Fleet Fatality Risk Sensitivity to

Vehicle Mass/Size Change in Vehicle-to-Vehicle Crashes

Guy S. Nusholtz and Yibing Shi Chrysler Group LLC

Combined Empirical and Theoretical Modeling Parameterized Accident and other

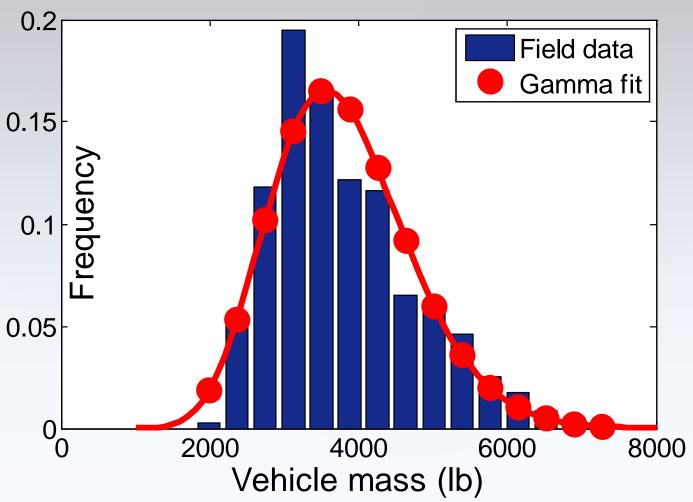
Data to form basis for a set of equations.

Include the laws of physics.

_A FLEET MODEL IS CREATED

Different from building the model from the crashing of computational cars such as in FEA

Input



Mass distribution data (5,262 vehicles) from F-F crashes from FARS [Kahane 2012]

The modeling goal: Fatality risk

Fatality Risk = f (m, other vehicle parameters; Driver functions; Road conditions)

Difficult task – data availability, data variability, numerical methods,

complexity -> <u>uncertainty</u>,

Background -- 2

Evans, et. al. Mass; Risk ratio(92)

Joksch Mass (93)

Kahane Fatality <u>Rate</u> multi-regression models ('97, '03, '12)

van Auken et. al. Fatality Rate multi-regression models ('02 - '12)

Padamanaban Fatality Rate multi-regression models (03-09)

Shi and Nusholtz Fatality Rate multi-regression models (13)

Model Development

(1) Fatality Risk Empirical Model (EM1)

$$r = \left(\frac{v}{v_{0p}}\right)^a$$

α	3.88 +- 0.19
v_{0p} (mph)	70.6

[Joksch 1993]

(2) Fatality Risk Ratio Empirical Models-vehicle-vehicle crashes (EM2);

$$\frac{r_1}{r_2} = \left(\frac{m_2}{m_1}\right)^{\beta}$$

[Evans 1992, etc.]

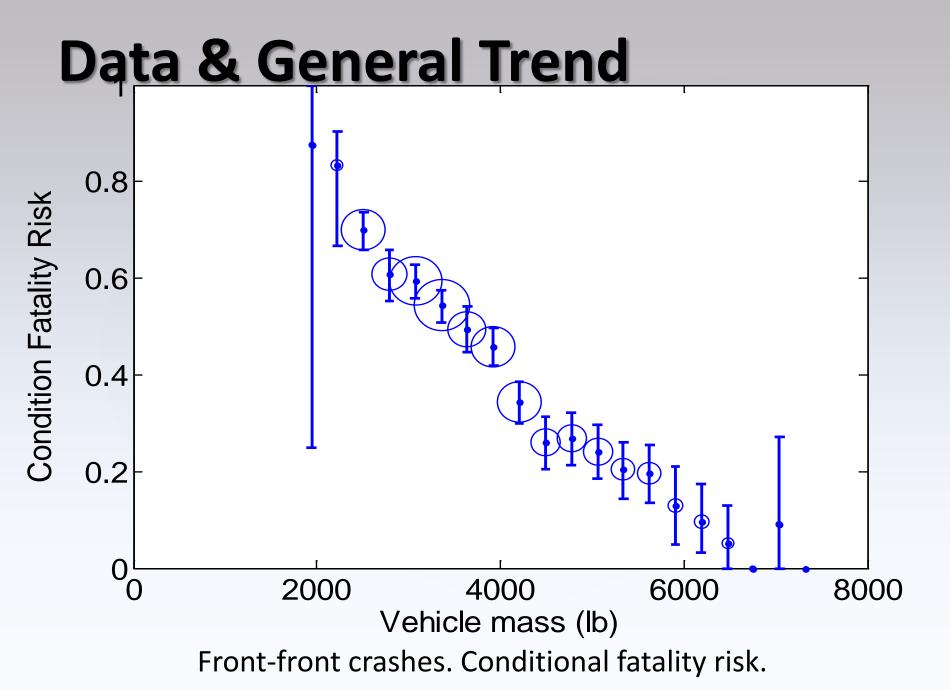
$$\ln \frac{r_1}{r_2} = -3.83 \ln \frac{m_1}{m_2} - 0.31 D_{VTYPtruck} - 0.33 D_{VTYPsuv} - 0.34 D_{VTYPcuv} - 0.37 D_{ESC} - 1.20 D_{REST_USE} + 0.05 D_{A14-30} + 0.03 D_{A38-60} + 0.05 D_{A60-90}$$

