above), I	Decision was made
	wonder if the report can comment more on the potential "good	to avoid criticizing
	practices" and "bad practices" of the other methods used in different	the approaches of
	parts of the world. For example, the approach used by China using a	other governments
	single driving cycle seems somewhat limited in the results they can	(or of our own). No
	produce. Also, the Japanese top runner program focuses on engine	change to the text.
	efficiency, not vehicle efficiency (as the report states); however, I	
	believe Japan's JCAP and related programs (see, e.g.,	
	http://www.pecj.or.jp/english/jcap/jcap1/index_jcap1.html) have	
	done more extensive vehicle fuel economy testing.	
1.1	Strangely missing from the worldwide fuel regulation literature is	Discussion of EU
	what the European Commission is doing This should be included	approach has been
	in the report.	expanded and
		updated
1.1	Section 2.2.3 primarily only discusses the fuel efficiency test and	SwRI was not tasked
	analysis methodology used in this report; some additional language	with redeveloping the
	should be provided on other methods, including a big emphasis on	regulatory drive
	using vehicle activity data sets rather than just using "representative"	cycles. Out of scope,
	driving cycles.	so no change to the
		text
1.2	It seems this question can be answered better from section 3 of the report not the literature review. In any case, here are the comments:	
•	Overall the engines selected for performance analysis seem	New lines added to
	appropriate. The reason given for the selection is that they are the	the first paragraph
	"most popular engine" in the medium duty class 7 trucks and the low	of Section 3.0
	end of class 8. For the larger engine, the selection was again made	
	because the engine is "popular". I believe this is true and don't	
	contest this however it would be useful to have some kind of table or	
	graph that shows the relative population of the different engine	
	technologies in these vehicle classes (from CALHEAT or from	
	POLK data?)	
•	On page 25 3 rd paragraph it is stated that some engine sizes had to	This is described in
	be modeled based on recalibrating the GT model for a larger size	Appendix B. No
	engine and a smaller size engine. It is unclear how this was done	change to the text
	What parameters were modified in the GT model to do this? How	change to the tent
	were the results (partially) validated?	
_	Similarly the selection of the correspondetive assoling angings scores	No change required
	appropriate based on what is most nonvier. Some statements as	rio enunge requireu
	appropriate based on what is most popular. Same statements as	
	above apply.	New 2 nd naragraph
•	As for the engine technologies selected for performance analysis, in	of Section 3.0 added
	general the selection seems comprehensive given the description of	or occubil siv auucu
	the technology in Section 2. However, it isn't stated anywhere in the	
	report on how the different engine technologies (and combinations)	
	were selected for analysis. Was there a scientific method, such as	
	principal components analysis on the potential benefits of the	

Comment	Response
 individual technologies and their combinations? That could be a starting point, and then the list could be pared down based on technical realism. I think the list is fairly complete, but I suggest a paragraph be added on how the different engine technologies were selected for analysis. As for the vehicle technologies selected for performance analysis, again in general the selection seems comprehensive given the description of the technology in Section 2. But again, it isn't stated anywhere in the report on how the different engine technologies (and combinations) were selected for analysis. Was there a scientific method, such as principal components analysis on the potential benefits of the individual technologies and their combinations? That could be a starting point, and then the list could be pared down based on technical realism. I think the list is fairly complete, but I suggest a paragraph be added on how the different vehicle technologies were selected for analysis. 	New text added in Section 3.0
2.1 The methodology used for performance analysis of the various engine and vehicle technologies evaluated in this report were of good quality and were sufficiently comprehensive to provide valuable results. There are specific comments about how the method handles transients and other issues in the comments below, but overall I am satisfied with the overall evaluation methodology. The results are meaningful and allow for sufficient comparison between the different technologies.	No change required
2.2 Regarding GT-Power, I believe that this is an appropriate model to simulate engine fuel efficiency. All of the reasons for using a 1-D CFD model like GT-Power are given on page 33 (all of the bullet items), but it would certain be good to have some key references here that back up the various statements. I'm sure that there are some SAE papers and other papers that talk about advantages and disadvantages of engine models and have validation data to back it up, comparing real-world experimental data to modeled data. For example, it is stated that GT-Power gives "fairly accurate representation of overall fuel consumption and CO2 emissions, typically within +-3%". Where is the reference paper that shows that? One or more reference would give this a lot more credibility.	New text and references added to Appendix B

Comment	Response
2.2 As a step in between engine and vehicle modeling, speed – load	New paragraph
tables are created for 20x20 operating points. It is assumed that all of	added to Section 3.2
these points were simulated at steady-state conditions, not transient	
conditions, correct? I think several of the engine and vehicle	
technologies being considered in this report might have significant	
performance differences depending on how the operating points were	
entered (i.e., from what previous operating point). This is sometimes	
referred to as a <i>history</i> effect; this may not be very significant with	
fuel consumption performance, but it can certainly have a major	
effect with pollutant emissions. Can the authors comment on this?	
2.2 Regarding driving cycles, there is some reasoning provided in the	These are good
report that describes why these certain cycles were selected,	suggestions, but
providing a good range of operations for the different vehicle types.	beyond the project
However the reasoning doesn't seem very rigorous. A far better	scope. No change to
approach would be to examine vehicle activity data (i.e., real world	the text
trajectory data from subsets of these vehicles) from the vehicles in	
question, and then select and compare driving cycles that are	
representative of the vehicle activity data itself. The number of	
publically-accessible vehicle activity data sets is increasing rapidly	
and should be utilized if at all possible (e.g., NREL's activity	
database described at <u>http://www.nrel.gov/transportation</u>). Better yet,	
rather than use driving cycles at all, why not run entire vehicle	
activity datasets (appropriate for the vehicle technology) directly	
through the model(s)? The computational time of these models is not	
that severe, so processing all of these data should not take too much	
time. That way you skip any controversy regarding whether the	
driving cycles are representative or not.	
2.2 Overall, I think the modeling methodology using the SwRI Vehicle	New text added
Simulator tool is sufficient for this study. However, it would be good	near Figure C.3 in
to have perhaps as a separate appendix that provides a validation run	Appendix C
showing how well the model does for a few example cases. You	
could take a vehicle, measure it on a dynamometer, then compare the	
resulting data with the modeled data for the same driving cycle.	
Through regression plots, you could determine any model bias and	
model uncertainty. Showing one example of this would give the	
reader confidence on how well the SwRI Vehicle Simulator tool	
performs.	

	Comment	Response
2.2	Very minor question: are either the SwRI vehicle simulator tool or	Clarification added
	the GT-Power model stochastic in any way? Is there any	in Section 3.2
	"randomness" that is used as one of the operating variables? This is	
	often done with transportation models to evaluate the true	
	randomness of traffic and to understand different degrees of	
	uncertainty. I assume that there aren't any strong variables that are	
	random in the case of the engines or vehicles and that both of the	
	models used here were strictly deterministic and ran only once per	
	evaluation scenario.	
2.3	Yes, the assumptions seem reasonable, based on my own modeling	No change required
	experience. However, to test whether many of the assumptions are	
	valid, you could certainly do the validation testing described above.	
2.4	In general, the findings and conclusions are adequately supported by	
-	the simulation results. Some general comments are as follows:	
•	The commentary about the variable valve lift technology for this	New section on
	diesel engine at the bottom of page 38 seems strange. If a few	VVA added in
	operating points were analyzed and used to determine that the	Appendix B
	technology doesn't perform that well how do you know that the	FF
	technology doesn't perform better at other operating points? This	
	either needs better explanation or the full analysis should be	
	completed Just because the savings are small isn't a good reason to	
	evolude it: other technologies in table 3 13 show small savings of	
	0.1% (e.g. technologies 10 and 11)	
	$\sum_{i=1}^{n} \frac{1}{i} $	All information for
•	For completeness, it would be good to repeat figure 3.4 for not just	0% 50% and 100%
	50% payload, but also for the other payload set points	navload is shown in
		Table 3 15 No
		change to the
		figures
		inguies
•	Section 3.3.1.14 it isn't clear what is meant by stating "making OBD	New text added in
-	very challenging" I think the authors mean that the emissions	Section 3 3 1 14
	control system design for aftertreatment is very challenging right?	500000 5.5.1.14
	For technologies 17 and 18 (sections 3.3.1.17 and 18) it would be	New text added in
•	good to illustrate the results here for the different payloads. It seems	Section 3 3 1 18
	yory logical to downsize an angine, but then realize that the	500000 5.5.1.10
	performance of the vehicle drops of (o, g, acceleration rates, etc.)	
	With the lower acceleration rates, was the vahiale model able to keep.	
	up with the target speeds of the driving avala? Were there some of	
	the configurations (e.g., large angine downsizing high payload	
	aggressive evels) where the vahials could not "fallow" the driving	
	aggressive cycle) where the vehicle could not 1010w the driving	
	cycle in so, now and you carry out the simulation? was the drive	
	implication on what the final fuel consumption reductions would be	
	implication on what the final fuel consumption reductions would be.	

Comment	Response
 Similar to figure 3.4, it would be good to repeat figure 3.5 for not just 50% payload, but also for the other payload values. This is particularly true where later in the report it is stated: "fuel savings offered by most vehicle technologies is very duty cycle and payload dependent". 	All information for 0%, 50%, and 100% payload is shown in Table 3.16. No change to the figures
• For section 5.5.2.4, the weight issue makes perfect sense. However, won't truck operators in many cases increase their payload to max out their weight for economic reasons, thereby negating any weight loss gains?	New text added in Section 3.3.2.4
• For the speed governors, this was only evaluated for a single cycle that obviously had vehicle target speeds above the speed governor set points (55mph and 60 mph). It is not clear how the cycles were actually applied in the simulation runs when the simulator could not hit the "target" speeds of the cycle. Was the rest of the cycle played out to the end, or was the cycle truncated? Was the cycle completed on a time basis or on a distance basis? Based on the discussions of the longer trip times, I assume the cycle was played out until the end. These are very important issues in terms of determining the final fuel savings. In the real world, the trip still needs to be complete, so the evaluation should be calculated for the entire trip. The authors point this out to some degree, but this could use some more explanation	New text added in Section 3.3.2.7
 It would be good to repeat figures 3.13, 3.14, and 3.15 for not just 50% payload, but also for the other payload values. We want to see sensitivity analysis based on payload differences. If there are very little differences, then state so. In section 3.3.3.18, when the downsized engines were run for the more aggressive cycles with grade, the vehicles cannot follow the 	Information for all payloads is provided in the tables. No change to the figures
cycles; similar to previous questions, how did you handle the remaining part of the cycle in the evaluation run? It makes a big difference in the results.	New text added in Section 3.3.3.18
• In section 3.3.3.20, it is stated that the technology is only applied to certain cycles that long steady-state components, since the response to other cycles is minimal. But why not run the evaluations for these other cycles, just to show that the technology is not effective? How was the transient response handled when the modeling approach is essentially "steady-state" in nature? Were there time constants and other thermal parameters involved? I think the modeling approach on this technology needs a bit more explanation.	Additional explanation added in Section 3.3.1.20

	Comment	Response
•	For section 3.3.3.21, same comments/questions as above.	Text added in Section 3.3.1.21
•	For section 3.3.2.1, is the AC cycled? Or is it assumed to be a constant load throughout the cycle in question? In the real-world, the AC compressor will cycle depending on temperature and humidity involved. I'm not sure if this will make much of a difference in the results.	Text added to clarify that A/C power demand was treated as a steady load
•	The authors mention the tradeoffs between weight reductions, and increases in weight with possible increased payload. This is certainly true that carriers will try to maximize the economics of moving goods, so any down-weighting will likely be replaced with increased payload weight	No change required
•	For table 3.24, for the cycles that weren't able to complete, see previous comments/questions about how were the simulations completed in those cases.	The cycles where the vehicle was unable to follow the speed trace (US06 at full GCW) are marked in red in the table, with text to explain the issue
•	I like the discussion of section 3.4 on the fuel economy and NOx and PM tradeoffs. This will always be an important issue as the NOx and PM standards get progressively more severe. In the analysis, I didn't see any mention of specific future NOx and PM emission standards with specific numbers. Why not use those more restrictive numbers in this analysis, especially when looking at future fuel economy standards? I think the text discusses this in general, but I didn't see the specific numbers.	At the bottom of Page 91, potential future NOx standards are listed in the original text (0.05 and 0.02 g). We do not want to speculate about future standards, since the values and time frames are uncertain. No change to the text.
3.1	Section 4 is well written and touches on all the key issues. I believe it adequately addresses and summarizes the different fuel efficiency	
	metrics and engine efficiency test procedures. Some specific comments:	
•	It is stated that "A dynamometer test on an appropriate duty cycle is a more reliable way to determine efficiency". In line with some of the earlier comments about modeling methodology, there is now a	The focus of this project is to inform the next phase of
	big push to get away from duty cycles (because of the issues of whether they are always appropriate) and to do more in use	standards, which are
	measurements in the real-world. We have the technology to measure	compliance space.

	Comment	Response
	overall performance and to aggregate the performance data and record and evaluate it (overall, this falls into a "Big Data" scenario). So why not put the engine and technology in place, measure the performance for a wide range of uses, and then use those numbers to set new standards in subsequent years? The details of this needs to be fleshed out, but the trend is to get away from dynamometer testing. The middle paragraph on page 101 touches on this a bit.	That goal is somewhat different from the study of real world performance that the commenter is seeking. This is out of scope, so no change to the text
•	On page 97, it is stated that "we recommend that it be left to manufacturers to develop approaches for validating the performance of fuel saving technologies that fall into this realm". I would be a bit wary about letting the manufacturers do the validation, the nature of the manufacturers is to maximize economics and that sometimes that gets in the way of proper testing. The discussion on hybrid technologies is another wrinkle in the	Text modified to say "industry groups such as SAE" No change required
•	evaluation methodology, I assume this will be addressed more fully in subsequent reports. But this just goes to show you that an in-use evaluation approach mentioned above will also work well with hybrid technology. On page 99, "Driver reward systems" are part of the eco-driving	No change required
	techniques mentioned in the general comments below, which should be considered, but seem to fall outside the scope of this analysis. On page 100, it is mentioned that OEMs have very sophisticated tools that are routinely used to optimize specifications for customer applications; why not optimize these parameters in real-time based on vehicle performance, to the extent possible? I wonder if some discussion can be made on these "learning" techniques that can be applied to engine and vehicle operation.	By "optimize specifications for customer applications, we meant parameters such as engine rating, transmission type, axle ratio, weight reduction features, etc. Things like GPS-based cruise control get closer to what the reviewer is discussing. On the fly optimization is out of scope. Text added to clarify meaning
•	Overall, there is very good coverage on the international standards work, in many ways, this covers the comments I made earlier.	No change required

Comment	Response
• I like the discussion on the payload sensitivity, and the drive cycle	No change required
sensitivity. This section addresses in part some of the comments and	
questions made above.	
4.1 Overall, the report is well written and organized. The order of the	No change required
literature review cited in this review charge is slightly different than	
how it is presented in the actual report, but that is only a minor issue.	
• One key thing that would be helpful in the introduction is some	Vehicle fuel and fuel
better scoping sentences. Fuel economy is affected by a number of	additive effects are
different things, generally categorized into four areas: 1) vehicle	out of scope: only
technology effects; 2) vehicle fuel effects; 3) driver behavior effects;	gasoline and diesel
and 4) roadway infrastructure effects. Obviously this report deals	Driver feedback is
with the area of 1), i.e., what kind of on-board vehicle technology	plice out of scope
exists that can improve fuel economy. Even though it is out of the	References more
on fuel economy, there is significant research and products in this	recent than 2012 are
area Regarding 3) there is now technology that affects how a driver	not considered
operates the vehicle. Example of this technology include eco-driving	Infrastructure has an
aids and real-time navigational aids showing roadway status (e.g.	important effect on
upcoming grade, traffic, etc.). In a sense, this driver feedback	real world fuel
technology changes the "driving cycle" that is applied to the vehicle	economy, but not on
in a typical testing environment. When employed, this eco-driving	any regulatory
feedback technology allows for different levels of fuel economy	certification cycle. A
savings, see DOE vehicle technology program references (e.g., see	paragraph was
http://energy.gov/sites/prod/files/2014/07/f17/vss087_verma_2014_o	added to the
<u>.pdf</u> and	introduction,
http://energy.gov/sites/prod/files/2014/12/f19/2014_amr.pdf). Again,	describing these
this should at least be mentioned in the introduction or literature	factors and stating
review, but should probably not be included in the current analysis.	that they are out of
Regarding 4), there are roadway infrastructure and traffic operation	scope.
techniques that can also affect vehicle fuel economy. These include	
things like traffic signal synchronization, variable speed limit	
techniques on freeways, adaptive ramp metering, etc. Although this	
improve everall traffic fuel economy. A gain, this is outside the seene	
of this report but perhaps it should still be mentioned in the	
introduction	
 The NOx reducing technology "I NT" needs to be defined in the 	Explanation added
report It is referenced but never explained	in 3.3.3.9
• The report seems to end rather abruntly. Is there or should there be a	Section 5 added
conclusions section?	
4.2 Overall the information provided in the report is sufficiently detailed.	No change required
various comments on specifics have been provided above.	

Comment	Response
4.3 The strongest part of the report was section 4, in terms of the analysis	All data is provided
and comparison of the technologies, and the methodology	in the tables, so
comparison. The weakest part of the report was the lack of specific	additional figures are
figures in the detailed analysis section. The weakest parts of the	not needed. No
report can be improved by addressing some of the comments made	change to the report
above, and including some of the figures suggested in the text above.	
4.4 Overall, good report and appendices	No change required
5.0 Based on my review, the report and appendices are acceptable with	Responses described
minor revisions. There are a variety of comments and suggestions	above
made in the above text that the authors could address	

Final Report #1 Susan Nelson Reviewer Comments and Responses

Comment	Response
1.1 Tire rolling resistance. Several key references discussing the	References added
influence of tire rolling resistance on vehicle fuel consumption, but	in Section 2.4.2.1
which are not included in the report, are listed below. In general, they	
constitute a chronological progression in the approach to quantifying	
and simulating the effects of improvements (reductions) in tire rolling	
resistance, as characterized by the tire coefficient of rolling	
resistance, Crr, to lower fuel consumption. The various analyses	
include lab measurements of Crr, descriptions of full-vehicle track	
testing, model validation for predictions of fuel consumption, and	
comparisons of measured and simulated changes in fuel use as a	
function of rolling resistance. LaClair and Truemner (2005),	
particularly, demonstrated the linear relationship between rolling	
resistance changes and fuel savings, and that the slope of these	
relationships depends on drive cycle. The two subsequent papers	
build on this analysis to develop methodologies which permit	
predictions of fuel savings based only on the fuel type, weight of the	
vehicle, and change in Crr, relatively independently of drive cycle.	
• LaClair, T.J. and Truemner, R., "Modeling of Fuel Consumption for	
Heavy-Duty Trucks and the Impact of Tire Rolling Resistance", SAE	
Paper no. 2005-01-3550, 2005.	
• Barrand, J. and Bokar, J., "Reducing Tire Rolling Resistance to Save	
Fuel and Lower Emissions", SAE Paper no. 2008-01-0154, 2007.	
• Guillou, M. and Bradley, C. "Fuel Consumption Testing to Verify the	
Effect of Tire Rolling Resistance on Fuel Economy", SAE Paper no.	
2010-01-0763, published 04/12/2010.	
1.1 Other key sources for vehicle technologies. The latest update of the	No new post-2012
continuing studies by the National Research Council (NRC, 2014)	references, unless
concerning technologies for reducing fuel consumption of	critical to the report.
commercial vehicles was published in 2014. The NRC forecasts the	No change
release of a final report on technologies in 2016.	

Comment	Response
1.1 An annual summary of adoption rates of fuel-savings engine	This was not added
technologies, vehicle technologies, and fleet operational practices in	to the references,
10 major North American fleets has been published by the North	because it is post-
American Council for Freight Efficiency (NACFE, 2014), beginning	2012, but the
in 2011 and most recently updated in August 2014. The study covers	NACFE reports
the period from 2003 through 2013. This reference can provide	were added in the
insights on technology penetration rates, particularly from an end-	main body of the
user perspective. While many of the technologies tracked in the	report.
NACFE study have been considered and/or incorporated into the	
SwRI report, the NACFE report also reflects user-driven demand,	
that is, deployment of new equipment or methodologies which have	
been seen to be valuable from a fleet viewpoint including not only	
fuel savings, but also life-cycle costs and maintainability. NACFE	
has also produced reports on specific heavy truck technologies,	
including tire pressure monitoring and maintenance systems	
(NACFE, 2013), 6x2 axles (NACFE, Jan 2014), options for idle	
reduction (NACFE, June 2014), and automated transmissions	
(NACFE, Dec 2014).	
1.1 Automatic tire inflation systems (ATIS) were mentioned by	ATIS was not
SuperTruck participants (Delgado and Lutsey, 2014) as an off-the-	included in this
shelf technology that could provide additional fuel savings via more	project because of a
precise control of tire pressure. For several reasons, ATIS was not	lack of fleet survey
included as an element of the technology package considered for	data. Out of scope,
Phase 1 rulemaking. If a vehicle market survey can be pursued as	so no change to the
part of Phase 2 standards development, it may be possible to	text
concurrently obtain an updated baseline of the extent of tire	
underinflation in truck fleets, and to reconsider the practicality of	
including ATIS in future technology packages. A new tire inflation	
technology under development (but which is unlikely to be of	
sufficient maturity for several years) is an automatic inflation system	
that is completely contained within the lower sidewall of commercial	
tires. This product is described at the following site:	
http://www.goodyear.com/cfmx/web/corporate/media/news/story.cfm	
<u>?a_id=1040</u> . The inflation system is an integral part of the tire in this	
technology, in contrast to tire pressure monitoring systems (TPMS)	
or ATIS solutions, which can be disabled.	

