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GLOSSARY OF TERMS AND ACRONYMS 


ACC – adaptive cruise control 

BOR – brake onset range 

CAMP – Collision Avoidance Metrics Partnership 

CAS – collision avoidance system 

Contributing factors – any circumstance that leads up to or impacts the outcome of the event. 
This term encompasses driver proficiency, willful behavior, roadway infrastructure, distraction, 
vehicle contributing factors and visual obstructions.  


Crash – any contact with an object, either moving or fixed, at any speed in which kinetic energy 

is measurably transferred or dissipated.  Includes other vehicles, roadside barriers, miscellaneous 

objects on or off of the roadway, pedestrians, cyclists or animals. 


DAS – Data Acquisition System. 


Driver-Related Inattention to the Forward Roadway – inattention due to a necessary and 

acceptable driving task where the subject is required to shift attention away from the forward 

roadway (e.g., checking blind spots, center mirror, instrument panel). 


Driver Reaction – the evasive maneuver performed in response to the precipitating event. 


Event – a term referring to all crashes, near-crashes, and incidents.  The “event” begins at the 

onset of the precipitating factor and ends after the evasive maneuver. 


FARS – Fatality Analysis Reporting System. 


FCW – forward collision warning 


FV – following vehicle 


GPS – global positioning system – used by reductionists to locate participant vehicle for 

information on an event. 


Lead Vehicle (LV) – vehicle preceding the participant vehicle in the same lane. 


LVM – lead vehicle moving 


LVS – lead vehicle stationary 


Loss of Control – Situation where the vehicle appears to be skidding or sliding.   
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Low-Speed Maneuvering Error – situation where vehicle is traveling at low speed (~10 mph or 
less) and contacts an object when no other factors appear to be present.   

MVMT – million vehicle miles traveled 

NHTSA – National Highway Traffic Safety Administration 

Naturalistic – unobtrusive observation; observation of behavior taking place in its natural 
setting. 

Near-Crash – any circumstance that requires a rapid, evasive maneuver by the subject vehicle, 
or any other vehicle, pedestrian, cyclist, or animal in order to avoid a crash.  A rapid, evasive 
maneuver is defined as steering, braking, accelerating, or any combination of control inputs that 
approaches the limits of the vehicle capabilities. 

Non-Conflict – any incident that increases the level of risk associated with driving, but does not 
result in a crash, near-crash, or incident as defined above.  Examples include driver control error 
without proximal hazards being present, driver judgment error such as unsafe tailgating or 
excessive speed, or cases in which drivers are visually distracted to an unsafe level.  

Non-Subject Conflict – any incident that gets captured on video, crash-relevant, near-crash, or 
crash, that does not involve the subject driver.  Labeled as a non-subject conflict but data 
reduction was not completed.  

Primary Driver – the recruited participant designated as the main the driver of their own vehicle 
or the leased vehicle. 

Prior to Maneuver – situation observed on video and in numeric data one video frame prior to 
the beginning of the run-off-road maneuver. 

Rear-end striking – refers to the subject vehicle striking a lead-vehicle. 

Roadway Boundaries – edges of the roadway such as curbs, medians or the edge of the 
pavement. 

Roadway Geometry – classification of a road segment as intersection, straight, or left or right 
curve. 

Run-Off-Road – describes a situation when the subject vehicle departs the roadway. 

Run-Off-Road Crash – describes a situation when the subject vehicle departs the roadway and 
contacts some object. 
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Run-Off-Road Maneuver – period of time between the start of an input that led to a roadway 
departure, or near roadway departure, to the time when control is established and control inputs 
begin which will lead to normal lane position, or when the vehicle comes to a stop. 

Run-Off-Road Near-Crash – describes a situation in which the subject vehicle almost departs 
the roadway or a rapid evasive maneuver is necessary to avoid departing the roadway. 

Secondary Task – task unrelated to driving that requires subjects to divert attention from the 
driving task: talking on the cell phone, talking to passengers, eating, etc. 

Steering Wheel Input – rotation of the steering wheel by the driver. 

TDT – total delay time 

TTC – time-to-collision without lead-vehicle acceleration included 

TTCa – time-to-collision with lead-vehicle acceleration included 

VTTI – Virginia Tech Transportation Institute. 

Yaw Rate – the data collected by the data acquisition system gyro indicating rate of rotation 
around the vertical axis. 


Yaw Rate of Change – the rate of change in yaw rate computed by finding the change in yaw 

rate from the maximum in one direction to the maximum in the opposite direction, and dividing 

this difference by the time elapsed between these two maximums.   
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EXECUTIVE SUMMARY 


With the availability of real-time data recorded during crashes and near-crashes, it is now 
possible to evaluate the performance of collision avoidance algorithms using actual events.  This 
report describes a method developed for evaluation of alert algorithm performance using real-
time data collected from naturalistic driving.  Three alert algorithms are tested using this method.  
However, the algorithms tested were not production systems.  Various measures of driver 
performance during the events are also presented. 

The method used in this study was to input naturalistic data collected during actual crashes into 
models of alert algorithms, and to evaluate the timing of the alert based on kinematics and a 
distribution of driver reaction time.   

Real-time data from 13 rear-end (rear-end) crashes and 70 rear-end near-crashes were selected 
from the 100-Car Naturalistic Driving Study data for analysis.  Thirteen crashes from the original 
dataset were used in the present analysis.  These crashes represent all of the cases where video 
and vehicle data were available of a subject vehicle striking the rear end of a lead vehicle (LV) 
that was traveling in the same lane.  Sixty of the rear-end near-crashes were selected randomly, 
from approximately 400 rear-end near-crashes recorded in the original data set.  An additional 10 
near-crashes were included that represented cases where a rear-end crash was avoided through 
the driver departing the lane to avoid colliding with an LV. 

