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EXECUTIVE SUMMARY 
Distraction represents an important driving safety problem and has received substantial 
attention recently.   This attention reflects concern about a dramatic escalation of diversity and 
ubiquity of technology both built in and carried in to vehicles.   The focus of this study is on the 
recent trend of using vehicle-based technology to combat distraction.  It developed and 
assessed real-time distraction detection and mitigation systems to (1) guide technology 
development to enhance driver safety, and (2) identify potential evaluation techniques to 
characterize and assess this emerging technology.   The more notable results of this study 
include: 

· 

· 

· 

· 
· 

No single sensor, algorithm or countermeasure can be judged “optimal” for detecting or 
mitigating distraction because an algorithm may support one countermeasure well, 
while not supporting others; likewise a type of countermeasure may be more effective 
with some algorithms than with others.   (Chapter 2) 
An approach was developed to describe detection and mitigation systems and organize 
the diversity of system designs.   (Chapter 3) 
A protocol for assessing the ability of algorithms to identify different types of distraction 
was developed and its sensitivity was demonstrated.   The sensitivity of the National 
Advanced Driving Simulator (NADS-1) for detecting the effects of distraction was 
validated.   (Chapter 4) 
The ability to detect the effects of feedback on driver performance was demonstrated.    
Needs for future protocol refinements were identified.   (Chapter 5) 

Background and Objectives  

According to NHTSA’s Distracted Driving 2009 Traffic Safety Facts, driver distraction contributed 
to an estimated 16 percent of fatal crashes and 20 percent of injury crashes.   Automobile and 
aftermarket manufacturers have begun introducing systems to reduce distraction-related 
crashes.   These devices use advances in sensor technologies and algorithms to detect risk and 
warn drivers.   Countermeasures take several forms.  One form immediately redirects drivers’ 
attention to the roadway.  A second form is focused on preventing future distraction – it shifts 
driver attitudes and willingness to engage in distracting activities by providing them with 
feedback concerning the effect of distraction on their driving.   These distraction detection and 
mitigation1 systems vary significantly in their purpose, operation, capabilities and features, 
making them difficult to understand, evaluate and compare.   Little is known about many 
aspects of their operation, effectiveness, and acceptability.   

                                                           

1 Mitigation systems include adjusting collision avoidance systems such as forward collision 
warnings when they detect distraction, so some systems emphasize feedback more than others. 
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This report addresses these critical gaps by developing systematic methodologies for describing 
and evaluating systems, including several novel approaches to detect distraction and provide 
feedback.  

This project has four objectives: 

· 

· 

· 

· 

Develop a standard specification template to describe distraction detection and 
mitigation systems; 
Develop a standard set of performance metrics embedded in a protocol for assessing 
distraction detection and distraction mitigation effectiveness;  
Provide a safety benefits framework for estimating the overall effect on driving safety; 
and 
Develop alternative distraction detection and distraction mitigation design concepts. 

This research was sponsored by NHTSA as part of it overall program for the prevention of road 
traffic crashes for which driver distraction is a contributing factor.2  In April 2010, NHTSA 
released Overview of the National Highway Traffic Safety Administration’s Driver Distraction 
Program,3 which summarized steps that NHTSA intends to take to “help in its long-term goal of 
eliminating a specific category of crashes- those attributable to driver distraction.”  NHTSA’s 
Driver Distraction Program consists of four initiatives:  

· 

· 

· 

· 

Improve the understanding of the extent and nature of the distraction problem.  This 
includes improving the quality of data NHTSA collects about distraction-related crashes 
along with better analysis techniques.  
Reduce the driver workload associated with performing tasks using both built-in and 
portable in-vehicle devices by limiting the visual and manual demand associated with in-
vehicle device interface designs.  Better device interfaces will help to minimize the 
amount of time and effort involved in a driver performing a task using the device.  
Minimizing the workload associated with performing non-driving, or “secondary,” tasks 
with a device will permit the driver to maximize the attention they focus toward the 
primary task of driving.  
Keep drivers safe through the introduction of crash avoidance technologies.  These 
include the use of crash warning systems to re-focus the attention of distracted drivers 
as well as vehicle initiated (i.e., automatic) braking and steering to prevent or mitigate 
distracted driver crashes.  
Educate drivers about the risks and consequences of distracted driving.  This includes 
targeted media messages, drafting and publishing sample text messaging laws for 

                                                           

2 Information on NHTSA’s efforts to address this problem can be found at www.distraction.gov/. 
3 NHTSA. (2010, April). Overview of the National Highway Traffic Safety Administration’s Driver 
Distraction Program.(Report No. DOT HS 811 299) Washington, DC: Author.  Available at 
www.nhtsa.gov/staticfiles/nti/distracted_driving/pdf/811299.pdf 
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consideration and possible use by the states, and publishing guidance for a ban on text 
messaging by Federal government employees while driving.  

 

This work is part of the third initiative, keep drivers safe through the introduction of crash 
avoidance technologies.  As stated above, automobile and aftermarket manufacturers have 
begun introducing systems to reduce distraction-related crashes.  This research will help NHTSA 
promote systems that effectively reduce distraction-related crashes.  

Specification Templates  

A systematic approach to describe and compare distraction detection and mitigation systems 
was needed to facilitate assessments of their purpose and efficacy.   Chapter 3 provides a 
template-based common language for describing and differentiating the type and quality of data 
that distraction detection systems need as input, what they produce as output, and the 
associated mitigation strategies.   This approach identifies salient commonalities and differences 
between systems in terms of the system’s purpose and functions without requiring more 
detailed proprietary information.  The template was applied to current production and research 
systems, as well as to select algorithms and mitigations evaluated in Chapters 4 and 5. 

Despite a lack of available (public) information from which to perform detailed analytical 
evaluations, the template descriptions provided useful distinctions between systems that differ 
in the type of distraction detected and mitigated, and intent and timescale of feedback (i.e., 
whether the feedback was intended to address current distraction or future distraction).   Four 
key areas emerged that suggest important directions for future research and development.   
First, most systems do not distinguish between impairments (e.g., drowsiness, distraction), or 
types of distraction.   Second, most systems use a small number inputs to detect distraction, and 
none of the existing systems combine data to identify both cognitive and visual distraction.  
Third, distraction detection algorithms can be described in the context of the countermeasure 
they support, which is important because countermeasure efficacy, driver acceptance, and the 
ultimate safety benefit depend on the match between the algorithm characteristics and the 
countermeasure.   Fourth, most systems provide real-time feedback for immediate driving 
performance improvement.  However, this approach may impose more workload on a driver in 
addition to the already highly demanding distracted driving situation.    

Performance Metrics  

Chapter 4 describes and applies a protocol consisting of evaluation methods, and measures, to 
compare the ability of vehicle-based systems to detect distraction.  Chapter 5, assuming a 
common detection algorithm, describes the protocol adapted to evaluate a system’s ability to 
mitigate distraction through driver feedback.  The protocols provide systematic assessments of 
system efficacy, how the systems affect drivers, including driver acceptance.    
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Distraction detection assessment protocol  

A protocol was developed and applied to candidate algorithms to evaluate their ability to 
distinguish between distracted and non-distracted drivers, and to identify the most promising 
(Chapter 4).  The protocol consists of a data collection process that samples a selection of 
drivers, driving situations, and representative distractions designed to challenge the algorithms 
in a variety of ways to reveal their capabilities and vulnerabilities.   A high-fidelity motion-based 
driving simulator, called NADS-1, equipped with separate eye-tracking and head-tracking 
systems, was used to collect data during baseline and distracted drives. 

Data was collected from 32 drivers in a drive representative of a nighttime trip home from an 
urban entertainment district.   Audio prompts were given to begin a series of three prompted 
distraction tasks (a “bug” task that required turning and reaching to follow a bug on a touch-
screen display, an arrows identification task, and a voice-activated flight menu task).  The arrows 
task required the driver to scan a display located to the right of the steering wheel and identify a 
target, whereas the flight menu task did not require the driver to divert his or her gaze from the 
road.  These three tasks occurred during each of eight situations distributed across three driving 
environments or “drive segments”: a two-lane urban segment; a four-lane divided interstate 
segment; and a two-lane rural highway with curves and gravel.  Participants could delay 
initiating these tasks within each segment or to the end of the segment when the driver came to 
a stop in the drive.   A self-paced distraction task (radio-tuning task) occurred in between the 
prompted distraction tasks.   Participants were instructed to drive normally but that the tasks 
were urgent and task performance scores were provided in between driving environments and 
at the end of the drive. 

The protocol was applied to four progressively more complex algorithms, all based on gaze 
measures.  The least complex detected distraction when the driver’s eyes were off of the road 
for more than 2 seconds in any 6-second interval.  Complexity was added, for example, by 
including glances toward the mirrors as distinct from other glances away from the road.   The 
most complex algorithm provided different outputs for visual and cognitive distraction, and 
allowed a degree of visual timesharing to occur while driving.  Data was interpreted relative to 
evaluation criteria from signal detection theory to assess the algorithms’ robustness across 
different distraction tasks and road segments.    

Across all driving environments and both visual distraction tasks (bug and arrows), the most 
complex algorithm consistently performed better than the others.  It performed best in 
detecting distraction during the arrows task.  It was the only algorithm of the four capable of 
detecting cognitive distraction from the flight menu task, and it did so imprecisely, although at a 
rate substantially greater than chance.  However, the least complex algorithm performed best in 
the urban environment, possibly because the most complex algorithm was inactive at low 
speeds, and it performed as well as the most complex algorithm in detecting distraction from 
the bug task.  It yielded a high true positive rate, but also many false alarms when the driver 
performed the arrows task.  Nonetheless, the protocol found that all of the algorithms 
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succeeded in detecting visual distraction well above chance.  It also demonstrated that the 
tradeoff between ensuring distraction detection and avoiding false alarms complicates the 
identification of the most promising algorithm for detecting distraction.   High false alarm rates 
would likely undermine drivers’ acceptance of a system that presents real-time feedback, but 
may result in less annoyance with a post-drive feedback system.   

Distraction mitigation assessment protocol 

A protocol was developed to assess the effect of alternative distraction countermeasures on 
driving performance, visual behavior, and attitudes toward distracted driving.   This evaluation 
protocol was assessed by applying it to real-time visual feedback (flashing lights) presented on 
the left, center, and right side of the windshield with a heads-up display (HUD) and synchronized 
auditory alerts, and post-drive feedback comprised of a report card that described and 
evaluated the participant’s performance and included a video playback of driving errors that 
occurred while he or she was distracted. 

Thirty-six participants completed drives to collect baseline distracted driving data and distracted 
driving with feedback.   One third of the participants experienced post-drive feedback at the end 
of their distraction drive and following each segment of their mitigation drive, one third 
experienced real-time feedback during their mitigation drive, and the remaining third served as 
a control condition and received no feedback.  The primary dependent measures assessing the 
effects of feedback on driver performance and visual behavior included the duration of task 
engagement, lateral and longitudinal control, eye movements, and subjective data to assess the 
effect of the mitigations on drivers’ performance, their awareness of distraction, vehicle control, 
and distraction task performance, and their willingness to engage in distractions while driving in 
the future.    

The two mitigation approaches resulted in subtle but distinct differences in driver response.  
The post-drive feedback drivers (1) delayed engaging in the most intensive visual task (bug task) 
but did not then begin to perform it during a part of the drive that imposed lower demand, (2) 
increased attention to the roadway (shorter glances away) while engaged in visual distraction, 
and (3) improved lane keeping during the bug task and in the most visually demanding driving 
environments.  However, it resulted in degraded lane keeping for two less visually demanding 
tasks (flight menu and radio).   The real-time feedback decreased drivers’ focus on the roadway 
and improved lane keeping only during the most challenging visual distraction and the most 
demanding driving environment.   Overall, feedback provided a benefit in some cases (higher 
demand tasks and environments) but decreased performance in others.   Additional work is 
needed to understand why this is the case.  It was not possible to evaluate the effect of 
feedback on participants’ awareness because of pre-existing differences among the groups that 
received the real-time, post-drive, or no feedback.  Also, feedback received during the 
mitigation drive did not affect the intention to engage in distracting activities.   



vii 

In summary, the protocol was able to show that a very limited exposure to post-drive feedback 
resulted in changes in engagement with the distraction tasks.   The protocol also detected 
complex relationships between the mitigation systems, the tasks, and driving environments.   
The results point to some changes that could make a distraction feedback protocol more 
effective.  These include changing the timing and structure of the distraction tasks to allow more 
flexibility in their engagement, and strategically locating high and low demand environments to 
make the protocol more sensitive to decisions to delay engagement in distracting tasks until a 
low demand environment is found.  Further development of instruments to assess planned 
behavior and willingness to engage in tasks while driving is also recommended. 

Safety Benefits Framework  

The degree to which technology designed to mitigate distraction succeeds depends on its ability 
to reduce crashes and associated deaths, injuries, and property damage.   Existing benefits 
analyses are insufficient to fully address this problem.   A framework and method to estimate 
these benefits is proposed in Chapter 6. 

The benefits of mitigation systems can accrue by discouraging drivers from enabling distracting 
devices, engaging in distracting activities, and persisting in distracting activities when 
distractions put them in crash-imminent situations.  The specific steps associated with 
estimating a system’s benefit include: identifying a representative sample of distraction-related 
crashes (e.g., from naturalistic driving studies); describing the mitigation system in sufficient 
detail to support an estimate of its ability to prevent crashes; defining the crash configuration in 
terms that describe the timing of the mitigation-triggering events relative to the time available 
to respond when an alert would occur and when the crash occurred; and estimating driver 
response time through models of driver attention in the seconds preceding a crash and drivers’ 
strategic decisions regarding engagement in distracting activities and use of feedback.  
Probability of collision would estimate the contribution of the driver’s response when given 
distraction feedback to overall system effectiveness.  A critical challenge concerns how to 
incorporate the longer term effects of feedback on driver behavior and shifts in societal norms. 

Implications and Next Steps 

This study comprises one of NHTSA’s vehicle-based initiatives to keep drivers safe through the 
use of distraction monitoring and warning systems.   As vehicle manufacturers deploy first 
generation distraction systems based on real-time driver state monitoring, it provides a pair of 
assessment protocols to evaluate and compare the benefits of distraction systems.   Consistent 
with the systems reviewed, his study did not attempt to distinguish distracted driving from other 
forms of impaired driving such as alcohol-impaired and drowsy driving.  However, it identifies 
potential evaluation techniques to characterize and assess this emerging technology, provides a 
novel approach to detecting distraction, and provides recommendations for future protocol 
development.    
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As argued in Chapter 1, it is important to evaluate not only risky behavior and risky outcomes, 
but also how these systems affect driver understanding of risky behavior.   Using this paradigm 
for evaluation, refinements of the protocol, additional development needs and additional areas 
of research are necessary to finalize an effective overall assessment of distraction mitigation 
systems. 
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CHAPTER 1. INTRODUCTION 
Driver distraction is occurring with greater frequency as in-vehicle technology and carried-in 
devices become increasingly common and complicated (McEvoy et al., 2006; Utter, 2001, 2009). 
Consequently, distraction and inattention contribute to crash risk and are likely to have an 
increasing influence on driving safety. Analysis of police-reported crash data from 2008 shows 
that distractions account for 5,870 fatalities and an estimated 515,000 injuries (Pickrell & Ye, 
2009). The challenges of detecting distractions at the crash site and reluctance of drivers to 
admit to being distracted make it likely that these statistics underestimate the magnitude of the 
problem. A recent naturalistic driving study found that distraction and inattention contribute to 
approximately 80 percent of crashes and that distraction contributes to approximately 65 
percent of rear-end crashes (Klauer et al., 2006).  The extent to which this generalizes from the 
small number of crashes that were observed in this study to the overall population of crashes 
remains a topic for debated, but there is cause for concern even if the contribution is a fraction 
of that observed in this study.  

The rapid advances in wireless, computer, and sensor technology will confront drivers with a 
range of new distractions. Not only do drivers need to manage use of cell phones, CD players 
and navigation systems, they are increasingly faced with long text message “conversations” and 
searches through MP3 music catalogs that can extend beyond 30 seconds (Salvucci, 2007) and 
involve more than 15 glances (Chisholm et al., 2007). In the coming years, drivers may also be 
increasingly tempted to retrieve a broad variety of information from the Internet via hand held 
phones as well as through dedicated connections in the vehicle itself. Rapid changes in vehicle 
design illustrate this trend: 90 percent of all new vehicles are compatible with MP3 players 
(http://www.apple.com/ipod/car-integration/), all 2009 Chrysler vehicles have a wireless 
connection to the Internet (Bensinger, 2008), and several manufacturers introduced 
sophisticated Internet-enabled computers in vehicle consoles in 2010 (Vance & Richtel, 2010). 
These devices have the potential to make driving more enjoyable, and efficient, and may even 
mitigate drowsiness. Yet, they also have the potential to distract drivers. Helping drivers benefit 
from these devices and avoid distraction-related crashes represents an important challenge. 

Although efforts are afoot at state and federal levels to regulate the use of certain devices, such 
as hand held cell phones, or distracting behaviors, such as the federal ban on texting by 
commercial truck and bus drivers, such legislation will likely lag behind the fast pace to 
technological change that is responsible for many distractions. A complementary approach that 
uses technology to detect and mitigate dangerous episodes of distraction, such as warnings 
based on long and frequent glances to an in-vehicle device, also has great promise in reducing 
the frequency and severity of distraction-related crashes (Donmez et al., 2008c). Such 
technological mitigations have been hampered by limitations of sensors and algorithms, but the 
increasing availability of sensor and computing technology have made more sophisticated 

http://www.apple.com/ipod/car-integration/
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systems possible. This report describes and evaluates approaches for detecting and mitigating 
distraction. 

DISTRACTION AND ATTENTION IN DRIVING 

Drivers are required to respond to a variety of changes in the driving environment and 
surrounding traffic relying predominantly on visual inputs to detect events ranging from braking 
lead vehicles, signs, and sharp curves, to illegal turns of oncoming vehicles and incline changes. 
Drivers also engage in a variety of secondary activities that require glances away from the road 
as well as higher cognitive functions such as planning and decision making. The concept of 
attention is of central importance in understanding how secondary tasks distract drivers.  

The perceptual system presents a very powerful illusion of a stable, full detail, pictorial external 
world and gives us a strong subjective impression of seeing everything at all times. Thus, it is 
often forgotten that eyes are not like cameras that deliver a uniformly detailed, uninterrupted 
picture of the world. In fact, drivers can only attend to a relatively narrow slice of the driving 
environment at any time. 

Attention can be defined as the selection and processing of certain information from the array 
of information available from the environment (James, 1890). It follows that inappropriate 
selection and inadequate processing of the information that is relevant for safe driving 
constitutes driver inattention. Inattention has a broader definition than distraction and includes 
all conditions in which a driver fails to focus on information critical for safe driving, whether it is 
due to competing tasks, drowsiness, or other cognitive impairments. Driver distraction refers to 
a particular kind of driver inattention: the inappropriate selection of information such that 
safety-relevant information is neglected. Therefore, distraction is a relational property in that it 
reflects inadequate attention to the road relative to roadway demands and an inability to shift 
attention to the road when these demands require it. Distraction is defined as: 

“…the diversion of attention away from activities critical for safe driving toward a 
competing activity.” (Lee et al., 2008a, p. 34) 

In this definition, the competing activity distinguishes distraction from other cognitive states 
that might diminish a driver’s ability to drive safely, such as drowsiness, anger, or alcohol-
related impairment. These cognitive states may accompany and amplify distractions, as in the 
case of anger amplifying the distraction associated with contemplating a recent argument with a 
spouse. Likewise, alcohol impairment may amplify distraction by diminishing the driver’s 
capacity to shift attention to and respond to the roadway when demands arise (Rakauskas et al., 
2008). Distraction alone, or in combination with various cognitive states, poses an important 
challenge to driving safety.  
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EVALUATING TECHNOLOGY THAT ENHANCES DRIVERS’ ATTENTION TO 
THE ROAD 

One approach to addressing the challenge of distraction is detecting and mitigating distraction 
through technological interventions. This general approach can be implemented in many ways, 
and the success or failure of each intervention hinges on a range of factors, including the driving 
environment, road conditions, driver characteristics, sensor sensitivity, and the underlying 
theoretical assumptions of the algorithm that integrates the sensor data. Differences in the 
physical and computational configurations of distraction detection systems lead to profiles of 
detection that differ in content, accuracy, and reliability. Approaches to distraction mitigation 
present an array of options regarding feedback content, feedback timing, and feedback 
representation. How these elements of distraction detection and mitigation and their many 
possible combinations are implemented opens the door to a proliferation of potential systems. 
Currently, there is no standard way of describing these systems or their elements, measuring 
their performance, or estimating their overall safety benefit. This lack of standardization has 
negative implications for government agencies, manufacturers, and consumers who will be 
confronted with a new generation of safety systems that are difficult to understand, compare, 
and regulate.  

The aim of this research is to fill this gap by creating a standard way of describing distraction 
detection and mitigation systems (specification templates), developing a standard way of 
assessing system performance (assessment protocols and metrics), and providing a framework 
for estimating the overall effect on driving safety (safety benefits framework). The specification 
templates, assessment protocols, and assessment metrics will be demonstrated by applying 
them to novel ways of detecting distraction and providing distraction-related feedback (design 
concepts). Each of these outcomes helps to guide technology development so that it enhances 
driving safety in a way that is acceptable to drivers.  

This project is based on a layered approach to distraction detection and mitigation system 
evaluations.  Figure 1 shows the nested constraints that affect the performance of the 
distraction detection and mitigation systems at different scales: to affect culture change a 
system must first have appropriate and sufficient sensor signals, a robust algorithm, and 
relevant and acceptable countermeasures that change drivers’ performance and behavior.  Each 
layer has its own methodological approach, set of evaluation criteria, and protocol 
requirements, from part-task simulator evaluations to assess sensors to naturalistic field 
operations tests to assess cultural change.  The associated time scale varies considerably from a 
few weeks to conduct sensor evaluations to years to conduct and analyze naturalistic driving 
data. 

There is the potential to extrapolate an approach from one level and apply it to another level.  
Partial assessments of culture change could use driving simulation technology, and qualitative 
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methodologies could provide insight to changes in driving performance and behavior.  While the 
simulator-based evaluation protocols4 presented in this report primarily assess algorithm and 
driving performance, measurements of driver attitude are also employed to assess whether 
short exposure to a system in a driving simulator results in measurable shifts in driver attitude 
that ultimately may be reflected in changes in driver behavior and associated crash risk. 

 

 

Figure 1 Layers of evaluation to assess the effectiveness of distraction detection and mitigation 
systems span evaluations of the sensor to the cultural impact of safety systems. 

The following chapter describes the mechanisms of driver distraction and develops a theoretical 
framework that can help identify variables for detecting driver distraction. This chapter also 

                                                           

4 The choice of simulation as a tool for these evaluations was made to provide a level of 
experimental control and safety that is not feasible in on-road and test track studies.  The 
primary advantages of simulation over other methods for this effort include precise control of 
the experimental conditions, ease of implantation of distraction tasks, and a safe environment 
in which to engage in demanding distraction tasks.  The trade-offs include a lower face validity, 
which we attempted to mitigate through use of the full motion NADS-1 which features an actual 
vehicle cab, and the potential for drivers to be more willing to engage in tasks if they perceive 
lower risk in the simulator.  This greater willing ness to engage in non-driving tasks provides a 
benefit for evaluating effects of distraction, but potentially could lead to an underestimation of 
the effects on systems designed to mitigate the effects of distraction on driving. 
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outlines general approaches to mitigating distraction, which should be considered in selecting 
variables and developing distraction detection algorithms. The subsequent chapters provide 
templates for describing distraction detection and mitigation systems as well as demonstrations 
of evaluation protocols applied to novel distraction detection and mitigation systems. The final 
chapter concludes with a framework for estimating the benefits associated with distraction 
detection and mitigation systems. 

 



6 

 

CHAPTER 2. THEORETICAL AND EMPIRICAL CONSIDERATIONS 
FOR DISTRACTION DETECTION AND MITIGATION  

Effective distraction detection and mitigation systems depend on a range of considerations.  
These range from the theoretical—how distraction is conceptualized—to the practical—the 
capabilities of particular sensors, such as those that provide eye tracking or lane position 
information. The value of these sensors depends on how sensitive they are to the behavioral 
signature of distraction relative to practical considerations such as cost and reliability. For 
example, pupil response is a sensitive measure of cognitive effort, but it is unlikely that any eye-
tracking system for a production vehicle will have the precision needed to capture this 
information at a cost that is practical for manufacturers and consumers in the near future.  
Appendix A describes a range of distraction countermeasures and considerations for distraction 
detection sensors and algorithms. The effectiveness of systems in detecting and mitigating 
distraction depends on their robustness in functioning under a variety of roadway conditions, 
how they relate to the underlying mechanisms of distraction, and to the available sensor and 
algorithm technology. The specific topics considered in detail in Appendix A include: 

· 

· 

· 

Measures of driver distraction and sensor technology tradeoffs; 

General types of countermeasures; and 

Countermeasure considerations in sensor selection. 

Central to developing distraction detection and mitigation strategies concerns how it is 
conceptualized. A common perspective regarding distraction is that the driver is an information 
processing system, and that processing more than one stream of information at once 
compromises the response to one or more streams of information (i.e., dual-task interference). 
This information processing perspective captures important cognitive constraints regarding the 
consequences of diverting attention from critical driving tasks. However, such a perspective 
does not consider how and when drivers choose to engage in distracting tasks, but rather it 
considers drivers as passive recipients of tasks. The information processing perspective assumes 
that drivers act in response to the demands of driving and competing activities rather than 
actively manage these demands. Considering drivers as active controllers of these demands 
provides a more complete account of the mechanisms responsible for distraction and strategies 
for its mitigation.  

Driving, as a control process, has been described in terms of three levels: operational, tactical, 
and strategic (Michon, 1985; Ranney, 1994; Sheridan, 1970). The operational level concerns the 
lateral and longitudinal control of the vehicle and occurs at a timescale of milliseconds to 
seconds. Tactical control concerns the choice of lanes and speed, and occurs at a timescale of 
seconds to minutes. Strategic control concerns decisions regarding routes and travel patterns 
and occurs at a timescale of minutes to weeks. Distraction can emerge from any of these three 
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levels of control when competing activities interfere with activities critical to safe driving (Lee et 
al., 2008b; Lee & Strayer, 2004). At the operational level drivers control resource investment; at 
the tactical level they control task timing; and at the strategic level they control exposure to 
potentially demanding situations (Lee, 2010).  

Distraction-related mishaps result from a breakdown of control at any one level, and from the 
accumulation of control problems that compound as they propagate across levels. Distraction-
related crashes result not only from dual-task interference, but also from drivers’ failure to 
manage distractions by either delaying or interrupting competing activities to maintain attention 
to the road. Considering driving as a multilevel control process identifies mechanisms of 
distraction and potential mitigations at each level of control that might not be considered with 
the more conventional information processing description of driver distraction.  

Appendix A provides a theoretical framework that could be applied to mitigate distraction by 
predicting, identifying, and summarizing distraction indicators and providing feedback to the 
driver to induce positive behavioral changes. A critical outcome of this analysis is that no single 
sensor, algorithm or mitigation can be judged “optimal”; instead the real value of each depends 
on how it is combined with others. The summary tables in this section describe the 
characteristics of a mitigation system that are needed to support an evaluation of the combined 
system. There are several important implications for detecting and mitigating distraction, and 
evaluating candidate systems: 

· 

· 

· 

· 

· 

Distraction occurs when the driver’s capacity to respond to driving is compromised due 
to competing demands from the roadway and the secondary task. This implies that the 
entire driver–vehicle–environment relationship should be considered. 

Visual and manual (reaching), visual (reading), and cognitive distractions are 
qualitatively different types of distraction and may require different sensors, sensor 
combinations, and algorithms to detect. 

Measures of driver distraction cover a spectrum of inputs, including driver control 
inputs, vehicle state, body, head movement, eye movement, and physiological 
indicators. Unobtrusive sensors such as steering, eye glance, and lane position sensors, 
provide particularly promising estimations of distraction, especially when combined 
together. 

Algorithms need to match the type of distraction to the requirements of the mitigations 
supported (e.g., predict, identify, or summarize distraction indicators). 