Comment	Response
1.1 Another approach under study uses lift-axle capability to transfer load	Data on potential
across axles in a tandem configuration in order to optimize the	benefits of this
effective rolling resistance contribution of the tandem to the overall	system was not
vehicle. Algorithms were developed based on knowledge of tire	available to
load-carrying and traction properties to improve fuel-savings while	implement in the
properly maintaining other functionalities. The improvement comes	simulations. Out of
from exploitation of the small non-linearity of tire Crr as a function of	project scope, so no
load. Effectively, the tire is more efficient at high loads. (For working	change to the text.
purposes, though, this should not perturb other analyses which set Crr	
as a constant with respect to load.) The patented methodology is	
described in Clayton and Bladley (2015).	No now post 2012
annual market surveys of floats in an effort to assess the numbers and	references No
types of commercial vehicles in service. fleet operational costs and	change to the text
trends in miles traveled and vehicle trade cycles. The American	change to the text
Transportation Research Institute (ATRI) has published its most	
recent analysis in 2014 A copy of the survey questions used is	
included in Appendix A of the ATRI report.	
1.1 Global fuel economy regulations. An up-to date-summary of	No new references.
worldwide fuel consumption and emissions regulations, both current	but new Section
and planned, is contained in the 2014 State of Clean Transport Policy	4.3.4 on Canada
report by the International Council on Clean Transportation (Miller	regulations added
and Facanha, 2014). In addition to the US, China, and Japan, Canada	_
is the 4 th nation to adopt fuel consumption standards for heavy-duty	
vehicles. At this time, Canada is expected to align with US standards	
for the period covered in Phase 2 rulemaking. The ICCT report	
covers both light- and heavy-duty regulatory trends.	
1.1 The European approach for tire labeling for fuel economy is	No new references,
described briefly by the European Tyre and Rubber Manufacturers'	but new Section
Association. It is an alternative approach for grading tires for fuel	4.3.3 on EU
consumption, and informing consumers of the fuel efficiency of their	regulations added
tires. The use of up to / grade levels for tire Crr is presented,	
according to measurements using the ISO 28580 tire folling	
1.2 The technologies that have been included in the Class 8 treater trailer	No changes
angine and vehicle analysis are appropriate selections for considering	required
future truck canabilities. Technologies in the study report comprise	requireu
the primary truck fuel-sayings developments identified across the	
previous reviews by NRC (2010–2014) and EPA-NHTSA (RIA	
2011). The current study also includes the most viable approaches	
being pursued by the four teams participating in the U.S. Department	
of Energy SuperTruck projects, summarized by Delgado and Lutsev	
(2014) (with the exclusion of hybrid solutions which are out-of-	
scope).	

Comment	Response
2.2 Selection and exploitation of the simulation models used in the study	No changes
are consistent with those typically used by other published	required
researchers in the field. Refer to additional comments in the response	
to question 2-3.	
2.3 Tire rolling resistance from coastdown measurements. Tire rolling	Crr data did come
resistance inputs to simulations have been obtained from coastdown	from coastdowns,
testing for all study vehicles using SAE J1263 method (directly or	and the results were
with modifications). Coastdown tests are routinely used to calculate	arbitrarily split
the coefficient of aerodynamic drag (Cd) and tire Crr as inputs for	between tire rolling
chassis dynamometer tests and vehicle simulations. However, there	resistance and
can be difficulties with data obtained in this way for a couple of	chassis friction,
reasons. First, and the most minor, is that other friction and drag	using historical
effects can be rolled into the value of Crr. Second, conditions of the	SwRI spin loss data
testing, and the speeds at which the data is acquired, can have non-	for axles and
negligible influence on both Cd and Crr (Hausberger, 2011). And	drivelines.
finally, it can be difficult to relate coastdown values of the Crr to	Extensive new text
those measured on a laboratory test drum under controlled conditions,	added to section
as discussed below.	C2.3
2.3 When the rolling resistance is measured on a test drum, the curvature	This is excellent
of the drum generates greater deformation of the contact patch and	background
thereby increases rolling resistance relative to the level that would be	information, but out
experienced on a flat surface. Using the formula developed by Clark	of scope. No
(1976), the Crr value obtained on a curved surface can be adjusted to	change to the text.
That ground of to any other diameter test drum. The formula: $C_{\rm rrr}$ (drum) = $C_{\rm rrr}$ (flat) *[1 + (D (tiro)/ D (drum)] ^{1/2}	
CII (uluii) - CII (IIat) + [I + (K(ulu)/K(uluii))]	
registence level enprovimetaly 200/ higher on a 1.7 meter diameter	
drum than on a flat surface, where $\mathbf{P}(\text{tire})$ is the unloaded nominal tire	
radius and $R(drum)$ is the radius of the test drum. There is some	
uncertainty in the "true" level of the correction factor predicted by	
this formula	
Furthermore, there is some speculation that the predicted change in	
absolute rolling resistance that is observed in going from a laboratory	
drum to flat ground may be approximately compensated for by	
increases in rolling resistance associated with road surface roughness	
In the case of the Hausberger study, tire rolling resistance coefficients	
did increase in going from drum measurements to track tests and not	
necessarily in the same proportion by tire type. It was also concluded	
that drum measures of Crr were likely to be necessary to generate	
appropriate coastdown values for Cd.	

Comment	Response
2.3 Tire Crr from coastdown testing aggregates the effects of steer, drive,	New text added to
and trailer tires into an overall effective tire rolling resistance for the	Section C2.3
entire vehicle. This is a useful approach for simulation, easing the	
burden of modeling Crr effects individually by axle. But good data	
for Crr (and Cd) are critical for the vehicle simulations. The values	
used in the report may be completely correct, but it is difficult for the	
reader to make this assessment without: 1) greater explanation of the	
testing than is given in Appendix C, including whether the tires used	
were new, partially worn, broken-in, etc.;	NY
2.3 2) laboratory measurements of Crr for the tires used on the study	Not available.
vehicles by tire type;	Discussed in C2.3
2.3 3) some selected comparisons of experimental data from whole	New text added
vehicle road tests with simulations of fuel consumption/MPG shown	around Figure C3
in the Tables 3.11 and $3.12 (T-700)$, 3.15 and $3.16 (T-270)$, 3.19 and	
3.20 (F-650), and 3.22 and 3.23 (Ram). This last item would validate	
both fuel consumption in terms of an absolute value, and more	
importantly, also validate the slopes of the curves in Figure 3.8	TT1 · · · /1 1
2.3 The linear form of the relationship between $\Delta Crr%$ and $\Delta FC\%$, by	I his is the approach
has been demonstrated in the past (LeClair 2005). If the confidence	taken in the report.
is high regarding the values of the slopes, then knowing the shares in	No changes
Is high regarding the values of the slopes, then knowing the <i>change</i> in $Crr(\Lambda Crr)$ between two tire sets is much more important than having	requireu
the absolute values of Crr. <i>Relative</i> changes in fuel consumption can	
then be predicted from <i>relative</i> changes in tire rolling resistance. See	
also Barrand and Bokar (2007) and Guillou and Bradley (2010)	
also Darrand and Dokar (2007) and Outhou and Dradicy (2010).	
2.3 Lastly the text in Appendix C. Section C2.3 reads as follows but no	Because coastdown
separate Crr data by tire type is provided	data was used the
"For the tractor-trailer vehicle separate Crr values were used for	Crr values were not
the steer tires, drive tires, and trailer tires. For the medium-duty	split into steer. drive.
trucks, separate Crr values were used for the steer and drive tires."	and trailer
	components. Text
	revised in C2.3
2.4 Elaboration of the derivation of Crr and supporting information	Text revised in
should be provided as discussed in question 2-3.	C2.3
2.4 A more thorough summary of vehicle simulation comparisons with	The suggested data
chassis dynamometer data across the baseline vehicles would	is not available and
reinforce the credibility of Appendix C.	out of scope. No
	change

Comment	Response
 3.1 The trucking industry has internally tracked a number of key performance indicators (KPI) such as tons of freight moved per year, vehicle miles traveled (VMT) per year, total quantity of fuel consumed per year, proportion of empty miles, miles per vehicle per year, as well as very familiar-sounding KPIs including ton-miles per year, ton-miles per vehicle per year, cost per ton-mile, and cost per ton-hour. Just as ton-miles per year is an indicator of annual freight carrying productivity, an indicator like load-specific fuel 	No change required
consumption (ton-miles per gallon, or the inverse for fuel consumption, LSFC) is an analogous measure of freight efficiency. LSFC should continue to be an appropriate metric.	
3.1 Alternatively, would it be better to include the weight of the vehicle together with payload in the tons calculation of LSFC? If we apply LSFC based on payload, then a less-than-truckload (LTL) fleet would be ranked as much less efficient than a truckload (TL) fleet, even though the cargo area of the LTL carrier is full. The effect of including vehicle weight would reduce (and sometimes significantly) the difference in efficiency ranking between the two fleets versus payload-only based comparisons. In addition, including vehicle weight as well as payload reduces the efficiency difference in comparisons between classical tractor-trailers and long combination vehicles (LCV). This could make LCVs appear less attractive because the scale of LSFC comparison is smaller. This comment is for reflection only, the current LSFC metric of gallons/1000 ton-miles should function appropriately whether the vehicle weight is included in the load calculation or not.	Including vehicle empty weight in the calculation of efficiency would eliminate empty weight reduction as a path to higher efficiency. There are alternative LSFC metrics such as gallons per cargo volume-mile that seem more appropriate. This discussion is out of scope, so no change
3.1 In the commercial sector, using LSFC as a metric for rulemaking and MPG as a familiar metric by end users may not present such a difficulty. Truck fleet managers are very cognizant of their freight patterns, equipment, and costs of most aspects of their operations. Often, fleets divide their businesses into "sub-fleets" of similar usage characteristics to be able to optimize and track specific types of applications. They are generally able to properly assess changes in MPG in the context of their own operations.	No change required
3.1 Drive cycles and technology performance. Given all the background information available on the topic of drive cycles, I am only able to add a couple observations here. First, it is outstanding to see a consistent analysis work method applied to illustrate the relative strengths and weaknesses of key technologies across a range of familiar drive cycles. In fact, in my view Section 4.6 is the most impactful section of the report	No change required

	Comment	Response	
3.1 How t	3.1 How these results can be incorporated into GEM is a challenge. The		
secon	is out of scope. No		
requir	ements for a drive cycle, or combination of drive cycles, within	change required	
this re			
repres	entation of a particular vehicle's real-world operation? Should		
it be a	ble to be reproduced in chassis dyno tests as well as on a track		
or roa	dway? Should it highlight or mask the effects of particular		
techno	blogies? Is it acceptable to piece together discrete fractions of		
usage	conditions of existing drive cycles to create an entirely new		
series	of vehicle operating steps for simulation? The "best" strategy		
for GI	EM may not necessarily be the best strategy for other purposes		
such a	s vehicle or technology design.		
3.1 Traile	ers and drive cycle weightings. An example of how the trailer	New text added	
tires c	ontribute to the overall effective vehicle rolling resistance	near new Table	
(whic	h we might also say is the coastdown Crr of the vehicle) is	C.10	
showr	n in the following table for estimated axle loads for the T-700		
for the	e 0%- and 100%-payload cases. The effective vehicle Crr(veh)		
is give	en as:		
Crr(ve when axle j, played contri payloa Smart payloa the 15 trailer tires o Crr(tin is com necess overal the we	$f(x) = [\Sigma j Crr j * Z j] / [\Sigma j Z j]$ re, for this case Crr j is the coefficient of rolling resistance on and Z j is the total load on that axle. The table shows the role d by the trailer axles in percent of load carried, and percent bution to the total rolling resistance of the vehicle for the two ad cases. Example tire rolling resistance values are current Way thresholds for steer, drive, and trailer tires. In the zero ad case, it is assumed that the steer axle carries 11000-lb, that 000-lb trailer weight is split evenly between the drive and tandems, and that the drive tandem carries the balance. If all on the vehicle have the same rolling resistance, then Crr(veh) = re). If the tire rolling resistance is different by axle position, as mon, then the percent of weight carried by the axle does not sarily equal the percentage contribution by that axle to the ll Crr(veh). In this latter case, the value of Crr(veh) depends on eight distribution by axle (as well as the steer, drive, and trailer		
trailer tires o Crr(tin is com necess overal the we tire Cr	tandems, and that the drive tandem carries the balance. If all on the vehicle have the same rolling resistance, then $Crr(veh) =$ re). If the tire rolling resistance is different by axle position, as mon, then the percent of weight carried by the axle does not sarily equal the percentage contribution by that axle to the Il $Crr(veh)$. In this latter case, the value of $Crr(veh)$ depends on eight distribution by axle (as well as the steer, drive, and trailer rr values).		

Comment			Response	
Description	Steer Axle Weight, Ib	Drive Tandem Weight, Ib	Trailer Tandem Weight, Ib	Similar table
0% Payload case, Total vehicle weight 33960 lb.				C 10 in
Load distribution of empty tractor-trailer*	11000	15460	7500	C.10 III Annondiv C
% weight carried by axle or tandem	32%	46%	22%	Appendix C
Jan 2015 SmartWay thresholds for Crr tires, kg/T (ISO 25850)	6.5	6.6	5.1	
Rolling resistance contribution of axle to Crr(veh), kg/T	2.11	3.00	1.13	
Total effective vehicle rolling resistance coefficient, Crr(veh), kg/T		6.24		
% Contribution of axle, tandem to total effective vehicle Crr(veh)	34%	48%	18%	
100% Dayland case. Total vahisla wajaht 80000 lh				
100% Payload case, Total Venicle Weight 80000 lb.	12000	24000	24000	
Load distribution of 46040-10 payload tractor-trailer	12000	34000	34000	
% weight carried by axie of tandem	15%	43%	43% E 1	
Polling resistance contribution of ayle to Crr(yoh) kg/T	0.5	2 91	2.17	
Total offective vehicle rolling registance coefficient (refueb) kg/T	0.90	2.01 E 0E	2.17	
Contribution of avla tandem to total effective vehicle (rr(veh)	16%	5.95 //7%	36%	
	10/0	47/0	50/6	
* Assuming steer axle weight does not vary greatly due to engine w	eight on axle			
 3.1 When aerodynamic optimizations are made on the tractor only, some technologies may add weight, but many improvements to bumpers, mirrors, or existing roof fairings could be accomplished at nearly isoweight. On the trailer, aero packages can add up to 2200-lbs (Delgado and Lutsey, 2014), or approximately 6.5% of the tractor-trailer weight (without payload). Accounting for both improved Cd and increased weight of aero technologies on trailers slightly reduces the effectiveness of obtaining fuel savings on the 65 MPH drive cycle shown in Figure 4.6. Combining aero and its intrinsic weight on the CARB cycle, shown in Figure 4.7, results in a negative contribution of that technology to fuel savings. The impact may be small due to the small weighting factor of the CARB cycle in GEM for tractor-trailer combination vehicles. But it highlights an example scenario where some technologies may have fuel disadvantages in certain specific applications, but also raises the possibility that those technologies may still be included in regulatory equipment packages 			Useful data on technology weights is not available for most technologies. Discussion added on the impact of technology weights	
3.1 Most large fleets using box van trailers hav about one tractor to every three trailers. Tra miles much more slowly than tractors – per miles/year versus an accumulation of 100,0 for tractors. It will take longer for a fleet to investment for a trailer technology than a tr though fuel consumption and GHG improven national level.	e an equij ilers geno haps 25,0 00 miles realize its actor tech ements ar	pment rate erally acc 00 to 35, or more a s full retu mology, e observe	tio of cumulate ,000 annually urn on even ed on a	New statement on this added at the end of Section 4.2.2

Comment	Response
4.1 Information content of the report is very dense. Detailed descriptions of performance results and the trade-offs associated with multiple technologies are often combined into the same paragraph, making it at times challenging to extract the most important points amid many comparative statements. While not obligatory, some suggestions that might help the reader include:	
• Occasionally breaking up some of the longer paragraphs, focusing or only one or two technologies in a single paragraph.	Some paragraphs broken up
• Using bullet lists within paragraphs to visually separate key points and conclusions.	Some bullet lists added
• State clearly when data is from simulations, lab testing, or track testing.	Several text changes
 Global regulations could be summarized in a table, at least in Section 2. 	Impractical, because of incompatible units and approaches. No change
• The history of the RFPs in the Introduction is confusing, but may be required. It can also be difficult to understand which "SRx" Tasks are in scope and which are not; emphasis should be on what SwRI is being asked to do for the report at hand.	All references to SR numbers removed
4.2 More detailed back-up information to reinforce the appropriateness of the coastdown coefficients, and demonstration of vehicle simulations against experimental track data should be provided, as described in the responses to question 2-3.	f New text added near Figure C.3
4.3 Given its potential impact on the definition of future technology packages and drive cycle combinations, Section 4.6 is the strongest part of the report	No change required
4.3 Any further conclusions that can be derived from data presented in this section would be of interest. For example, are the effects of payload understood well enough across all vehicles and all drive cycles that only one load condition needs to be considered for rulemaking?	New paragraph added at the end of Section 4.2
4.3 Are there recommendations of technologies that should move forwar and others which should be abandoned?	d This is left to the reader. No change
4.3 The weakest part of the reporting is vehicle model validation, which is covered in Appendix C. There is not a sufficiently strong sense of how well the models predict actual fuel consumption of the baseline vehicles. Validation of the slopes for the graphs of changes in fuel consumption as a function of changes in tire rolling resistance (and Cd) can particularly strengthen the report.	New text added near Figure C.3

Comment	Response
4.3 Lack of a broader dataset of market segmentation is an acknowledged	Market surveys are
weakness. This could be addressed in part by other data sources, such	out of scope. No
as surveys by industry organizations.	change to the
	report
4.4 A 30% decrease in tire Crr from today's (2014-2015) SmartWay	The 30% reduction
thresholds based on ISO 28580 would result in the following values:	in Crr is from the
Steer 4.55 kg/T; Drive 4.62 kg/T; and Trailer 3.57 kg/T. The assumed	coastdown
improvement target, Crr=3.93 kg/T, given in Appendix C for the T-	measurement
700, is not consistent with these levels. Use of large changes from	baseline, not from
baseline can be beneficial to identify trends in simulations. Setting a	the SmartWay
potentially extreme level of rolling resistance reduction as a target	baseline. Section
may risk compromises of other performances for future tire	C2.3 revised to
development.	clarify this
5.1 I would recommend the report be published with (a) minor revisions	These comments are
to improve readability, and (b) a moderate-level revision to Appendix	addressed above.
C, as has been mentioned earlier in this review. Without this	No additional
additional validation the report is an excellent simulation study, but	changes required
still a simulation study. With the data, the report is substantially	
more convincing and provides a solid basis for both rulemaking and	
future studies of MD/HD fuel efficiency.	

