

Vehicle System Simulation to Support NHTSA CAFE Standards for the Draft TAR

March 01, 2016 Washington DC, NHTSA Aymeric Rousseau, Ayman Moawad, Namdoo Kim arousseau@anl.gov

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Overall Process Overview

Outline

- Autonomie Overview
- Model Development and Validation
- Process to Estimate Technologies Effectiveness with Full Vehicle Simulation
- Vehicle Powertrain Sizing Algorithms and Validation
- Vehicle Simulation Results Quality Check Process

Autonomie Has a Long History

- Autonomie's development has been funded by the U.S Department of Energy (DOE) Vehicle Technologies Office (VTO)
- Models and processes improved over 20+ years based on studies & users' feedback

Autonomie

Takes Virtual Engineering to a New Level of Efficiency and Productivity

<u>Autonomie's main requirement</u>: Accelerate the development and introduction of advanced technologies via a Plug&Play modeling architecture and framework through Math-Based Systems Engineering (MBSE).

Autonomie is Composed of Two Distinct Entities

Benefits

- Uses a common platform to:
 - Simulate individual components as well as complex system
 - Share and integrate models from different languages and complexity levels
- Supports "industrialization" of models, processes and post-processing
- Supports current standards (e.g., Functional Mockup Interface)
- Links/integrates third party tools for:
 - Plant models (i.e., Modelica, LMS AMESim, GT Power, SimScape...),
 - Economic and environmental models (i.e., component cost, LCD, GHG...),
 - Processes (i.e., optimization, parallel and distributed computing, x2x...),
 - Model management
- Fully customizable: architecture, models, configurations, use cases, post-processing...
- Large number of validated low frequency models and controls for a wide range of powertrain configurations (CO2 application)

Autonomie Is Recognized by the Community

- More than 175 companies, research organizations and universities are currently using Autonomie, including:
 - Light duty vehicle manufacturers: GM, Ford, Chrysler, Hyundai, Mercedes-Benz, PSA Peugeot Citroen, Toyota, Tata...
 - Heavy duty vehicle manufacturers: Cummins, John Deere, Daimler, PACCAR/Kenworth, Ashok Leyland...
 - Suppliers: Johnson Control, Delphi, Allison Transmission, Magna, Siemens, ArvinMeritor, Roush, LG Chem, Samsung SDi ...
 - Regulatory / Research organizations: DOT, DOD, NREL, ORNL, KATECH, CATARC ...
 - Universities: >30 US Universities (University of Michigan, MIT, Purdue..), Mines Paris, Tsinghua Univ., Beijing Institute of Technology, Seoul National Univ., Sunkyunkwan Univ., Kookmin Univ, Hanyang Univ, Chungnam Univ...

Autonomie Vehicle Energy Consumption & Performance Application

>100 Powertrain Configurations

Series Parallel Power Split

Dozens of **plant models** and >100 **initializations**

Low level and high level controls available for most powertrains

Large Number of **Processes:** drive cycles, parametric study, optimization, batch run, etc.

>60 pre-defined LD and MD&HD vehicles

Large Number of **Postprocessing** Tools

Autonomie is Open (Matlab/Simulink Based)

Component Models in Simulink

📝 E	🚰 Editor - C:\Autonomie_Public_1210\systems\veh\vpa\eng\plant\eng_plant_hot_map\init\eng_plant_si_2200_110_SIDI_ANL.m*														
<u>F</u> ile	<u>Eile E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>W</u> indow <u>H</u> elp														
1	2	¥	ħ I	h •7	6	3	• 🖛 🔿	fo, 돈	- 🛃	* 🖷 🕯		Stac <u>k</u> : Base	•		
12	* [-	1.0	+	÷ 1.1	× %	% % (D,						
53		****	****	****	****	******	******	*****	*****	******	*******	*******	*******	********	*******
54		* co	onsu	mptio	on ta	able									
55		* * * *	****	****	****	******		*****	****		*******	*******		********	*******
56															
57	-	eng.	.pla	nt.i	nit.1	fuel ho	t.idx1	spd =	[100	200 250	300 400	500 600	1;		
58	-	enq.	.pla	nt.i	nit.1	fuel ho	t.idx2	tra =	ro	10	20 30	40	50	60 70	80
59		-	•			-	-								
60		% Ro	ວພຣ	repre	esent	speed	l (rad/s	1. Co	lumns	repres	ent torg	ue (N-m)	. Table	is fuel	rate (k
61	-	eng.	.pla	nt.im	nit.1	fuel ho	ot.map =	· r							
62		1.2	703	1.8	32.3	2.4943	3.106	3 3.7	183	4.3303	4.9423	5.5543	6.1663	6.7783	7.3903
63		2.75	548	3.89	988	5.0428	6.186	8 7.3	308	8.4748	9.6188	10.7628	11.9068	13.0508	14.1948
64		3.2		4.6		6	7.4	8.8		10.2	11.6	13	14.4	15.8	17.2
65		4		5.7	55	7.51	9.265	11.	n2	12.775	14.53	16.285	18.04	19.795	21.55
66		5 89	518	8 1	188	10 385	5.200 8 12 65	28 14	9198	17 1868	19 4538	21 7208	23 9878	26 2548	28 5218
67		7 32	,	10	17	13 02	15 87	18	72	21 57	24 42	27 27	30 12	32 07	35 82
60		0.70	-	10.	15	15.02	10.00	10.	14	21.37	27.72	20.47	26.00	20 51	42.02
68		0.73	0	12.	10	15.57	10.99	22.	41	23.03	29.25	32.07	30.09	29.21	42.93
69															

Controls in Simulink / StateFlow

Pre & Post-processing Files in Matlab

Editor - C:\Autonomie_Public_1210\systems\veh\vpa\eng\plant\preproc\eng_plant_preproc.m								
<u>Eile E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>W</u> indow <u>H</u> elp								
🎦 🚰 📓 👗 ங 🛍 🥠 🍽 🎒 🗰 🖛 新 🍂 🕨 👻 🛃 🛸 👘 🏙 Stack: Base 👻								
🖅 *¦ 📲 ↓ 🗧 − 1.0 + ÷ 1.1 × ∞ ½ ∞ ½ 0								
75								
76 %% Efficiency maps in terms of speed and power (used for plots)								
77								
78 % In terms of speed and torque								
79 - eng.plant.calc.eff_hot_trq.map = eng.plant.calc.pwr_out_hot.map ./ (eng.)	lant							
80 - eng.plant.calc.eff_hot_trq.idx1_spd = eng.plant.init.fuel_hot.idx1_spd;								
81 - eng.plant.calc.eff_hot_trq.idx2_trq = eng.plant.init.fuel_hot.idx2_trq;								
82								
83 % In terms of speed and power								
84 %creating index vectors								
<pre>85 - eng.plant.calc.eff_hot_pwr.idx1_spd=unique(sort(eng.plant.init.fuel_hot.idx1_s)</pre>) ((bo							
86 - eng.plant.calc.eff_hot_pwr.idx2_pwr=0:2000:min(eng.plant.calc.pwr_max_hot.pwr_	∩ax,∈							
87 - eng.plant.calc.eff_hot_pwr.idx2_pwr(end)=eng.plant.calc.pwr_max_hot.pwr_max;								
88								

Users Can Customize Autonomie by Changing

Any Parameter

⊿	Initialization Files	chas_plant_990_225_03_midsize
	⊿ 0	chas_plant_990_225_03_midsize
	DataFileType	Init
	A Parameters	(Collection)
	chas.plant.init.body_mass	Def 990 kg
	b chas.plant.init.cargo_mass	Def 136 kg
	chas.plant.init.cg_height	Def 0.5 m
	⊳ chas.plant.init.coeff.drag	<u>ow</u> 0.32
	 chas.plant.init.frontal_area 	Def 2.2508 m ²
	chas.plant.init.ratio_weight_front	Def 64 %
	Actual File Name	chas_plant_990_225_03_midsize.m

Any Use Case

Any Initialization File

File Collection Editor			23					
Members:	File	Properties:						
chas_plant_990_225_03_midsize.m		2↓ □						
	Select File					_	- •	×
	Show Incom	Show Incompatible Files			Browse for file			
	Name		/	Version	Drag Coefficient	Frontal Area	Glider M	a 🔺
	A			A	A	A	A	
	chas_plant_1	000_20_033_large_car.m						
	chas_plant_1	000_209_026_mercedes_C220CDI.m			0.26	209	1000	
	chas_plant_1	000_22_032_taurus.m			0.32	22	1000	180 180
	chas_plant_1	000_323_044_Pickup_Class2b.m			0.44	266	1180	
	chas_plant_1	180_264_037_VUE.m			0.37	2.64	1180	
	chas_plant_1	as_plant_1180_266_044_silverado.m			0.44	266	1180	
	chas_plant_1	180_266_044_SUV_RWD.m			0.44	266	1180	
	chas_plant_1	180_290_051_silverado.m			0.51	290	1180	
Add Remove	chas_plant_1	200_266_044_SUV.m			0.44	266	1200	
	chas_plant_1	200_3_051_F150.m			0.51	3	1200	
	chas_plant_1	2156_78_079_Nova_RTS06_bus.m			0.79	78	12156	
	chas plant 1	220 246 041 explorer.m			0.41	246	1220	
el Name	chas plant 1	258 266 046 m			0.46	266	1258	Ŧ
ale	•						•	
	File name:	chas_plant_1000_20_033_large_car.m				•	Selec	t
8	Files of type:	Initialization Files	_			•	Cance	:
еТуре								
store								