Algorithms that detect distraction prior to vehicle state changes such as sudden braking 
may be particularly beneficial if they are sensitive and timely. 
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· Because of its unobtrusiveness, relative feasibility, and applicability for different 
timelines, enhanced feedback shows particular promise. 
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CHAPTER 3. TEMPLATE-BASED APPROACH FOR DESCRIBING 
EXISTING SYSTEMS  

The previous chapter discussed mechanisms of driver distraction, as well as the strengths and 
weaknesses of different measures used to detect it. The chapter also provided a general 
discussion of the diverse approaches to mitigate distraction and the interdependence of 
detection and mitigation. This chapter attends to the problem of describing existing and future 
systems that detect and mitigate distraction.  Currently, there is no systematic way to describe 
and compare systems, making assessments of their purpose and efficacy difficult.  A common 
language is needed to describe and differentiate between the type and quality of data that 
distraction detection systems need as input, what they produce as output, and what mitigation 
strategies they support. This chapter develops and applies a template-based approach to 
describe distraction detection and mitigation systems in a systematic and consistent manner.  
The first section outlines the rationale for a template-based description, the second describes 
the template development and refinement, the third applies the template to two distraction 
detection algorithms evaluated in Chapter 4 and the two distraction mitigation systems 
evaluated in Chapter 5, and the final section describes the implications of the template 
application for benefits analysis and system evaluation. 

RATIONALE AND CONSIDERATIONS FOR A TEMPLATE-BASED DESCRIPTION  

The benefit of a template-based approach is that it identifies notable commonalities and 
differences between systems, and therefore provides government agencies, automotive 
companies, and consumers with a common language for describing distraction mitigation 
systems and understanding their functional and operational characteristics. Templates 
communicate system functionality without divulging proprietary information. This gives 
government agencies a valuable tool to evaluate the efficacy and potential problems of the 
rapidly evolving products manufacturers are developing.  For example, templates provide 
NHTSA and the automotive industry with a catalog of features and functions of distraction 
detection and mitigation systems that can describe why a system will enhance driving safety and 
the overall benefits the system might provide. Templates also can capture system shortcomings, 
such as the sensor and algorithm limitations discussed in Chapter 2, which ultimately diminish 
countermeasure efficacy. Consumers also benefit from these templates because they inform 
purchasing decisions, and could have the positive ancillary effects of raising driver awareness of 
distraction and creating accurate driver mental models of mitigation system operation. 
Ultimately, a template-based description could form the basis for New Car Assessment Program 
(NCAP) ratings that differentiate highly capable distraction mitigation systems from less capable 
systems. 

Already systems designed to detect and mitigate impairment are on the market or exist as 
advanced prototypes, including Saab’s ComSense, Volvo’s Driver Alert Control, Delphi’s SAVE-IT 
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system, and Lexus’s Driver Monitoring System. These systems detect changes in driver state 
with a general focus on drowsiness, distraction, or both, and intervene with different strategies. 
They use different sensors, integrate data differently, and serve different purposes, ultimately 
producing unique profiles of detection accuracy and supporting different types of distraction 
mitigation. Without a standard template to describe these systems, it is difficult to compare 
them. The following sections describe a framework—the abstraction hierarchy—for developing 
templates for distraction detection and mitigation systems that link concrete details of the 
system to a more abstract description of the system purpose. Applying the template generated 
by this framework identifies the key differences between various distraction detection and 
mitigation systems.  

TEMPLATE DEVELOPMENT AND REFINEMENT  

Many different approaches could be used to structure a template for describing distraction 
detection and mitigation systems. Here we use a systems engineering framework—the 
abstraction hierarchy—to define the general classes of information and organize the 
information according to input, transformation, and output. Applying these templates to 
existing systems revealed challenges associated with data availability, and identified 
opportunities to simplify the template form based on the use of publicly available information. 

The Abstraction Hierarchy Framework for Describing Distraction Detection and Mitigation 
Systems 

The abstraction hierarchy provides a natural organizing framework for describing complex 
systems systematically (Rasmussen, 1983). The abstraction hierarchy is a means-end structure 
that links a description of the physical system with the system’s purpose and its functional 
description. Applied to distraction mitigation systems, the abstraction hierarchy identifies three 
levels of description: intentional—why the system is designed; functional—what the system 
does; and physical—how the system is configured. Such an approach makes it possible to 
describe the same system in very specific concrete terms (e.g., IR video-based eye-tracking 
system) and in more abstract, functional terms (detecting attention to the road and inside the 
vehicle). This is important because it allows for comparisons across systems that might use 
different sensors and low-level data, but might be very similar in other ways.  

The abstraction hierarchy has several important qualities for describing distraction detection 
and mitigation systems. One of the most important is that it can help identify multiple ways of 
achieving the same ends. For example, a detection system might estimate dangerous levels of 
distraction based on gaze while another might use steering inputs. The purpose of the system is 
similar even though the functional means of achieving it are different. Likewise, two systems 
might have very different physical characteristics, but similar functional properties, such as 
laser- and radar-based systems for detecting vehicles ahead. Further, this framework could be 
used to identify common mechanisms that undermine the performance of detection and 
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mitigation systems. For example, detection systems that are based solely on eye movement 
inputs might mistake scanning at intersections as instances of distraction. Overall, the 
abstraction hierarchy provides a basis for identifying common elements and generalizing 
performance expectations from one system to another (Bisantz & Vicente, 1994; Rasmussen, 
1985). 

Relationship between Distraction Detection and Mitigation  

Although it is useful to consider them separately, distraction detection and mitigation 
components are often coupled. Information about the sensor and system characteristics 
associated with timeliness and accuracy of distraction detection might be tightly coupled with 
mitigation characteristics, such as timeliness for concurrent countermeasures (intended for use 
while driving), and the understandability and specificity of post-drive feedback. Some distraction 
mitigations (e.g., auditory alerts) may only require binary input indicating whether or not a 
driver is distracted. Other concurrent or post-drive feedback may need to present more detailed 
data concerning the severity or type of distraction, or where it occurred. Graded input, required 
for feedback that would permit drivers to continually monitor their level of distraction (e.g., a 
visual alertness display), may provide more opportunity to understand the context that 
precedes an alert, thus facilitating driver understanding of why an alert was presented, 
increasing trust (Lee & Lee, 2007) and possibly recalibrating drivers’ risk comprehension related 
to distracting activities. Measures that immediately mitigate distraction demand shorter 
detection times than feedback provided at the end of the drive (Donmez et al., 2009). The 
importance of the timing of distraction detection depends on the mitigation strategy. 

Type of distraction is also important. For example, the attention redirection approach (e.g., 
Fuchs et al., 2008; Engstrom & Victor, 2009) to distraction mitigation requires the detection 
algorithm to provide data that corresponds to the relevant type of distraction, because 
attention needs to be redirected differently to mitigate visual and auditory or cognitive 
distraction. Whereas it may be possible to prevent or mitigate visual distraction through an 
attention redirection display that draws the driver’s visual attention back to the road center, this 
strategy would not be appropriate for cognitive distraction, which instead may require the 
display to prompt the driver to reinstate an adequate scanning pattern and alert the driver to 
hazards, such as bicycle riders, in the visual periphery (Reyes & Lee, 2008). Some augmented 
cognition strategies determine the sensory or cognitive channel for feedback taking advantage 
of unused resources when the resources required for a particular warning modality are 
unavailable (Kincses, 2006). Supporting this type of mitigation would require detection 
algorithms to identify the sensory modality or spatial/verbal information code of the resource-
limiting distraction. Some distraction mitigation strategies need very specific indications of the 
type of distraction being detected. 
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Specification Template Development 

The application of the abstraction hierarchy begins with a definition of system boundaries. 
Dividing a complex system into component parts can manage complexity and helps highlight 
issues that might be masked in considering the system as an undifferentiated whole. Although 
often coupled, an obvious way to divide the overall system is in terms of distraction detection 
and distraction mitigation. 

Table 1 shows the nine classes of information that define the specification template for 
distraction detection systems. The rows derive from the abstraction hierarchy and the columns 
focus on the fundamental sensing, processing, and action elements that provide input to the 
distraction countermeasure. The upper row considers the system in terms of its purpose. This 
purpose-based or intentional perspective describes the system in terms of why it was developed 
and represents the intended capacity and the fundamental assumptions regarding its operation. 
The middle row considers the system in terms of what it achieves and represents the functions 
supported by the system. The bottom row considers the system in terms of how it is 
implemented and represents the physical characteristics of the system. These classes of 
information provide a complete description, ranging from why the system was built to how it 
was configured.  

Table 2 provides the definitions of the mitigation parameters.  Distraction mitigation takes the 
output of the detection process as input, linking the mitigation strategy with the purpose of 
detection (Table 1). The primary intentional inputs are related to the distraction type that 
requires mitigation, and the conditions under which the mitigation is intended to operate, such 
as a specified minimum speed.  

At the functional level of abstraction, the same descriptors (driver, vehicle, environment, task, 
integrated system) apply to the inputs for both the mitigation and detection functions. They are 
not identical inputs, however, because the detection inputs are transformed before becoming 
mitigation inputs. The functional transformation of the mitigation can tailor it to specific 
circumstances by taking additional factors, such as traffic demand, into account. The functional 
description of the mitigation output indicates the type of feedback and how the mitigation 
achieves its purpose. The physical output, in contrast, consists of display characteristics or the 
interface with other vehicle systems. 
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Table 1 Classes of information for a distraction detection template 

Level of abstraction Input Transformation  Output 

Intentional—Why  Assumed 
operating 
conditions (e.g., 
not urban 
driving) 

 

Theoretical framework 
and fundamental 
assumptions (e.g., 
assess degree of 
multiple resource 
theory information 
overload) 

Countermeasure 
supported (e.g., post-
drive feedback) 

Performance criteria 
(e.g., optimal Beta) 

Functional—What Information 
streams (e.g., 
gaze position 
and steering 
angle) 

Algorithm (e.g., glance 
away from the road 
more than two sec) 

Driver state (e.g., 
attentive or 
distracted) 

Physical—How Sensors (e.g., 
video camera) 

Processing hardware 
(e.g., processing 
capacity of onboard 
computer) 

Output data streams 
(e.g., binary indicator) 
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Table 2 Classes of information for a distraction mitigation template 

Level of abstraction Input Transformation  Output 

Intentional—Why  Assumed operating 
conditions (e.g., not 
urban driving) 

 

Real time 

Post drive 

Real-time feedback 

Post-drive feedback 

Performance criteria 
(e.g., timing, 
integration) 

Functional—What Information streams 
(e.g.,  attentiveness 
level) 

Algorithm (e.g., driving 
situations and time 
aggregation) 

Mitigation (e.g., 
feedback resolution 
and mode) 

Physical—How Wired or wireless 
link to mobile device 

Processing hardware 
(e.g., specificity, 
resolution) 

Output data streams 
(display or interface) 

 

Application and Refinement of Detailed Distraction Detection and Mitigation Templates 

Table 3 and Table 4 define the detailed draft distraction detection and mitigation template 
variables, respectively, at the three levels of abstraction. The tables also include a summary of 
the most important differences between systems revealed by the templates’ application and a 
subjective estimate of the utility of each template variable for comparing systems and 
estimating their benefits. 

The draft templates were applied to several distraction detection and mitigation systems that 
are in production or exist as advanced prototypes: Saab’s ComSense, Volvo’s Driver Alert 
Control, the SAVE-IT system, Lexus’s Driver Monitoring System, Mercedes-Benz's Attention 
Assist, and Toyota’s Wakefulness Level Judging System. The initial application of the draft 
template and concomitant textual summaries for each of these systems was intended to identify 
the key variables that capture differences among the systems reviewed, and to identify any gaps 
in the template categories that could be addressed with its revision (for examples of the textual 
summary, see Appendix B). Physical measurements were not conducted. 

The preliminary state and proprietary nature of this technology limit the available information 
particularly at the lower levels of the hierarchy, but all systems that at least had general 
information available at the highest level of abstraction were described.  Several 
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complementary information collection strategies were used to describe the systems. Patents 
provided the most detailed information about distraction detection systems, including 
information about system data sources, transformations, and outputs. However, patents do not 
necessarily describe specific production systems, so it was not possible to obtain a 
comprehensive system description from this source. In addition, the delay between the patent 
process, research and development, and the introduction of the technology to the market 
further limits the ability to link information in patents to the final system. Trade and academic 
journals and web-based content, conference proceedings, government reports, and 
manufacturer websites were also included in order to complement and verify information 
gathered during the patent review. The confluence of information supports a better description 
of the system than any one source.  

 

 



16 

 

Table 3 Summary of the distraction detection template and its application 

  

Template 
element  

Label Definition Outcome of application and utility 

Intentional— 
Input  

Assumed operating 
conditions  

According to the manufacturer, driving conditions 
where the system is expected to work and situations 
where it is not. 

Roadway conditions (weather, road markings), 
vehicle interior conditions (illumination, glasses), 
and vehicle state (speed limitations) are important 
classes of operating conditions that distinguish the 
systems. Range of application across operating 
conditions represents a critical variable for benefits 
estimation 
Utility: Good 

Intentional— 
Transformation 

Theoretical 
constructs 

Underlying theoretical assumptions of the algorithm, 
such as the constructs used to define the type of 
distraction being detected. These include 
information overload and attention as a resource 
compared to attention as a dynamic focus jointly 
defined by the driver and the distracting technology. 
These theoretical constructs define the underlying 
assumptions of the system design. 

Most systems do not focus on distraction, but apply 
to a range of impairments (e.g., drowsiness). This 
criterion should be refined to address this distinction 
more precisely. 
Utility: Good 

Intentional— 
Output 

Performance 
criteria 

The objective function for evaluating the system 
quality. This could be d’ and optimal Beta. 

Little or no publically available information for this 
criterion. 
Utility: Poor 

Intentional— 
Output 

Countermeasure 
supported 

This represents the ultimate purpose of the 
distraction detection system. Some systems might 
detect distraction as a byproduct of their primary 
purpose, such as a drowsiness detection system; 
others might address visual/manual distraction and 
neglect cognitive distraction. 

Real-time distraction prevention (workload 
management), attention redirection and alerts, 
adaptation of active safety system, cumulative 
feedback (trip report, SAVEIT). A central 
differentiating factor that is tied to the type of 
mitigation supported by the system. 
Utility: Very good 
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Table 3 Summary of the distraction detection template and its application (Continued) 

Template 
element  

Label Definition Outcome of application and utility 

Functional— 
Input 

Information 
streams  

Driver, vehicle state, and environmental variables 
that form the algorithm input. These are functionally 
relevant transformations of raw data, such as gaze 
to the roadway. 

Eye lid movement, pupil tracking, gaze 
determination, face orientation  (Lexus); 
combination of vehicle data (speed, turn signal 
status, cruise control state, steering wheel angle 
data, brake pedal position, throttle pedal position, 
lane position, etc.), environmental data (headlamp 
status, wiper status, defroster status, GPS data, lane 
width, etc.), driver data (gaze position, pupil 
diameter, heartbeat), current task data (radio, 
phone status), additional data  through integration 
with active safety systems) (Saab); vehicle and 
environmental  data only (lane position, road 
geometry (Volvo, current models); vehicle, 
environment and driver (Volvo, prototype); vehicle 
and environmental data, especially steering, 
(Mercedes); head pose and environment/driving 
task demand (SAVEIT); head movement, eyelid 
closure, duration and frequency of blinks (Seeing 
Machines). This variable highlights the additional 
capacity afforded by systems integrated into the 
vehicle compared to aftermarket systems that are 
not able to draw upon vehicle state data. 
Utility: Very good. 



18 

 

Table 3 Summary of the distraction detection template and its application (Continued) 

 

Template 
element  

Label Definition Outcome of application and utility 

Functional— 
Transformation 

Information 
combinations 

Combination of information streams that form 
functionally useful descriptions of driver state. This 
includes time window size over which information is 
combined and data smoothing to accommodate 
noisy data. 

The relationship between eye gaze and head 
movement, taking into account the peripheral vision 
of the road ahead for adaptive warnings (such as 
when looking in the rear-view mirror or turning a 
corner) (Saab); planned path, planned deviation 
(Volvo); unspecified combination of vehicle signals, 
PERCLOS, eyes on Road Center Point, etc. (Volvo 
prototype); actual and theoretical course angle 
comparison (Mercedes); PERCLOS (Seeing 
Machines). 

Utility: Good 

Functional— 
Transformation 

Algorithms The functional relationship between the information 
streams and the output driver state estimation. This 
includes whether or not the algorithm is generic or 
adjusted to the individual driver and the time 
window size used in algorithm performance. 

Largely unavailable due to proprietary concerns and 
may not be a useful differentiator. 

Utility: Poor 

Functional— 
Output 

Driver state The type and degree of driver impairment detected. 
Some algorithms may simply report a binary level of 
generic impairment, whereas others might report 
graded levels of impairment associated with specific 
types of distraction.  

Not clearly defined in available information, but is a 
useful differentiator. 

Utility: Good 
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Table 3 Summary of the distraction detection template and its application (Continued) 

  

Template 
element  

Label Definition Outcome of application and utility 

Physical— 
Input 

Sensors The physical sensors used as input to the system, 
such as video cameras for gaze, head pose, or lane 
position estimation. 

Inconsistently available, and where available, it may 
not provide a useful distinguishing characteristic. 
Utility: Poor 

Physical—
Transformation 

Processing 
hardware 

The computer hardware that supports the 
algorithms. 

Not available. 
Utility: Poor 

Physical— 
Output 

Signal The data from the distraction detection system, 
either nominal, ordinal or continuous signal, and its 
time-varying characteristics 

Meaningful only in the context of the mitigation 
strategy. 
Utility: Poor for distraction detection alone 
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Table 4 Summary of the distraction mitigation template and its application 

Template 
element  

Label Definition Outcome of application and utility 

Intentional— 
Input  

Driver State  The driver states and their consequences to 
which the mitigation will be applied. 

Systems mitigate different driver states related to 
inattention, including visual distraction, fatigue, and 
drowsiness. Driving demand may condition the 
countermeasure deployment.  
Utility: Good 

Intentional— 
Transformation 

Mitigation Strategy The approach to mitigation, for example an 
advising strategy in which the driver is alerted to 
the distracted state or a distraction mitigation 
strategy that directly addresses the source of 
distraction.  

Although most systems mitigate inattention through   
real-time driver feedback, other strategies have been 
used. 
Utility: Fair 

Intentional— 
Output 

Performance 
criteria 

The objective function for evaluating the system 
quality. It could include metrics related to 
salience/authority, timeliness, understandability, 
and acceptability. 

Little information for this criterion is available,      
limited to research prototypes.  
Utility: Poor 

Intentional— 
Output 

Countermeasure 
supported 

This represents the ultimate purpose of the 
distraction mitigation system. Some systems 
passively advise the distracted driver, who can 
then take an appropriate action, while others 
actively mitigate the distraction.  

Most passive countermeasures are intended to provide 
real-time feedback, but a variety of approaches are   
taken in active countermeasures – attention 
redirection, IVIS management, and Integrated/Adaptive 
Crash Warning Systems (CWS) occur in both research 
and production systems 
Utility: Very good 
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Table 4 Summary of the distraction mitigation template and its application (Continued) 

Template 
element 

Label Definition Outcome of application and utility 

Functional— 
Input 

Information 
streams  

Driver and vehicle state variables that govern 
when and how the mitigation will occur. These 
are functionally relevant transformations of raw 
data and detection algorithm output. 

Driver input includes visual distraction, fatigue 
(Mercedes), control (Volvo DAC). Vehicle input includes 
driving demand (Saab ComSense, SAVE-IT). Integrated 
systems provide traffic risk (Lexus/Toyota) and lane 
departure input (Volvo Research 2). 
Utility: Very Good. 

Functional— 
Transformation 

Information 
combinations 

Combination of information streams that result 
in functionally useful mitigations. This includes 
the possibility of modality 
augmentation/shifting, as well as information 
combinations that constrain the mitigation to 
occur under conditions where it will function 
well.  

 Mitigations may combine detection input with 
information indicating that an object is in the vehicle’s 
path before activating (Lexus). Mitigations   that reduce 
IVIS demand (lock-out strategy) may combine detection 
input with IVIS status (SAVE-IT). Mitigations may also 
combine detection and driver  inputs to cancel an alert 
(Saab AttenD).   
Utility: Good 

Functional— 
Transformation 

Algorithms The functional relationship between the 
information streams and the output mitigation. 

All systems use thresholds to convert input to graded or 
binary output. Some employ algorithms to operationally 
define constructs such as “control” (Volvo Driver Alert 
Control), “emergency” (Saab ComSense), or “risk” 
(Lexus/Toyota). Another distinction among systems is 
whether some conditions inhibit alerts (Saab AttenD). 
Also, the algorithms that support post-drive feedback 
(Seeing Machines, SAVE-IT) would differ from those that 
support real-time feedback. 
Utility: Good 

 

  



22 

 

Table 4 Summary of the distraction mitigation template and its application (Continued) 

Template 
element 

Label Definition Outcome of application and utility 

Functional— 
Output 

Mitigation Corresponding to algorithms that report a 
binary level of impairment, some driver 
feedback may only consist of issuing a single 
alert. Feedback may be presented in various 
modes and the vehicle may actively respond 
to address the driver’s distracted state.  

The current outputs are generally not graded, with the 
exceptions of Volvo Driver Alert Control, Saab AttenD (3 
levels), and SAVE-IT. Feedback is presented in visual, 
auditory (including two examples of voice feedback), and 
vibration modalities. Several mitigations pair a vehicle 
response with driver feedback. The systems differed in the 
specific driver state that they mitigated and in the 
specificity of driver feedback. Mitigations are further 
distinguished by whether they include a vehicle response, 
including crash preparations when a driver is distracted 
and about to crash, or delaying phone calls when traffic 
demands full attention.  
Utility: Very Good 

Physical— 
Input 

Information 
Streams 

The mitigation can use physical sensors and 
vehicle system interfaces for driver, vehicle, 
environment, task, and integrated system 
data.  

The physical input streams to the mitigation reflect sensor 
and algorithm performance but are not often described in 
our sources.  
Utility: Poor 

Physical—
Transformation 

Processing 
hardware 

The computer hardware that supports the 
algorithms, triggers, and conditions, and 
specifies the mitigation. 

Not available. 
Utility: Poor 

Physical— 
Output 

Display or 
interface 

The physical display and vehicle interface 
parameters are a product of the distraction 
mitigation strategy. Strategies of distraction 
prevention, distraction mitigation (including 
driver feedback), and CWS adaptation employ 
different driver and vehicle interfaces. 

The primary distinction among the physical outputs is the 
mitigation strategy that they support because their 
benefits depend on the success of the strategy. The 
mitigation system interface with the driver and/or vehicle 
supports mitigation, prevention, or CWS adaptation 
strategies. There is little detailed information available 
about visual display intensity and location, or the tonal 
qualities of auditory alerts. 
Utility: Fair. 
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Simplified Template Describing Both Distraction Detection and Mitigation 

From the perspective of creating templates that clearly distinguish between systems, the 
abstraction hierarchy levels describing the countermeasure emerged as perhaps the most 
distinguishing feature. The importance of this component suggests that a template that uses it 
as the primary organizing principle might provide a more understandable description of system 
functionality. It also better represents the high degree of coupling between effective distraction 
detection and mitigation subsystems.  Such an organization would make some criteria useful 
that are not when applied only to distraction detection. For example, the last entry in the table 
“Physical Output” provides little value for describing distraction detection systems, but could 
have great value in describing an integrated distraction detection and mitigation system. 
However, insufficient detail was available about the attributes of physical output such as 
physical location dimensions, luminance, and tonal frequencies so it was not included in the 
simplified template.  

Other levels were also instructive, either for their ability to distinguish between systems or their 
lack of utility (Tables 6 and 7). The functional properties distinguish distraction detection 
systems well. Some systems track head position and/or eye movements, others use driver bio-
behavioral information (features of the eyes, face, head, etc.), and some also derive general 
indices of driver performance (e.g., control). These differences suggest that using different types 
of sensors (CCD camera, vehicle data sensors, environmental sensors, etc.) and inputs (eye 
and/or head position, eye glance location, steering angle, etc.) might be an important 
differentiator. Little information about the algorithms and processing hardware at the physical 
level was found, so these considerations are not used to distinguish between the systems.  

Based on these and other outcomes of the template test applications, a simpler and more 
concise template was created (Figure 2).  Appendix C describes this template and provides 
examples of its application.  It condenses the elements from Table 3 and Table 4 to describe 
detection and mitigation as an integrated system.  The template adopts the elements of the 
distraction detection template at the intentional and functional levels of abstraction, but 
includes a greater focus on the information related to mitigation. The redundancy of driver state 
as the detection output (i.e., driver state) and mitigation input allowed for elimination of the 
mitigation input category (even though other inputs such as speed may only affect the 
mitigation). Any environmental or other inputs were assumed to be received by the detection 
component. These modifications reflect the challenges noted in the “Outcome of application 
and utility” column in Table 6 and Table 7. This is particularly true in the “Physical output” 
element. In the revised template, this element refers to output of the mitigation strategy and so 
it describes the specific nature of the feedback the driver receives, such as icon color of a visual 
display, and type of auditory alert. 

The simplified template form also changed the open-ended format represented in the full 
template to a standardized form with pre-defined variables in order to apply standard 
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terminology to distinguish between meaningful system characteristics.  The simplified template 
variables were identified through an analysis of key system differences that have been described 
in publicly available sources.   
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Manufacturer: Volvo Model Year: 2008/2009/2010  S80, V70, XC70 (US), 2009  XC90 (US)  Aftermarket or  OEM 
System Name: Driver Alert Control  2010 XC60 (US), XC70 (US, NZ), S80 (US)  Production or  Research 

 Standard configuration  Reconfigurable Notes:  

Detection - Purpose 
Input Applicable? Requirement Notes 

Road Conditions    
Yes  No Unknown 

      
 Good visibility Visible Road High Speed 
  Markings Roads ______ ______ 

 

Vehicle Interior    
Yes  No Unknown 

      
 Ambient Sound Level    
 Illumination  ______ ______ ______ 

 

Vehicle State    
Yes  No Unknown 

      
 Speed Traffic Demand Imminent Lane  
   Collision Marking ______ 

system activated at speeds > 40 mph, remains active until 
speeds < 37 mph 

Driver    
Yes  No Unknown 

      
 Head Position Glance Posture   
    ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

Transformation Applicable? System Type Notes 

Derivative System    
Yes  No Unknown 

      
 Drowsiness CWS    
 Fatigue  ______ ______ ______ 

 

Detection Approach    
Yes  No Unknown 

      
 Visual Search Vehicle Control    
   ______ ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

Output Applicable? Supported Notes 

Driver State    
Yes  No Unknown 

      
 Visual Cognitive Inattention   
 Distraction Distraction  ______ ______ 

Inattention: fatigue and drowsiness 
distraction detection as a byproduct 

 
________________ 

   
Yes  No Unknown 

     
 ______ ______ ______ ______ ______ 
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Manufacturer: Volvo Model Year: 2008/2009/2010  S80, V70, XC70 (US), 2009  XC90 (US)  Aftermarket or  OEM 
System Name: Driver Alert Control  2010 XC60 (US), XC70 (US, NZ), S80 (US)  Production or  Research 

Detection - Function 
Input Applicable? Information Streams Notes 

Driver Data    
Yes  No Unknown 

      
 Pupil Eye Gaze Head Pose 
    ______ ______ 

 

Vehicle Data    
Yes  No Unknown 

      
 Longitudinal Lateral CWS   
 Control Control  ______ ______ 

 

Environmental Data    
Yes  No Unknown 

      
 GPS Location Headlights    
   ______ ______ ______ 

 

Task Data    
Yes  No Unknown 

      
 Audio Status Phone Status IVIS Status   
    ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

Transformation General Algorithm Information 

Algorithm Machine Learning? 