Final Report #1 John Nuszkowski Reviewer Comments and Responses

Comment	Response
1.1 "fuel saving technologies for MD/HD engines and vehicles" The literature review was adequate for this study. Most publications only test a single (or few) operating condition(s). It would be nice to have at least one reference (and a paragraph) on each of the engine technologies and vehicle technologies investigated. Some areas that were lacking references were asymmetric turbochargers and Stoich EGR.	New section 2.3.2.7 added on asymmetric turbos. New section added on stoichiometric EGR for gasoline engines
 1.1 In your literature review on single wide tires, you mention that single wide tires save weight. Is this including the weight of a carrying spare that many trucking companies would choose to do? 1.1 "market segmentation of fleets" This question is outside my area of expertise 	Yes. New text added in 2.4.2.1 to clarify No change required
 1.1 "current and planned MD/HD fuel economy regulations in markets around the world?" This question is outside my area of expertise 1.2 I was surprised by the lack of combustion related technologies. In Section 3.1.1, Engine Technologies, there is the statement that no combustion related technologies are in the list. Isn't "Stoich EGR" 	No change required The comment about "no combustion technologies"
statement that combustion related technologies only offer benefits of 1-2% is not supported by your literature review. Your literature review mentions benefits of 7.4%, >3%, 7.1%, 3-3.5%, and 4%. Many of the technologies that were investigated involved benefits of 1% or less, so why not combustion technologies?	diesel. New and revised text added in Section 3.1.1
1.2 The only concern I have is on representing the work site vocational trucks. How was this analyzed and/or rationalized with the vehicles and drive cycles selected? Many of these work site vocational vehicles do not travel many miles and have an engine loading very different than those shown. In addition, engine technologies may be more important in these cases than vehicle technologies.	Adequate data to analyze work site vocational trucks is not available. Out of scope, so no change
 1.2 The description of how the vehicles were selected was only included in the executive summary 1.2 The selected technologies gave a variety of options and analysis 	New text added to the Introduction No change required

Comment	Response
1.2 Many drivetrain options were investigated. Have you investigated the option of a continuously variable transmission (CVT) with high efficiency?	No indication was found that a CVT could match the efficiency of a manual or AMT. New text added in Section 3.0
1.2 Another interesting engine technology is having a variable compression ratio.	No production path identified yet. New text added in 2 nd paragraph of sec. 3.0
2.1 The quality, scope, and rigor were definitely there. Models were extensively calibrated with experimental data when available.	No change required
2.1 The model was sufficiently described.	No change required

Comment	Response
3.1 This section [4] gives a very good review of fuel efficiency metrics,	No change required
test procedures, and simulation approaches.	
3.1 There wasn't any discussion on the accuracy of each method of testing and simulating. What could be the achievable accuracy of the different test methods and how significant does the change in the fuel efficiency metric need to be for chassis testing versus engine testing versus a test bench vs simulation? Accuracy was only briefly mentioned when discussing the measurement of accessories.	Text added to describe the accuracy and sources of error in simulation
4.1 Overall, the report was organized, readable, and clear with only minor corrections needed (see 4-4).	No change required
4.1 A table in the executive summary to summarize the results would be very beneficial to the report.	New table added in Executive Summary
4.2 The vehicle selection needs to not only be discussed in the executive summary. The longest discussion on vehicle selection was in the executive summary.	New text added in the Introduction section
4.3 The wide breadth of vehicle and engine technologies analyzed on many different drive cycles was the strongest part of the report.	No change required
4.3 The weakest parts of the report were the minimum number of engine combustion technologies that were analyzed; minimal discussion on the influence of transient operation on these devices (especially the turbochargers) and model; and how worksite vocational trucks were represented. Include a lengthier discussion/analysis on engine combustion technologies. In addition, discuss each engine and vehicle technology's influence when operated on a transient cycle.	New text added to address combustion technologies, transient operation, and vocational trucks. Discussion of the effect of transients on every engine and vehicle technology is out of scope.
4.4 The factors that are to be considered for the report (page iii) included vehicle safety. I did not see any significant discussion on vehicle safety.	References to safety have been removed
4.4 Some minor comments and corrections - Throughout the document:replace the term "RPM" with "engine speed"	Style choice – no change
- Significant figures on benefits (percentages) need to be consistent.	Values below 10% are presented with one digit after the decimal, and values with two digits before the decimal point have no digit after the decimal point. No change

Comment	Response
- Combine one sentence paragraphs with other paragraphs	Two single sentence paragraphs eliminated
- Repeated text. Especially in the appendix. Can you just reference the earlier descriptions from other vehicles?	Decided not to force the reader to go back to earlier sections for explanation. No change
- Replace "&" with "and"	Suggested edit made
- Change "max" to "maximum" and 'min" to "minimum"	Suggested edit made
Page iv to page v tables: The tables shown are arranged from largest engine size to smallest. The next table is smallest vehicle to largest. Please keep them in the same order.	Engine table on Page iv rearranged
Page 4 last paragraph: Fuel efficiency definition should be say " inversely proportional to fuel economy" not "fuel consumption"	Suggested edit made
Page 9 end of first paragraph: " 20205 timeframe" Is this number correct?	Error fixed
Page 13 links: Move the links to reference section	These links are not numbered references, so they will stay in the text. No change
Page 16 last paragraph: "taday's" should be "today's"	Error fixed
Pages 19-24: weird spacing on references	Error fixed
Page 27 #4: change "avery" to "a very"	Error fixed
Page 27 #7: Mentioning of Daimler patent. Aren't most technologies covered by a patent?	Most technologies discussed in the report can be implemented without patent issues, but the asymmetric turbo is

Comment	Response
	an exception. No change to the text
Page 30: A little too much pushy on HEDGE in this section.	Several references to HEDGE removed
Page 35 second paragraph from bottom: "the actual" is repeated	Error fixed
Table 3.13 and other similar tables: Remove the "%" symbol to make the numbers more readable	Suggested edit made
Page 40 second paragraph from the bottom: I think the references to Table 3.11 and Figure 3.1 are incorrect.	Error fixed
Page 41 second paragraph: change " 0.7% 1.5%" to include a dash	Suggested edit made
Page 46: The 10-spd manual results seem very high. Was there excessive shifting in the model?	These results are explained in Section 3.3.2.9. No change required
Page 73 Table 3.21 versus Table 3.24: "V-6 to Base ISB" becomes "Base ISB vs. 3.5 V-6" The order is switched yet, the percentages are still the same"	Error fixed
Page 83 Figure 3.30: label of "EGR" is this "Stoich EGR"? Please be consistent with figure labeling.	Label corrected
Page 111 top of the page: "FPT" should be "FTP"	Error fixed
Page 111 last paragraph: "about right" change to "approximately correct"	Suggested edit made
Page 111 figure label: "RamTechnologies" to "Ram Technologies"	Suggested edit made
Page A-1: Remove additional space on "1.5. Explore GDI"	Suggested edit made
Page A-3: Figure labels needed	Figure labels added
Page A-4 figure A 6: Why does the equivalence ratio map extend beyond the fuel map? Are you extrapolating data?	Plot corrected

Comment	Response
Page A-5 last paragraph: Remove additional paragraph space	Suggested edit made
Page A-9: Correct the labeling on the figure	Error fixed
Page A-14 very top: Only time an EGR mixer is mentioned. Did the other engines not need one?	Reference to mixer removed
Page A-25: Why is the EGR valve before the throttle here?	The EGR valve is actually after the throttle (downstream). No change to the text
Page B-7: This is more validation figures than what was shown for the gasoline engines. Why?	More validation figures added in Appendix A for 3.5 V-6
Page B-13: The injection parameters would change between using an EGR and not using an EGR.	New text added to 1 st paragraph of B1.6
Page B-26 last paragraph: put spaces in "dowensizeenjoys"	Suggested edit made
Page B-28: bolding text in figure label	Suggested edit done
Page B-30: change "BEMP to "BMEP"	Suggested edit done
Page B-37: Was it mentioned in the text (and not in the appendix) that this engine model was created from a 2007 ISB engine?	The origin of the engine model did not impact the simulations since the model was calibrated with data from a 2011 engine. No change to the text
Page B-51: Mention the specific "sanity checks" used instead of the term "sanity checks"?	The term "sanity checks" removed, and check descriptions added to Appendix B

Comment	Response
Page C-14 last paragraph: change " is huge" to " is significant"	Suggested edit
	made
Page C-15 to C-16: table flows over onto next page	Suggested edit made
Page C-26: Figure C.9 label is on the next page	Suggested edit made
5.1 Overall recommendation: Acceptable with minor revisions. Please	Edits described
see Section 4 above for my revisions.	above

Final Report #2 Matthew Barth Reviewer Comments and Responses

Comment	Response
1.0 The executive summary does a reasonable job of summarizing the overall report, but it is chock full of a lot of acronyms and defined "packages" that the reader really won't know about until they read the actual report. As such, the executive summary does not really stand on its own. It reads more like a conclusion after you read the whole report, as opposed to an executive summary that would let a layman know the gist of the report. I'm not sure if that is under the purview of this review.	Executive Summary replaced with shorter, more descriptive summary
 1.1 The introduction explains the "lay of the land" in terms of the NHTSA process and what the charge is leading to this report #3. It refers to report #1, in terms of updating the results and providing the relationship of this report #3 to the past report #1. However, there is very little mention of report #2 in the intro. Although we already know about Report #2 and what it is all about, a general reader of this report #3 might be wondering about it. A sentence describing it in the intro would help 	Reference to the cost analysis report added at the end of the 2 nd paragraph of the introduction
1.1 The intro (and section 3) discusses the "sweeps" it does of different parameters in the simulations. This term seems to be a bit of jargon, in academic papers we often describe these as a "parameter sensitivity analyses". I think simply stating that a "sweep" is essentially a "sensitivity analysis" would be useful, and then continue to call it sweeps after that.	A reference to parameter sensitivity added at the bottom of Page 1 of the introduction, and in Section 2.3.6.1
1.1 Overall, the intro of report #3 is sufficient to allow for report #3 be read as a stand-alone document.	No change required
1.2 Although it isn't crucial, the intro doesn't say anything about the conclusions of section 6, nor does it mention the contents of the appendices. The intro simply drops off abruptly right after describing section 6. A few more sentences might help here.	Two paragraphs added to the introduction to describe Section 6 and the Appendices
2.1 In section 2, it is stated that "NHTSA and SwRI agreed on combinations of technologies", but little or no detail is provided on how these combinations were chosen. It would be good to explain what were the guiding principles involved in terms of figuring out what combinations would be best, or most likely. The choice of the combinations of technology is a very important step and very little is said about it. The reader is left wondering if there are other combinations that maybe made sense, and deserved some analysis.	New text added to the first paragraph of Section 2.1

Comment	Response
2.1 In the technology combinations, there are a lot of acronyms, which is fine, since they are defined in the acronym list early in the report. However, the authors I think abbreviate previous packages (e.g., P1, and P2) but the reader isn't exactly clear if this is the case. It would be good to simply say what is meant by P1, P2, etc	Package number abbreviations added to Tables 2.1 through 2.9. Changed abbreviation of vehicle packages to VP1 – VP20 to avoid confusion. Fixed package references in Section 2.3.6
2.1 It is understood that the main purpose of this effort is to evaluate fuel economy improvements and reductions of GHG emissions. As such, GT- POWER and the associated simulation tools are sufficient to make a good determination, given the different assumptions that are made along the way. However, there is very little discussion on the tradeoffs between control of pollutant emissions and fuel economy savings. In addition to the fuel economy improvement rules by NHTSA, vehicle and engine manufacturers must also comply with pollutant emission regulations. GT-POWER and the associated simulation tools do not examine the pollutant side of the equation, so there is a bit of a concern that by implementing certain technologies (or combinations of technology) for fuel economy, what would the effect be on pollutant emissions? Combined fuel economy and pollutant emissions analysis would be more appropriate. But it seems that this is outside of the scope of the project.	Added reference to the emissions vs. fuel consumption trade-off discussion in Report #1 in Section 2.1
2.1 In terms of drive cycles, I think report #1 discusses how these certain cycles were selected, based on providing a good range of operations for the different vehicle types. However for simulation analysis, an interesting approach would be to examine <i>vehicle activity data</i> (i.e., real world trajectory data from subsets of these vehicles) from the vehicles in question, and then select and compare driving cycles that are representative of the vehicle activity data itself. The number of publically-accessible vehicle activity data sets is increasing rapidly and should be utilized if at all possible (e.g., NREL's activity database described at http://www.nrel.gov/transportation). Better yet, rather than use driving cycles at all, why not run entire vehicle activity datasets (appropriate for the vehicle technology) directly through the model(s)? The computational time of these models is not that severe, so processing all of these data should not take too much time. That way you skip any controversy regarding whether the driving cycles are representative or not.	This is an excellent suggestion for a future project, but out of scope for this project. No change to the text
Comment	Response
---	---
2.1 It is possible for the reader to determine which technologies provide additive benefits, which combinations do not, etc., by examining the data (tables and graphs). There is some commentary about the different combinations, but the report could be improved if a paragraph was inserted after each vehicle type (DD15, T700, etc.) that explicitly stated what technologies were additive, which combinations did not work well, etc. The descriptions provided only touch on specific combinations; but there isn't any analysis that talks about how the different combinations compare. (actually, this is done more so for the later vehicles types, e.g., F-650, etc., but not so much for the initial vehicle types)	New sections added: 2.3.2.13, 2.3.3.6, 2.3.5.12, and 2.3.5.18
2.1 On page 19, there is a reference to the SuperTruck program, but little info is given. A reference should be provided	Two references added
2.1 Minor issue: the figure 2.6 has the black baseline line at 1% rather than at 0%, not sure if that is a graphical problem or if that was done on purpose?	Error corrected
2.1 Minor: on page 40, not sure why "Vehicle Technology Combinations" is capitalized;	Capitalization eliminated
2.1 In table 2.20 on page 44, it isn't clear why the "2019 ISB" is in there twice. Isn't this the baseline that things are being compared to? Or is this the diesel comparison? This needs a bit more explanation in the text, it is confusing to the reader.	New text added just above Table 2.20
2.1 For figures 2.23 and 2.24, why is the scale of the graph chosen to be 20%, when all of the percent savings are around 12% or less? The other graphs had better scaling, these figures seem different.	Figure rescaled to 14% full scale
2.1 Section 2.3.11 seems to be missing text that interprets the results of table 2.23. The different percent FC benefits are in the data, but there should be some text that interprets this. It would also be interesting to compare this to the other technologies discussed so far in the report.	New paragraph added in Section 2.3.11 to interpret hybrid results
2.1 Overall, the methodology described in section 2 is for the most part clearly described and appropriate, with some caveats as described above. The results are sufficiently comprehensive and robust.	No change required
2.2 Overall, the technologies selected were appropriate and logical for the vehicle. As mentioned above, it was difficult to determine how these combinations were selected in the first place; it seems that they were selected by NHTSA and SwRI in an ad-hoc fashion. Nevertheless, they seem appropriate.	New text added to the first paragraph of Section 2.1
2.2 It would be interesting to see some combinations of the hybrid technology (e.g., integrated starter/generator) with the other standard FC savings measures.	Good idea, but out of scope. No change to the text
2.3 Yes, the vehicles and drive cycles were appropriate for this class of vehicles (see earlier comment about driving cycles)	No change required

Comment	Response
2.4 Yes, the computer models were appropriate for the analysis. Although many assumptions were made, they all seemed logical. The modeling results provided reasonable numbers and are very good for relative comparisons.	No change required
2.5 Yes, the assumptions are all reasonable.	No change required
2.6 In general, the conclusions are adequately supported by the data. However, this section needs a good wrap-up set of paragraphs that talks about the different results at a higher level. For example, how did all of the technology combinations compare across different vehicle platforms? What might be other technology combinations that were not explored? (e.g., the inclusion of mild hybridization with other standard FC saving technology).	One paragraph added to Section 6.1, and 3 paragraphs added at the end of Section 6.4
3.1 I'm not sure why Figure 3.1 only shows the Cd values of 5% and 10%, where the other figures showed 5%, 10%, and 15%. Why was 15% left out?	Explanation added below Figure 3.3
3.1 The general conclusions of aerodynamics are logical, the main effect occurs at higher and sustained speeds.	No change required
3.1 On page 62, the sentence "The large frontal area of the T270 limits the portion of road load that comes from tire rolling resistance" needs more explanation how does the frontal area limit the rolling resistance road load?	Last paragraph of Section 3.2 revised
3.1 For rolling resistance reductions, it should be mentioned that there might be other important less desirable implications such as lower traction, load distribution, etc.	New text and 2 new references added
3.1 For the weight reduction, it is unclear how the different weight reduction values were chosen for the different vehicle types. The RAM pickup was studied at 300, 600, and 900 lbs. The F-650 was studied at 400, 700, and 1000 lbs. The T-270 was studied at 400, 800, 1200 lbs. Were these chosen based on a general percentage of the vehicle's overall weight?	New text added to 1 st paragraph of Section 3.3
3.1 It seems that the section on axle ratios (sections 3.4, 3.5, 3.6) has a lot more detail than the other parameters sensitivity analyses; although it is interesting, I'm not sure if it adds a lot to the report. As mentioned, you design a vehicle to meet certain performance specifications, and then you do what you can get improved fuel economy without affecting those performance specifications.	No change required
3.2 Yes, the ranges are appropriate for all 4 different parameters	No change required
3.3 Were the vehicles and engines used in the parameters sweeps appropriate? Yes	No change required
3.4 Yes, the results are plausible.	No change required

Comment	Response
4.2 Section 4 is an interesting section, describing differences of different engine technologies and relative payoffs between diesel engines and gasoline engines with technologies.	No change required
4.2 In the cost analysis on page 80, it is unclear how the authors came up with the assumption that the average engine cost difference was \$9000. Earlier the report stated that emission control technology on diesels are a major part of the expense. However, very little is mentioned on the cost of the future FC savings technology that would be put on gasoline engines (e.g., package 16 and package 20 technology elements). Is that cost part of the \$9000 difference assumption? I guess report #2 specified that cost elements of the different fuel savings technology. This report #3 should refer to this.	New text added above Table 4.2
4.2 Sections 4.2, 4.3, and 4.4 are all interesting, but somewhat disjointed. For section 4.4, it seems you could apply a driving cycle with a lot of stops and idle to calculate how much you could save with stop/start technology.	Good suggestion, and the Parcel cycle would make an ideal test case. Out of scope, so no change
5.2 Overall, this is a well written section on the issues of natural gas. The authors hit on all the key topics areas (and the tradeoffs), including engine and vehicle availability, size and weight penalties, engine, fuel, and vehicle prices, fuel availability, and government incentives. It is fairly complete, but it seems that the authors mainly discuss the general disadvantages of natural gas solutions, emphasizing less on the positives (better energy independence, lower GHG, etc.). The transit industry has successful used natural gas in their fleets, overcoming many of the points outlined in this section. I wonder if the authors could discuss a bit more on how it has been successful for transit, but may not be for the vocational trucks.	New text added in the 1 st paragraph of Section 5
5.2 Minor: on page 84, the hyphen of "-260 degrees" is on one line and 260 on the next, making it confusing what the temperature is.	Error corrected
5.2 On page 84, the sentence "A slow fill happens at nearly constant temperature, so a loss in energy density does not occur" would be more correct if stated: "A slow fill happens at nearly constant temperature, so a loss in energy capacity does not occur."	Text modified, and new Table 5.1 with a reference added to provide actual fast and slow fill results

Comment	Response
5.2 Page 86, the following sentence needs to be fixed: "The CNG system suffers a weight penalty of 2,100 pounds with full tanks, and 2,358 pounds with empty tanks" I'm not sure where 2358 comes from, and also I think the words empty and full are switched	This line is actually correct. Natural gas is lighter than diesel at equivalent energy content, so the weight penalty of CNG tanks is larger when tanks are empty. Added line to explain in Section 5
6.3 Overall, the conclusions section is good. Just a few minor comments:	No change required
6.3 On page 98, one conclusion is "Achieving this level of benefit requires the use of complex and expensive technologies that are not yet fully developed, such as a waste heat recovery system." In this report, nothing was mentioned about the cost of the technology, I assume that information is in report #2.	A reference to the cost report was added
6.3 The conclusions seem to only cover Sections 2 and 3; sections 4 and 5 are not really mentioned at all in the conclusions section. It would be good to at least have a few key conclusions about the natural gas vehicles.	New text added for Sections 4 and 5
7.1 Overall, the appendices cover a lot of details in terms of the vehicle technology combinations and their results. There is sufficient technical detail in these sections.	No change required
7.1 It is clear that the appendix on the hybrid systems was written by different authors, the flow of that section is different, but adequate.	No change required
7.1 Some of the tables and figures in the appendix are inconsistent in style and formatting, but the information content is adequate.	No change required
8.1 Overall, the report is well organized and pretty clear. Just a few comments:	No change required
8.1 As mentioned earlier, the executive summary makes a lot of assumptions in terms of what is already known, therefore it may have limited use as a stand-alone document.	Executive Summary rewritten
8.1 Some of the different sections in the report end abruptly, without any concluding sentences which sometimes leaves the reader hanging.	New lines added to Sections 3 and 5. New sections 2.3.2.13, 2.3.3.6, 2.3.5.7, 2.3.5.12, and 2.3.5.18 added

Comment	Response
8.1 In the discussions about all of the different technology combinations it gets confusing in terms of what the baselines are. All the information is there, however it is necessary to read some sections a few times before it sinks in.	Dozens of minor text changes made to clarify baseline references
8.2 There is sufficient detail in the report, both in the main body and in the appendices. But sometimes you need to track multiple things between sections (and tables) of the report, and the appendices to fully understand the details. This is mainly due to the complexity of the analysis.	No change required
8.2 As mentioned previously, it is not clear to the reader how the different combinations of technologies were chosen, it seems somewhat ad-hoc in some cases. The reader is left wondering if other technologies could also be woven in, such as different types of hybridization.	These issues are addressed in previous comments above.
8.3 The strongest part of the report was section 2, in terms of the analysis and comparison of the different technology combinations. Sections 4 and 5 were both written very well and covered the key areas of costs and tradeoffs.	No change required
8.3 The weakest part of the report probably was the executive summary which probably doesn't do too well as a stand-alone document, it is really just a summary that you can understand once you have read the entire report.	Executive Summary rewritten

Comment	Response
8.4 Overall the information provided in the report is sufficiently detailed;	These comments
various comments on specifics have been provided above.	were addressed
• As mentioned as part of the evaluations of Report #1, one key thing	by revisions to
that would be helpful in the introduction is some better scoping	Report #1 as
sentences. Fuel economy is affected by a number of different things,	appropriate.
generally categorized into four areas: 1) vehicle technology effects;	
2) vehicle fuel effects; 3) driver behavior effects; and 4) roadway	
infrastructure effects. Obviously this report deals with the area of 1),	
i.e., what kind of on-board vehicle technology exists that can	
improve fuel economy. Even though it is out of the scope of the	
report, different fuels and fuel additives have an effect on fuel	
economy, there is significant research and products in this area.	
Regarding 3), there is now technology that affects how a driver	Eco-driving aids
operates the vehicle. Example of this technology include eco-driving	and real-time
aids and real-time navigational aids showing roadway status (e.g.,	navigation are
upcoming grade, traffic, etc.). In a sense, this driver feedback	out of scope.
technology changes the "driving cycle" that is applied to the vehicle	
in a typical testing environment. When employed, this eco-driving	
feedback technology allows for different levels of fuel economy	
savings, see DOE vehicle technology program references (e.g., see	
http://energy.gov/sites/prod/files/2014/07/f17/vss087_verma_2014_o	
<u>.pdf</u> and	
http://energy.gov/sites/prod/files/2014/12/f19/2014_amr.pdf). Again,	Reviews of
this should at least be mentioned maybe in the introduction.	infrastructure
Regarding 4), there are roadway infrastructure and traffic operation	changes and
techniques that can also affect vehicle fuel economy. These include	operational
things like traffic signal synchronization, variable speed limit	techniques are
techniques on freeways, adaptive ramp metering, etc. Although this	out of scope.
is not vehicle technology per se, this roadway technology can	
improve overall traffic fuel economy. Again, this is outside the scope	No changes
of this report, but perhaps it should still be mentioned in the	required
introduction.	
9.1 Based on my review, the report and appendices are acceptable with	No changes
minor revisions. There are a variety of comments and suggestions made	required
in the above text that the authors could address.	