Once these events were selected, the data was prepared for further analysis and put into models 
of collision avoidance algorithms.  Three collision avoidance system (CAS) algorithms were 
selected and modeled for evaluation.   

1.	 Knipling et al. (1993) – Equations developed by Knipling et al. for LV-stationary (LVS) 
and LV-moving (LVM) scenarios. 

2.	 CAMP Linear – The linear regression approach described in early CAMP work (Kiefer et 
al., 1999) that predicts a required deceleration after response based on test-track braking 
by drivers in different scenarios. 

3.	 NHTSA – An algorithm developed by Brunson et al. (2002) that incorporates multiple 
warning levels and sensitivity settings. 

When the data from the events were put into the algorithm models, a time-series (i.e., measures 
tracked over time, rather than at one point in time) output was generated that could be overlaid 
on the real event data. 

A kinematic analysis of the real event data was performed to determine the last point in time 
during the events where three different levels of braking (0.5g, 0.675g, and 0.85g) would be 
required to avoid collision. The comparison of when the braking needed to begin at a given level 
to the time when an alert would occur provided a time difference (potentially negative), which 
was the available time for drivers to respond.  This available time was converted into an estimate 
of the percentage of the population who could respond in the available time for the events tested.  
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This estimate was used as the evaluation of the benefit of the specific alert algorithms.  
Additionally, an estimate of the frequency with which each of the alerts might occur in normal 
driving was also developed by inputting files describing entire drives (i.e., trips) into the alert 
models and counting the number of times the alerts occurred.   

Various driver behavior and performance measures were also collected during the events.  Driver 
visual behavior measures were collected to support consideration of eye-tracking as a potential 
parameter in algorithm logic and to explore the relationship between proposed perceptual 
thresholds and glance behavior. The location and duration of driver glances during the 4.5 s 
prior to response or collision were captured and related to alert timing and stimuli, such as rate of 
visual expansion of the LV and whether the LV brake lights were on or off.  Driver braking 
behavior was characterized using the means, the maximums, and the time to reach the three 
levels of braking used in the kinematic analysis.  By using the results of the kinematic analysis, 
the events themselves were characterized in terms of time available for response and the level of 
braking needed. 

The method used in this effort is presented in Figure 1 and provides the methodological 
organization of this report. 
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Figure 1. Overall Method Schematic 

ALGORITHM EVALUATION METHOD 

The algorithm evaluation methodology developed here provides useful guidance both in 
estimating benefits achieved by the algorithms and in estimating frequencies of alerts in normal 
driving situations. By computing time available from alert presentation to the need for braking, 
the method avoids defining the “start” of an event.  The method could be improved by 
accommodating different reaction-time estimates based on whether the driver was already 
braking at the time he or she detected the event.  Estimation of the frequency with which crashes 
similar to those tested occur across the country, and adjustment of benefit estimates accordingly, 
may also be informative.  The method provides an informative alternative for system developers.  
It can provide evaluation of systems or system components, it tests systems in a non-hazardous 
manner, it can be conducted earlier and at lower cost than field operational trials, and permits 
benchmarking algorithm alternatives.  As with any safety-related system, multiple independent 
approaches are recommended during testing and evaluation. 
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 Table 1. Population who Could Avoid Collision Estimated at Different Deceleration Levels 

Estimated Percentage of the Population 
 

 Who Could Avoid Collision 

Braking Level Maintained 

 After Response 
 0.5g 0.675g   0.85g 

  mean   mean  mean 

Knipling 47%   55%  57% 

CAMP Linear 56%   63%  64% 

NHTSA Early 30%   36%  37% 

NHTSA Intermediate 26%   32%  33% 

NHTSA Imminent 25%   33%  35%
 

 

 

 

 

 

 

ALGORITHM PERFORMANCE 

When considering the algorithm performance on the 83 events tested, the Knipling and CAMP 
Linear algorithms had higher percentages of the population who could respond in time to avoid 
collision (Table 1) compared to the NHTSA algorithm. 

However, further analysis of the frequency with which the algorithms might generate alerts in 
normal driving conditions indicates alert frequencies for the Knipling and CAMP Linear alerts as 
being unacceptable to drivers.  The NHTSA alert frequency is closer to what might be 
acceptable, but would still probably alert too frequently.  Table 2 provides a summary of the 
estimated alert frequencies for the three algorithms. 

Table 2. Estimated Number of Alerts per 100 Miles Driven 

Algorithms 

NHTSA 
CAMP Low 

Knipling Linear Sensitivity 
83 87 8 

This alert frequency analysis was conducted on three trips.  As systems are developed and alert 
frequency counts are reduced, a more structured analysis will be appropriate. 

The actual average driver braking levels used in the events appear to be closer to 0.5g than to the 
higher levels evaluated. A 0.5g deceleration in the near-crashes was approximately an 85th 

percentile mean braking level.  Using 0.5g as the expected average braking of a driver, it appears 
that 20 to 25 percent of drivers would avoid collisions similar to those included in this testing 
when using the NHTSA algorithm early warning generated while set at a “High” sensitivity.   

Based on the events identified in the original 100-Car Study data collection, it appears that the 
collision algorithms do not currently address a common form of rear-end collision.  Twenty 
percent of the events selected from the 100-Car Study data involved a following-vehicle (FV) 
speed prior to driver response of less than 10 mph.  The FV speed prior to driver response was 
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less than 20 mph in one-quarter of the events.  Figure 2 portrays the estimated benefit of the 
tested algorithms according to the FV speed prior to driver response. 

Figure 2. Percentage Avoiding With 0.5g Deceleration by Speed 

As can be seen, except for the Knipling algorithm, drivers exposed to low-speed collisions will 
not be warned by the tested algorithms. 