[Shi & Nusholtz 2013]

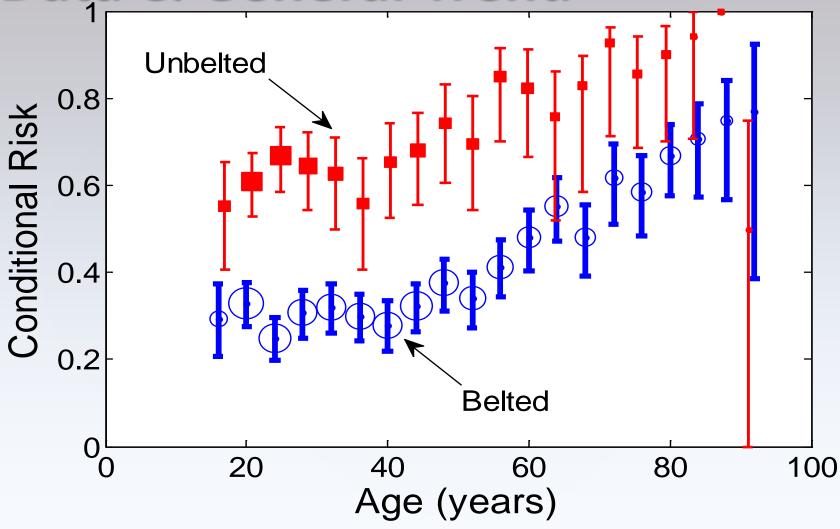
(3)
$$r = f(m; VTYP, age, rest use;)$$
?

Data & General Trend

- Data
 - From Kahane [2012]: FARS MY 2000-2007, CY 2002-2008.
 - Supplemented with: Impact direction; Belt...
 - Vehicle-Vehicle cases only
 - Separately front-front cases
 - Separately front-left cases
- General trend & Multi-regression

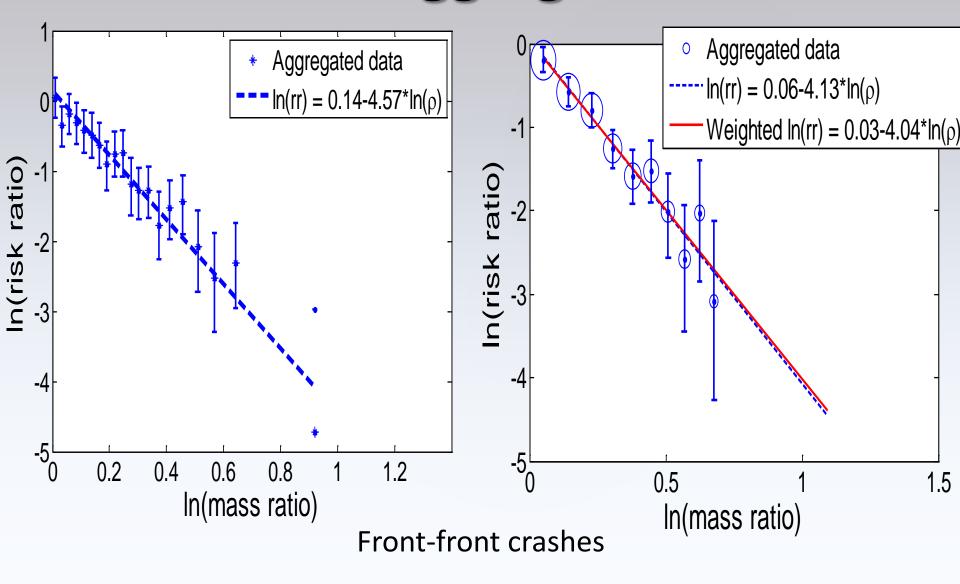


Data & General Trend

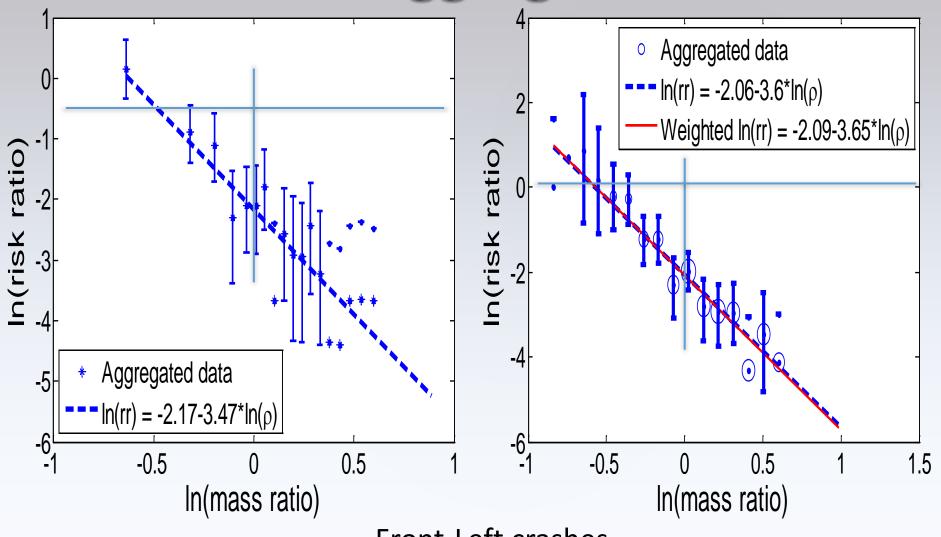


Front-front crashes. Conditional fatality risk.

