

The Role of Body-in-White Weight Reduction in the Attainment of the 2012-2025 US EPA/NHTSA Fuel Economy Mandate

Dr. Blake Zuidema Automotive Product Applications – Global R&D May 13, 2013

The 2025 Challenge

Source: NHTSA Volpe Transportation Research Center CAFÉ Compliance and Effects Modeling System

BIW weight reduction is at or near the top of list for both magnitude and cost effectiveness of fuel economy improvement

 $\ensuremath{\mathbb{C}}$ 2013 Arcelor Mittal USA LLC All rights reserved in all countries

The Key Questions for Steel

- How much weight reduction can Steel provide?
- How much weight reduction is needed to get to 54.5 MPG?
 - Can we get to 54.5 MPG with Steel?
- Which material gets us to 54.5 MPG at the lowest cost?
- Which material gets us to 54.5 MPG with the lowest carbon footprint?

How much weight reduction can Steel provide?

The importance of geometry optimization in achieving maximum weight reduction: Phase 2 Report

- 2-G = Grade and Gauge optimization, typical of a carry over-constrained design
- 3-G = Geometry, Grade, and Gauge optimization, typical of a "clean sheet" design

FSV achieved a **29% BIW weight reduction** (2009 baseline, 39% from the 1996 Taurus PNGV baseline) using 3-G geometry, grade, and gauge optimization with today's advanced steel grades

How much weight reduction can Steel provide?

How much weight reduction can steel provide?

Work beginning on third generation AHSS

Lotus ICCT Venza Phase 1 Study

- 2-G Approach
- 2009 Toyota Venza baseline

	Baseline	Low Dev	% WR
Body	382.50 kg	324.78 kg	
Closures	143.02 kg	107.61 kg	
Bumpers	17.95 kg	15.95 kg	
Total	543.47 kg	448.34 kg	17.5%

Steel Grade Composition

Grade	Baseline	Low Dev
Mild	80%	7%
IF MS	12%	4%
DP490		13%
DP500		11%
DP590	8%	31%
DP780		33%
DP980		1%

- 18% BIW weight reduction
- 21% vehicle weight reduction
- 20% BIW cost increase
- 3% net vehicle cost DECREASE

Steel Grades in Lotus/ICCT Venza

All steel grades are commercially available today

^{© 2013} ArcelorMittal USA LLC All rights reserved in all countries

FEV Venza Phase 2 Study

- 2-G Approach
- 2010 Toyota Venza baseline

	Baseline	Phase 2	% WR
Body	386.2 kg	332.7 kg	
Closures	135.3 kg	118.3 kg	
Bumpers	7.5 kg	7.1 kg	
Total	528.9 kg	458.1 kg	13%

- 13% BIW weight reduction
- 18% vehicle weight reduction
- \$3.33/kg weight saved in BIW

Steel Grade Composition

Grade	Base	Phase 2
Mild	80%	12%
IF MS	12%	12%
HSLA 350		6%
HSLA 550		8%
DP500		10%
DP590	8%	34%
DP780		6%
PHS 1370		8%
AI		4%

Steel Grades in FEV/ICCT Venza

All steel grades are commercially available today

^{© 2013} ArcelorMittal USA LLC All rights reserved in all countries

EDAG NHTSA Accord Study

Steel Grade Composition

- 3-G Approach
- 2011 Honda Accord baseline

	Baseline	Optimized	% WR		Grade	Base	Opt.
Body	328 kg	255 kg			Mild	52	3%
Total	328 kg	255 kg	22%		BH 210	2	4%
					BH 280		5%
					HSLA 350	4	6%
				DP 500		6%	
 22% BIW weight reduction 			DP 590	42	7%		
 22% vehicle weight reduction 			DP 780		10%		
 \$2.02/kg weight saved in BIW 		DP 980		12%			
			MART 1200		12%		
					CP 1200		15%
					PHS 1370		19%

Steel Grades in EDAG/NHTSA Accord

All steel grades commercially available today

^{© 2013} ArcelorMittal USA LLC All rights reserved in all countries

How much weight reduction can Steel provide?