   
Yes  No Unknown 

Notes: Planned deviation measures (MPD) are compiled by forming a mean over the planned deviation measures. If this measure exceeds a 
threshold, the state of distraction is detected 

Output Applicable? Driver State Notes 

Driver State: Type    
Yes  No Unknown 

      
 Visual Cognitive Inattention   
 Distraction Distraction  ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 
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Manufacturer: Volvo Model Year: 2008/2009/2010  S80, V70, XC70 (US), 2009  XC90 (US)  Aftermarket or  OEM 
System Name: Driver Alert Control  2010 XC60 (US), XC70 (US, NZ), S80 (US)  Production or  Research 

 Standard configuration  Reconfigurable Notes:  
Countermeasure-Purpose 

Output: Concurrent Applicable? System Type Notes 

Distraction Feedback    
Yes  No Unknown 

      
 Distraction Distraction Collision 
 Prevention Mitigation Mitigation ______ ______ 

 

In-Vehicle Information 
Management 

   
Yes  No Unknown 

      
 Distraction Distraction    
 Prevention Mitigation ______ ______ ______ 

 

CWS Adaptation    
Yes  No Unknown 

      
 Adaptive Passive Shift to Active Adaptive Active   
 Warning if Distracted Assistance ______ ______ 

 

Attention Redirection    
Yes  No Unknown 

      
 Forward Peripheral Speed   
 Hazard Hazard Control ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

Output: Post-Drive Applicable? System Type Notes 

Behavioral Change    
Yes  No Unknown 

      
 Driver Fleet Manager    
   ______ ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 
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Manufacturer: Volvo Model Year: 2008/2009/2010  S80, V70, XC70 (US), 2009  XC90 (US)  Aftermarket or  OEM 
System Name: Driver Alert Control  2010 XC60 (US), XC70 (US, NZ), S80 (US)  Production or  Research 

Countermeasure-Function 
Output: Concurrent Applicable? Specification Notes 

Distraction Alert 
Display Timing 

   
Yes  No Unknown 

      
 Real Time Delayed  
   ______ ______ ______ 

 

Distraction Alert 
Specificity 

   
Yes  No Unknown 

      
 Visual Cognitive Inattention   
 Distraction Distraction  ______ ______ 

 

Attention Feedback 
Presentation 

   
Yes  No Unknown 

      
 Discrete Continuous    
 Alert Level ______ ______ ______ 

Continuously displayed graded concentration level feedback 
(physically displayed as 5 bars). A binary aural and visual 
(coffee cup) and verbal (Time for a Break) warning is displayed 
if it reaches a threshold. 

Distraction Alert 
Modality 

   
Yes  No Unknown 

      
 Tone Voice Visual Haptic  
     ______ 

 

Distraction Alert 
Response Timing 

   
Yes  No Unknown 

      
 Milliseconds Seconds   
   ______ ______ ______ 

 

Distraction Alert 
Resolution 

   
Yes  No Unknown 

      
 Binary Graded    
   ______ ______ ______ 

 

In-Vehicle Information 
Management 

   
Yes  No Unknown 

      
 Vehicle Status Audio Telecom   
    ______ ______ 

 

CWS Adaptation    
Yes  No Unknown 

      
 Delay if Adapt Passive Adapt Active   
 Attentive Alert Intensity Assistance Force ______ ______ 

 

Attention Redirection 
Modality 

   
Yes  No Unknown 

      
 Tone Voice Visual Haptic  
     ______ 

 

 
________________ 

   
Yes  No Unknown 

      
      
 ______ ______ ______ ______ ______ 

Continuously displayed graded concentration level feedback 
(physically displayed as 5 bars). A binary aural and visual 
(coffee cup) and verbal (Time for a Break) warning is displayed 
if it reaches a threshold. 

Output: Post-Drive Applicable? Specification Notes 

Cumulative Feedback    
Yes  No Unknown 

      
 Quantitative Incident    
  Replay ______ ______ ______ 

 

Figure 2 Simplified template describing distraction detection and mitigation systems 
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APPLICATION OF TEMPLATE TO DISTRACTION DETECTION AND MITIGATION 
SYSTEMS 

The template was used to describe and compare two detection algorithms evaluated in Chapter 4, 
representing the two extremes of algorithm complexity: the simple Eyes off forward roadway algorithm 
(Klauer et al., 2006) and the sophisticated multidistraction detection (Victor, 2010) with modifications by 
NADS for implementation in the countermeasure effectiveness evaluation (Chapter 5).  Template 
specifications for the Eyes off forward roadway and multidistraction detection algorithms can be found 
in Appendix C. Although similar in approach – both algorithms are designed to detect distraction using 
eye-based measures – the analytic assessment shows differences in the intent of the algorithms, their 
requirements, the countermeasures supported, and the algorithms’ functionality.  The Eyes off forward 
roadway algorithm was derived using odds ratios to determine what threshold for eyes off the forward 
roadway leads to a statistically significant increase in crash risk (Klauer et al., 2006).  The algorithm 
identifies a cumulative glance away from the road of two seconds within a 6-second running window as 
visual distraction.  The required inputs are limited to measurements obtained from the driver, 
specifically eye glance measures.   

The multidistraction detection algorithm (Victor, 2010)  provides drivers with real-time alerts that 
correspond to an array of risky scanning behaviors associated with distraction.  It is based on the eye 
glance measurement of percent road center (PRC).  Although both algorithms use only driver data as 
primary inputs, the multidistraction detection algorithm has several measures of driver state (eye 
glance, head pose, and weight distribution), creating layers of redundancy to compensate for sensor 
signal quality issues.  When eye glance data is unavailable, the algorithm uses head pose data to 
calculate PRC. The multidistraction detection algorithm also uses vehicle state inputs (i.e., speed) to 
adjust thresholds for algorithm variables.  Below 25 miles per hour, the algorithm is not activated, and 
once activated the vehicle must maintain 23 miles per hour to remain engaged.  Vehicle speed is also 
used to adjust the road center cone: the road center cone is widened in low speed environments where 
drivers may be more actively scanning the roadside.  The size of the road center cone also adjusts to the 
sensor signal, increasing from 10 to 20 degrees when sensor input shifts from eye glance to head pose 
signals. 

The primary distinction between the two algorithms is the type of countermeasure supported: the Eyes 
off forward roadway algorithm can only support countermeasures for visual distraction, whereas the 
multidistraction detection algorithm supports mitigations for both visual and cognitive distraction.  The 
latter algorithm actually identifies three types of distraction: (1) visual distraction from a single long (3 
second) glance away from the roadway; (2) visual distraction from a history of glances away from road 
center (glances fall below a PRC of 60% within a 17.3-second running window); and (3) cognitive 
distraction (glances rise above a PRC of 83% within a 60-second running window). 

The multidistraction detection algorithm was developed for production applications, and therefore is 
designed to be robust and reliable.  To improve acceptability, its algorithm has mechanisms to reset the 
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calculations of distraction when its criteria are not met (e.g., minimum speed requirements) or after 
distraction is indicated so repeated nuisance alerts are not issued.  A visual time sharing (VTS) PRC 
window is also calculated to improve the consistency and reliability of distraction detection by resetting 
the visual and cognitive PRC windows when glances return to road center after a brief time off the road 
(PRC less than 65% in a 4 second window).  Further details about these algorithms can be found in 
Chapter 4. 

The template was also used to describe and compare the alternative countermeasure feedback 
evaluated in Chapter 5: real-time and post-drive feedback.  Both distraction countermeasures used the 
modified multidistraction detection algorithm described above and in more detail in Chapter 4.  The two 
countermeasures differ primarily in the time scale and intent of their feedback, with the real-time 
countermeasure providing concurrent feedback intended to mitigate distraction through visual and 
auditory alerts, whereas the post-drive countermeasure provided retrospective feedback designed to 
prevent future instances of distracted driving by showing drivers their level of distraction, distraction 
related driving performance decrements, measures of inattention, as well as video replays of their 
distracted driving.  The distinction between distraction mitigation and prevention suggests the 
differences in purpose between the two approaches: to prompt an immediate change in performance or 
to present a pattern of behavior as a means to coach drivers to change their behavior and attitudes 
about distracted driving. 

The specification templates clearly present the differing complexity of the two example algorithms. The 
templates describe substantial differences in purpose and functionality even between algorithms that 
are both based on eye glance variables. The multidistraction detection algorithm template includes 
variables that enhance system robustness when sensor signal quality is poor, and in situations where the 
driver’s gaze would be expected to leave the road center in the course of normal driving. The 
countermeasure portion of the template indicates that the system provides feedback for the risky 
scanning behaviors engendered by engagement in both visual and cognitive secondary tasks.  The 
templates do not explicitly capture the possibility that future mitigations will provide distinct real-time 
feedback for instances of distraction (long glances and distracted periods (a history of glances). The 
benefits revealed through a template can be difficult to assess because a good design concept (as shown 
in the template) can be poorly implemented. In this case, complexity may lead to confusion: drivers may 
not distinguish between the different eye glance patterns indicated by the algorithm and may disregard 
alerts because their meaning is not easily understood. Algorithms that change their performance based 
on speed or sensor signal inputs may be interpreted as unpredictable and inaccurate by drivers who fail 
to decipher patterns of algorithm performance in different driving situations and environments.  
Although simplistic, the Eyes off forward roadway algorithm is intuitive, and may more easily support 
changes in behavior, attitude and culture because the associated alerts are more easily understood.   
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IMPLICATIONS OF A TEMPLATE-BASED DESCRIPTION OF DISTRACTION 
DETECTION AND MITIGATIONS SYSTEMS 

Complete descriptions of distraction detection and mitigation systems are not available, and the 
templates highlight the gaps. A greater level of transparency is needed to fully understand the potential 
benefits of distraction detection and mitigation systems, and depending on the future relationship 
between government and industry, the templates may need to adjust to address levels of information 
available.  As the application of the templates to production and research systems and to example 
algorithms and alternative feedback systems indicates, distinctions between systems are possible but 
there is a limit to what can be done analytically.  Even with full transparency, there would continue to be 
uncertainty about how systems actually work.  Empirical evaluations may help fill this gap.   

Even though many specific elements of the systems remain poorly defined, the template descriptions 
provide useful distinctions between type of distraction detected and mitigated, and intent and timescale 
of feedback.  Two dimensions emerged that suggest important directions for future research. The first 
concerns the degree to which the algorithm is specific to distraction or a type of distraction: most do not 
distinguish. The second concerns the use of multiple measures to detect distraction: most do not. 

The purpose of the systems differed from detecting and mitigating distraction in that most systems are 
intended to support better attention to the road independent of the cause of inattention. For example, 
Volvo’s system estimates impairment associated with differences between the vehicle’s path and the 
planned path. These differences indicate degraded vehicle control and could reflect distraction, 
drowsiness, or alcohol impairment. No production system distinguishes between cognitive distraction 
and visual distraction; the multidistraction detection algorithm is unique in that regard, although the 
technology developed by SeeingMachines also approaches this level of specificity. Highly precise 
characterization of eye movements could make it possible to identify drowsiness using PERCLOS 
measures, detect visual distraction associated with the time the drivers’ eyes are off the road, and 
detect cognitive distraction associated with gaze concentration. The degree to which systems identify 
specific sources of impairment may be valuable for some distraction countermeasures and not others. 
For some countermeasures, such as those associated with adjusting parameters of collision warning 
systems, the specificity of the algorithm may not matter. For others, such as the post-drive feedback 
evaluated in Chapter 5, drivers might benefit from more specific information regarding the source of 
impairment so that they can adjust their behavior accordingly. Impairment specificity could be an 
important gap in distraction detection algorithms, but its importance depends on the countermeasure 
the algorithm supports.  

The degree to which the algorithm integrates multiple variables to estimate distraction-related 
impairment also varied: most use a very limited set of variables. Some systems, such as the Lexus Driver 
Monitoring System, combine driver state data with collision warning data regarding crash threats, but 
only use a video-based indicator of driver gaze to assess distraction. The Lexus system does not use 
steering or accelerator modulation data to estimate distraction. None of the existing systems combine 
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data to identify particular types of distraction, such as visual and cognitive. Again, the multidistraction 
detection algorithm fills this gap in the design landscape.  A more specific distraction detection system 
could be quite valuable for certain countermeasures, such as post-drive feedback, and the integration of 
multiple measures could make this specificity possible. 

Beyond these specific themes, a more general conclusion emerged: distraction detection algorithms 
need to be described in the context of the countermeasure they support. Countermeasure efficacy, 
driver acceptance, and the ultimate safety benefit depend on the match between the algorithm 
characteristics (e.g., specificity and sensitivity) and the countermeasure characteristics (e.g., structure, 
formatting, and timing of distraction-related feedback to the driver).  

In general, distraction mitigation is supported by providing real-time feedback for immediate driving 
performance improvement. All these systems issue acoustic feedback. Some of them combine different 
distraction alert modalities such as acoustic and visual (Volvo’s Driver Alert Control and Mercedes-
Benz’s Attention Assist) to enhance driver feedback reception. Volvo’s and Saab’s prototypes consider 
haptic modality of alert as well. This combination of different feedbacks is aimed at expanding 
mitigation of different types and degrees of inattention. For instance, drowsiness, cognitive, and visual 
distraction could be successfully supported by acoustic and haptic alerts but not by visual alone. 
However, a visual modality of alert can be used for feedback grading: Volvo rates driver attentiveness on 
a five-bar scale. Another application of the real-time mitigation developed by Seeing Machines (Driver 
State Sensor) is system integration into fleet management for later analysis or communication.    

Real-time distraction prevention is implemented through workload management functions: when the 
current state of a driver or driving environment is considered highly demanding, the system interrupts a 
phone call (Saab’s ComSense), applies emergency braking (Lexus’s Driver Monitoring System) or 
corrective steering (Toyota’s Wakefulness Level Judging System). The former two systems also use 
acoustic alerts to draw driver attention to the increased workload. In all of these cases, the negative 
impact of the immediate feedback is that it may impose more workload on a driver in addition to the 
already highly demanding situation (Donmez et al., 2008) 

One important application of the templates is benefits estimation, which concerns assessing the 
potential impact of a system on driving safety and efficiency. The template’s functional description of 
systems included in templates can support this application by linking system capabilities to the crash 
mechanism. For example, if visual and manual distractions represent the predominant contributors to 
distraction-related crashes, then a system that detects visual and manual distraction might provide a 
large benefit.  If, on the other hand, cognitive distraction associated with hands-free cell phones is the 
predominant contributor and the system does not detect cognitive distraction, then the associated 
benefit might be correspondingly smaller. Chapter 6 describes how a template-based description of 
distraction mitigation systems identifies how such systems influence the multiple behaviors associated 
with distraction-related crashes and how such influences combine to enhance driving safety. 
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CHAPTER 4. DESCRIPTION AND APPLICATION OF A PROTOCOL FOR 
EVALUATING DISTRACTION DETECTION ALGORITHMS  

Chapter 3 demonstrated that several systems are deployed that might detect distraction. The 
proprietary nature of algorithmic components limits the publically available information about these 
systems; hence, empirical evidence is needed to understand their capabilities. Currently there is no 
uniform method for assessing and comparing algorithms. Understanding the distraction potential of in-
vehicle devices is a similar challenge, but several standard protocols for measuring distraction have 
emerged. For example, the lane change and shutter tasks have both been used to assess demand of 
secondary tasks (Mattes & Hallén, 2009). A similar protocol is needed to assess the ability of vehicle-
based systems to detect distraction. This assessment protocol would provide an empirical basis for 
assessing the capabilities and vulnerabilities of algorithms. It would identify the most promising 
algorithms the interventions might support.    

The purpose of this chapter is to define and apply an evaluation protocol to promising distraction 
detection algorithms. It focuses on assessing the ability of algorithms to detect distraction assuming the 
algorithm receives valid sensor data. The protocol requires a data collection process that samples a 
selection of drivers, driving situations, and representative distractions. Data collected from this process 
are then reduced and interpreted relative to evaluation criteria.  The chapter describes each element of 
this protocol.   Appendix V details a separate algorithm approach based on visual-motor coordination 
that was conducted parallel to this effort, but which is not discussed further in this chapter. 

A central requirement of such a protocol is that the scenarios and secondary tasks are sensitive to 
distraction. The driving situation must place a sufficient demand for attention on the driver so that 
consequences of distraction can be observed in degraded vehicle control and attention to the roadway. 
This sensitivity to distraction is particularly important for evaluating countermeasures that the 
distraction detection algorithms support. The experiment described in Chapter 4 validates this protocol 
using driving situations that include secondary tasks and then the data are used to reveal algorithm 
capabilities and vulnerabilities. 

The following sections describe the evaluation protocol and the results of its application: 

· 

· 

· 

· 

Data collection protocol, including participants, methodology, and procedure; 

Protocol sensitivity to distraction; 

Algorithm assessment for detecting distraction; and 

Conclusions and recommendations for the evaluation protocol and for algorithm performance. 

Additionally, it should be noted that a parallel effort for the detection of alcohol and drowsiness related 
impairment is underway as part of NHTSA’s Advanced Countermeasures for Multiple Impairments 
(ACMI) program.  
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DATA COLLECTION PROTOCOL FOR ALGORITHM EVALUATION 

The data required for algorithm evaluation comprises a sample from representative drivers, in 
representative driving scenarios, performing representative distraction tasks.   

Participants 

Thirty-two participants balanced for gender age 25 to 505 were recruited for this study. Due to dropouts, 
another 14 participants were recruited to complete 32 sets of valid data. Among the dropped 
participants, seven withdrew due to simulator sickness, 5 were dropped due to bad eye-tracker data, 1 
was dropped due to data collection tablet problems, and 1 was dropped due to simulator issues. Details 
of the screening criteria for participants, as well as other material used in recruitment and screening, are 
found in Appendices D, E, and F. 

Among the 32 participants whose drive data was used, 17 were 25 to 34 years old, and 15 were 36 to 
50; 16 were male, and 16 were female; 16 were white/Caucasian, 4 were Asian, 1 was black/African-
American, and 1 was American Indian/Alaska Native.  

Apparatus and Driving Scenarios 

The experimental drives were conducted in a high-fidelity, motion-based driving simulator, the NADS-1. 
The simulator included a Chevy Malibu cab equipped with eye-tracking hardware, active feel on 
steering, brake, accelerator pedal, and a fully operational dashboard.    

The algorithm evaluation drive represented several common environments, included events that 
challenge distraction detection algorithms, and contained distracting tasks that are likely to challenge 
the driver. The constraints governing the system were reviewed and compared to the planned driving 
environment to ensure a sufficient match as to make the evaluation useful (see Table 5).  As can be seen 
by comparing the systems in the top rows of the table with the planned driving scenario environment in 
the last row of the table, the planned drive provides good coverage and meets the needs of this 
evaluation.   

Participants completed the evaluation drive twice, once with distractions and once without. The drive 
begins in an urban setting that includes a transition to an urban arterial, then continues onto an 
interstate, and ends on a rural road. The order of these three segments was the same for all drivers and 
for both the baseline and distraction drives. During each segment, participants complete three 
prompted secondary tasks. The distraction tasks were presented as a cluster that could be completed in 
a 75-90 second time-window.  All participants experienced all three distractions in all three driving 

                                                           

5 This age group has a stable low crash risk per mile driven and was chosen to minimize within-group variability 
that might reduce the statistical power of the comparisons. 
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environments. However, if a participant deferred the start of a task, the allowable duration was 
extended by the amount of deferment.  

Participants were instructed that these tasks represent urgent activities and they should complete as 
many as possible while driving as they normally would. If they deferred a task, a cue to initiate it would 
be repeated every 10 seconds. Drivers were also provided with task performance feedback to motivate 
good performance.  When drivers were not engaged in these three “forced paced” or prompted 
distraction tasks, they were presented with  a simple self-paced visual/manual task that required 
manual inputs to reduce the loudness and numerically displayed level of white noise. This task 
represented tuning the radio to minimize static. If no inputs were made, the loudness of the static 
would reach an uncomfortable level once per driving environment.  Unlike the prompted distractions, 
the participants could often respond to the radio task or not, although most responded frequently.  This 
simple visual/manual task was presented (without feedback) whenever the prompted secondary tasks 
were unavailable to assess drivers’ willingness to engage across a wider range of driving situations. 
 

Table 5 Driving scenario constraints by distraction system 

                                                           

6 40 mph and higher 
7 50 mph and higher 

Systems Active Speed 
Range 

Road Geometry Environmental 
Conditions 

Traffic 
Density 

<35 
mph 

35-55 
mph 

>55 
mph 

Strai 
ght 

Curve Hill 
Inter-

section 
Inter-

change 
Fog Rain 

Snow-
covered 

roads 

Poor 
ligh 
ting 

Low High 

Volvo’s Driver Alert 
Control (Prototype) 

X √6 √ √ ? ? √ ? X ? X X ? ? 

Volvo’s Driver Alert 
Control 

X √1 √ √ √ √ √ √ X ? X X √ √ 

Saab’s Driver 
Attention Warning 
System (AttenD) 

√ √ √ √ √ √ X √ √ √ √ √ √ √ 

Saab’s ComSense  √ √ √ √ √ √ √ √ ? ? ? ? √ √ 

Lexus’ Driver 
Monitoring System 

√ √ √ √ √ √ X √ ? ? ? √ √ √ 

Mercedes-Benz's 
Attention Assist 

X √7 √ √ √ √ √ √ ? ? ? √ √ √ 
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√ = condition accommodated by the noted system  
X = condition is not accommodated by the noted system 
? = not known 

      Y = Included in planned drive 
      N = Not included in planned drive 
 

Figure 3, Figure 4, and Figure 5 show the three road segments of the experimental drive – urban, 
interstate, and rural driving environments, respectively – as well as the location of the numbered 
scenario events. The road segments are associated with the corresponding events that represent a 
specific environment. 

Toyota’s 
Wakefulness Level 
Judging System 

? √ √ √ √ √ √ √ X ? X X √ √ 

Seeing Machines’ 
Driver State Sensor 

√ √ √ √ √ √ X √ √ √ √ √ √ √ 

Delphi’s SAVE-IT 
System 

√ √ √ √ √ √ X √ X ? X ? √ √ 

Planned Driving 
Environment 

Y Y Y Y Y Y Y Y N N N Y Y Y 
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Figure 3 The urban segment of the drive. 
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Figure 4 The interstate segment of the drive. 
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Figure 5  The rural segment of the drive. 

Each participant engaged in the set of distraction tasks eight times during each distraction condition 
drive. The tasks occurred in an urban drive (2), in a less dense urban environment with curves and high 
density housing (1), while following trucks on the interstate (1), during interstate curves (1), in a 
transition between light and dark rural road (1), on a dark rural road (1), and on a gravel road (1). Table 
6 summarizes the locations of the eight sets of three prompted tasks. Table 7 lists the events planned 
for the self-paced simple visual/manual “radio” task. Appendix G describes the data collection protocol 
in more detail, including the scenario events, distraction tasks, and their challenges to the driver. 
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Table 6  Summary of prompted tasks for the three segments of the drive. 

Environment Prompted Distractions Events  Included 
Urban 1st Urban Interaction 

    Menus 
    Arrows 
    Bug 

Urban Drive (102) 
Green Light (103) 

2nd Urban Interaction 
    Arrows 
    Bug 
    Menus 

Yellow Light Dilemma (104) 

3rd Urban Interaction 
    Menus 
    Arrows 
    Bug 

Urban Curves (106) 

Interstate 1st Interstate Interaction 
    Menus 
    Arrows 
    Bug 

Following (203) 

2nd Interstate Interaction 
    Menus 
    Arrows 
    Bug 

Interstate Curves (205) 

Rural 1st Rural Interaction 
    Menus 
    Arrows 
    Bug 

Turn Off Ramp (301) 
Lighted Rural (302) 
Transition to Dark (303) 

2nd Rural Interaction 
    Arrows 
    Bug 
    Menus 

Dark Rural (304) 

3rd Rural Interaction 
    Menus 
    Arrows 
    Bug 

Gravel Road (306) 
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Table 7  Summary of planned engagement with the self-paced radio task. 

Environment Events  Included 
Urban Pull-out (101) 

Green Light (103) 
Left Turn (105) 

Interstate Turn On Ramp (201) 
Merge On (202) 
Merging Traffic (204) 
Exit Ramp (206) 

Rural Dark Rural (304) 
Transition to Gravel (305) 
Gravel Road (306) 

 

Distraction Tasks 

Three secondary tasks were chosen to reflect distracting activities in which drivers currently engage, 
such as reaching to the backseat or adjusting the radio, as well as future distractions that a distraction 
detection algorithm should detect. Based on the current trajectory of innovations for in-vehicle internet-
based technologies and the proliferation of wireless “carried-in” devices that drivers use in vehicles, the 
specific activities drivers might engage in are likely to change quickly in the coming years. For this 
reason, generic tasks were prioritized over specific tasks that are linked to a particular technology so 
that the results are more likely to accommodate the rapidly changing array of distractions that will 
confront drivers.   

In the experimental design that follows, distraction type has three levels: a reaching task (bug), a 
visual/manual task (arrows), and a cognitive task (menu). The reaching task required drivers to reach to 
the back passenger side seat and follow a moving display with their finger. The visual/manual task was 
based on the arrow task used in the HASTE project (Engström et al., 2005), and presented drivers with a 
series of matrices of arrows on a three-inch diameter LCD touch screen. Participants had to review and 
discern whether or not a target arrow pointed in a particular direction was present in a field of distracter 
arrows.  In the cognitive task, drivers traversed an interactive voice response menu that required them 
to respond to prompts from the system based upon information they were given concerning a fictional 
flight to determine if the flight was on time. The self-paced radio task did not contribute to the protocol 
sensitivity analysis or algorithm evaluation except to indicate task engagement throughout the drive. 
Appendix G contains a detailed description of each distraction task.  

Experimental Design and Independent Variables 

The protocol’s overall sensitivity to distraction was analyzed using a 3×8×2 within-subjects experimental 
design that permitted comparison of driving performance during engagement in the three distraction 
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tasks presented in the distraction drives and at comparable intervals during the baseline drives. The 
order of the baseline and distraction drives was counterbalanced across participants. For the analysis of 
task engagement, a 3x3 within-subjects experimental design was used to compare engagement in the 
three types of distraction task in the three driving environments during the distraction drive. 

Table 8 and Table 9 show the composition of the three distraction task orders used in the experiment 
and their pairing with the scenario events, respectively. The order of the events and distraction tasks 
were the same for all participants. The order drivers perform tasks can affect their performance of the 
tasks, particularly if some tasks occur on the same stretch of road.  To guard against this confounding, 
the tasks were counterbalanced using a Latin square as show in Table 8 and these counterbalanced 
orders were distributed across the events as shown in Table 9. Any evaluation protocol will need to 
consider such counterbalancing to avoid confounding the effect of the task with the road situation. 

  

Table 8 Order of distraction tasks 

Order 1st 2nd 3rd 
I Arrows Bug Menu 
II Bug Menu Arrows 
III Menu Arrows Bug 
IV Arrows Menu Bug 
V Menu Bug Arrows 
VI Bug Arrows Menu 

 

Table 9 Pairing of events and order of distraction tasks 

Driving Event Start 
Event ID 

Order 

Urban Drive 102 III 
Yellow Dilemma 104 I 
Urban Curves 106 IV 
Interstate – Truck Following 203 II 
Interstate Curves 205 III 
Lighted Rural 302 VI 
Dark Rural 304 V 
Gravel Rural 306 IV 
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Procedure and Participant Instructions 

After providing informed consent (Appendix H), each participant completed a demographic 
questionnaire that assessed their driving history, habits of interaction with distracting devices, and 
beliefs in their own capability as safe drivers (Appendix I), then watched a PowerPoint presentation 
(Appendix J) that described the simulator cab and the tasks they were to perform during their drives. 
Participants then completed three drives; an eight-minute practice drive, an experimental drive 
performing distracting tasks, and another experimental drive with no distractions (the latter two in a 
counterbalanced order). The practice drive served to acclimate the participant to the simulator and to 
provide practice performing the distraction tasks.  

After driving the urban, interstate, and rural segments, participants completed a visual-analog scale 
assessing their subjective workload and performance (lateral and longitudinal control) (Appendix K) for 
each distraction type. Standard simulator realism and wellness surveys (Appendices L and M) were also 
administered after the drives, as was a post-drive survey (Appendix N). A debriefing statement 
requesting that participants not discuss their participation with others until the end date for the data 
collection was provided to encourage participants to not share strategies they may have developed to 
perform the tasks while driving with other potential participants (Appendix O). 

An incentive system (score) was used to encourage the participants to engage in the distracting tasks. 
The incentive was a function of overall task performance, including the time to initiate the distraction 
task, continuous attention to the task, and response accuracy. The experimenter provided scores out of 
100 points to participants at the end of the three road segments in the drive with distraction tasks. 
Participants were instructed to complete as many tasks as possible while driving as they normally would. 
See Appendix G for more details about the incentive score.  