Risk Ratio -- aggregated

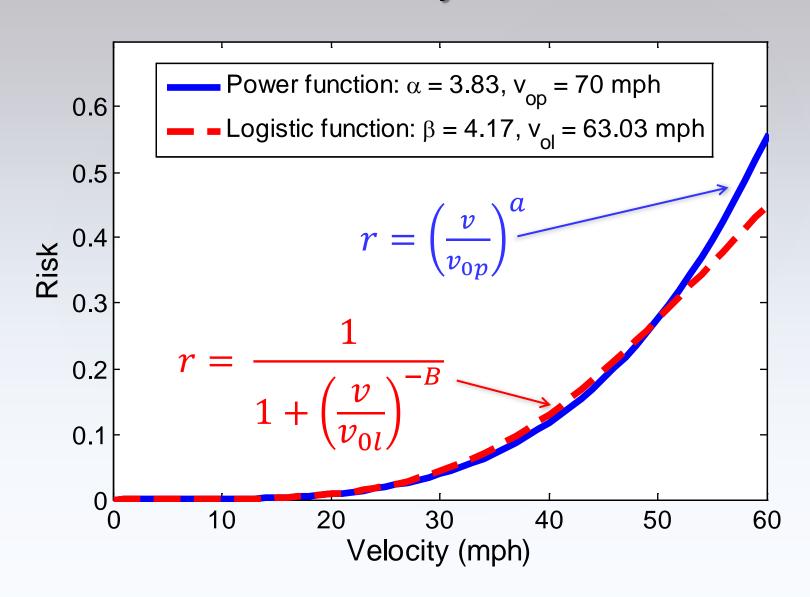


Risk Ratio -- aggregated



Front-Left crashes

Discussion: Uncertainty with Risk Function



Multi Regression of Risk Ratio

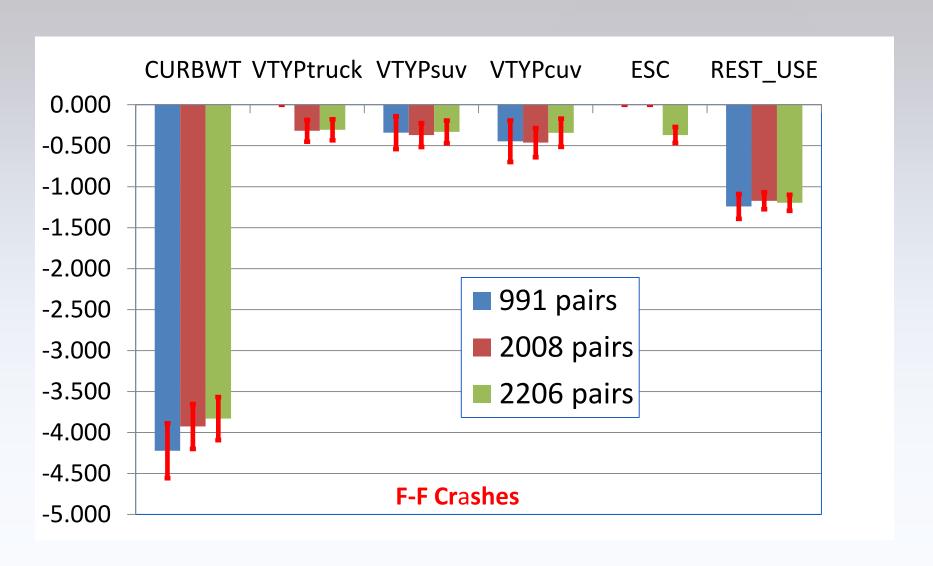
$$ln\frac{r_1}{r_2} = \beta_0 + \sum \beta_i(x_{i1} - x_{i2}); \ Log - linear$$

