SAE Government and Industry Meeting Frontal Crash Protection

Air Bag Crash Investigations

May 14, 2001

Augustus "Chip" Chidester

National Highway Traffic Safety Administration

Topics

- NCSA Objectives
- Air Bag Related Fatalities
- Redesigned Air Bags
- Advanced Air Bags

Objectives of the NCSA Air Bag Data Collection Program

- Examine safety impact of rapidly changing technology in airbags.
- Provide early detection of alleged or potential vehicle defects.

Objectives of the NCSA Air Bag Data Collection Program

- Crashes involving air bag deployment related fatal and seriously injured occupants.
 - The delta V is less than 25 mph
 - A Life Threatening or Fatal Injury related to the Air Bag Deployment.
- New and/or emerging occupant protection system technology
 - Crashes involving Redesigned or Advanced Air Bag Deployments
 - Side Air Bags
 - Other cases of interest

NHTSA Findings on Air Bag

- Data Published Quarterly on NHTSA Web site:
 - Crashes involving air bag deployment related fatal and seriously injured occupants with a delta V less than 25 mph.
 - Redesigned Air Bags
 - Advanced Air Bags
 - Side Air Bags

Air Bag Related Fatalities with a delta V less than 25 mph

SCI- Driver Air Bag Related Fatalities as of 4/1/01

Driver Air Bag Fatalities (Adult)

Normalized for a 12-Month Period

SCI- Driver Air Bag Related Fatalities as of 4/1/01

Driver Air Bag Fatalities (Adult)

By Vehicle Model Year

Passenger Air Bag Fatalities (Adult)

Normalized for a 12-Month Period

Passenger Air Bag Fatalities (Adult)

By Vehicle Model Year

Children Fatally Injured by PAB

Normalized for a 12-Month Period

Children Fatally Injured by PAB

By Vehicle Model Year

Redesigned Air Bag (Sled Certified)

Redesigned (Sled Certified) Air Bag Cases as of 4/1/01

NASS CDS Counts (I	Front	- 11.12	or 01)		
 Data Collection Year 		1998	1999	2000	Total
 Unweighted 	1	142	240	333	716
 Weighted 	449	21,290	35,997	N/A	
Partners					
• UMTRI -		70	81	40	191
• Lehman	2	10	7		19
• Total					210
SCI					
• SCI	29	32	36	4	101
 NASS (Combination) 	1	168	24	1	194
• Total					295

NCSA Reports on Findings

Currently NCSA is Developing Paper on the Effectiveness of Redesigned (Sled Certified) Air Bags

- Summarize Data from the 500 SCI/Partners Crashes
- Analyze Effectiveness

Advanced Air Bags

Advanced Occupant Protection System Study (AOPSS)

Protection System Study (AOPSS) is to provide data that will assess the "real world" performance of advanced air bags and determine if they offer a greater measure of safety for children and out of position occupants while still offering adequate protection to adults in crashes of high severity

Minimum Criteria for AOPSS Selection

- 2000 model year vehicle involved in a frontal crash (11, 12 or 01 o'clock) equipped with an advanced air bag system and towed due to damage
 - Special Crash Investigations 100/year.
 - NASS will select cases within sample only.
 - All PARS meeting the AOPSS criteria noted during the NASS sampling are faxed to SCI headquarters.

Advanced Occupant Protection Characteristics

To included in AOPSS the vehicle should be equipped with an Event Data Recorder and one or more of the following:

Rollover sensors, weight sensors, seat position sensors, multi-stage inflators, and automatic air bag suppression.

Advanced Occupant Protection System Data Collection

Research Priorities:

- Air Bag Related Fatalities
- Out-of-position and Children
- Unusual circumstances
 - Investigations of crashes involving unusual circumstances to provide NHTSA with early identification of potential problems with advanced airbag systems.

Other Activities with AOPSS Coordination with Industry

Working with Crash Investigators,
 Engineers and Designers

- Case-by-Case Evaluation on
 - EDR Readouts
 - Real World Performance of the Advanced Occupant Protection System Technologies

Time (ms)	0	10	20	30	40	50	60	70	78
Delta-V (MPH)	-0.4	-2.3	-4.3	-5.9	-7.4	-10.3	-14.1	-16.2	-19.5
0 2 4 6	CFC 60	tive Delta V M	eration (Pass	2) g's		rash Pulse I		64 66 68 70	72 74 76 7
Acceleration (g) and Delta-V (MPH)	\bigwedge	\sim	V	-7	in in	`\\		$\int \int \int$	
-20.0							V	<i>†</i>	b

Questions?