Any Post-processing

Results Properties Summary Analysis Energy Bala	ance
	⊻ A 🔏 × . 🐸 🖬 .
Summary Warnings Cost GREET Emissions	
Name	Unit
Summary	
Uehicle	
Vehicle Propulsion Architecture	
🛕	
System Name	conv_manualtrans_2wd_midsize
Simulation Folder	2013_0520_1340_14_276
Process Name	EUDC Cycle
Cycle Name	EUDC
Distance Traveled	mile 4.32

Developers Can Customize Autonomie by Adding / Modifying

Vehicle, Powertrain and Component Configurations

Pre & Post-processing

🖻 Model	🚘 eng_plant_hot_map
Actual Model Nam	eng_plant_hot_map.mdl
∃ Input Signals	(Collection)
∃ Output Signals	(Collection)
File Version	1
Initialization Files	eng_plant_si_2200_110_SIDI_ANL
⊞ 0	eng_plant_si_2200_110_SIDI_ANL
🖃 Scaling Files	eng_plant_s_pwr_lin
⊞ 0	eng_plant_s_pwr_lin
Pre-Processing Files	🚘 eng_plant_preproc
0	eng_plant_preproc
Post Processing Files	🚨 eng_state_scalar_postprocess,
0	eng_state_scalar_postprocess
1	eng_state_signal_postprocess
2	eng_stateless_postprocess
3	eng_summary_postprocess

Simulating a Vehicle Using Autonomie Is Quick!

•Vehicle definition:

selection of
configuration, plant
models, controllers.
Existing vehicle/system
templates, or user's own
models

Simulation process

definition: drive cycles, parametric study, etc.

Simulation results **analysis** in the GUI

PSAT & Autonomie Have Been Used to Evaluate Technologies' Energy Benefits for More Than 20 Years

Impact of Powertrain Configurations

Impact of Advanced Control / Optimization

Impact of Component Technologies

Large Scale Simulations

Autonomie Has Been Widely Used to Estimate the Energy Impact of Advanced Technologies

- Component technical targets (e.g., battery energy for a BEV100...)
- Powertrain technologies (e.g., E-REV vs power split...)
- Component technologies (e.g., 5 speed automatic transmission vs 6 speed automatic transmission...)
- Advanced vehicle level control (e.g., route based control...)
- Control calibration (e.g., shifting parameter selection...)

The studies have included

- Multiple vehicle classes (e.g., compact, midsize... up to HD)
- Multiple timeframes (current up to 2045)
- Uncertainty related to component technologies (e.g., low vs. high uncertainty)
- Driving cycles (standard, real world...)

List of References Software

- A. Moawad, A. Rousseau, P. Balaprakash, S. Wild, "Novel Large Scale Simulation Process to Support DOT's CAFE Modeling System", International Journal of Automotive Technology (IJAT), Paper No. 220150349, Nov 2015
- A. Rousseau, "Plug&Play Architecture for System Simulation", SIA System Modeling Conference, Paris, May 2015
- A. Rousseau, S. Halbach, L. Michaels, N. Shidore, Na. Kim, N. Kim, D. Karbowski, M. Kropinski, (GM) "Electric Drive Vehicle Development and Evaluation using System Simulation", Journal of the Society of Instrument and Control Engineers, Vol 53, 2014 (www.sice.jp)
- S. Pagerit, P. Sharer, A. Rousseau, "Complex System Engineering Simulation through Co-Simulation", SAE 2014-01-1106, SAE World Congress, Detroit, April 2014
- N. Kim, N. Kim, A., Rousseau, "Thermal Model Developments for Electrified Vehicles", EVS28, May 2015, Korea
- R. Vijayagopal, R. Chen, P. Sharer, S. Wild, A. Rousseau, "Using multi-objective optimization for automotive component sizing", EVS28, May 2015, Korea
- R. Vijayagopal, A. Rousseau, "System Analysis of Multiple Expert Tools", SAE 2011-01-0754, SAE World Congress, Detroit, April 2011
- S. Halbach, P. Sharer, S. Pagerit, C. Folkerts, A. Rousseau, "Model Architecture, Methods, and Interfaces for Efficient Math-Based Design and Simulation of Automotive Control Systems", SAE 2010-01-0241, SAE World Congress, Detroit, April 2010
- A. Rousseau, P. Sharer, F. Besnier, "Feasibility of Reusable Vehicle Modeling: Application to Hybrid Vehicles", SAE 2004-01-1618, SAE World Congress, Detroit, March 2004

List of References Advanced Powertrains

- A. Moawad, A. Rousseau. "Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations", SAE 2014-01-1084, SAE World Congress, Detroit, April 2014
- N. Kim, A. Rousseau, "Assessment by Simulation of Benefits of New HEV Powertrain Configurations", RHEVE 2011, December 2011, Paris (France). (pdf)
- N. Kim, J. Kwon, A. Rousseau, "Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective", SAE 2012-01-1027, SAE World Congress, Detroit, Apr12
- N. Kim, J. Kwon, A. Rousseau "Trade-off between Multi-mode Powertrain Complexity and Fuel Consumption," EVS25, Shenzhen, China (Nov. 2010). (pdf)
- D. Karbowski, K. Freiherr von Pechmann, S. Pagerit, J. Kwon, A. Rousseau, "Fair Comparison of Powertrain Configurations for Plug-In Hybrid Operation using Global Optimization", SAE paper 2009-01-1334, SAE World Congress, Detroit (April 2009).
- V. Freyermuth, E. Fallas, A. Rousseau, "Comparison of Powertrain Configuration for Plug-in HEVs from a Fuel Economy Perspective," SAE paper 2008-01-0461, SAE World Congress, Detroit (April 2008).

List of References Advanced Component Technologies

- A. Moawad, A. Rousseau. "Impact of Transmission Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations", SAE 2014-01-1082, SAE World Congress, Detroit, April 2014.
- R. Vijayagopal, N. Shidore, M. Reynolds (GM), C. Folkerts, A. Rousseau, "Estimating the Fuel Displacement Potential of a Thermoelectric Generator in a Conventional Vehicle using Simulation", EVS27, Oct 2013, Barcelona
- B. Walton, A. Rousseau, "Fuel Efficiency Benefit of Advanced Spark-ignition Engine Technologies on Electrified Vehicles", EVS27, Oct 2013, Barcelona
- A. Rousseau, "Fuel Efficiency Benefits of Electrified CNG Vehicles", EVS27, Oct 2013, Barcelona
- A. Delorme, A. Rousseau, T. Wallner, E. Ortiz-Soto, A. Babajimopoulos, D. Assanis, "Evaluation of Homogeneous Charge Compression Ignition (HCCI) Engine Fuel Savings for Various Electric Drive Powertrains," EVS25, Shenzhen, China, (Nov. 2010). (pdf)
- A. Rousseau, N. Shidore, R. Carlson, D. Karbowski, "Impact of Battery Characteristics on PHEV Fuel Economy," AABC08. (pdf)
- G. Faron, S. Pagerit, A. Rousseau, "Evaluation of PHEVs Fuel Efficiency and Cost Using MonteCarlo Analysis," EVS24, Norway, (May 2009). (pdf)
- P. Nelson, K. Amine, A. Rousseau, H. Yomoto (EnerDel Corp.), "Advanced lithium-ion batteries for plug-in hybrid-electric vehicles," 23rd International Electric Vehicle Symposium (EVS23), Anaheim, CA, (Dec. 2007). (pdf)
- D. Karbowski, C. Haliburton, A. Rousseau, "Impact of component size on plug-in hybrid vehicles energy consumption using global optimization," 23rd International Electric Vehicle Symposium (EVS23), Anaheim, CA, (Dec. 2007). (pdf)