$$f = \frac{r_1}{r_1 + r_2}$$

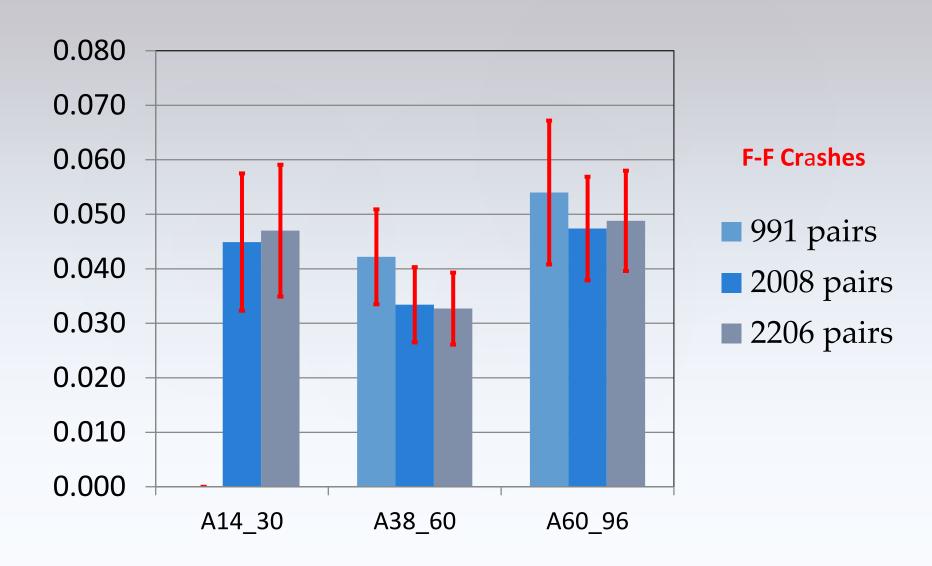
Vehicle 1	Vehicle 2	binary outcome of f	
1	0	1	
0	1	0	
1	1	0 & 1	