Final Report #2 Susan Nelson Reviewer Comments and Responses

Comment	Response
1.1 A brief paragraph indicating the <i>principal</i> objective and authoring	New 3 rd paragraph
organization of each of the three individual reports. For example, the	on introduction
primary topic of the first report is to analyze the potential of medium-	added
and heavy-duty truck engine and vehicle technologies to deliver	
reductions in fuel consumption during the 2014-2018 Phase 1	
timeframe, introducing each technology one-by-one into a baseline	
engine and vehicle configuration. The second report evaluates costs	
associated with implementing fuel savings upgrades, including a few	
associated technologies – such as automatic tire inflation systems -	
that were not considered in the earlier engine and vehicle performance	
simulations. Finally, the third report establishes new engine and	
vehicle baselines for the post-2018 timeframe, and evaluates the	
potential additional reductions in fuel consumption that could be	
obtained by grouping together compatible technologies.	
1.1 A single table which presents the vehicles selected for analysis, the	Tables 1.1 and 1.2,
vehicle applications, the weight class and GVWR represented by each	and a reference
vehicle, the engine type(s) which were studied for each vehicle, and	were added to the
the drive cycles used in simulations of each vehicle to obtain fuel	introduction
consumption predictions.	

Comment	Response
1.2 The Introduction provides a clear and concise overview of the contents	New line added to
of the report. Other comments on Section 1 are listed below.	paragraph
• It should be highlighted that Section 2 technologies include a study of hybrid solutions for the pickup truck. Hybrid solutions were not simulated in Penert #1	describing Section 2
 The discussion of bottoming cycle and recuperator solutions should be moved to the paragraph describing Section 2, instead of being included in the description of Section 3. 	Discussion of bottoming cycle and recuperators moved to paragraph describing section 2
• In addition to predicting the degree of fuel savings that can be obtained through specific combinations of key technologies, Section 1.0 describes an ambition to identify technology combinations that are directly (linearly) additive, those which are additive but which demonstrate non-linear interactions that may not be predictable from simulations of individual technologies, and those which are in opposition. An analysis of technology interactions has not been explicitly presented in the report. Some clarification of how this objective will be accomplished, either by including a report section, or suggesting future research directions, should be provided.	New Sections added: 2.3.2.13, 2.3.3.6, 2.3.5.7, 2.3.5.12, and 2.3.5.18

2.1 The methodology used by the authors, while not necessarily employing the identical modeling tools, is consistent with the work of other excellent published research (Ricardo, 2011; Muster, 2000) in terms of both model selection and application for the analysis of engine and vehicle technologies. The process used in the current report follows the sequence: 1) development of engine simulation model for known production engine; 2) prediction of effects of technology No changes required
employing the identical modeling tools, is consistent with the work of other excellent published research (Ricardo, 2011; Muster, 2000) in terms of both model selection and application for the analysis of engine and vehicle technologies. The process used in the current report follows the sequence: 1) development of engine simulation model for known production engine; 2) prediction of effects of technology
other excellent published research (Ricardo, 2011; Muster, 2000) in terms of both model selection and application for the analysis of engine and vehicle technologies. The process used in the current report follows the sequence: 1) development of engine simulation model for known production engine; 2) prediction of effects of technology
terms of both model selection and application for the analysis of engine and vehicle technologies. The process used in the current report follows the sequence: 1) development of engine simulation model for known production engine; 2) prediction of effects of technology
engine and vehicle technologies. The process used in the current report follows the sequence: 1) development of engine simulation model for known production engine; 2) prediction of effects of technology
follows the sequence: 1) development of engine simulation model for known production engine; 2) prediction of effects of technology
known production engine; 2) prediction of effects of technology
upgrades expected by a future date to establish new engine models to
serve as more appropriate baselines; and, 3) insertion of the new
engine baseline model(s) into vehicle simulations to predict total fuel
consumption across a range of drive cycles. A key feature of this
methodology, also commonly used, is that engine function is not
adapted for anticipated decreases in levels of road loads. Additional
comments are given in Question 2-2, regarding engine downsizing.
Use of a constant to express the tire coefficient of rolling resistance,
Crr, is currently a widely accepted practice in vehicle simulations,
even though the coefficient has weak dependence on vehicle speed
and load in normal operating ranges (Laclair and Truemner, 2005). To
be clear, the contribution of tire rolling resistance to <i>road load</i>
(considered for practical purposes as a retarding force on the vehicle)
is a linear function of total vehicle weight including payload under the
constant Crr assumption. At some future point it may be of interest to
incorporate tire rolling resistance road load as a function of vehicle
load, vehicle speed, and the pressure in simulation studies.
The south and have the march in their combined in a formation
I ne authors have been thorough in their explanations of engine
technologies, providing details of now each technology works, and the
Speaking as someone who has limited experiences in angings and
speaking as someone who has infined experience in engines and
engine technology, I can only add that the simulation treatments are
significantly to the understanding of the results
2.1 Two areas in which the report could be improved for clarity are the Now soutions
definition of engine/vehicle baselines and the treatment of technology
interactions Each area is discussed briefly for the example case of the technology
DD15 diesel engine and T-700 vehicle
text added in
several sections

Comment	Response
2.1 Engine and Vehicle Baselines. References to the DD15 engine	New text added to
models contained in Report #1 and Report #3 include years 2011,	the first paragraph
2012, 2013, 2014, 2017 and 2019. It is understood that the 2011	of Section 2.3.2
engine refers to the GT-POWER model developed from test cell data	
on a 2011 production year DD15, and that this serves as the baseline	
engine used in Report #1 for technology comparisons. The sequence	
of engine model updates from that point should be described in a	
single paragraph, including the technologies or strategies that were	
applied at each update to arrive at the 2019 baseline engine. It is	
unclear whether 2011 and 2012 refer to the same engine model, and	
similarly for versions 2013 and 2014, and whether any model other	
than that from the 2011 production year and the 2019 DD15 projected	
baseline was used in any simulations.	
2.1 On the vehicle side, it should be clarified there are no differences	New text added to
made to the 1-/00 vehicle model during the course of the simulations	the first paragraph
other than replacement of the 2011 engine model with the 2019	of Section 2.3.3
baseline engine, e.g. no weight, aero, or tire improvements are	
assumed for the 1-/00 in going from the analysis of Report #1 to	
Report #3.	N
2.1 Interactions of Combined Technologies. Analysis of technology	New sections
average in the second specifically presented in the report. For	added: 2.3.2.13,
different levels of the coefficient of coredynamic drag. Cd. on a given	2.3.3.0, 2.3.3.7, 2.3.5.12 and
vahiele? Typically, we would say the answer is no, given the	2.3.5.12, allu 2 3 5 18
definitions of Crr and Cd embedded in the modeling. One way to	2.3.3.10
explore additive effects on a very macro level would be to compare	
whether a technology or package of technologies provides the same	
level of fuel consumption improvement when applied to two different	
haselines	
ousernes.	
The following graph shows the percent improvement in fuel	
consumption due to the same engine friction reduction (FMEP) for	
both the 2011 and 2019 baseline engines, across all drive cycles. The	
2011 baseline DD15 + FMEP improvement (case $\#11$ in Report $\#1$) is	
compared to the 2011 baseline; likewise, the 2019 baseline DD15 +	
FMEP improvement (DD15 package #1 in Report #3) is compared to	
the 2019 baseline engine model.	
Similarly, the combined effects of a 25% reduction in Cd, 30%	
reduction in tire rolling resistance, and 6.5% reduction in empty	
vehicle weight can be compared by adding the individual contributions	
to establish an improvement in fuel consumption versus the 2011	
baseline (addition of cases II, JJ, and KK-6.5% from Report #1)	
compared to the T-700 Combined Engine-Vehicle package #2 in	
Report #3 which combines the same technologies with the 2019	
baseline engine model.	

Comment		Response
These comparisons are shown below for the Fuel Consumption Improvements of Tech 2011 and 2019 DD15 Engine Baselines -	e 50% payload case. nology Groupings in 50% payload case 2011 Baseline Engine w/FMEP reduction 2019 Baseline Engine w/FMEP reduction 2011 Baseline Engine w/-25% Cd, -30% Crr, -6.5% weight 2019 Baseline Engine-Vehicle Combo Package 2 (-25% Cd, -30% Crr, -6.5% weight)	
 2.1 From these results [see figure above], we would be likely to conclude that these technologies are largely additive, with small differences due to simulation uncertainties, modeling assumptions, or perhaps, real differences in interactions. The friction reduction cases show a consistently greater improvement when applied to the 2019 baseline versus the 2011 baseline engine. Vehicle weight, rolling resistance, and aerodynamic drag are expected to be additive if the baselines are similar enough, as the 2011 and 2019 DD15 models appear to be. More interesting cases could consider combined engine modifications and vehicle technologies, such as substituting the 2019 DD15 engine package 2 (downspeeding + partial FMEP reductions) into the T-700 combo package #2 (25% reduction in Cd, 30% reduction in tire rolling resistance, and 6.5% reduction in empty vehicle weight) to compare with an analogous 2011 package, which may show some evidence of 		The analysis suggested here would be very interesting, and would probably be best achieved using a design of experiments evaluation. Out of the project scope, so no change
2.2 General Comments. The current studies has well over a decade of continuous and concered medium- and heavy-duty truck fuel savings by the National Research Council (NRC, 20 merit reviews of the four SuperTruck projered demonstrator phase (Jadin, 2012; Gibble an 2014; Singh, 2014; Rotz and Ziegler, 2014; 2014), the 21 st Century Truck Partnership (such as an earlier study by MIT (Muster, 20 programs have provided a generally consist reviewed foundation for the selection of fuel such as an earlier study by the selection of fuel such as an earlier study by the selection of fuel such as an earlier study by MIT (Muster, 20 programs have provided a generally consist reviewed foundation for the selection of fuel such as an earlier study by the selection se	ave benefitted greatly from entrated research into s technologies summarized 010 and 2014), the annual cts which are reaching the nd Amar, 2013; Koeberlein, ; Delgado and Lutsey, 2006), and other research 000). Taken together, these tent, progressive and widely el savings technologies.	No change required

Comment	Response
2.2 In addition, the level of stakeholder involvement throughout the	No change
process is striking, encompassing OEMs and commercial truck	required
equipment suppliers, research labs and universities, regulatory bodies,	
trucking industry representatives, fleet and maintenance managers, and	
drivers. Technologies have frequently received significant coverage in	
end-user literature (Berg, 2014; Brawner, 2015; Lockwood, 2015) and	
at industry meetings (TMC, 2015), promoting broad dialog in the	
industry about the advantages/disadvantages, costs, and	
implementation strategies of new trucking equipment.	
Given this context, technology combinations for the T-700 are coherent with approaches reported by other researchers and by the	
SuperTruck projects, and represent combinations that are pertinent to	
fuel consumption evaluations.	
2.2 Technology Selection and Pairings - 6x2 Axle Configuration and	New paragraph
Tires. In one study of 6x2 versus 6x4 axle configurations (NACFE, 2014), a 6x2 "package" was identified as containing the following components: wide-base single drive tires on the drive axle, wide-base single trailer tires on the tag axle, "tall" axle ratio of around 2.6:1, use of low viscosity axle lubricant, and direct-drive transmission with down-speeding applied in some cases (approaching T-700 Combo Package 3, excluding aero and accessory power reduction). The NACFE study attributed fuel economy improvements in the range of 1.6% - 4.6% to the use of 6x2 axles, with various adjustments made to account for differences in the make-up of the tested vehicle packages. A 6x2 axle can permit an overall reduction in tire rolling resistance on the vehicle if trailer tires are used on the tag axle instead of drive tires. An example shown in the following table using SmartWay thresholds for steer, drive and trailer tires indicates a 5% reduction in effective vehicle rolling resistance coefficient by substituting trailer tires on the tag axle, e.g. from a value of Crr(veh) of 5.95 kg/T to 5.63 kg/T. The effective vehicle Crr(veh) is given as: $Crr(veh) = [\Sigma_j Crrj * Zj] / [\Sigma_j Zj]$	added in Section 2.3.3.3
where, Crrj is the coefficient of rolling resistance for tires on axle j, and Zj is the total load on that axle. The rolling resistance decrease is considered as an enabled tire contribution to vehicle fuel consumption improvements.	

I

Comment			Response	
Steer Axle Weight, Ib	6x4 Drive Tandem or 6x2 Drive Axle Weight, Ib	6x2 Tag Axle Weight, Ib	Trailer Tandem Weight, Ib	
12000	34000	n/a	34000	
15%	43%	n/a	43%	
6.5	6.6	n/a	5.1	
0.98	2.81	n/a	2.17	
	5.	.95		
16%	47%	n/a	36%	
12000	17000	17000	34000	
15%	21%	21%	43%	
6.5	6.6	5.1	5.1	
0.98	1.40	1.08	2.17	
470/	5.	.63	202/	
1/%	25%	19%	39%	
** Contribution of axle, tandem to total effective vehicle Crr(veh)17%25%19%39%The NACFE study included some preliminary data indicating that the 6x2 configuration can decrease the wear life of the tires on the drive axle by approximately 1/3, potentially requiring more frequent replacement of tires on this axle. It should be noted that under normal operations trailer tires (on a trailer axle) are likely to have half the wear life of drive tires on a 6x4 configuration (Michelin, 2011). This suggests that trailer tires on the 6x2 tag axle would also need to be replaced more often than drive tires on a 6x4 axle configuration. Effectively, this suggests that tires on both drive and tag 6x2 axles would need to be changed out more often than tires on the drive tandem of a standard 6x4 truck.New paragn added in Se 2.3.3.3This aspect of 6x2 configurations will need to be considered when calculating tire life cycle costs. It should be further noted that heavy- duty truck tires have a non-zero residual value due to the casing which can be retreaded several times. This tire residual value was not reported in the cost analysis of Report #2 (Tetra Tech draft cost study).Certain new 6x2 products are being developed with the capability to shift load from the tag axle to the drive axle to improve traction. Under this operation, assurance of sufficient tire inflation pressure to				added in Section 2.3.3.3
	steer Axle Weight, lb 12000 15% 6.5 0.98 16% 12000 15% 6.5 0.98 16% 12000 15% 6.5 0.98 12000 15% 6.5 0.98 117% eliminary ear life o y requiring tould be reguiring ould be reguiring axle w n a 6x4 a both dri ften than l need to uld be fu ual value ire residu t #2 (Tet eveloped fficient ti as loadin	ht 6x4 Drive Tandem or $6x2$ Drive Axle 	htSteer AxleGx4 Drive AxleWeight, lbTandem or 6x2 Drive AxleGx2 Tag Axle Weight, lb1200034000n/a15%43%n/a6.56.6n/a0.982.81n/a5.9516%47%16%47%n/a12000170001700015%21%21%6.56.65.10.981.401.085.635.6317%25%19%eliminary data indicating the ear life of the tires on the or y requiring more frequent tould be noted that under r le) are likely to have half the guration (Michelin, 2011), ag axle would also need to n a 6x4 axle configuration both drive and tag 6x2 ax ften than tires on the drive1 need to be considered wh uld be further noted that h ual value due to the casing ire residual value was not t #2 (Tetra Tech draft cost eveloped with the capability re axle to improve traction fficient tire inflation pressi as loading can exceed the	htSteer Axle Weight, lb $6x4$ Drive $6x2$ Drive Axle Weight, lbTrailer Tandem or $6x2$ Drive Axle Weight, lbTrailer Tandem Weight, lb1200034000n/a3400015%43%n/a43%6.56.6n/a5.10.982.81n/a2.175.955.9516%47%1200017000170003400015%21%21%43%6.56.65.15.10.981.401.082.175.635.6317%25%17%25%19%39%eliminary data indicating that the ear life of the tires on the drive y requiring more frequent tould be noted that under normal le) are likely to have half the guration (Michelin, 2011). This ag axle would also need to be n a 6x4 axle configuration. both drive and tag 6x2 axles ften than tires on the drivel need to be considered when uld be further noted that heavy- ual value due to the casing which ire residual value was not t #2 (Tetra Tech draft cost study).eveloped with the capability to /e axle to improve traction. fficient tire inflation pressure to ore last disc construction.

Comment	Response
2.2 Aerodynamic Fitments and Tires. Report #3 does not stipulate	New line added in
specific aerodynamic treatments or equipment, but it would not be	Section 3.3.3.2.
unusual for a future truck to deploy side skirting which covers both the	Also added
drive and trailer tandem axles, potentially cutting off convective tire	mention of the
cooling. Airflow around the wheel ends will need to be managed to	need for inspection
ensure that tires, wheels, and braking systems are all adequately	access.
cooled if isolated from normal ambient airflows.	
2.2 Engine Downsizing and Reduced Road Load. Engine downsizing is	New 2 nd
a technology that was not carried over into the combined technologies	paragraph of
study. However, combinations of road load reductions can enable	Section 2.3.2
engine downspeeding and downsizing in commercial vehicles. This	added
approach has been described in both Daimler and Volvo SuperTruck	
projects (Delgado and Lutsey, 2014) and has been used in the most	
recently displayed Daimler SuperTruck demonstrator (McNabb,	
2015). An estimated reduction in road load power demand may shift	
the engine operation to a zone of lower efficiency on the fuel map,	
which is then compensated for by engine downspeeding and	
downsizing.	
2.3 Classes 2b, 6, and 8 commercial vehicles have historically represented	No changes
the combination of the greatest number of commercial vehicle classes	required
on the road and those which consume the most fuel. Ninety percent of	
the fuel consumed by all medium- and heavy-duty trucks can be	
attributed to these classes (NRC, 2014). This characteristic, together	
with the vehicle selection process described in Report #1, support the	
decisions to include the Ram pickup, T-270 straight truck, and T-700	
Class 8 tractor in the study. Given that data was available to support	
analysis of the Ford F-650, and that the vocational sector has perhaps	
been under-represented in fuel consumption studies to date, makes this	
vehicle a useful addition to the project.	
2.3 Across all vehicles, including light-duty, tire rolling resistance is	No changes
estimated to account for 8%-18% of the total fuel energy consumption	required
(engine losses being 50% or greater). The amount of fuel savings due	
to reductions in folling resistance can vary as much from vehicle to	
venicle as from drive cycle to drive cycle. Estimated sensitivities are	
10.2 for modium to house duty vehicles (Hall and Moreland 2001)	
A ratio of 10.3 would be interpreted as a 10% reduction in tire rolling	
resistance coefficient generating a 3% reduction in fuel consumed	
which is a return ratio that approximates Class 8 tractor_trailer	
sensitivity	
 decisions to include the Ram pickup, T-270 straight truck, and T-700 Class 8 tractor in the study. Given that data was available to support analysis of the Ford F-650, and that the vocational sector has perhaps been under-represented in fuel consumption studies to date, makes this vehicle a useful addition to the project. 2.3 Across all vehicles, including light-duty, tire rolling resistance is estimated to account for 8%-18% of the total fuel energy consumption (engine losses being 50% or greater). The amount of fuel savings due to reductions in rolling resistance can vary as much from vehicle to vehicle as from drive cycle to drive cycle. Estimated sensitivities are reported to range from 10:0.5 to 10:1 in light duty vehicles to 10:1 to 10:3 for medium- to heavy-duty vehicles (Hall and Moreland, 2001). A ratio of 10:3 would be interpreted as a 10% reduction in tire rolling resistance coefficient generating a 3% reduction in fuel consumed, which is a return ratio that approximates Class 8 tractor-trailer sensitivity. 	No changes required

Comment	Response
2.3 Because of differences in fuel consumed due to rolling resistance for	No changes
different drive cycles, it is important that each vehicle in the study be	required
subjected to multiple cycles, covering a wide range of operations for a	-
vehicle type. It is unlikely that a single drive cycle can coherently	
represent vehicle usage. The drive cycles used in the study are familiar	
and widely used, and, taken as a package for each vehicle type, cover	
many truck applications. The key decision will be how to combine all	
or some of the drive cycles to represent the overall usage of each type	
of vehicle. One approach is to use weighted combinations of fuel	
consumption from some or all of the cycles studied for a given vehicle	
category, the values of the various weighting factors being the crucial	
choice. Alternatively, individual performance targets could be set for	
each vehicle class for one or more individual drive cycle(s).	
2.4 The computer models chosen for engine/vehicle simulations, and the	No changes
overall modeling approach, are similar to those typically used by other	required
researchers (Laclair and Truemner, 2005; Gibble and Amar, 2013;	-
Ricardo, 2011; Muster, 2000). One notable difference between	
researchers is whether a driver model is incorporated in drive cycle	
simulations; an evaluation of this difference is outside my area of	
expertise.	
2.5 Typical simulation studies assume the tire rolling resistance	No changes
coefficient, Crr, to be constant across different levels of payload and	required
different speeds, given that the dependence of Crr on load and speed is	-
relatively weak in the normal range of truck operating conditions. Use	
of a constant coefficient greatly simplifies calculations and sensitivity	
studies while generally providing satisfactory results.	