DRIVING PERFORMANCE 

In the 4.5 s prior to response in the events including a response, and prior to collision in events 
without driver response, the driver was looking away from forward for approximately one-third 
of the elapsed time.  In these crash and near-crash events, 17 involved drivers were looking away 
for driving-related tasks, whereas 14 cases involved looking away from forward for non-driving 
related tasks. In 44 of 83 events, drivers looked away from the LV although its brake lights were 
illuminated.  These cases include both LVS and LVM events.  It also appears that looking away 
for driving-related reasons is common in situations where the LV is decelerating (or decelerates 
unexpectedly).  It appears that glances away for driving-related reasons may frequently coincide 
with unexpected LV braking. 

xvi 



 

When responding to an event, the mean deceleration achieved by drivers appears to be much 
lower than the maximum deceleration.  The 90th percentile mean deceleration was 0.55g while 
the 90th percentile maximum was 0.95g. Avoiding the events by braking would have been 
successful in all cases by starting a 0.5g deceleration as late as 2.0 s prior to the predicted (or 
actual) point of impact.   
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CHAPTER 1: INTRODUCTION 


BACKGROUND 

This report explores the use of real crash data to investigate the potential role of specific crash 
avoidance systems in preventing near-crashes and actual crashes using the driving data collected 
in the 100-Car Study (Dingus et al., 2006). This data provides unique opportunities for 
transportation researchers as data was collected in 100 cars for a period of 12 to 13 months per 
driver. The data represent normal, daily commuter driving with all the stress and pressures that 
occur in the Northern Virginia/Washington, DC, urban environment.  The rear-end crash type 
and CAS was selected for analysis in this research because: 

1.	 Rear-end CAS systems are currently being tested and released by automotive 

manufacturers, and 


2.	 The prevalence of rear-end crashes. 

The second chapter of this report is a review of literature that relates to rear-end crashes.  The 
review covers factors including time-to-collision estimation, visual sampling, driver 
performance, and descriptions of rear-end CAS algorithms.  The third chapter of the report 
describes the methods used to prepare the real event data for analysis and the methods used to 
investigate the potential of rear-end CASs in helping drivers avoid crashes.  The fourth chapter 
presents the results of the analysis.  Driver response during the events and timing of potential 
CAS alerts are characterized according to factors discussed in the literature.  The final chapter 
provides summary and conclusions. 
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CHAPTER 2: LITERATURE 


The rear-end crash type encompasses collisions that occur when the front of a following vehicle 
(FV) strikes the rear of a lead vehicle, with both traveling in the same lane (Martin & Burgett, 
2001). This rear-end crash classification can further be separated into more specific crash types: 
collisions that occur when the lead vehicle is stationary or when the lead vehicle is moving.  LVS 
crashes typically occur when the lead vehicle has stopped and then is struck by another vehicle.  
LVM crashes usually occur when the LV is decelerating when struck or traveling at some slower 
speed than the striking vehicle.  However, the LV may occasionally be accelerating when hit.   

Rear-end crashes make up a large portion of crashes occurring on the Nation’s roadways.  A 
1995 approximation based on accident databases and police reports indicated rear-end crashes 
account for 25.2 percent of crashes, with 16.1 percent of all crashes being lead-vehicle-stationary 
and 9.2 percent being lead-vehicle-moving (Najm et al., 1995).  However, Dingus et al. (2005) 
found that in 82 total crashes/collisions recorded during their data collection, only 15 were 
police-reported. Dingus et al. estimate that crash involvement may be more than five times 
higher than police-reported crashes. 

The main objective in implementing rear-end CASs is to reduce the number of rear-end 
collisions. In order to estimate the potential for rear-end CASs to reduce the number of rear-end 
collisions, it is helpful to understand both the major causal factors in rear-end collisions and how 
the CASs are intended to operate to avoid the rear-end collision event.  The availability of real 
crash data also provides the opportunity to relate actual events to a range of human-perception-
related and performance-related variables that are found in driving literature, and so will quantify 
or describe real events according to measures that have been used historically in collision-
avoidance research. This research effort will also begin a process of determining which of these 
measures may provide the most guidance for collision avoidance efforts when using real event 
data. 

TIME-TO-COLLISION 

Drivers constantly make judgments about how to adjust speed based on what is seen in the 
roadway ahead. If there is a turn ahead, a stop sign, or an obstacle of some kind, drivers are 
consistently able to account for what is seen and to appropriately adjust the vehicle’s speed 
throughout. Much of collision avoidance research investigates the ability to judge when braking 
is necessary to avoid an accident.  Additionally, once a driver is braking, the driver must monitor 
and adjust the level of braking input to brake successfully.  Time-to-collision is frequently used 
in literature as a descriptor of how urgent a situation has become, as well as potentially how a 
driver perceives stimuli during an event. 

Time-to-collision can be calculated or approximated using various measures and theories.  In an 
event with a following and a lead vehicle, time-to-collision when approaching a stationary LV, 
or when the LV is moving at a constant rate (zero acceleration) is computed as, 

 r
TTC  , [1]

vr

2 




where r is the range between the vehicles and vr is the relative velocity, which is defined as 
 
v r  v LV  v FV , [2]

where vLV  is the velocity of the LV and vFV  is the velocity of the following vehicle. 

 
Time-to-collision computed in this manner will be referred to in this document as TTC.  If the 
FV acceleration is assumed to be zero and if the LV is accelerating (or decelerating), this LV 
acceleration is included in the equation as follows: 
 

 v
TTCa r   v 2 

r  2aLV r
 , [3]

aLV 

where aLV is the acceleration of the LV (negative for a deceleration).  Time-to-collision where 
acceleration of the LV (typically deceleration) is included will be referred to as TTCa.  
 