List of References Advanced Control

- N. Kim, A. Rousseau, E. Rask, "Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4", SAE 2014-01-1818, SAE World Congress, Detroit, April 2014
- N. Kim and A. Rousseau, "Sufficient conditions of optimal control based on Pontryagin's minimum principle for use in hybrid electric vehicles," IMechE Part D: J. Automobile Engineering, vol. 226, no. 9, Sept. 2012, pp. 1160-1170
- Karbowski, D., Kim, N., Rousseau, A., "Route-Based Energy Management for PHEVs: A Simulation Framework for Large-scale Evaluation", EVS28, May 2015, Korea D. Karbowski, S. Pagerit, A. Calkins, "Energy Consumption Prediction of a Vehicle along a User-Specified Real-World Trip", EVS26, May 2012, Los Angeles (pdf)
- <u>D Lee</u>, Suk Won Cha, A Rousseau, N Kim, D Karbowski, "Optimal Control Strategy for PHEVs using Prediction of Future Driving Schedule", EVS26, May 2012, Los Angeles
- N. Kim, A. Rousseau, "Instantaneous Optimal Control for Hybrid Electrical Vehicle", SAE 2011-01-0873, SAE World Congress, Detroit, April 2011
- Karbowski, D., Kwon, J., Kim, N., Rousseau, A., "Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle", SAE paper 2010-01-0816, SAE World Congress, Detroit, April 2010
- A. Rousseau, A. Moawad, "Impact of Control Strategies on Fuel Efficiency of Different PHEVs using Real World Driving Conditions", IAMF 2010, Geneva, March 2010 (pdf)
- P. Sharer, A. Rousseau, D. Karbowski, S. Pagerit, "Plug-in Hybrid Electric Vehicle Control Strategy: Comparison between EV and Charge-Depleting Options," SAE paper 2008-01-0460, SAE World Congress, Detroit (April 2008).
- Rousseau, A. Pagerit, S., Gao, D. (Tennessee Tech University), "Plug-in hybrid electric vehicle control strategy parameter optimization," 23rd International Electric Vehicle Symposium (EVS23), Anaheim, CA, (Dec. 2007).
- Karbowski, D., Rousseau, A, Pagerit, S., Sharer, P., "Plug-in Vehicle Control Strategy: From Global Optimization to Real Time Application," 22th International Electric Vehicle Symposium (EVS22), Yokohama, (October 2006).

Outline

Autonomie Overview

Model Development and Validation

- Process to Estimate Technologies Effectiveness with Full Vehicle Simulation
- Vehicle Powertrain Sizing Algorithms and Validation
- Vehicle Simulation Results Quality Check Process

Autonomie Plant Model Fidelity

Vehicle energy consumption application developed with low frequency component models simulating longitudinal acceleration

Conventional vehicle example

Carrying the inertia to the vehicle limits the number of required integrations (1/s) as well as avoid derivative equations

Autonomie Plant Model Fidelity (Cont'd)

Component performance are modeled using performance maps for components

Transmission (per gear)

Autonomie Plant Model Fidelity (Cont'd)

Transients are considered within each component (i.e., engine time response for turbochargers...) and for mode changes (i.e., engine ON/OFF, shifting events...)

Turbo Engine Time Response

=> Multiple engine models used depending on fuel, technology...

DCT Shifting Event

Extensive Model Validation Performed over the Past 15 Years Using ANL's APRF⁽¹⁾

Vehicle Instrumentation, Test Selection

Test data analysis using 'Import Test Data' function in Autonomie

- Evaluate individual sensors (QC)
- Estimate additional signals for each component
- Component performance data estimation
- Find key parameter values and control scheme

Calibration and validation of the vehicle model with test data

- Dynamic performance validation
- Energy consumption validation

To quickly and accurately predict or evaluate the energy consumption and dynamic performance of the vehicle under various driving conditions.

Vehicle model development

- Develop models
- Populate performance maps
- Develop low and high level control strategies

List of Vehicles Recently Tested at Argonne's APRF

- 2015 Chevrolet Spark EV
- 2015 Kia Soul EV
- 2015 Honda Accord Hybrid
- 2015 BMW i3 BEV
- 2015 BMW i3 Rex
- 2014 Smart Electric
- 2014 BMW i3 Rex
- 2014 Mazda 3 iEloop
- 2014 Chevrolet Cruze Diesel
- 2013 Ford Focus BEV
- 2013 Dodge Ram 1500 HFE
- 2013 Ford Fusion Energi
- 2013 Nissan Leaf
- 2014 Honda Accord PHEV
- 2012 Mitsubishi iMiev
- 2013 Ford Cmax Energi
- 2013 Ford Cmax Hybrid
- 2013 VW Jetta Hybrid

- 2013 Toyota Prius PHV
- 2013 Honda Civic Hybrid
- 2013 VW Jetta TDI
- 2013 Chevrolet Volt
- 2013 Chevrolet Malibu Eco
- 2012 Honda Civic CNG
- 2012 Ford Focus Electric
- 2013 Nissan Altima
- 2013 Hyundai Sonata
- 2013 Chrysler 300
- 2012 Honda Civic
- 2012 Ford Fusion V6
- 2012 Ford Focus
- 2012 Ford F150 Ecoboost
- 2012 Fiat 500
- 2012 Peugeot 3008 Hybrid
- 2012 Nissan Leaf
- 2010 Ford Fusion Thermal

- 2011 Hyundai Sonata Hybrid
- 2011 VW Jetta TSI
- 2010 VW Golf TDI (start-stop)
- 2010 Smart (start-stop)
- 2010 Mazda 3 (start-stop)
- 2010 Honda CRZ
- 2010 Mercedes Benz S400h
- 2010 Toyota Prius
- 2010 Ford Fusion
- 2010 Honda Insight
- 2010 Mini E
- 2009 VW Jetta TDI
- 2008 Chevrolet Tahoe Hybrid
- 2007 Toyota Camry Hybrid
- 2006 Honda Civic Hybrid
- 2006 Opel Astra Diesel
- 2007 Toyota Camry Hybrid
- 2006 Honda Hybrid

Sample data available under http://www.anl.gov/energy-systems/group/downloadable-dynamometer-database

Many of these Vehicles Have Been Heavily Instrumented to Understand Vehicle Level Controls

Argonne Instrumentation/Data Collection Capabilities Include:

- Time synchronized data collection across a range of sensor types
 - Multiple CAN busses (on-vehicle or add-on components)
 - GPS
 - Temperatures
 - Isolated high voltage measurements
 - Current and voltage (i.e. accessories, other loads)
 - Component torques
 - Other in-vehicle communications links

Detailed evaluation of electrical nodes:

- 12V battery voltage and current
- In-vehicle accessory current
- Alternator current
- Cabin blower fan current

Individual Models Independently Validated

Shifting Algorithm Validation Leveraging Multiple APRF Data Sets

Year	Model	Туре	ТМ	Engine	EM
2006	Honda CIVIC	HEV	CVT	L4 1.6L 82kW	15 kW
2010	Honda Insight	HEV	CVT	L4 1.3L 73kW	10 kW
2013	Nissan Altima	Conv	СVТ	L4 2.5L 136kW	-
2011	Hyundai Sonata	HEV	AT 6spd	I4 2.4L 154kW	30 kW
2012	Fiat 500	Conv	AT 6spd	L4 1.4L 83kW	-
2010	Mercedes S400	HEV (micro)	AT 7spd	L6 3.5L 205kW	15 kW
2012	Ford Fusion V6	Conv	AT 6spd	V6 3.0L 179kW	-
2013	Chrysler 300	Conv	AT 8spd	V6 3.6L 224kW	-
2013	Hyundai Sonata	Conv	AT 6spd	l4 2.4L 154kW	
2012	Ford F-150	Conv	AT 6spd	V6 3.5L 272kW	-
2012	Ford Focus	Conv	DCT 6spd	L4 2.0L 119kW	-
2013	VW Jetta 2.0 TDI	Conv	DCT 6spd	Diesel 2.0L 104kW	-
2010	Mazda 3	Conv (istop)	MT 5spd	L4 2.0L 110kW	-
2010	Mercedes Smart	Conv (istop)	AMT 5spd	L3 1.0L 44kW	-
2012	Peugeot 3008 Hybrid 4	HEV	AMT 6spd	Diesel 2.0L 120kW	27 kW

Integrated more than a dozen set of vehicle test data into Autonomie

validated with test data

Shifting Algorithm Calibration Process

• Example : 2013 Hyundai Sonata Conv. I4 6ATX

Automatic Transmission Shifting Logic Automatic Transmission Example

• 2013 Hyundai Sonata Conv. 6ATX Example

Shifting Algorithm Calibration Process

Example : 2013 Hyundai Sonata Conv. I4 6ATX

Automatic Transmission Shifting Validation

Normalized Cross Correlation Power (NCCP) – See SAE 2011-01-0881 Vehicle test data from ANL's APRF

Detailed Plant Models and Controls Developed for Advanced Transmissions Example: DCT Plant Model Development

System operating conditions

Example of gear shifting : $1^{st} \rightarrow 2^{nd}$

Odd gear → Pre-selection → Shifting → Even gear...