How much weight reduction can Steel provide?

How much weight reduction is needed to get to 54.5 MPG?

Publically-available models for assessing fuel economy improvement potential

Source	Model	
US EPA	Data Visualization Tool	
US EPA	Alpha Model	
US EPA	Omega Model	
US NHTSA Volpe Transportation Research Center	Cafe Compliance and Effects Modeling System ("Volpe Model")	Used for this study

Building a Credible Model Primary BIW Weight Reduction

Perimeter = BIW structure, closures, bumpers, frame/engine cradle
 Including box in pickups

•BIW weight reduction potentials from industry claims

• Primary BIW weight reduction potentials relative to a 2009 baseline:

- **-Conv.** = 0% (No BIW weight reduction)
- -AHSS = 15% (2G –with today's grades)
 -AHSS = 20% (2G –with emerging grades, 3G with today's grades)
 -AHSS = 25% (3G with emerging grades)

-Aluminum = 40% (Achievable with 2025 technologies)

-CFRP = 50% (Achievable with 2025 technologies)

 $\ensuremath{\mathbb{C}}$ 2013 Arcelor Mittal USA LLC $% \ensuremath{\mathsf{All}}$ rights reserved in all countries

Other Key Input Assumptions

- Secondary Mass Savings 35% of Primary
- Weight Elasticity of FE 7% for each 10% CW reduction
- BIW Weight 30-33% of CW
- Non-BIW WR Zero and 7.2% CW reduction (per EDAG)
- Over-Cost per industry claims
- Alt. Power Train Penetrations per literature forecasts
- Power Train Improvement Potentials
 - Reduced by up to 20% from EPA assumption to determine increased role of WR if power trains do not deliver the improvements expected

How much weight reduction is needed to get to 54.5 MPG?

2025 Fuel Economy Gap Results Without Non-BIW Weight Reduction

2025 Fuel Economy Gap Results With Non-BIW Weight Reduction

Which material gets us to 54.5 MPG at lowest cost?

All weight reduction from BIW

With non-BIW weight reduction

Under scenarios where Steel gets the 2025 fleet to 54.5 MPG, it does so at a lower cost than if Aluminum or Carbon Fiber were used

Which material gets us to 54.5 MPG at the lowest carbon footprint?

With no use phase CO2 emissions advantage, aluminum and carbon fiber vehicles will present a larger lifetime

carbon footprint than AHSS vehicles

Mid-Size ICE-G at 48.5 MPG

Greenhouse Gas from Production (in kg CO₂e/kg of material)

Footnotes:

- All steel and aluminum grades included in ranges
- Aluminum data global for ingots; European only for process from ingot to final products.

40

30

Key Conclusions

- NHTSA's Volpe Model shows that today's commercial and emerging advanced steel grades provide sufficient weight reduction to, when combined with anticipated improvements in power train technologies, get the 2025 US light vehicle fleet to 54.5 MPG
- Steel gets the 2025 fleet to 54.5 MPG at a lower cost than if aluminum or carbon fiber were used
- Steel gets the 2025 fleet to 54.5 MPG at a lower total life cycle carbon footprint than if aluminum or carbon fiber were used

Thank You

• For more information on this study, contact:

Dr. Blake K. Zuidema Director, Automotive Product Applications ArcelorMittal Global Research and Development

(248) 304-2329 (Southfield, MI office) blake.zuidema@arcelormittal.com

Backup Slides

The 2025 Challenge

The 2012-2025 US NHTSA Fuel Economy Rules:

- 2012-2025 standards are based on each vehicle's footprint
- 54.5 is the sales volume averaged-fuel economy of the EPA/NHTSA's projected 2025 fleet

How much weight reduction can Steel provide?