Judging TTC (or TTCa), for example in avoiding collision during locomotion, is part of survival 
in any animal.  So, we know that elements of the skill in judging time-to-collision are probably 
part of our biological make-up.  At this point, however, it is not clear exactly what elements of 
our visual stimuli, as well as stimuli to other senses, are used in the judgment.  Components of 
the judgment include range and closing speed, and these are frequently believed to be evaluated 
in terms of the visual angle subtended by an LV and rate of change of a visual angle.  The visual 
angle of an LV at any point in time is denoted as , and is described as, 
 

W  , [4]
r 

 
where W is the width of the LV (Hoffmann & Mortimer, 1994).  Again, r is the range to the lead 
vehicle. As the FV closes on the LV, the visual angle will increase at some rate.  As an object 
gets closer,   does not increase linearly. The figure below illustrates how visual angle for a 6-ft-
wide LV varies over distance (range). 
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Figure 3. Visual Angle Versus Range 

When drivers are able to perceive a change in , they are aware that the distance to an LV is 
changing, but further information is needed to know how quickly the distance is changing.  The 
rate of change of the visual angle during a closing situation is believed to provide this 
information.  The angular velocity (i.e., rate of change of the visual angle) with respect to time is 
denoted   (thetadot). Using the small angle approximation, the stimulus is described as   

W (vr )  
2 

, [5]
r 

where W is the width of a lead vehicle, r is the range to the lead vehicle, and vr is the difference 
in velocity between the two vehicles (i.e., relative velocity or V, negative when closing; 
Hoffmann and Mortimer, 1994).   

Research relevant to collision avoidance has considered the following: 
 Time-to-collision-related stimuli such as speed and range (Cavallo & Laurent, 1988; 

Tresilian, 1991); 
 Visual angle (Mortimer, 1990; Hoffmann & Mortimer, 1994, 1996; Shiff & Detwiler, 

1979; Regan & Hamstra, 1994; Regan & Vincent, 1995);  
 Rate of change of visual angle (Hoffmann & Mortimer, 1994, 1996; Regan, Hamstra, & 

Kaushal, 1992); and 
 The ratio of the previous two values (Regan & Hamstra, 1994; Tresilian, 1991).   

Measures used by these previous researchers were used in the analysis of the crashes and near-
crashes to quantify the situation at different points in time during the event.   

Hoffmann and Mortimer (1994, 1996) conclude that the rate of change in the visual angle 
(i.e., ) of an LV, needs to be above approximately 0.003 to 0.004 rad/s for a human to be able to 
perceive the LV’s relative speed.  When the angular velocity was above this threshold, error in 

4 




 

 

estimates was linearly related to the actual TTC and short viewing times were required to 
estimate TTC.  When angular velocity was below threshold, error was not related to TTC.  In this 
case, spacing changes (i.e., visual angle changes) were required to determine TTC, and 
subsequently the process took longer. Hoffman and Mortimer estimate that between 2 and 20 
percent of drivers may overestimate a TTC in conditions similar to those tested (TTC < 10 s and 
viewing time between 1.37 and 2.74 s). The authors tentatively propose that this may explain 
some rear-end collision situations and indicate that the angular velocity is the quickest and most 
accurate method of evaluating TTC, but at longer TTCs, angular velocity may not be above the 
threshold. Therefore, detection of a change in distance may be required.  Detection of this 
change is proposed to have a just-noticeable difference of 0.12 , or for small angles, 0.12r. 
Hoffman and Mortimer also indicate that the direct   mechanism, proposed by Regan and 
Hamstra (1994) may be at work in judging TTC.  Regan and Hamstra propose that humans are 
able to directly perceive TTC, rather than working with the subcomponents of visual angle 
change and rate of visual angle change. 

Barton, Cohn, Nguyen, Nguyen, and Toyofuku (2004) and Barton and Cohn (2005) report results 
of some recent fundamental research that contradicts the  -threshold theory and argue that 
detection of TTC is actually governed by signal-detection theory.  They argue that the threshold 
theory of Hoffman and Mortimer would indicate 100-percent detection above the threshold, and 
that the signal-detection theory describes a variable criterion that observers employ based on cost 
and reward of detecting the signal or missing the signal within the noise of the visual scene.  
While the findings are based on work that is significantly different from actual driving, it is 
worth including here for completeness. 

TTC at Braking Onset 
Kiefer et al. (1999, 2003) provide measures of driver TTCs at the onset of braking or steering 
while having drivers brake or steer at the last second according to “normal” and “hard” 
instructions in several approach scenarios (see discussion in the rear-end CASs section of this 
paper for more detail). Due to the experimental “normal” and “hard” response instructions in the 
alerted trials, participants probably were able to perceive the approach earlier, but waited to 
brake until the last moment.  Additionally, as opposed to the other TTC investigations described 
so far, participants in Kiefer et al. were not reporting when they think the vehicles will hit.  The 
participants indicated when they needed to start their deceleration to avoid the impact.  The 
following values are approximated from graphs in the paper and it is unknown if any statistically 
significant differences are present.  The discussion is intended to provide general reference 
points. When approaching a stationary vehicle, “hard” onset of braking for a 30-mph approach 
to the stationary vehicle was 2.5 s TTC. For a 45-mph approach, the TTC at onset was 3.1 s 
(Kiefer et al., 2003, p. 23). Two scenarios in which the LV was traveling at a slower but 
constant speed can be compared easily to these because they have relative speeds (vr) which are 
the same as the described stationary trials.  In one, the LV is traveling at 30 mph and the 
participant is approaching at 60 mph, making a relative speed of 30 mph.  The TTC at brake 
onset for this scenario was 4 s, which is 1.5 s later than in the LV-stationary equivalent.  For 
another condition, the LV was traveling at 15 mph, and the participant was approaching at 60 
mph. TTC at brake onset here was also about 4 s, which is about 0.9 s later than for the same 
relative speed scenario (vr = 45 mph) where the lead vehicle was stationary.  So, people braked 
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later for LVS scenarios than for an LV moving at a constant speed, though the difference in 
speed was the same.   

