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I Background 
 
Combined (integrated) occupant and vehicle finite element models have been used by car 
manufacturers and suppliers for many years to develop, evaluate, and optimize safety measures 
using vehicle structural, interior, and restraint system components. These integrated occupant-
vehicle models are used to simulate and validate available laboratory test results. Calibrated 
models are used to design and optimize entire systems for a variety of crash configurations 
before full-scale crash tests are conducted with an actual vehicle. In addition to these detailed 
simulation tools, component and subsystem tests are performed to capture physical phenomenon 
such as failure that cannot be covered by simulation alone. Ideally the tests that are performed 
with prototypes in a vehicle development cycle confirm the simulation results. Further these test 
results are used to validate the simulation models for the specific new vehicle structural, interior, 
and restraint system characteristics in all relevant crash load cases. The final test results with a 
fully developed structural body-in-white, interior components, and restraint systems usually take 
place at a later point in time of the development process. At this time, it is too late to perform 
major changes to most of the components, and therefore the test and development results are 
used to confirm and certify the safety performance for the regulatory and consumer information 
requirements. 
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II. Objective 
The objective of this research is to develop an integrated occupant-vehicle model for occupant 
safety analysis that is capable of evaluating various interior treatments and restraint systems, 
demonstrating the efficacy of the model in representing various crash scenarios, and allowing the 
applicability of a range of occupant models.  The methodologies used for the developed 
integrated model shall have the potential to evaluate current as well as future vehicles (e.g., those 
developed in the light-weighting research). 
 
Detailed finite-element models are developed to evaluate performance of different occupants in 
full frontal, frontal offset, and oblique frontal impact configurations. 
 
Available finite element models of vehicle structure and occupants are used in combination with 
generic interior and restraint system component models that were developed during this project. 
The fully integrated vehicle-occupant models shall then be validated and evaluated with 
available full-scale crash test data for the different laboratory crash configurations. 
 
The developed and validated integrated occupant-vehicle model shall then be used to perform 
several sensitivity analysis simulations, using the different load cases in order to evaluate the 
effect of various parameter variations, such as impact speed, air bag characteristics, seat belt 
characteristics, and seating position, on the occupant response. The objective of this subtask is to 
confirm that the developed model is robust and is able to predict realistic results for crash 
configurations other than the validated scenarios. 
 
Furthermore, the developed integrated occupant-vehicle model is used to analyze more detailed 
occupant models, such as the THOR dummy and the THUMS human model. 

 



3 

III Outline 
 

This study was performed under Task Order 25 of FHWA Contract No. DTFH61-09-D-00001. 
Task Order 25 is divided in the following four subtasks: 

 

Subtask I: Integrated occupant-vehicle model creation and validation 

In the first subtask, models for all relevant interior and restraint system components were 
developed and assimilated into available vehicle structure, barrier, and respective occupant 
models according to the chosen full-scale crash test configurations. The integrated simulation 
results were validated to test results for the following laboratory load cases: 

• New Car Assessment Program (NCAP) full overlap frontal impact with a 50th percentile 
HIII dummy at 56km/h into a rigid barrier. 

• Insurance Institute for Highway Safety (IIHS) 40-percent offset frontal impact with a 
50th percentile HIII dummy at 64km/h into a deformable barrier. 

• Oblique frontal impact with a 50th percentile THOR dummy impacted by a moving 
deformable barrier at 90km/h, at a 15 degree angle with a 35-percent overlap. 

 

Subtask II: Perform Sensitivity Analysis 

The developed and validated integrated occupant-vehicle models from Subtask 1 were used to 
evaluate the effect on occupant response with varying different parameters, such as 

• Vehicle parameters (impact speed, different engine). 
• Barrier parameters (offset percentage). 
• Occupant parameters (seating position, torso angle). 
• Air bag parameters (time-to-fire, air bag venting). 
• Seat-belt parameters (use of pre-tensioner, level of belt force limiter). 
• Steering column parameters (amount of steering column collapse). 

 

Subtask III: Use and evaluation of different occupant models 

The developed and validated integrated occupant-vehicle models from Subtask 1 were used to 
evaluate different occupant models in the various crash configurations. The following dummy 
and human models were used: 

• 50th percentile Hybrid III dummy, 
• 50th percentile THOR dummy, and 
• 50th percentile THUMS (Total HUman Model for Safety) human body model. 
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Subtask IV: Preliminary report 

Methodologies and findings from Subtask I, II and III were documented in monthly 
presentations, discussed during telephone conferences, and were documented in this report.  
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IV Subtask I 
1. Development of an integrated vehicle model for occupant safety 
analysis 

 
1.1 Vehicle, occupant, and component models 
 
1.1.1 Vehicle structure model 
 

The Toyota Yaris structural vehicle model was chosen to be used for creation of the integrated 
vehicle-occupant simulation model. It consists of 771 parts and about 1 million elements. 
Appropriate connections and materials derived from more than 150 tensile tests were used to 
create this model. Accelerometers at distinct locations and vehicle inertia values were used to 
compare and validate the structural Yaris model using full-scale crash test data from a frontal full 
overlap configuration at 40 and 56 km/h and an IIHS 40-percent offset frontal impact at 64km/h.  
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1.1.2 Occupant models 
 

The Livermore Software Technology Corporation (LSTC) Hybrid III 50th Fast Dummy Version 
2.01 was adapted and used for the NCAP frontal full overlap and for the IIHS 40-percent frontal 
offset load cases.   

In the oblique frontal offset full-scale crash test which will be used to evaluate the simulation 
results later in this report, a 50-percent adult male THOR (Test Device for Human Occupant 
Restraint) MK (Mod Kit) anthropometric test device (ATD) as described in the NHTSA test 
report 2 was seated in the left front seat. The so-called "Mod Kits” were designed to make 
changes to the head/neck, thorax, abdomen, and knee/femur/pelvis of the dummy described in 
(Ridella et al., 2011, Modifications to Improve the Durability, Usability and Biofidelity of the 
THOR Dummy).3 For the oblique load case simulations, available FE model of the THOR which 
was previously developed by NHTSA and their collaborators (Untaroiu et al., 2009)4 was 
adapted and used. In order to implement the available THOR model, several preparations, such 
as unit conversion, renumbering, positioning, and some mesh modifications were conducted. The 
units used in the simulation model are tons, millimeter, Newton, and seconds. The mesh 
modifications consisted of elimination of initial penetrations that caused numerical instabilities. 
 

                                                           
1 LSTC.H3_50TH_FAST.111130_V2.0_Documentation, www.lstc.com 
2 Report for Frontal Oblique offset program Testing on a 2011 Toyota Yaris NHTSA No. RB5136  
3 Ridella, S. A., & Parent, D. P. Modifications to Improve the Durability, Usability and Biofidelity of the THOR 
Dummy. Paper Number 11-0312. Proceedings of the 22nd International Conference on the Enhanced 
Safety of Vehicles (ESV). 2011 
4 Untaroiu, C., Lim, J. Y., Shin,  J., Crandall,  J., Malone, D. P., & Tannous, R. E., (2009) Evaluation of a finite element 
of the THOR dummy in frontal crash environment, Paper 2009-0272, 21st ESV Conference, Stuttgart, Germany. 
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1.1.3 Generic driver air bag model 
 

A generic driver air bag model was developed and validated. Model creation was achieved by 
using the software tool "Primer" as preprocessor. The procedure is shown in Figure 1. 

 
Figure 1: Generic air bag model 

 

First, a flat unfolded round air bag was created. The Primer integrated "star fold" tool was then 
used to fold the driver air bag. In order to fit the air bag into the available package in the steering 
wheel cover, an LS-Dyna3D pre-simulation was performed. Having reduced the package of the 
folded air bag, it was fitted into the available air bag cover and attached to the steering wheel. 
Inflator mass flow and air bag venting characteristics were defined (LS-Dyna keyword card 
*AIRBAG_HYBRID_ID) and validated using available full-scale crash test data.  
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1.1.4 Generic seat belt model 
 

A generic seat belt model with pre-tensioner and belt force limiter was developed and validated. 
Figure 2 shows how the seat belt runs realistically through buckle and d-ring without the usage 
of simplified slip ring definition, which is a numerical homologous model that allows continuous 
sliding of seat belt elements through a sharp change of angle. 

 
Figure 2: Generic seat belt model 

 

Pre-tensioner and retractor belt force limiter characteristics were developed and validated using 
results and information from available full-scale crash test data. A pyrotechnic pre-tensioner with 
a belt force limit of 4kN was used. 
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1.1.5 Generic steering column model 
 

A generic steering column model with optional steering column collapse characteristics was 
created. A maximum possible steering column collapse of about 90 mm in the longitudinal 
direction was implemented.  Force displacement characteristics as depicted in Figure 3 can be 
applied. 

 
Figure 3: Generic collapsible steering column model 

 

 

1.2 Integrated vehicle-occupant model preparations 
 

"Mechanisms" for positioning dummy and seat, seat squash, and belt fit were used to prepare 
each load case. The different techniques are described in this chapter. 
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1.2.1 Occupant model tree file 
 

A so-called “tree file” is the definition of how the different dummy parts are connected and how 
they can move relative to each other. For example, it is defined that the upper arm is connected 
to the torso at the shoulder joint, the lower arm is connected to the upper arm at the elbow joint, 
and the hands are connected to the lower arm at the wrist joint. In addition, it is defined how 
many degrees and which direction each limb (also called child-part) can move relative to its 
connected previous body part (also called parent part).  This definition for the entire occupant 
model is called the tree file and allows an easy positioning of the dummy using adequate pre-
processing software. Tree files for positioning the 50th percentile Hybrid III and THOR occupant 
models according to the seating position of the hardware dummies in the respective full-scale 
crash tests were used. An example with differently positioned occupant limb positions can be 
seen in Figure 4 to demonstrate possible tree file usage. 

