

The Effects of Motor Vehicle Fleet Daytime Running Lights (DRLs) on Motorcycle Conspicuity

Stephanie Binder, Michael Perel National Highway Traffic Safety Administration

HONDA/NHTSA RESEARCH STAFFS MEETING DECEMBER 6, 2005

- Motorcycles are often involved in crashes in which the other driver turns left in the motorcycle's path
- Two hypotheses for this crash configuration: poor motorcycle conspicuity, and poor speed-spacing judgment of other drivers
 - Speed-spacing judgment: driver's accuracy at estimating closing rate of approaching vehicle
 - Conspicuity: "...the degree to which an object can be distinguished from an environmental display, that is its visual prominence due to its physical characteristics¹"

1. Hancock, P.A., Wulf, G., Fasnacht, P., and Rahimi, M. (1991). Investigations into vehicle conspicuity: Car-driver behavior during differing driving maneuvers. *Accident Analysis and Prevention, 22*(3), 274-282.

- This study included two evaluations of several types of motorcycle DRLs:
 - Participant's judgments of last safe distance to turn left in front of an oncoming motorcycle on a test track
 - Gap size of unalerted driver's left turn in front of test motorcycle under different levels of fleet DRL use

Test Track Evaluation

- Speed-spacing Judgment
- Goal: To investigate how conspicuity treatments affect drivers' perceptions of last safe gap to turn left in front of an oncoming motorcycle
- Test Set-up
 - Test track: over 275 m of straight roadway
 - Twenty-five subjects, none were motorcycle riders
 - Subjects sat in stationary vehicle, pressed button at "last safe gap." Subjects also subjectively ranked treatment conspicuity

Test Track Evaluation

Results: Gap Distance and Subjective Ranking

DRL Treatment	Distance (m)	Ranking
Reference Car	95.0*	1 st
Driving Lights with Lower Beam	84.4	2 nd
Lower Beam	83.9	7 th
Reduced Intensity Upper Beam	83.7	3 rd
Fork Lights with Lower Beam	81.4	8 th
Dual Lower Beams	81.4	4 th
Enhanced Parking Lamps with Lower Beam	81.2	5 th
Modulating Lower Beam	79.1*	6 th

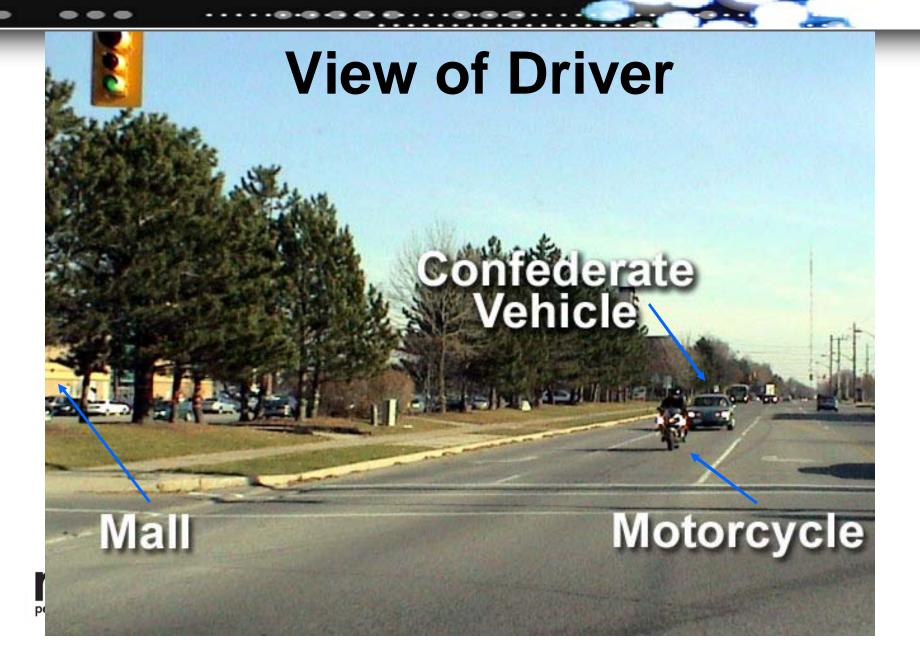
- Results: no motorcycle treatment(s) was clearly better than others
 - It is expected that some of the treatments could be enhanced to show greater performance, e.g., brighter fork lights
- The following treatments were selected for on-road study based on practical considerations:
 - Modulating Lower Beam
 - Driving Lights
 - Reduced Intensity Upper Beam
 - Lower Beam (baseline)

Lower Beam (baseline)

Modulating Lower Beam

Reduced Intensity Upper Beam

Driving Lights with Single Lower Beam



- Goals: To determine whether the level of fleet DRL use affects motorcycle conspicuity, which treatments are most effective at each level
- Methodology
 - Dual approach: measure gap spacing for unalerted drivers turning left across path of test motorcycle, then interview observed drivers
 - 438 drivers in US, 448 drivers in Canada
 - Also recorded gap afforded to passenger fleet (baseline)
 - Tests performed in US site (Buffalo, NY) and Canadian site (London, OT)
 - Control background for turn with confederate vehicle (DRL, no DRL)

On-road Evaluation

- Goal: To determine whether the level of fleet DRL use affects motorcycle conspicuity, which treatments are most effective at each level
- Methodology
 - Dual approach: measure gap spacing for unalerted drivers turning left across path of test motorcycle, then interview observed drivers
 - 438 drivers in US, 448 drivers in Canada
 - Also recorded gap afforded to passenger fleet (baseline)
 - Tests performed in US site (Buffalo, NY) and Canadian site (London, OT)
 - Control background for turn with confederate vehicle (DRL, no DRL)

- We are currently conducting additional analyses of the data
- The full report will be available on the NHTSA website early 2006