AHSS weight reduction potentials used in this study:

Scenario	AHSS Weight Reduction
2-G with today's grades	15%
2-G with emerging grades 3-G with today's grades	20%
3-G with emerging grades	25%

The Volpe Model

US Department of Transportation National Highway Traffic Sofety Administration	NHTSA www.nhtsa.gov
DOT HS [Update]	December 2011
2017 – 2025 Corporate Average Fuel Economy Compliance and Effects Modeling System Documentation	
This document is available to the public through the National Te	chnical Information Service, Springfield, VA 22181

Source: http://www.nhtsa.gov/Laws+&+Regulations/CAFE+-+Fuel+Economy/CAFE+Compliance+and+Effects+Modeling +System:+The+Volpe+Model

- NHTSA Volpe Transportation Research Center - 2017-2025 CAFE Compliance and Effects Modeling System ("Volpe Model")
 - Used by EPA/NHTSA to set 2012-2016 and 2017-2025 CO₂/Fuel Economy standards
 - Assesses the cost and improvement potential of numerous fuel economy technologies, including weight reduction
 - ArcelorMittal has consulted with NHTSA officials to verify proper set-up, operation, and interpretation of the Volpe Model

CAFE Model	_ _ _ _ ×
File View Help	
🔅 Session 1	
Scenario: 1. 54.5 Mpg Standard Model Year: 2025	
Manufacturer: Merged Fleet pSTND STND CAFE Credits Fines Costs	
RC1: 60.0 60.0 61.8 5 m 0 11 b	
RC2:	
00:01:34	
Modeling Completed!	11/08/11 17:09:26

Building a Credible Model Secondary Weight Reduction

 Secondary weight reduction potentials from fka/Univ. of Michigan study: -35% of primary weight reduction

	Mass influence coefficients based on simple (one-step) secondary reduction					
Subsystem	fka Analytical U of M Regression Method Method					
Body Structure	0.0961	0.1267				
Bumpers	n/a	0.0347				
Suspension	0.0495	0.0548				
Brakes	0.0367	0.0238				
Powertrain	0.1063	0.1169				
Fuel System	0.0101	0.0257				
Steering	0.0070	0.0086				
Tires/Wheels	0.0358	0.0497				

Building a Credible Model Weight Elasticity of Fuel Economy

- •Rate at which fuel economy goes up as vehicle weight goes down
- •Without power train re-sizing:

-2-4% MPG improvement for each 10% reduction in total vehicle weight

- With power train re-sizing: -6-8% MPG improvement for each 10% reduction in total vehicle weight
- Elasticity chosen for this study:

Assumes sufficient weight reduction to justify power train re-sizing
7% MPG improvement for each 10% reduction in total vehicle weight

Building a Credible Model BIW Contribution to Vehicle Weight

• Sheet metal weights from A2MAC1 database for representative vehicle segments

BIW Data - Unadjusted

Building a Credible Model Light Weighting Material Over-Cost

•Using industry claims for over-cost:

- -AHSS = \$0.30/pound of weight saved
- -Aluminum = \$2.71/pound of weight saved
- -CFRP = \$4.87/pound of weight saved

Building a Credible Model Alternative Power Train Penetration

Building a Credible Model Power Train Application

• Power trains allowed for application:

Class	BEV	PHEV	HEV	Diesel
Subcompact PC	Yes	Yes	Yes	Yes
Subcompact Perf PC	Yes	Yes	Yes	Yes
Compact PC	Yes	Yes	Yes	Yes
Compact Perf PC	Yes	Yes	Yes	Yes
Midsize PC	No	Yes	Yes	Yes
Midsize Perf PC	No	Yes	Yes	Yes
Small LT	Yes	Yes	Yes	Yes
Large PC	No	No	Yes	Yes
Large Perf PC	No	No	Yes	Yes
Minivan LT	No	No	Yes	Yes
Midsize LT	No	No	Yes	Yes
Large LT	No	No	Yes	Yes