Detailed Plant Models and Controls Developed for Advanced Transmissions Example: DCT Plant Model Development

$$\begin{split} \omega_e &= \omega_{s1} = N_{odd} \cdot \omega_{out} & T_{out} = N_{odd} \cdot \{T_e - (J_e + J_{c1} + J_{odd}) \cdot \dot{\omega}_e\} \\ &+ N_{even} \cdot \{T_{c2} - T_{loss2} - (J_{c2} + J_{even}) \cdot \dot{\omega}_{s2}\} - J_{out} \cdot \dot{\omega}_{out} \end{split}$$

Detailed Plant Models and Controls Developed for Advanced Transmissions Example: DCT Control Model Development

 An algorithm coordinates components during shifting events by defining functioning modes

Low Level Controls Compared with Test Data DCT Shifting Events Example

2013 VW Jetta HEV 7DCT Example

Unresolved differences due to the fact that the vehicle level energy management was only correlated, not validated

Vehicle Level Controls Logic Reverse Engineered 2010 Prius PHEV Example (APRF Test Data)

Vehicle Level Controls Logic Reverse Engineered 2010 Prius PHEV Example

Control concept based on the analyzed results

Component Operating Conditions Validated Prius HEV Validation on HWFET

SAE 2012-01-1040

40

Component Operating Conditions Validated GM Volt Validation on UDDS (Extended Range)

Vehicle Model Validated within Test to Test Uncertainty

UDDS Driving Cycle for Multiple Powertrain and Temp.

22°C

35°C

0

-7°C

List of References Validation

- N. Kim, J. Jeong, A. Rousseau, and H. Lohse-Busch, "Control Analysis and Thermal Model Development of PHEV", SAE 2015-01-1157, SAE World Congress, Detroit, April15
- N. Kim, A. Rousseau, and H. Lohse-Busch, "Advanced Automatic Transmission Model Validation Using Dynamometer Test Data", SAE 2014-01-1778, SAE World Congress, Detroit, Apr14
- N. Kim, E. Rask and A. Rousseau, "Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4", SAE 2014-01-1818, SAE World Congress, Detroit, Apr14
- D. Lee, A. Rousseau, E. Rask, "Development and Validation of the Ford Focus BEV Vehicle Model", 2014-01-1809, SAE World Congress, Detroit, Apr14
- N. Kim, A. Rousseau, D. Lee, and H. Lohse-Busch, "Thermal Model Development & Validation for the 2010 Toyota Prius", 2014-01-1784, SAE World Congress, Detroit, Apr14
- N. Kim, N. Kim, A. Rousseau, M. Duoba, "Validating Volt PHEV Model with Dynamometer Test Data using Autonomie", SAE 2013-01-1458, SAE World Congress, Detroit, Apr13
- N. Kim, A. Rousseau, E. Rask, "Autonomie Model Validation with Test Data for 2010 Toyota Prius", SAE 2012-01-1040, SAE World Congress, Detroit, Apr12
- N. Kim, R. Carlson, F. Jehlik, A. Rousseau, "Tahoe HEV Model Development in PSAT", SAE paper 2009-01-1307, SAE World Congress, Detroit (April 2009).
- Cao, Q., Pagerit, S., Carlson, R., Rousseau, A., "PHEV Hymotion Prius model validation and control improvements," 23rd International Electric Vehicle Symposium (EVS23), Anaheim, CA, (Dec. 2007).
- Rousseau, A., Sharer, P., Pagerit, S., Duoba, M., "Integrating Data, Performing Quality Assurance, and Validating the Vehicle Model for the 2004 Prius Using PSAT," SAE paper 2006-01-0667, SAE World Congress, Detroit (April 2006).
- Pasquier, M., Rousseau, A., Duoba, M, "Validating Simulation Tools for Vehicle System Studies Using Advanced Control and Testing Procedures," 18th International Electric Vehicle Symposium (EVS18), Berlin, Germany, 12 pgs. (October 2001).
- Rousseau, A., Deville, B., Zini, G., Kern, J., Anderson, J., and Duoba, M., "Honda Insight Validation Using PSAT," Future Transportation Technology Conference, Costa-Mesa, 01–FTT49 (August 2001).
- Rousseau, A., and Pasquier, M., "Validation of a Hybrid Modeling Software (PSAT) Using Its Extension for Prototyping (PSAT-PRO)," Global Powertrain Congress, Detroit (June 2001).

Engine Performance Map Methodology

- Since comparing a technology (e.g., DOHC with VVL) from OEM A with another technology (e.g., DOHC with VVL + GDI) from OEM B risks introducing bias in the results (e.g., multiple technology differences due to OEM preferences or IP advantages/disadvantages, calibration differences between OEMs...), we have opted to use high fidelity engine models based on GTPower and add technologies incrementally.
- Set of engine maps developed by IAV under contract from U.S.
 DOE.
- Multiple technologies have been considered to properly quantify the effectiveness of each technologies.
- Different fuels considered through LHV (-> high octane fuels would have different engine performance data).

List of Engine Technologies Modeled by IAV

Baseline Engine Models Validated

Initial baseline reference models are calibrated with and validated against measurement data

Engine 1 (2.0I, NA, PFI, dual VVT) Engine 12 (1.6l, Turbo, DI, dual VVT, VVL)

Engine Technology Walkthrough Example

Transmission Methodology

- Applying technologies incrementally to a reference transmission avoids introducing bias in the results that could occur with an approach that compares specific OEM transmissions (i.e., gears might have been selected for different applications, efficiencies between OEMs might be inconsistent when comparing gear number impact...)
- A generic process was developed to "design" the transmission gear ratios based on a set of requirements and constraints.

As a function of gear ratio, the efficiency of AT drops off slightly as we move farther away from a gear ratio of 1 (equal to the efficiency in direct drive) The efficiency of DCT could be broken down into a speed dependent term (spin loss) and a load dependent term (gear train mechanical efficiency)

Methodology (Example) for Gear Ratio Selection, Shift Parameter Selection, Control...

- Switch to top gear at 45 MPH
- Top gear operates above 1250 RPM to prevent lugging
- Max number of gear shifts per cycle (i.e., between 110 120 for 6 speed automatic on UDDS
- Top speed at about 4000 RPM in top gear
- Engine speed does not exceed 3000 RPM in first gear (UDDS Cycle, 6 speed automatic)
- Final drive close to observed industry trends for same vehicle class
- Engine torque reserve
- Gear span close to observed industry trends for same vehicle class

The green curve is generated by visual inspection of engine operation at low speed.

Gear Ratios and Final Drive Methodology

Select Gear Span, top gear and final drive based on industry trends Design progressive gear ratios based on algorithm Ensure that selected gear ratios meet engine operation requirements and performance relationship between 6 AU*, 8 AU** and 8 speed DCT

Transmission & vehicle type	Span	Final drive	
6 spd AU, conventional	>6	>2	
8 speed AU, conventional	>7	>2	
8 speed DCT, conventional	>7 & >8- speed AU	>2	
6 speed AU, BISG	>6	Lower than 6 speed AU***	
8 speed AU, BISG	>7	Lower than 8 speed AU***	
8 speed DCT, BISG	>7 & >8- speed AU	Lower than 8 speed DCT***	

Industry trends on span and final drive

*6 AU - 6 speed automatic, **8 AU – 8 speed automatic *** to have similar performance as the conventional powertrain

Gear Span, Final Drive and Calculation of Gear Ratios for 6 speed AU

Gear ratios designed based on the formula:

$$i_n = i_z \left[\frac{Span}{\phi_2^{0.5(z-1)(n-1)}} \right]^{\frac{z-n}{z-1}} \quad z \neq 1$$

Where

Z = total number of gears.

n = gear number in consideration for design (varies from 1 to z).

 φ_2 = progression factor (independent variable – normally between 1 and 1.2).

$$i_z = \text{top gear ratio}$$

 i_n = nth gear ratio

- Variation of φ_2 between 1 and 1.2 is a trade-off between performance and FE.
- For this study, φ_2 which maximizes FE, has been chosen, for each transmission.
- Algorithm validated against transmissions for several compact cars.
- 1. H.Naunheimer, et al , 'Automotive Transmissions Fundamentals, Selection, Design And applications', Springer publications.

Gear Selection Algorithm Validation

• Using Least Squares Error method, ϕ_2 was determined for a number of 6 speed transmissions in the market.

Figure 2: Algorithm applied to Mazda 3 and Volkswagen Golf Ratios

✓ Variation of ϕ_2 from 1.0 to 1.2 to get the best compromise between Fuel Eco, Performance and Number of Shifts ✓ New Ratios: Interpolated Ratios calculated with Theoretical Equations in order to fit existing vehicle ratios best

	Focus	Cruze	Mazda 3	Golf	Average	Study
Phi 2	1.09	1.04	1.08	1.08	1.07	1.07

<u>Table 2:</u> Market Vehicle ϕ_2 interpolation the compare the simulation Phi2 Value

Shifting Control Algorithm

The shifting initializer defines the shifting maps (i.e., values of the parameters of the shifting controller) specific to a selected set of component assumptions.