Comment	Response
2.5 Tire rolling resistance is a function of load, inflation pressure, speed, applied torque and steer angle, as well as tire temperature, camber, and the wheel used. Moreover, the tire operating temperature, a highly influential parameter for tire pressure, depends on the history of the conditions under which the tire has operated (Laclair, 2005). One approach to determine transient tire rolling losses is to use data from a coastdown machine test to solve for the coefficients in the following equation (Laclair, 2005; Hall and Moreland, 2001): $Fr = (P^{\alpha})(Z^{\beta}) (a + bV + cV^2)$ In which: $Fr = tire rolling loss$ P = tire internal pressure Z = vehicle weight carried on the tire V = speed a, b, c, α, β are fitted coefficients. To date the current test method, SAE J2452, has been specified for passenger car and light-truck tires only. In actual field usage, the tire warms and cools according to operating conditions, altering the internal pressure which in turn dictates actual rolling resistance at any given moment. Predicting tire rolling resistance during the course of a transient drive cycle can be a challenge. On a Class 8 tractor-trailer using steer, drive, and trailer tires, the operating conditions for each tire type are different for each axle. In terms of fuel consumption, a more complex tire rolling resistance weight on your offer any improvements in prediction over models based on constant Crr. I am not aware of any studies comparing the use of constant Crr to represent rolling resistance versus the above equation in order to calculate fuel consumption for commercial trucks.	Interesting information, but taking the slight non-linearity of tire rolling resistance into account was beyond the project scope. No changes required
2.6 Technology Interactions. Although occasional comments on the potential additive nature of certain technology groupings are made in the report, this topic has not yet received in-depth treatment. Identification of interactions is one of the primary objectives of the study, and would make a good concluding section for the chapter.	New sections added: 2.3.2.13, 2.3.3.6, 2.3.5.7, 2.3.5.12, and 2.3.5.18. However, full in-depth treatment of interactions is out of scope.

Comment	Response
2.6 Out-of-Scope Technologies. A brief listing of out-of-scope technologies, such as start-stop, driver habits, active tire pressure controls, continuously variable transmissions, and route optimization can be beneficial for the reader, and also set the stage for future research.	New second paragraph of Section 2.3.3 added
 2.6 References. The following report discusses differences and similarities between light-duty and heavier pickups and vans, including fuel savings technologies, market and use patterns, and current GHG and fuel consumption standards. Lutsey, N., "Regulatory Considerations for Advancing Commercial Pickup and Van Efficiency Technology in the United States", The International Council on Clean Transportation, April 2015, http://www.theicct.org/sites/default/files/publications/ICCT_pickup-van-efficiency_20150417.pdf. 	No new post-2012 references. No change required
3.1 Across the discussions of vehicles, engines, and drive cycles in this section, frequent reference is made to the relative importance of one component of road load versus another on a case-by-case basis. Given that there are generalizations that can be made concerning aerodynamic drag, tire rolling resistance, and vehicle lightweighting, it is recommended that an additional report section be included which presents the classical equations for each of these components. The material could be included at the beginning of Section 3.0 or in an appendix, and would make evident the relationships of:	Creation of a textbook-like section presenting all the equations is out of scope. No change
 Aerodynamic drag force as a function of velocity squared, coefficient of aerodynamic drag, and vehicle cross-sectional area exposed to wind; Vehicle inertial forces as a function of vehicle mass and acceleration; Tire rolling resistance forces as a function of vehicle mass and the tire coefficient of rolling resistance. 	
This would make more intuitive the effects of vehicle weight reductions (affecting the road load contributions of both vehicle inertia and tire rolling resistance), drive cycle average speed and speed variability (impacts of aerodynamic drag and inertial effects), and additive improvements due to Cd and Crr (linear relation between the coefficients and road load, and, on the face of it, no interactions between the two coefficients since they do not share any underlying factors in their equations). Fuel consumption sensitivities could be	

Comment	Response
more readily inferred, even for vehicles not subjected to simulation	
studies, knowing that, for example:	
• Fuel consumption of vehicles with greater projected frontal area	These points are
has greater sensitivity to changes in Cd;	made at appropriate
• Fuel consumption of heavier vehicles is more sensitive to changes	locations in the text.
in Crr;	New Section 5.4
• Steady-state drive cycles have low sensitivity to lightweighting.	auueu
An example of a diagram that can be useful for explaining the relative magnitudes of the road load components during the course of a drive cycle can be found in Figures 29 and 30 of Muster, 2000, illustrated for a highway driving cycle. Similar graphs could be developed for selected cases in Report #3. This visual aide may illustrate more readily and broadly the conclusions of Section 3.1.	No new figures, but new Section 3.4 added
3.2 Tire Rolling Resistance Coefficient. Whether the projected	No change
reductions in tire rolling resistance coefficient are appropriate depends	required
on what is considered as the baseline Crr value for each vehicle, and	
whether that value represents a sales-weighted average tire or a best-	
in-class tire. However, the linear relationship between percent change	
in Crr versus percent change in fuel consumption can be used to	
evaluate the impact of potential tire improvements, even if machine	
measured Crr values are not exactly represented. For pickup trucks,	
Crr reductions summarized in Lutsey (2015) suggest that 10%-20%	
3.2 Class 8 tractor-trailers may present more opportunities for rolling	No change
resistance reductions than the other study vehicles since the Class 8	required
vehicle is equipped with several different tire types – steer drive and	requireu
trailer – with each tire type optimized to the operating conditions of its	
specific axle position. Class 8 enabling technologies, such as the use	
of 6x2 axle configurations, can permit the vehicle to be fitted with an	
overall lower Crr tire set. The Ram pickup, F-650, and T-270 use the	
same tire fitments in all wheel positions, so improvement options are	
more likely to be limited to direct reductions in Crr.	
3.2 Aerodynamic Drag/Weight Reductions. Lutsey also reports	No change
opportunities for improvements of 10-20% in Cd and also in vehicle	required
weight reductions, based on light-duty simulations. Industry	
publications indicate U ranges of approximately $0.4 - 0.42$ for the 2000 model upon of this close of mislow truth (Without one 2000)	
2009 model year of this class of pickup truck (witzenberg, 2009), and Cd ranges of 0.26 0.41 for 2015 model years (Sanahar, 2014). The	
latest Ford F 150 FooPoost includes a 700 lb weight reduction or	
antrovingtaly 12, 14% of the empty vehicle weight. These values	
approximately 12-14/0 of the empty vehicle weight. These values,	
weight reduction percentages considered in Report #3.	

Comment	Response
3.3 This combination of vehicles and engines represents an opportunity to compare potential interactions between engine types and each of the three primary road load components. As the weights of the F-650 and T-270 are relatively close in this exercise, it is not surprising that the two vehicles show very similar sensitivities for Crr and lightweighting sweeps.	No change required
3.3 For the cases presented, there are small differences in engine sensitivity to lightweighting. It would have been interesting to see if more significant differences in sensitivity across the three engine types are observed when paired with Crr reductions.	This would require many new simulation runs. Out of scope, so no changes
3.4 The rolling resistance results for all three vehicles – Ram pickup, F- 650, and T-270 - are within the ranges of vehicle sensitivities as a function of weight class discussed in the response to Question 2-3.	No change required
4.1 Section 4 outlines primary characteristics of vocational vehicle operations that may limit the ability to reduce fuel consumption using lower aerodynamic drag or tire rolling resistance, as well as lightweighting to some degree. This does not mean that these technologies should not be pursued; even moderate improvements can deliver consequential fuel savings. Opportunities for vocational vehicle fuel savings for gasoline and diesel versions have most recently been outlined by Lutsey (2015, Table 3). The majority of these technologies have been addressed in the current report, but there may be others that warrant future consideration.	No change required
4.1 Vehicle sensitivities can be better compared in graphical summaries similar to Figures 3.7 and 3.8 of the T-700 analysis in Report #1. These graphs report percent fuel savings versus progressive improvements in Cd and Crr, and could be developed for vehicle weight reductions. Including several charts of this type in Report #3, also adding T-700 results from the first report, will show differences in vehicle sensitivities more clearly.	Figures 3.1 – 3.9 show vehicle sensitivity to Cd, Crr, and empty weight. The format does not match Report #1, but the data is there. No change
 4.1 A review of T-270 vehicles offered for sale on the website referenced below confirms that a wide range of axle ratios are actively used in the industry. A quick scan showed used vehicles available with axle ratios of 3.9 – 6.17, with 5.29 being the most common. This reinforces the idea of diversity of usages for vehicles in this category, including considerations for vehicle performance needs of grade capability, acceleration, max speed, and startability as well as fuel consumption, as the authors have briefly described. http://www.truckpaper.com/list/list.aspx?bcatid=27&Manu=KENWO RTH&Mdltxt=T270 	This info matches the range of axle ratios evaluated in the report, and also the choice of 5.29 as the baseline ratio. No changes required.

Comment	Response
4.2 The calculations in Section 4.1 of the report cover the range of	This analysis
probable conditions under which a gasoline engine could compete	confirms the
with a diesel version in the T-270. Payback calculations are based on	analysis of Section
initial purchase price and the fuel consumed, which are the largest	4. No changes
vehicle cost items. Other elements that are typically included in	required
payback calculations, described a recent ATRI summary (Torrey and	
Murray, 2014) are listed below:	
Repair and maintenance;	
Insurance premiums;	
• Permits and licenses;	
• Tires;	
• Tolls;	
• Driver wages and benefits.	
All costs associated with the items on this list are likely to remain	
equivalent for both engine fuel types, with a possible exception in the	
Repair and Maintenance category, which is not accounted for in the	
Section 4.1 analysis. The ATRI results indicate that across the survey	
respondents, which include a range of truck classes and is skewed	
towards long haul, fuel accounted for \$0.645/mile of operational cost	
in 2013, compared to Repair and Maintenance costs of \$0.148/mile.	
An additional factor for payback calculations is residual value, also	
not considered here. Data reported for the relatively small sample of	
straight trucks in the ATRI report indicated 32,901 average annual	
miles per truck, with an average trade cycle of 9 years.	
Assuming no differences in maintenance costs, the analysis in Report	
#3 depends on:	
• Difference in vehicle purchase price (V-6 and V-8 both \$9000 less	
expensive than the diesel);	
 Differences in fuel consumption between engines; 	
• Cost of gasoline (taken here as the base);	
• Price difference between the cost of gasoline and diesel fuel.	
To which we might add,	
Annual mileage;	
• Mix and weighting of drive cycle simulations.	
Given the variety of applications for this vehicle class, it is difficult to	
make a case for other than equal weighting of the 6 drive cycles	This analysis
simulated in the study. An increase in assumed annual mileage will	confirms the
make a more favorable case for diesel engines; an annual mileage	analysis of Section
decrease will favor gasoline engine versions. Including annual mileage	4. No changes
as a variable rather than as a constant in the calculations could also be	required
of interest, but it is probably unlikely to significantly change the	-
conclusions of the existing analysis based on 25000 miles annually.	

	Comment		Response
Certainly, the levels and vola	atility of fuel prices	are key to the payba	ck
time required to overcome th	e purchase price di	fferential between	
gasoline and diesel vehicles.	Another version of	Figure 4.1 shown in	
Report #3 comes from the U	.S. Department of I	Energy, Energy	
Information Administration	website (eia.gov), a	nd shows the history	
of both gasoline and diesel p	rices in the U.S. (fr	om which Figure 4.1	
in Report #3 can be derived)	. During the period	from about 2011 to	
the end of 2014, volatility of	gasoline price has	largely driven the	
differences between the cost	s of the two fuels, a	lthough both fuels	
experienced significant price	e drops in the first h	alf of 2015.	
Weekly Retail Gasoline and Diesel Prices			
\$/gai 6			_
5			_
	h		
		A . A MA	_
4		MMM	
3	MAD	h h	Ī
	NH W	V ^m V	
2		Y	_
san -	M	V	
			_
0 1994 1996 1998 2000 2002	2004 2006 2008	2010 2012 2014	-
U.S. All Grades All Formulations Re Source: U.S. Energy Information Administration	etail Gasoline Prices — U.S. No 2 Die	esel Retail Prices	
Tax differences between the two	fuels cannot accou	int for volatility,	
however, a certain structural price	ce difference is buil	t into current \$/gallo	n
values, as shown in the table bel	ow, also taken fron	n the eia.gov website	
This impact can change based or	n public policy rega	rding fuels, governir	ıg
authority needs for revenue strea	ims, as well as othe	r factors not strictly	
market related.	-		
Tax entity	Tax on	Tax on Diesel,	
	Gasoline, \$/gal	\$/gal	
Federal	0.18	0.24	
State – minimum (Alaska)	0.08	0.08	
State – maximum	0.516	0.653	
(Pennsylvania)	0.0(0.70	0.22 0.00	
Kange per gallon of fuel	0.26 - 0.70	0.32 - 0.90	

Comment	Response
In the end, the future of fuel pricing is difficult to predict, especially in	
the current period, but we might say that the most likely scenarios	This analysis
would be in the range of \$0-\$0.25/gal price penalty for diesel. Payback	confirms the
time is extremely sensitive in this range, as seen in Table 4.2 of the	analysis of Section
report. Given a 9-year average trade cycle and gasoline prices in the	4. No changes
range of \$3-\$4/gal, there are a number of scenarios for which diesel	required
and gasoline engine solutions could be roughly at parity.	
5.1 The information presented in Section 5 aligns with other published	No changes
analysis of the factors and costs associated with the use of natural gas	required
systems in commercial vehicles. Listings of engine offerings in Report	
#3 are consistent with earlier summaries presented in Table 7.1 of an	
ACT whitepaper (ACT, 2012), and cover updates in product offerings	
since that time. The most commonly mentioned considerations related	
to the adoption of natural gas vehicles are covered in Section 5.0:	
• Vehicle acquisition costs – driven by both engine and on-board	
fuel storage differences;	
 Natural gas versus diesel fuel price differentials; 	
 Fueling station availability and infrastructure; 	
• Government incentives;	
• Downtime concerns due to natural gas re-fueling times;	
General discussion of maintenance;	
• Efficiency differences between diesel and natural gas solutions,	
including engine efficiencies, weight and aerodynamic effects;	
• Impact of wheelbase is a consideration discussed briefly in Section	
5.0 that is not often covered elsewhere.	
5.1 An overview of payback and operational considerations for natural gas	New text, very
vehicles from a fleet perspective is reported by J.B. Hunt (Mounce,	similar to the
2014). This whitepaper covers purchase price upcharge for natural gas	reviewer's, and
options, observed differences in fuel consumption, vehicle weight	new reference
comparisons, fuel cost comparisons, as well as presenting two	added to Section
hypothetical scenarios for return on investment calculations, looking at	5.7.5.
natural gas versus diesel over a 5-year analysis period. Additional	
maintenance costs were estimated at \$0.02-\$0.04 per mile for spark-	
ignited NG engines. Questions of resale, or residual values, of natural	
gas vehicles are at present unknown. It should be noted that this fleet	
continues to study the performance and opportunities of natural gas	
options.	

Comment	Response
5.1 Several elements that can support future ROI analysis, but which are not included in Report #3, are listed below:	No changes required
 not included in Report #3, are listed below: Costs to upgrade existing maintenance facilities plus routine operational maintenance costs for natural gas applications; DEF costs for diesel, estimated at around 2-2.5% of fuel costs; Comparison of natural gas versus diesel options in terms of risks and potential to meet emissions requirements across the range of GHG and criteria pollutants. A recent article discusses latest estimates of potential methane emissions associated with fleet conversion from diesel to natural gas fuels (Camuzeaux et al., 	required
 2015). 5.2 Explanations of the current state of natural gas options and considerations are suitable and properly described. Other details are discussed in the response to Question 5.1 	No changes required
 6.1 Section 6 is well written, concise, and clear. Descriptions of potential fuel savings, function and impacts of key technologies and packages, and relevant drive-cycle results are comprehensive without getting lost in details. These are by far the most important conclusions of the study project. 	Note that the original Section 6 now forms the bulk of the Executive Summary. No changes required
6.1 That being said, conclusions from the sections on hybrid solutions, payback calculations for gasoline versus diesel engines in vocational vehicles, and the analysis of natural gas fuel solutions are missing. It is not evident where these items could be inserted into Section 6 without diminishing the impact of the findings contained in this chapter in its current form.	New paragraph on hybrids added in Section 6.3. New sections 6.4 on gasoline and 6.5 on natural gas have been added.
6.2 Table 6.3 presents the key conclusions in a compact format. However, the approach used to derive the fuel savings percentages in Table 6.3 from the results tables in Section 2 should be explained.	Explanation added in 1 st paragraph of Section 6.6 (now ES)
6.2 While not at the same level of importance as the results of Table 6.3, conclusions on additive versus non-additive technologies, enabling technologies, and opposing technologies should be addressed if possible.	Several new subsections have been added to Section 2

Comment	Response
6.3 Interpretation of Tables 6.1 and 6.2 can be confusing. A positive percentage means greater fuel consumption (accounting for differences in energy content between the fuel types and the thermal efficiency of the respective engines) of the V-6 or V-8 gasoline engines compared to a projected 2019 diesel baseline. A negative percentage means the gasoline engine consumes less fuel than the diesel, again considering both fuel energy content and engine thermal efficiency. One way to clarify the reading of the tables is to provide a short explanation that walks through one column in each table.	A new paragraph is added just below Table 6.1. Also, Tables 6.1 and 6.2 are expanded to include results from the baseline V-8, to help illustrate the benefits of improved gasoline engine technology.
7.1 Vehicles and vehicle technology input data are properly and adequately described in Appendix C for the purposes of the simulations. For clarity concerning the rolling resistance coefficients, it is recommended that the updated discussion of the derivation of Crr values leading up to Table C.9 of Appendix C in Report #1 also be included in Appendix C of Report #3, just before Table C.18.	Text from Appendix C of Report #1 added
 7.1 In Appendix B, Section 1.1 of Report #3, does "original" baseline refer to the 2011 production DD15 for which a test cell dataset was available, or does the term refer to the simulation result of "Technology #7 – Asymmetric Turbo" from Report #1, which was the exercise to model a 2013 DD15? This point should be clarified for both the text and figure titles in this section. 	Clarification added to text. We are referring to the 2013/14 non- turbocompound baseline
7.1 To reinforce the current study a stand-alone report, it may be beneficial to include the graphs of the drive cycles again in Report #3.	Text and Figures describing drive cycles copied from Report #1
7.1 Aerodynamic drag coefficients Cd w/Trailer of the Dodge Ram and baseline and reduced CdA of the T-700 do not match in comparing Table C.17 of Report #3 with Table C.8 of Report #1.	The values for the Ram with trailer in Table C.8 of Report #1 are wrong and have been corrected. The frontal area of the T700 was accidentally reduced by 3.5% between Reports 1 and 2. This does slightly affect Report 2 results. Clarification added in Report 2, Appendix C

Comment	Response
7.1 Baseline tire rolling resistance coefficient given in Table C.18 of	The value in Table
Report #3 for the Dodge Ram does not match the value shown in	C.18 was wrong,
Table C.9 of Report #1 (as a side note, the Reduced value of Crr	and has been
reported for the Dodge Ram in Table C.9 of Report #1 should have	corrected to
been 0.005460, and not 0.05460, given the baseline Crr listed in that	0.0078. This error
table).	did not affect the
	project results.
7.1 Report #3 Sections 2.3.2.4, 2.3.2.5, 2.3.2.6, 2.3.2.7 and 2.3.2.9 refer to	References to
Appendix D for discussion of waste heat recovery systems. Section	Appendix D
5.3 also makes reference to Appendix D for information on natural gas	corrected to read
vehicle prices. However, Appendix D in the draft of Report #3 is	"Appendix B"
devoted to hybrid systems only.	
8.1 The report is extremely detailed in the descriptions of selected	No changes
vehicles and their characteristics, the fuel savings technologies, engine	required
technologies in particular, as well as the simulation models used and	-
engine simulation outputs. As in the first report, this can make for	
some difficult reading. However, since it is infrequent that a study of	
vehicles, engines, and technologies of this breadth is undertaken, it is	
felt that the level of detail will in fact be helpful over time, to	
document as thoroughly as possible the way each technology is	
understood to work, the assumptions and approximations made in	
simulations, and how results were interpreted.	
8.1 The ordering of the main report sections is logical. It is clear how the	No changes
information in one section is supported by the analysis of the	required
preceding section.	-
8.1 Some comprehension difficulties may arise due to the changing order	Sections 3 and 6
in which vehicles and engine technologies are presented from section	reordered to
to section. For example, in the Executive Summary a discussion of the	match the ES,
DD15 engine and T-700 truck is followed by the discussion of	introduction, and
medium-duty and pickup truck gasoline engines, whereas in Section 2	Section 2
the medium-duty diesel engine discussion comes first. Vehicle	
technology packages are first described for the F-650 in Section 2, but	
the first parameter sweeps are presented for the Ram pickup in Section	
3. A consistent sequencing of vehicles and engines throughout the	
report would be very helpful for the reader in keeping the progression	
of technology packages clear.	
8.1 As mentioned in the response to Question 2-1, the path taken from the	New text added.
initial 2011 baseline DD15 engine through the sequence of interim	and descriptions of
model upgrades leading up to the 2019 DD15 baseline should be	baselines changed
summarized in one paragraph. Then consistent terminology should be	throughout the
used to refer to the specific baselines throughout the rest of the report.	report

the
2
A
ve
e a
1 of
d
gine
1.2
e to
ed
tion
U.
lin
1 111
Jo
ext
0/110

Comment	Response
8.4 The focus of this report is fuel consumption. But as multiple	These
technologies are combined there are greater opportunities for one	considerations are
technology to impinge on non-fuel related performances of another. In	beyond the project
the case of tires, the primary functions are to: 1) support the weight of	scope. No change
the vehicle and payload; 2) transfer forces between the vehicle and	to the text
road surface for steering and vehicle control, acceleration, and	
braking; and 3) isolate payload and vehicle occupants from driving	
surface roughness or irregularities (Lindenmuth, 2005). Ancillary	
performances include tread wear life, tire rolling resistance, and	
durability, the latter being of particular significance for heavy duty	
truck tires in order to support retreading. Fuel savings systems that	
may combine to increase mechanical or thermal stresses on tires, or	
any other vehicle component for that matter, will require careful	
integration to ensure that the final vehicle solutions continue to deliver	
the expected suite of performances at the component level.	
9.1 I would recommend the report be published with (a) minor revisions to	Changes to the
improve readability and for minor corrections, specifically addressing	report described
clarification of the DD15 baselines, the bullet points outlined in the	above
response to Question 8-1, and the updates to the appendices described	
in the responses to Questions 7-1 and 8-2.	
9.1 The technology reports within the scope of this project provide	No change
thorough, comprehensive analysis of the opportunities for fuel savings	required
in the commercial truck sector, and should serve as valuable	-
references for both rulemaking and for future research.	