If the Kiefer et al. (2003) values are translated into rate of change of visual angle, it appears that 
in all except the two most extreme of the LV-at-constant-velocity and LVS scenarios, 
participants were responding where the threshold theory indicates they are able to judge  . In 
the two most extreme scenarios, where the participant was traveling at 60 mph and either 
approached a stationary vehicle or an LV traveling at 15 mph, the threshold theory would 
indicate the braking onset was roughly on the line of where the rate would become detectable.  
For a 60-mph relative-velocity approach, the threshold estimates   would become detectable at 
4.8 s TTC and for a 45-mph relative-velocity the value is 5.5 s.  Kiefer et al. (2003) found “hard” 
braking onset at about 4 s TTC and “normal” braking onset at about 5.2 s TTC.  Steering input 
for these scenarios were about 1 s lower TTC for these same scenarios, occurring at roughly 4 s 
TTC for the “normal” and 3 s TTC for the “hard.”  Based on these comparisons, and according to 
the threshold of 0.003 rad/s, it appears the participants were able to judge the TTC prior to 
steering inputs.  However, for the extreme scenarios, the participant may need to make the 
braking decision prior to having sufficient perception information about the scenario. 

VISUAL SAMPLING 

Across studies, inattention is identified as a primary causal factor in rear-end crashes (Najm et 
al., 1995; Knipling et al., 1993; Dingus et al., 2006).  Dingus et al., which is the same data on 
which the present analysis is based, indicate almost 80 percent of the recorded crashes involved 
the drivers looking away from the forward roadway at the start of the events.  In normal driving 
situations, visually monitoring the roadway is used to maintain lane position and to avoid objects 
and traffic on the roadway.  Additionally, if a driver is not looking forward, it is difficult to see 
and avoid an unexpected problem.  However, drivers look away from the forward path for both 
driving and non-driving reasons. Understanding what is known about the visual behavior of 
drivers may provide helpful insight in avoiding collisions. 

Knipling et al. (1993) identify a number of causes of inattention in general driving, including 
several that might arise that do not indicate carelessness by the driver, for example, looking at 
vehicles beside the road, watching a pedestrian, looking for landmarks, or watching other 
vehicles. These are issues of attention allocation, each of which could be part of the primary task 
of driving.  As the driver allocates attention, at times the focus will be drawn away from the 
region where threats may be revealed.  There are a number of other sources who describe visual 
behavior while driving. Measures of visual behavior include glance frequency to different 
locations in and around the vehicle, duration of glances, and probability of glances (Mourant et 
al., 1969; Mourant & Rockwell, 1970, 1972; Mourant & Donohue, 1974; Wierwille, 1993).   

When following an LV, more time appears to be spent monitoring the forward road scene than 
when not in a following condition. In a car following task, Mourant, Rockwell, and Rackoff, 
(1969) found that on a familiar route, approximately half the time was spent looking at the lead 
vehicle and one quarter of the time looking generally ahead.  This means 75 percent of the time 
was looking forward while following and the remaining 25 percent of the time was distributed to 
out of view glances, road markers, signs, etc.  When not following, looking forward made up 
approximately 60 percent and the remaining 40 percent of the time was used looking elsewhere.   
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Merging and lane changing are examples of driving tasks that require glances away from the 
forward view. Mourant and Donohue (1974) investigated the use of two different field of view 
mirror systems during lane changes, merges, and while driving straight ahead.  The mean 
number of glances away from the forward roadway during the lane change and merge 
maneuvers, either in a head turn or when looking at mirrors, was between approximately 2.5 and 
3.5. Total mean time looking away from the forward roadway during the maneuvers was 
between approximately 2 and 3.25 s.  Head turns involved more time away from forward than 
mirror use. 

Tijerina (1999) provides an alternative look at visual behavior by investigating the conditions in 
which drivers shift visual attention away from the forward scene.  He measured the frequency of 
glances away during a car-following epoch, duration of the glances away, and location of the 
glance (gaze location). He found that drivers look away when range rate is approximately zero, 
regardless of range. He then went on to explore the theory that drivers use optical expansion to 
decide when it is safe to look away. He found that with a closing gap, 81 percent of the 
conditions where a driver looked away were below the 0.003 rad/s threshold.  The 19 percent of 
the glances taken away from the forward view occurred when the range rate would have been 
detectable according to the threshold, and are believed to include overtaking- and passing-related 
glances. A second finding was that as the duration of the car-following epoch increased, the 
number of glances away increased, per following epoch.  A linear regression relating glance 
frequency to glance duration was developed as 

fGA  1.84  0.17t f , [6] 

where fGA is the frequency of glances away and tf is the duration of the following epoch. In 
looking at glance durations, he found a mean glance away duration of 0.6 s with a 5th percentile 
value of 0.17 s and a 95th percentile of 1.47 s. Tijerina theorizes that these are shorter than found 
for other researchers because they were glances during following, where other researchers 
typically report glances across both following and non-following situations.  The same 
regression procedure was used to see if the length of a glance was influenced by range, range 
rate, or speed. No significant results were found, indicating that glance-away duration may not 
be guided by our speed, range, or range rate.  Tijerina concluded that (1) drivers glance away 
when range rate appears near zero, without regard to range or speed; and (2) frequency of away 
glances increases as the length of a following epoch increases.  His results support the notion that 
the static visual scene present in following and the very low frequency of events probably creates 
a learned behavior of following closer than is advisable for emergency stopping (Evans, 1991).   