 
Figure 4: Tree file for occupant model positioning  
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1.2.2 Seat model mechanism 
 

Similar to the tree file for a dummy, a definition was used to define how the different parts of the 
driver seat are connected and how they can move relative to each other.  This definition is called 
the seat mechanism. For example, it is defined that the entire seat can move longitudinal from the 
most forward to the most rearward position along the seat rail. It also is defined, that the seat 
back can rotate around the longitudinal axis (y-axis) relative to the seat cushion. An example of a 
mechanism for easy positioning of the driver seat model into the respective seating position is 
illustrated in Figure 5. 

 
Figure 5: Mechanism for seat model positioning  

 
 



12 

1.2.3 Seat squash 
 

After occupant and seat were positioned in the correct location according to the respective full-
scale crash test configuration, a so-called seat squash simulation needs to be conducted. In reality 
a dummy or occupant deforms the seat foam during the process of sitting into the seat. In order 
to deform the seat model in the simulation accordingly, a quasi-static simulation is done. First, 
the occupant is moved out of the seat until no penetration is visible. Second, the occupant moves 
very slowly into its final sitting position, deforming the seat foam through the defined contact 
definition in LS-DYNA3D. This procedure requires the knowledge of the respective positions of 
both seat and occupant, which is usually the case for standard regulation and consumer 
information load cases. Alternatively, the occupant model can be seated into the seat using 
gravity. The simulation in this case has to be run until equilibrium between the occupant and the 
seat foam is reached. Having proper material characteristics and correct position information for 
seat and dummy, both methods can be used. The first method has been applied in this study.  A 
deformed seat can be saved as a separate model, as illustrated in Figure 6, and integrated together 
with the occupant without penetrations into the occupant-vehicle simulations. 

 
Figure 6: Seat squash  
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1.2.4 Belt fit 
 

"Belt fit" was used to put the seat belt around the occupant in the final seating position as 
depicted in Figure 7. 

 
Figure 7: Belt fit  
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1.3 Complete and reduced model methodology 
 

Full and sub models were used to develop the integrated vehicle-occupant models for the 
respective crash configurations. The full model contains the entire vehicle model, the respective 
barrier and occupant model, and all interior and restraint system components. A sub model 
makes use of the so-called component analysis option in LS-DYNA3D. It can be used to 
replicate the kinematics and intrusion behavior of defined parts of the full model. With respect to 
occupant analysis it can be used in the following manner: First, the full model is run in the 
respective load case with all available interior and restraint system components. During this 
simulation run, "relevant" parts, such as the floor, firewall, as well as the attachments for the 
seat, the steering column, the seat-belt, and the instrument panel, for example, are defined and 
the motion over time is being "recorded" in a binary file by LS-DYNA3D. The level of reduction 
depends on the objective: for many cases it is sufficient to record the behavior of the seat surface, 
instrument panel, as well as the steering column behavior in addition to the seat-belt attachments, 
for example. Second, the sub model is created using the recorded information. In this reduced 
model, the entire barrier model and the structural model are replaced with the defined few 
relevant parts (for example, attachments, floor and instrument panel), which are guided and 
move exactly the same way as in the full occupant-vehicle simulation. Adding the original 
additional ("deformable") parts (such as the instrument panel, the seat, the steering column with 
steering wheel and driver air bag, as well as the seat belt and the respective occupant model, the 
same way as in the full model) results in a much smaller model, which can be considered an 
advanced sled test model. Kinematics and intrusion behavior of the defined parts that are 
relevant for the occupant analysis behave exactly the same way as in the full occupant-vehicle 
simulation run. Being much smaller in size, (since the entire vehicle and barrier is replaced by 
only a few parts) it runs much faster and can still be used to evaluate the effects of modified seat 
belt or air bag characteristics, for example. Third, the sub model is used to optimize or validate 
the air bag or seat belt models, for example, in many simulation runs. Due to its smaller size, 
many simulation runs and parameter studies can be performed efficiently.  Fourth, the optimized 
component models are integrated into the full occupant-vehicle model, once a satisfying status is 
being reached. This is necessary because changes in restraint system characteristics and 
consequently occupant kinematics can affect the movement of the parts and attachments, which 
have been defined before and used for the so-called prescribed motion. Having a modular LS-
DYNA3D input deck, as explained in the next section, allows an easy iteration and switch 
between the full and the reduced models. Therefore, the modular LS-DYNA3D input deck 
provides an efficient way of validating or optimizing occupant and component models. 
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1.3.1 Modular input deck using include option 
 

Figure 8 shows the modular structure of the LS-Dyna3d input decks.  As shown in the figure, the 
modular structure is taking advantage of the available “include” option within LS-Dyna3d. The 
vehicle structure model, barrier, occupant, air bag, seat belt, and other interior components were 
included into the main input deck. With this technique, the various components can be replaced 
or modified in an efficient manner without having to rebuild the entire integrated occupant-
vehicle model. 

  
Figure 8: Modular input deck  
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1.3.2 Reduced model technique 
 

As shown in Figure 9 and described in section 1.3, reduced or sub model techniques were used 
for the model development. Defined output from a full vehicle run was used to create a sub 
model with prescribed motions of the occupant environment. Occupant and restraint systems 
were included to the sub model in a similar manner as in the full occupant-vehicle model. The 
smaller model replicates the realistic intrusion behavior and vehicle kinematics from the full 
model and could be used for optimization of interior components and for validation purposes. 
The "turnaround time" of sub models was reduced by up to 90 percent when compared to that of 
the complete model and allowed a more efficient model creation and validation process. 

  
Figure 9: Sub model technique  
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1.3.3 Positioning 
 

Documentation of available full-scale crash test data, such as that shown in Figure 10, was used 
to position occupants according to different laboratory crash configurations. 

  
Figure 10: Occupant positioning  
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1.4 Crash configurations 
 

Models for three different load cases were developed and evaluated using full-scale crash test 
data for full frontal, frontal offset, and oblique frontal impact configurations. 

 

1.4.1 IIHS frontal offset 
 

Using full-scale crash test data of a 2007 Toyota Yaris test from September 14, 2006 (reference 
number CEF0610), a model for simulating the IIHS 64km/h 40-percent offset impact into a fixed 
deformable barrier with a 50th percentile Hybrid III dummy in the driver seat was developed and 
evaluated, as shown in Figure 11. 

 
Figure 11: IIHS frontal offset configuration  

 

 

1.4.2 NCAP full overlap frontal impact 
 

As a second load case, a model for simulating the 35 mph NCAP full overlap crash with a 50th 
percentile Hybrid III dummy in the driver seat was developed. Two available full-scale crash 
tests for the Toyota Yaris were used to evaluate the integrated vehicle-occupant model as shown 
in Figure 12.  The first test used a 2007 sedan vehicle version described in 5.  The second test 
used a 2008 3-door hatchback version described in 6.   

                                                           
5 Final Report of New Car Assessment Program Testing of a 2007 Toyota Yaris 
6 Final Report of New Car Assessment Program Testing of a 2008 Toyota Yaris 3-Door Liftback 
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Figure 12: NCAP full overlap configuration  

 

 

1.4.3 Oblique offset frontal impact 
 

The third load case was an oblique impact at 90km/h, configured at a 15-degree angle with 35-
percent overlap, and a 50th percentile THOR dummy in the driver seat. This model was 
developed and evaluated using full-scale crash test data of the Toyota Yaris NHTSA test no. 
7441 from August 16, 2011, as shown in Figure 13. 

 
Figure 13: Oblique offset frontal configuration  
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1.5 Evaluation procedure of test and simulation results 
 

Test and simulation results were compared using three levels of comparison: overall comparison, 
qualitative comparison including an objective curve correlation tool called "CORA” 
(CORrelation and Analysis),7 and quantitative comparison. 

 

1.5.1 Overall comparison of test and simulation 
 

First, a visual analysis of test pictures, test movies, and simulation animations were used to 
compare overall vehicle, occupant, and restraint system kinematics and characteristics of the 
various crash events as shown in Figure 14. 

 
Figure 14: Overall validation  

1.5.2 Qualitative comparison 
 

Time history plots in combination with test videos and simulation animations were used to 
evaluate characteristic injury mechanisms and occupant loads. General examples of qualitative 
comparisons, such as air bag bottoming out and acceleration peaks caused by first air bag 
                                                           
7 CORA Release 3.6 Users Manual by "GNS mbH" on behalf of PDB - Partnership for Dummy Technology and 
Biomechanics 
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occupant contacts, are shown in Figure 15. In addition, injury limits and research goals were 
taken into account, and more emphasis was given to body regions and occupant loads that were 
close to biomechanical limits, regulatory, and consumer information (i.e., NCAP) requirements.  
In addition to rate how two curves compared to each other, the software tool "CORA" was used. 
CORA is explained in more detail in the following chapter. Furthermore, engineering judgment 
and experience were used to compare, understand and validate the different injury mechanisms 
in the test and simulation. 

 
Figure 15: Qualitative validation  

 

1.5.3 CORA 
 

Figure 16 below shows how the software tool CORA compares and rates two curves. CORA was 
developed by the Partnership for dummy technology and biomechanics (PDB) and takes phase 
shift, size, shape, as well as the comparison of values at each time increment into account. Using 
these techniques, an "objective rating" is given which indicates how well a curve (e.g., 
simulation) compares to a reference curve (e.g., test). Rating results range between 0 and 1, 
where 0 means no correlation and 1 means (close to) perfect correlation. 
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Figure 16: CORA rating 

 

Figure 17 shows two general examples of curve comparisons using CORA. Inner and outer 
corridors are depicted in green and blue, respectively. The example on the left shows a test result 
in black and a simulation curve in red. A correlation rating of 0.26 was given by CORA, and 
therefore the correlation can be judged as poor. The example on the right shows an example 
where test in black and simulation in red correlate very well and a close-to-perfect rating of 0.96 
was given. 