Dependent Variables 

Table 10 is a list of driver performance measures that might be sensitive to distraction. The table also 
summarizes the findings regarding their sensitivity to driver performance of the distraction tasks. 

Table 10 Summary of metrics sensitivity to distraction 

Metrics Description  Sensitivity to distraction 

1 lp_avg average lane deviation Not sensitive to distraction 

2 lp_sd standard deviation of lane position Increases with distraction 

Not sensitive to urban 
environment (events 104 and 
106) 
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Metrics Description  Sensitivity to distraction 

3 lpn_sd modified standard deviation of lane 
position, not including mean 

Increases with distraction  

Not sensitive to urban or 
interstate environment 
(events 102, 104, and 203) but 
sensitive to rural environment  

4 sp_avg average speed Decreases with distraction  

Not sensitive to urban 
environment 

 

Table 10 Summary of metrics sensitivity to distraction (Continued) 

Metrics Description  Sensitivity to distraction 

5 sp_max maximum speed Sensitive only to two events: 
increases with distraction in 
urban environment (event 
102), but decreases for rural 
environment (event 301) 

6 sp_min minimum speed Decreases with distraction  

Sensitive to interstate 
environment 

7 sp_sd standard deviation of speed Increases with distraction for 
interstate environment 
(events 203 and 205). 

Not sensitive to urban and 
rural environments  

8 spn_avg average speed, with respect to speed 
limit 

Decreases with distraction  

Not sensitive to urban 
environment 

9 spn_sd modified standard deviation of speed, 
with speed limit subtracted 

Increases with distraction 

Sensitive to interstate 
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Metrics Description  Sensitivity to distraction 

environment 

10 ster_freq frequency content in the steering signal, 
measured at the 3dB power drop cutoff 

Increases with distraction 

Sensitive to all events but not 
to rural turn off ramp (event 
301) 

11 steer_H steering entropy, as defined in Boer, 
Rakauskas, Ward, & Goodrich, 2005.  
Baseline and reference data calculated 
from 60 sec windows in baseline drive 

Increases with distraction 

Sensitive to all events 

12 steer_sd standard deviation of steering wheel 
angle 

Increases with distraction 

Sensitive to all events except 
301 (turn off ramp) and 304 
(dark rural)  

13 str_rr_avg average steering reversal rate in a 6 
second moving window. Based on 6 
degree change in adjacent peaks, zero 
crossing not required 

Increases with distraction 

Sensitive to all events 

14 str_rr_sd standard deviation of steering reversal 
rate in a 6 second moving window 

Increases with distraction 

Sensitive to all events 

Data Reduction and Verification 

The data was analyzed with a four-phase approach similar to that used in the IMPACT project (Lee et al., 
2010). The first phase was a review of the data to remove any spurious data points and resolve any 
inconsistencies using data visualization.  The driving data from road segments in which the driver failed 
to engage in the task were treated as missing for all subsequent analyses.     

The second phase used an analysis of variance within the SAS general linear models procedure to test 
the primary hypotheses concerning sensitivity to driver distraction and task engagement. The statistical 
model for sensitivity included drive type, scenario event and type of distraction as within-subject 
variables.  The statistical model for task engagement included road segment and type of distraction as 
within-subject variables. The dependent measures associated with the self-paced visual/manual radio 
task were analyzed by road segment and drive type. Linear models for the variance decomposition 
analysis assessed the relationship between subjective and objective performance of the drivers.  Overall, 
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these analyses assess the sensitivity of the driving scenario and data analysis to distraction.  Where 
appropriate post-hoc t-tests were used. 

The third phase of analysis evaluated the real-time detection algorithms. The algorithms were evaluated 
using a signal detection paradigm to assess how many distractions are correctly identified (hits), how 
many are not detected (misses), how many instances are incorrectly identified (false alarms), and how 
many are correctly rejected (correct rejection). Hits and misses were defined by the presence or absence 
of distracting tasks from the distracted drive; whereas, false alarms and correct rejections were defined 
by corresponding locations in the baseline drive where the distractions were not present. The resulting 
analysis was portrayed on Receiver Operator Characteristic (ROC) plots. Similar to the algorithm analysis 
for the IMPACT project (Lee et al., 2010), the primary measure of algorithm performance is the Area 
Under the Curve in the ROC plot (AUC) with higher values indicative of better performing algorithms.  

The fourth phase of analysis involved data exploration to identify ways to improve the algorithms. This 
began with a review of the residuals—instances of misses and false alarms where the candidate 
algorithms failed to predict the state of the driver. Additional data sources were explored to account for 
the residuals, which might also improve algorithm performance.  

PROTOCOL SENSITIVITY TO DISTRACTION 

Several factors were considered when assessing the sensitivity of the test protocol to the effects of the 
experimental distraction manipulations. The initial step was to ensure that the manipulation, in this case 
distraction, resulted in data collected with the driver in the correct state. After ensuring protocols were 
effective in collecting the necessary data, the next step was to examine the sensitivity of dependent 
measures in identifying impaired performance and the relative sensitivity of the events within the 
experimental protocol.  The primary comparisons of interest were between the baseline and distraction 
conditions within a roadway segment. Because the dependent measures were not consistent across 
road segments, it was not possible to consider the interaction between road segments and distraction 
types. Follow-up analyses included examining the effect, if any, that the order of the baseline and 
distracted drives played in sensitivity to distraction effects, and how participants traded-off driving 
performance against task performance.   

Task Engagement 

To assess the extent to which drivers engaged as expected with the distraction tasks, a time history was 
plotted for each participant over the duration of the drive. Figure 6 shows a time history with horizontal 
lines indicating the portion of the drive over which the driver was engaged in each type of task, and 
vertical lines indicating when each task became available to the driver. For each task, engagement is 
measured from the driver’s first interaction with the task to the last interaction with the task.  In the 
event that the driver disengages with the task before it’s completed, the line would stop at the point of 
the last engagement even though the task continued to be available.  Open areas on the timeline for 
each participant indicate portions of the drive in which the driver was not engaged in a task. Open areas 
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between a vertical line and the start of the horizontal line of the same color indicate task deferrals by 
the driver. The radio task display changed about every 7 seconds and if the person engaged with the 
task at every change, then engagement was interpreted as continuous.  

The figure shows that most participants had a relatively uniform engagement in the tasks across the 
drive. The gaps in task performance were almost exclusively the result of disengagement with the radio-
tuning task. As anticipated, drivers performed the primary distraction tasks (menu, bug, and arrows) 
with little if any deferral of either the initial or subsequent tasks.  

Drivers 3 and 5 provide a good contrast in how drivers approached the radio task. Both drivers remained 
engaged throughout the primary distraction tasks; however, Driver 3 is continuously engaged 
throughout the drive with very short breaks in the radio task, whereas Driver 5 frequently disengaged 
from the radio task. This difference in engagement highlights a difference in approach adopted by 
participants. Some participants such as Driver 5 appeared to periodically adjust the radio when they 
noticed it deviating significantly from the nominal value; whereas more participants such as Driver 3 
attempted to minimize the deviation from the nominal value by making frequent adjustments whenever 
a change was noticed. Individual differences associated with the degree of engagement with the radio 
task have substantial implications for assessing the effect of the mitigation systems. 
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Figure 6  Task engagement by driver. Red indicates engagement with the bug task. Green indicates 
engagement with the arrows task. Blue indicates engagement with the menu task. Black indicates 

engagement with the radio task. Open areas indicate no engagement with any task. 

 

The average deferral time of the three prompted tasks ranged from two to 3 seconds across the road 
segments, but with no systematic differences (F(2, 604) =0.9, p = 0.41). Figure 7 shows that the 
variability associated with each mean is relatively consistent with the exception of menu task deferral in 
the urban area where the standard error is nearly twice that of the others.  Even with these differences 
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in variability, drivers tended to begin the primary distraction tasks as soon as they became available 
regardless of the task or driving environment.   

 

Figure 7  Task deferral time means with standard error bars for task by road segment. 

Drivers also differed in how well they performed the tasks. They performed the arrow and bug task 
better than the menu task, see Figure 8. Drivers received scores above 80 percent for both the bug and 
arrows task across all three driving environments, but received scores in the 70 percent range for the 
menu task.  Similar to task deferral, performance was not substantially different across the road 
segments (F(2, 604) =1.89, p=0.15). 

 

  

Figure 8 Task score means with standard error bars for task by road segment. 

Examining task performance across events and tasks for individual drivers can provide additional insight 
into the variations in task performance. Figure 9 shows differences in task score performance based on 
z-scores for each driver for each task in each of the eight driving environments. There are more 
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instances where the task performance is significantly worse than mean performance, but relatively few 
where performance is significantly better. The greatest deviation from the mean occurs in the urban 
area; whereas performance in the rural area is least variable. No consistent pattern of performance 
emerges when looking at individual drivers either across tasks or events. For example, when looking at 
Driver 125, task score is better than average for 7/8 of the menu task, 0/8 for the bug task, and 3/8 for 
the arrows task. This shows that drivers perform better on some tasks than others, such as the menu 
versus the bug task, and that this differential performance is not consistent across drivers.  

Overall, several conclusions can be clearly drawn concerning task engagement: 

· 
· 
· 
· 

Drivers consistently engaged in the tasks over the duration of the drive; 
Drivers initiated the tasks within 2-3 seconds after they were presented; 
Drivers engaged in the tasks as evidenced by their task scores; and 
Task performance was not uniform across tasks, across drivers, or across drivers performing 
particular tasks.  
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Figure 9 z-scores by participant and task across events. 

Sensitivity to Distraction 

Having established that drivers engaged in the distracting tasks fairly evenly over the course of the drive, 
we can now focus on whether the protocol demonstrated sensitivity to the effects of those distractions. 
Distraction effects can be assessed in terms of uniformity of the change across driving events and in 
terms of total impact on driving as indicated by the driving performance that are affected. Sensitivity of 
the protocol to distraction is important both to show distraction influenced driving performance and 
also to identify driving performance measures that might be used in an algorithm to detect distraction. 
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Both driving performance and gaze variables are considered as candidates for inclusion in distraction 
detection algorithms.  This sensitivity analysis focused on both the relative value of different metrics in 
detecting distraction and the driving events most sensitive to those effects. 

As stated above, Table 10 defined the measures that were analyzed to determine the effect of 
distraction, and also summarizes their sensitivity in terms of direction of change and situations in which 
they were not predictive. Measures that were most sensitive were those associated with steering, such 
as number of steering reversals, steering frequency, and steering entropy. Standard deviation of lane 
position also showed promise, but was not as sensitive as the steering measures. Figure 10 shows the 
relatively consistent effect of distraction on these four measures across the primary distraction events. 
Steering frequency was the only measure to provide an instance where distraction shifted the mean in 
the opposite direction (in the Rural Turn Off Ramp event), and in that case, the event was short and 
followed a right-hand turn. Distraction caused a clear decrement in performance on a variety of 
measures. 
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Figure 10 Effects of distraction on standard deviation of lane position, steering frequency, steering 
entropy and steering reversals. Black bars indicate the presence of distraction. Light grey is baseline 

driving with no distraction. Statistically significant differences are indicated (*).  
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Having established that several measures are sensitive to the effect of distraction, it is important to 
consider if this effect occurred uniformly across drivers.  Table 11 shows that the effect of distraction is 
not consistent across all drivers. Only one measure, steering entropy, showed that distraction produced 
a trend in the expected direction in at least 60 percent of the drivers in each event. Steering metrics, 
e.g., steering entropy, steering reversal rate, and steering frequency, followed by standard deviation of 
lane position were the most consistent across drivers and scenario events. Speed metrics were the most 
inconsistent.  The events on the interstate (Following and Curves) and on the rural paved road (Lighted 
Rural, Transition to Dark and Dark Rural) showed the most consistent effects of distraction. The effect of 
distraction in the urban environment was less consistent. 
 

Table 11 Percent of drivers who showed the expected change in driving with distraction for each metric 
and event. The expected directions are indicated by an arrow in the first column. Unshaded cells 

indicate less than 60 percent of drivers. Light grey indicates 60-74.9 percent. Medium grey indicates 75-
89.9 percent. Dark grey indicates > 90 percent 

Metric / 
Event 

Urban Interstate Rural 

Drive 
Green 
light* 

Yellow 
light Curves Following Curves 

Turn 
off 

ramp 
Lighted 

rural* 

Transit. 
to 

dark* Dark 
Gravel 

road 

lp_sd      ↑ 71.9 46.9 62.5 68.8 75.0 93.8 87.5 84.4 78.1 87.5 81.3 
lpn_sd    ↑ 56.3 53.1 68.8 71.9 78.1 84.4 78.1 71.9 68.8 87.5 81.3 
sp_avg    ↓ 37.5 46.9 59.4 37.5 71.9 84.4 84.4 71.9 90.6 75 53.1 
sp_min   ↓ 59.4 46.9 50.0 37.5 68.7 78.1 40.6 78.1 90.6 62.5 50.0 
sp_sd      ↑ 78.1 65.6 46.9 62.5 81.3 75.0 12.5 71.9 87.5 62.5 50.0 
spn_avg  ↓ 37.5 46.9 59.4 37.5 71.9 84.4 84.4 71.9 90.6 75 53.1 
spn_sd    ↑ 75.0 46.9 40.6 59.4 71.9 75.0 75.0 68.8 84.4 75.0 37.5 

ster_freq ↑ 96.9 62.5 87.5 100.0 100.0 100.0 9.4 
100.

0 62.5 
100.

0 93.8 

steer_H   ↑ 96.9 78.1 96.9 100.0 100.0 96.9 93.8 
100.

0 87.5 
100.

0 100.0 
steer_sd  ↑ 81.3 71.9 90.6 90.6 100.0 90.6 37.5 90.6 59.4 68.8 87.5 
str_rr_avg ↑ 96.9 40.6 93.8 100.0 100.0 96.9 93.8 65.6 62.5 96.9 100.0 
str_rr_sd ↑ 93.8 40.6 81.3 100.0 100.0 96.9 75.0 62.5 62.5 90.6 96.9 

Note: * indicates events where the set of distraction tasks was continued from the previous event.  

 

In summarizing the findings: 

· 

· 

The most sensitive metrics involved steering with steering entropy the most consistent.   

Standard deviation of lane position, while sensitive, was less effective in the urban environment. 
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· Urban events tended to provide less consistent effects than the interstate and rural 
environments. 

Influence of Task Order on Metric Sensitivity 

The analyses accounted for the effects of the order of the drives (distraction first versus baseline first) 
by including it in the statistical model; however, it is important to consider the role that order effects 
such as practice and fatigue play when studying distraction. Figure 11 shows that for some metrics, such 
as standard deviation of lane position (lp_sd) and steering entropy (steer_H), considering order removed 
noise from the data and provided a more accurate description of the influence of distraction.  However, 
for other metrics such as standard deviation of steering wheel angle, (steer_sd) effects that appeared 
strong were in fact artifacts associated with the order of the trials. These results emphasize the need of 
an evaluation protocol to counterbalance the order of events and tasks. 

 

Figure 11 Summary of metric sensitivity across events. 

Driving and Task Performance Trade-offs 

The relationship between performance on the distraction tasks and driving performance can reveal the 
influence of distraction. To examine this relationship, normalized task performance was compared to 
the four most sensitive driving metrics from the prior analysis (standard deviation of lane position, 
steering frequency, steering entropy, and steering reversals). Better performance on distraction tasks is 
expected to reflect greater distraction, and greater distraction is expected to have a greater effect on 
driving performance.  

A higher normalized task score represents increased task performance, whereas a higher driving 
performance value represents increased degradation. The expected relationship indicating that driving 
performance was traded for task performance would be represented by a line from bottom left to top 
right; however, this relationship was not found for any task in any of the three driving environments 
(Figure 12). 
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Figure 12 Relationship between driving performance metrics and task performance. The lines 
represent regressions for each set of data.  Red represents arrows task.  Blue represents bug task. Green 

represents menu task.  Circles represent urban. Triangles represent rural. X’s represent interstate.  
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This leads to two potential conclusions, (1) that regardless of how well drivers perform a secondary task, 
other factors such as individual differences in driving style or secondary task capacity govern driving 
performance; (2) that there is a relationship between task performance at the individual level that is 
obscured when data are analyzed at the group level. This relationship warrants further inquiry because 
how participants tradeoff task performance and driving has important implications for assessing 
tradeoff strategies. 

The preceding analysis examined the tradeoff at the group level. To evaluate how drivers trade off 
driving performance for task performance at the individual level, regression models were built for each 
driver: normalized task score = a + b * driver performance. An indicator of the tradeoff strategies that 
drivers may have developed – increased task performance at the cost of driving performance, increased 
task performance and driving performance, or increased driving performance at the cost of task 
performance, was estimated through regression coefficient b. The analysis showed that drivers do not 
increase their driving performance at the cost of task performance (Figure 13). However, the 
relationship between driving and secondary task performance is significantly different across drivers 
(Table 12). Road type (urban, interstate or rural) affected only the relationship between steering 
behavior and task performance. 

 

Table 12 Summary of regression coefficient analysis results 

Factors DF F-value 
Lane 

position SD 
Steering 

frequency 
Steering 
entropy 

Steering 
reversal rate 

average 
Subject 31, 124 2.24 2.93 3.82 0.71 
Road 2, 124 0.81 10.80 17.32 0.72 
Task 2, 124 61.88 20.89 28.60 4.87 
Subject x Road 62, 124 1.06 1.09 1.44 0.76 
Subject x Task 62,  124 2.22 1.58 1.81 0.93 
Road x Task 4,  124 2.05 1.07 3.98 0.78 
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Figure 13 Regression coefficients’ mean values (with standard error bars) for each task and road 
segment.  

DISTRACTION DETECTION ALGORITHM EVALUATION 

As demonstrated in Chapter 3, there are limitations to analytic assessments of distraction detection 
algorithms that empirical assessments are better able to address.  This algorithm evaluation considers 
the performance of four progressively more complex algorithms to assess the degree to which 
additional variables and additional combinations of variables improve distraction detection 
performance.  The algorithms all are based on gaze measures.  They are assessed using metrics from 
signal detection theory that are applied to the algorithms to assess their robustness across different 
tasks and road segments.  The evaluation concludes with an assessment of driving performance 
measures that might be combined with gaze measures to improve distraction detection performance. 

Four Progressively More Complex Algorithms 

Eyes off forward roadway (Klauer et al., 2006).  As described in Chapter 3, this algorithm defines visual 
distraction as a cumulative glance away from the road of 2 seconds within a 6-second running window. 
Because the original algorithm defined the 6second window assuming an identifiable action (i.e., lead 
vehicle braking) occurred during the fifth second within the 6-second window (Klauer et al., 2006), it is 
unusable as a real time distraction detection algorithm. To compare it with the other algorithms under 
study, a six-second window is used to accumulate glance duration away from the forward roadway. 

Risky visual scanning patterns (Donmez et al., 2007, 2008).  This algorithm considers the history of 
glances and considers both the duration of the current glance and the cumulative glances away from the 
road to define risky visual scanning patterns. It has been used to provide feedback to mitigate 

0.11 

0.06 

0.10 
0.11 

0.08 

0.05 

0.14 

0.06 

0.10 

0.00

0.05

0.10

0.15

0.20

Urban Interstate Rural Urban Interstate Rural Urban Interstate Rural

Arrow task Bug task Menu task

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
 

Steering reversal rate average (1/min) 



 

distraction during drivers’ interactions with in vehicle systems (Donmez et al., 2007, 2008). Levels of 
distraction are identified using Equation 1: 

 

Equation 1 

ߛ ൌ ߙ ∗ ଵߚ ൅ ሺ1 െ ሻߙ ∗  ଶߚ

 

where α is 0.2, β1 is the current glance duration away from the road, and β2 is the cumulative glance 
duration away from the road within the last 3 seconds (Donmez et al., 2007, 2008). γ (or risk) is 
considered moderate at values above 2 seconds, and high at values above 2.5 seconds (Donmez et al., 
2007, 2008).  However, the current implementation of the algorithm does not distinguish between 
moderate and high levels of distraction.  Once the algorithm reaches a set threshold, the driver is 
considered distracted.  

AttenD (Kircher et al., 2009; Kircher et al., 2009). Similar to the risky visual scanning patterns algorithm, 
the AttenD algorithm considers long glances away from the road as hazardous, and uses a buffer to 
represent the amount of road information the driver possesses. The buffer begins at 2 seconds and is 
decremented over time as the driver looks away from the field relevant for driving (FRD) (Kircher et al., 
2009). The FRD consists of the intersection between a circle corresponding to a visual angle of 90° and 
the vehicle windows. The FRD excludes the mirrors. Once the driver looks back at the FRD, the buffer 
increases until a value of 2 seconds is reached. When the driver looks at the rear view mirrors or the 
speedometer (outside of the FRD) for one second or less, the buffer value remains constant. For such 
glances longer than one second, the buffer decreases at a value of one unit per second. In addition, 
when the driver looks at objects that are not relevant to driver safety (i.e., radio, cell phone, HVAC), the 
buffer decreases at a value of one unit per second. After the buffer has decreased, there is a latency of 
0.1 seconds before the buffer increases again with attention to the road. The absolute minimum buffer 
value is zero and the absolute maximum buffer value is two. When the buffer reaches a value of zero, 
the driver is considered distracted.  

Similar to the two aforementioned algorithms, the AttenD algorithm relies solely on eye movements to 
detect driver distraction. However, it differentiates itself as it distinguishes three glance categories: 
glances to the forward roadway, glances necessary for safe driving (i.e., at the speedometer or mirrors), 
and glances not related to driving. This algorithm also uses the world model of the vehicle instead of the 
more general approaches in the Eyes off forward roadway and Risky visual scanning patterns algorithms 
(Kircher et al., 2009).  

multidistraction detection (Victor, 2010). The multidistraction detection algorithm was developed to 
identify distraction in real time and to give drivers alerts that correspond to risky scanning behavior 
associated with both visual and cognitive distraction. It relies on the notion that drivers should spend a 
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certain amount of time glancing towards the road center area. The road center area is defined as a circle 
of 10 degrees radius centered on the road center. (The road center is defined as the most frequent gaze 
angle during normal driving.) With the road center area identified, it is possible to give three types of 
alerts: (1) single long glance—when drivers glance away from the road for 3 seconds; (2) visual 
distraction—when drivers’ glances fall below a percent road center (PRC) of 60 percent within a 17.3-
second running window; (3) cognitive distraction—when drivers glances rise above a PRC of 92 percent 
within a 60-second running window. The running PRC windows were initialized when the vehicle speed 
reaches 50 kilometers/hour (31.1 miles/hour). When the speed falls below 47 kilometers/hour (29.2 
miles/hour), the PRC windows are reset to 80 percent and the PRC calculation is paused until the speed 
reaches 50 kilometers/hour again. In addition to the two PRC windows (for visual and cognitive 
distraction), a third PRC window is also calculated to improve reliability; it is called the visual time 
sharing (VTS) PRC window. This separate PRC calculation relies on a 4-second running window. When a 
sink is detected (a PRC value below 65%) followed by a rise (a PRC value above 75%), then the visual and 
cognitive distraction PRC windows are reset to 80 percent. The VTS window is also reset (to 75%) when 
the vehicle speed falls below 47 kilometers/hour (Victor, 2010). The multidistraction detection algorithm 
is the only algorithm to detect and distinguish between both visual and cognitive distraction.  

A MODIFIED MULTIDISTRACTION-DETECTION ALGORITHM FOR THE NADS 

The multidistraction detection algorithm was selected for use in this study; however, it was modified for 
use in the NADS-1 simulator in the context of the experiment.  There are several reasons for using a 
modified, rather than the original algorithm.  First and foremost is the fact that all the details of the 
commercial algorithm were not available for implementation.  Secondly, constraints of the experiment 
imposed by the scenario events motivated some changes in algorithm parameters.  Finally, the sensor 
suite feeding the algorithm was expanded to include not only an eye tracker, but also a separate head 
tracker and seat pressure sensors as well, with the intention of improving the robustness of the system.  
A flowchart of the modified algorithm is shown in Figure 14. 
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Figure 14 Modified NADS algorithm flowchart. 

The vehicle cab used in this protocol was equipped with an eye tracker, a separate head tracker, and 
seat pressure sensors. The modified algorithm was developed to incorporate data fusion between the 
various sources of data.  Eye tracker gaze data was used if it was of sufficient quality. If not, the system 
used the head tracker data. If neither the eye tracker nor the head tracker was accurate, then the seat 
sensor data was used. The difference between the left and right seat sensors was used to determine 
lateral shifts of the driver associated with reaching. If such a shift is sensed above a set threshold, it was 
interpreted as a glance away from the road center. If no weight shift was sensed, then no conclusion 
was drawn and the algorithm paused until tracking resumed or there was a weight shift. 

The size of the road center cone was enlarged from 10 to 20 degrees when the head tracker was used. 
Additionally, the car’s angular yaw rate was used to shift the center cone to the left or right. Finally, the 
size of the cone was also enlarged at the low end of the working speed. Each of these modifications to 
the center cone size and position were also intended to enhance system robustness in situations where 
the driver’s gaze would be expected to leave the road center in the course of normal driving. 
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Figure 14 shows several states in which PRC windows are reset.  Resets are used as a mechanism to 
saturate the maximum value of the medium length window (17.3 s) to 80 percent, and the minimum 
value of the long window (60 s) to 60 percent.  Resetting all PRC windows is also the mechanism used to 
“freeze” the algorithm in a known, initial state when the speed drops below the minimum threshold.  
Additionally, whenever a VTS event is detected, all the PRC windows are reset. 

The same three warnings are used in the modified algorithm.  Whenever a warning is triggered, the PRC 
windows are reset.  Notice that there are two parameter changes from the original algorithm.  The 
warning threshold for the cognitive warning has been lowered to 83 percent.  The reason for this was to 
have a greater chance of reaching the threshold during the cognitive distraction task in the experiment.  
The second change was to lower the speed threshold.  The speed threshold actually consists of two 
speeds separated by a small amount.  This hysteresis prevents the algorithm from quickly switching on 
and off as the speed crosses a single value.  The speed thresholds for switching on and off have been 
lowered from [31.1 mph, 29.2 mph] to [25 mph, 23 mph].  The reason for this change was that the first 
section of each drive took place in an urban environment that had a lower speed limit. 

The implementation of the finer points of the algorithm, such as data preprocessing and calibration, 
were created from descriptions available in theses (Victor, 2005; Larsson, 2003) and a patent application 
(Larsson & Victor, 2008).  The degree to which all details match the commercial applications was 
constrained by available documentation and the time allowed for development. 

Signal Detection Theory Criteria for Algorithm Assessment  

The objective of the analyses was to assess how well the algorithms distinguish between distracted 
drivers and non-distracted drivers, and to demonstrate a protocol that can be used to assess other 
algorithms. To assess how well each algorithm predicts distraction (either visual or cognitive), criteria 
from signal detection theory were used because it provides a theoretical basis for discriminating 
between a signal and noise (Stanislaw & Todorov, 1999). In this case, the “signal” is when the driver is 
distracted and “noise” is when the driver is not distracted. Each algorithm can either indicate distraction 
or not (a bimodal classification). Taken together, there are four possible outcomes for each 
measurement: a true positive—the algorithm correctly indicates distraction; a true negative—the 
algorithm correctly indicates no distraction; a false positive—the algorithm indicates distraction when it 
is in fact not present; and a false negative—the algorithm does not indicate distraction when it in fact is 
present. In each instance, a true instance of distraction is defined as when a participant is engaged in a 
task, i.e. the time period from the beginning to the end of a task. Future definitions of distraction should 
describe situations with problematic scanning behavior or impaired responses to events. However, as 
evaluation protocol, distraction defined by task engagement provides a well-defined basis for assessing 
distraction detection algorithms.  

Each algorithm was evaluated at different distraction thresholds (the multidistraction detection 
algorithm used in this analysis was the version modified by NADS). For the Eyes off forward roadway 
algorithm, values from 0 to 6 seconds with 0.3 second intervals are used as thresholds. The Risky visual 
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scanning patterns algorithm was assessed at 0.1 seconds to 6 seconds, with 0.3 second intervals. The 
AttenD algorithm was assessed at thresholds ranging from 0 seconds to 2 seconds with 0.1 second 
intervals. The multidistraction detection visual distraction alert was assessed at thresholds ranging from 
0 to 80 percent in 4 percent intervals. The multidistraction detection cognitive distraction alert was 
assessed at thresholds ranging from 80 to 100 percent in 1 percent intervals. These thresholds reflect 
the range of distraction recorded by each algorithm. 