PERFORMANCE 

When exposed to a stationary object or vehicle, a lead vehicle that has come to a stop, or a 
rapidly decelerating lead vehicle, the driver will be required to respond.  The following 
discussion reviews efforts to describe the driver’s performance in these situations, particularly in 
unexpected situations. 
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Human Braking 
For the purpose of evaluating stopping sight distances for roadway design, Olson and Sivak 
(1986) measured the time required to perceive a yellow foam rubber block (15 cm high by 91 cm 
wide) and time to respond to the object by braking.  Time from when the object was first visible 
to when the participant released the accelerator (called perception time in Olson and Sivak’s 
work), and time from accelerator release to brake press (response time) were measured.  These 
two together are called perception response time (PRT).  The speed of 12 to 14 m/s (43.2 to 50.4 
km/h or 27 to 31 mph) and average distance when the object was seen of 46 m (151 ft) generated 
TTCs of 3 to 4 s.  The study also measured alerted trials and trials where the participant 
responded to an auxiliary brake lamp mounted on the hood of the participant vehicle.  The 95th 

percentile PRT was 1.6 s for the surprise scenario.  Older participants were found to have slightly 
longer perception times, but shorter response times in the surprise scenario, making the PRT for 
old and young essentially the same.  Surprise events had reaction times that were longer than 
those found in situations where the participant was alerted.  

Malaterre et al. (1988) provide discussion of a number of approaches to understanding braking 
and steering responses in emergency situations, including one approach using kinematic 
reconstructions of accidents.  In their summary, they indicate that people tend to use simple 
responses in emergencies, and braking is the primary response.  Two of the authors performed a 
simulator study (Lechner & Malaterre, 1991) in which 49 participants were exposed to an 
incurring vehicle at an intersection.  The instructed speed was 90 to 100 km/h (56 to 62 mph).  
The incurring vehicle followed a trajectory to represent indecision, finally stopping in the 
intersection. TTCs tested were 2.0, 2.4, and 2.8 s, so the ranges were between 35 to 85 m.  The 
first response for 33 participants was release of the accelerator pedal and for 14 was to swerve.  
The average time to make these inputs was 0.80 and 0.82 s, respectively (not statistically 
different at =0.05). Average time to get to the brake was 1 s, which is longer than steering 
(p=0.02). When considering the three TTCs tested, the authors indicate that participants release 
the accelerator as a reflex, but then the time to brake varies as they process the information.  In 
all, 88 percent of the participants braked.  Sixty-seven percent began by braking but steered as 
well. In 39 percent, only braking was used.  The authors conclude drivers prefer to brake only, if 
they have time.  

Lechner and Malaterre also explored crash and no-crash outcomes by reducing reaction times on 
the crash incidents, but maintaining inputs and trajectories.  They find that if a reduction in 
reaction time of 25 percent could be achieved, it would help several of the steering responses be 
successful. However, even reaction times near zero would not help those who only braked avoid 
the incident. 

Lerner (1993) performed a study looking at PRT for 116 drivers of different age groups by 
releasing a barrel into the road as participants drove their own vehicles on actual roads.  The 
participant’s speed was approximately 40 mph and the barrel was released at a time-to-collision 
of about 3.4 s (200 ft). Eighty-seven percent of the drivers made some maneuver, with 43 
percent steering and braking, 36 percent only steering, and 8 percent only braking.  From this, 51 
percent used braking in their response.  For 56 participants whose brake reaction time could be 
measured, the mean PRT was 1.5 s (SD 0.4 s).  The 85th percentile PRT across all participants 
was 1.9 s. The two longest values were 2.39 s and 2.54 s.  Lerner discusses a lack of differences 
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between older and younger participant PRTs, as well as the impression that older participants 
moved to the brake more quickly, but younger participants may be using their faster information 
processing and other capabilities to evaluate and modulate their response. This tends to agree 
with the age findings of Olson and Sivak (1986) in which participants encountered a foam block.  
The TTCs when the object became visible in both studies were also similar. 

Measurements of brake response times for 100 drivers were collected in a simulator study by 
Broen and Chiang (1996). Male and female participants 18 and older drove a vehicle buck-based 
simulator with longitudinal acceleration motion cues. As part of a larger test looking at pedal 
configurations, participants drove a trial where an unexpected obstacle was presented.  Among 
other traffic rules and lane maintenance instructions, participants were told, “an unexpected 
obstacle may appear in the vehicle’s path and in that event they should step on the brake and stop 
as quickly as possible” (Broen & Chang, 1996, p. 901).  In this work, reaction time starts when 
the obstacle (a pedestrian) steps into the lane and stops when foot movement begins.  Response 
time is defined as reaction time plus movement time.  Accelerator and brake pedal actuation is 
flagged in the video using lights mounted under the instrument panel and within the view of the 
camera.  Start of foot movement was marked by release of the accelerator pedal.  Movement time 
ended at activation of the brake pedal. Sample rates are not discussed.  However, a video camera 
was used to collect movement time, potentially indicating sample rates of 30 Hz.  The work did 
not find a significant effect (=0.05) on brake pedal response time or movement time for the 
three lateral pedal layouts tested.  The older age group (51 and older) had slower response times 
than the two younger groups (18 to 30 and 31 to 50 years old).  Based on instructions, 
participants were going 25 mph at the time the obstacle was introduced.  The mean time to reach 
the brake pedal from entry of the obstacle was 1.33 s.  Because perception-response times are 
skewed right, it is helpful to review Figure 4, which presents the percentiles of responses for the 
three different pedal layouts. The differences across age groups for this study are shown in Table 
3. 

Figure 4. Brake Pedal Response Time (Broen and Chang, 1996, p. 903) 
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Table 3. Braking Response Times (Broen and Chang, 1996, p. 904) 

 

 

In a test-track study, driver response to a vehicle incurring at an intersection was measured 
(Mazzae, Barickman, Forkenbrock, & Baldwin, 2003).  In this study, after repeatedly passing an 
intersection with real crossing traffic present, the participant approached a full-size photograph 
of a vehicle (the photograph had been pulled into the intersection).  Mean time to initial brake 
press here was 1.5 s (SD 0.30 s). This is compared to a similar driving simulator study (Mazzae, 
Baldwin, & McGehee, 1999), which is described in the steering response section of this report.  
Maximum deceleration in the test-track study was 0.65g and in the simulator was 0.8g. It 
appears these values are means across the participants.  A simulator study was conducted 
investigating braking with and without ABS during an intersection incursion scenario similar to 
those discussed previously (McGehee, Mazzae, Baldwin, Grant et al., 2000).  An incurring 
vehicle enters from the right at a time-to-intersection (TTI) of 2.5 s or 3.0 s.  A mean time to 
accelerator release of 0.94 s was found, with a time to brake application of 1.1 s, for a 3.0 s time-
to-intersection event.   