Final Report #2 William de Ojeda Reviewer Comments and Responses

Comment										Response
1.1 The introduction is rather brief. It is recommended that Section 1 be										
exp	andec									
- Inc	lude a	desc	This would make a							
and	l Fuel	Effic	ciency S	Standa	rds fo	r Medium	n- and Hear	vy-Duty E	ngines	good introduction
and	l Vehi	cles'	'. This	may b	e done	e via table	e (see belov	w). The tex	xt could	section to the Phase
inc	lude a	pplic	ability	: comł	oinatio	n tractors	, vocationa	al vehicles	, HD	2 regulations
pic	kups a	themselves, but it is								
SmartWay requirments (tractor and trailer aerodynamics, low rolling										out of scope for this
res	istance	e tire	s) and a	applic	ability	(53' or lo	onger traile	ers or box t	type). It	project. No change
ma	y also	inch	ude mo	tivatic	on (imp	proved en	nissions an	d fuel savi	ings via	to the text
ado	option	of no	ew tech	nolog	ies, ha	rmonize s	standards).	Finally, a	ı	
tim	eline	for a	doption	n may	be incl	luded.				
	HD Combin	ation Trac	ctor Vehicle Sta	ndards (gCO2	/ton-mile)	ond				
	Class 7	(Class 8	Class 7	Cla:	ss 8				
		Day Cab	Sleeper Berth		Day Cab	Sleeper Berth				
Low Roof	107	81	68	104	80	66				
Mid Roof High Roof	119	88 92	76	115	86	73				
	Vocatio	onal Ve	hicle CO2 S	Standard (gCO2/ton	-mile)				
		LHD	Class 2b-5	MHD C	ass 6-7	HHD Class 8				
2014 MY	,		388	23	34	226				
2017 MY	2017 MY 373 225 222									
			F	Inal HD Die	sel Engine :	Standards (gCO2/	(bnp-nr)	(lass 0)		
			LHD (20-:	2)		lass 6-7)		Class 6)		
	2014 2014		600	Voca		Tractors	Vocational Ven	Tractors		
	2014-2010		600		500	502	567	4/5		
	2017 and	Later	576		5/6	487	555	460	l	
Ŧ	1 1			C (1		1 1	· 1 —	11 2 1		
- Inc	lude a	sum	imary o	of the e	engine	s and veh	icles per T	able 3.1	(
	HICL		ND EN	GINE	CLAS	SIFICA	ION from	i Keport I	(page	
52)	, as no	oted	Delow.	31 VE	ICLE AND	FNCINE CLA	SSIFICATION			New tables and
	·		TABLE	J.I VER	ICLE ANI	ENGINE CLA	SHICAHON	Pasa		text added to the
	Ch	iss	Vehicle		Diesel		Gasoline	Transmission		Introduction
	2b Ram Pickup Cummins 6.7 Liter 385 HP (base), 4.5 Liter 256 HP 3.5 L V-6, 6.2 L V-8 6-Speed Automatic									section
	4	F	-650 Tow					5-Speed		
			Truck T270 Box	Cummin	s 6.7 Liter 3 4.5 Liter 25	00 HP (base), 6 HP	3.5 L V-6, 6.2 L V-8	Automatic		
			Truck							
	8	T7	00 Tractor- Trailer	Detroit 1	4.8 L DD15 Derivati	(base), 12.3 L	None	10-Speed AMT		

Comment	Response
1.1 Present the major findings from Report 1 (list the technologies	Paragraph added
examined, highlight which technologies made it to this stage of the	describing the
study);	content of Report 1,
	but a full summary is
	out of scope.
1.1 Report 2 is a cost estimate study. It is not clear what role this has	New text added in
played in the down-selection process. If it has, please indicate how it	Section 2.1
did.	
1.2 Yes. The report has a brief but informative summary of the sections	No changes
that follow.	required
2.1 The section is well organized. Tables describe technology	Text added in all
combinations for each engine and vehicle. This reviewer has checked	DD15 and T700
the references between tables and descriptions. The report is very	sections, plus all F-
clear. There are only minor cases where there could be more clarity.	650. MD diesel.
Here may be one case: In some instances the report indicates the	and MD gasoline
complexity of the packages assembled. Package 5 in page 16 is	sections
deemed very complex but it is not clearly indicated why. This	
particular package however may not be as complex however as	
packages 3, 3a, 3b 3f that incorporate WHR. The report may want	
to capture the complexity of each of the packages (see suggestion	
below).	
2.1 The methodology is adequate. It is comprehensive and the work	No change
presented provides credible results. The systematic approach of	required
stepping through "package" scenarios is very organized and easy to	•
follow.	
2.1 Please update and correct the following typos:	Package
- Table 2.7, 2.8, 2.9 have wrong reference to packages.	references fixed
\circ Table 2.7 P8: P2 + should have been P7 +	throughout the
\circ Table 2.7 P9: P3 + should have been P8 +	text
\circ Table 2.8 P13: P2 + should have been P12 +	
\circ Table 2.8 P15: P3 + should have been P13 +, also +800	
should be +700	
• Table 2.9 P17: P2 + should have been P17 +	
• Table 2.9 P20: P3 + \dots should have been P18 +	
2.1 Page 10 states that cycles of Table 2.10 are described in detail	Cycle descriptions
Appendix C. This does not appear to be the case. The reader expects	and figures
time traces of speed and load. Can these be inserted?	inserted in
	Appendix C
2.1 Page 25 2.3.5.9 3.5 V6 Package 18: Package 1 (should be 16) + Lean	Fixed package
Burn (3.5 P18)	references
2.1 Page 26 2.3.5.12 6.2 V8 Package 21: Package 1 (should be 20) + VVA	Fixed package
(6.2 P21)	references

	Comment										Response		
2.1	2.1 Page 28, package numbers 2-5 seem mislabeled, they start at 11												These were
													checked, and they
												are correct. No	
												change to the text	
2.1 Page 35-36. Figure titles refer to F-650 (<i>should be T270</i>)													Vehicle reference fixed
2.1	Page 5 the Th be Rat	0. Re: ree Ba n pick	ference <i>iseline</i> up truc	e made Engir ek)	e to F- nes in	650 ir the F-	n secti 650 n	ion 2.3 leed to	3.9.17 be co	<i>Comported</i>	<i>parisc</i> ed (<i>sh</i>	on of ould	Vehicle reference fixed
 2.1 Suggested improvements: The data may be rearranged to show more clearly the merit of each the technologies and the result of combinations. One way is illustrated in the figure below for the HD DD15 engine and the T700 vehicle, and later for the engines and F-650 vehicle. The tables seeks to: Clearly highlight the technology content of each package and provide a better overview of the combinations, Put a complexity weight factor for each package alongside the reported fuel benefit. Here GREEN=1, YELLOW=2, RED=3 (the designations are the reviewer's estimations and are inserted primarily for illustration purposes). Charts may be drawn indicating the relation between the fuel and complexity index such as indicated below. The tables are drawn for one of the drive cycles (NESCAFF for the HD and WHVC for the MD – each at 50% load). 									The suggested table would provide a very useful summary of the technologies. Unfortunately, providing numerical evaluations of cost and complexity is out of scope for this project. Descriptions of the cost and complexity challenges of each package have been				
Sug	gestio	ns on	analyz	ving H	$ID \sin 50$	nulati	on da	ita					added to the text
DD15	SUITS SE	OWN I	ornes	CAF	F - 50	% IOa	a						
Pack	cage Combus	ion Turboco	mp Turbochg	EGR	SCR	flow restrict	FMEP	Downspeed	WHR	WHR-Recup	NESCAFF	Complexity	
20	11 - 19 1%	none	Asymetric	base	base	base	base	1368			0.0	2	
1	1%	none	Asymetric Asymetric	base	base base	base base	10-35% 5-17%	1368			3.4	5	
3	3 1%	none	Asymetric	base	base	base	5-17%	1051	Water	•	10.0	9	
3	a 1% b 1%	none	Asymetric Asymetric	base	base	base base	5-17% 5-17%	1051	R245 R245	x	8.7	9 12	
3	3c 1% none Asymetric base base base 5-17% 1051 MeOH - 11 9									9			
3	3d 1% none Asymetric base base base 5-17% 1051 MeOH x 111 12 3e 1% none Asymetric base base base 5-17% 1051 MeOH x 111 12 3e 1% none Asymetric base base base 5-17% 1051 EtOH - 101 9									12			
3	3f 1% none Asymetric base base base 5-17% 1051 EtOH x 111 12									12			
4 1% none Fix None high Eff base 10-35% 1368 24.6 10 5 1% base Asymetric base base reduced 5-17% 1051 6.5 8									10				
T700 T	Truck Technolog	y Combination	n Results										
	Cd	Crr	Weight	AC power base	Chassis fric base	Axles	Transm base	Engine	SCR	WHR	NESCAFF 0.0	Complexity 0	
1	L -159	-10%	3%	base	base	base	base	base	base	none	9.9	6	
2	-259	-30%	-6.50%	base	base	base 6x2	base 18-AMT	base	base	none	19.0	9	
4	-259	-30%	base	-40%	-20%	6x2	18-AMT	DD15-3b	base	install	31.0	15	
5	-159	-10%	3%	-40%	-20%	6x2	18-AMT	DD15-5	high eff	none	18.0	13	

Comment	Response
2.3 The cycles selected allow an understanding of how different engine and vehicle technology combinations perform across a range of applications through the drive cycle selection. The study considers too sensitivity to payload. The choice of 3 payloads provides sufficient resolution for weight impact.	No change required
2.3 The HD, MD T270 and F-650, and the Ram Pickup engine and vehicles use a different set of cycles given the nature of the application. The process is well thought out as shown in the Ram Pickup cycles. This category accounted for an empty truck, 50% of the maximum payload in the cargo bed (8,500 lbs) but no trailer (ALVW), and with trailer (25,000 lbs). The latter case accounts for the frontal area increased by 50% to account for the aerodynamic drag of the trailer.	No change required
 2.3 Items that are unclear to this reviewer: The choice of multiple WHR options seems disproportionate (e.g. multiple fluids). Overall 7 iterations are presented out of 11. They all point to the same conclusion (high efficiency). The discussion needs to consider the impact of fluids from the perspective of safety (EtOH, MeOH are highly flammable, water will have to cope with freezing). 	Several WHR options were evaluated because they showed promise in Report #1, and because OEMs are exploring working fluids. New text added in 2.3.2.4
- On the other hand, only one turbocompounding option is presented.	Turbocompound did not perform well in Report #1, so only one version was evaluated in the technology combinations. No change to the text
2.4 The GT-POWER tools used are proven and widely used in the industry for engine modeling. The base models are calibrated with experimental data. The authors do a very nice job to include test heat release data, actual turbocharger maps (or scaled maps). EGR and AFR are controlled to match the baseline engine. The Appendices give comprehensive maps of the more important modeling parameters, including well resolved maps of the fuel consumption. Vehicles and vehicle technologies were modeled using SwRI's Vehicle Simulator, a proven tool. The Vehicle Simulator tool can handle the range of vehicle technologies studied here.	No changes required

	Comment	Response
2.4	For clarity as a stand alone publication, Report 3 may want to include the definition of the term "Fuel Savings" (as was done in Report 1).	Definition added in Summary and main body of report
2.5	Yes. The report does a good job indicating the assumptions used and their rational. Some examples include: Good description of the pumping work and its role in engine	No changes required
-	efficiency, The distinction between FMEP (cylinder kit, bearing, valve train friction, fuel, oil, and water pumps, piston cooling nozzle) and accessory (not essential to engine operation such as AC compressor, alternator, power steering pump, air compressor, and engine cooling fan),	
-	When presenting vehicle package P4, containing the DD15 P3b with WHR, the report is cautious to not add weight reduction,	
-	The report notes the challenge of adapting existing SCR units on lean burn gasoline engine to reduce NOx owing to the large exhaust temperatures,	
-	The modeling takes into account Idle-neutral features and the characteristics of the larger geared automatic s and the AMT transmissions. These are well documented in the Appendix.	
2.5	Clarifications needed:	
-	Page 34, Engine Technology for the T270, "The same engine technology combinations have been evaluated in two different medium duty vocational trucks" seems redundant given the previous statement before it and it reads like there is two T270 trucks under study.	Text clarified in Section 2.3.7
-	Page 37-38. The comparison between the T270and F-650 is very useful. The discussion on the ISB is very clear, but no so with the V6 and V8 engines. The text regarding the rich-operation (it is stated to be more efficient) is not expected.	Text clarified in Section 2.3.7.1

	Comment	Response
2.5	There is a potential source of confusion in the results for the MD	
	Vocational Truck and the Pickup Truck Engine and Vehicle	
	Technology Combinations. Results are shown in terms of percent	
	fuel consumption reduction compared to each engine's baseline	
	projected 2019 configuration.	Adding a
-	In addition to the benchmarks provided, results would be more	comparison of each
	useful if expressed in % fuel savings with respect to one common	package's
	reference. This is done only briefly in the conclusion for a brief	performance against
	sample of the cases considered. The report does addresses the	a common baseline
	differences between baseline engines, such as in Figure 2.7. The	in addition to its
	dependence on cycles is shown at 50% payload. Here shows that the	own baseline would
	V6 gains approximately 11% (varies with cycle) and the ISB gains	require extensive
	approximately 24% (varies with cycle) over the V8 baseline.	new text and
		figures. No change
-	The report uses the "ISB 2019" as baseline for the technology	No change
	comparison. This effectively means that the V6 entries (P16-P19) and	required
	V8 entries (P20-P24) have a 13% and 24% fuel deficit respectively.	
	The report does indicate that Diesel has a 13% fuel consumption	
	advantage over the gasoline engine due to the energy differences for	
	Ine same volume.	Saa ahaya raspansa
-	Overall, comparing to one same reference would add clarity.	See above response
	Costs durability need be considered such as with an efficiency vs	There is text
	cost tradeoff	describing cost and
		durability issues.
		No change to the
		text
2.5	ISB package 10 is difficult to follow. The downsizing, remake of the	New text added in
	lug line of the engine, and the vehicle axle ratio modifications makes	Section 2.3.5.6
	this entry significantly different than the others. This same package	
	retains EGR.	TT1 · 1 1 ·
2.5	Same ISB package 10 could have considered SCK.	I his would require
		another technology
		combination, which
		is out of scope. No
		cnange

Comment	Response
2.6 Yes. The findings are highly coupled to the simulation work	No change
performed.	required
- The report does a good job to tie in the work and performance results	
from the Supertruck program when considering the more	
technologically aggressive packages on the T700 vehicle.	
- There are some very good insights in the report that may not be readily	
known:	
• The downspeed option (ISBP 6 and ISB P8) show a slight and	
rather large fuel penalty on the CARB and Parcel drive cycles.	
The report indicates that the higher torques at lower rated	
speeds will require tighter torque match to reduce the fuel	
requirement when vehicle is stationary.	
2.6 This reviewer found the comparison section 2.3.7.1 Comparison of	No change
engine technology results between the T270 and F-650 particularly	required
useful as it provided a good summary of the technologies and how	
they related to the results found in the report.	
2.6 Suggestions:	
- The "state-of-the market" discussion on 2.3.11 Hybrid System Results	New text added in
is brief but informative. The results of the simulation (performed by	Section 2.3.11
Argonne) is shown. Further discussion may place these results in the	
context of the engine and vehicle: asses at least qualitatively if not	
quantitatively the efficiency vs. cost/complexity that this option	
provides; highlight barriers to overcome the poor payback and the	
technical challenges to migrate the technology to the MD-HD sector.	
2.6 Clarifications needed:	
- In section 2.3.2.12 DD15 Technology Package 5: Packaging the	Text added in
reduced restriction intake, exhaust, and charge air cooler systems in a	Section 2.3.2.12
<i>practical vehicle would prove very difficult.</i> Please explain why.	
3.1 The study selects aerodynamic drag coefficient (Cd), tire rolling	No change
resistance coefficient (Crr), axle ratio and vehicle empty weight as the	required
parameters for study. This section focuses on single parameter sweeps,	
unlike the earlier section that focuses on combination technology	
packages. These parameters are important for the MD vehicle	
performance.	
Comment	Response
---	--
 3.1 Section 3 could be enhanced by: Indicating that the results in Sect 3.1 (aerodynamic sweep) may be referenced to Section 2. The results for Fig 3.1 were presented in page 52 for P16, for Fig 3.2 in page 29 for P11, and for Fig 3.3 in page 39 	Text added in Section 3.1
 for P6. Improve consistency in the report: Package P16 is noted in Fig 3.1, but P11 and P6 are not in the following Fig 3.2 and 3.3. 	Figures relabeled
- Improve consistency in the report: Table 3.1 lists the max percent grade in top gear, even when downshifted take place. The following Tables 3.2, 3.3 don't. Similarly Table 3.2 shows Gear Bound entries, but Table 3.3 does not (ISB 6.89 AR entry).	Tables updated
 Providing a summary on the overall contribution of aero, rolling resistance, AR and weight that compare one with respect to the others. 	New Section 3.7 added
 3.1 Typos and possible corrections: Page 59-63. The results for Cd and Crr sweeps as shown in the figures appear to scale (the relative size of the Fuel Savings bars are same across cycles as the sweep takes place). This seems to imply that Cd or Crr impacts on vehicle drag and friction does not change across drive cycles (but these have wide ranges of speeds and accelerations). Could these results be checked? Page 62. On the F-650 and T270 trucks, the largest fuel savings 	The Cd and Crr sweeps do scale, although by different amounts, depending on drive cycle. No change Text under Fig. 3.6
 comes at 55 MPH, with the second largest benefit at 65 MPH (figures show it is WHC instead – though most cycles are relative same with exception of the Parcel). Page 65 Fig 3.10, title Ram P2 (should it be P17). 	modified Figure headings for 3.10, 3.11, and 3.12 corrected
3.2 The ranges are appropriate.	No change required
 3.2 Suggestions: The report could gain if it provided a short description on what features would be responsible for the magnitude of the sweeps. For example, Cd% reduction range per each vehicle category (roof deflectors, fuel tank fairings, box skirts, mirrors). Same could be done for Crr% reduction. Maybe a reference could be inserted here such as <i>Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles (National Academies Press, Jul 30, 2010).</i> Similarly, a justification for the weight reduction quantities can be given 	New text added in Section 3.1
 Can be given. The results presented under the Ram Axle Ratio Sweep, when comparing the engine configurations, adjusts the gasoline engine axle ratios to a shorter setting (higher AR value) to match the towing capability. However, the figures in the section represent simulations at ALVW (much lower load). <i>This may be okay as tater in the section, the study takes up the effect of AR on grade performance, and here the effect of AR is seen at the higher payload - GCW.</i> 	need a shorter axle just to get a high GCW rating, regardless of actual payload. No change to the text

Comment	Response
3.3 Yes, the vehicles and engines chosen were appropriate.	No change
	required
3.4 The results are reasonable. The methodology used in the simulation	No change
follows the same approach as in Section 2. Results are well organized	required
and discussed.	
3.4 Section 3 highlights or re-emphasizes what may be an important	No change
question for future regulations:	required
- The fuel economy gains for individual technologies are very	
dependent on the drive cycles.	
- How can the regulatory body and manufacturers work to better align	
regulatory cycles to real-world applications and thus encourage	
technology packages such as the ones discussed in the Report?	
4.1 This section [4] focuses on the overall merits of Diesel vs. gasoline	No change
fueled engines in the vocational sector. The section provides a brief	required
and informative description of the Diesel and gasoline presence in the	
MD market since 1994. Important shifts are highlighted, such as the	
large price differential between the Diesel and gasoline exhaust after-	
treatment devices. The cost added of the Diesel option on F-650 is	
revealing, and is explained with the added aftertreatment devices, fuel	
injection system and base engine.	
4.1 Fuel consumption benchmarks are provided for the T270 vehicle for	Payback times for
the baseline Diesel engine and a selected technology package for the	the baseline V-8
V6 and V8 gasoline engines. <i>The report could also make reference to</i>	added to Table 4.2,
the baseline engine comparison provided in Section 2 for the F-650	and new text
(Fig 2.7, page 28).	added
I he analysis then continues to examine a payback analysis and results	
are summarized in Table 4.2. Overall the presentation is clear and	
informative. The analysis makes a powerful case for gasoline, unless	
the Diesel engine can contain the cost differential.	

