The Challenges of Out of Position Occupants for Passive Safety in Automated Vehicles

> SAE Government Industry Meeting January 24-26, 2018

Bronislaw (Bronek) Gepner Hongnan Lin Taotao Wu Jason Forman Matt Panzer





## Background

- Induced a change in <u>occupant position</u>
- Uncertainty in the interaction between the occupant, the <u>restraints</u>, and <u>vehicle</u> <u>interior</u>\*









## **Objectives**

- 1. Examine existing <u>crash investigation cases</u> for crashes that involve occupants that were <u>not in a standard automotive seating posture</u>.
- 2. Evaluate the suitability of the existing ATD and human body models to <u>evaluate the kinematics and injury risk for occupants</u> in other than traditional automotive seating postures.







## **Vehicle Model**

- 2012 Toyota Camry (Reicher et al., 2016).
  - Center for Collision Safety and Analysis (GMU)
  - 2.25M finite elements
  - Validated using 10 different full vehicle crash tests
- Major modifications
  - Seat recline angle (3 positions)
  - Seat orientation (5 positions)
  - Vehicle interior



orientation

2012 Toyota Camry



## **Research Moving Deformable Barrier (RMDB)**

- Designed for oblique and small overlap (Saunders et al., 2011)
- Easy to parameterize the multiple impacts
  - 8 crash directions evaluated
- Better simulation stability compared with rigid wall







## **Restraints**

- Airbag models
  - From restrain supplier
  - Passenger airbag (PAB)
  - Curtain airbag (CAB)
  - Side airbag (SAB)
  - Trigger time t = 0ms







## **Occupant Models**

Tissue-level criterion



GHBMC M50-0 (detailed)

#### **Virtual instrumentation**







## Occupant, Seatbelt Integration

• THOR

**Upright seat (25deg)** 

Semi-reclined seat (40deg)













🖈 😓







## **Instrumentation and Injury Assessment**

#### Capability of injury assessment for THOR, GHBMC M50-OS and M50-O models

| Injury Criteria (reference)                                      | THOR | M50-OS | M50-O |
|------------------------------------------------------------------|------|--------|-------|
| HIC <sub>15</sub> (Versace, 1971)                                |      |        |       |
| BrIC (Takhounts, 2013)                                           |      |        |       |
| N <sub>ii</sub> (Eppinger, 1999)                                 |      |        |       |
| cN <sub>ij</sub> (TBD)                                           |      |        |       |
| NIC (Bostrom, 1998)                                              |      |        |       |
| Shoulder Load (Petitjean, 2012)                                  |      |        |       |
| Clavicle Load (Qi, 2014)                                         |      |        |       |
| Multi-point Thoracic Injury Criterion or PCA (Crandall, 2013)    |      |        |       |
| Rib Strain (TBD)                                                 |      |        |       |
| Abdomen Compression (Kent, 2008)                                 |      |        |       |
| Lateral Shoulder, Chest and Abdomen deflection (Petitjean, 2012) |      |        |       |
| Lumbar Spine Load (TBD)                                          |      |        |       |
| ASIS Load (TBD)                                                  |      |        |       |
| Sacral Iliac Load (TBD)                                          |      |        |       |
| Acetabulum Load (Martin, 2011)                                   |      |        |       |
| Pubic Symphysis Load (Petitjean, 2012)                           |      |        |       |
| Femur Axial Load (Kuppa, 2001)                                   |      |        |       |
| Revised Tibia Index (Kuppa, 2001)                                |      |        |       |
| Distal Tibia Axial Force (Kuppa, 2001)                           |      |        |       |
| Proximal Tibia Axial Force (Kuppa, 2001)                         |      |        |       |

**Green**: The default model <u>has the</u> <u>required instrumentation</u> to output the injury metric;

**Yellow**: The default model <u>does not</u> <u>have the required instrumentation</u> to output the injury metric, but we added instrumentation to calculate the injury criteria

**Red**: The default model <u>is not capable</u> <u>of predicting</u> the injury metric for current modeling method;





## **Parametric Simulation Suite**







### **Post-processing-Data structure**







## **Automated Vehicle Evaluation Plan**

- Study A: Effects of reclining the seat
- Study B: Effects of seat orientation
- Study C: Effects of a turned occupant
- Study D: Effects of having an occupant sleeping on the belt path
- Study E: Effects of having an occupant seated far back from the instrument panel











## **Simulation Summary**

- **175** full vehicle simulations + positioning simulations
- 800,000 core hours of CPU time to run (11 years / 8core machine)
- Output of 477 x 175 channels of instrumentation data
- Output of **3 x 175** videos of the simulations

## **Termination Results Summary**

- 158 of 175 simulations terminated successfully
- Of the 17 simulations in error
  - 7/67 for THOR,
  - 3/95 for M50-OS,
  - 7/13 for M50-0.

| Error report   |                  |  |
|----------------|------------------|--|
| Occupant model | Part responsible |  |
| THOR           | Abdominal block  |  |
|                | Jacket           |  |
|                | Upper AB Foam    |  |
| M50-OS         | Thigh            |  |
|                | Sacroiliac joint |  |
| M50-O          | Pelvis           |  |
|                | Neck muscle      |  |
|                | Foot skin        |  |
|                | Abdomen muscle   |  |





## **Outstanding Issues for M50-OS**

• Unrealistic flesh sliding off of the pelvis





Reclined M50-OS, standard seatbelt, frontal impact

Note:

Substantial shear force resulting in the sliding over and around the pelvis. This has a substantial effect on submarining response.