In a simulator study looking at an incurring pedestrian, Barrett, Kobayashi, and Fox (1968) used 
a pedestrian entering the participant’s path at approximately 2.25 s TTC.  Brake reaction time in 
this study appeared to range from approximately 0.8 s to 1.4 s for the 11 participants.  In a much 
later simulator study, Araki and Matsuura (1990) exposed 32 novice and experienced drivers to 
an unexpected pedestrian running into the road from the right at approximately 1.8 s TTC. 
Braking was the most common response, with 78 percent of participants braking.  Of people who 
did steer, 78 percent also braked. 
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Figure 5 provides a summary of the time-to-accelerator-release and time-to-brake-press values 
for seven of the studies reviewed here. 

Figure 5. Mean Response Times Comparison Across Studies 

These measures are a mix of means and 50th percentiles, some of which were approximated from 
report graphs and should not be considered too precisely.  It appears accelerator-release means 
range from 0.7 to 1.3 s and brake press from 1 to 1.5 s.  Distributions would be skewed towards 
higher values. 

REAR-END CASS 

The term CAS here is used to describe any system that either warns the driver to assist them in 
avoiding a collision, or potentially intervenes in vehicle control in some way that helps to avoid a 
collision or reduce the effects of a collision.  Levels of CASs can be defined according to the 
level of intervention during an event.  Najm et al. (1995) provide a representation of time from 
initial threat to collision, and the different levels of CASs that might be employed.  Figure 6 
presents the different levels of CAS as time diminishes before a crash. 
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Figure 6. Intensity of CAS Action (from Najm et al., 1995) 

The progression of events portrayed in Figure 6 is as follows.  As an initial threat develops 
during normal driving, the first course of action for a CAS might be to provide a warning of 
some kind, such as a visual indicator or auditory tone.  As time progresses, and options are 
reduced, an intervention of some type may be appropriate, such as push back on an accelerator.  
In the last instant, it may be appropriate for a CAS to take full control of a vehicle to decelerate 
it. This may be determined by the point where the driver is no longer capable of providing a 
response in time to avoid either due to human performance limitations, lack of detection and 
recognition, or incapacity. Finally, the crash becomes unavoidable. 

Driver warning systems include, for example, a forward collision warning (FCW) system that 
alerts the driver to an obstacle without exerting any control over the vehicle.  A headway display 
is another type of warning system that might communicate to the driver when the following 
behavior is considered dangerous.  Adaptive cruise control (ACC) is a type of cruise control that 
is capable of deceleration according to presence or deceleration of a lead vehicle.  The haptic 
feedback provided by the deceleration as well as the reduction in speed means the system bridges 
the definition between a warning and a control system.  The haptic feedback can be considered a 
form of graded warning system as well, in that more severe situations will provide more severe 
deceleration.  These systems do not necessarily warn for a stationary target, however, and are 
currently limited to approximately 0.25g, approximately 25 percent of a typical vehicle’s braking 
capability. A system which is capable of full automatic control of braking or steering would 
probably operate in the shortest time separation before a potential collision.  Although in some 
literature CAS refers to only this final level, this report considers the human as part of the overall 
system, and so warnings to the driver are included in CAS consideration. 
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An important component of assessing the role of CAS is to understand the underlying algorithms 
that will be employed in the systems.  The CAS algorithm is a formula that uses sensor data as 
inputs and attempts to determine when a collision warning or intervention should occur.  The 
following sections describe three algorithms that have been proposed for making these alert 
decisions. 

Knipling et al. (1993) 
The early algorithm work of Knipling et al. (1993) describes two straightforward equations that 
are presented as a possible prototype headway-warning algorithm.  Knipling et al. developed a 
set of equations to identify a warning range (rw) required for stopping given an LVS or an LVM 
situation.  Using FV speed (vFV), time delay of the driver and braking system (td), and 
deceleration level of the host vehicle (aFV), the equation will predict the range at which a warning 
should occur. The equation for warning range in an LVS (Knipling et al., 1993) situation is,  

2v 
r  t v  FV . [7]W d FV 2aFV 

For an LVM (decelerating) condition, the equation becomes 

2 2v vFV LVrw   td vFV  , [8]
2aFV 2aLV 

where acceleration of the LV (aLV) and speed of the LV (vLV) make up the additional term 
(Knipling et al., 1993). The estimated time delay of the driver and braking system combined 
developed by Knipling et al. was 2.05 s. A method of using driver reaction time alternatives was 
discussed. Using a reaction time two standard deviations above the mean and two standard 
deviations below the mean would permit analysis of different outcomes.  The model obviously 
does not vary factors such as the level of FV deceleration, timing of response according to 
display modalities, or the influence of other factors such as driver adaptation, false alarm rates, 
or following conditions. 