Comment									Response							
4.1 The discussion on vehicle specifications is limited to a brief discussion											on	This discussion				
on vehicle power demand and a review of the aero, rolling resistance											would be a useful					
and weight analysis from Section 3. The Charter indicates that a											addition to the					
comprehensive "specification sheet" be drawn up. One interpretation										1	project, but is out of					
	is a table with	one c	limei	1SION	des	scri	ıbır	ng sj	peci	ficat	ions	and	the	other		scope. No change
attributes. This work can be of considerable magnitude and may be																
beyond the scope of the current Report. Nonetheless, the interpretation																
	may be to prov	ide a	tabl	e as s	snov	wn Lie	be.	lOW.	, wn ad a	iere 1	or v	veigi	nt the	•		
	character in the second	cinc	ation	тау	/ De	ΠĮ	gnn	Igni	eu g	given	the	ven	lcie			
	specification.															
G	ample of "offect	ofvo	hiala	sn o(vifio	oti	on'	,								
2				spec		all		Ve	hicl	ما		Enc	ring	faatu	rac	
								fea	niici ature			L'IIE	sinc i	icatu	105	
								100	uur							
					lt)								ion			
			_	e)	lgig	on				al l			vat		ч	
	Requirements	\circ	atio	tyl	Me	issi	pe			utra			ncti)ee	
	- 1	Ţ	Rê	r (S	le (sm	Ty			Nei		Ч	Jea		dsu	
		WR	xle	lpo	am	an	lel	ero	rr	le]		ME	yl I	VA	MO	
		Ы	Y	B	F	Ē	Fι	A	C	Id	:	F	Ŋ.		Õ	
	Towing															
	Grade															
	Distance travel															
	Drive Cycle															
	Maneuverabilit															
	у															
	Visibility															
Δ	2 The assumption	ns m	ade f	or th	e na	wh	acl	r an	alvs	is ar	e ad	eana	te T	'he		No change
	assumptions in	clud	e reas	sonal	ble i	ran	ges	for	the	base	e uu eline	$e^{\alpha \alpha}$	t of	ne		required
	gasoline fuel a	nd th	e cos	st dif	fere	nti	al t	oetw	veen	gas	oline	e and	l Die	sel.		
	Though not cle	arly	spec	ified.	the	ere	is r	efei	enc	e to	the l	life c	of the	;		
	vehicle which helps frame the payback results (12-15 years)															
5	.1 This survey is	verv	infor	mati	ve.	Th	e re	epor	t on	nati	ıral	gas l	jegir	is wi	th	No change
	a clear motivat	ion c	of lov	ver fi	uelı	oric	ce,	low	er c	arbo	n co	nten	t lead	ding	to	required
	lower GHG en	nissio	ons, a	nd g	ove	rnn	nér	nt su	ibsic	dies.				\mathcal{L}		•
5	.1 It may be noted	l tha	t mar	ıy mı	unic	ipa	ıliti	ies c	ire i	requi	ring	g NG	vehi	cles	(in	Text added in 3 rd
	some cases the	y req	uire	from	ı a n	nar	ıufe	actu	rer	a pe	rcen	nt of	vehic	eles to	0	paragraph of
be purchased be NG).									Section 5.0							

Comment	Response
5.1 The report outlines important issues regarding the adoption of natural	Text on
gas vehicles. These issues are very important. One personal	underground and
experience in this area entails following the introduction of natural	tunnel operations
gas buses in a major municipality in Europe – today operating over	added
900 natural gas buses in addition to 1200 Diesel buses. The	
municipality took several years to attain "smooth running". Many of	
the issues they struggled with are contained in this Section. One issues	
not mentioned in the report that could be included is safety – in this	
municipality, the use of natural gas vehicles was restricted to operate	
above ground. All bus routes that used tunnels were assigned to Diesel	
buses.	
5.1 The report could also include estimates of fill in times. <i>These may be</i>	Added reference to
25 GGE/hr (with 58 SCFM IR compressor) and up to 50 with	a DOE report on
accumulator-equipped stations (per experience from 2010-2012 time	fueling
frame).	infrastructure
	costs and capacity
	in Section 5.1
5.2 Yes, the survey appears accurate. It is comprehensive and well	No change
explained.	required
5.2 The sensitivity of pump prices to raw fuel prices from Table 5.7	No change
seemed surprising, specifically the higher % increases for gasoline and	required
Diesel vs. natural gas, but the numbers check. It highlights the impact	
of a low base cost for the natural gas fuel.	
5.2 The reporting fuel efficiency by Paper Transport and Kroger are	No change
important "real-life" reference data.	required
5.2 It may be worth inserting these vehicle configurations on the SWRI	Good idea, but
model tool to study the breakdown of the losses. The natural gas	beyond the project
vehicles are reported as having less aerodynamic profiles, weight	scope. No change
increase and worse than Diesel efficiency. This could be a good "case	
study" to be included in the report.	
6.1 Conclusions should identify technology segments for regulators,	No change
OEMs, Tier I suppliers, and in general consumers that will positively	required
impact fuel savings while meeting current or future emissions	
standards. The conclusions, at least should point to specific	
technologies that merit further investigation. The report does this.	
6.1 Conclusions appear they could be more focused. The authors may	The conclusions
want to see if they can be made more specific, possibly more	section has been
systematic, breaking them down by category, and including some	replaced by most
evaluation regarding the complexity or risk (such as indicated earlier	of the original ES
in Section 2).	

Comment	Response
 6.2 Tables 6.1 and 6.2 are rather difficult to follow. Section 2 focuses on % savings with respect to each engine baseline. Here we have a comparison of the gasoline engines with respect to the Diesel. The numbers should readily come out from the previous tabulated results but they don't. I would strongly suggest that this be done: reference what tables in Section 2 are used to obtained the numbers shown. 	New text added under Table 4.1
6.3 The Conclusion Section lacks a description of synergies among technologies. Conclusions could include what technologies work well with one another, and which do not. This was emphasized in the Charter and would be important to include.	Several subsections on technology synergy have been added
6.3 The report establishes other fuel savings opportunities that were not able to be included in Report 3, such as reduced cooling fan power demand and improved efficiency of engine driven accessories such as hydraulic systems. It is good that this be pointed out and hopefully can be taken up in the future in a similar study.	No change required
6.3 Fuel savings are highly dependent on duty cycles. The report makes a strong case that vehicle and engines need to be well matched given the application. As in the case of the pick-up market, the installation of the 385 HP and 850 lb-ft Diesel engine is not needed unless trucks operate near GCW – whence it is important. The use of the downsized V6 provides significant fuel savings.	No change required
7.1 Yes. They [the appendices] provide very good technical background to the sections of the report both for engine and vehicle (which includes a strong section on axle, governor speed and engine alternatives), and hybrid technologies.	No change required
 8.1 The report is very well organized, it reads well and is clear. The simulation of combined technologies is very complete. The report relies on a strong and systematic modeling approach, The cycles, vehicle, and engines chosen are very representative and adequate to fulfill the task. 	No change required
8.2 Yes, the report is technically very detailed and is accompanied by informative Appendices	No change required
 8.2 The addition of the following items may strengthen the report: Incorporate a summary of GHG Emission and Fuel Efficiency standards, Fuel saving estimates complemented with a cost-risk "complexity index", The Conclusion Section should detailed the sources for the results shown on Tables 6.1 and 6.2. 	These issues were resolved in comments above. No additional changes

Comment	Response
8.3 The simulation, technology-packages description and discussions are very strong.	No change required
- The cycles selected highlight how different engine and vehicle	
technology combinations perform across a range of applications.	
Results illustrate how some technologies are sensitive to payload in a	
The report clearly indicates and justifies the assumptions used	
- The findings are well aligned to the simulations	
- The payback study is very informative and the analysis makes a	
powerful case for gasoline, unless the Diesel engine can contain the	
cost differential.	
8.3 The reporting of fuel savings is mainly done with respect to each	This issues was
engine baseline. This is reasonable given the unique characteristics of	resolved in the
engine platform in the case of the MD and Pickup sector	No additional
engine platform in the case of the wild and rickup sector.	changes
8.4 The discussion on vehicle specifications (Section 4) is limited. The	Beyond project
charter indicates the need of a comprehensive "specification sheet" be	scope. No change
examined for the MD sector. It may be worth attempting to sketch	
Section 4 above	
9.1 I find the report acceptable with minor revisions.	No change
	required
9.1 The report presents an excellent simulation study throughout a very	No change
comprehensive list of combinations for engine and vehicle	required
technologies. It is very informative.	
9.1 Minor revisions requested are:	
1. Correct typos as indicated in this charter revision (see earlier sections)	These issues have
2. Update Conclusions to specify more systematically a breakdown of	been addressed in
fuel savings per category, including evaluation regarding the	the above
complexity or risk.	comments. No
5. Claring now the entries on Table 6.1 and 6.2 were calculated. Given that the comparison approach differs from the earlier section please	auditional changes
show how they are estimated based on the results from Section 2.	

Final Report #2 Shawn Midlam-Mohler Reviewer Comments and Responses

Comment	Response
1.1 The report provides a sufficient overview of Report #1 and the	Reference to the
overall program. There is no reference to Report #2 that I could find	cost report added
(e.g. searching for '#2' or 'second' yields no hits.)	
1.2 Does the introduction adequately detail the report contents? Yes.	No change required
2.1 Weight was discussed specifically as a non-additive feature of some	Several subsections
of the technologies used. Other than that, there was not a consistent	added to Section 2
and explicit discussion of if the technologies were additive or not.	on synergy or lack
This could be done if the impact of individual technologies were	of it: 2.3.2.13,
assumed to be completely additive – one could then compare to the	2.3.3.6, 2.3.5.7,
simulated results with the technologies deployed in a single	2.3.5.12, and
simulation. Technology packages which outperformed the individual	2.3.5.18
summation of technologies are synergistic, technology packages	
which did about the same are additive, technology packages which	
were much less interfere with each other. This could possibly be	
done on a 'meta' level looking at results from this study and that from	
Report #1.	G (1. 0.1.1
2.1 Assumptions are often made and could be documented better. Once	Section 2.1.1
can search for the word 'assume' throughout and find many examples	revised
that could be better documented. For instance, source of assumption	
for "For 2019 baseline diesel engines, an assumption was made that	
there would be a 1% efficiency improvement due to combustion	
system development. In 2.1.1 – what is this assumption based on?	
2.1 The vehicle simulation approach uses well-known simulation	No change required
packages and is believed to be appropriate for the type of analysis	
conducted.	
2.1 Regarding this: Because wHR systems have very slow transient	lext on WHR
response, they do not contribute much useful work on highly transient	revised and
the second. If there is a sucle with a high average best rejection that	expanded
in transient e WIID system can still de well. I think this needs to be	
is transferit a write system can still do well. I tillik tills fleeds to be	
artain avalas is bacausa thay are 'transient' is not well supported by	
the report. It may be true, but it is a large assumption that is not	
backed up	
2.1 Regarding the GT-Power simulations, the details of this ware	No change required
2.1 Regarding the OT-Tower simulations, the details of this were presented and near reviewed in Report #1. I made a quick review of	No change required
this but given that this was the subject of the Report #1 and there are	
little technical details in this report I am not providing specific	
comments	
2.1 The methodology section (2.2) could be enhanced some more with a	New text added in
narticular focus on the approach used to validate the engine	1 st naragranh of
technologies. Many of the technologies simulated were	Section 2.2

 extrapolations off of existing technology so a robust validation was not possible – that is quite relevant given the purpose of the report. Much of this was covered in Report #1 – but this should be emphasized here to provide good context for the work under review. 2.2 The approach used to select the select the combinations is not clear. For instance, why is the "1% combustion efficiency improvement" and "FMEP reduction" not applied to vehicles with the bottoming cycle in the DD15 scenarios? I don't see why these technologies would necessarily not work together. I realize that one can't simulate every permutation but it is unclear what process was used. I would recommend clearly defining how these packages were arrived at. 	The existing text explains that the 1% combustion improvement was included in the WHR scenarios, and that FMEP reduction was not included because of increased BMEP from downspeeding. No change
2.2 This information could also be communicated more clearly than the tabular form used.	Data is presented both in tables and graphs. Tables and text modified to improve clarity
2.3 I believe that that vehicles were representative. This could be backed up further with fleet data demonstrating the prevalence of these classes of vehicles in the US fleet.I believe that the drive cycles were appropriate.	No changes required
 2.4 The vehicle models were appropriate The engine modeling approach was appropriate and good judgment was used in accommodating for the weaknesses is this type of tool. (See previous comment about enhancing the discussion on validation of models.) For the WHR system, see earlier comment regarding transient modeling. 	No changes required
 2.5 There were no assumptions that I found to be unreasonable. However, there are many assumptions that are not referenced to any sort of supporting material. For the majority of these assumptions there exist publications that could be easily references to support the assumed value. I think this should be done in this document – otherwise it is unclear to the public that this number is valid. 	Text of Section 2.1.1 revised
 2.6 I feel that the findings are supported by the data. The key to a simulation like this is to have well-vetted input data to the simulation. Most of the input data for this simulation was presented in Report #1. I feel the process used here is straightforward (although very technical and time consuming to execute) and that the inputs are really what is driving the results. 	No changes required

2.6 I feel that this section would benefit from a 'summary of the summaries" so to speak. Right now there is a tremendous number of tables and figures showing data. At the end of the section, it would be powerful to somehow do a weighted average (or just straight average) of the different cycles and provide a few simplified figures. Another suggestion might be reporting on the min/mean/max/std of the technologies deployed to give an idea of how much variation there is. This would also facilitate comparing between the classes of vehicles. It might also be helpful to pull out technology packages that were identical (or similar) across vehicle classes to show how they change across class.	Moved most of the original ES to replace the original Section 6, and moved most of Section 6 up front to form a more concise ES
2.6 I have no other specific recommendation other than those that were included above.	No changes required
3.1 Yes, this the selection covers the main factors at the vehicle level	No changes required
3.2 Yes – however – there should be citations demonstrating that the chosen ranges are span what is believed to be technically achievable over the relevant time period.	New text added in Section 3.1
3.3 Were the vehicles and engines used in the parameters sweeps	No changes required
 3.4 The majority of the simulation results show consistent and the expected trends. There are a few (see Figure 3.18) that are demonstrate some unusual behaviors. The simulations to do this are fairly straightforward, so it should be easy to isolate and describe why the behavior of these cases (e.g. CILCC below) is so strange. Overall there is great detail on the vehicle/engine models – but something like an inappropriate shift schedule could lead to this type of unusual behavior. 	New text added under Figure 3.18 to explain the anomaly
without that being discussed sufficiently it casts some doubt onto the approach.	
4.1 Overall this section is not as extensively researched or as comprehensive as the previous section. The discussion is relevant but could be more robust and comprehensive.	Requested change is beyond project scope. No change
4.2 The \$9000 assumption for the difference between a diesel and gasoline system needs to be documented. A higher-tech gasoline engine comes with some increase in price (boosting, GDI, etc.) GDI engines may also require particulate matter control in this class of vehicle as well – there is talk of this in the light-duty market based on new regulations.	Text added to explain the \$9000 assumption
 4.2 Need basis for 25,000 miles per year traveled assumption – or make this a parameter that is varied. The time-value of money is neglected in the payback analysis. Taking this into account is simple and should be included. 	Text and table revised to use FHWA VMT figures (13,116 miles per year in 2013)

4.2 Payback periods beyond a certain max vehicle life should be labeled 'Never' in Table 4.2. A 30 year payback period is not really relevant.	Table 4.2 and text modified to label payback times >20 years as ">Life"
4.2 Results from Table 4.2 would be easier to view as a figure.	Beyond project scope, so no change
5.1 Yes, this seems to be a solid review of the market with relevant discussions. Note: I do not have deep experience with commercial CNG in the heavy-duty market. Much of this is related to current market trends and offerings.	No change required
5.2 I did not find any errors or omissions and felt explanations were good. See note above in 5-1.	No change required
6.1 The summary does a good job at highlighting Section 2 but does not highlight results from Sections 3, 4, and 5.	New subsections added to cover Sections 3, 4, and 5
6.2 Did this section effectively present overall conclusions? Yes – with the caveat from 6-1.	No change required
6.3 Are any important conclusions missing or inadequately explained? No – with the caveat from 6-1.	No change required
7.1 As described previously, the Appendices provide information on the inputs to the modeling approach – but not much detail on how the technology maps were derived. I think this is OK as that is described in detail in Report #1 which was peer reviewed as well.	Additional material added to appendices
8.1 Section 2 is very, very figure/table dense. To the point that it is very difficult to make high-level conclusions. As stated previously, providing some summary plots of the data that consolidate results into a single figure would be helpful.	After review, decided not to increase duplication between report sections. No change
8.2 Yes [information is sufficiently detailed]. See earlier comments.	No change required
8.3 The weakest part is Section 4 and Section 3. Section 4 is a simple analysis (which is OK) but assumptions are not well documented and it is not a very complete analysis (see comments.) Section 3 could also use additional explanation regarding some of the curves (see comments.)	Responses to these comments are provided above
8.3 A lot of work went into Section 2 – this is definitely the most technically strong portion of the report.	No change required
8.4 No additional comments.	No change required

Final Report #2
Dana Lowell Reviewer Comments and Responses

Comment	Response
1.1 Yes, section 1 provides sufficient background for this report to be	No change required
read as a stand-alone document	
1.2 Yes, the introduction adequately describes the report contents	No change required
2.1 The methodology used for this analysis was rigorous and appropriate	No change required
for the aims of the project. It was also comprehensive enough to	
provide credible results.	
2.1 In general the methodology was clearly described, but there could	New text added to
have been more context provided for why some specific	the first paragraph
combinations of engine and/or vehicle technology were chosen. In	of Section 2.1
many cases the logic is clear, in others it is not. For example, it is	
not completely clear why DD15 engine package 3b was chosen for	
vehicle technology package 4 (T700) or why DD15 engine package 5	
was chosen for vehicle technology package 5 (T700) – as opposed to	
one of the other engine technology packages.	
2.1 The charge says that part of the purpose of this project was to	Several subsections
evaluate the additive nature and synergistic relationships between	added on synergy
different options for fuel economy improvement. To that end the	or lack of it in
authors did explore combinations of both engine and vehicle	Section 2. See
improvements for the T700 truck (vehicle technology packages 4 and	2.3.2.13, 2.3.3.6,
5). However, they did not do so for any of the other trucks; for the	2.3.5.7, 2.3.5.12,
F650, T270, and Ram Pickup the vehicle technology packages	and 2.3.5.18
included only the baseline engines – no packages included any of the	
modeled advanced engine packages. The reason why engine/vehicle	
synergies were only explored for the T700 and not the other trucks	
should be explained and justified.	
2.2 The technologies selected for the different combinations that were	No change required
analyzed were appropriate and logical.	
2.2 The charge says that part of the purpose of this project was to	Several subsections
evaluate the additive nature and synergistic relationships between	added on synergy
different options for fuel economy improvement. To that end the	or lack of it in
authors did explore combinations of both engine and vehicle	Section 2. See
improvements for the T700 truck (vehicle technology packages 4 and	2.3.2.13, 2.3.3.6,
5). However, they did not do so for any of the other trucks; for the	2.3.5.7, 2.3.5.12,
F650, T270, and Ram Pickup the vehicle technology packages	and 2.3.5.18
included only the baseline engines – no packages included any of the	
modeled advanced engine packages. The reason why engine/vehicle	
synergies were only explored for the T700 and not the other trucks	
should be explained and justified.	
2.3 Yes, the vehicles and drive cycles used in this study were appropriate	No change required
to the task of evaluating Class 2b-8 fuel consumption performance.	_

	Comment	Response
2.3	The only way in which the chosen vehicles and drive cycles do not	Engine driven
	adequately cover the full range of Class 2b-8 vehicles is that they do	accessories were out
	not address vocational vehicles with significant engine-driven	of scope. Very little
	vocational loads – for example refuse trucks (hydraulic packer),	data is available on
	cement mixers, utility trucks (aerials), etc. That being said, these	vocational truck
	vehicles likely represent a very small percentage of total fleet-wide	accessory power
	fuel use, so incomplete coverage of these vehicles in this project will	demand. No change
	not significantly reduce the value of the results.	
2.4	This is not my area of expertise, but given my limited knowledge it	No change required
	appears that the computer models chosen were appropriate to the task	
	and applied correctly. I believe that there is adequate description and	
	discussion of the models, their limitations, and the assumptions used,	
	for informed readers to make appropriate judgements about the	
	accuracy and utility of the results.	X X X
2.5	Yes, the assumptions used in the analysis are reasonable.	No change required
2.6	The findings and conclusions of this section are adequately supported	No change required
	by the data	
Th	is section could be improved in the following ways. These	
sug	gestions are primarily designed to improve the readability of the	
rep	ort and to help the reader more easily understand the interconnections	
and	d implications of the data presented:	
•	In section 2.2, pages $10 - 11$, when discussing the different drive cycles used in the analysis, for each drive cycle the authors should indicate the relative amount of engine load imposed by the cycle (low to high). In Table 2.10 the individual drive cycles should be listed in order of low to high engine load from left to right.	Beyond project scope. No change
•	For all of the tables and figures in Section 2, the results should be consistently shown with the different drive cycles in order of low to high engine load from left to right – i.e. for Figure 2.1 the order from left to right should be WHVC, CARB, 55 MPH, 65 MPH, NESCCAF, rather than the order in the existing figures. This would allow the reader to more easily see the relationship between the fuel economy results and the relative severity (engine load) of the duty cycle, which for many of the technologies appears to be fairly consistent.	Beyond project scope. No change
•	For all of the tables and figures in Section 2, in addition to results for the individual drive cycles the authors should also show results for a weighted average of the CARB, 55 MPH, and 65 MPH cycles, as currently used in GEM for certification under NHTSA/EPA Phase 1. This would more easily allow the reader to put these results into the context of existing regulations and therefore judge how they might apply to future regulations.	Beyond project scope. No change