 
Figure 17: CORA examples 
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CORA also can be used to evaluate how well results from one test compare to results from 
another test. Figure 18 below shows how the two available NCAP full overlap tests compare for 
the different body regions' 

 
Figure 18: CORA evaluation of two NCAP tests 

 

1.5.4 Quantitative comparison 
 

In addition to overall and qualitative comparison of test and simulation results, quantitative 
comparison was used. General examples of quantitative evaluation of test and simulation results 
are shown in Figure 19. The IIHS Rating chart which normalizes the absolute injury values of 
the different body regions is one example of comparing the peak numbers for a test and 
simulation. NHTSA regulation and rating summary tables with the most important occupant 
results next to the respective simulation results also can be used for this purpose. Finally dummy 
plots using colors for the different body regions according to the occupant results and the defined 
injury thresholds, as used by EURONCAP, can be used to compare test and simulation results. 
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Figure 19: Quantitative validation  
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1.6 IIHS frontal offset configuration results 
 

Simulation results of the 64km/h 40-percent overlap IIHS load case and comparison with results 
from the available full-scale crash test are described in this chapter. 

 

1.6.1 IIHS overall comparison of test and simulation 
 

Figure 20 shows a portrayal of the overall evaluation. Finite-element simulation results can be 
seen on the left and test results on the right. After the occupant interacts with the restraint 
systems, air bag bottoming out (i.e., a contact of the head with the steering wheel through the air 
bag occurred) can be observed in both the simulation and test.  

 
Figure 20: Overall validation  
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1.6.2 IIHS qualitative comparison of test and simulation 
 

Figure 21 shows the qualitative comparison of test and simulation results together with the 
corresponding CORA rating values. Head and chest acceleration, which are the most critical 
injury values, have the highest correlation of 0.84 and 0.82, respectively. Chest deformation, 
neck, and femur have lower correlation ratings. At the same time, values for both test and 
simulation are clearly below critical injury thresholds as defined by the IIHS rating. 

 
Figure 21: IIHS qualitative evaluation  
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1.6.3 IIHS quantitative comparison of test and simulation 
 

Figure 22 shows the quantitative comparison of test and simulation results according to a 
normalized rating chart used by the IIHS. Test values are shown in black and simulation values 
are shown in blue for the different injury criteria. Again, it can be seen that the correlation 
between test and simulation is best for the most critical body regions, and less emphasis was 
placed on values that are clearly below the border between a good (green) and an acceptable 
rating (yellow). 

 
Figure 22: IIHS quantitative evaluation  
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1.7 NCAP frontal full overlap results 
 

Simulation results for the 56km/h full overlap NCAP load case and comparison with results from 
available full-scale crash test results are described in this chapter. 

 

1.7.1 NCAP overall comparison of test and simulation 
 

Figure 23 shows a sequence of pictures of the NCAP full overlap crash event. Test 1 is shown on 
the left; simulation results are shown in the middle; and Test 2 is shown on the right. Vehicle and 
occupant kinematics compare well between the two tests and the simulation. 

 
Figure 23: NCAP overall evaluation 

 



29 

1.7.2 NCAP qualitative comparison of test and simulation 
 

Figure 24 shows the qualitative comparison of test and simulation results. The average of the two 
available test results was used as a reference to calculate the CORA rating for the simulation 
time history plots. Head and chest ratings are around 0.7, and belt force characteristics are rated 
about 0.9. Femur loads which showed clear differences when compared with Test 1 and Test 2 
consequently resulted in lower correlation rating. It must be noted again that femur loads for both 
tests and simulation are far below critical values as defined by NCAP risk curves. 

 
Figure 24: NCAP qualitative evaluation 
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1.7.3 NCAP quantitative comparison of test and simulation 
 

Figure 25 shows the quantitative comparison of test and simulation results for the 56km/h full 
overlap crash into a fixed rigid barrier. Thresholds and absolute values for the different body 
regions in the two tests and the simulation can be seen in the first table. We note that the values 
for all body regions are below the red line representing the injury thresholds in the graphs below. 
While maximum femur loads in the simulation lie between the two test results, the simulation 
results for the chest and head are slightly higher than those in the two available full-scale crash 
tests. 

 

 
Figure 25: NCAP quantitative evaluation  
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1.8 Oblique load case results 
 

Simulation results for the oblique frontal impact with a 50th percentile THOR dummy impacted 
by a moving deformable barrier at 90km/h, a 15-degree angle with a 35-percent overlap are 
described in this chapter. A model of the THOR dummy was used and positioned in the vehicle 
model according to the full-scale crash test. Results described in this chapter have been created 
using the original Toyota Yaris model. An updated structural model according to the vehicle 
used in the full-scale crash test and its effect on occupant kinematics and results are shown in 
Chapter 2 (sensitivity analysis). Structural failure of relevant parts was incorporated as described 
in Section 5.2. 
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1.8.1 Oblique load case overall evaluation 
 

Figure 26 shows a sequence of simulation results capturing the tendency of the driver to move 
towards the space between the steering wheel/air bag and the door. The same kinematics can be 
observed in the available full-scale laboratory crash test. 

 
Figure 26: Oblique load case overall evaluation 
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1.8.2 Oblique load case qualitative comparison of test and simulation 
 

Figure 27 shows the qualitative comparison of the test and simulation results for the oblique 
frontal load case. A high peak in the head acceleration curve can be observed in the test at 
around 109ms. This peak occurred a little later and to a lesser extent in the original simulation. It 
is seen later in this report that when using the modified structural vehicle model, the timing of 
this peak was captured very closely. Using the test and simulation results, it was determined that 
this peak was caused by an interaction of the head of the THOR dummy with its upper left arm. 
Correlation ratings using CORA for the different body regions and seat belt forces can also be 
seen in the figure below. 

 
Figure 27: Oblique load case qualitative evaluation 

 

 

1.8.3 Oblique load case quantitative comparison of test and simulation 
 

Figure 28 shows the quantitative comparison of test and simulation results. The first table 
includes the thresholds for the different body regions, as tabulated in the test report summary, 
and the respective occupant loads as seen in the full-scale crash test and in the simulation. We 
note that chest, neck, and femur loads are clearly below the threshold values for both test and 
simulation. Although a contact of the head with the upper arm occurred in the simulation, the 
head HIC value which was clearly above the limit (depicted as a red line in the graph below) in 
the available full-scale crash test was not captured in the simulation using the original Yaris 
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model. A much closer correlation of the head using a modified structural model of the Yaris is 
described in Chapter 2 of this report. 

 
Figure 28: Oblique load case quantitative evaluation 
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1.9 Conclusion Subtask I 
 

In Subtask I, an integrated vehicle-occupant model for occupant safety analysis was developed 
with relevant interior components, generic restraint system components, and respective occupant 
models. 

The developed model was extensively validated using three different load cases — IIHS 40-
percent offset, NCAP full overlap, and 15-degree oblique 35-percent offset impact — using full-
scale test data. Eleven accomplishments are summarized below: 

1. Development of relevant interior and restraint system models: air bag, belt, collapsible 
steering column; 

2. Enhancement and adaption of available occupant models; 

3. Use of seat squash, belt fit, and tree file for positioning; 

4. Available THOR model successfully used in full vehicle environment; 

5. Outline of 3 level validation procedure; 

6. Use of objective correlation tool (CORA); 

7. Full vehicle-occupant simulation as well as sub-model procedure developed;  

8. IIIHS: evaluation of simulation results using full-scale test data used; 

9. NCAP: evaluation of simulation results using full-scale test data; 

10. Oblique: evaluation of simulation results using full-scale test; and 

11. Results of IIHS, NCAP, and 90km/h oblique offset load case. 
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V Subtask II 

2. Sensitivity Analysis 
 

2.1 Methodology 
 

Relevant parameters regarding the vehicle environment, seating position, seat belt, air bag, and 
steering column attributes were defined and examined one parameter at a time (i.e. when 
changing the seating position, all other parameters, such as original impact speed were 
unchanged), as shown in Figure 29.  Sensitivity analyses were performed for all three load cases 
(NCAP, IIHS, and oblique) with the respective occupant models (HIII and THOR).  Fully 
integrated occupant-vehicle models were used for all sensitivity analyses.  The objective of this 
subtask was to evaluate and understand how sensitive and robust the occupant results were to the 
variation of the defined parameters, which go beyond the boundary conditions that have been 
defined during the validation process using results from available full-scale crash tests. The 
intent of the sensitivity analyses was to show that the developed models produce realistic results 
for these parameter variations. For example when changing the vehicle impact speed, higher 
occupant loads would be expected for higher impact speeds. Results for other parametric studies 
sometimes are not as intuitive in both test and simulation. However, possible relationships of 
cause versus effect were analyzed and discussed for all studied parametric studies.  An additional 
sensitivity analysis using the THUMS model is described in Subtask III (use and evaluation of 
different occupant models). 
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 Figure 29: Sensitivity analysis parameters 
 

Effects due to the variation of defined parameters were analyzed using overall evaluation, 
qualitative evaluation, and quantitative evaluation as depicted in Figure 30.  

 
Figure 30: Sensitivity analysis methodology 

 

In the overall evaluation, differences in vehicle and occupant kinematics as well as changes in 
restraint system characteristics were analyzed. The qualitative evaluation compared injury curve 
characteristics and timing of distinct crash events for the various parameter studies. Finally, 
absolute values for the head, neck, chest, and femur were analyzed in the quantitative evaluation. 
The risk functions8  used to calculate the probabilities for AIS > 3 and AIS>2 injuries for the 
respective body regions are documented in Figure 31. 