$$ln\frac{f}{1-f} = \beta_0 + \sum \beta_i(x_{i1} - x_{i2}); Logoistic$$

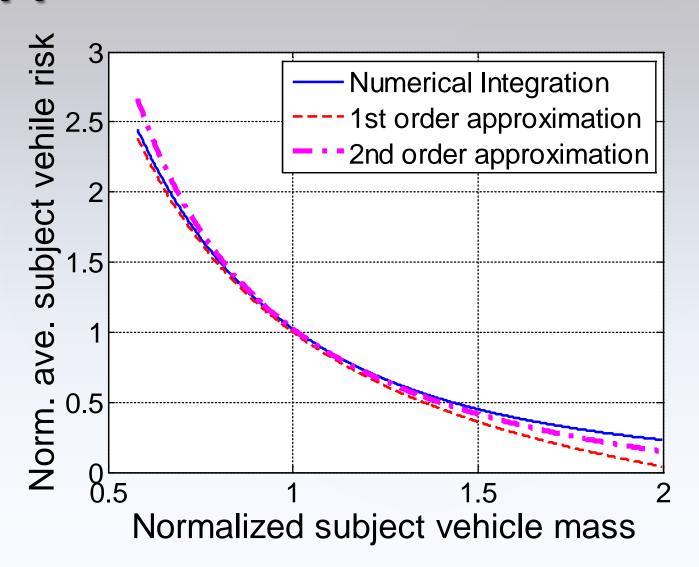
Stability of Regression Result



Stability of Regression Result



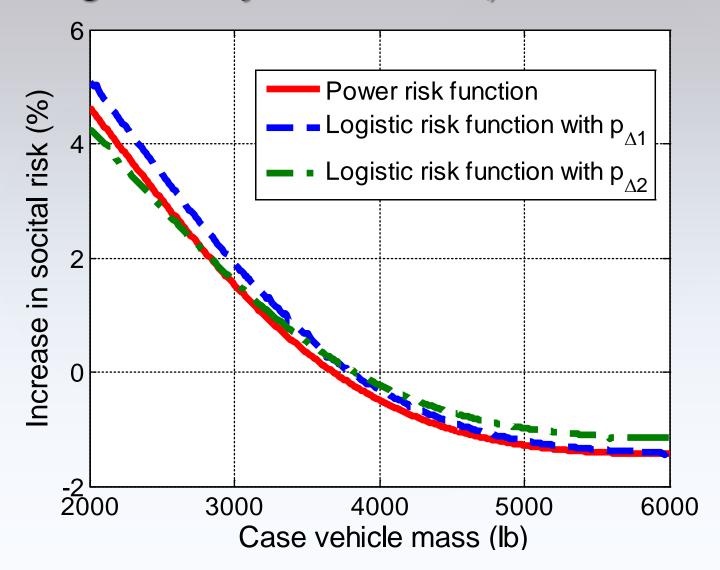
Application: from ratio to risk



Closing Velocity Distribution

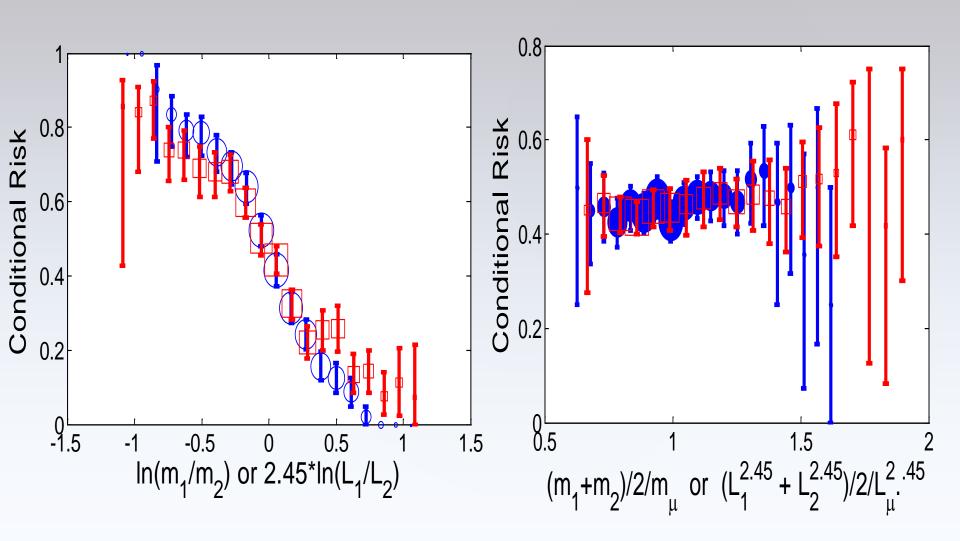
$$\overline{\overline{r}}_{1}(m_{1}) = k \iint \frac{1}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{\Delta}{2v_{0p}}\right)^{\mu} \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{m} \ (m_{2}) d\Delta dm_{2}}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{\Delta}(\Delta) \cdot p_{\Delta}(\Delta)}{1 + \left(\frac{2m_{2}}{m_{1} + m_{2}}\right)^{\mu}} \frac{p_{\Delta}(\Delta) \cdot p_{\Delta}(\Delta) \cdot p_{\Delta}(\Delta)}{1$$

Fleet Risk Sensitivity to Risk Function (and Closing Velocity Distribution)