The algorithm predictions at each distraction threshold form the basis for the receiver operator 
characteristic (ROC) curves.  These are plotted for each of the algorithms using the true positive or “hit 
rates” and the false positive or “false alarm rates” for each of the thresholds (Fawcett, 2006; Stanislaw & 
Todorov, 1999). The true positive rate is calculated by dividing the number of true positives by the sum 
of the true positives and false negatives. The false positive rate is calculated by dividing the number of 
false positives by the sum of false positives and true negatives. As the protocol is densely packed with 
distraction events, both the number of true positives and false negatives are only accumulated during 
the distracted drive. Accordingly, only false positives and true negatives were accumulated during the 
baseline drive. The false positive rate is calculated by examining the portion of the baseline drive that 
corresponds with the task engagement period during the distracted drive, as indicated by distance. 
During each task engagement period, if an instance of a true positive was identified (during the 
distracted drive) or an instance of a false positive was identified (during the baseline drive), then the 
entire period was classified as a hit (for the distracted drive) or a false alarm (for the baseline drive). As a 
result, since there are 24 task engagement periods, there are 24 resulting periods used to calculate the 
true positive and false positive rates. 

The area below the ROC curve (AUC) is calculated to determine if the algorithm correctly classified 
distraction at a probability higher than that due to chance (Fawcett, 2006). Chance performance 
corresponds to a curve along the diagonal of the graph, with an AUC of 0.50. The algorithm with the 
highest AUC value indicates the approach that correctly identifies distraction with the highest 
probability. The AUC is a common classification metric that is insensitive to class skew that can bias 
simple measures of percent correctly classified.  In addition to the ROC curves and AUC values, 
algorithms are assessed according to their positive predictive value (PPV indicates precision) and their 
accuracy.  

Receiver Operator Characteristics by Task 

To evaluate how each algorithm detected visual and cognitive distraction associated with different 
tasks, each of the three tasks was analyzed separately. Figure 15 shows the ROC plots for each algorithm 
for each task. 

All four algorithms performed similarly in detecting engagement with the bug task. This reflects the 
nature of the bug task, which requires participants to look to the backseat.  All four algorithms 
performed significantly better than chance (indicated by the dashed line in Figure 15). Even with high 
true positive rates near 0.75, the corresponding false positive rates were no larger than 0.25. This 
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indicates that each of the algorithms can accurately identify distraction at a reasonable rate (0.75) with 
false alarms occurring at a rate of only 0.25. 

 

Figure 15 ROC plots for each algorithm separated by task; only the multidistraction detection algorithm 
was intended to detect cognitive distraction. 
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All four algorithms again performed much better than chance with the arrows task. At the same time, 
compared to the bug task, substantial differentiation between the algorithms can be seen. Here, the 
multidistraction detection distinctly outperforms the other algorithms. The AttenD algorithm constantly 
yields high true positive rates, but at the expense of high false alarm rates, which exceed 0.4. The two 
least complex algorithms (Eyes off forward roadway and Risky visual scanning patterns) perform in a 
similar manner. 

Because the multidistraction detection algorithm was the only algorithm intended to predict cognitive 
distraction, there was no comparison. Comparing the results of the multidistraction detection algorithm 
to the other three algorithms would not yield equivalent comparisons as the other three algorithms are 
essentially detecting eyes off the road, which generally does not occur with cognitive distraction. 
Detection of cognitive distraction is greater than chance (indicated by the dashed line) and consistently 
yields higher true positive rates than false positive rates at each threshold.  

A clear difference can be seen between the algorithms because not all of the ROC curves reach points 
where both the true and false positive rates are one and zero. Failure of the ROC curve to reach the 
upper or lower corner indicates that even at the extreme thresholds, the algorithm will not catch or 
misclassify all instances of distraction. 

Further differentiation between the algorithms can be seen in the area under the ROC curve (AUC; Table 
13). All algorithms performed well above chance (AUC=0.5). In addition, the AUC values analytically 
confirm what Figure 15 shows: the multidistraction detection algorithm generally outperforms the other 
algorithms.  

 

Table 13 Area under the curve for each of the algorithms and each of the task (RVSP=Risky visual 
scanning patterns; EOFR=Eyes off forward roadway; MDD=multidistraction detection). 

 
  Algorithms 

  RVSP EOFR AttenD MDD 

Tasks 

Arrows 0.669 0.752 0.711 0.870 

Bug 0.779 0.866 0.803 0.860 

Menu n/a n/a n/a 0.675 

 

Because AUC values do not completely describe algorithm performance (i.e., the AUC does not 
distinguish between an algorithm that suffers from a high miss rate or a high false alarm rate), accuracy 
and precision can be useful metrics (Table 17 and Table 18). Additionally, for production systems which 



 

use a particular threshold that makes the AUC not relevant, the system would be described by accuracy 
and precision. 

 

Table 14 Accuracy for each algorithm and task (RVSP=Risky visual scanning patterns; EOFR=Eyes off 
forward roadway; MDD=multidistraction detection; TPR=True positive rate; FPR=False positive rate). 

    Algorithms 

    RVSP  EOFR  AttenD  MDD 
Maximum accuracy 

Arrows  0.676  0.721  0.728  0.855 
TPR=0.587  TPR=0.625  TPR=0.857  TPR=0.867 

Tasks 

FPR=0.234  FPR=0.184  FPR=0.401  FPR=0.156 
Bug  0.761 

TPR=0.753 
0.799 
TPR=0.829 

0.805 
TPR=0.992 

0.836 
TPR=0.871 

FPR=0.230  FPR=0.230  FPR=0.822  FPR=0.199 
Menu  n/a  n/a  n/a  0.639 

TPR=0.734 
FPR=0.457 

Minimum Accuracy 
Arrows  0.486  0.493  0.495  0.497 

TPR=0.023  TPR=0.992  TPR=0.961  TPR=1 

Tasks 

FPR=0.051  FPR=1  FPR=0.971  FPR=1 
Bug  0.495 

TPR=1 
0.495 
TPR=1 

0.495 
TPR=1 

0.495 
TPR=1 

FPR=1  FPR=1  FPR=1  FPR=1 
Menu  n/a  n/a  n/a  0.495 

TPR=1 
FPR=1 

 

Accuracy is a measure of how often the algorithm gives a correct or true classification and was 
calculated using Equation 2: 

Equation 2 

ݕܿܽݎݑܿܿܣ ൌ
ݏ݁ݒ݅ݐݏ݋݌	݁ݑݎܶ ൅ ݏ݁ݒ݅ݐܽ݃݁݊	݁ݑݎܶ

 
ݏ݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎܶ ൅ ݏ݁ݒ݅ݐܽ݃݁݊	݁ݏ݈ܽܨ ൅ ݏ݁ݒ݅ݐܽ݃݁݊	݁ݑݎܶ ൅ ݏ݁ݒ݅ݐ݅ݏ݋݌	݁ݏ݈ܽܨ

Precision is a measure of exactness in terms of how correct the algorithm is in classifying distraction and 
was calculated using Equation 3: 
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In the case of precision, values were aggregated across only those participants with instances of both 
true and false positives as calculating precision without any true or false positives will result in values of 
infinity.  

Based on these values, both the Eyes off forward roadway and Risky visual scanning pattern algorithms 
typically have lower accuracy and precision. The AttenD and multidistraction detection algorithms 
perform in a like manner, with the multidistraction detection algorithm having higher accuracy and 
precision in most instances. 

Table 15 Precision for each algorithm and task (RVSP=Risky visual scanning patterns; EOFR=Eyes off 
forward roadway; MDD=multidistraction detection; TPR=True positive rate; FPR=False positive rate). 

Equation 3 

 
ݏ݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎܶ

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ݏ݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎܶ ൅ ݏ݁ݒ݅ݐ݅ݏ݋݌	݁ݏ݈ܽܨ

 

    Algorithms 
    RVSP  EOFR  AttenD  MDD 

Maximum precision 
Arrows  0.678  0.722  0.673  0.906 

TPR=0.587  TPR=0.693  TPR=0.857  TPR=0.719 

Tasks 

FPR=0.234  FPR=0.262  FPR=0.401  FPR=0.098 
Bug  0.777 

TPR=0.753 
0.880 
TPR=0.615 

0.736 
TPR=0.992 

0.887 
TPR=0.780 

FPR=0.230  FPR=0.113  FPR=0.383  FPR=0.145 
Menu  n/a  n/a  n/a  0.662 

TPR=0.734 
FPR=0.457 

Minimum precision 
Arrows  0  0  0.498  0.499 

TPR=0  TPR=0  TPR=0.965  TPR=1 

Tasks 

FPR=0.004  FPR=0.004  FPR=0.975  FPR=1 
Bug  0 

TPR=0 
0.172 
TPR=0.031 

0.498 
TPR=1 

0.498 
TPR=1 

FPR=0.004  FPR=0.011  FPR=1  FPR=1 
Menu  n/a  n/a  n/a  0 

TPR=0 
FPR=0.004 
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Receiver Operator Characteristic by Road Segment 

In addition to evaluating the algorithms by task, they were also evaluated by road segment. For this 
evaluation, both the arrows and bug tasks were grouped together into visual distraction and cognitive 
distraction was still analyzed separately. Only 31 participants were included in these analyses as one 
participant was removed due to incomplete task performance data. Figure 16 shows the ROC plots for 
each algorithm separated by road segment and task type. 

While detecting visual distraction during the urban section, all four algorithms performed similarly.  The 
speed limit in the urban section was slightly above the speed limit threshold of the multidistraction 
detection algorithm.  The three simpler algorithms did not utilize the speed threshold; however their 
performance was still similar to the multidistraction detection algorithm.  The speed threshold used in 
the multidistraction detection algorithm is a design feature that reduces false alarms, but also increases 
misses. With that said, each algorithm still performs reasonably well and well above chance. 

Differentiation between the algorithms can be seen in the interstate section while detecting visual 
distraction. As the speed limit during this road section is significantly higher than the speed threshold, all 
algorithms were capable of detecting distraction. The multidistraction detection algorithm performed 
quite well by yielding true positive rates near 1.0 while corresponding false alarm rates were only at 0.2. 
The AttenD and Eyes off forward roadway algorithms also performed well, yielding true positive rates 
near 0.8 while corresponding false positive rates were at 0.4. 

The rural segment revealed a similar ordering of algorithm performance. At the same time, each 
algorithm performed better in the rural environment than in both the urban and interstate sections. 
This could reflect the speed threshold during the urban segment and the fact that only six tasks were 
presented during the interstate segment (as compared to nine tasks during the urban and rural 
segments). The visual demands of the environment, such as pedestrians, traffic, and storefronts, drew 
drivers’ eyes away from the forward roadway and were another factor contributing to the poorer 
performance in the urban segment.  These glances away from the forward road might contribute to 
false alarms. 

The multidistraction detection algorithm’s ability to detect cognitive distraction resulted in similar 
performance over the three road segments. This was confirmed by examining the area under the curve 
values presented in Table 16 as all values were between 0.6 and 0.7.  

However, the area under the curve values show clear differences between the algorithms when 
detecting visual distraction. The multidistraction detection algorithm consistently yielded values above 
0.8. The Eyes off forward roadway algorithm also performed well across the range of road segments and 
yielded values between 0.7 and 0.9. The AttenD algorithm had area under the curve values between 0.7 
and 0.8 while the Risky visual scanning patterns algorithm had values between 0.6 and 0.8.  The last line 
of Table 16 shows the range of algorithm performance across the three segments varied relatively little 
and that AttenD and multidistraction detection were the most robust. 
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Figure 16 ROC plots for each algorithm separated by road segment and task; only the multidistraction detection algorithm was intended to 
detect cognitive distraction. 
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Table 16 Area under the curve for each algorithms and road segment (RVSP=Risky visual 
scanning patterns; EOFR=Eyes off forward roadway; MDD=multidistraction detection) 

  Algorithms 
  RSVP EOFR AttenD MDD-

visual 
MDD-
cognitive 

Road 
Urban 0.764 0.851 0.754 0.830 0.682 
Interstate 0.630 0.749 0.727 0.886 0.614 
Rural 0.756 0.813 0.786 0.896 0.697 

 Range 0.126 0.102 0.059 0.066 0.083 
 

The accuracy and precision for each of the algorithms (Table 17 and Table 18) follows the results 
for the area under the curve.  The multidistraction detection algorithm consistently yields the 
highest accuracy and precision. Although the Eyes off forward roadway algorithm had promising 
area under the curve values, the AttenD algorithm often yields better accuracy and precision. 
The Risky visual scanning patterns algorithm consistently yielded the lowest values for both 
accuracy and precision. 
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Table 17 Accuracy for each algorithm and road segment (RVSP=Risky visual scanning patterns; 
EOFR=Eyes off forward roadway; MDD=multidistraction detection; TPR=True positive rate; 

FPR=False positive rate) 

  Algorithms 
  RVSP EOFR AttenD MDD-visual MDD-

cognitive 
Maximum accuracy 

 Road 

Urban 0.753 
TPR=0.742 
FPR=0.237 

0.793 
TPR=0.747 
FPR=0.161 

0.761 
TPR=0.925 
FPR=0.403 

0.812 
TPR=0.758 
FPR=0.124 

0.656 
TPR=0.742 
FPR=0.430 

Interstate 0.633 
TPR=0.540 
FPR=0.272 

0.718 
TPR=0.823 
FPR=0.387 

0.738 
TPR=0.919 
FPR=0.444 

0.879 
TPR=0.968 
FPR=0.210 

0.589 
TPR=0.855 
FPR=0.694 

Rural 0.750 
TPR=0.699 
FPR=0.199 

0.766 
TPR=0.774 
FPR=0.242 

0.796 
TPR=0.935 
FPR=0.344 

0.871 
TPR=0.914 
FPR=0.172 

0.651 
TPR=0.613 
FPR=0.312 

Minimum Accuracy 

 Road 

Urban 0.495 
TPR=0 
FPR=0.011 

0.500 
TPR=1 
FPR=1 

0.500 
TPR=1 
FPR=1 

0.503 
TPR=1 
FPR=0.995 

0.500 
TPR=0 
FPR=0 

Interstate 0.480 
TPR=0.040 
FPR=0.081 

0.483 
TPR=0.016 
FPR=0.048 

0.488 
TPR=0.976 
FPR=1 

0.500 
TPR=1 
FPR=1 

0.492 
TPR=0 
FPR=0.016 

Rural 0.500 
TPR=0 
FPR=0 

0.500 
TPR=0.995 
FPR=0.995 

0.500 
TPR=1 
FPR=1 

0.500 
TPR=1 
FPR=1 

0.500 
TPR=0 
FPR=0 
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Table 18 Precision for each algorithm, and road segment (RVSP=Risky visual scanning patterns; 
EOFR=Eyes off forward roadway; MDD=multidistraction detection; TPR=True positive rate; 

FPR=False positive rate) 

  Algorithms 
  RVSP EOFR AttenD MDD-visual MDD-

cognitive 
Maximum precision 

 Road 

Urban 0.762 
TPR=0.742 
FPR=0.237 

0.865 
TPR=0.608 
FPR=0.091 

0.714 
TPR=0.925 
FPR=0.403 

0.916 
TPR=0.656 
FPR=0.091 

0.697 
TPR=0.903 
FPR=0.720 

Interstate 0.632 
TPR=0.540 
FPR=0.274 

0.788 
TPR=0.605 
FPR=0.202 

0.706 
TPR=0.919 
FPR=0.444 

0.888 
TPR=0.726 
FPR=0.137 

0.570 
TPR=0.855 
FPR=0.694 

Rural 0.796 
TPR=0.699 
FPR=0.199 

0.837 
TPR=0.677 
FPR=0.183 

0.758 
TPR=0.935 
FPR=0.344 

0.906 
TPR=0.720 
FPR=0.113 

0.636 
TPR=0.613 
FPR=0.312 

Minimum Precision 

 Road 

Urban 0 
TPR=0 
FPR=0.011 

0.129 
TPR=0.027 
FPR=0.016 

0.500 
TPR=1 
FPR=1 

0.501 
TPR=1 
FPR=0.995 

0 
TPR=0 
FPR=0 

Interstate 0 
TPR=0 
FPR=0 

0 
TPR=0 
FPR=0 

0.493 
TPR=0.976 
FPR=1 

0.500 
TPR=1 
FPR=1 

0 
TPR=0 
FPR=0 

Rural 0 
TPR=0 
FPR=0 

0.065 
TPR=0.016 
FPR=0.005 

0.500 
TPR=1 
FPR=1 

0.500 
TPR=1 
FPR=1 

0 
TPR=0 
FPR=0 

 

Considering the results of the ROC curves, AUC, accuracy and precision, it is apparent that 
certain tradeoffs exist when deciding which algorithm is best suited for distraction detection. 
For example, the AttenD algorithm consistently yielded high true positive rates, area under the 
curve values, accuracy, and precision, yet the lowest false positive rate was always near 0.4. 
Choosing this algorithm for distraction detection would ensure detection of distraction, but at 
the expense of a high number of false alarms. Drivers might not accept a system with such a 
high rate of false alarms, but the consequence of false alarms likely depends on the particular 
characteristics of the mitigation, an issue we return to in the following section.  

Alert Latency  

To further distinguish the algorithms, the time between the secondary task onset and when 
each algorithm first alerted (i.e. alert latency) was also analyzed. Note that alert latency refers to 
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the time when an alert would have been issued; no alerts were actually issued in the present 
experiment. An algorithm that has a high area under the curve, high accuracy, high precision, 
and low alert latency would be ideal. 

Alert latency was calculated for each of the 16 different task periods—because only one 
algorithm measured cognitive distraction, only the visual tasks were analyzed. Alert latency was 
averaged across all task periods to form one aggregate value. If any missing values were still 
present, multiple imputations were used to estimate the missing values using Bayesian linear 
regression. 

 

 

Figure 17 Box plot of each algorithm’s alert latency by task 

Figure 17 is a box plot of each algorithm’s alert latency by task. A mixed model ANOVA shows 
significant effects of algorithm (F(3,90) = 76.79, p < 0.0001), and the task-algorithm interaction, 
F(3,90) = 9.51, p < 0.001. The EOFR algorithm had the lowest alert latency (M = 3.85), followed 
by the AttenD algorithm (M = 4.85), the RVSP algorithm (M = 7.78), and the MDD algorithm (M = 
8.09). The significant interaction showed that alert latency was lower during the arrows task for 
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the RVSP and MDD algorithms, and lower during the bug task for the EOFR and AttenD 
algorithms. However, the difference between the arrows and bug task was only significant for 
the RVSP algorithm (F(1,30) = 2.89, p = 0.002) and the AttenD algorithm (F(1,30) = 7.85, p = 
0.0088. 

Additional Indicators of Distraction beyond Eye Metrics 

Although eye gaze metrics are very effective in detecting distraction, driving metrics might 
supplement them. Several powerful feature selection approaches can identify potentially useful 
indicators of distraction. Many feature selection approaches exist and no single approach is 
most suitable for all applications. However, a comparison of many feature selection techniques 
identified several particularly promising approaches (Hall & Holmes, 2003). One of these —
wrapper-based—selects features based on algorithm performance when it is tested with 
different combinations of features. The feature combination that produces the best 
performance is selected for further algorithm development. Another approach—correlation-
based feature selection—includes features that  best predict distraction and removes features 
that are correlated with other selected features (Hall & Holmes, 2003). Such techniques often 
outperform more traditional approaches such as principal component analysis. These 
techniques are also less likely to capitalize on chance associations compared to step-wise 
regression. 

The wrapper-based and correlation-based approaches were combined with two common data 
mining techniques—decision tree and naïve Bayes models to produce four feature selection 
methods that were applied to the data: wrapper-based using a decision tree, wrapper-based 
using a naïve Bayes algorithm, and correlation-based feature selection tested with both a 
decision tree and naïve Bayes algorithm. Each of these approaches was applied to the driving 
performance data in each segment of the drive (urban, interstate, and rural), identifying a set of 
distraction indicators for each segment. The indicators were based on data aggregated by event 
within each segment. The driving performance data included driver inputs, such as accelerator 
and steering wheel modulation, as well as driving performance indicators, such as speed and 
lane position. Table 10 and Table 22 summarize the variables considered. Note that these 
measures exclude gaze based indicators because gaze is much more sensitive to visual 
distraction and would dominate the other driver performance variables. A similar analysis of 
gaze measures produces AUC measures of 1.0, which confirms the use of gaze metrics in the 
four algorithms evaluated.  The AUC values described in this section (unlike the feature selection 
results) are based on data from the entire drive and reflect the classification of the entire drive 
as one where the driver engaged in a distraction or not.  This contrasts with the previously 
described algorithms that are detecting second-to-second engagement, which is a much more 
difficult classification problem. 
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Table 19 Additional variables included in feature selection. 
 

Metrics Description  
1 acc_hold throttle hold 
2 acc_rr_avg average accelerator pedal reversal rate in a 

6 second moving window.  
3 acc_rr_sd standard deviation of accelerator pedal 

reversal rate in a 6 second moving window 

 
Ten-fold cross-validation was used to assess the value of the selected variables. Cross validation 
splits the data into subsets or folds and the model is fit to all but one subset and then the model 
is tested on the withheld data. A 10-fold cross validation splits the data into 10 subsets and the 
overall worth value of the model, and in this case the value of a set of variables, is based on the 
average performance of the model on the withheld data. For the wrapper-based approaches an 
additional 10-fold validation process was nested within to select the set of variables that were 
then included and tested in outer cross-validation process.   

The value of any set of distraction indicators depends, to some degree, on the algorithm in 
which they will ultimately be used. Some algorithms can extract predictive information from the 
interaction between variables (e.g., decision tree) that other algorithms cannot (e.g., naïve 
Bayes). The area under the ROC curve reflects how the combination of the variables and 
algorithm contributes to distraction detection performance. The value of the individual variables 
is calculated as weights that reflects their importance in the classification process. This 
weighting ranges from 0, where the variable is dropped because it has no systematic association 
with distraction, and 1, where it is strongly related.  

Data for the performance of the four feature selection approaches were combined across the 
three segments of the drive (urban, interstate, and rural).  Figure 18 shows that the driving 
performance measures were generally quite sensitive to distraction. An AUC value of 1.0 
corresponds to perfect performance. The correlation-based feature selection and the naïve 
Bayes approaches performed best and had the least variation from segment to segment as 
shown in the thickness of the box plots.  

Figure 19 summarizes the indicators of distraction selected by the four approaches within each 
event during the drive. The dots indicate variables selected and their weighting, and only events 
where there was a variable selected are included. The darker the dot the more approaches that 
selected the variable. Only variables with a weighting greater than .10 are plotted. The plot 
shows that steering-based indicators are more sensitive than accelerator or speed-based 
indicators, or even those based on lane position. Steering-based indicators are more often 
sensitive to distraction as indicated by the number of times they appear and are also more 
sensitive as indicated by their higher weighting. These results largely parallel the findings from 
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the sensitivity analysis. The exception to this trend is that steering entropy emerged as highly 
sensitive in the sensitivity analysis, but did not emerge as one of the most indicative measures. 
 One explanation for this result is that the sensitivity analysis is based on a single measure and 
its association with distraction, whereas this analysis considers combinations of measures. 

 

 

Figure 18 Area under the ROC (AUC) indicating the sensitivity of simple algorithms based on CFS 
(correlation-based feature selection) and wrapper-based feature selection. 

Interestingly, steering measures are not best for all events: speed is more indicative for 
transition to dark (event 303). Of the steering measures the average and standard deviation of 
the steering wheel reversal rate were the most sensitive. Table 20 indicates the loadings of each 
variable within the correlation-based feature selection and naïve Bayes approaches. Similar to 
Figure 19, the standard deviation of lane position (lp_sd), steering wheel reversal rate 
(str_rr_avg), and the standard deviation of the steering wheel reversal rate (str_rr_sd) indicated 
distraction best across all three driving segments. 
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Figure 19 Importance of potential indicators of distraction. Events are labeled at the top of each column. 
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Table 20 Variable importance from the correlation-based feature selection approach with the naive 
Bayes algorithm. Dark grey indicates 0.9 or greater; medium grey indicates 0.5à0.8; light grey 

indicates 0.2à0.4; unshaded areas are <0.2. 

 
 

 Urban 
 (AUC: 0.915 +/- 
0.081) 

Interstate 
(AUC: 
0.950 +/- 
0.071) 

Rural 
(AUC: 0.942 +/- 0.106) 

  102 104 106 203 205 301 302 303 304 305 306 
Lane 
position 

lp_avg            
lp_sd 0.6 0.4   1.0 0.2 1.0 0.5  0.8  
lpn_sd    0.2   0.3     

Speed sp_avg    0.2        
sp_max            
sp_min        0.9    
sp_sd      0.2 0.2  0.2   
spn_avg        0.4    
spn_sd    0.3        

Steering ster_freq            
steer_H            
steer_sd            
str_rr_avg 0.8  1.0 0.9 1.0 1.0 0.3    0.8 
str_rr_sd 1.0  1.0 0.7 1.0  0.8    1.0 

Throttle acc_hold*            
acc_rr_avg*            
acc_rr_sd*       0.3     

 

As steering metrics seemed to best indicate distraction, additional analyses were done which combined 
steering metrics with the MDD algorithm. More specifically, if the exponential weighted moving 
average (EWMA) of the magnitude of the steering wheel angle exceeded 2.5 degrees, the MDD visual 
warning was suppressed. If the EWMA exceeded nine degrees, its visual threshold was increased to 65 
percent from 60 percent.  

Adding the steering metrics to the MDD algorithm produced the following ROC plots for the arrows and 
bug task. Adding in steering metrics slightly improved the TPR on the left end of the plot. The AUC was 
significantly reduced for the arrows task (Figure 20) but increased for the bug task (Figure 21). 
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Figure 20 ROC plots showing performance of the multidistraction detection algorithm with steering 
wheel angle enhancement for the arrows task. 

 

Figure 21 ROC plots showing performance of the multidistraction detection algorithm with steering 
wheel angle enhancement for the bug task. 
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CONCLUSIONS AND RECOMMENDATIONS 

The results demonstrate that gaze-based algorithms can detect driver distraction in a reliable manner.  
They also point to the successful application of a protocol for assessing distraction detection 
algorithms. This section discusses the implications of these results for future algorithm and evaluation 
protocol development.  

Implications for Algorithm Development 

All four distraction detection algorithms show that the drivers’ gaze can be used to indicate distraction. 
The protocol also demonstrated the vulnerability of these algorithms to the performance of a single 
sensor—an eye tracking system.  This finding prompted the inclusion of a seat-based sensor of drivers’ 
posture to compensate when the eye tracker cannot provide reliable data. Steering, lane position, and 
other driver performance metrics are also sensitive to distraction; these measures could be used as 
supplements to an algorithm that solely relies on eye movements.  

Implications for Protocol Development 

Perhaps the most important outcome of this analysis is an understanding that distraction and its 
detection cannot be considered independent of the driving environment. A dense urban environment 
includes situations where a driver’s eyes are often not focused on the center of the road. The influence 
of visual demands associated with urban scenes can undermine algorithm performance, resulting in 
either a high rate of misses or a high rate of false alarms.  This suggests that evaluation protocols 
require a simulator with a wide field of view and a detailed urban scene.  Such a requirement might be 
difficult to satisfy on a test track.   

A challenge with regard to use of the simulator was the attrition rate due to simulator sickness.  This 
protocol added distraction tasks to the driving environments that were previously used for evaluating 
the effects of alcohol (Lee et al., 2010).   The alcohol study had an attrition rate of less than 1 percent 
due to simulator sickness; whereas, this study had an attrition rate of 15.2 percent.  The addition of 
these tasks clearly had a negative effect on simulator sickness rate.  Due to the nearly continuous 
engagement in secondary tasks throughout the drive, many of which took the drivers eyes away from 
the roadway repeatedly, the primary concern is the rate at which the driver needed to engage in these 
tasks.  To reduce simulator sickness, it would be recommended that the density of distraction tasks 
that take the drivers eyes away from the forward roadway be decreased.   