                                                           
8 NHTSA, “New Car Assessment Program,” Docket No. NHTSA-2006-26555, 120 pp., July 11, 2008 
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Figure 31: Injury risk functions 
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2.2 Sensitivity analysis using NCAP load case 
 

Figure 32 shows the different parameter variations simulated and evaluated using the NCAP full 
overlap load case. Sensitivity analyses regarding the variation of impact speed, different seating 
position modifications, air bag, seat belt, and steering column characteristics were performed. 

 
Figure 32: NCAP parameters 
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2.2.1 Variation of impact speed 
 

In the first sensitivity analysis, the vehicle impact speed was reduced from 56 km/h to 48km/h 
and 40km/h. Figure 33 shows a time history plot of the chest deflection and the absolute values 
for head, chest, neck, and femur loads together with the respective injury risk probabilities using 
the risk function described in Figure 31 above. As expected, the developed integrated vehicle-
occupant model predicts that the higher the impact speed the higher the occupant loads for all 
body regions. 

 
Figure 33: NCAP variation of impact speed 
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2.2.2 Variation of x-seating position 
 

The effect of variation of the longitudinal seating position was studied. Using the NCAP seating 
position test procedure, where the occupant was positioned 25mm further aft and a seating 
position where the occupant was sitting 25mm more forward (or closer) to the instrument panel 
were compared to the original seating position.  All other parameters, such as original NCAP 
speed were unchanged.  Figure 34 shows the comparison depicting the further aft (or "more 
back") position in blue, the original seating position in black, and the "closer to IP" position in 
green. Note that occupant loads were similar for all body regions with slightly higher values for 
the further aft position where the dummy could reach a little higher momentum before 
interaction with the air bag, steering wheel, and instrument panel. 

 
Figure 34a: NCAP variation of x-seating position - overall evaluation 
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Figure 34b: NCAP variation of x-seating position - quantitative evaluation 
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2.2.3 Variation of seating height 
 

The effect of variation of vertical seating height was studied for the NCAP full overlap load case. 
The original seating height was compared to a 5mm higher and a 20mm higher seating position. 
While the 5mm difference can be considered as a very small variation, which is within the 
tolerance when positioning a dummy in a full-scale crash test, the 20mm higher seating position 
is of a magnitude where effects to the occupant results can be expected. Figure 35 shows the 
original seating position in black, the 5mm higher position in blue, and the 20mm higher position 
in green. As expected almost no differences in occupant loads were caused by changing the 
seating height by a small amount of 5mm. However, differences can be noticed for the 20mm 
higher position due to different occupant-seat-belt-air-bag-IP interactions. 

 
Figure 35a: NCAP variation of seating height - qualitative evaluation 
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Figure 35b: NCAP variation of seating height - quantitative evaluation 

 

 

2.2.4 Seat belt with and without pre-tensioner 
 

Figure 36 shows the effect of the pre-tensioner in the NCAP load case. While the seat belt is 
tightened in the early phase of the crash event in the simulation with a pre-tensioner, shown in 
green, no belt is being reeled in when the pre-tensioner is not fired, depicted in red. As expected, 
higher occupant loads can be noticed without a pre-tensioner where the seat belt dummy 
coupling (i.e., vehicle ride down) is not as effective.  Consequently, without the pre-tensioner, 
more forward displacement occurred. As a result, the head, neck, and femur loads increased 
without the use of the seat belt restraint system feature. 
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Figure 36: NCAP belt with and without pre-tensioner 
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2.2.5 Variation of air bag venting 
 

The effect of variation of air bag venting and consequently of different air bag internal pressure 
characteristics were evaluated using the NCAP load case. The diameter of the vent hole of the 
original model, which was validated against full-scale crash tests, was both reduced and 
increased by 5mm.  Figure 37 shows the results for the original vent in black, for the reduced 
vent diameter in blue, and for the bigger vent diameter in green. While injury risks for the neck, 
chest and femur did not show high sensitivity, the head showed the most interesting response due 
to the change of air bag venting. The simulations showed that the air bag with the original vent 
allowed a close-to-perfect forward displacement of the head. Most of the available distance 
between the occupants head and the steering wheel was used and no air bag bottoming out could 
be seen in either the test or simulation results. The air bag with the reduced vent resulted in a 
"stiffer" (i.e., higher pressure) air bag. The available space between the dummies head and the 
steering column was not used to such an extent as with the original model, and the head did not 
"dive" (i.e., was not cushioned as much) into to air bag as much. This resulted in a higher HIC15 
value and therefore a higher injury risk for the head. The simulation with the bigger air bag vent 
diameter resulted in a "softer" air bag with less internal pressure during the critical time of 
impact. The green-colored, head acceleration curve on the left shows a distinct high peak 
between 80ms and 90ms, which was caused by direct contact of the head with the steering wheel 
hub due to the air bag bottoming out. 
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Figure 37: NCAP air bag venting 

2.2.6 Variation of steering column collapse 
 

Besides constructing generic air bag and seat belt restraint system models with a pre-tensioner 
and belt force limiter, a generic collapsible steering column model was developed for the 
integrated occupant-vehicle model. In the original simulation run, which was validated using the 
available information from full-scale crash tests, about half of the available steering column 
collapse was actuated by the occupant. In the second simulation, the force level was reduced to 
allow the collapse of a steering column uses the entire available striking distance of about 90mm 
along the steering column axis away from the occupant, depicted in blue in Figure 38. In the 
third simulation, the force level was increased to a level where no steering column collapse could 
be observed at all, shown in green. It can be noticed that the head and chest values were higher 
for the case where no steering column collapse occurred, and that the sensitivity for the neck and 
femur loads was rather small (0.31% compared to the original 0.28% for the neck and 6.4% 
compared to the original 5.8% for the femur). 
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Figure 38a: NCAP steering column collapse - overall evaluation 
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Figure 38b: NCAP steering column collapse- quantitative evaluation 

 

 

2.2.7 Variation of air bag time-to-fire 
 

The amount of time between the first contact of the vehicle with the barrier and the beginning of 
the air bag inflation, called time-to-fire (TTF) was used as another parameter regarding air bag 
characteristics. The original air bag TTF, which was determined from the available full-scale 
crash tests, was used in the original simulation run, shown in black in Figure 39. Two more 
simulations were run using a TTF that was 10ms and 20ms later than that used in the original 
case, shown in blue and green, respectively. The effect of the different TTF can be clearly seen 
in the overall evaluation, as shown in the left picture of Figure 39. It can be noticed that femur 
loads were higher with a later air bag TTF due to the later coupling/interaction of the air bag with 
the occupant, and consequently a slightly more forward displacement and more severe 
interaction with the instrument panel and interior resulted. 
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Figure 39: NCAP air bag time-to-fire 

2.2.8 Variation of leg position 
 

In the final sensitivity analysis using the NCAP full overlap load case, the leg position was 
modified. The original leg position according to the available full-scale crash tests can be seen in 
black in Figure 40a. The distance of the left to the right knee in the two available full-scale crash 
tests was 320mm and 322mm, respectively.  It is noted that the femur loads in the two tests 
showed different qualitative and quantitative characteristics, as described in section 1.7, which 
suggests that the underlying stiff structure was impacted differently.  As a variation to the 
original leg position, the knees were moved 80mm closer together, shown in green. Differences 
in occupant kinematics and loads were observed.  The pelvis moved not as much forward during 
right down.  As a result head values were higher for the modified leg position.   In addition, the 
femur loads reacted very sensitively to the modified leg position. Similarly, when comparing the 
two available NCAP full-scale crash tests where leg position was different within the occupant 
positioning tolerance, the two crash tests showed major differences in femur loads. This was due 
the different interaction points of the femur with the instrument panel, the steering column 
interior, and the underlying stiff structural parts, as shown in red below.  
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Figure 40a: NCAP leg position - qualitative evaluation 

 

 

 
Figure 40b: NCAP leg position - quantitative evaluation 
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2.3 Sensitivity Analysis using IIHS load case 
 

Figure 41 shows the different parameter variations simulated and evaluated using the IIHS 40-
percent frontal overlap load case. Sensitivity analyses regarding the variation of overlap 
percentage, impact speed, different seating position and occupant torso angle, air bag, and seat 
belt characteristics were performed. 

 
Figure 41: IIHS parameters 
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2.3.1 Variation of overlap percentage 
 

While the original IIHS simulation run used an overlap percentage of 40 percent of the vehicle 
with the deformable barrier according to the IIHS test protocol, a smaller overlap percentage of 
30 percent (shown in green) and a bigger overlap percentage of 50 percent (shown in blue) in 
Figure 42 were performed. The differences in the overall vehicle kinematics can be seen in the 
left picture documenting the top view at around 120ms. In viewing Figure 42, it can be seen that 
the smaller the overlap percentage, the higher the rotation around the z-vehicle axis/ yaw motion. 
The picture on the right shows a contour plot of the structural deformation using a tracked view 
where the rear of the vehicle is overlayed. Again the 30-percent case is shown in green, the 40-
percent case is shown in black, and the 50-percent case is shown in blue.  Head and chest values 
were the highest for the 40-percent overlap case due to the respective vehicle and occupant 
kinematics causing different interactions of the HIII dummy with the belt, air bag, steering 
wheel, and instrument panel. Neck and femur loads were the highest for the smaller overlap 
percentage of 30 percent due to the different  intrusion characteristics and occupant kinematics. 
From the left picture of Figure 42, it can be noticed that the head drifts more off the center of the 
steering wheel the smaller the overlap percentage is. This results in a higher forward head 
displacement and higher neck-tension forces. 
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Figure 42: IIHS overlap percentage 
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2.3.2 Variation of impact speed 
 

Figure 43 shows the effect of different vehicle impact speeds using the original 40-percent 
overlap IIHS load case. In addition to the impact speed of 64km/h according to the test protocol 
and available full-scale crash test, a 56km/h and a 48km/h scenario also were evaluated. The left 
picture shows the qualitative comparison of the three simulations and the right picture shows the 
quantitative evaluation, using black for the highest, blue for the middle and green for the lowest 
impact velocity. As expected, loads for all body regions were larger for the higher the impact 
velocities. It can be noticed that the high head acceleration peak in the original simulation, which 
was caused by a contact of the head with the steering wheel hub through the air bag (air bag 
bottoming out), did not occur anymore when reducing the impact velocity by 8km/h.  In addition, 
as expected, the head contact with the steering wheel did not occur by the 16km/h reduced 
impact speed. The differences can also be observed by looking at the timing of the different body 
loads. The later "onset” of the time history curves for lower impact speeds can be noted in this 
context as well. 