Shifting Control Algorithm

Final shifting curves

Electric Machine Performance Maps from DOE Funded Research

- Electric machine map (2010 Prius example)
 - Motor maps were obtained from Oak Ridge National Laboratory (ORNL).

Mitch Olszewski, EVALUATION OF THE 2010 TOYOTA PRIUS HYBRID SYNERGY DRIVE SYSTEM

Vehicle Control Logic Example of Power Split HEV

Control concept based on the analyzed results

Vehicle Control Development Example of Power Split HEV

57

Vehicle Control Development Example of Power Split HEV

Vehicle Control Development Example of Power Split HEV

Vehicle Control Development Example of Power Split PHEV

E-REV PHEV Control Algorithm VOLTEC Gen 1

- In EV operation
 - One-Motor EV (EV1) : The single-speed EV drive power-flow, which provides more tractive effort at lower driving speeds.
 - Two-Motor EV (EV2) : The output power-split EV drive power-flow, which has greater efficiency than one-motor EV at higher speeds and lower loads.
- In extended-range
 - Series One-Motor ER (Series) : The series extended-range power-flow that provides more tractive effort at lower driving speeds.
 - Combined Two-Motor ER (Split) : The output power-split extended-range power-flow that has greater efficiency than series at higher speeds and lighter loads.

E-REV PHEV Control Algorithm VOLTEC Gen 1: Electric driving mode (EV1 or EV2)

Electric drive modes

EV1 : The speed of MC1 is always determined by output speed.

EV2 : The system has a degree of freedom for operation speed.

E-REV PHEV Control Algorithm

VOLTEC Gen 1: extended range mode (Series or Power Split)

Series one-motor extended-range

Because of the single-speed One-Motor EV drive, efficiency declines at higher driving speeds. 100% of the driving power must go through the series path and suffer the associated conversion losses.

Electro-mechanical power with power split

The primary benefit of the output split power-flow is improved efficiency due to the reduction in series path losses.

Outline

- Autonomie Overview
- Model Development and Validation
- Process to Estimate Technologies Effectiveness with Full Vehicle Simulation
- Vehicle Powertrain Sizing Algorithms and Validation
- Vehicle Simulation Results Quality Check Process

Methodology

A. Moawad, A. Rousseau, P. Balaprakash, S. Wild, "Novel Large Scale Simulation Process to Support DOT's CAFE Modeling System", International Journal of Automotive Technology (IJAT), Paper No. 220150349, Nov 2015

Process Overview

Large Number of Technology Combinations

- The Volpe/CAFE model currently relies on multiple decision trees to represent component technology options, including:
 - Engine
 - Powertrain electrification
 - Transmission
 - Light-weighting
 - Aerodynamics
 - Rolling resistance

 The objective is to provide an efficient process to perform individual vehicle simulations representing every combination of vehicle class, powertrain, and component technologies.

How Many Technology Combinations?

The current list includes:

- 5 vehicle classes (Compact, Midsize, Small SUV, Midsize SUV, Pickup);
- 17 engine technologies;
- 11 electrification levels, comprising 4 levels no- or lowelectrification (conventional vehicle is equivalent to noelectrification level) and 7 levels of hybridization;
- 8 transmission technologies (applied to no/low-electrification-level vehicles only);
- 5 light-weighting levels;
- 4 rolling-resistance levels; and
- 3 aerodynamic levels.

> 150,000 vehicle combinations

Complete Models are Built Automatically

Vehicle Simulation Process (1/2)

Define Individual Vehicle

- Define vehicle configurations, component models, initialization files, preprocessing files....
- Define component performance data (e.g., power, mass, final drive ratio, aero, etc...).
- Define control (Force EV mode, engine turn on thresholds, shifting parameters, etc...).
- Select sizing rule to run the vehicle performance test.
- Select drive cycles and standard procedures to be run.

Build Each Vehicle

Vehicle Simulation Process (2/2)

Run Simulations w/ Distributed Computing Technology Simulation x∎ work AUTONOMIE Pathways Cluster Save All The Results Cluster Head Node GGG + J + VUPE_2015_reads + 12 - Smultiplesads + bech2 - 0622003 Advanced Analysis Results Summar X UTONOMIE and Database Motor Kidoro Videos and Analysis CO. Kal Perform Individual 20 . [] 6 Desktop **Results Analysis** cisg_DD0L_SAU_MRI_ROLL0_AER00_au conv_DD0L_SAU_MR0_ROLL0_AER00_au SE Recent Pla 9/7/2013 2:43 AM File folde EXE SAU MR0 ROLLO AFROD au Docum Music + + Search bisg_DI20L_SAU 🔁 💽 🛛 🖉 🦓 🖉 Mids... 🕨 bisg.... 🕨 Picture Videos H • 🔟 🚯 <u>د</u> WFET)_Part1 9/7/2013 2:43 AM QΕ dure (FTP+HWFET)_Part2 9/7/2013 2:43 AM ⊊ ¢ sizin ₽v 21 QV. E 01 100.4 FM . 0 35 R info.txt per_bisg_midsize_eu_2wd_VOLPE.mdl J LA Simulation a result 120 5 items Offline status: Online Offline availability: Not available

Large Scale Data Set Analysis Challenges

=> Manually analyzing very large number of data sets has proven cumbersome, error prone and time consuming

- Autonomie has numerous post-processing tools, but they focus on individual vehicles analysis
- For large datasets, the requirements are different:
 - Managing lots and lots of data (number of files, disk size, access time, etc.)
 - Looking at high level indicators and spotting overall trends
 - Performing post-processing calculations without rerunning all of the vehicles
- Autonomie's normal output files are unnecessarily cumbersome for this sort of large scale data manipulation

<u>Solution:</u> Leverage Autonomie structure to develop a new postprocessing procedure centered around large data set analysis

Database Generation

- A new process was developed to generate a targeted database containing information from a very large number of Autonomie results.
- The inputs are:
 - A folder containing all of the Autonomie result files. Example study (296 GB of data, 7,503 .a_result files).
 - An XML file that lists the parameters to include into the database.
- The output is an optimized database containing only the requested information. Example study (30.4 MB of data, 27 min. to generate database).
- New, targeted databases can be created with any subset of any study.

Database Example

- The database (SQL or XLS) includes a large number of parameters including:
 - Vehicle class, powertrain type...
 - Component information (technology, power, energy, weight..)
 - Main results (fuel and electrical consumption...)

	A	В	С	D	E	F	Н	J	K	L	М
1	Vehicle Class 🛛 👻	Vehicle Powertrain 🗾 👻	Engine IAV Type (n 👻	Engine Fuel I 👻	Engine Cylin 👻	Engine nt 👻	Engine has Cyl 👻	Engine C 👻	Engine Injection Ty 👻	Engine Valvetrain Type 🛛 👻	Engine EGR Type 📃 👻
2	Midsize	Mild Hybrid BISG	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
3	Midsize	Mild Hybrid CISG	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
4	Midsize	Conventional	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
5	Midsize	Micro Hybrid	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
6	Midsize	Mild Hybrid BISG	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
7	Midsize	Mild Hybrid CISG	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
8	Midsize	Conventional	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
9	Midsize	Micro Hybrid	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
10	Midsize	Mild Hybrid BISG	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
11	Midsize	Mild Hybrid CISG	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
12	Midsize	Conventional	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
13	Midsize	Micro Hybrid	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR
14	Midsize	Mild Hybrid BISG	eng01	si	inline	4	FALSE	dohc	PFI	VVT	No EGR

• A data dictionary will also be provided

Database Analysis (1/2)

SQL Database Created Based on Selected List of Parameters

Database Analysis (2/2)

Graphical User Interface Created to Check Simulation Results

76

Automated Checking Process

- Hundreds of thousands of vehicles are simulated
- Due to the large number of results, this could lead to
 - Increased number of iterations.
 - Erroneous results propagating to further steps of the study.
 - Delays in generating results.

Automated checking process greatly reduces simulation iterations and improves quality of results.

77

Automated Checking Leverages Database Generation Process Used for Large Scale Simulation

Conclusion Final Process Overview

Process Advantages

- Full vehicle simulations used directly as inputs to the Volpe/CAFE model.
- All vehicles have performance comparable to the baseline vehicle.
- Order of technology applications does not matter since all combinations are simulated.
- Provides detailed information for every vehicle to calculate cost (technology, power, energy, weight...).