Building a Credible Model Other, Non-BIW Light Weighting Sources

EDAG 2012 report to NHTSA

Baseline Vehicle – 2011 Honda Accord (2008 launch), 1480 kg curb weight

System	Base Weight (kg)	Weight Reduction (kg)	%	Net Cost Increase (\$)
Front Suspension	81.33	39.90	49%	-\$11.00
Rear Suspension	53.20	13.27	25%	\$43.87
Wheels	93.86	14.24	15%	\$8.80
Instrument Panel	31.90	9.45	30%	\$15.43
Seats	66.77	20.03	30%	\$96.84
Interior Trim	26.26	3.03	12%	\$0.00
A/C Ducting	10.30	2.60	25%	\$0.00
Wiring	21.70	4.30	20%	\$0.00
Total		106.82		\$153.94

Together, these technologies have the potential to further reduce the full vehicle curb weight by an additional 7.2%, and gain an additional 5.04% improvement in fuel economy, at a cost of \$0.65/lb weight saved

Source: Mass Reduction for Light-Duty Vehicles for Model Years 2017–2025, Report No. DOT HS 811 666, Prepared by Electricore, Inc, EDAG, Inc. and George Washington University for NHTSA under DOT Contract DTNH22-11-C-00193, August, 2012

Building a Credible Model Other, Non-BIW Light Weighting Sources

EDAG 2012 report to NHTSA

Baseline Vehicle - 2011 Honda Accord (2008 launch), 1480 kg curb weight

System	Base Weight (kg)	Weight Reduction (kg)	%	Net Cost Increase (\$)
Front Susper	Some of these weight \$43.87			
Rear Suspen				
Wheels	reductions may be offset\$8.by weight gains to\$15.address safety or\$96.\$0.			\$8.80
Instrument Pa				\$15.43
Seats				\$96.84
Interior Trim				\$0.00
A/C Ducting	consumer preferences			\$0.00
Wiring	21.70	4.50	2070	\$0.00
Total		106.82		\$153.94

Together, these technologies have the potential to further reduce the full vehicle curb weight by an additional 7.2%, and gain an additional 5.04% improvement in fuel economy, at a cost of \$0.65/lb weight saved

Source: Mass Reduction for Light-Duty Vehicles for Model Years 2017–2025, Report No. DOT HS 811 666, Prepared by Electricore, Inc, EDAG, Inc. and George Washington University for NHTSA under DOT Contract DTNH22-11-C-00193, August, 2012

Building a Credible Model Power Train Improvement Potentials

- EPA has made certain assumptions regarding the magnitude to which various power train technologies will improve fuel economy and of what these improvements will cost the OEM's
- The OEM's will argue that the EPA has over-estimated their improvement potential and under-estimated their cost

The Volpe Model power train improvement coefficients were reduced by 0 to 20% in 5% increments to assess the impact of lower improvements on weight reduction requirements

Building a Credible Model Summary of Major Input Variables

Parameter	Range Studied
BIW Weight Reduction	 - 0% (No BIW WR) - 15%, 20%, 25% (AHSS) - 40% (AI) - 50% (CFRP) along with corresponding non-BIW secondary weight savings
Non-BIW Weight Reduction	- 0% (All WR from BIW)- 7.2% vehicle weight reduction
EPA Non-WR Fuel Economy Technology Improvement Coefficient Reduction	- 0% (No Reduction) - 5% - 10% - 15% - 20%

Can we get to 54.5 MPG with Steel?

of the "realistic" scenarios considered

© 2013 ArcelorMittal USA LLC All rights reserved in all countries

ArcelorMittal

A Note on Timing

- Cars launched in 2021 will still be produced in 2025 and will need 2025 weight reduction technology
- Cars launched in 2021 will start being designed in 2018
- For 2025 new AHSS to get designed into cars in 2018, they must be commercial

Given normal investment justification and construction lead times, R&D to define proper solutions to 2025 gaps must be complete by 2014, so that products can be commercialized by 2018