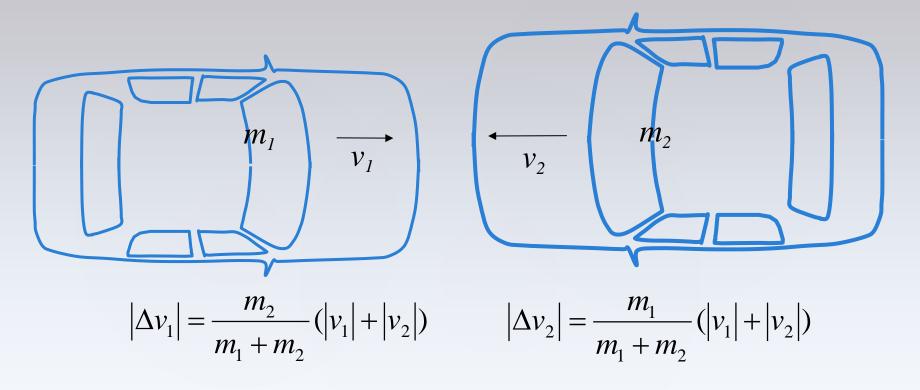


Risk increase per 100 lb of decrease in subject vehicle mass

Discussion: Mass vs. length

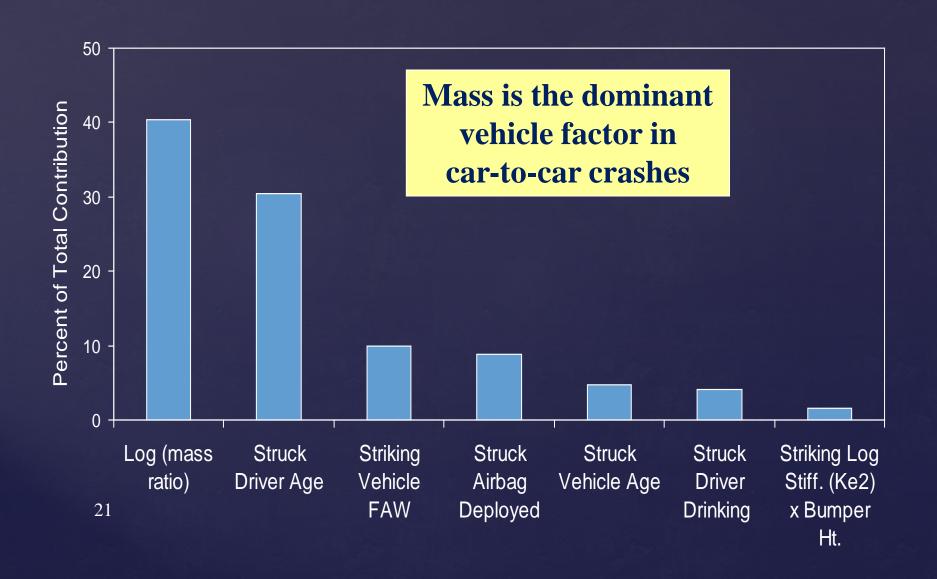


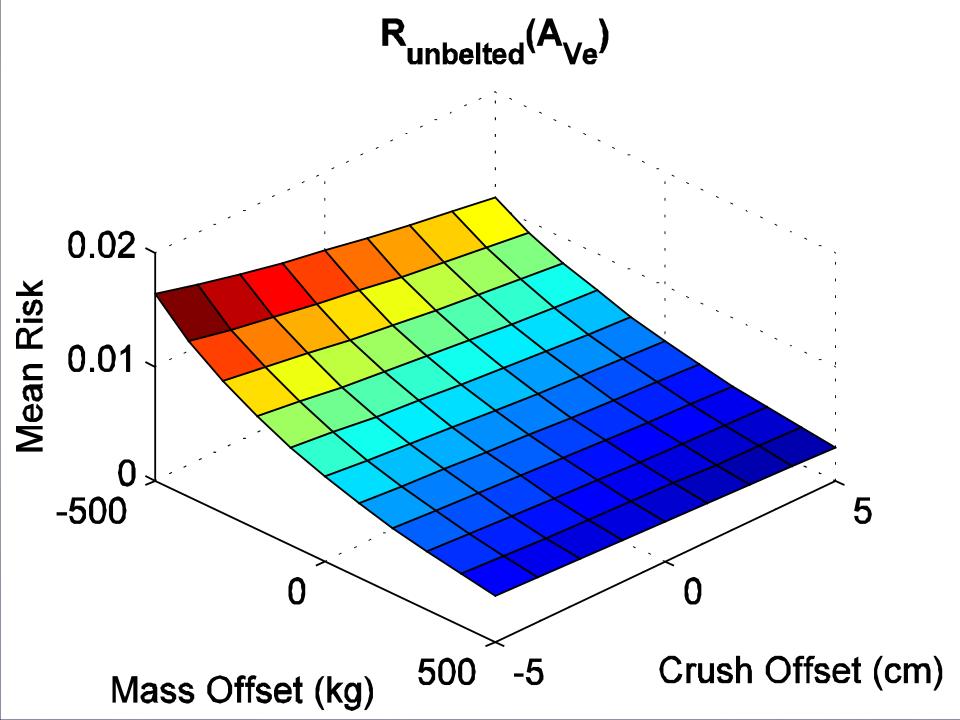
Effect of Mass on Velocity Change



For
$$m_1 = 2500 \, lb$$
, $m_2 = 3500 \, lb$, and $|v_1| + |v_2| = 50 \, mph$, $\Delta v_1 = 29.2 \, mph$, $\Delta v_2 = 20.8 \, mph$.

Relative Contribution of Variables to Odds of Fatality Car-to-Car, Frontal Crashes





Example of Kahane [2012] Analysis Result

100-lb Mass Reduction Cars < 3,106 lb, Holding Footprint Constant

Crash Type	Point estimate (%)	95% Confidence bounds (%)	
		Lower	Upper
1st-event Rollover	-2.16	-4.65	0.33
Hit fixed object	-0.68	-2.40	1.05
Hit pedestrian/bike/motorcycle	1.95	0.07	3.84
Hit heavy vehicle	2.14	-1.26	5.54
Hit car-CUV-minivan < 3,082 lb	0.68	-1.61	2.98
Hit car-CUV-minivan > 3,082 lb	0.37	-2.44	3.17
Hit truck-based LTV < 4,150 lb	1.10	-1.98	4.18
Hit truck-based LTV > 4,150 lb	5.97	3.18	8.76
All others	1.85	-0.38	4.08

V-V Crashes: [EM1 Conservation of Momentum EM2] → r(m; ...)

CE + Fully plastic:
$$v_1=\frac{m_2}{m_1+m_2}\Delta$$
 & $v_2=\frac{m_1}{m_1+m_2}\Delta$

Sub. into EM1:
$$r_1 = \left(\frac{2m_2}{m_1 + m_2}\right)^{\alpha} \left(\frac{\Delta}{2v_{0p}}\right)^{\alpha} \& r_2 = \left(\frac{2m_1}{m_1 + m_2}\right)^{\alpha} \left(\frac{\Delta}{2v_{0p}}\right)^{\alpha}$$

$$\Rightarrow \frac{r_1}{r_2} = \left(\frac{m_2}{m_1}\right)^a \iff \frac{r_1}{r_2} = k_{D_{VTYP}} \cdot k_{D_{ESC}} \cdot k_{D_{Belt}} \cdot k_{D_{Age}} \left(\frac{m_2}{m_1}\right)^\beta$$

$$r_1(m_1, m_2, \Delta; \beta, v_{0p}; ...) = k_D \left(\frac{2m_2}{m_1 + m_2}\right)^{\beta} \left(\frac{\Delta}{2v_{0p}}\right)^{\beta}$$

Form from EM1; mass brought in with Conservation of momentum; β (& other effects) from EM2.

Fleet average risk

Averaged over crash vel. dist. & other vehicle mass -> subject vehicle Ave. Risk

$$\bar{\bar{r}}_1(m_1) = k \iint \left(\frac{\Delta}{2v_{0p}}\right)^{\alpha} \left(\frac{2m_2}{m_1 + m_2}\right)^{\alpha} p_{\Delta}(\Delta) p_m(m_2) d\Delta dm_2$$

