

Assessing Rollover Crashworthiness in Dynamic vs. Static Testing

Jason R. Kerrigan

Carolyn Roberts, Jacek Toczyski, Jack Cochran, Qi Zhang University of Virginia Center for Applied Biomechanics

November 8, 2015

UVA Rollover Research 2009-Present

Long-Term Research Goals:

- Identify and investigate injuries, mechanisms, and sources
- Evaluate and improve dummy biofidelity
- Investigate potential for repeatability
- Determine what can be learned about vehicle crashworthiness by a dynamic test
- Develop a suite of computational models for modeling crashes, vehicles, and occupants.

Center for Applied Biomechanics

Standardized Rollover Crashworthiness Evaluations

Goal

To examine the relationship between roof strength, roof intrusion, and injury risk by testing:

Compare the dynamic response to rollover of two vehicles with the same SWR

Center for Applied Biomechanics

JNIVERSITY of VIRGI

Dynamic Rollover Test System (DRoTS) Concept

1) Rotated to Test Velocity and Test Angle

2) Dropped onto Moving Road Surface

3) Rolls Across Moving Road Surface

4) Vertical Motion Is Arrested

5) Rotational Motion is Arrested

Dynamic Rollover Test System (DRoTS)

- Research Tool
 - Repeatability
 - Dummy Biofidelity
 - Injury Risk
 - Dynamic vs. Static
- Development
 - Kerrigan et al. 2011
- Operation/Performance
 - Kerrigan et al. 2013
- Dummy Biofidelity
 - Zhang et al. 2013/2014
 - Lessley et al. 2014
- Repeatability
 - Seppi et al. 2015
 - Roberts et al. 2015
- Crash Fidelity
 - Kerrigan et al. 2015
 - Roberts et Criter for Applied Biomechanics

Exterior Video

Volvo XC60

Hyundai Accent

Deformation Measurement

3 String Potentiometers + Trilateration Algorithm = Local Frame X, Y, Z, Displacements

R # 92

16

Center for Applied Biomechanics

UNIVERSITY of VIRGINIA

Jason R. Kerrigan

November 8, 2015

Trailing (Passenger) B-Pillar

<u>Hyundai Accent</u> Max: 126 mm (207 deg) Residual: 70 mm (45% Reduction)

<u>Volvo XC60</u> Max: 83 mm (203 deg) Residual: 38 mm (55% Reduction)

Trailing (Passenger) C-Pillar

<u>Hyundai Compact</u> Max: 90 mm (197 deg) Residual: 48 mm (47% Reduction)

<u>Volvo SUV</u> Max: 36 mm (203 deg) Residual: 14 mm (61% Reduction)

Roof Deformations VOLVO Avg. **Deformation:** 14 mm -6 mm **HYUNDAI** Avg. **Deformation:**

Center for Applied Biomechanics

27 mm

-14 mm

Two Hybrid-III ATDs in Each Vehicle

No Curtain Airbags Deployed

> No Seatbelt Pretensioners Deployed

NCAP Seating

November 8, 2015

Interior Videos

Injury Risk

Nij (CE) = 1.25 @ 154 ms Compression Force: 6220 N @ 149 ms HIC15: 363 (135-139 ms)

Hyundai Accent

Nij (CE) = 1.55 (@ 122 ms) Compression Force: 6022N @ 143 ms HIC15: 51 (108-123 ms)

2014 STAPP Conference: Zhang et al., Lessley et al.

Conclusions

- Despite similar kinematics, vehicles had vastly different deformations
- Static Roof Crush Resistance (SWR) \rightarrow
 - Does not correlate with Dynamic or Final (Plastic)
 Deformation
 - Roofs unload to 45-61% of peak deformation
- Using the Hybrid IIIightarrow
 - Similar injury risk for vastly different deformations
- For these two vehicles, in this one condition:
 - Should consider other vehicles and conditions