## **Outstanding Issues for M50-OS**

- Unrealistic internal organ response and flesh response
- Failure to maintain internal cavity volume



Semi-reclined M50-OS, standard seatbelt, rear impact

Note:

- M50-OS model lacks a continuity definition between flesh, skeleton and underlying organs.
- Pelvis flesh stuck in the crease between seat cushion and back deformed a lot.





Positioning

Stability

### Lessons Learned (simulation study)

- Positioning seat in vehicle
- Occupant fit for non-frontal facing

Interference issues – non-trivial

- ► GHBMC-M50 spine too stiff for natural settling
- **GHBMC-M50-O** is stiffer than M50-OS during positioning
- ▶ THOR cannot go fully reclined (only ~40 deg) Dummy design issue
- ► GHBMC\_M50\_OS abdomen causing negative volume
- Unrealistic internal cavity organs' connection for GHBMC\_M50\_OS
- **•** THOR face flesh deforms substantially during simulation
- ▶ M50-OS is more stable than THOR FE
  - Non reinforced seatback deforms under rear impact





### Forward-facing, upright seat with standard seat belt, frontal impact

# Comparison between M50-OS and M50-O



M50-OS

- Neck flexion →M50-O has larger neck flexion compared with M50-OS.
- Pelvis kinematics→M50-OS slides forward, tilts back more than M50-O.







# Forward-facing, upright seat with standard seat belt, frontal impact

- M50-OS has larger flexion in the thoracic spine, and engages PAB
- M50-OS engages knee bolster earlier (initial position and longer thighs)
- THOR does not engage PAB well, and has large cervical spine flexion as a result
- THOR pelvis has less motion than M50-OS
- THOR head hits roof at windshield

Loadcase 1 : Time = 0.000000 : Frame 1 M50-OS\_Upright\_0\_Std\_0\_RMDB



Loadcase 1 : Time = 0.000000 : Frame 1 THOR\_Upright\_0\_Std\_0\_RMDB







# Forward-facing, semi-reclined with integrated belt, frontal impact

# Comparison between M50-OS and M50-O



 Neck flexion →M50-O has larger neck flexion compared with M50-OS.

 Pelvis kinematics→M50-OS slides forward, tilts back more than M50-O.







# Forward-facing, semi-reclined with integrated belt, frontal impact

- THOR semi-reclined: 40°
- M50-OS semi-reclined: 45°
- M50-OS engages knee bolster earlier (initial position and longer thighs)
- Neither model engages PAB well
- THOR has larger cervical spine flexion compared to M50-OS
- THOR pelvis has less motion than M50-OS

Loadcase 1 : Time = 0.000000 : Frame 1 M50-OS\_Semirecline\_0\_Int\_0\_RMDB



Loadcase 1 : Time = 0.000000 : Frame 1 THOR\_Semirecline\_0\_Int\_0\_RMDB







### Forward-facing, reclined seat with integrated belt, frontal impact

# Comparison between M50-OS and M50-O



- Neck flexion →M50-O has larger neck flexion compared with M50-OS.
- Pelvis kinematics→M50-OS slides forward, tilts back more than M50-O.





### 🔂 📩 🗛

## Pelvis Motion and Submarining Response - M50-OS vs M50-O

**Reclined seat (60deg)** 

#### Semi-reclined seat (45deg)

#### **Upright seat (25deg)**





**M50-OS** 











## Pelvis Motion and Submarining Response - M50-OS vs M50-O vs THOR

#### Semi-reclined seat (45deg)



#### Upright seat (25deg)

1. LS-DYNA keyword deck by LS-PrePos

2.1 SJDVNA kerwood dark hv I SJDvaDost

Loadcase 1 : Time = 0.000000 : Frame 1

1 LS-DYNA keyword deck by LS-PrePost

Loadcase 1 : Time = 0.000000 : Frame 1

Londonne 1 : Time = 0.000000 : Frame 1

GHBMC M50 Full Body Model: Occupant

Loadcase 1 : Time = 0.000000 : Frame 1

2 LS-DYNA keyword deck by LS-PrePost Loadcase 1 Time = 0.000000 Frame 1

2 LS-DYNA keyword deck by LS-PrePost

Loadcase 1 : Time = 0.000000 : Frame 1



## Lessons Learned (simulation study)

- Positioning seat in vehicle
- Occupant fit for non-frontal facing

Interference issues – non-trivial

- GHBMC-M50 spine too stiff for natural settling
- ositioning GHBMC-M50-O is stiffer than M50-OS during positioning
  - THOR cannot go fully reclined (only  $\sim$ 40 deg) – Dummy design issue
  - GHBMC M50 OS abdomen causing negative volume
- Unrealistic internal cavity organs' connection for GHBMC\_M50\_OS
- THOR face flesh deforms substantially during simulation
- Stability M50-OS is more stable than THOR FE
  - Non reinforced seatback deforms under rear impact
- Restraint THOR FE pelvis rotates opposite direction compared to GHBMC (frontal impact)
  - GHBMC-OS shows greater lap belt penetration into abdomen than GHBMC-O



The Challenges of Out of Position Occupants for Passive Safety in Automated Vehicles

> SAE Government Industry Meeting January 24-26, 2018

Bronislaw (Bronek) Gepner Hongnan Lin Taotao Wu Jason Forman Matt Panzer