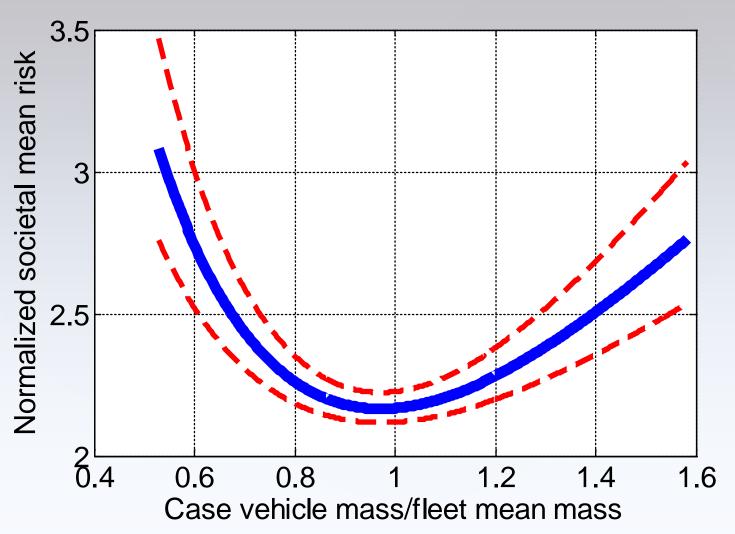
$$= kC \cdot \int \left(\frac{2m_2}{m_1 + m_2}\right)^{\alpha} p_m(m_2) dm_2$$

Sum of two vehicles → "societal risk"

$$\bar{\bar{s}}(m_1) \triangleq \bar{\bar{r}}_1(m_1) + \bar{\bar{r}}_2(m_1) \\ = C \int \left\{ \left(\frac{2m_1}{m_1 + m_2} \right)^{\alpha} + \left(\frac{2m_2}{m_1 + m_2} \right)^{\alpha} \right\} p_m(m_2) dm_2$$

Next: Evaluate with given $p_m(m)$; compare with Kahane result

Result – "societal risk", given subject vehicle



Power function risk (EM1); Risk exponent (3.83+-0.26) \rightarrow [3.24 4.34] 95% CI; $p_m(m)$ Independent of $p_{\Lambda}(\Delta)$ (therefore normalized)

Reduction of Kahane Result

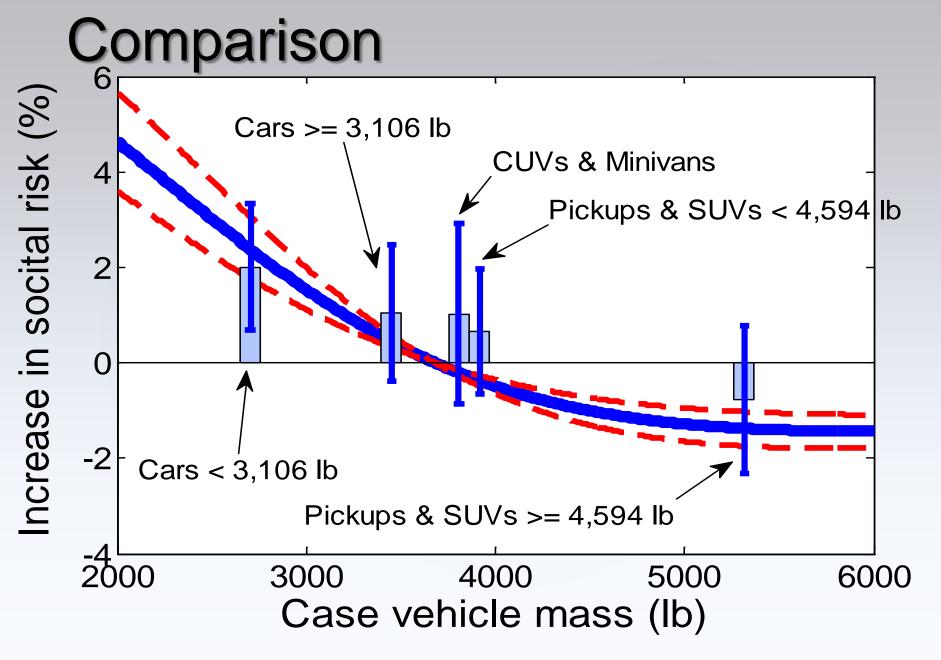
Kahane result mainly used in the context of:

Percent increase in societal fatality rate per 100 lb decrease in subject vehicle mass

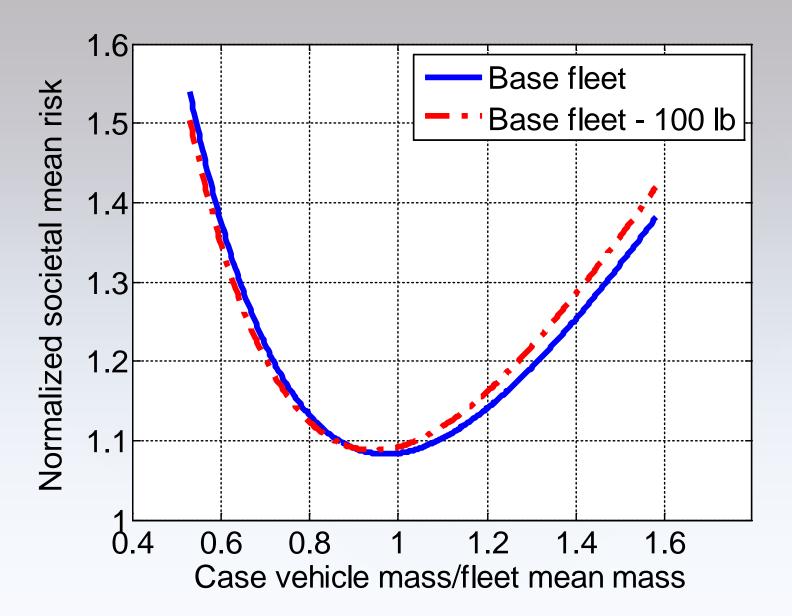
$$\bar{s}(m) = C \int \left\{ \left(\frac{2m}{m + m_o} \right)^{\alpha} + \left(\frac{2m_o}{m + m_o} \right)^{\alpha} \right\} p_m(m_o) dm_o$$

