

Presentation Overview

- Background
- Dynamic Rollover Testing Issues
- Planned Testing
 - Testing Overview
 - Test Vehicles
 - Initial Test Maneuvers
- Preliminary Rollover Rating Ideas
- Current Status

Background

Rollover Crash Statistics

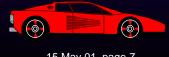
- 10,142 people were killed in light vehicle rollovers during 1999 (FARS)
 - 8,345 were killed in single-vehicle rollovers
 - 80 % were not wearing a seat belt
 - 55 % of occupant fatalities in light, singlevehicle crashes involved rollover
 - + 46 % of fatalities for passenger cars
 - + 63 % of fatalities for pickup trucks
 - + 60 % of fatalities for vans
 - + 78 % of fatalities for sport utility vehicles

Rollover Crash Statistics

- 27,000 serious injuries per year due to light vehicle rollovers (NASS, 1995 – 99 average)
 - 19,000 in single vehicle crashes
- 253,000 light vehicle rollovers per year (NASS, 1995 – 99 average)
 - 205,000 in single vehicle crashes
 - 178,000 occurred after vehicle had left roadway

NHTSA Action to Prevent Rollover

- NHTSA includes rollover resistance ratings as part of its New Car Assessment Program
 - Ratings based on Static Stability Factor (SSF)
 - + SSF equals one-half of a vehicle's Track
 Width divided by its Center of Gravity Height
 - Ratings range from one to five stars
 - Rating program official as of January 12, 2001



NHTSA Action to Prevent Rollover

- Rollover resistance ratings based on SSF are controversial
 - Some believe that the influence of vehicle factors on rollover is so slight that vehicles should not be rated for rollover resistance
 - Others believe that SSF is a useful predictor of rollover but should be supplemented by dynamic driving tests

Response to Controversy About SSF

- Congressionally-mandated National Academy of Sciences' study to assess validity of SSF based rollover resistance ratings and to compare SSF to dynamic tests
- TREAD Act requirements for dynamic rollover resistance ratings

Requirements of TREAD Act

• SEC. 12. Rollover Tests. No later than 2 years after enactment, the Secretary shall: (1) develop a dynamic test on rollovers of light vehicles for the purposes of a consumer information program; and (2) carry out a program of conducting such tests. As the Secretary develops a rollover test, the Secretary must conduct a rulemaking to determine how best to disseminate test results to the public.

Response to TREAD Act

- Met with representatives of several organizations to gather ideas
 - Alliance of Automobile Manufacturers
 - Consumers Union
 - Daimler-Chrysler (next week)
 - Ford Motor Co.
 - Nissan Motor Co.
 - Toyota Motor Co.
 - University of Michigan Transportation Research Institute
- Received useful suggestions about dynamic testing approaches

- Maneuver(s) to use for rollover ratings
- Ensuring that cannot get good rollover rating by degrading vehicle handling
 - By putting tires with poor traction on a vehicle,
 can prevent two-wheel lifts in these maneuvers
 - Safety may be degraded because cannot turn as sharply

- Use of two-wheel lifts as safety-relevant measure
 - Minor two-wheel lifts may not be safety issue
 - Requiring major two-wheel lifts may cause test driver safety problems
- Outrigger effects
 - Must have for safety, prevention of test surface damage
 - How do they change a vehicles rollover propensity?

