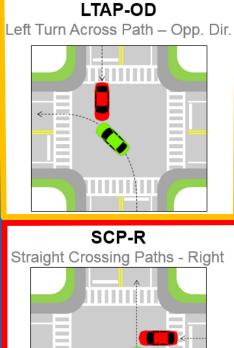
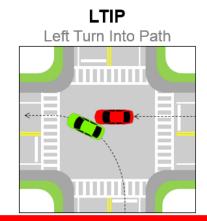
Baseline Analysis of Driver Performance for Intersection Crossing and Crash Avoidance Applications


SAE Government Industry Meeting January 24-26, 2018

Scott Stevens, PhD U.S. DOT/Volpe Center



SCENARIOS Left Turn Assist (LTA)

_

_

LTAP-LD

Left Turn Across Path - Left Dir.

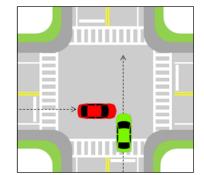
_

_

_

_

_


_

_

-

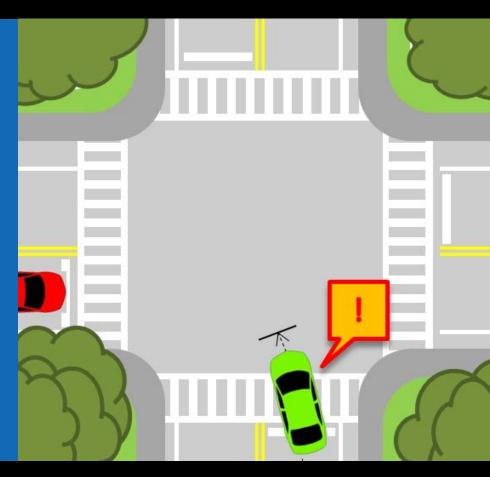
¢----

SCP-L Straight Crossing Paths - Left

RTIP Right Turn Into Path

NHTSA

Intersection Movement Assist (IMA)

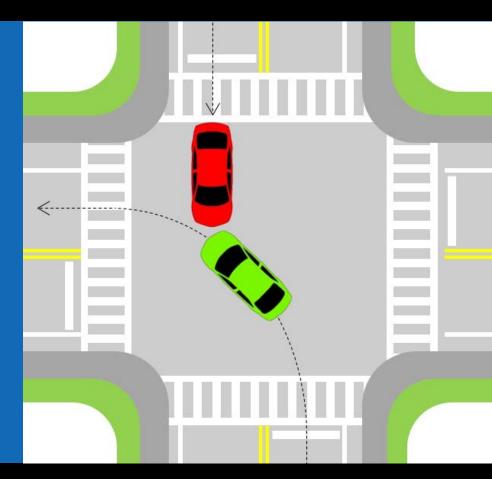


NUISANCE ALERTS

Difficult to identify because:

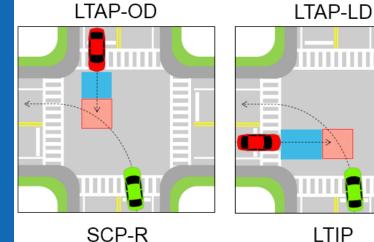
- 1. What constitutes a nuisance varies from driver to driver
- 2. Driver intentions are difficult to anticipate

Improved understanding of driver behavior at intersections is needed.



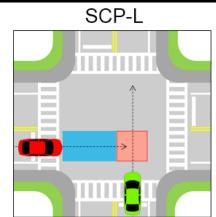
STUDY GOALS: LEARNING THE BASELINE

- Provide information on typical or "baseline" driving for refining crash alert or avoidance criteria
- 2. Provide performance data for practical test procedures

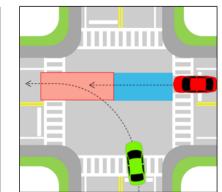


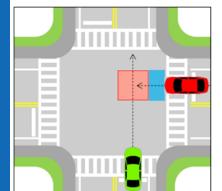
DEFINING GAPS

(Key Intersection **Crossing Metric**)



LTIP


_



_

RTIP

BACKGROUND

Gap choice is not solely a function of length.

Drivers accept shorter gaps, the...

- More untaken gaps pass (Mahmassani and Sheffi 1981, Tupper et al 2011)
- Time spent queueing (Kittelson and Vandehy 1991)
- Longer the total waiting time (Toledo 2007, Zohdy et al. 2010, Tupper et al. 2011)
- Longer the anticipated time until the next gap (Pollatschek et al. 2002)
- Faster the oncoming vehicle's speed (Spek et al. 2006—simulator study)

BACKGROUND (Cont.)

- Gaps vary by intersection (strong evidence)
- Age effects exist for gap size, with teens being more aggressive and older drivers more willing to wait (not seen for all variables)
- Mixed results for gender (weak evidence)

Models of driver behavior must include an array of variables to accurately predict driver behavior.