A further challenge in assessing distraction detection algorithm performance concerns the cost of a 
false alarm and the value of correctly identifying a distracted driver.  The cost of a false alarm depends 
on driver acceptance.  False alarms might either disrupt drivers’ attention to the road or undermine 
their acceptance of the mitigation system.  To some extent these consequence depend on the 
mitigation system and suggest that algorithm assessment should be tied to mitigation assessment.  The 
degree of this coupling and how it is addressed in a comprehensive evaluation protocol represents a 
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critical issue.  One approach to algorithm evaluation to partially address this issue is to include a cost-
based performance metric that weights false alarms and misses differently. 

Another challenge confronting distraction detection concerns the definition of distraction-related 
impairment.  This protocol operationalizes distraction as occurring when the driver engages in a 
distracting task.  This approach might overestimate the occurrence of distraction because it may be 
possible for drivers to engage in secondary tasks and not become distracted.  A challenge for refining 
the assessment protocol is to identify an alternate way of operationalizing distraction.   

Strategic Highway Research Program (SHRP2) and Algorithm Assessment  

One approach to operationalizing distraction for algorithm assessment is to build on naturalistic data, 
such as that collected as part of the Strategic Highway Research Program (SHRP2). The SHRP2 data can 
help distinguish between distraction and simply secondary task engagement. Using these data 
instances of distraction can be identified by associating patterns of interaction and eye glances with 
crash and near-crash events. This association can be measured using an odds ratio to indicate how 
much more likely a crash or near crash is to occur when distraction is present compared to when there 
is no distraction. When an odds ratio is greater than one, it indicates that there is an increased crash 
risk relative to baseline driving.  

Different levels and operational definitions of distraction could be defined by the performance of 
different algorithms.  Because each definition of distraction might produce a different scale, the levels 
of distraction must be normalized for comparison purposes. A non-parametric procedure – the 
percentile – is an appropriate normalization approach since it could be applied for non-symmetric and 
skewed distributions (Liang, 2009). 

The odds ratios and their 95 percent confidence intervals could be calculated for each normalized 
segment of the distraction distribution. The underlying assumption of this analysis is that the odds ratio 
reflects the accuracy with which distraction is estimated. It is assumed that a high level of distraction 
would correspond to a high crash risk and low levels of distraction would correspond to a low crash 
risk. A good definition of driver distraction as an inherently hazardous state should produce a steep, 
monotonic relationship between odds ratio and distraction level. Two indicative metrics for the 
algorithms’ comparison would be considered: the slope of the odds ratio as a function of distraction 
level and the maximum odds ratio (MaxOR). The slope of the odds ratio indicates how quickly the odds 
ratio increased with distraction level; the greater the slope, the faster the odds ratio increased and the 
earlier the algorithm can identify increased crash risk. The MaxOR could indicate how sensitive the 
crash risk is to the estimate of distraction (Liang, 2009).  
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CHAPTER 5. DESCRIPTION AND APPLICATION OF A PROTOCOL 
FOR EVALUATING ALTERNATIVE FEEDBACK SYSTEMS  

INTRODUCTION 

Potential vehicle-based countermeasures used to mitigate distracted driving vary in the type of 
mitigations used, the intent of the mitigation, and the timescale of feedback.  Examples of 
countermeasures based on real-time assessments of driver distraction include adaptations of crash 
warning systems, electronic communication or “infotainment” function lock-out, feedback intended to 
redirect driver attention, and continuous attention level feedback. Real-time feedback may be delayed 
in high workload situations. Retrospective, post-drive feedback can be provided when the vehicle is no 
longer in motion.  Potential countermeasures can also have different intentions, ranging from 
mitigating only instances where distracted driving results in a crash-imminent situation to providing 
feedback that helps the driver better understand the risks involved in their distracted driving. 

The effectiveness of countermeasures depends on several factors, including how well matched they are 
to the distraction detection algorithm, the quality of the sensor data, the appropriateness of the 
mitigation form, function, and timescale for the intent of the system, and its acceptability to drivers.  
Effectiveness also may depend on addressing drivers’ willingness to engage in secondary tasks while 
driving through post-drive feedback that helps drivers judge their level of distraction and its impact on 
their driving performance.   

This chapter describes a protocol for evaluating distraction mitigation systems.  The protocol evaluates 
a mitigation approach’s effect on driving performance, behavior that leads to decrements in driving 
performance, and driver attitudes toward distracted driving.   

The protocol provides a best-case estimate of distraction detection effectiveness – the data used to 
estimate vehicle and driver state are more accurate than what would be collected during on-road 
driving.  However, in some ways, the protocol may underestimate mitigation effectiveness – the 
greatest benefit of the mitigation might occur through changing drivers’ behavior over several weeks or 
months, which the protocol cannot directly evaluate.  Measuring drivers’ perceptions of their driving 
performance and the performance of their peers while distracted, as well as their intention to engage 
in future distracting activities while driving, provides a subjective, complementary approach to assess 
the long-term effect of the mitigation system. To that end, this protocol assesses attitudinal changes 
that distraction mitigation might produce.  Behavior changes that a mitigation system might encourage 
include: not engaging in distracting tasks while driving, engaging less frequently, shifting distracting 
tasks away from high-demand situations, reducing the frequency of dangerously long glances, and 
ensuring that drivers’ attention is directed towards the road during critical events. This protocol is 
designed to measure the degree to which mitigations influence drivers to change their behavior as well 
as their influence on current driving performance.  This approach allows for the benefits of each type of 
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mitigation to be factored into the overall evaluation of the distraction detection and mitigation 
systems.   

The protocol used to assess distraction detection was used for this protocol, with slight modifications 
detailed below.  It includes a relatively uncommon, but very risky, secondary task (reaching to the 
backseat), a common but less risky task (adjusting the radio), and more artificial tasks to represent 
future in-vehicle entertainment and information systems.   

The evaluation protocol was assessed by applying it to the real-time and post-drive feedback 
distraction mitigation approaches.  The real-time feedback system has visual and audio components. 
The visual component is a head-up display (HUD) presented on the left, center, and right side of the 
windshield.  The post-drive feedback system has two components: a report card of the participant’s 
performance during the drive accompanied by video playback of a short drive segment depicting 
distracted driving.  

DEVELOPMENT OF THE DISTRACTION FEEDBACK COUNTERMEASURE 
EVALUATION PROTOCOL 

Participant Characteristics 

Participants between the ages of 25 and 50 who have experience engaging in distracting activities while 
driving, including talking on a cell phone, sending or receiving text messages, sending or receiving 
emails, eating, or changing compact discs, were used to minimize within-group variability that might 
reduce the statistical power of the comparisons.  They must also have adequate driving experience and 
possess a valid, unrestricted U.S. driver’s license (with an exception for participants with a corrective 
lens restriction) for at least one year and have driven more than 3,000 miles per year.  To ensure that 
simulator experience would not affect our results, participants could not have participated in a driving 
simulator study in the 12 months preceding their study visit, and they could not have participated in 
any studies conducted at NADS that used a similar simulation scenario.  Participants were required to 
be in good general health, have no history of motion sickness, and not use special devices (e.g., spinner 
knobs, booster seats) while driving.   

Because some of the real-time mitigations were auditory alerts, participants were required to have 
normal hearing or full correction of hearing problems with the use of hearing aids so that hearing loss 
would not affect their evaluation. Since this was not an evaluation of distraction detection, potential 
participants were excluded if they required corrected vision to drive and could not wear contact lenses 
to their study visit, due to limitations of the research-grade eye tracking system to accurately track 
drivers with eyeglasses.     

Driving Scenario and Distraction Tasks 

The driving scenario used in this study was the same as the one used in the evaluation of the 
distraction detection protocol (Chapter 4).  As in that evaluation, it included typical driving events from 
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urban, interstate, and rural roadways.  In each of these driving environments, participants completed 
three types of prompted secondary tasks and one self-paced task: a task requiring a visually guided 
reach into the back seat (bug task); a visual/manual task using a touch screen display located at the top 
of the center console (arrows task); a complex cognitive task requiring the recall of information and 
navigation through a menu system (menu task); and a self-paced visual/manual task using a touch 
screen display in the lower center console (radio task). Each of these tasks required the participants to 
take their attention from the roadway and provided an opportunity for the system to attempt to 
mitigate that distraction.  The distraction tasks indicate how the mitigation influences driver response 
to instructions to perform them. Appendix G includes detailed descriptions of the tasks.   

The presentation of the bug, arrows, and menu  tasks occurred during the 75- to 90-second intervals 
during each of the drive environments (urban, interstate, and rural), such that participants experienced 
each kind of distraction in each environment (see Table 9 in Chapter 4 for the events during which 
these distraction tasks were expected to occur). Tasks were designed to be completed in 3 to 6 
seconds.  When drivers were not engaged in the prompted distraction tasks, they were presented with 
the radio task, a self-paced task that requires them to adjust a setting to reduce the noise level (see 
Table 10 in Chapter 4 for the events during which this distraction task was expected to occur).  Unlike 
the discrete presentations of the prompted tasks, the radio task was designed to be an ongoing task 
that drivers could attend to at their leisure.  Timing and dynamics of this task match the data collection 
protocol for distraction detection.  

The prompted tasks could be deferred, but no instructions about this were provided.  A deferred task 
was defined as a delay in initiating the task after the participant was prompted to begin (by contrast, 
tasks that were initiated by the participant but not completed were considered incomplete, not 
deferred). Tasks could be deferred to any point within the drive segment; all deferred tasks not 
completed during a drive segment were presented to the participant to complete at the end of the 
segment.  If a prompted task was deferred, the prompt to begin the task would continue to play every 
10 seconds until the task was initiated.  The tasks were made deferrable to allow participants the 
option to engage in tasks when they were more comfortable doing so, such as in lower demand areas 
of the driving environment (e.g., no curves, less traffic), or in the no demand situation at the break 
between driving environments.   

Subjective Assessment 

One of the greatest benefits from distraction mitigation systems may derive from their effect on 
drivers’ attitudes toward engaging in distracting activities because a shift in attitude could ultimately 
reduce their willingness to engage in these tasks.  Table 21 shows the questionnaires used in this study 
and summarizes the intent of each questionnaire.  The questionnaires used in the distraction detection 
protocol (Chapter 4 and Appendices J-N) were supplemented with three additional questionnaires.  
Two scales were designed for this study to assess important contributors to attitudinal change: a 
planned behavior questionnaire (Appendix P) and a performance calibration questionnaire (Appendix 
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Q).  Additionally, the post-drive questionnaire was designed to assess the degree to which participants 
found the mitigations to be acceptable (Appendices R and S). 

Table 21 Questionnaire/Scale Purpose 

Questionnaire/Scale Citations Purpose 

Distraction Driving Survey  Demographic, driving history, and 
general health questions; Questions 
assessing frequency and comfort 
level of performing distraction tasks 
while driving 

Performance 
Questionnaire 

Horrey et al., 2008; 
Horswill et al., 2004; 
Agostinelli et al., 1995; 
Neal & Carey, 2004; 
Neighbors et al., 2004; 
Lesch & Hancock, 2004 

Assess participants’ awareness of 
driving performance decrements 
associated with secondary task 
performance; would expect to see a 
shift in performance ratings as 
participants’ perceptions of 
decrements in driving performance 
while distracted become better 
calibrated with actual driving 
performance decrements 

Planned Behavior 
Questionnaire 

Ajzen, 1991; Horrey & 
Lesch, 2008; Horrey et al., 
2009; Horrey et al., 2008 

Predict participants’ future actions 
and behaviors when engaging in 
distracting activities while driving 

Post-Drive Questionnaire Davis, 1989, 1993 Assess mitigation acceptance  

Realism Questionnaire  Assess perceived realism of the 
simulator and simulated drive 
compared to the real world 

Wellness Questionnaire Kennedy et al., 1993 Evaluate signs of simulator sickness 

Workload Scale  Participants’ perceived workload and 
driving performance (lane departure 
and speed control) by distraction 
type and driving environment 
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The planned behavior questionnaire is based on the theory of planned behavior (Ajzen, 1991). As 
described in Lee and See (2004),  

[The theory of planned behavior] shows that behaviors result from intentions and that 
intentions are a function of attitudes. Attitudes in turn are based on beliefs. According to [the 
theory], beliefs and perceptions represent the information base that determines attitudes…An 
attitude is an affective evaluation of beliefs that guides people to adopt a particular intention. 
Intentions then translate into behavior, according to the environmental and cognitive 
constraints a person faces (pg. 53). 

As such, the planned behavior questionnaire contained questions aimed at determining the 
participant’s future actions and intentions to engage in distracting activities. Questions regarding 
frequency of talking on a cell phone, interacting with an entertainment system, eating/drinking, and 
looking at a map while driving replicate previous studies (Horrey & Lesch, 2008; Horrey et al., 2009). 
Texting while driving was added as it is also a common distraction. The questionnaire also assessed the 
participants’ perceived need to engage in these activities while driving (Horrey & Lesch, 2008). These 
questions concerned specific situations in which drivers would encounter an urge to engage in 
distracting activities (i.e., after a phone rings, after missing a phone call, or after receiving a text).  
Participants responded to these questions along a continuum, similar to a previous study (Horrey & 
Lesch, 2008). In addition to frequency in engagement, it was also important to measure how drivers 
choose to defer engagement, if at all. As we are aware of no existing surveys that address this issue, 
these questions are original.  Because the theory of planned behavior states that intention to perform 
behaviors can be predicted by social norms, participants were also asked to assess how often their 
peers will engage in certain behaviors.   

Calibration of drivers’ estimates of how distractions affect their driving performance with their actual 
driving performance is an important contributor to attitudes about distracted driving.  Mitigation 
systems are likely to improve driving safety by helping drivers realize how much distractions put them 
at risk. Consequently, measures of drivers’ risk calibration could be central to evaluating distraction 
mitigation systems.  The performance questionnaire (Appendix Q) included four measures – task 
performance, lane position, speed, and eye glance behavior – as each of these measures can be 
accurately perceived and assessed by the driver. They can also be easily compared to actual driving 
performance without much data transformation.  For each question that asks for an indicator of driving 
performance, participants are also asked to estimate the performance of a peer driver. The use of the 
word “peer” was chosen rather than “average” because some people associate “average” as a negative 
characteristic. The concept of asking for a peer’s performance is modeled after similar driving studies 
(Horrey et al., 2008; Horswill et al., 2004) and studies from other fields (Klar et al., 1996; Neighbors et 
al., 2004; Perloff & Fetzer, 1986). By asking participants their opinions of a peer driver, their responses 
can be directly compared to the actual performance of drivers from the same study to see how well-
calibrated drivers are to the social norm (Horrey et al., 2008), similar to studies related to binge-
drinking behavior (Agostinelli et al., 1995; Neal & Carey, 2004; Neighbors et al., 2004).   
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Participants are asked to give the confidence levels of their performance estimates to determine if their 
confidence level corresponds to their driving performance (Lesch & Hancock, 2004). For example, it is 
expected that those with higher confidence ratings will be those who exhibit the smallest performance 
decrement in driving behavior while engaging in distracting tasks. The effect of overconfidence is also 
measured by asking whether the participant thinks a peer driver would behave in the same manner as 
the participant (Horswill, et al., 2004). In this case, overconfidence is exhibited when participants think 
they always perform better than their peers.  

One approach to assessing risk calibration is a variance decomposition analysis of the “skill score,” 
which quantifies the relationship between subjective ratings of driving performance and actual driving 
performance.  Murphy’s skill score is one measure of risk calibration. Previous research using Murphy’s 
skill score uses a relatively high number of samples. The original analysis was applied to meteorological 
data with an n of nearly 800 forecasts —the exact values ranged from 775 to 870 (Murphy, 1988). In a 
more recent study that used a within-subject design to determine the effect of receiving automated aid 
on estimates of enemy threat level, 15 participants rated their judgments of 51 different scenarios to 
generate 51 separate skill scores for an n of 51 (Horrey et al., 2006). In the second half of the study, 12 
participants each completed 43 trials yielding an n of 43. Participants generated estimates of their 
performances every 25 seconds yielding a large volume of data.   

Because of participants’ limited exposure to the distraction tasks and mitigation systems, the 
performance questionnaire from which skill scores are to be obtained was administered after each 
driving environment to increase n in order to provide enough data to calculate a reliable skill score. This 
was also done to help drivers avoid accurately remembering only their performance during the last 
portion of the drive (a recency effect).  The decision to have repeated exposures to the performance 
questionnaire was weighed against two concerns: repeated measures could increase self-awareness, 
change willingness to engage, and affect driving performance, and these changes could diminish the 
observed benefit of the mitigation relative to the baseline.  

The post-drive questionnaire was based on a user acceptance framework developed by Davis (1989, 
1993) that evaluates perceived ease of use, usefulness and value of the mitigations under study.   

Test Procedure 

After providing informed consent and completing a video release form and payment voucher, 
participants completed the distraction driving survey and the planned behavior questionnaire. They 
then watched a PowerPoint presentation that described the simulator cab and the distraction tasks 
they would complete during their drives.  In the informed consent document and the training 
presentation (Appendix T), the purpose of the study was described as evaluating feedback concepts 
related to distraction and driving.  Participants in pilot testing and in the distraction detection data 
collection (see Chapter 4) rarely deferred tasks, and it was thought that the task and drive instructions 
may have influenced participants to prioritize task completion over safe driving.  The briefing 
presentation and drive instructions were modified to deemphasize the urgency to complete tasks, and 
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to balance safe driving with task completion.  Participants were instructed to complete as many tasks 
as quickly as possible after the prompt to begin, while driving safely.   

Next, participants entered the simulator, received additional training, and completed the study 
procedures.  Figure 22 displays the timeline for study procedures in the simulator: blue boxes are study 
materials, including scales; green boxes are simulator drives; red boxes are mitigation demonstrations, 
if applicable; and the purple boxes are the post-drive feedback for participants in that condition.  Real-
time feedback is not shown in Figure 22, but it was presented during the training and mitigation drives. 
After a brief overview of the simulator cab, participants rehearsed the distraction tasks (in the cab).  
Participants then completed an 8-minute practice drive that familiarized them with the cab’s controls, 
steering, accelerating, and braking, and provided practice on the distraction tasks while driving.  
Because of a high rate of simulator sickness in the distraction detection data collection discussed in 
Chapter 4, the practice drive was changed to eliminate turns at the beginning and end of the drive.  
Participants then completed a second task rehearsal without driving.   

 

 

Figure 22 Study procedure timeline. 
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Then, following eye-tracking calibration, participants completed a series of drives: the distraction drive, 
an initial drive performing distracting tasks without mitigation; three short mitigation training drives; 
and a drive performing distracting tasks with mitigation.  The three training drives provided distraction 
tasks and repeated exposure to the applicable mitigation.  One third of the participants experienced 
post-drive feedback at the end of their distraction drive and following each segment of their mitigation 
drive, one third experienced real-time feedback during their mitigation drive, and the remaining third 
served as a control condition and received no feedback.  The distraction and mitigation drives each 
lasted approximately 25 minutes, and the three training drives were approximately 5 minutes each. 
During the drives, a prompt (i.e., audio cue, bee buzzing) indicated when the driver should begin each 
of the three distracting tasks.   

After each environment (urban, interstate, and rural), participants stopped driving.  If tasks had been 
deferred to the end of the segment, the experimenter in the simulator cab would prompt the 
participant to complete tasks if they did not initiate the tasks in response to repeated prompts. The 
radio task could not be deferred. Drivers then used a visual, analog scale to assess their subjective 
workload and performance (lateral and longitudinal control) by distraction task during that 
environment. These stops coincided with natural stopping points (e.g., a stop sign) at the end of each 
driving environment.  Wellness questionnaires were administered to participants after the practice 
drive, the distraction drive, and the mitigation drive.  After the final drive the planned behavior 
questionnaire was administered again, and drivers completed the realism and post-drive 
questionnaires (see Table 21). They then received a debriefing statement (Appendix U) requesting that 
participants not discuss their participation with others until the end date for the data collection was 
provided so that they would not share any task performance strategies that they may have developed 
with other potential participants.  The statement also disclosed the source of the peer data used in the 
post-drive feedback. 

Incentive System 

Drivers received task performance feedback at the end of their practice drives, distraction drives, 
training drives, and mitigation drives.  The experimenter in the cab communicated scores verbally after 
the presentation of the post-drive feedback (if applicable) and completion of the workload and 
calibration surveys.  As in the distraction detection protocol, participants were told prior to driving that 
their performance on the distraction tasks (except the radio task) would be evaluated based on: 

o How long it took to initiate each distraction task;  

o Task completion (slow or absent input once task begins); and  

o Response accuracy 

Tasks deferred to the end of each driving environment were counted as incomplete/never initiated. 
Task performance during the previous drive segment was evaluated on a 100-point scale.  



 

Analysis 

The data from this experiment were analyzed using a two‐phase approach.  First, a thorough review of 
the data was performed to remove any spurious data points. Any inconsistencies were resolved by 
analytic data visualization.  Where distributions appeared to diverge substantially from normal, the 
data was transformed or statistical techniques appropriate to the underlying variable were used.   

In the second phase, the effectiveness of each of the mitigation approaches was assessed relative to 
the baseline (no mitigation) drive.  This phase used an analysis of variance within the SAS General 
Linear Models (GLM)8 procedure to test the primary hypothesis that distraction feedback can improve 
driver performance. The statistical model included drive type (distraction or mitigation drive) and 
driving environment as within‐subject variables and mitigation type as a between‐subjects variable. 
The primary dependent measures consisted of lane departure, speed, percent road center, deferral 
duration, task score, and calibration.  Where appropriate, post‐hoc t‐tests were used. 

To assess calibration, the participants’ subjective measures of performance were subtracted from their 
objective performance. A positive value would indicate that participants had a higher score on a 
specific metric than what they estimated. For example, with lane departures, a positive difference 
would indicate that the participant departed from their lane more than they estimated. With task 
score, a positive difference would mean that the participant scored higher than they estimated. Once 
the difference score was calculated, a mixed model analysis of variance was performed on each metric 
(lane departure, speed, percent road center, and task score) with mitigation condition as a between‐
subjects factor while drive and road were within‐subjects factors.  

In addition, following the work of Murphy (1988) and Stewart (1990), the skill score (SS) based on the 
mean square error (MSE) of the performance judgments was decomposed to evaluate the shape, 
magnitude, and scale components of the drivers’ judgment errors. SS is calculated using the following 
Equation 4: 

 

Equation 4 
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8 This procedure was chosen because unequal cell sizes were expected. 
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ܻIn these equations, n is the number of measurements,  is the human’s judgment score, is the true 
score, and  is the reference judgment, the average of the true scores. 

The skill score evaluates the accuracy of the participants’ subjective ratings relative to the average of 
the actual performance values. This skill score also permits the measurement of under‐ or 
overconfidence by comparing participants’ estimates of their own performance to that of their peers. If 
participants consistently rated themselves as better than their peers, they would be considered 
overconfident. On the other hand, if participants consistently rated themselves as worse than their 
peers, they would be considered underconfident. 

This analysis is sensitive to judgment correspondence (Horrey et al., 2006). The mean square error is a 
measure of the squared Euclidean distance between datasets representing the human’s judgment (i.e., 
subjective performance) and the true environment state (i.e., objective performance) (Horrey et al., 
2006).  

After scaling judgment error to the reference value to obtain the skill score, Murphy’s decomposition 
separates the correlation of the estimated and actual performance from errors due to magnitude and 
scale (Murphy, 1988) as shown in Equation 5. 
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where  is the correlation coefficient,   is th
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The first component on the right side of the equation represents the correlation measure, the second 
component is the scale error, and the third component is the magnitude error. In this way, the 
participants’ overall judgment quality is decomposed to determine the individual contributions of 
shape or potential quality apart from any biases due to errors in scale and magnitude (Horrey et al., 
2006). 
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APPLICATION OF THE DISTRACTION FEEDBACK EVALUATION PROTOCOL 

Exemplar Mitigation Systems 

Real-time and post-drive mitigations represent two general types of feedback that differ in both 
timescale and objective.  Because many distraction mitigation systems use real-time, or concurrent, 
feedback to redirect drivers’ attention to the roadway when distraction thresholds are exceeded, a 
real-time feedback system will be evaluated.  The second, less common approach is post-drive, or 
retrospective, feedback, which aims to change driver behavior based on prior driving performance. 
Retrospective feedback therefore operates over a longer timescale than concurrent feedback (Donmez 
et al., 2009).  A comparison of the two types of feedback may provide insight into the effects of the 
timescale and form of feedback on current and long-term driving performance and behavior.  Real-time 
feedback may have an immediate impact on driving performance but may not affect drivers’ 
willingness to engage in distracting tasks.  Post-drive feedback displays patterns of behavior and 
performance that may better target attitudinal and “cultural” change regarding distracted driving. 

Real-Time Feedback 

The real-time feedback, a head-up display (HUD), was designed to recapture the driver’s attention with 
visual and auditory alerts when visual or cognitive distraction was detected.  Visual alerts were 
displayed on the windshield to the left, right, and in the center of the driver’s field of view using 3 
white LED lights.  The three LEDs were installed on the dashboard, reflecting light off the windshield.  
The left light was located at 5 inches, the center at 27 inches, and the right at 44 inches from the left 
edge of the dash. The left and right LEDs were placed in these locations so that the lights would be in 
the driver’s peripheral view (>20 degrees from the forward view) when the driver looked straight 
ahead.   

The three positions of the visual display were intended to redirect attention during different types of 
distraction. The LEDs in the left and right positions were intended to mitigate distraction when the 
driver’s gaze was concentrated on the center of the road during periods of cognitive distraction. There 
was no auditory component of this feedback. These LEDs flash in the same blink pattern but with an 
offset, creating a left-right alternating pattern (Blink pattern: 50 percent duty cycle, 1,000 ms period, 
100 ms on/off). 

The display in the center was used to redirect attention to the road during periods of visual distraction.  
There were two visual distraction alerts: (1) a long glance alert was initiated when drivers engaged in a 
single three-second glance away from the road center; and (2) a visual glance history alert was initiated 
when drivers were currently engaged in a glance outside of the road center and had not spent enough 
time looking at the road center within a certain window. The flash rate was the same for both visual 
alerts (1,000 ms warning period containing three sub-pulses of 100 ms), and was synchronized with the 
auditory tones.  To differentiate the two visual distraction alerts, the long glance alert was issued in a 
lower frequency tone than the glance history alert.   
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Post-Drive Feedback 

Post-drive feedback was designed to provide coaching that informed and motivated drivers to stay 
focused on the primary driving task.  It is comprised of a report card with four screens that convey 
multilevel feedback about the driver’s distraction level and related performance and behavior 
measures, as well as video of distracted driving from the completed trip.  Screens were designed to be 
reviewed in 8 to 15 seconds.   

The first screen provided feedback about the driver’s distraction level over the course of the drive 
(Figure 23).  It displayed a line graph of the maximum, normalized value of the three percent road 
center (PRC) outputs of the algorithm graphed across each driving environment (referred to as 
“Distraction Level”) across three levels of distraction (low, medium, and high).  The feedback also 
compared a participant’s distraction level to his or her peer driver group.  Peer data was generated 
from the distraction detection data collection (Chapter 4), weighting non-distracted drive data, and 
distracted drive data 10 to 1 in order to present credible peer distraction-level data that will be 
comparable to or better than the participant’s data.   

Participants also received a distracted driving letter score based on the comparison of the participant’s 
distraction level to the peer distraction level, where: 

A = Participant’s average score is equal to or less than the peer score 

B = Participant’s average score is between 0 percent and 25 percent greater than peer score 

C = Participant’s average score is between 25 percent and 50 percent greater than peer score 

F = Participant’s average score is more than 50 percent greater than peer score 
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Figure 23 Post-drive report card distraction level screen. 

From this screen, participants could click a button to view a video of their distracted driving during the 
previous trip.  A second screen provided an explanation of the video, including the type of distraction 
(“too frequent glances off road,” “tunnel vision,” or “eyes off road”) and the safety critical performance 
measure (“weaving,” “lane departure,” and “collision”) (Figure 24).   