Outline

- Autonomie Overview
- Model Development and Validation
- Process to Estimate Technologies Effectiveness with Full Vehicle Simulation
- Vehicle Powertrain Sizing Algorithms and Validation
- Vehicle Simulation Results Quality Check Process

Vehicle Technical Specifications (VTS)

- Initial Vehicle Movement 60 mph at least 9 sec (+/- 0.1 sec)
- Minimum grade of 6% at 65 mph at GVW (engine / fuel cell only)
- Maximum vehicle speed >= 100 mph
- Max grade launch from a stop forward and reverse >= 30%

=> Automated sizing algorithms used to ensure that simulations results for multiple technologies are comparable

Overall Sizing Philosophies

- Engine/fuel cell sized to meet 70% of peak power required to meet Vehicle Technical Specifications (VTS)
- HEV
 - Battery power sized to recuperate 100% energy on UDDS
 - Electric machine power sized to meet performance
- Low Energy PHEVs (blended)
 - Battery energy sized to meet All Electric Range (AER) on UDDS based on unadjusted values
 - Electric machine & battery power sized to be able to follow the UDDS in electric vehicle (EV) mode across entire charge depleting range (CD)
- High Energy PHEVs (extended range)
 - Battery energy sized to meet AER on UDDS based on unadjusted values
 - Electric machine & battery power sized to be able to follow the US06 in EV mode across entire charge depleting range (CD)
- BEV
 - Battery energy sized to meet range on UDDS based on unadjusted value

Automated Sizing Algorithm Conventional Vehicle Example

Automated Sizing Algorithm

Power Split HEV Example

Main algorithm philosophy

- Engine sized to meet 70% of peak power required to meet VTS (acceleration performance or grade): engine peak power is a function of the vehicle weight.
- Battery power sized to recuperate 100% energy on UDDS: battery cell number is function of the vehicle weight.
- Electric machine (EM1) power sized to recuperate 100% energy on UDDS or to meet the requirement of acceleration performance.
- Electric machine (EM2) sized as followed:
 - Start ICE at Vmax (~57mph for UDDS) ICE should be ON (i.e., EM2 peak power for engine start at top speed on UDDS cycle)
 - 2) Control maximum power of engine at Vspd=0 (i.e., EM2 peak power for engine control on performance)
 - 3) Control ICE at max grade (i.e. EM2 continuous power for engine control on grade, engine power fraction going through electro-mechanical power path)

Automated Sizing Algorithm Power Split HEV Example

Vehicle Sizing Algorithm Validation Conventional Vehicle Example

Conv. auto trans 2wd vehicle : Hyundai Sonata 6 ATX MY2013

* http://ecomodder.com/wiki/index.php/Vehicle Coefficient of Drag List

** https://en.wikipedia.org/wiki/Hyundai Sonata

Update Vehicle Masses

Vehicle Sizing Algorithm Validation Conventional Vehicle Example

Sizing comparison results for conv. auto trans 2wd vehicle

	OEM Source : Hyundai Sonata 6 ATX MY2013	Sizing results from Autonomie	Comparison
Vehicle weight	1588 kg	1593 kg	0.3 %
Engine Power	154 kW	144 kW	-6.4 %
Acceleration Performance: 0-60 mph	7.90 sec	7.89 sec	-

- Baseline vehicle specification : Hyundai Sonata 6 ATX MY2013
- Sizing results from the same acceleration constraint
- Individual component performance data not available (estimated)

Vehicle Sizing Algorithm Validation Power Split HEV Example

Split HEV 2wd vehicle : Toyota Prius HEV MY2010

* http://ecomodder.com/wiki/index.php/Vehicle Coefficient of Drag List

** http://www.zeroto60times.com/vehicle-make/toyota-0-60-mph-times/

89

Tune Variable

Jpdate Values using Simulation Results

Ipdate Values using Equation

Vehicle Sizing Algorithm Validation Power Split HEV Example

Here is the sizing comparison results for Split HEV 2wd vehicle

	OEM Source : Toyota Prius HEV MY2010	Sizing results form Autonomie
Vehicle weight	1530 kg	1463 kg
Engine Power	73 kW	75 kW
Motor1 Power	60 kW	66 kW
Motor2 Power	40 kW	43 kW
Battery Power	27 kW	36 kW
Acceleration Performance: 0-60 mph	9.7 sec	9.74 sec

- Baseline vehicle specification : Toyota Prius HEV MY2010
- Specific power for electric motor and battery is from DOE assumptions
- Individual component performance data not available (estimated)

Outline

- Autonomie Overview
- Model Development and Validation
- Process to Estimate Technologies Effectiveness with Full Vehicle Simulation
- Vehicle Powertrain Sizing Algorithms and Validation
- Vehicle Simulation Results Quality Check Process

Reference Vehicle Energy Consumption Compared to Today's Vehicles

Vehicle Results QA/QC Motivation

Hundreds of thousands of vehicles are simulated

- Due to the large number of results, this could result in:
 - 1. Increased number of iterations.
 - 2. Erroneous results propagating to further steps of the study.
 - 3. Delays in generating results.

iterations and improve quality of results.

INPUTS Size Simulate Check & Fix Size Simulate Check & fix Size Simulate Automated checking process can greatly reduce simulation Check results

Three Levels of Checks Performed on Simulation Results

Study Level Checks: Checks across multiple simulation results: e.g., Fuel economy improvement with increased gear number

Vehicle Level (per simulation): e.g., Vehicle speed trace check

Component Level (per simulation): e.g., Max engine speed during a drive cycle

Multiple Sources of Data Used to Generate Limits or Performance Quotients for the Checks.

Sample QA/QC Checks for Vehicles with Engines

Check	Drive Cycle on which check is performed	Component/Vehicle/Powertrain	Source of Reference Data
Max Engine Speed should be lower than XX.	UDDS (part of 2 cycle procedure)	Engine, Conventional and Start- Stop Vehicle.	Chassis dyno test data for each vehicle class, fuel type.
Average Engine Efficiency	UDDS (part of 2 cycle procedure)	Engine – SI , Conventional, and Charge Sustaining Hybrid Vehicle (power split) for Baseline Simulation Case.	Chassis dyno test data for each powertrain type (conventional , power split) .
Ratio of gasoline to diesel fuel economy	2 cycle procedure.	Engine SI and DI, Conventional Powertrain.	EPA fuel economy report for current technology, peer reviewed reports.

Color Code – Red: Component Checks, Green: Vehicle checks, Yellow: Checks across multiple simulations.

Sample QA/QC Checks for Simulations with Engines

Check	Drive Cycle on which check is performed	Component/Vehicle/Powertrain	Source of Reference Data
Engine HP/Vehicle weight	Sizing Process in Autonomie	Engine, Conventional and Start- Stop Vehicle , for each vehicle class.	EPA Vehicle Fuel Economy Trends Report.
Average Efficiency Relative Check (e.g. diesel average efficiency greater than gasoline)	Performed on database of results	Engine, Conventional and Start- Stop Vehicles for a given vehicle class.	
Check of trends across engine technologies: engine efficiency, vehicle fuel economy, peak engine power.	Performed on database of results	Comparison across same class and powertrain type (e.g. conventional SI, compact class) across different engine technologies.	Engineering judgement.

Color Code – Red: Component Checks, Green: Vehicle checks, Yellow: Checks across multiple simulations.

Sample QA/QC Checks for Simulations with Batteries

Check	Drive Cycle on which check is performed	Component/Vehicle/Powertrain	Source of Reference Data
Ratio of battery energy to vehicle mass	Sizing Process	BEV 100, 200, 300.	Specifications for vehicles in the market today.
% Regen Energy recovered at the battery	UDDS cycle	HEV, PHEVs in charge sustaining mode.	Chassis dyno test data for each powertrain type.
BEV range check	SAE J1634 procedure.	BEV 100, 200, 300, any vehicle class.	Engineering Judgement – Actual range should be close to target range.

Color Code – Red: Component Checks, Green: Vehicle checks, Yellow: Checks across multiple simulations.

Checks have been Similarly Generated for Additional Powertrain Components/Systems

- Transmissions
- Fuel Cell, Hydrogen Tanks and Fuel Cell Vehicles
- PEEM (Power Electronics and Electrical Machines)
- Checks common to all vehicle types: Example Vehicle Speed band check.

Sample List of Checks

- Trace
- Vehicle Weight
- Engine Percentage ON
- Engine Number of Starts
- Engine/Fuel Cell Average Efficiency
- Engine/Fuel Cell Power
- Engine Speed
- Motor Average Efficiency
- Motor Power
- Motor Speed
- Motor Max Current
- Number of Shifts

- Time Fraction in Top Gear
- Battery SOC
- HEV Delta SOC
- Percentage Regeneration Recovered
- Electric Consumption
- Fuel Consumption Ratios
- :
 - :

Component and Vehicle Checks Loaded in Database with Other Simulation Results

AUTONOMIE

Component Checks

On each simulation

Database of Simulation Results: Each check has a pass/fail flag.