BASELINE DATA SOURCES

Large-scale, naturalistic driving studies of collision-warning systems

Safety Pilot Model Deployment

- 127 volunteers
- 6 months
- Ann Arbor, Michigan

Driver Adaptation

- 37 volunteers
- 3, 9, or 12 months
- Washington, DC

NHTSA

LTA BASELINE METHODOLOGY (LTAP-OD Scenario)

- 1. Queried left turns with steeringwheel rotation and vehicle yaw
- 2. Excluded events without oncoming traffic using video review

LTA BASELINE METHODOLOGY (LTAP-OD Scenario)

- Queried left turns with steeringwheel rotation and vehicle yaw
- 2. Excluded events without oncoming traffic using video review

Events were rare:

- Protected left-turn lights \rightarrow no gaps
- Low traffic, waited until no oncoming vehicle \rightarrow no gaps

IMA BASELINE METHODOLOGY (SCP, LTIP, LTAP-LD, and RTIP Scenarios)

- 1. Queried events with verified alerts
- 2. Subset to unsignalized intersections
- 3. Selected return visits to intersections without alerts
- 4. Excluded events without oncoming traffic using review

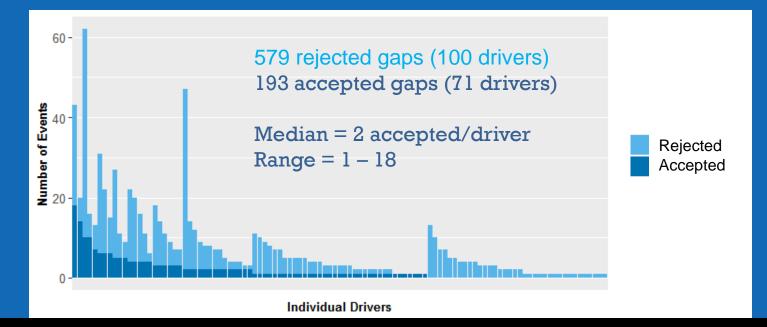
IMA BASELINE METHODOLOGY (SCP, LTIP, LTAP-LD, and RTIP Scenarios)

- 1. Queried events with verified alerts
- 2. Subset to unsignalized intersections
- 3. Selected return visits to intersections without alerts
- 4. Excluded events without oncoming traffic using review

Events were rare:

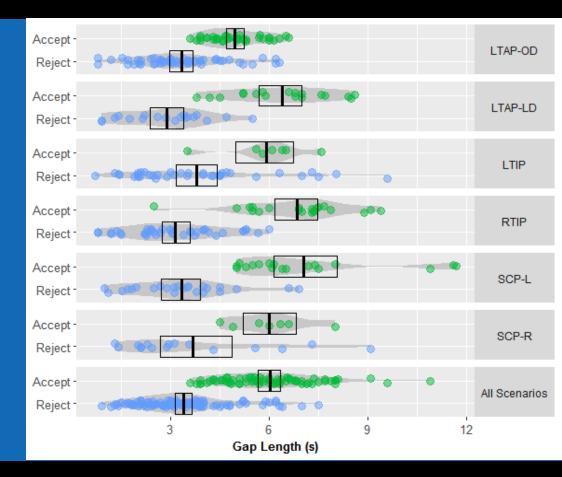
• Low traffic, waited until no oncoming vehicle \rightarrow no gaps

ANALYSIS METRICS


Gap x	Age Gender Speed Number of lanes Intersection geometry Traffic control device Lighting/weather Road condition Distraction
Speed	
Acceleration	
Steering wheel angle	
Turn signal use	

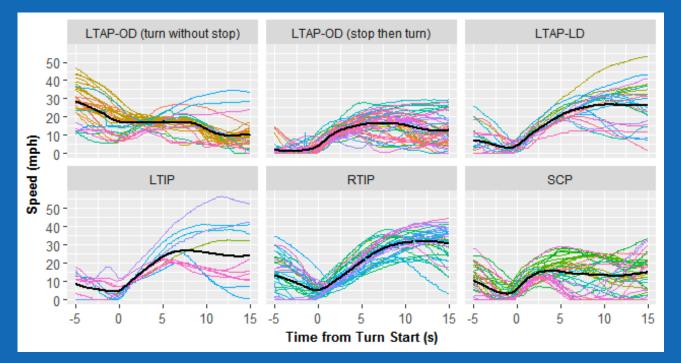
RESULTS: EVENTS PER DRIVER

Unit of analysis = the driver (averaged multiple gaps)



RESULTS: GAP LENGTHS

Large difference between accept/reject for all scenarios



RESULTS: SPEED THROUGH INTERSECTION

Can be cut by driver, intersection, environmental condition, etc.

Also have steering-wheel angle.

RESULTS: AGE, GENDER, & TURN SIGNAL USE

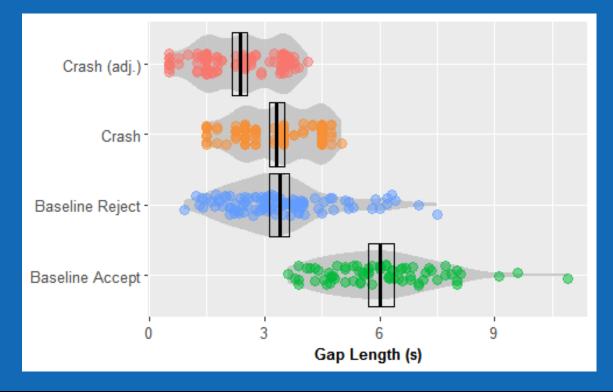
- No consistent age effects
- Men turned into smaller gaps than women (medium effect)
- Turn signal use:

Scenario	Percentage
LTAP-OD	96 %
LTAP-LD	75 %
LTIP	50 %
RTIP	58 %
All turning scenarios	81 %

CRASH DATABASE ANALYSIS

Estimated gaps for crashes:

- Start = sudden throttle increase (esp. with brake release)
- End = collision / time zero
- Subtracted baseline median throttle-to-gap delay



RESULTS: GAP LENGTHS

105 crashes (45 were LTAP-OD)

NHTSA

Thank you!

Scott Stevens Volpe Center, U.S. DOT (617) 494-2031 scott.stevens@dot.gov

John Harding NHTSA, U.S. DOT (202) 366-5665 john.harding@dot.gov