 
Figure 43a: IIHS impact speed - qualitative evaluation 
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Figure 43b: IIHS impact speed - quantitative evaluation 

 

 

2.3.3 Variation of x-seating position 
 

Figure 44 shows the variation of longitudinal seating position. A position 25mm further away 
from the instrument panel, shown in blue, and a position 25mm closer to the instrument panel, 
shown in green, were compared to the original IIHS seating position, depicted in black. Neck 
values were highest for the further aft seating position, where the occupant could reach higher 
momentum and thereby recorded a higher tension.  The higher tension is similar to the 
observations from the NCAP sensitivity analysis for the same parameter. Femur load showed a 
similar trend but to a much smaller extent. 
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Figure 44: x-seating position 
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Head and chest values were the highest for the original IIHS seating position mostly because of 
different interaction of the belt with the occupant. Figure 45 shows the one point chest deflection 
measuring device in the middle of the sternum (for the Hybrid III dummy), which is sensitive to 
the belt location across the chest. While the belt was located very close to the sternum during the 
time of high occupant loads for the original IIHS seating position, the belt moved away from that 
point of measurement for the other two seating positions due to different occupant kinematics 
and occupant restraint system interactions, which thereby caused lower chest deflection 
measurements for these cases. 

 
Figure 45: H3 Chest deflection analysis 
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2.3.4 Variation of air bag venting 
 

Figure 46 shows the sensitivity of occupant results with respect to air bag internal pressure 
characteristics. As discussed for the NCAP load case, the original simulation run, shown in black 
below, contained the air bag model, which was validated using available full-scale crash tests for 
NCAP, IIHS, and oblique crash configurations. The second simulation with an air bag vent that 
was reduced by 5mm in diameter and the third simulation using an air bag vent that was 
increased by 5mm in diameter were performed and evaluated. Other than in the NCAP load case, 
a high head acceleration peak could be observed in the baseline simulation as well as in the 
corresponding full-scale crash test due to a direct interaction of the head with the steering wheel 
because of air bag bottoming out. Reducing the vent size resulted in a "stiffer" air bag with a 
higher internal pressure. Looking at the blue curves and values below, it can be noticed that the 
reduced air bag vent diameter prevented bottoming out and therefore a relatively high 
acceleration peak does not occur in the head time history curve anymore. Consequently, HIC15 
values also were reduced in this case. Using a bigger air bag vent diameter and therefore a 
"softer" air bag, the lower internal air bag pressure allowed head to steering wheel interaction 
and air bag bottoming out. HIC15 values were consequently higher for the larger air bag vent 
diameter. Chest values were again strongly influenced by the seat belt chest interaction, and the 
values were influenced by the method of measuring chest deformation at the one point sternum 
location of the Hybrid III dummy. The highest values could be observed for the simulation case 
with the original air bag vent where the occupant’s kinematics was such that the seat belt 
remained close to the instrumentation device. The neck and femur loads were not as sensitive to 
the air bag vent variation. However, a trend of higher occupant readings for the softer air bag 
characteristics due to a slightly higher occupant forward displacement could be observed. 
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Figure 46: IIHS air bag venting 

2.3.5 Variation of air bag time-to-fire 
 

Figure 47 shows the sensitivity of occupant loads to the variation of air bag time-to-fire (TTF) in 
the IIHS load case. In the left picture, the head acceleration and air bag internal pressure are 
shown for the original TTF in black, a 10ms later TTF in blue, and a 20ms later TTF simulation 
in green. The resulting different air bag internal pressure characteristics caused different head 
acceleration and HIC15 values. While the case with the original TTF shows the high peak due to 
air bag bottoming out in the test and simulation, as discussed before, the later TTF simulation 
show reduced and no bottoming out at all for the 10ms and 20ms later delays, respectively. The 
reason was the shifted internal pressure curves, which resulted in a slightly stiffer air bag during 
the relevant time of head air bag interaction, as seen in the left picture below. Consequently, air 
bag bottoming out was reduced and prevented, as shown in the blue and green time history 
curves, respectively. While almost no differences could be observed for the maximum neck 
tension values, the chest and femur loads showed some sensitivity caused again by the local 
effects of the seat belt and thorax interaction regarding the chest deflection and by local effects 
during the femur interior interactions. 
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Figure 47a: IIHS air bag venting - qualitative evaluation 

 

 
Figure 47b: IIHS air bag venting - quantitative evaluation 
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2.3.6 Variation of seat belt force limiter 
 

Besides realistic vehicle, air bag, and interior components, a generic seat belt model with a pre-
tensioner and belt force limiter was developed using results and information from the available 
full-scale crash tests. When evaluating the retractor belt force limit at the upper shoulder belt 
location, a defined load limit of about 4 kN could be observed in the tests and baseline 
simulation. The sensitivity of the occupant loads towards the variation of the belt force limit was 
evaluated using the IIHS load case. First, a load limit of 2kN, implying that the maximum belt 
force is limited to 2kN rather than 4kN, was examined, shown in blue and black respectively. In 
this case, more belt-length is being released during the impact allowing higher occupant forward 
displacement. It can be noticed that this resulted in higher head acceleration and lower chest 
deflection values, as expected. On the other hand, limiting the allowed shoulder belt force to 
6kN, implying that not as much belt material had to be released from the retractor during the 
impact, reduced the amount of occupant forward displacement and resulted in lower head 
acceleration and HIC15 values with no air bag bottoming out occurring and with slightly higher 
chest deflection. Although the sensitivity to neck and femur were rather small, it can be noticed 
that these values were also slightly higher for the lower belt force limit, which allowed a larger 
occupant forward displacement. 

 
Figure 48a: IIHS air bag venting - qualitative evaluation 
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Figure 48b: IIHS air bag venting - quantitative evaluation 
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2.3.7 Variation of torso angle 
 

Figure 49 shows the results for simulations with different occupant torso angles. In addition to 
the baseline simulation, shown in black, a 5-degree more upright seating position, shown in blue, 
and a 5-degree more reclined seating position, shown in green, were evaluated. It is enlightening 
that the different torso angles resulted in different seat belt paths between the d-ring and the 
upper occupant shoulder area. While neck and femur loads were similar in all three cases, 
different HIC15 values could be observed due to different head steering wheel interaction points. 
High sensitivity could again be observed for the chest deflection values. While the belt remained 
well over the sternum for the original seating position, the different torso angles and belt paths 
caused a small movement away from the chest instrumentation location for the other two torso 
angles, resulting in lower chest deflection values. 

 
Figure 49a: IIHS torso angle variation - overall evaluation 
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Figure 49b: IIHS torso angle variation - quantitative evaluation 
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2.4 Sensitivity Analysis using oblique load case 
 

The sensitivity of structural and vehicle modifications to the THOR dummy in the 35-percent 
offset, 15-degree oblique impact at 90km/h was evaluated. In addition to the results using the 
original YARIS model, as described in section 1.8, the oblique crash configuration was evaluated 
using a vehicle structural model that was adapted to the vehicle used in the full-scale crash test, 
as described in section 5.2. 

 

2.4.1 Differences in vehicle structure 
 

Figure 50 shows differences of the original vehicle model used in section 1.8, shown in blue, and 
the modified vehicle model, shown in green. It can be noticed that modifications have been made 
to the front axle and to the engine. 

 
Figure 50: vehicle modifications 

2.4.2 Overall evaluation 
 

Figure 51 shows that the modified vehicle model captured the vehicle yaw motion better than the 
original Yaris model for the specific oblique full-scale crash test. The two top pictures, showing 
the vehicle from the top at time 0ms and time 120ms, indicate a clear rotation of the vehicle 
around the z-axis in the full-scale crash test. While the original finite-element model, depicted in 
blue, showed very little rotation about the z-axis, such yaw motion could be observed for the 
modified Yaris model, shown in green. The different vehicle kinematics also resulted in different 
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occupant kinematics and loads. The movement of the occupant towards the area between the 
steering wheel and the door trim was more distinct for the modified vehicle model. 

 

 
Figure 51: vehicle modifications 
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2.4.3 Qualitative evaluation 
 

As discussed in section 1.8, the most critical occupant load was the head acceleration, caused by 
the impact of the head with the upper left arm of the THOR dummy during the rotation of the 
vehicle.  Figure 52 below shows the head acceleration of the available full-scale crash test in 
black, the results from the simulation with the original Yaris model in blue, and the results from 
the simulation with the modified vehicle model in green. It must be noted that all other boundary 
conditions, such as seating position and restraint systems remained the same in both simulations. 
It is striking that the timing of the head acceleration peak in the test could be captured within a 
few milliseconds, at around 110ms of the crash event, using the modified vehicle model. This is 
especially notable since the various occupant and vehicle kinematics make it more difficult to 
capture such injury mechanism events the later they occur in time. Again, the peak was caused 
by the interaction of the head with the upper arm during vehicle rotation. 