	114								
r to add it to a ged.	100	itter. Drag and drup parame	ters from the time view	on the left and use them t	a filter which vehicle / a	mutation to load			
	×								
e Number of Starts	*								
Percentage on		CL 100	10						
		2 H II							
	0	e Data Gold 1 (20)							
	13	Comon M							
		Vehicle Year (years)	Vehicle Class	Vehicle Powertrain	Uncertainty Case	Process/Cycle Name	Engine Max Speed (radis)	Max Speed Check (2-NA 1-Fail.0-Pass)	EVRange(2NA1-Fail.0-P
	100		W.	W	W.	60		-	
echitecture		# 2010	Compact	Conventional	low	CombinedProc 2 Urban Cycles with Soak	269.395	0	2
		2 2010	Compact	Conventional	for	CombinedProc: Highway Cycle	274.309	0	2
iency for test procedure	1	2010	Compact	Conventional	low	Acceleration - U.S. Performance Metrics	465.399	2	2
Case		2010	Compact	Conventional	low	CombinedProc: 2 Urban Cycles with Soak	316,218	0	2
echic Range		2010	Compact	Conventional	Spur	CombinedProc Highway Cycle	286.28	0	2
		2010	Compact.	Conventional	low	Acceleration - U.S. Performance Metrics	609.721	2	2
Carlos Ca		2010	Compact	Conventional	law	CombinedProc 2 Urban Cycles with Soak	314,77	0	2
ng Time	1	2010	Compact	Conventional	low	CombinedProc: Highway Cycle	286.341	0	2
Time		2010	Compact	Conventional	low	Acceleration - U.S. Performance Metrica	609.01	2	2
drawn		2010	Compact	Conventional	kpe	CombinedProc 2 Urban Cycles with Soak	315.829	0	2
		2010	Compact	Conventional	low	CombinedProc: Highway Cycle	312.084	0	2
	_	2010	Compact	Conventional	low	Acceleration - U.S. Performance Metrica	609.403	2	2
NA 1. Earl & Pasa)	_	2010	Compact	BEV100 DM	low	BEVProc. US BEV shortcut (J1634)		2	0
Net Transfer (1993)		2010	Compact	BEV100 DM	low	Acceleration - U.S. Performance Metrica		2	2
		2010	Compact	BEV100	low	BEVProc: US BEV shortcut (J1634)		2	0
aureation		2010	Compact	BEV100	low	Acceleration - U.S. Performance Metrica		2	2
vcle		2010	Compact	BEV 200 DM	low	BEVProc: US BEV ahorteut (J1634)		2	0
e Name		2010	Compact	BEV 200 DM	low	Acceleration - U.S. Performance Metrica		2	2
		2010	Compact	BEV 200	kow	BEVProc. US BEV shortcut (/1634)		2	0
		2010	Compact	BEV 200	low	Acceleration - U.S. Performance Netrics		2	2
		2010	Compact	BEV300 DM	kow	BEVProc. US BEV shortout (J1634)		2	0
		2010	Compact	BEV300 DM	low	Acceleration - U.S. Performance Metrica		2	2
		2010	Compact	BEV300	low	BEVProc: US BEV shortcut (J1634)		2	0
		2010	Compact	BEV300	low	Acceleration - U.S. Performance Metrica		1	2
		2010	Compact	EREV PHEV30	low	PHEVProc: 2 Urban Cycles with Soak	274.116	0	2
		2010	Compact	EREV PHEV30	kpw	PHEVProc: Highway Cycle	251.796	0	2
		2010	Compact	EREV PHEV30	low	PHEVProc. 16 Urban Cycles	260 666	0	2
		2010	Compact	EREV PHEV30	low	PHEVProc: 16 Highway Cycles	238.263	0	2
		1.000							

Component and Vehicle Checks Loaded in Database with Other Simulation Results

📊 Vehicle Database Analysis Tool											
File Units											
🍯 - 🔛 🖹 fa 🛛 💣											
Drag and drop parameter to add it to a grid.	Filter: Di	Irag and drop parameters	s from the tree view (on the left and use them t	o filter which vehicle / si	mulation to load					
Search:	1										
0.9 Engine Number of Starts	ĺ.										
E Fuel Cell	13/41										
🗄 💁 Gearbox	1.21	-									
🕮 🍈 Motor											
De Motor 2	g Data Grid 1 🕱										
Power Converter	5	Li V J	Waltisla Class	V-1:1 P	Il and the Court	Description of the News	Family Mar Count (- 44)	New Count (2 NA 1 Cold Down)			
a.z. Simulation	2 V	enicie tear. (years)	venicie class	Venicie Powertrain	Uncertainty Case	Process/Cycle Name	Engine Max Speed: (radis)	Max Speed Check (2-NA, I-Fall, 0- Pass)	EV Range(2-NA, 1-Fail,0- Pass)		
🗄 🚾 Vehicle	<u> </u>		A	A	A	A	=		=		
E Vehicle Propulsion Architecture	y 20	010	Compact	Conventional	low	CombinedProc: 2 Urban Cycles with Soak	269.395	0	2		
🕀 🕑 Initialization	ā 20	010	Compact	Conventional	low	CombinedProc: Highway Cycle	274.309	0	2		
-0.9 Charger efficiency for test procedure	<u>د</u> 20	010	Compact	Conventional	low	Acceleration - U.S. Performance Metrics	465.399	2	2		
-az Uncertainty Case	20	010	Compact	Conventional	low	CombinedProc: 2 Urban Cycles with Soak	316.218	0	2		
az. Vehicle All Electric Range	20	010	Compact	Conventional	low	CombinedProc: Highway Cycle	286.28	0	2		
-az Vehicle Class	20	010	Compact	Conventional	low	Acceleration - U.S. Performance Metrics	609.721	2	2		
-a.z. Vehicle Name	20	010	Compact	Conventional	low	CombinedProc: 2 Urban Cycles with Soak	314.77	0	2		
0.9 Vehicle Passing Time	20	010	Compact	Conventional	low	CombinedProc: Highway Cycle	286.341	0	2		
0.,9 Vehicle Perfo Time	20	010	Compact	Conventional	law	Acceleration - U.S. Performance Metrics	609.01	2	2		
	20	010	Compact	Conventional	low	CombinedProc: 2 Urban Cycles with Soak	315.829	0	2		
0,9 Vehicle Year	20	10	Compact	Conventional	low	CombinedProc: Hinhway Cycle	312 084	0	2		
E COD	20	10	Compact	Conventional	low	Acceleration - U.S. Performance Metrics	609.403	2	2		
E P Results	20	10	Compact	DEV/100 DM	law	PECCOLOGICAL STREAM AND A STREAM AND AND A STREAM AND AND A STREAM AND	003.703	2	0		
0.9 EV Range(2-NA, 1-Fail, 0- Pass)	20	010	Compact	DEV100 DM	low	Appeleration II S. Performance Matrice		2	2		
B uel_consumption	20	10	Compact	DEVIOU DIVI	Iuw	PD//hear LIC PD//shatest / (1024)		2	-		
₽ <u>1</u> 1634	20	010	Compact	DEVIUU DEVIUU	IOW	Accelection U.S. Defensions Metrice		2	0		
phev_tuel_consumption	20		Compact	BEV IUU	IOW	Acceleration - U.S. Performance Metrics		2	2		
the procedure_2cycle	20	210	Compact	BEV 200 DM	low	BEVProc: US BEV shortcut (J 1634)		2	0		
a.z. Process/Lycle Name	20	010	Compact	BEA 500 DW	low	Acceleration - U.S. Performance Metrics		2	2		
theel	20	010	Compact	BEV 200	low	BEVProc: US BEV shortcut (J1634)		2	0		
	20	010	Compact	BEV 200	low	Acceleration - U.S. Performance Metrics		2	2		
	20	010	Compact	BEV300 DM	low	BEVProc: US BEV shortcut (J1634)		2	0		
	20	010	Compact	BEV300 DM	low	Acceleration - U.S. Performance Metrics		2	2		
	20	010	Compact	BEV300	low	BEVProc: US BEV shortcut (J1634)		2	0		
	20	010	Compact	BEV300	low	Acceleration - U.S. Performance Metrics		2	2		
	20	010	Compact	EREV PHEV30	low	PHEVProc: 2 Urban Cycles with Soak	274.116	0	2		
	20	010	Compact	EREV PHEV30	low	PHEVProc: Highway Cycle	258.796	0	2		
	20	010	Compact	EREV PHEV30	low	PHEVProc: 16 Urban Cycles	260.666	0	2		
	20	010	Compact	EREV PHEV30	low	PHEVProc: 16 Highway Cycles	238.263	0	2		

QA/QC Report Generated

- Statistical procedures are applied to flag erroneous results.
- Methods are developed to have the ability to trace invalid results.