 

 

Figure 24 Post-drive report card video introduction screen. 
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The report card automatically forwarded to the video display (Figure 25).  The 15-second video showed 
the participant’s face and forward view for 5 seconds preceding a distraction output by the distraction 
detection algorithm and spanning the 10-second event window.  The instance of distracted driving 
displayed for each driving environment was determined by a distraction event scoring algorithm.  This 
algorithm rated the following measures over a 10-second window starting from the point at which one 
of the distraction algorithm outputs indicated distraction.  In order of severity, the algorithm scoring 
components were: collision, lane departure to the left, lane departure to the right, maximum lateral 
acceleration.  When possible, the highest scored measure was chosen to display.  If no criteria were 
met for the video selection, the participant received a screen with the statement “No video clip 
available” (Figure 26).  The report card moved forward automatically after 8 seconds from the 
completion of the video. 

 

Figure 25 Post-drive report card video display. 
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Figure 26 Post-drive report card video clip not available screen. 

The last screen presented detailed distraction and driving performance data (Figure 27).  Bar graphs 
comparing the driver’s performance and behavior to their peers were presented in two categories: 
driving errors and attention to driving.  Graphs under “driving errors” represented distraction-related 
critical incidents (an algorithm was developed to rank and tally the number of distracted driving-related 
incidents) and number of drifts out of lane.  Graphs under “attention to driving” represented number 
of unsafe glances (> 3 s) and percentage of time not looking at the roadway.   

 

 

Figure 27 Post-drive report card detailed distracted driving data. 
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Method 

Participants 

Fifty-nine participants were enrolled in the study.  Twenty-three were dropped from the study due to 
technical issues related to the post-drive video replay, incomplete data9, noncompliance, or simulator 
sickness.  Thirty-six participants completed the study protocol.  The mean age was 34 (standard 
deviation (SD) 7.9 years), with a minimum age of 25 and a maximum age of 49.  Participants were 
balanced for gender.  Eighteen males had a mean age of 35 (SD 7.9 years), and 18 females had a mean 
age of 33 (SD 8.0 years).  Three participants were Asian, 1 was black/African-American, 3 were 
Hispanic/Latino, and 29 were white/Caucasian.   

Experimental Design and Independent Variables 

A (3X4) X3 within-between subjects experimental design compared driving and task performance with 
four types of distraction task (bug task, arrows task, menu task, radio task) in each of three driving 
environments (urban, interstate, and rural).  Three mitigation conditions (real-time versus post-drive 
versus no mitigation) were compared between subjects.  Drivers performed the distraction tasks in 
their distraction and mitigation condition drives; the tasks were also presented in the three mitigation 
training drives. Because drivers might defer distraction tasks, the interactions with each task were 
treated as repeated measures across each of the driving environments (urban, interstate, rural) rather 
than considering them within each driving event.  Performance data was aggregated to a single data 
point by taking the mean of the occurrences for each environment and task. 

The order of events and distraction tasks was the same for all participants in the distraction and 
mitigation condition drives.  The presentation of tasks to the drivers in the same context (e.g., road 
geometry) was intended to provide a clear, unconfounded indicator of task deferment.  To minimize 
learning effects, the experiment used two random orders of distraction task trials that varied their 
content. The order of distraction task presentation was counterbalanced between road segments. 
However, the order of the initial distraction drive and mitigation drive, the driving environments, and 
the distraction tasks were not counterbalanced. 

There were three independent variables in this set of analyses: driving environment, distraction type 
(task), and mitigation approach. A fourth independent variable, drive (distraction or mitigation) was 
included in the analysis of driver calibration. The preceding analyses instead used scores that indicate 
the difference in performance between the two drives. There were three driving environments in the 
baseline and distraction drives. The first was an urban driving environment that included driving events 
such as driving through a relatively dense urban area with numerous pedestrians, a yellow-light 

                                                           

9 Included in this group were drivers who failed to reach the posted speed limit in the baseline drive by 
the second event and therefore did not engage the algorithm, which had an initiation speed threshold 
of 25 mph but remained active at 23 mph thereafter.   
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dilemma where the driver had to decide whether to stop or not, and an urban arterial event with 
gentle curves.  The second was an interstate driving environment including straight roadway and 
curves, and that included interactions with heavy trucks travelling slower than the driver’s vehicle.  The 
third was a rural two-lane highway that included lighted and unlighted roadways and travel on a gravel 
road.  Their order was the same for all drivers and for both drives.   

Distraction type was represented by the task variable, which had four levels: a reaching task (bug), a 
visual/manual task (arrows), a cognitive task (menu), and an ongoing visual/manual (self-paced radio 
task).  

The mitigation approach had three levels: two different mitigation approaches and a no-mitigation 
control condition.  The two approaches are real-time feedback that provides alerts when driver 
distraction is detected, and post-drive feedback that provides information after the drive is complete.   

The primary comparisons of interest were between metrics derived from each driving environment 
within the distraction and mitigation condition drives.  

Dependent Variables 

Table 22 lists dependent measures.  Primary dependent measures assessing driver behavior include 
task engagement, lateral and longitudinal control, and eye movements.   
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Table 22 Dependent variables describing driver behavior  

Dependent 
Measure Description Units 

Deferral Time The interval between task prompt and 
driver engaged in the task 

Seconds 

Task Score The score earned by the driver on the 
distraction task 

0-100 

Initial Roadway 
Demand 

Initial value of roadway demand (Hulse, 
Dingus, Fischer, and Wierwille, 1989) 

0-400 

Average Roadway 
Demand 

Average value of roadway demand (Hulse, 
Dingus, Fischer, and Wierwille, 1989) 

0-400 

SDLP Standard deviation of lane position Feet 
PRC Percent of time that the forward gaze is 

centered on road 
Percent 

Average Glance 
Duration 

Average length of time gaze is outside of 
road center 

Seconds 

95% Glance Time The 95th percentile glance duration (gaze 
outside road center) 

Seconds 

Number Glances 
Over 2 Seconds 

Number of glances longer than 2 seconds 
in duration 

Count 

Number of Large 
Left Lane 
Departures 

Number of times the corner of the car 
crossed the left lane edge by more than 
3.5 feet 

Count 

Number of Large 
Right Lane 
Departures 

Number of times the corner of the car 
crossed the right lane edge by more than 
3.5 feet 

Count 

Average Speed Average speed Miles per hour 
Percent Speed Low The percent of time that the driver was at 

least 10% below the speed limit 
Percent 

Percent Speed High The percent of time that the driver was at 
least 10% above the speed limit 

Percent 

 

Apparatus 

The experimental drives were conducted using the NADS-1, a high-fidelity, motion-based driving 
simulator.  The simulator had a Chevrolet Malibu cab that is equipped with eye- and head-tracking 
hardware, active feel on steering, brake, and accelerator pedal, and a fully operational dashboard.  The 
cab is mounted in a 24-foot dome.  The motion system on which the dome is mounted provides 400 
square meters of horizontal and longitudinal travel and ±330 degrees of rotation. Each of the three 



101 

 

front projectors has a resolution of 1600 x 1200, the right and left projectors have a resolution of 1280 
x 1024 pixels, and the three projectors in the back have a resolution of 1024 x 768 pixels. The edge 
blending between projectors is five degrees horizontal. Simulation graphics within the NADS-1 
generally provides a 60 Hz frame rate.  Driving data are collected at up to 240 Hz. 

A research grade Seeing Machines faceLAB version 5.0.2 system with dash-mounted dual stereo head 
channels was used for eye tracking. A Seeing Machines Driver State Sensor (DSS) V3.4.260101, a single-
camera system, was used for head tracking.  Figure 28 shows the eye- and head-tracking cameras and 
the infrared pods for the eye tracker and DSS. 

 

 

Figure 28 Eye and head tracking camera and infrared pod placement. 

 

The driver’s seat was equipped with 14 force-sensing registors (FSR) manufactured by Interlink 
Electronics (Camarillo, CA).  Force-sensing registors provide gross dynamic measurements of force.  
Figure 29 shows the sensor placement: 8 sensors were located on the seat back, and 6 on the seat 
bottom. 
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Figure 29 Seat sensor locations. 

 

Results: Effects of Mitigations on Driving Performance and Behavior 

Task Deferral 

A distraction mitigation system might encourage safer behavior by encouraging drivers to delay 
engaging in a task, so that the demands of the task are less likely to compete with those of the 
roadway. To examine whether mitigations delay drivers’ task engagement, the difference in the 
amount of time that drivers delayed each task in each environment was analyzed by subtracting the 
deferral time in the distraction drive from the deferral time in the mitigation drive.  Mitigation (F(2, 33) 
= 4.00, p = .028), task (F(3, 98) = 17.70, p <.001), the interaction between mitigation and task (F(6, 98) = 
2.51, p = .027), and the interaction between driving environment and task (F(6, 180) = 2.83, p = .012) 
influenced the change in task deferral time.  The interaction between environment and task will not be 
discussed further as it does not relate to the effect of the mitigation. 
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Because the effect of mitigation depends on the type of distraction task, their interaction will first be 
considered.  Means are provided in Table 23, with positive values indicating increased deferral.  
Considering differences between mitigation approaches by task, a simple effects test reveals that post-
drive feedback increased bug task deferral time by 704 ms, which is significantly more than the 235 and 
66 ms decreases in deferral with no mitigation and real-time mitigation, respectively.  Additionally, the 
post-drive feedback provided a statistically smaller decrease in deferral time for the radio task 
compared to the no mitigation condition.  It should also be noted that the mitigation systems did not 
significantly affect the deferral of the menu or arrows tasks. 

 

Table 23 Interaction between mitigation and task for change in deferral time measured in milliseconds.  
For each task, changes in deferral times highlighted in different shades of gray are statistically different 

from each other. 

 
No 

Mitigation Real-time Post-drive 
Arrows -86  98 88 
Bug -235 -66 704 
Menu -322 -108 -287 
Radio -3010 -1930 -780 

 

As difference data can sometimes mask underlying effects, the data was plotted to illustrate the 
changes in deferral time from the distraction to the mitigation drive (Figure 30).  The effectiveness of 
the post-drive mitigation for the bug task is evident in the difference in slope relative to the no 
mitigation and real-time feedback conditions.  The effect of the mitigations on the radio task is more 
complex.  The participants in the post-drive mitigation condition deferred this task on average 5 
seconds longer than the other two groups during the distraction drive when no mitigation was 
presented, indicating a pre-existing difference in how this group performed the radio task. There is no 
way with current data to precisely define how the post-drive feedback would have performed on the 
radio task had the group been more similar to the other two groups. This confound complicates the 
interpretation of the statistically smaller decrease in radio task deferral time that was found for post-
drive feedback compared to the no mitigation condition. 
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Figure 30 Changes in deferral times between distraction and mitigation drives. 

 

Overall, there are several important points to note concerning the results: 

· 

· 

Post-drive feedback had a small positive effect on driver deferral of the most demanding task, 
the bug task.  An improvement of 892 milliseconds in average deferral time was found for 
drivers with post-drive feedback compared to the no mitigation group. 
The mitigation effects we are seeing are small, particularly in comparison to some of the 
differences among the groups during their initial distraction drive. 
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· The largest effect was associated with the post-drive feedback condition, which had a 
substantially different response to deferral of the radio task.  The differences associated with 
those drivers had a substantial effect on deferral and merit investigation because the effect 
was much larger than the experimental manipulations. 

Task Engagement during High Demand Situations 

The small increase in bug task deferral time might have resulted in a large effect on drivers’ abilities to 
attend to the roadway demand if the deferments were associated with periods of high roadway 
demand.  Two measures were examined: change in roadway demand at task initiation and change in 
average demand during the task from the distraction to the mitigation drive.   

Neither measure showed a statistically significant effect of any of the independent variables: mitigation 
did not affect the change in level of demand at which the driver chose to engage in the tasks between 
the distraction and mitigation drives (F(2, 33) = 0.19, p = .83), nor did it affect the overall average level 
of demand during the tasks (F(2, 33) = 1.81, p = .18).  No other statistically significant differences 
related to driving environment or tasks were found for either measure.  The study provides no 
evidence that mitigations cause drivers to defer tasks strategically by delaying them during periods of 
particularly high roadway demand. 

Lane Keeping 

Changes in the standard deviation of lane position (SDLP) from the distraction drive to the mitigation 
drive were analyzed for each task and environment to examine the effect of mitigation on drivers’ lane 
keeping.  For each task, SDLP in the distraction drive was subtracted from SDLP in the mitigation drive 
so that smaller difference scores indicate that the mitigation was more effective.  There was no main 
effect of mitigation on the difference scores (F(2, 33) = 0.21, p =.812); however, mitigation did 
significantly interact with driving environment (F(4, 66) = 5.36, p < .001) and task (F(6, 99) = 2.27, p 
=.04).  There was also a main effect of driving environment (F(2, 66) = 3.77, p = .028) that will be 
discussed in light of its interaction with mitigation.   

The performance of the feedback systems was assessed to determine their effect on SDLP during the 
performance of each task (see Figure 31).  For the arrows task, post-drive feedback produced an 
improvement in lane keeping, whereas real-time feedback degraded lane keeping.  Overall, there was 
no difference in lane keeping between the distraction and mitigation drives for participants in the no 
mitigation condition.  During bug task performance, both post-drive and real-time feedback improved 
lane keeping relative to the no mitigation condition although post-drive feedback improved it more.  
For the menu task, participants without mitigation feedback showed an improvement in lane keeping 
between drives; however, both the real-time and post-drive feedback degraded lane keeping with 
significantly greater degradation from post-drive feedback.  Post-drive feedback also produced a small 
degradation in lane keeping performance during radio task performance.  
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Figure 31 Difference between the distraction and mitigation drives in mean standard deviation of 
lane position by mitigation and task. Note: negative values indicate reduced SDLP in the mitigation 

drive. 

We will next consider how performance of the mitigation systems varies across driving environments 
(see Figure 32).  The effect of the system is focused in the interstate and rural driving environments.  
On the interstate, participants without mitigation showed improved lane keeping, whereas participants 
with post-drive feedback exhibited degradation.  However, in the rural environment, participants with 
post-drive feedback showed improved lane keeping, but both the no mitigation and real-time feedback 
conditions showed decreased performance. All three mitigation conditions showed improvement in the 
urban environment although the improvement was slightly greater for participants in the post-drive 
condition.   
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Figure 32 Difference between the distraction and mitigation drives in mean standard deviation of lane 
position by mitigation and driving environment. 

Gaze Concentration 

Changes from the distraction drive to the mitigation drive in the percent of time drivers’ gaze focused 
forward were analyzed for each task and environment to examine the effect of mitigation on drivers’ 
gaze concentration. For each task, the gaze concentration in the distraction drive was subtracted from 
the gaze concentration in the mitigation drive to provide a measure of effectiveness.  Positive values 
indicate an improvement for visual distractions whereas negative values are an improvement for the 
cognitive menu task.  Data from the tasks with a visual component (arrows and bug) were considered 
separate from the menu task.   

The visual tasks showed a significant effect of mitigation (F(2, 33) = 4.61, p = .017).  No other factors 
were significant.  The post-drive feedback increased focus on the forward roadway for these tasks 
whereas the real-time feedback decreased it (see Figure 33).  Participants with no mitigation showed a 
small increase in percent road center (PRC) that did not differ statistically from either mitigation 
condition. 
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Figure 33 Difference in mean percent road center by mitigation for visual tasks. Note: positive values 
indicate higher PRC in the mitigation drive. 

The analysis of the cognitive (menu) task found no effect of mitigation (F(2, 33) = 0.21, p=.81) on PRC. 
There was a statistically significant difference among driving environments (F(2, 65)=4.89, p=.010) that 
does not relate to mitigation and is therefore not discussed. 

To further explore changes in glance behavior, three additional variables were analyzed: differences in 
95th percentile glance duration, differences in mean glance duration, and differences in number of 
glances over 2 seconds.  Differences in 95th percentile glance duration between the distraction and 
mitigation drives showed no significant main effect for mitigation (F(2, 33)=1.54, p=.23); however a 
significant interaction with driving environment was found (F(4, 66)=2.56, p=.047).  Differences in mean 
glance duration again showed no main effect for mitigation (F(2,33)=0.12, p=.88), nor were any 
interactive effects significant. No main effect of mitigation was found for differences in number of 
glances over 2 seconds between the distraction and mitigation drives, (F(2,33)=1.26, p=.30), nor were 
there any interactive effects.  Statistically significant effects were found for task (F(3, 99)=3.54, p=.018), 
driving environment (F(2, 66)=3.64, p=.031), and their interaction (F(6, 198)=4.77, p<.001).  Effects not 
related to mitigation are not discussed further in this section. 

For the 95th percentile glance duration, the differences in performance of the mitigation varied across 
the driving environments, as is illustrated in Figure 34.  In the urban environment, real-time feedback 
increased the 95th percentile glance duration, whereas no mitigation and post-drive feedback resulted 
in a decrease during the mitigation drive.  For the interstate, both the real-time and post-drive 
mitigation reduced the 95th percentile glance duration, whereas the participants in the no-mitigation 
group had no change.  The effect in the rural environment was much smaller, with small increases for 
the real-time feedback and no-mitigation conditions and a small decrease for the post-drive feedback.  
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Overall, the post-drive feedback provided an improvement across driving environments, whereas the 
real-time system only provided a benefit in the interstate environment.   

It is important to note that these differences in the extreme of the glance distribution (95th percentile 
glance duration), did not translate into differences in the central tendency of the glances as measured 
by mean glance duration.   

 

 

Figure 34 Difference in mean 95th percentile glance duration by mitigation and road type. 

 

Results: The Influence of Mitigations on Driver Attitudes 

Planned Behavior 

Participants’ attitudes towards distracting activities were measured with subjective ratings before the 
study began and after the study was completed.  These attitudes toward engaging in distracting 
activities, needing to engage in these activities, and assessment of peers’ likelihood of engaging in 
distractions provide an indicator of how distraction mitigation systems might influence driver behavior.  
The ratings were interpreted in terms of the theory of planned behavior, by examining the difference 
between the two measurements (Figure 35). Distraction mitigation might influence behavior by 
changing drivers’ attitudes towards distractions and increasing their intention to defer distractions.  
Across the five questions aimed at determining whether participants would engage less in distracting 
activities while driving, the majority of participants said they would change the radio less (F(1,33) = 
11.15, p  = .0021). However, the desire to change the radio differed across the mitigations (F(2,33) = 
5.81, p = 0.007) with the drivers receiving the real-time mitigation (M = -0.08) stating that they would 
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engage in this activity more, while those receiving either no mitigation (M = 0.33) or post-drive 
mitigation (M = 0.75) said they would do it less. All participants also said they would eat or drink less in 
the car (F(1, 33) = 5.97, p = .020).  

 

 

Figure 35 The difference between survey responses before and after the study for questions about the 
frequency of engagement in distracting activities while driving. Note: NM = No mitigation, RT = Real 

Time mitigation, and PD = post-drive mitigation. 

 

 

In terms of intent to defer tasks (Figure 36), all participants said they would put off tasks until they 
pulled over (F(1, 33) = 22.34, p < .001) and that they would turn off distracting devices more (F(1, 33) = 
12.12, p  = .001). The mitigation had no effect on drivers’ intentions to defer tasks.   
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Figure 36 The difference between survey responses before and after the study for questions about the 
frequency of engagement in self-mitigation strategies while driving. 

 

Besides changing the radio, there was not a strong difference between the mitigation groups as to how 
often they plan to engage in distracting activities or self-mitigation strategies (Figure 37). This suggests 
that while driving performance differed among the mitigation groups, their intention to engage in 
activities was not heavily influenced by the mitigation. 
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Figure 37 Responses associated with: Intention to engage, Need to engage, Intention to defer, Peer 
engagement, Difference between driver and peer intention to engage.  None reach statistical 

significance.  

Performance-Perception Calibration and Confidence 

Comparing a participant’s estimates of his or her performance to his or her actual driving performance 
determines whether the participant is calibrated. The difference between estimated and actual 
performance was calculated and analyzed to assess participants’ awareness of their driving 
performance (Figure 38). To ensure that all measures could be compared to each other, lane 
departures were normalized to a 100-point scale using Equation 6. 

 

Equation 6 

 

 

The differences for lane departures and speed were negated so that across all measures, a positive 
difference indicates that drivers performed better than their estimates and a negative difference 



113 

 

indicates that drivers performed worse than their estimates. Post-drive feedback led to better 
calibration in almost all comparisons. 

 

 

Figure 38 The difference between actual and estimated performance. Note: higher values correspond 
to greater underestimations of performance. 

Lane Departures 

Participants were asked to estimate the number of times they departed from their lane, where a lane 
departure occurred when one tire crossed the lane marking. This number was then compared to their 
actual number of lane departures, which were estimated during the simulation by monitoring the 
position of the left and right front corners of the car in relation to the lane lines.  During the mitigation 
drive, drivers overestimated their performance less than during the distraction drive (Distraction: M = -
20.45; Mitigation: M = -14.73) (F(1,33) = 10.73, p = 0.002). There was no significant effect of mitigation 
(F(2,33) = 0.68, p = 0.51) indicating that across all mitigation conditions, drivers overestimated their 
performance to roughly the same extent. Road environment had a significant effect (F(2,66) = 193.58, p 
<0.001), as drivers believed they departed from their lanes less than they actually did during the 
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interstate (M = -21.74) and rural (M = -39.37) segments, while they believed they departed from their 
lanes more during the urban segment (M = 8.33). Over time, all drivers become better calibrated in 
terms of estimating lane departures. However, even with practice, calibration was not perfect, as most 
drivers continued to believe they departed their lanes less than in actuality. This overestimation of 
performance occurred during interstate and rural road segments, but not during urban road segments. 

Task Score 

In addition to lane departures, participants were asked to give an estimate of their average task score 
as indicated by accuracy, continuous attention, and promptness of their responses to all arrows, bug, 
and menu tasks. This number was then compared to the average of their actual task scores.  During the 
mitigation drive, drivers underestimated their performance (i.e., believed they performed worse than 
they actually did) less than during the distraction drive (Distraction: M = 22.71; Mitigation: M = 15.88), 
F(1,33) = 19.69, p <.001. Similar to lane departures, with time and practice, drivers became better 
calibrated, but their calibration was still not perfect.  

Speed 

Participants were asked to estimate the percentage of the drive segment in which they drifted above or 
below the speed limit. This number was then compared to the number of times that drivers deviated 
2.5 percent away from the posted speed limit. Mitigation did not have a significant effect, F(2,33) = 
1.12, p = .34, as drivers overestimated their performance (i.e., believed they performed better than 
they actually did) to roughly the same extent. However, there was a significant interaction between the 
effects of drive (distraction or mitigation) and road environment, F(2,66) = 3.33, p = .042, with the 
means shown in Table 24. Post hoc analysis showed that the difference between actual and estimated 
speed was only significant during the urban section, indicating that with time, drivers overestimate 
their speed performance more.  

 

Table 24 Means of the difference between actual and estimated performance of speed separated by 
drive and road type 

 Urban Interstate Rural 
Distraction 13.3 16.6 12.4 
Mitigation 30.2 20.8 9.2 

 

Percent Road Center 

Participants indicated the percentage of time that they gazed at the forward roadway, i.e., through the 
windshield, on the performance questionnaire following each drive segment. This number was 
compared to the percent of time that they gazed at the road center, a circle of 10° centered on the 
most frequently gazed area of the road. Mitigation had a significant effect (F(2,33) = 6.58, p = 0.004) as 
those in both the no mitigation (M = -4.97) and real-time (M = -10.72) groups overestimated their 
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performance (i.e., believed they performed better than they actually did), while the post-drive group 
underestimated their performance (M = 12.68). Mitigation and drive also interacted (F(2,33) = 11.74, p 
<.001), with the means shown in Table 25. Post hoc analysis shows that all mitigation groups changed 
significantly between drives. The no-mitigation group changed from underestimating performance to 
overestimating performance. The real-time group overestimated more during the mitigation drive. On 
the other hand, the post-drive group underestimated more during the mitigation drive. Note that 
although the interaction is interesting, the differences among the mitigation groups before any 
mitigation was presented (i.e., during the distraction drive) would make any conclusions drawn less 
reliable as there seem to have been strong group differences before the experiment began. 

Table 25 Means of the difference between actual and estimated percent of gaze on road center by 
drive and mitigation condition 

 No mitigation Real-time Post-drive 
Distraction 1.5 -7.5 8.3 
Mitigation -11.5 -14.0 17.1 

 

Overall, the results from the calibration study indicate that: 

· 

· 

Across time, all drivers became better estimators of both lane departures and task scores, but 
their calibration was still not perfect. 
The post-drive feedback caused participants to underestimate their performance in both task 
score and percent road center, indicating that they believed they performed worse than they 
actually did. 

 

Skill Score 

The skill score was used to evaluate participants’ judgment of performance (Figure 39). It extends the 
calibration analysis and provides a more comprehensive measure that evaluates the human judgment 
in comparison to the actual state. An ideal skill score of one indicates that the human’s judgment of 
performance is exactly the same as the actual state. A negative skill score indicates that one estimates 
their performance to be the opposite of the true environmental state. A skill score was calculated for 
each participant and was produced by aggregating responses across all measures (i.e., lane departures, 
task score, speed, and percent road center) and across all roads (i.e., urban, interstate, and rural).  

Although the effect of mitigation was not significant (F(2,33) = 0.25, p = .78), participants’ skill scores 
did improve after the mitigation drive (F(1,33) = 9.53, p = .004), indicating that with time, participants’ 
judgment of their performance improved. The skill score was not decomposed because no significant 
main or interaction effects of mitigation were found. 
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Figure 39 The skill score by drive and mitigation condition. Note: a higher score indicated more 
accurate judgments. 

Driver Acceptance  

Driver acceptance was assessed using the technology acceptance framework (Davis, 1989, 1993), which 
considers acceptance in terms of perceived ease of use, usefulness and value.  Seven items defined 
ease of use and five items defined usefulness.  Items defining ease of use included “would be easy to 
learn” and “would be distracting.”  Items defining usefulness include “would make it easier to drive” 
and “would reduce distractions.”  In addition to these measures of acceptance, three items assessed 
perceived value, for example, “At the actual price of $300, how likely would you be to consider 
purchasing a distraction warning system like the one you used during your study drive?”  These items 
were measured on a Likert scale that ranged from “1 Strongly agree” to “7 Strongly disagree.” Some 
items were recoded so that lower values were associated with positive responses. The measures of 
acceptance and value were combined in an equally weighted average. 
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Figure 40 shows the relationship between ease of use, usefulness, and value.  The clustering of small 
dots associated with the post-drive mitigation in the lower left shows it to be more acceptable and 
valuable to drivers.  The numbers of points above and below the diagonal show that the post-drive 
mitigation was relatively easier to use than it was useful. The reverse was shown for the real-time 
system. 

 

 

Figure 40 The relationship between ease of use, usefulness, and value. Note: Lower numbers indicate 
higher acceptance. 

 

Figure 41 compares the mean acceptance ratings more directly. Drivers who experienced the post-drive 
system rated it as more useful than drivers’ experiencing the real-time system (F(1, 22) = 6.23, p = 
.020). The ratings for ease of use and perceived value followed a similar pattern (F(1, 22) = 29.76, 
p<.001 and F(1, 22) = 12.22, p = .002). The effect size (eta squared) was greatest for ease of use (0.574), 
followed by value (0.221), and usefulness (0.220). To the extent the scales can be compared, drivers 
agreed that the post-drive feedback was fairly easy to use (M = 2.583) and useful (M = _3.012), and the 
real-time system was low in value (M = 5.583) when compared with the neutral rating of 4. Drivers 
tended to disagree with the statement “At the actual price of $300, how likely would you be to 
consider purchasing a distraction warning system like the one you used during your study drive?” (M = 
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2.000 with 1 being definitely would not consider and 5 being definitely would consider). 

 

Figure 41 Ratings of acceptance. Note: Lower levels of acceptance are shown towards the top of the 
graph. 

 

A linear regression model was developed to predict perceived value as a function of usefulness and 
ease of use. For these systems, ease of use dominates the perception of value, accounting for 42.9 
percent of the perceived value variance (t(22) =3.26, p = 0.003). Neither perceived usefulness nor the 
interaction between usefulness and ease of use reached statistical significance. 