 
Figure 52: Oblique vehicle model sensitivity 

2.4.4 Quantitative evaluation 
 

Figure 53 shows the sensitivity of the absolute values of the THOR dummy measures towards 
the use of the different vehicle structural models. It can be noticed that especially head and chest 
values were influenced by the structural changes due to different occupant kinematics and 
interactions with the restraint systems. It can also be noticed that all body regions show better 
correlation with the available full-scale crash test results. While the chest, neck, and femur loads 
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were below the defined thresholds for test and simulation with the modified vehicle structure, the 
head acceleration was critical. Although the high absolute value of head acceleration peak in the 
test was not seen to the same extent as in the simulation, a clear peak, timing and cause of the 
relevant impact interaction of the head with the upper arm could be clearly identified in the 
performed simulation. 

 
Figure 53: Oblique impact quantitative evaluation. 
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2.5 Conclusion Subtask II sensitivity analysis 
 

The developed integrated vehicle-occupant model for occupant safety analysis with relevant 
interior components, generic restraint system components, and respective occupant models, 
which was extensively evaluated in three different load cases — IIHS 40-percent offset; NCAP 
full overlap; and 15-degree, oblique 35-percent offset impact — using full-scale test data, was 
used to perform various sensitivity analyses for various parameters using the three crash 
configurations. 

Variation of relevant parameters (i.e., sensitivity analysis), including the speed, overlap 
percentage, seating position, belt, air bag, and steering column characteristics, shows  results for 
different load cases and occupants. It can be seen that with the developed model and 
methodology one is capable of simulating and analyzing situations and effects that go beyond the 
validated configurations.  The accomplishments include: 

 Developed integrated model for occupant safety analysis has  
been successfully used to study the effects of several  
parameter variations (sensitivity analysis);  

 NCAP load case was used to study the variation of impact  
speed, seating position, air bag, seat belt, and steering column  
characteristics;  

 IIHS load case was used to study the variation of overlap 
percentage, impact speed, seating position, air bag, and seat  
belt characteristics; 

 Oblique load case was used to study the effect of different 
vehicle structural behavior; 

 THUMS occupant model was used to study the effect of  
different seating positions; 

 Results were achieved and 
discussed for all performed parameter studies; and 

 Regular meetings and documentation of progress. 
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VI Subtask III 

3. Use and evaluation of different occupant models 
 

The 50th percentile male Hybrid III occupant models were used in the 40-percent offset IIHS 
and in the full overlap NCAP crash configurations, according to the respective test protocols. 
The 50th percentile male THOR dummy model was used in the 35-percent overlap, 15 degree 
oblique impact according to the available full-scale crash of the oblique load case. In Subtask III, 
the THOR and the Total HUman Model for Safety (THUMS) are used and evaluated. 

 

3.1 THOR 
 

The THOR occupant model was included in the 40-percent offset IIHS load case and evaluated 
against the results from the Hybrid III dummy. 

 

3.1.1 Overall Evaluation 
 

Figure 54 shows the overall comparison of the THOR, shown in blue on the top, and the Hybrid 
III, shown in black at the bottom. Both occupant models drift to some extent towards the door 
during the forward displacement and interact with the air bag and the steering wheel "off center" 
due to the offset impact characteristics. Besides other differences, the longer legs of the THOR, 
when compared to the Hybrid III, also caused different interaction with the interior and 
consequently slightly different occupant kinematics. 
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Figure 54: THOR - H3 overall comparison 

 
 

3.1.2 Femur loads 
 

Figure 55 shows the time history curves of the left and right femur.  Test results can be found in 
section 2.  In the left picture the steering wheel, air bag, and seat belt have been removed in order 
to show the different impact configurations of the THOR in blue and the Hybrid III in black. 
While the longer legs of the THOR were positioned in a more spread out manner (thereby having 
a larger distance between the knees), the Hybrid III legs were positioned closer together resulting 
in a more longitudinal position. For this reason, the Hybrid III knees impacted the interior earlier. 
In the case of the right leg, a contact between the knee and the steering wheel trim and lock area 
could be observed, which resulted in a higher femur force peak when compared to the THOR 
which impacted the instrument panel at areas with less-stiff components and structures. Despite 
the differences in the time history curve characteristics, both dummies experienced femur loads 
that were clearly below a threshold of 10kN. 
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Figure 55: THOR - H3 femur loads 

 
 

3.1.3 Chest loads 
 

A major difference between the THOR and the Hybrid III dummies is the way chest deflection 
can be evaluated. The HYBRID III measures the thorax intrusion at a single point in the middle 
of the sternum. The THOR is equipped with a so-called CRUX device which allows the 
evaluation at four different locations of the chest: upper right (UR), upper left (UL), lower right 
(LR), and lower left (LL). The advantage of the advanced instrumentation becomes obvious 
when analyzing the load to the chest of the two different dummies. As discussed in Subtask II, 
high sensitivity towards the variation of different parameters could be observed for the Hybrid 
III. Most of the time, the different location and movement of the belt relative to the one-point 
measuring device could be deemed accountable for this sensitivity. Looking at the THOR, 
analysis of the thorax deflection cause/effect relations provides deeper insight into the occurring 
load and injury mechanisms. It can be noticed in Figure 56 below that deflections at the upper 
right chest of the THOR, shown in blue on the left, were the highest with a 57mm maximum, 
followed by the lower right chest location with a 52mm maximum value. This is in accordance 
with the belt path depicted in the picture below: the belt is located directly on top of the upper 
right position and only slightly offset from the lower right location. Similar to the observations 
made using the Hybrid III occupant, the belt could also be identified as a major influence to the 
chest loads beside the interaction with the air bag. This observation is confirmed by the 
maximum values on the left side of the THOR dummy, where no direct belt interaction occurs. 
The maximum value for the upper left side was 37mm, and the belt location was even more 
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offset. The most striking value is the lower left location with an 11mm maximum and no 
interaction with the belt at all. In summary, it could be noticed that the values were higher the 
closer the belt was located to the respective measuring location of the THOR dummy. While this 
observation is in agreement with the analysis of the chest loads to the Hybrid III in the various 
studies, the THOR offers a much more distinct analysis of the loads to the different chest 
locations. 

 
Figure 56: THOR - H3 chest loads 

3.1.4 Neck loads 
 

Figure 57 shows the comparison of the neck axial force of the THOR dummy in blue and the 
Hybrid III dummy in black. Although similar maximum values could be observed for the two 
different dummies, differences were obvious using overall and qualitative evaluations. Due to the 
different occupant kinematics (initiated by the different leg biomechanical characteristics and 
position, and further caused by the different seat belt-air bag-occupant interactions), differences 
in the time history curve characteristics and in the head impact locations could be observed. 
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Figure 57: THOR - H3 neck loads 
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3.1.5 Head acceleration 
 

When comparing the head acceleration of the two dummy types in the IIHS 40-percent offset 
configuration, it can be noticed in Figure 58 that a high acceleration peak occurs for the Hybrid 
III, shown in black, but not for the THOR, shown in blue. While the bottoming-out effect and 
consequently the direct contact of the HYBRID III with the steering wheel hub was well 
analyzed in the simulations and in the validation with the full-scale crash test described 
previously in this report, such an effect could have been also expected for the THOR dummy 
when looking at the two states with the maximum forward displacement of the head in Figure 58 
below. The reason for the "missing" acceleration peak was the changed impact location of the 
head. Due to different occupant kinematics the head of the THOR moved more forward in 
between the steering wheel hub and steering wheel rim, and consequently a lower load was 
induced. 

 
Figure 58: THOR - H3 head acceleration 

 
 

3.1.6 THOR - Hybrid III comparison conclusion 
 

Using the IIHS 40-percent offset crash configuration once with the Hybrid III and once with the 
THOR occupant model, it was found that the absolute values, when put into relation to common 
thresholds, were comparable for both dummies despite differences in curve characteristics and 
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occupant kinematics. Major differences are obvious for the chest deflections, which were 
measured at only one location for the Hybrid III, and at four distinct locations for the THOR. 
Besides the advanced injury analysis capabilities using the THOR, higher maximum values 
could be observed for this advanced dummy at the locations with direct seat belt interaction, as 
compared to the maximum Hybrid III sternum deflection. These simulations suggest that the 
maximum chest deformation takes place under the path of the belt, and the THOR is better able 
to detect this greatest extent of torso compression. 
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3.2 THUMS human model 
 

In addition to the anthropomorphic test device models, the Total HUman Model for Safety 
(THUMS) was evaluated using the developed integrated vehicle-occupant model. 

 

3.2.1 THUMS description 
 

The human model was developed by Toyota and distributed by Livermore Software Technology 
Corporation. It represents a 50th-percent adult male occupant. The academic version 4.0 
(containing all skeletal bones, structures, and internal organs) consists of about 1.7 million 
elements and about 1,300 different parts. It was completed in 2010 and is shown in Figure 59 
below. 

 

 
Figure 59: THUMS description 

3.2.2 THUMS preparations 
 

Before the THUMS occupant model could be used in an integrated vehicle-occupant simulation 
using the developed models and methodologies, some numerical modifications had to be made. 
Then the same procedures regarding seat squash (integration into the seat) and seat belt fitting 
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were used, as described previously for the Hybrid III and THOR occupant models. Pre-
simulations were used to position the legs and the arms into the appropriate position. Figure 60 
shows sequences of the left arm positioning. Forces were applied in such a way that the hands fit 
well around the steering wheel for example. 

 
Figure 60: THUMS pre-simulation 
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3.2.3 THUMS evaluation of loads 
 

In addition to allowing biomechanical criteria, such as chest deflection, the human model allows 
the analyst to directly evaluate loads to skeleton bones and internal organs. Figure 61 show the 
human skeleton with ribs in green, sternum and iliac in red, sacrum in blue, and clavicle in 
yellow. In order to evaluate potential injury risks to bones effective plastic strain values have 
been analyzed. According to studies by Burstein et al. (1976) and McCalden et al. (1993) a 
threshold of 3-percent strain was used to predict potential risks of bony fractures. 