$$RRR(m) \triangleq \frac{1}{\bar{s}(m)} \frac{d\bar{s}(m)}{dm}$$

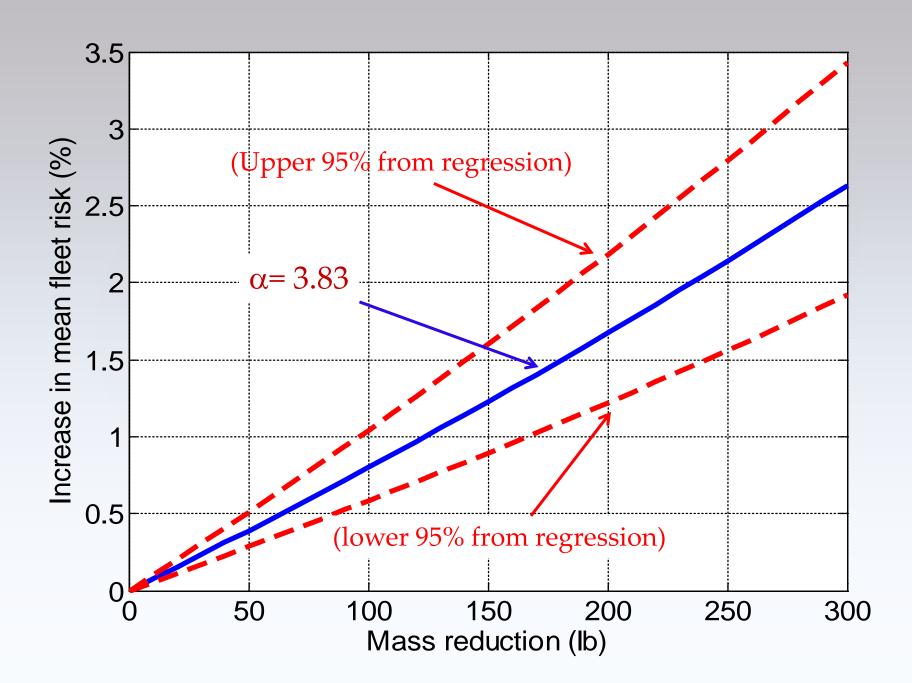
"Relative Rate of change of societal Risk for subject vehicle of mass m



Increase in societal risk for 100 lb case vehicle mass reduction



Note: Case vehicle for both fleets normalized by based fleet mean mass



- A fleet fatality risk model has been established (again). Assuming
 - Conservation of momentum, energy
 - r(v) empirical relationship(accident data)
 - Current distribution of vehicle parameters
- Then
 - Model societal risk change due to mass change comparable to Kahane 2012 result
 - Consistent r_1/r_2 v.s. m_1/m_2 (accident data)

- Kahane's result appears to be in essence a manifestation of the two relationships: velocity (risk) and C.M.
- Model uncertainty examined via risk exponent; risk functional form (& velocity distribution); Result: model is stable.
- For the observed variation mass has a greater effect on risk than other parameters, such as stiffness, crush, wheel base..etc.

- For Front-Front crashes:
 - Mass ratio risk exponent ~ 3.8
 Consistent with existing data.

 Reflection of conservation of momentum and velocity risk
 - Belted: ~0.3x relative to unbelted
 - 10-years age increase above the 30-38 year range (lowest fatality risk): ~ 1.5x

- For Front-Left crashes:
 - R_bullet: R_target ~= 1:8, when all other parameters are equal.
 - Mass ratio risk exponent ~=
 4.2, slightly larger
 - Driver age was found to influence driver fatality risk

- The effect of Mass on societal risk:
 - Risk from Crash velocity
 - Conservation of Momentum
 - -Parameter distribution: mass, stiffness, available, size crush...etc. Dictates results
- The regression result may be used to model risk.

Acknowledgements

The authors would like to thank:

- Dr. Charles Kahane of NHTSA for providing and explaining the FARS data set
- Ms. Fariba Famili of Chrysler Group LLC and Mr. Charlie Campton of UMTRI for providing the supplemental information on the FARS data
- Ms. Jeya Padamanaban for all the analysis she has generated over time
- Dr. Jianping Wu of Chrysler Group LLC for his insights