HOM	ME INSERT	PAGE LAYO	UT FORMULAS	DATA	REVIEW VIEW DEVELOPER		-						2	A Moawad, Ayr
Cut	Calib	ń '	11 * A* A*	= = +	🗞 - 📑 Wrap Text General	*	👪 🖤 [Normal Bad	Good	N	eutral Calculation		AutoSum * A	- H
Eorma	Dainter B	IU- 🗄	- <u>A</u> - i	5 2 3 4	🖅 🖅 🧱 Merge & Center 🕤 💲 ~ %	, <u>%</u> % Co	nditional Format as	Check Cell Exp	lanatory Hyperli	nk Ir	Linked Cell	= Insert Delete Form	at Sort 8	k Find &
		Feet			Alignment C. Now	For	matting * Table * -		Ebdar				Edition	* Select *
oard		Font			Augnment is Num	DET 1.			Sdate			. Cells	coning	
Ŧ	$\pm \times \pi$	f _x (ity											
	В	с	D	E	F	G	н	1	J	К	L L	м	N	0
*	Powertrain -	Engine •	Transmission -	Speed -	Component -	Data Count 👻	Average Value 👻	Minimum Value 👻	Maximum Value 👻	Units 👻	Mean - 3 Std. Deviation 👻	Mean + 3 Std. Deviation 👻	Number Of Outliers 👻	Distribution Plots
1	All Powertrains	All Engines	All Transmissions	All Speeds	Percent Time Traced By More Than 2mph	21870	0.26418	0	3.2394	%	-1.6147	2.1431	742	Click for distribution
+	All Benedenlos	All Feelens	All Transmissions	All Founds	Flat Franke filts	54	226 4240	100 6097	353 4433	Whitella	100 3336	262 6462	0	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Elec Energy City	54	218.3397	189.456	247.9443	W.h/mile	176.3241	262.3462	0	Click for distribution
	All Powertrains	All Engines	All Transmissions	All Speeds	EV Range City	54	203.3613	202.1033	204.0632	mile	201.7396	204.9831	0	Click for distribution
1	All Powertrains	All Engines	All Transmissions	All Speeds	EV Range Highway	54	211.1263	200.7997	221.968	mile	192.2601	229.9925	0	Click for distribution
1	All Powertrains	All Engines	All Transmissions	All Speeds	Percentage Regeneration Recovered	14256	29.3109	0.98879	81.364	%	+32.035	90.6568	0	Click for distribution
1	All Powertroins	All Engines	All Transmissions	All Speeds	Vehicle Moss	21670	1504.3263	1376	2021	kg	1250.6098	1758.0429	200	Click for distribution
1	All Powertrains	All Engines	All Transmissions	All Speeds	Engine Percentage ON	21762	69.7556	4.2246	82.004	16	28.9329	110.5782	1180	Click for distribution
	All Powertrains	All Engines	All Transmissions	All Speeds	Engine Num Of Starts	21762	26.3647	2	128	N/A	-30.1096	82.8389	216	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Engine Kated Power	21/62	2780 2481	1778 7584	144.242	KW	112 5969	159.373	18	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Engine Min Speed	21762	-3.163	-669.6065	0	rpm	-87.4373	81 1114	166	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Engine Torque Max	21762	187.5724	133.343	382.859	Nm	97 5495	277.5954	279	Click for distribution
	All Powertrains	All Engines	All Transmissions	All speeds	Engine Torque Min	21762	-15.034	-32,4738	-5.218	Nm	-32.2166	2.1486	6	Click for distribution
	All Powertrains	All Engines	All Transmissions	All Speeds	Engine Avg Efficiency	21762	26.605	19.996	37.368	56	17.0066	36.2033	329	Click for distribution
	All Powertrains	All Engines	All Transmissions	All Speeds	Delta SOC	21870	0.0018084	-0.95	0.13044	N/A	-0.26138	0.265	324	Click for distribution
-	All Powertrains	All Engines	All Transmissions	All Speeds	ESS Max Power Out	21870	9.3205	0.24	231.142	kW	-31.0401	49.6811	379	Click for distribution
- 1	All Powertrains	All Engines	All Transmissions	All Speeds	ESS Min Power Out	21870	-5.4636	-57.1725	-0.38247	kW	-26.0842	15.1569	439	Click for distributio
-1'	All Powertrains	All Engines	All Transmissions	All Speeds	ESS Max Power In	21870	10.2157	0.25075	256.668	kW	-34,2842	54.7156	423	Click for distributio
+	All Powertrains	All Engines	All Transmissions	All Speeds	ESS Min Power in	21870	-5.1921	14 7656	-0.32302	KW	-29.7733	19.3892	433	Click for distribution
- '	All Powertrains	All Engines	All Transmissions	All Speeds	ESS Min Volt Out	21870	73 5459	95	812.83	v	-140.9979	288 0897	113	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Motor1 Power in Max	15066	12 2454	3.1546	66.1428	kW	-18.5709	43.0617	459	Click for distribution
	All Powertrains	All Engines	All Transmissions	All Speeds	Motor1 Power in Min	15066	-8.0213	-59.5692	-1.3435	kW	-30.0594	14.0168	392	Click for distribution
1	All Powertrains	All Engines	All Transmissions	All Speeds	Motor1 Power Out Max	15066	10.1798	2.4326	59.5286	kW	-16.2487	36.6083	472	Click for distribution
1	All Powertrains	All Engines	All Transmissions	All Speeds	Motor1 Power Out Min	15066	-9.7471	-66.9011	-1.6983	kW	-35,381	15.8868	327	Click for distribution
1	All Powertrains	All Engines	All Transmissions	All Speeds	Motor1 Speed Out Max	15066	5224.5011	1778.7584	14413.085	rpm	-2841.6469	13290.6492	438	Click for distribution
-11	All Powertrains	All Engines	All Transmissions	All Speeds	Motor1 Speed Out Min	15066	42,6575	-3987.8415	0	rpm	-969.2709	883.956	324	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Moto1 Torque Out Max Motor1 Torque Out Min	15066	50.7929	12.747	234.464	Nm	-99.4873	201.073	477	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Motor1 Ave Efficiency	15066	82.6785	80.631	87.801	5	78,7532	86.6041	324	Click for distributio
ť	All Powertrains	All Engines	All Transmissions	All Speeds	Number Of Gear Shifts	18198	261.6028	9	324	N/A	123.4119	399.7938	54	Click for distributio
	All Powertrains	All Engines	All Transmissions	All Speeds	Time Fraction In Gear5	18144	13.144	6.3772	24.874	%	-11.8065	38.0946	0	Click for distributio
1	All Powertrains	All Engines	All Transmissions	All Speeds	Time Fraction In Gear6	14364	6.5207	3.1467	7.3772	%	4.0511	8.9902	756	Click for distribution
1	All Powertrains	All Engines	All Transmissions	All Speeds	Time Fraction In Gear7	6804	1.1459	0.2994	6.4731	%	-4.3342	6.6261	0	Click for distribution
-14	All Powertrains	All Engines	All Transmissions	All Speeds	Time Fraction In Gear8	6048	6.6134	6.4102	6.6647	%	6.4695	6.7572	60	Click for distribution
+ť	All Powertrains	All Engines	All Transmissions	All Speeds	Transmission Average Efficiency	21816	92.8754	78.868	100.4	%	80.5256	105.2253	156	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	All Sneeds	Fuel Cell Ave Efficiency	54	51.037	50 172	51 793	KW 44	49.925	52 149	0	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	2-spd	Percent Time Traced By More Than 2mph	54	0	0	0		0	0	0	Click for distributio
+	All Powertrains	All Engines	All Transmissions	2-spd	Vehicle Mass	54	1601.3519	1462	1724	ke	1353.0665	1849.6372	0	Click for distribution
ť	All Powertrains	All Engines	All Transmissions	2-spd	Delta SOC	54	-5.49E-06	-6.34E-05	8.75E-05	N/A	-6.76E-05	5.668-05	1	Click for distributio
1	All Powertrains	All Engines	All Transmissions	2-spd	ESS Max Power Out	54	36.8478	31.0467	39.783	kW	30.3871	43.3086	0	Click for distribution
- 1	All Powertrains	All Engines	All Transmissions	2-spd	ESS Min Power Out	54	-47.6391	-52.3026	-39.5478	kW	-55.0693	-40.2088	1	Click for distributio
_/	All Powertrains	All Engines	All Transmissions	2-spd	ESS Max Power In	54	42.4082	35.7015	45.8185	kW	34.9408	49.8755	0	Click for distributio
-17	All Powertrains	All Engines	All Transmissions	2-spd	ESS Min Power In	54	-42.1693	-46.4092	+35.5996	kW	-48.5579	+35.7808	1	Click for distribution
	All Powertrains	All Engines	All Transmissions	2-spd	ESS Max Volt Out	54	235.2594	200.808	253.849	V	196.6841	273.8346	0	Click for distribution

Distribution Plots Generated as Part of the Report for Visual Perspectives.

Summary

- A new process has been developed to use full vehicle simulation results as input to the Volpe/CAFE model.
- This process leverages Autonomie, a tool developed and validated by the U.S. DOE over the past 20+ years.
- All the models and controls are open to users.
- All the assumptions and results will be made available as part of the project.