- Tire wear
 - How much testing can be performed on a set of tires before wear effects become significant
- Tire debeading
 - What to do if tires debead while performing rollover rating testing

- Longer-term repeatability
 - Effects of weather of results
 - + Summer versus winter
 - Changes to the same test surface with time
- Reproducibility
 - Effects of testing on different test surfaces

Planned Testing

Phase IV of NHTSA's Light Vehicle Rollover Research Program

Phase IV Rollover Research

- Comprehensive test program designed to build on earlier NHTSA efforts, suggestions received from interested parties
- Attempts to take comprehensive look at identified issues

Overall Phase IV Plan

- Rating System Development Testing 1 Spring 2001
- Hot Weather Effects Testing Summer 2001
- Outrigger Effects Testing Summer 2001
- Tire Wear Effects Testing Summer 2001
- Rating System Development Testing 2 Fall 2001
- Fully Automated Vehicle Controller Testing Fall 2001
- Rating System Development Testing 3 Fall 2001
- Cold Weather Effects Testing Winter 2002
- Rating System Development Testing 4 Spring 2002
- Surface Effects Round Robin Spring and Summer 2002

Test Vehicles

- Four Sport Utility Vehicles:
 - 2001 Chevrolet Blazer (no YSC)
 - 2001 Ford Escape (no YSC)
 - 1999 Mercedes ML-320
 - + YSC enabled
 - + YSC disabled
 - 2001 Toyota 4Runner
 - + YSC enabled
 - + YSC disabled

Test Vehicles

- Each vehicle will be tested in multiple configurations:
 - Nominal vehicle
 - Raised center of gravity height
 - + Weights placed on roof above c.g. so as to decrease SSF by 0.05
 - Modified handling
 - + Load to GVWR, load as far to rear as possible, larger or smaller tires

- Testing broad array of maneuvers during Phase IV
- Two broad categories
 - Open-loop. Handwheel steering angle is specified function of time
 - + Characterization Maneuvers
 - + J-Turns with and w/o Pulse Braking
 - + Some Fishhooks
 - + Open-Loop Pseudo DLC

- Closed-loop. Handwheel steering angle varies according to actions of vehicle
 - Driver closes feedback loop
 - + Double Lane Changes
 - Instrumentation closes feedback loop
 - + Fishhook with Roll Rate Feedback

- Characterization Maneuvers
 - Pulse Steer As per Phase II
 - Sinusoidal Sweep As per Phase II
 - Slowly Increasing Steer As per Phase II
 - Slowly Increasing Speed Improved version of Phase II maneuver
 - Response Time Tests 0.2 g and 0.5 g severity
 J-Turns at 50 mph. Performed with straight and curved (0.3 g) lead-in

- J-Turn Maneuvers
 - J-Turn As per Phase II
 - J-Turn with Pulse Braking Improved Phase II maneuver
 - + Improvements to Phase II maneuver discussed in earlier presentation

- Fishhook Maneuvers
 - Fishhook 5 Improved Phase II Fishhook 1
 - Fishhook 6 Fishhook with roll rate feedback
 - + Idea discussed in previous presentation
 - Nissan Fishhook Fishhook using Nissan technique for determining timing

- Double Lane Change Maneuvers
 - Ford DLC Perform closed loop DLC per Ford's procedure. Use Ford's path-correction technique to calculate limit behavior
 - VDA (Modified Moose Test) DLC
 - Consumers Union Short Course DLC
 - Open Loop Pseudo-DLC New maneuver being developed by VRTC

Planned Phase IV Testing

- Have received many valuable suggestions about Phase IV testing
 - Comments greatly appreciated!
- Encourage additional suggestions
 - May revise Phase IV research plan in response to comments

Preliminary Rollover Rating Ideas

Rollover Resistance Score

- Star Ratings derived from a vehicle's Rollover Resistance Score
- Rollover Resistance Score quantifies vehicles performance in tests
 - Would go from 0 to 100 (100 = best)
- Table relates Rollover Resistance Scores to Star Ratings

Rollover Resistance Score

- Composed of multiple parts:
 - Handling Score
 - Limit Maneuver Score
 - Suggestion made by speaker at National Academy of Sciences meeting:

Include Static Stability Factor!

Current Status

Current Status

- Test vehicles purchased and instrumented
- Testing in progress
 - Vehicle characterization and limit maneuver testing underway
- Request for Comment to be published soon
 - Comments on this work are appreciated!
- NHTSA will review comments received
 - May revise Phase IV research plan in response to comments