	Comment	Response
٠	In tables 2.2, 2.3, 2.4, and 2.5, for the description of the engine and	Package numbers
	vehicle technology packages the authors are not consistent in how	and references are
	they number each package, which is confusing. For example, in	fixed
	Table 2.2 which describes engine packages for the ISB medium-duty	
	engine the notes for Package 9 say: "Compare to package 1", but	
	Package 1 is not an engine package for the ISB medium-duty engine,	
	it is an engine package for the DD15 heavy-duty engine (Table 2.1).	
	For Package 9 the note should say "Compare to Package 6" (the first	
	package for the ISB engine in Table 2.2). There are numerous other	
	similar examples that should be corrected because it is confusing as	
	written.	
	For all tables in this spotion, every number in a given table should be	The number 2.0 has
•	shown with the same number of significant digits (i.e. if numbers loss	two significant
	shown with the same number of significant digits (i.e. if numbers less than 10 are shown with one significant digit (2.0) then numbers	digits as does the
	greater than 10 should be shown with one significant digit as well	number 11 No
	(10.0 not 10)	change
•	In Section 2.3.2.10 there appears to be a mistake. The text says: "The	Error corrected in
	overall fuel savings performance of the P3f system is similar to that	Section 2.3.2.10
	of the P3d <u>Ethanol</u> + recuperator system." I believe that this sentence	
	should say "The overall fuel savings performance of the P3f system	
	is similar to that of P3d <u>Methanol</u> , + recuperator system".	
•	The fact that this section directly compares in the same tables and	Beyond project
	figures the "Fuel Savings %" for different configurations of diesel	scope. No change
	and gasoline engines, with Fuel Savings denoted in gallons, is	
	somewhat mis-leading to the reader. The text does note the fact that	
	diesel has 13% more energy per gallon than gasoline, but it is hard for	
	the reader to translate this information so as to compare the gasoline	
	and diesel engine options on an energy equivalent basis. In addition	
	to the existing tables and charts, the report should include figures	
	which directly compare the modeled gasoline and diesel engine	
	options on an energy-equivalent basis. There are several option for	
	doing this, all of which would be essentially equivalent; one could	
	plot the % reduction in btu/mi or btu/cycle, or one could plot the %	
	reduction in gasoline-gallon equivalents (GGE) per mile or	
	GGE/cycle. Alternatively, one could plot the % reduction in carbon	
	dioxide (CO ₂) emissions per mile or per cycle. This option would	
	be appropriate given that this report is in support of joint	
	NHTSA/EPA rulemaking that will set fuel economy and GHG	
	emission standards. At a minimum this information should be added	
	to sections 2.3.5.16, 2.3.7.1, and 2.3.9.17.	
•	It is hard for the reader to evaluate whether the range of aerodynamic	Now ford add-d f-
	drag and rolling resistance reductions included in the T700 vehicle	INEW LEXT added to
	packages (15%, 25% C _d reduction; 10%, 30% C _{rr} reduction) was	1 paragraph of
		Section 2.3.3

Comment	Response
reasonable, because there is no discussion in the document of what	
types of changes might be required to the baseline truck in order to	
achieve this level of reduction. For example, photos of the Kenworth	
T700 show that it has a very aerodynamic shape. What changes to	
the T700 cab and/or standard trailer would be required to reduce the	
combined C_d by 25%? What specific model of tire was assumed for	
the baseline 1700 and why? Are there commercially available tires	
for this truck that would reduce C_{rr} by 30% compared to the baseline	
tire? Providing this information, along with a photo of the baseline	
truck and trailer that was modeled, would allow the reader to better	
put the data in this report into the proper context.	
3.1 Yes, the parameters chosen for the sweeps represent a realistic and	No change required
comprehensive range of vehicle characteristics that could affect fuel	
use for medium-duty vehicles.	
3.2 For aerodynamic drag it is difficult for the reader to evaluate whether	New text added to
the range used in the sweeps was appropriate because there is no	1 st paragraph of
discussion in the document of what types of changes might be	Section 2.3.3
required to the baseline trucks that were modeled in order to achieve	
this level of reduction. For example, photos of the Kenworth T270	
show that it has a somewhat aerodynamic shape, but not as	
aerodynamic as the Kenworth T700, for example. Would changes to	
the T270 cab to make it look like the T700 cab reduce C_d by 10%?	
What more would be required to reduce C_d by 20% or 30% (i.e.	
rounded top and corners for box body, roof fairing between top of cab	
and top of box, side fairing between side of cab and side of box,	
other?). Photos of the baseline vehicles, and discussions of the types	
of changes required to achieve 10%, 20%, and 30% reduction in C_d	
would be very helpful to the reader to put the results of the	
aerodynamic sweeps into the proper context.	Norra Acristica dalla da se
3.2 For folling resistance it is difficult for the feader to evaluate whether	New text added to
diagnation in the decomment of what times of shores might be	1 paragraph of
required to the baseline trucks that were modeled in order to achieve	Section 2.5.5
this level of reduction. For example, what specific model of tire was	
assumed for the baseline trucks and why? Are there currently	
commercially available tires for these specific vehicles that would	
reduce rolling resistance compared to the baseline tire by 10% 20%	
and 30%? Including this type of discussion in the document would be	
very helpful to the reader to put the results of the rolling resistance	
sweeps into the proper context.	
3.2 The ranges for the weight and axle ratio sweeps are appropriate.	No change required
3.3 Yes, the vehicles and engines used in the parameter sweeps were	No change required
appropriate	U 1
3.4 Yes, the results of the parameter sweeps are plausible	No change required

Comment	Response
4.1 Are the discussions accurate and relevant to the subject matter?	No change required
Yes.	
4.2 All of the assumptions used in the payback analysis are appropriate except annual miles per truck, which appear to be quite conservative (high). Edition 33 of the Transportation Energy Data Book indicates that in 2012 the average annual miles driven by Class 3 – 8 single unit trucks was 12,816 miles (Table 5.2). It is therefore not clear why the authors chose to use 25,000 miles per year in the payback analysis. The use of a larger assumption for annual miles reduces the payback period for diesel trucks relative to advanced gasoline trucks – as such the author's analysis is quite conservative – for the "average" truck owner the payback periods would in fact be significantly longer than those shown, providing even greater incentive to switch to gasoline medium-duty trucks.	Section 4.1 and Table 4.2 revised to use FHWA VMT estimate of 13,116 miles per year
5.1 The initial discussions about natural gas engines and natural gas storage systems are appropriate and for the most part accurate – see below for areas that require further elaboration	No change required
 5.2 In section 5.1, page 84 it is noted that "if a CNG tank is filled rapidly, usable capacity is reduced by about 20%. Only a slow (typically overnight) fill will get the tank to full capacity". I do not believe that this is an accurate statement. It is typical and acceptable for fast-fill CNG stations to use a temperature compensated fill algorithm to allow up to 4,500 psi in the cylinder at the end of fueling, as long as the "settled pressure" once the gas and cylinder has cooled to 70 degrees F would be no more than 3,600 psi (see, for example http://www.afdc.energy.gov/bulletins/2014_09_18_CNG_Temp.html). With proper temperature compensation even fast-fill stations should be able to fill a tank to greater than 80% rated capacity. 	Revised text and new reference added in Section 5.1

Comment	Response
5.2 I believe that section 5.4 (natural gas prices) would benefit from a	Beyond project
longer-term historical comparison of natural gas versus diesel price	scope. No change
trends. US DOE Clean Cities has been issuing quarterly reports on	
natural gas and diesel fuel prices at public fuel stations since May	
2000	
(http://www.afdc.energy.gov/publications/search/keyword/?q=alterna	
tive%20fuel%20price%20report) and this data could be used to	
provide this historical perspective. The salient point that would be	
gained from this comparison is that prior to 2008 natural gas was	
generally more expensive than diesel fuel most of the time, but	
nonetheless prices for both fuels tended to go up and down together.	
Starting in 2008 natural gas and diesel fuel prices were uncoupled.	
Since 2008 natural gas has generally been less expensive than diesel	
fuel, but more importantly diesel prices have been more volatile and	
natural gas prices have not responded to the same price pressures as	
diesel. Diesel fuel prices have and continue to respond to global	
macro-economic and political forces that affect global supply and	
demand for crude oil, while natural gas prices have and continue to	
respond to local supply and demand, driven by the continuing glut of	
U.S. natural gas production from the shale gas revolution in the US.	
This means that there is much greater uncertainty as to the future	
relationship between natural gas and diesel prices than there has been	
in the past, which significantly increases the risk of a decision by a	
vehicle owner to invest in the purchase of a natural gas vehicle.	
5.2 In Sec 5.7.1 the authors note that current natural gas engines have	New text added at
significantly lower thermal efficiency than current diesel engines,	the end of Section
which is certainly true. However, in Section 4.1 of the report the	5.7.1
authors make the case that the future engine changes modeled for this	
project could significantly narrow the current gap between diesel and	
gasoline engines in terms of net efficiency, making gasoline engines	
more cost-effective than diesel engines, especially for medium-duty	
vocational trucks. The authors should specifically comment and	
discuss whether the specific engine technologies modeled here for	
gasoline engines would also be applicable to future natural gas	
engines (why or why not) and therefore whether the current thermal	
efficiency gap between diesel and natural gas engines could be	
similarly narrowed.	

Comment	Response
5.2 In section 5.7.2 the report says that "Both fast-fill CNG and LNG	The general
vehicles take longer to fill than conventional diesel or gasoline	statement is accurate
vehicles". Some transit bus fleets (for example MTA New York City	for most of the
Transit) have been able to achieve comparable fill times for diesel	market. The word
and CNG buses using very large fast-fill CNG fuel stations. For a	"generally" has
40-gallon fill (typical of NYC buses) the fill time for diesel and CNG	been added to the
buses varies by less than a minute. To achieve this level of	line about fill times
performance a very large and costly fuel station is required, but it is	
possible.	
5.2 In section 5.7.3 when discussing the weight penalty associated with	Text added and
natural gas vehicles the authors state "This weight penalty for natural	revised in Section
gas vehicles has a modest negative effect on fuel consumption.	5.7.3
Based on the results of the modeling conducted here (weight sweeps)	
the authors should be able to quantify the range of this fuel economy	
penalty for different types of natural gas trucks.	
5.2 The natural gas vehicle survey does not include any discussion of	Beyond project
greenhouse gas (GHG) emissions benefits or dis-benefits of natural	scope. No change
gas trucks relative to diesel and gasoline trucks. Given that this	
report is in support of joint NHTSA/EPA rules to implement	
combined fuel economy and GHG regulations I believe that the report	
should include such a discussion. The discussion/analysis should	
account for net GHG benefits/dis-benefits based on both fuel carbon	
content and real-world differences in net thermal efficiency for	
natural gas versus diesel and gasoline trucks. The analysis/discussion	
should also include upstream emissions of CO2, CH4, and N2O from	
fuel production and transport, to provide a full wells-to-wheels	
comparison of natural gas trucks relative to diesel and gasoline	
trucks.	
6.1 Yes, this section did effectively summarize the conclusions of the	No change required
report with respect to long haul trucks.	
6.2 The discussion of gasoline versus diesel engine results in sections 6.2	Since conversion
should include a direct discussion of the difference between the	from fuel
modeled gasoline and diesel engines on an energy equivalent basis.	consumption to CO2
Perhaps the easiest way to do this would be to include another table,	is simple, we
in addition to tables 6.1, which shows "CO ₂ Emissions Penalty on	decided not to
Drive Cycle at 50% Payload", in addition to the existing data on	change the tables.
"Fuel Consumption (gallons) Penalty on Drive Cycles at 50%	This retains
Payload"	commonality
	between Reports 1
	and 2. No change

Comment	Response
6.3 In section 6.4, table 6.3 it is not completely clear whether the state	d Table 6.3 revised
reductions from "engine" and "vehicle" are additive or not. 10 m	ake
identifying the range of total fuel reductions possible from both	
engine and vehicle technologies together. If, for any of the vehicle	es,
the engine and vehicle reductions are not fully additive this should	lbe
briefly noted – particularly since one of the purposes of this project	rt
was to explore the "additive nature and synergistic relationships	
between different options for fuel economy improvement".	
It would also be helpful if this table included the range of percenta	lge
reduction in CO_2 emissions available from improved engines for e	ach
vehicle type, particularly for those vehicles for which both gasolir	e
and diesel engines were modeled.	
7.1 Yes, the appendixes provide sufficient technical detail	No change required
8.1 In general this report is well organized, readable, and clear.	
However the reader's ability to interpret the results and their implications would be appeared by the following changes:	Saa discussion
 Beorder the data in all tables and figures in Section 2, so the result 	ts above We decided
are consistently shown with the different drive cycles in order of 1	ow not to reorder the
to high engine load from left to right	tables. No change
• For all tables and figures in Section 2 add one more column which	Beyond project
includes results for a weighted average of the CARB, 55 MPH, an	d scope. No change
65 MPH cycles, as currently used in GEM for certification under	
NHTSA/EPA Phase 1.	
• In sections 2.3.5.16, 2.3.7.1, and 2.3.9.17 add tables, and explanat	ory The regulations
options on an energy-equivalent basis (i.e. % reduction in btu/mi	specify standards in
btu/cycle: or % reduction in gasoline-gallon equivalents (GGE) pe	gallons per mile or
mile or GGE/cycle; or % reduction in carbon dioxide (CO2)	change
emissions per mile or per cycle.)	enunge
• Provide examples of the types of changes that would be required t	0 Paragraph added
existing truck models to achieve the different levels of C_d and C_r	on Section 2.3.3
reduction included in the parameter sweeps.	the shares a second
6.2 it es, information provided in the report and appendices is sufficient detailed to thoroughly document all assential elements of the study	nuy No change required
8.3 The strongest part of the report is Section 2	No change required
on the should be part of the report is been on 2.	i i inige i equil eu

Comment	Response
8.3 The weakest part of the report is the Executive Summary - it is too	The Executive
long and complicated. I believe that the report would benefit from a	Summary has been
shorter and simpler Executive Summary, more along the lines of the	replaced, using
discussion is Section 6, to include: 1) a short back ground on the	material from the
goals and methodology of the study, 2) a simplified discussion of the	original Section 6
types of engine and technology packages simulated (without the very	C
detailed description of each individual engine and technology	
package), and 3) a high level discussion of the over-all conclusions	
of the study (without a detailed description of modeling results for	
each engine and technology package).	
9.1 This report is acceptable with minor revisions. The required	All suggestions here
revisions are noted above, in particular: 1) re-order data in tables and	are addressed
charts to show drive cycles from low to high engine load from left to	above
right, 2) compare gasoline and diesel engine options directly on an	
energy-equivalent and/or GHG basis in addition to comparing them	
on a volumetric fuel basis, 3) use consistent numbering in the	
description of the engine and vehicle technology packages in tables	
2.2, 2.3, 2.4, and 2.5, and 3) shorten and simplify the Executive	
Summary. These required minor revisions are necessary to enhance	
the ability of readers to understand the interconnections and	
implications of the study results.	

Final Report #2 John Nuszkowski Reviewer Comments and Responses

Comment	Response
1.1The introduction provides sufficient background on the overall program.	No change required
1.2 The hybrid technologies, from Section 2, were not introduced. All other sections were introduced adequately.	Hybrid systems added to the Introduction
2.1 The quality, scope, and rigor were definitely there. The models were extensively calibrated with experimental data when available. Many combinations of engine and vehicle technologies were evaluated. The technologies chosen seem to be primarily additive and synergistic.	No change required
2.1 What technologies were not additive? I believe this was explored by the author, but not included or discussed in the document.	Several subsections added: 2.3.2.13, 2.3.3.6, 2.3.5.7, 2.3.5.12, and 2.3.5.18
2.1 The model was sufficiently described and is robust. The results will be best case scenarios since the methodology does not take into account transient effects, road grade, and different ambient conditions. These specific conditions are very important, but seem to be outside the scope of this project.	No change required
2.2 The technologies selected were logical combinations and pairings.	No change required
2.3 The vehicles and drive cycles used were appropriate to get a wide breadth of fuel consumption performance. The vocational worksite trucks drive cycles are still the hardest to quantify. The difficulty of quantifying overall fuel consumption reductions for this vehicle type was addressed through discussion.	No change required
2.4 The computer models chosen were appropriate for the analysis. GT- Power is an industry accepted and widely utilized software. The background and validation of the in-house vehicle modeling tool developed by Southwest Research Institute (SwRI) was included in Report #1.	No change required
2.5 There were many assumptions applied during the study and they seem reasonable.	No change required
2.6 The findings and conclusions are supported.	No change required
2.6 The hybrid system results were not discussed and the table wasn't referenced. The text in the hybrid section did not flow with the rest of the document. The table was organized differently and had different significant figures than the rest of the document. This section needs to be cleaned up.	Two paragraphs added at the end of the hybrid section, 2.3.11

Comment	Response
3.1 The parameters of drag coefficient, rolling resistance, vehicle empty	The parameter
weight, and axle ratio were realistic. Why was this only done for the	sweeps were for
medium-duty vehicle segment? The results from the KW T700 were	vocational trucks
not shown, but the parameters were included in the appendix.	only. Others were out
	of scope, so no
	change
3.2 The [parameter sweep] ranges were appropriate.	No change required
3.3 The vehicles and engines used were appropriate.	No change required
3.4 The results are plausible.	No change required
4.1 The section on the potential market shift for gasoline versus diesel	No change required
engines was very interesting and thorough.	
4.2 Within my area of expertise, which does not include market costs,	No change required
the discussions are accurate and appropriate.	
5.1 Within my area of expertise, which does not include market costs,	No change required
the discussions are accurate and appropriate.	
5.2 Within my area of expertise, which does not include market costs,	No change required
the details are accurate and comprehensive, and sufficiently	
explained.	
6.1 The natural gas and hybrid technology results are not discussed in	Sections 6.5 and 6.8
the conclusions.	added to cover
	hybrid and natural
	gas results
6.2 This section presented the overall conclusions.	No change required
6.3 The executive summary and the conclusions section did not	Caveats added in the
reemphasize the limitations and/or accuracy of the model and the	ES and in Section
reported percent fuel reductions.	6.0
7.1 The appendices show sufficient technical details. Enough details are	No change required
shown that similar fuel consumptions results could be reproduced.	
8.1 Overall, the report was organized, readable, and clear with only	No change required
minor corrections needed. See other sections for the changes	
needed.	
8.2 The hybrid technology section needs a more complete and thorough	New text added in
discussion.	Sections 2 and 6
8.3 The wide breadth of combined vehicle and engine technologies	No change required
analyzed on many different drive cycles was the strongest part of the	
report.	
8.3 The weakest part of the report was technologies that were not	Several subsections
synergistic or not additive were not discussed. In addition, the	added on synergy:
hybrid technology section was weak. The discussion was	2.2.3.2.13, 2.3.3.6,
incomplete and did not flow with the rest of the report.	2.3.5.7, 2.3.5.12, and
	2.3.5.18. Hybrid
	discussion expanded

Comment	Response
8.4 Throughout the document:	
 replace the term "RPM" with "engine speed" Combine one sentence paragraphs with other paragraphs 	Dozens of edits made
- Replace "&" with "and" Change a "ware" to "ware" and train" to "waining and "	
- Change max to maximum and min to minimum Benlage just "gread" with the more greatific "vehicle gread"	
- Figure title specing is inconsistent	
8 4 In the executive summary.	Several short
Please clean up the short paragraphs and lists without bullet points.	paragraphs combined, bullet
"1% combustion efficiency improvement" should be "1% thermal	lists added
efficiency improvement."	Text corrected in several locations
8.4 [In the] Introduction:	
Page 7. Table 2.8 and 2.9 references to "P2" and "P3" was this supposed to be "P12" and "P13"? Please check all the package references.	Package references fixed
Page 9, first paragraph "pluses" should be "pulses"	Text changed

Comment	Response
8.4 Section 2:	
In the tables of engine technology combinations, the term "1% efficiency improvement" is misleading. Please change to "1% thermal efficiency" improvement.	Suggested edits made
Page 28. F-650 is mentioned as having "vehicle packages 2 through 5." From Table 2.8, the F-650 does not have vehicle packages in this number range.	Package numbers corrected
Page 29. Table 2.14 also shows these incorrect package references.	Package numbers corrected
Page 33. "sees a 3% to 4% with the automatic" should be "sees a 3% to 4% benefit with the automatic"	Text corrected
Page 44. Table 2.20 has two "2019 ISB" rows.	This is correct.
	Added text above Table 2.20 to explain
Page 46. The last paragraph should not be centered.	Format corrected
Page 48. Section 2.3.9.10 has a reference to "Package 1" which is incorrect.	Package references corrected
Page 51. "Ram vehicle packages 2 through 5." The Ram does not have	Package references
vehicle packages in the range of 2 through 5.	corrected
8.4 Section 4: Define "VMT" in the abbreviations section	Format corrected
8.4 Appendices:	
Page 122. Inconsistent spacing.	Spacing fixed
Page 144. Make a complete paragraph for the figure lists.	Could not find. No change
9.1 Acceptable with minor revisions. Please see other sections for my	No additional
revisions.	changes required

BIBLIOGRAPHY

[1] Eastern Research Group, Inc. (2015, February). Peer review of "commercial medium- and heavy-duty (MD/HD) truck fuel efficiency technology study – Report #1." (Report No. DOT HS 812 146). Washington, DC: National Highway Traffic Safety Administration. Available at www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/812146 SwRI%20MDHD%20Tech%20Report%201 Peer%20Review%20Report.pdf

[2] Eastern Research Group, Inc. (2015, June). *Peer review of "commercial medium- and heavy-duty (MD/HD) truck fuel efficiency technology study – report #3*."*¹ Washington, DC: National Highway Traffic Safety Administration.

Available at <u>www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/Draft-SwRI-MDHD-FE-Tech-Report2_Docket-Version_Peer-Review-Report.pdf</u>

¹ Readers should note that this contractor completed a separate cost analysis report for the project that was peer reviewed in the interim period between reviews of Technical Reports #1 and #2. Therefore, the final peer review documentation in Reference [2] above is labeled "Report #3*" instead of "Report #2." This is simply an artifact of the different contract for the peer reviews, which labeled reports sequentially as received and not by name.

DOT HS 812 201 October 2015

National Highway Traffic Safety Administration

11907-102115-v1c