 
Figure 61: THUMS skeleton criteria 

 
Similarly effective plastic strain evaluations have been used to analyze loads to internal organs, 
such as the liver, spleen, and heart. A threshold of 30-percent effective strain was used to predict 
potential injuries to these organs, as suggested by Yamada (1970) and Melvin et al. (1973). An 
example is shown in Figure 62 below. The plastic strain fringe plot scale indicates values above 
30 percent in red, values between 20 percent and 30 percent in orange, values between 10 
percent and 20 percent in yellow, and values between 0 percent and 10 percent in green. The 
main focus was applied to organs that have been found to have a high risk of injury in real world 
accidents, such as the liver (shown in orange), the spleen (shown in yellow), and the heart 
(depicted in red). The right picture in Figure 62 below shows an example of such evaluation, 
using a fringe plot of the effective plastic strain values at a deformed stage. Values above 30 
percent are colored in red and indicate a high risk of injury at that area. 
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Figure 62: THUMS internal organ criteria 

 
 



82 

3.2.4 IIHS results using THUMS 
 

The IIHS 40-percent offset crash configuration was used to evaluate the loads to the THUMS. 
Figure 63 shows the overall evaluation using a side view and a section cut view of the occupant 
kinematics at the beginning of the crash event, at 40ms, 80ms, and 120ms. It can be seen how the 
human model is being restrained by the seat belt before it couples with the air bag and finally 
reaches its most forward position and rebounds. The section cut view allows insight into the 
model showing internal organs in yellow, bones in red, skin and flesh in orange, and the brain in 
gray. 

 
Figure 63: IIHS overall evaluation 

 
Evaluation of loads to the skeleton in the IIHS load case is shown in Figure 64 below. Ranges 
with different effective plastic strain values were used in order to identify areas of potential 
injury risk. Values above 3 percent are shown in red, indicating a risk of bony fractures. Such 
areas could be identified at the sternum, representing potential AIS = 2 injuries, and to some 
extent at the right iliac where the belt interacts with the pelvis bone. It can be noticed that the 
pelvis belt is located just below the upper edge of the iliac during the entire crash event, 
preventing submarining and a more severe intrusion of the belt into the abdominal area. 
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Figure 64: IIHS skeleton loads 

 

In analyzing the effective plastic strain distribution regarding internal organ injuries in Figure 65, 
it is observed that values above 30 percent (colored in red) occurred in the liver. The location of 
maximum loads is close to the lower right CRUX deflection instrumentation point of the THOR 
dummy in the IIHS load case, which was discussed in chapter 3.1.3. Again, the seat belt 
interaction with the chest and abdominal area was determined to be the main cause for the 
potential injury risk at this location. Lower effective plastic strain values could be observed 
where no direct chest belt interaction occurred, such as the heart and the spleen at the left side of 
the THUMS, from the driver’s perspective. 
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Figure 65: IIHS loads to organs 
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3.2.5 THUMS torso posture evaluation 
 

In order to evaluate occupant results of different seating positions of the THUMS, a sensitivity 
study using different upper body postures was conducted. 

Figure 66 shows the upper body posture of the THUMS model as provided by LSTC on the left. 
The spine is curved causing a bent-forward sitting posture.  Although this can be a realistic 
sitting position of a human occupant, the upper body torso posture was modified in order to 
achieve a more upright sitting position, similar to the ones used for the different dummy models. 
Again a pre-simulation was used to create the new position, shown in Figure 66, where hands, 
legs, and pelvis location were not modified. Only the position of the arms, upper body and head 
position were changed.  The head center of gravity in the new position was located 92mm further 
back in x-direction when compared to the original position. 

 
Figure 66: Torso pre-simulation 

 
 

When comparing the seat belt path and the overall kinematics of the two different upper body 
postures in Figure 67 below, it is informative and illuminating that the shoulder belt path is less 
horizontal close to the d-ring when the occupant is seated in the less upright seating position 
(shown in blue). Since the pelvis angle was kept unchanged, the upper shoulder area and the 
head were located further back, when compared to the more bent-forward position (shown in 
yellow), allowing the seat belt to have a steeper path from the d-ring towards the chest. This 
difference had consequences for the chest belt interaction in the later phase of the crash. The 
more bent-forward position (shown in yellow), having a more horizontal belt path coming from 
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the d-ring, created higher normal forces during the forward displacement between the belt and 
the chest and therefore allowed the belt to remain at its original position due to higher frictional 
forces. It can be noticed from the last picture in Figure 67 that this was not the case for the more 
upright seating position (shown in blue), where the belt moved towards the neck and upper chest 
during the crash event. 

 
Figure 67: THUMS torso angle overall evaluation 

 
The different sitting positions and chest belt interaction influenced the load to the skeletal bones 
and the internal organs of the THUMS model. Figure 68 shows the comparison of the two cases 
using fringe plots of the skeleton with areas which exceed critical effective plastic strain values 
of 3 percent colored in red. Again it can be noticed that the shoulder belt moved towards the 
neck and upper torso area during the impact for the more upright seating position at the bottom 
of Figure 68, causing different loads to the sternum area and to the first rib, due to the changed 
seat belt torso interaction. 
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Figure 68: THUMS torso angle skeleton evaluation 

 

Figure 69 below shows the effect on the loads seen at the internal organs, heart, liver, and spleen. 
Again a threshold of 30-percent maximum plastic strain was used to indicate potential injury risk 
to these abdominal organs. Higher loads could be observed for the original sitting posture, which 
allowed the belt to remain at its original position relative to the liver, for example. 
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Figure 69: THUMS torso angle internal organs 

 
Comparing the effects, it can be noticed that on one hand the different torso angle and shoulder 
belt path resulted in higher loads to the skeleton in the sternum and upper left torso area, and on 
the other hand resulted in lower loads to the liver. 
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3.3 Conclusion Subtask III 
 

The developed integrated vehicle model for occupant safety analysis with relevant interior 
components, generic restraint system components, and respective occupant models (which was 
extensively evaluated in three different load cases — IIHS 40-percent offset, NCAP full overlap, 
and 15 degree oblique 35-percent offset impact — using full-scale test data) was used to evaluate 
different, more detailed occupant models. 

First, the occupant model of the advanced THOR dummy was simulated and analyzed in the 
IIHS 40-percent offset crash configuration. When comparing the results with the Hybrid III 50th 
percentile occupant model, it was found that absolute values, when normalized to the appropriate 
common injury assessment thresholds, were comparable for both dummies despite differences in 
curve characteristics and occupant kinematics. Major differences were obvious for the chest 
deflections, which are measured at only one location for the Hybrid III and at four distinct 
locations for the THOR. Besides the advanced injury analysis capabilities using the THOR, 
higher maximum values could be observed for this advanced dummy at locations where direct 
seat belt interaction occurred as compared to the maximum Hybrid III sternum deflection. 

Second, the Total HUman Model for Safety (THUMS) was included in the 40-percent overlap 
IIHS load case. In addition to allowing instrumentation dependent criteria, such as chest 
deflection, the human model allows the analyst to directly evaluate loads to skeleton bones and 
internal organs, for example. Effective plastic strain values were analyzed and areas with 
potential injury risks according to reported thresholds were evaluated. In addition to the original 
THUMS sitting torso posture, the results of a more upright seating position were determined. 
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VII Summary and Acknowledgment 

4. Summary and acknowledgment 
 

An integrated vehicle model for occupant safety analysis was developed and used under FHWA 
contract no. DTFH61-09-D-00001. 

In Subtask I, an integrated vehicle-occupant model was developed using an available Toyota 
Yaris structural model together with generated relevant interior components, generic restraint 
system components, and respective occupant models. 

The developed model was extensively validated using three different load cases — IIHS 40-
percent offset, NCAP full overlap, and 15-degree oblique 35-percent offset impact — using full-
scale test data. 

In Subtask II, the developed integrated vehicle model for occupant safety analysis with relevant 
interior components, generic restraint system components, and respective occupant models was 
used to perform various sensitivity analyses for various parameters, using all three crash 
configurations. 

Variation of relevant parameters (sensitivity analysis), including speed, overlap percentage, 
seating position, belt, air bag, and steering column characteristics showed interesting and 
realistic results for different load cases and occupants. It can be seen that with the developed 
model and methodology, the safety analyst is capable of simulating and analyzing situations and 
effects that go beyond the validated configurations. 

In Subtask III, the developed integrated vehicle-occupant model for occupant safety analysis was 
used to evaluate different, more detailed occupant models. 

First, the occupant model of the advanced THOR dummy was simulated and analyzed in the 
IIHS 40-percent offset crash configuration. When comparing the results with the Hybrid III 50th 
percentile occupant model, it was found that absolute values, when normalized to the appropriate 
common thresholds, were comparable for both dummies despite differences in curve 
characteristics and occupant kinematics. Major differences were obvious for the chest 
deflections, which are measured at only one location on the Hybrid III, and at four distinct 
locations on the THOR. Besides the advanced injury analysis capabilities using the THOR, 
higher maximum values could be observed for this advanced dummy at locations where direct 
seat belt interaction occurred, as compared to the maximum Hybrid III sternum deflection. 

Second, the Total HUman Model for Safety was included in the 40-percent overlap load case. In 
addition to using instrumentation dependent criteria, such as chest deflection, the human model 
allows the analyst to directly evaluate loads to skeletal bones and internal organs, for example. 
Effective plastic strain values were analyzed and areas with potential injury risks determined 
according to cited thresholds have been evaluated. In addition to the original THUMS sitting 
torso posture, the results of a more upright seating position were determined. 
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and for the productive cooperation and fruitful discussions with NHTSA during the regular 
meetings. The authors thank the Toyota Motor Corporation for making the THUMS model 
available for independent, academic research and thank the Livermore Software Technology 
Corporation for its occupant models and its LS-DYNA support. 



92 

VIII Appendix 

5. Appendix 
 

The purpose of this appendix is to document the details of the technical validation of the 2010 
Toyota Yaris in the NHTSA Oblique frontal test. 