Discussion 

These results inform both the development and evaluation of systems to mitigate distraction.  They 
reveal the relative efficacy of two strategies to reduce distraction and suggest ways to improve such 
systems.  The results also indicate how future systems might be evaluated.  
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Mitigation Effectiveness 

The two mitigations tested in this study provide examples of how systems might try to affect driver 
interaction with distracting tasks.  The real-time feedback system focused on changing driver behavior 
as it happened by alerting the driver when distraction was detected.  The post-drive feedback system 
tracked driver distraction over the course of the drive and reported them in summary after each 
segment of the drive, along with information about unsafe driver behaviors that were related to the 
driver distraction.  These two mitigation approaches resulted in subtle but distinct differences in driver 
response. 

It was thought that mitigation might cause drivers to defer task engagement to less demanding parts of 
the drive.  This did not occur with either mitigation tested.  Although the post-drive feedback did result 
in deferral of the most intensive task, i.e., the bug task, that deferral did not result in lower roadway 
demand when the task was later begun.  Real-time feedback produced no differences in deferral 
compared to no feedback, and no change in roadway demand occurred as a result of task deferral.  
Deferral was really only found with post-drive feedback given during the bug task, and its magnitude 
was small at 704 ms. When looking at the underlying data, even the long deferral times observed for 
the bug task were not substantial (see Table 26).  Although the 95th percentile change in deferral time 
for the post-drive feedback was 6.5 times as great as when no mitigation is present, the 4.1 seconds 
provides only a limited opportunity for changes in the driving environment to reduce the risk of 
engaging in the task.  The changes in deferral observed with the mitigation systems are off by at least 
an order of magnitude for the types of deferral that could reasonably provide the most benefit. 

 

Table 26  Long deferral times for bug task 

 Change In Deferral Time 
75th Percentile 95th Percentile 

No Mitigation 0.16 0.63 
Real-time Feedback 0.51 1.64 
Post-drive Feedback 1.47 4.10 

 

Although drivers did not delay engagement in the task, there were some more compelling results 
related to the effect on visual scanning.  Overall, drivers who received the post-drive feedback 
increased the amount of time they spent looking towards the roadway when engaged in visual 
distraction.  Additionally, these drivers showed an improvement in reducing the 95th percentile glance 
duration across driving environments.  This indicates that the post-drive feedback is often effective at 
improving driver attention to the road while decreasing unsafe glances away from the road. 

Surprisingly, real-time feedback was intended to return drivers’ attention to the roadway; however, it 
actually decreased drivers’ focus on the roadway and only reduced the 95th percentile glance duration 
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on the interstate.  The data provides no clear explanation of this negative impact, but there are many 
potential explanations that should be considered:  the drivers might have used the warnings to indicate 
when it was necessary to look back to the roadway, the complexity of the underlying warning algorithm 
and multiple warnings might have left them unsure how to respond, or due to the frequency of 
warnings, the drivers may not have trusted their accuracy and so they may have ignored the alerts. It is 
also not clear why the real-time feedback was effective at reducing 95th percentile glance duration on 
the interstate but not in the two higher demand driving environments.  If this is indeed the case, it 
would suggest that real-time algorithms may benefit if they take into account visual sampling demands 
that vary by environment. 

Looking at the net impact on driving performance and the ability of the driver to maintain lane keeping, 
the results provide a mixed message for both types of mitigation.  The post-drive feedback provided 
improved lane keeping for the two most visually challenging distraction tasks, but degraded 
performance during the other two tasks. It also produced improved performance in the two high-
demand driving environments (urban and rural), but decreased performance on the interstate.  The 
real-time feedback, on the other hand, improved lane keeping with one of the four tasks (bug) and in 
one of three driving environments (urban).  Overall, the feedback systems provide a benefit in some 
cases (higher demand tasks and environments) but decrease performance in others.  Additional work is 
needed to understand why this is the case.  

In terms of the intention to engage in distracting activities, mitigation did not have a significant effect 
on any of the secondary tasks mentioned, except changing the radio. The frequency of engagement in 
this activity differed across groups as both the no-mitigation and post-drive groups stated that they 
would engage in the activity less, while the real-time group stated that they would engage in this 
activity more. The cause for this difference is not clear, especially as the no-mitigation group received 
no feedback. Mitigation seemed to have had mixed results in terms of how it affected calibration. All 
drivers’ lane departure and task score estimates became better calibrated during the mitigation drive. 
However, their calibration was nowhere near perfect, as drivers still overestimated their lane departure 
performance and underestimated their task score. Estimating the amount of time drivers spend drifting 
above or below the speed limit proved to be difficult, as almost all participants overestimated their 
speed control performance. In addition, there was no significant effect of mitigation, indicating that no 
evidence was found for an effect of feedback on speed control judgments. Participants’ estimates of 
the amount of time they gazed at the road center indicated that the post-drive feedback caused drivers 
to underestimate their performance, making them under-confident in this skill. On the other hand, the 
no-mitigation and real-time groups overestimated their performance. However, this effect was 
confounded by the evidence, indicating that there were strong differences between the experimental 
groups before the experiment began. 

Evaluation Protocol   

The results of the study provide an important context for discussing ways in which the protocol was 
successful and ways in which it may need to be improved.  The protocol was able to show changes in 



121 

 

engagement with the distraction tasks over a very limited exposure, particularly for the post-drive 
feedback.  The protocol was also able to detect complex relationships between the mitigation systems, 
the tasks, and driving environments.  Although the protocol showed success in meeting the aims of this 
project, the results point to some changes that could make a distraction feedback protocol more 
effective. 

The participants showed very limited deferral when they were asked to engage in tasks.  The current 
protocol prescribes a fixed number of engagements with the forced-pace tasks that resulted in little 
down time between tasks particularly in the urban and rural environments.  When the self-paced radio 
task is added to this, engagement was almost continuous across the drive for most participants (see 
Figure 11 in Chapter 4).  The density of these tasks left little room for drivers to defer tasks to lower 
demand stretches of the road.  While this may be appropriate to study systems that hope to delay 
engagement long enough for drivers to make an assessment of the driving environment, it would not 
be sufficient for evaluating systems that are designed to provide a gross change in behavior, such as 
deferring until a less demanding road type is reached or until stopped.  

Building upon this, the limited deferrals produced even more limited opportunities for changes in 
driving demand to be observed, as was seen by the lack of results related to demand.  This is 
exacerbated by the relative uniformity of demand in the urban and interstate environments.  There 
was little opportunity for the driver to systematically shift task engagement to lower demand areas. 
The stops between the discrete changes in demand, which are represented by the driving 
environments to collect subjective assessment data, also limit the participants’ ability to shift, for 
example, from the higher demand urban environment to the lower demand interstate environment.   

The data about participant visual scanning also provides some interesting insights into the protocol.  
One of the primary measures of visual scanning was percent of time focused on the forward roadway; 
however, increases in this measure were an improvement when considering visual distractions, but 
decreases were an improvement for cognitive distraction.  This asymmetry points to the importance of 
considering the types of changes in behavior that the protocol will assess relative to the mitigations 
being evaluated.   

The results relating to 95th percentile glance duration and mean glance duration have important 
implications for an evaluation protocol.  Relying solely on the mean glance duration, we would not have 
seen the differences between the mitigation approaches.  When studying unsafe behavior, which often 
lies at the extremes of the distribution of data, we must avoid the tendency to focus on the central 
tendency and assess differences in the means.  Instead, metrics of distraction and distraction mitigation 
should be developed that most closely represent the patterns of scanning behavior associated with 
increased crash risk.  

Another important issue that became evident from the analysis of the data was the importance of the 
statistical approach.  Two major approaches were available: one in which differences between 
performance in the two drives were explicitly considered and the primary effect of interest is 
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mitigation, and another in which data from both drives is included in the statistical model and the 
primary effect of interest is the interaction between mitigation and drive.  There are advantages and 
disadvantages for each approach.  For the differences approach, the key advantages were in ease of 
understanding of the effects of the statistical model and of the variable being studied.  The ability to 
focus on an analysis where a main effect is of primary interest has the inherent value of increased 
power. Differences have a certain inherent simplicity that makes them attractive for explaining the 
effect of the system on driver performance, as they provide a direct measure of the change we seek to 
examine.  The risk is illustrated by the results of deferral for the bug task.  When looking only at the 
differences, there is a clear message that the post-drive feedback produces a benefit relative to the no 
mitigation condition; however, when we looked at the data for the distraction and mitigation drives 
(see Figure 30), we saw that there were systematic differences in the groups that would have been 
missed if we had not looked beyond the differences.  For the interaction approach, the key advantage 
is that all data can be considered in its raw form in the analysis, making it less likely that underlying 
differences between the groups would be missed.  The key disadvantages are the greater difficulty in 
finding interactive effects, the greater difficulty of explaining them, and the lack of meaningfulness of 
the main effect for mitigation.  They may be of greater concern in widespread application of an 
assessment protocol than in the university research environment.  The present results point to the 
dangers of looking at differences without making sure that the underlying data do not exhibit 
systematic preexisting differences between the groups being studied. 

An overall lesson from this is that care must be taken in the design of the protocol for assessing 
mitigation.  The current protocol is a modification of a protocol designed to evaluate the effectiveness 
of distraction detection algorithms.  While the protocol was effective in that regard, as discussed in 
Chapter 4, starting from that protocol as a basis for evaluating distraction mitigation created limitations 
on what the protocol could examine.  Although a distraction detection evaluation needs to contain 
many opportunities to interact with a variety of distracting tasks, this may be counterproductive for 
examining the effectiveness of the mitigation in changing behavior.  Additionally, forcing the driver to 
engage in distracting tasks in a variety of environments is needed to assess how detection systems 
work in a variety of situations. However, to assess the mitigation, it is necessary to see how drivers shift 
engagement in the tasks both within and across driving environments, actions which often represents 
systematic shifts in demand.  Ultimately, a protocol to assess distraction detection may not be 
appropriate for assessing the effectiveness of a mitigation approach due to competing constraints. 

Recommendations for Future Protocol Development 

The development of a protocol for assessing distraction mitigation systems is a complex task to which 
this study provides great insight.  Determining the outcome measures on which to determine system 
effectiveness is a topic open to debate, with arguments for driving performance, driver behavior, and 
driver attitudes.  Even though this data is not conclusive, the results indicate that it is important to 
evaluate the effects of these systems on driving performance, behavior that leads to decrements in 
driving performance, and attitudes (calibration and acceptance).  That is, we need to measure not only 
risky behavior and risky outcomes, but also how these systems affect driver understanding of risky 
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behavior.  Using this paradigm for evaluation, refinements of the protocol, additional development 
needs, and additional areas of research are recommended to finalize an effective overall assessment of 
distraction mitigation systems. 

Driving Scenario and Distraction Tasks 

Protocol to assess detection may not be appropriate for assessing effect of distraction mitigation.   The 
protocol included a variety of tasks that were very effective in terms of detecting the effects of 
distraction; however, the implantation of these tasks included the radio task as a filler task that would 
be available across the drive that the driver could engage with as needed.  The drivers treated this task 
as they did the others, and most drivers, with few exceptions, engaged the task almost continuously 
across the drive.  Although effective for a protocol for detecting distraction, this task did not fully meet 
the needs of a protocol for mitigating distraction. 

Less time spent engaged in tasks.  In terms of protocol development, the protocol used in this 
evaluation provided limited opportunities for deferral, although the extent to which drivers would 
delay engagement with the secondary tasks was a primary metric.  Although this protocol was effective 
for distraction detection, drivers did not themselves delay these tasks for extensive durations despite 
the fact that they were not prohibited from doing so.  To better assess the effectiveness of mitigation 
systems in causing increased deferral, a reduction is recommended in the ratio of time the driver is 
engaged in completing secondary tasks to the total time available to no greater than 0.5. 

Strategic placement of driving demand levels across drives.  For mitigation assessment, more so than 
for distraction detection, high and low demand roadway segments need to be strategically placed so 
that the effect of mitigation on deferral from high to low demand environments can be assessed 
systematically. 

Self-paced tasks are important, but not for filler tasks.  The use of the filler task seems to complicate 
driver choice of deferment.  With greater latitude in when to engage in the task, it will be possible to 
better assess when and how drivers choose to defer. 

A variety of distracting tasks is needed, including self-terminating tasks.  This protocol included several 
tasks that differed in terms of attributes including demand and pace; however, all tasks were system-
terminated versus self-terminating.  In many situations drivers can choose to apply additional resources 
to finish a task more quickly rather than applying fewer resources over a longer period of time. 
However, in the current protocol, task duration was fixed.  If the driver instead had a goal to 
accomplish that would terminate the task, drivers might utilize different strategies than currently 
observed.  It is important to understand how mitigation systems might affect these types of 
engagements. 

Consider self-scheduling of tasks.  In the current protocol, drivers were forced to complete the tasks in 
a predetermined order; however, in a non-experimental setting drivers are free to choose to do the 
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tasks as they wish.  If tasks were freed from a sequential requirement, it would be possible to assess if a 
mitigation system causes drivers to differentially engage in the tasks across demand level of the drive.   

Short repeated drives are preferable.  The current drive database may not provide the best approach to 
mitigation evaluation.  Shorter drives would allow for repeated exposure to the mitigation, 
environments, and tasks, and would facilitate better calibration data.  The drives need not be identical, 
but it would be important to have drives of sufficient length for each to have two discreet levels of 
demand. 

Measurement Development and Analysis 

Analysis of demand is contingent on deferral.  It became clear from the results that the analysis of the 
demand only made sense if the drivers did indeed defer.  The recommendations would be to make the 
analysis of demand a conditional analysis, and to provide more opportunities for deferral under varied 
demand. 

Safety criticality of outcome measures needs to be evaluated.  Due to the lack of crash events in this 
protocol, SDLP was evaluated as the primary indicator of safety.  Although this measure has shown 
great value in studying impaired driving, examination of the SHRP 2 data to insure that it is the most 
effective at conveying safety relevance in distracted driving is warranted. 

Consider changes in the extremes, not just changes in the mean.  As was evident from looking at the 
glance duration data, changes in mean performance do not always provide an accurate indication of 
the actual effect of the mitigation.  For this reason, it is critical to look at the tails of the distribution 
rather than just the central tendency.   

Careful consideration to implications of changes in dependent measures is critical.  As was evidenced 
by PRC, some dependent measures behave differently with regard to different types of distraction, and 
the effect of the mitigation.  Although increased PRC indicates improved attention to the driving 
environment in general, that is not the case with cognitive distraction where the driver is not attending 
robustly enough to the sides of the driving environment.  In that case, a decrease in PRC is desirable.   
The cautionary tale is that directionality of an eye metric like PRC is not always obvious in terms of 
what’s better/worse for a particular distraction, and care should be taken in interpreting the effects of 
systems. 

Looking only at differences in performance is risky.  Although looking at differences in performance 
between the mitigation and distraction drive is compelling from a protocol standpoint due to the 
simplification of the analysis, the results from this study indicate that there is significant risk in this 
approach.  Differences do not tell the whole story and may mask potentially important differences 
associated with sampling, as was evident with deferral of the radio task. 

More robust scale needed for assessing planned behavior.  One of the challenges is accurately 
assessing how long-term driver behavior might change as a result of the mitigation.  Using the data 
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available before the study, an approach was developed to assess how drivers’ planned behavior and 
willingness to engage in tasks while driving changed through feedback; however, the instrument 
developed was not able to capture the differences as well as anticipated.  A more robust scale that is 
grounded in a sample of reported deferment strategies is crucial for effectively gathering this type of 
data. 

Measures of driving performance used for comparison to questionnaire data must correspond to what 
the driver can perceive of their performance.  There are challenges when attempting to assess how 
mitigation systems affect driver perception of their performance on the driving task due to the fact that 
what the driver perceives as their performance may not match what is reported by the data.  An 
example of this would be lane departures: at what point is a lane departure a lane departure?  In the 
simulator data, this occurs as soon as a single tire leaves the lane, even if by a fraction of an inch; 
however, the driver may not be able to perceive a lane departure until the vehicle is several inches 
beyond the lane boundary.  The fact that there may be many of these departures throughout the drive 
that the driver does not or cannot perceive creates challenges for understanding the effect of the 
system by adding noise to the comparison.  Care needs to be taken to ensure that the comparison is 
relative to those situations that the participant could perceive. 

Keeping surveys up to date with changes in technology and driver behavior is a challenge.  With the 
constant change in the types of technology that can be used in a vehicle, the surveys may need to be 
constantly updated to be consistent with the distraction behaviors of drivers. 

Keep in mind constraints of sample size and number of data points when choosing instruments.  The 
skill score analysis for this study provides an important example of the necessity to match the data 
collected with the availability of data.  Some instruments that could be useful require much more data 
than might actually be available in this type of assessment.  As appealing as certain types of data might 
be, they should only be implemented if the instrument can provide useful data with the sample size 
available. 

Driver acceptance can be measured reliably.  The measures of driver acceptance that were used in this 
study behave in a sensitive and reasonable manner and were able to differentiate between the two 
systems.  This approach was grounded in previous research, and the fact that it was diagnostic in this 
study indicates that it should be used in the protocol moving forward.   
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CHAPTER 6. ASSESSING THE BENEFITS OF DISTRACTION 
DETECTION AND MITIGATION SYSTEMS 

Distracted driving exacts a substantial societal cost.  Of the 33,808 total fatalities in 2009, 5,474 
fatalities were associated with distraction. Distractions accounted for 16 percent of the total traffic 
fatalities, up from 10 percent in 2005.  In addition, distracted driving accounted for 448,000 injuries in 
2009, 20 percent of the total (NHTSA, 2010).  A variety of vehicle technologies promise to counter the 
effects of distraction, improve driver safety, and mitigate its overall costs. 

The degree technology designed to mitigate distraction achieves its promise depends on whether it 
reduces crashes and associated deaths, injuries, and property damage.  Directly measuring such 
benefits is quite difficult.  Even where an intervention, such as handheld cell phone and texting bans, is 
implemented on a specific date with a clear intent, a wide array of confounding factors make its 
benefits difficult to quantify (IIHS, 2010; McCartt et al., 2010).  These difficulties make indirect 
estimation methods necessary.   

The purpose of this section is to describe an indirect method to estimate the degree to which 
distraction countermeasures reduce crash risk and the associated costs, where costs include property 
damage, injuries, and deaths.  This method could also apply to costs from congestion-related delays 
associated with distracted drivers. 

Several indirect estimation methods have been developed and applied to a range of vehicle 
technologies—from collision warning systems to intelligent infrastructure (Burgett et al., 1998; Misener 
et al., 2001; Najm et al., 2005).  The application of these methods to estimate the safety benefit of 
collision warning systems is perhaps most similar to the challenge of estimating the safety benefit of 
distraction mitigation systems. One such benefit analysis estimated that drivers could avoid 60 percent 
of rear-end crashes if they had 0.5 seconds more time to respond, and a second to respond would 
prevent 90 percent of all rear-end crashes (Ankrum, 1992).  Driver response to the technology has a 
powerful influence on its benefits, such as benefits acquired through the influence of interface 
characteristics on driver response (Scott & Gray, 2008).  A central challenge to benefit estimation is 
estimating the effectiveness of the system in preventing prototypical crashes.  For this reason, the 
benefits estimation methods of Najm and his colleagues provide a promising starting point for 
estimating the benefits of distraction mitigation systems (Najm, 2003). 

EXTENDING BENEFIT ESTIMATION TO DISTRACTION DETECTION AND 
MITIGATION SYSTEMS 

Benefit estimation techniques developed for assessing collision warning systems face important 
challenges when applied to distraction mitigation systems.  These challenges stem from two primary 
sources: diversity of distraction mitigation systems and diversity of mechanisms underlying distraction-
related crashes.  Chapter 3 of this report describes the diversity of distraction mitigation systems, 
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which can range from alerting drivers to long glances, adjusting collision warning thresholds based on 
distraction, and to post-drive feedback.  In comparison, the functionality of collision warning systems is 
much more homogeneous.   

The diversity of distraction mitigation systems reflects the diversity of mechanisms underlying 
distraction.  For collision warning systems, the underlying mechanism governing the benefit is a 
reduction in drivers' reaction time.  In contrast, distraction mitigation systems might affect driver 
reaction time to imminent crashes, discourage dangerously long glances that lead to crash situations, 
or even discourage drivers from engaging in certain distractions.  The diversity of distraction mitigation 
systems and diversity of distraction mechanisms underlying crashes require modification of the benefit 
estimation techniques previously applied to collision warning systems. 

Benefit estimation typically considers historical crash data to establish a baseline cost associated with 
various crash types that the system aims to reduce. The benefit is defined by how effectively the 
technology reduces the likelihood and severity of each crash type summed across all crash types.  Crash 
types typically reflect a kinematic description of the collision, such as rear-end or roadway departure 
crashes.  Relating crash types to benefit estimation follows the same general approach used in other 
risk analyses, where a “risk triplet” defines risk in terms of the situation, consequence and likelihood 
(Kaplin & Garrick, 1981).  Benefits accrue by reducing crash frequency or severity. Equation 7 defines 
this relationship more formally.   

 

Equation 7 

 

where the current cost is defined by Equation 8. 

 

Equation 8 

 

 

Considering crash types and levels of crash severity separately is particularly important in estimating 
benefits of distraction mitigation systems.  Findings from naturalistic driving studies show that 
distraction and inattention differentially affect crash types and severity. Crashes and near-crashes are 
over-represented by inattentive drivers—Nearly 80 percent of crashes occurred with some form of 
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inattention compared to 65 percent of near-crashes, and less than 30 percent of incidents.  Similarly, 
some crash types are particularly common for inattentive drivers— 93 percent of rear-end collisions 
involved inattention as a contributing factor compared to 78 percent for all crashes (Klauer et al., 
2006).  Consequently, Equation 7 includes crash types and severity levels separately to estimate 
benefits more precisely. 

Calculating the benefit using Equation 7 and Equation 8 requires historical data regarding the frequency 
and cost of distraction-related crashes, and also on how effectively the system prevents crashes.  
Existing historical crash data can define the frequency and severity of various crash types (Wang et al., 
1999).  System effectiveness is considered in the last portion of Equation 7—the conditional probability 
of a given crash type and severity if the vehicle had been equipped with a distraction mitigation system.  
This parameter can be estimated from a combination of Monte Carlo models and driver responses 
observed in simulators or naturalistic driving situations (Najm, 2003).  The diversity of mitigation 
systems and mechanisms of distraction make estimating system effectiveness particularly challenging. 

Figure 42 shows a framework for estimating the effectiveness of distraction mitigation systems. The 
top of the figure shows the distraction-related crashes and the associated distractions.  Mitigation 
systems are represented in the center of the figure.  The benefits of mitigation systems can accrue by 
discouraging drivers from enabling distracting devices, engaging in distracting activities, and persisting 
in distracting activities that put them into crash-imminent situations.  System effectiveness is the 
proportion of crashes prevented by a combination of all three mitigation mechanisms. Each mitigation 
mechanism can be viewed as a layer of protection eliminating a certain proportion of crashes. The 
dotted lines represent potential crashes and the fewer lines after each layer indicate the cumulative 
effectiveness of the system. Assuming the mitigation system acts on each mechanism independently its 
overall effectiveness is the product of its effects on each distraction mechanism.  
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Figure 42 System effectiveness estimation framework for distraction mitigation systems. 

The effectiveness of each layer of distraction protection depends on the particular characteristics of the 
mitigation system and the crash situation.  The left side of Figure 42 shows that some systems have 
little influence on drivers' tendency to engage in distractions, such as those that modulate collision 
warning thresholds, whereas others address engagement directly, such as post-drive feedback.  
Additionally, some systems are sensitive to some types of distraction and not others, such as those that 
use head pose data to estimate when drivers’ eyes are off the road, compared to systems that use eye 
movements to estimate cognitive distraction. Systems that do not detect cognitive distraction might 
not change the associated probability of crashes. 

The right side of Figure 42 shows the influence of the particular characteristics of the crash situation on 
system effectiveness, such as the time available to respond. For example, the effectiveness of a 
distraction mitigation system that warns drivers of long glances away from the road depends on the 
time available for the driver to respond to the crash situation after receiving the warning.  If 
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dangerously long glances are detected only after the crash, then the system would be ineffective.  This 
consideration is similar to the kinematic constraints used in estimating collision warning effectiveness 
(Burgett et al., 1998). 

The specific steps associated with the calculations in Equation 9 begin with selecting representative 
distraction-related crashes and concludes by estimating driver response. These steps are briefly 
described. 

 

Equation 9 
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1. Identify a representative sample of distraction-related crashes 

The analysis requires a representative sample of crashes or near crashes for each crash type identified 
in Equation 7 that is large. Describe the range of pre-crash situations including the type of distraction 
associated with the crash as a critical element. The crash events can be estimated from ongoing driving 
studies, such as SHRP2 and the 100-car naturalistic driving study (Klauer et al., 2006).  These crashes 
could be clustered into prototypical crash scenarios and weighted by their frequency (Najm, 2003). 

2. Define the mitigation system 

The mitigation system needs to be defined in sufficient detail to support an estimate of its ability to 
prevent the crashes described in Step 1.  This includes the types of distraction it can detect, such as the 
distinctions in this report between distractions associated with visual, extreme visual-manual 
(reaching), and cognitive distraction. The system should also be described in terms of the proportion of 
drivers it would cover.  This is particularly relevant for systems that use eye-tracking systems that might 
not operate reliably for all eye types and driver anthropometrics.  

3. Define the crash configuration 

The crash configuration needs to be defined in terms that describe the timing of the events that would 
trigger the distraction mitigation system, such as long glances.  This description also needs to describe 
the crash kinematics to define the time available to respond—the window between when an alert 
would occur and when the crash would, given the pre-crash situation.  
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4. Estimate driver response 

Figure 43 shows the major components of a simple model to estimate driver response. Brown et al. 
(2001) developed this model to compare different algorithms and parameter choices for a wide range of 
roadway conditions.  The model takes as input the state of the following and the lead vehicles at the 
point where the imminent collision situation begins to evolve, which is the moment the lead vehicle 
begins to decelerate. This input includes the velocity and position of the following vehicle as well as the 
position, velocity, and deceleration of the lead vehicle. The input also includes the warning algorithm 
and its parameters. The output describes the vehicle states over time, the driver’s response process, and 
the internal state of the driver. It uses the acceleration, velocity, and position of the two vehicles as the 
collision situation evolves to characterize the state of the vehicles.  The model in Figure 43 focuses on 
driver attention in the seconds preceding a crash.  Entirely different models are needed to describe 
drivers’ more strategic decisions regarding whether to enable or disable a distracting system and engage 
in a distracting activity.  

 

 

Figure 43  Model of driver response for assessing collision warning effectiveness that might be adapted 
to estimate distraction mitigation effectiveness (Brown et al., 2001). 

 

Figure 44 shows the output of the model with probability of collision displayed as a function of the 
assumed reaction time and deceleration of the driver. Similar estimates of crash probability would 
estimate the contribution of driver response to overall system effectiveness. 
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Figure 44  Model output indicating estimated system effectiveness as a function of model parameters 
(Brown et al., 2001). 

 

SIMPLIFYING ASSUMPTIONS AND EXTENSIONS TO THE PROPOSED METHOD 

This benefit analysis makes several notable simplifying assumptions. Most critically, several 
assumptions of independence might not be justified. One such assumption concerns the relationship 
between vehicles equipped with the systems and the drivers of those vehicles.  Similar to other 
advanced safety systems, they are likely to be more prevalent in high-cost vehicles where the rates of 
distraction related crashes and their consequences might be different than the typical vehicle.  Most 
notably such vehicles are less likely to be driven by young drivers who might be most likely to engage in 
distractions (Braitman & McCartt, 2010).  As a consequence, this analysis might overestimate the 
benefit of distraction mitigation systems.  The analysis also assumes the mitigation mechanisms 
influence crash outcomes independently; however, it is likely that they are interdependent and 
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generate a larger benefit than one might expect if they were to act independently (Donmez et al., 
2008).  Careful assessment of these assumptions is needed as this benefits analysis is developed. 

A critical challenge to estimating benefits associated with distraction mitigation systems concerns how 
to model the full breadth of their influence. These systems have a relatively predictable influence on 
distraction in the moment (as depicted by Figure 43).  They are also likely to change driver behavior 
over time and even shift societal norms. 

The greatest benefits are likely to accrue from any change in safety norms they might induce, but such 
changes are difficult to model.  More concretely, compliance, reliance, and acceptance are more 
directly related to system features.  Initial models of these phenomena suggest it might be possible to 
include them in benefits analysis (Gao & Lee, 2006; Misener et al., 2001; Taylor & Todd, 1995).  
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