 

5.1. FE model of 2010 Toyota Yaris 
 
The FE model of 2012 Toyota Yaris was generated by the NCAC. The FE vehicle model 
consists of 1.0 million elements, 1.0 million nodes, and 771 parts. The structure of the FE vehicle 
model was validated by conducting frontal NCAP and IIHS 40-percent offset test simulations as 
shown in Figure 70 and Figure 71.  For the NCAP frontal test and the IIHS 40-percent offset test, 
the simulation results show good correlation with the actual test results. 

 

 
(a)                                                                     (b) 

 
(c)                                                                     (d) 

Figure 70: Vehicle acceleration and velocity in frontal NCAP test 
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(a)                                                                    (b) 

Figure 71: Vehicle acceleration and velocity in frontal IIHS offset test 
 
 

5.2. NHTSA frontal oblique test 
 
The NHTSA oblique frontal test was investigated and validated. In the NHTSA oblique frontal 
test, the research moving deformable barrier (RMDB) impacts a vehicle as shown in Figure 72. 
The initial FE model of the RMDB was obtained from NHTSA.  
 

 
Figure 72: The setup of the NHTSA Oblique frontal test 

 
The initial simulation of frontal oblique test showed some discrepancy compared to the actual 
laboratory test. Figure 73 shows the vehicle accelerations, which are different from the actual test 
responses in terms of peak timing and peak value. To improve the simulation results, both FE 
models of vehicle and RMDB were investigated. 
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Figure 73: Vehicle acceleration in frontal oblique test (initial run)  

 
Basically, technical differences were found between the vehicles in the simulation and laboratory 
test. The vehicle in the test had an automatic transmission, and the FEM 2010 Toyota Yaris (the 
one in the simulation) had a manual transmission. As shown in Figure 74, the shapes of the 
automatic and manual transmissions are quite different. Consequently, the transmission in the FE 
vehicle model was remodeled to have the same shape of automatic transmission, as shown in 
Figure 74(d).  
 

 
                   (a)                                   (b)                                   (c)                                    (d) 

Figure 74: Transmission of Yaris: (a) automatic, (b) manual, (c) manual in the original FE 
model, and (d) automatic in the modified FE model. 

 
In the Oblique frontal test, the front structure of a vehicle experiences not only longitudinal 
loading, but also transverse loading conditions. This loading pattern is unlike the mostly 
longitudinal loading condition in frontal NCAP and IIHS offset tests. In the original FE model, 
the front axle, which is the connecting rod between the transmission and front wheels, was not 
modeled. Thus, it can be seen that the lateral motion of the engine of the original FE vehicle 
model was exaggerated as shown in Figure 74(b). In the modified (remodeled to have automatic 
transmission) FE model, the frontal axles were added, which reduced the lateral movement of 
front vehicle structure and improves the engine movement. It can be seen that the modified FE 
model shows comparable result as shown in 75(c).  
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                               (a)                                                 (b)                                          (c) 
Figure 75: Deformation of frontal vehicle structure in Oblique frontal test: (a) actual vehicle, (b) 

original FE model, and (c) modified FE model. 
 
In the modified FE vehicle model, the steering system shown in Figure 76 was also improved. 
The steering system consists of two universal joints and an energy-absorbing collapsible steering 
column. These components were added in the modified FE model. 
 

 
Figure 76: Steering system of Yaris 

 
In the Oblique frontal test, it can be observed that connections and components failed because 
the laboratory vehicle experienced harsh deformation. Figure 77 shows failures in the Yaris. In 
the original FE model, failure never occurred since failure was not considered. In many cases, 
failure is critical to vehicle response and the deformation mode. In order to investigate the failure 
effect, failure was modeled in the FE model, as shown in Figure 78. In the FE model, failure was 
initiated at a certain time. Based on the study with various failure times, it was found that failure 
did not meaningfully improve the vehicle responses in the Oblique frontal simulations. 
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                            (a)                                               (b)                                              (c) 

Figure 77: Failures in frontal oblique test: (a) connect between floor and sub-frame, (b) 
connection between IP beam and A-pillar, and (c) steering arm. 

 

 
                           (a)                                               (b)                                              (c) 

Figure 78: Failures in the FE model: (a) connect between floor and sub-frame, (b) connection 
between IP beam and A-pillar, and (c) steering arm. 

 
As noted, the RMDB FE model shown in Figure 78(a) was obtained from NHTSA. Its 
specifications are shown in Figure 78(b). The FE model consists of 0.54 million nodes and 1.1 
million elements. The honeycomb is modeled by shell elements.  
 

 
(a)                                                         (b) 

Figure 79: RMDB: (a) FE model and (b) specification 
 
The RMDB performance was tested by a simple impact test as shown in Figure 79. The impactor 
weight was 1.7 ton and its impact speed was 33.15 km/h. The impact test was simulated using 
the original FE model of RMDB. The results in Figure 80 show that the original RMDB 
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provided a softer response than in the laboratory test. To improve the performance of the RMDB 
FE model, a modified RMDB FE model was developed by conducting iterative simulations. 
Modifications were made in both models of honeycomb and cover plate. In the honeycomb 
model, the foil thickness of overlapped sides was set twice and the stress-strain plastic hardening 
curve was scaled up to considered air pressure effect inside honeycomb cells. In the cover plate 
model, the thickness of the certain areas (edges, mid-front line, and half-diagonal lines) of the 
plate was set twice because double plates were used at those areas.  The modified RMDB FE 
model provided much improved impact performance in the laboratory impact test simulation as 
shown in Figure 81. 
 

 
Figure 80: impact test of RMDB 

 

 
Figure 81: Result of impact test using the original FE model of RMDB 

 

 
Figure 82: Result of impact test using the modified FE model of RMDB 
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Figure 81 and Figure 82 show the result of the frontal oblique simulation with modified vehicle 
and RMDB FE models. The acceleration results show improved responses in terms of peak 
timing compared with Figure 83. The RMDB responses in simulation are comparable to the test 
results, as depicted in Figure 84. 
 

 
Figure 83: Vehicle responses in frontal oblique simulation using modified vehicle and RMDB 

FE models 
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Figure 84: RMDB responses in frontal oblique simulation using modified vehicle and RMDB FE 
models 



DOT HS 812 087 
December 2014

10886-112614-v2a


	1. Development of an integrated vehicle model for occupant safety analysis
	1.1 Vehicle, occupant, and component models
	1.1.1 Vehicle structure model
	1.1.2 Occupant models
	1.1.3 Generic driver air bag model
	1.1.4 Generic seat belt model
	1.1.5 Generic steering column model

	1.2 Integrated vehicle-occupant model preparations
	1.2.1 Occupant model tree file
	1.2.2 Seat model mechanism
	1.2.3 Seat squash
	1.2.4 Belt fit

	1.3 Complete and reduced model methodology
	1.3.1 Modular input deck using include option
	1.3.2 Reduced model technique
	1.3.3 Positioning

	1.4 Crash configurations
	1.4.1 IIHS frontal offset
	1.4.2 NCAP full overlap frontal impact
	1.4.3 Oblique offset frontal impact

	1.5 Evaluation procedure of test and simulation results
	1.5.1 Overall comparison of test and simulation
	1.5.2 Qualitative comparison
	1.5.3 CORA
	1.5.4 Quantitative comparison

	1.6 IIHS frontal offset configuration results
	1.6.1 IIHS overall comparison of test and simulation
	1.6.2 IIHS qualitative comparison of test and simulation
	1.6.3 IIHS quantitative comparison of test and simulation

	1.7 NCAP frontal full overlap results
	1.7.1 NCAP overall comparison of test and simulation
	1.7.2 NCAP qualitative comparison of test and simulation
	1.7.3 NCAP quantitative comparison of test and simulation

	1.8 Oblique load case results
	1.8.1 Oblique load case overall evaluation
	1.8.2 Oblique load case qualitative comparison of test and simulation
	1.8.3 Oblique load case quantitative comparison of test and simulation

	1.9 Conclusion Subtask I

	2. Sensitivity Analysis
	2.1 Methodology
	2.2 Sensitivity analysis using NCAP load case
	2.2.1 Variation of impact speed
	2.2.2 Variation of x-seating position
	2.2.3 Variation of seating height
	2.2.4 Seat belt with and without pre-tensioner
	2.2.5 Variation of air bag venting
	2.2.6 Variation of steering column collapse
	2.2.7 Variation of air bag time-to-fire
	2.2.8 Variation of leg position

	2.3 Sensitivity Analysis using IIHS load case
	2.3.1 Variation of overlap percentage
	2.3.2 Variation of impact speed
	2.3.3 Variation of x-seating position
	2.3.4 Variation of air bag venting
	2.3.5 Variation of air bag time-to-fire
	2.3.6 Variation of seat belt force limiter
	2.3.7 Variation of torso angle

	2.4 Sensitivity Analysis using oblique load case
	2.4.1 Differences in vehicle structure
	2.4.2 Overall evaluation
	2.4.3 Qualitative evaluation
	2.4.4 Quantitative evaluation

	2.5 Conclusion Subtask II sensitivity analysis

	3. Use and evaluation of different occupant models
	3.1 THOR
	3.1.1 Overall Evaluation
	3.1.2 Femur loads
	3.1.3 Chest loads
	3.1.4 Neck loads
	3.1.5 Head acceleration
	3.1.6 THOR - Hybrid III comparison conclusion

	3.2 THUMS human model
	3.2.1 THUMS description
	3.2.2 THUMS preparations
	3.2.3 THUMS evaluation of loads
	3.2.4 IIHS results using THUMS
	3.2.5 THUMS torso posture evaluation

	3.3 Conclusion Subtask III

	4. Summary and acknowledgment
	5. Appendix
	5.1. FE model of 2010 Toyota Yaris
	5.2. NHTSA frontal oblique test