CAMP Linear Algorithm (Kiefer et al., 1999 & 2003) 
The Collision Avoidance Metrics Partnership looked at LVS and LV-braking scenarios (Kiefer, 
LeBlanc, Palmer, Salinger, Deering, and Shulman, 1999).  One hundred eight drivers performed 
“normal” or “hard” last-second braking or steering maneuvers while approaching an LV 
traveling at a constant speed or decelerating according to some controlled profile.  For “normal” 
braking, participants were instructed “to maintain their speed and brake at the last second 
possible to avoid colliding with the target using ‘normal’ braking intensity or pressure” (Kiefer et 
al., 2003, p. 11). For “hard” braking, participants were instructed “to maintain their speed and 
brake at the last second possible to avoid colliding with the target using ‘hard’ braking intensity” 
(Kiefer et al., 2003, p. 11). “Normal steering” instructions were, “to maintain their speed and 
change lanes at the last second they ‘normally would to go around the target’ ” (Kiefer et al., 
2003, p. 12). The “hard steering” instructions were “to maintain their speed and change lanes at 
the last second they ‘possibly could to avoid colliding with the target’ ” (Kiefer et al., 2003, p. 
12). 
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The approach is intended to isolate kinematic conditions (i.e., FV speed, LV speed, and LV 
deceleration) that necessitate what would be considered “hard” last-second braking, from all of 
the conditions that would be considered “normal” last-second braking for an alerted driver.  
When the situation ahead necessitates a hard-braking response (according to what was collected), 
the alert should be appropriate.  The CAMP method used a lead vehicle towing a full-sized 
mock-up of the back of a vehicle (known as a surrogate target) on a 40-ft telescoping boom.  One 
outcome of this was the Required Deceleration Model that uses the required deceleration 
necessary to estimate alert timing.  Another outcome from this work was an estimate of driver 
brake reaction time, which was developed based on unexpected scenarios.  The required 
deceleration at the time of participant response as well as various TTC- and TTCa-related 
measures were used in reporting results.  
 
Kiefer et al. (2003) sought to identify the human braking and steering behavior in additional 
scenarios, or kinematic conditions, from the previous work.  To the two previous scenarios ( LV-
stationary and LV-braking), a scenario with LV traveling at a slower but constant speed was 
added. Seventy-two drivers in three age groups (20 to 30, 40 to 50, and 60 to 70 years old) 
participated.  The three types of scenarios were as follows: 
 

1. 	 LV-stationary – The participant approached a stationary vehicle at either 30 or 60 mph.  
The participant waited until the last second to brake or steer, depending on the 
instructions described previously. 

 
2. 	 LV-braking – with either a stable “normal” headway for the driver, or 3 s headway, and 

at either 30 or 60 mph, the LV would decelerate at 0.15g or 0.39g with brake lights. The 
participant waited until the last second to brake or steer, depending on the instructions.   

 
3. 	 Constant relative speed – Speed combinations between the participant vehicle and LV  

were 30 mph/20 mph, 30 mph/10 mph, 60 mph/50 mph, 60 mph/30 mph, and 60 mph/15 
mph, generating relative speeds (vr) of 10 mph, 20 mph, 10 mph, 30 mph, and 45 mph 
respectively.  The participant waited until the last second to brake or steer, depending on 
the instructions. 

 
The participant steering responses in the 60-mph trials tended to occur later than braking 
responses, whereas in the 30-mph trials, timing differences between steering versus braking were 
not observed. A greater difference in speed (vr) between the approaching  participant and the LV 
resulted in a greater difference in braking onset time versus steering onset time.   
 
From a database of approximately 3,500 last-second braking trials and 800 last-second steering 
trials, two braking onset algorithms were developed.  One algorithm uses a linear regression 
analysis to describe decelerations the drivers employed and one used logistic regression.   
 
The inputs used to develop the linear regression analysis are relative speed (vr), LV acceleration 
(aLV), and whether the LV is moving or stationary.  The results of this analysis are nearly 
identical to the Required Deceleration Model developed in their earlier work (Kiefer et al., 
1999). The warning algorithm inputs the vehicle’s current speeds and accelerations into the 
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linear regression model to evaluate the need to warn.  The progression of computations the 
model uses to predict the warning time is summarized in Figure 7.   

Vehicle and Radar data: 
vFV, vLV, aLV, aFV 

Case 1: 
Start: LV stationary 
End: LV still stationary 

Case 2: 
Start: LV moving 
End: LV  still moving 

Case 3: 
Start: LV moving 
End: LV has stopped 

Estimated Vehicle States After Delay 
vFVP = f(vFV, aFV, td) 
vLVP = f(vLV, aLV, td) 

Brake Onset Range 1: 
BOR1=f(Est vFVP, drqd) 

Brake Onset Range 2: 
BOR2=f(vFVP, vLVP, drqd, aLV) 

Brake Onset Range 3: 
BOR3=f(vFVP, vLVP, drqd, aLV) 

Deceleration Required 
drqd=f(aLV, vLV, vFV) 

Warning Range 
rw= BORn + rd 

Delay Time Range 
rd =f(vFV, vLV, aFV, aLV, td) 

Total Delay Time = Driver 
RT + brake system delay 

Figure 7. CAMP Warning Time Prediction Logic 

Equations or initial values for each of the functions in the flowchart are as follows: 
The prediction of the velocity of the FV after the delay (vFVP) is 

v  v  (a )t , [9]FVP FV FV d 

where aFV is the acceleration of the FV and td is the time delay before driver and vehicle response 
begins. Similarly, the predicted velocity of the LV (vLVP) is 

v  v  (a )t . [10]LVP LV LV d 

The deceleration required for the FV, based on the linear regression analysis of driver 
responses is 

drqd  5.308  0.685aLV  2.570(vLV  0)  0.086(vFVP  vLVP ) , [11] 

where values are in ft/s and ft/s2. The range lost during the response delay (rd) is defined as 

r  (v  v )t  0.5(a  a )t2 . [12]d FV LV d FV LV d 
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Three cases are used to account for the state of the LV before and after the response delay and to 
select from the appropriate equations.  Case 1, in which the LV is stationary throughout, uses the 
brake onset range (BOR1) equation 

2v
BOR1  FVP . [13]

 2drqd 

Case 2, in which the LV is moving initially and still expected to be moving after the delay, uses 
the brake onset range (BOR2) equation 

(v  v )2 
FVP LVPBOR2  . [14]

 2(drqd  dLV ) 

Case 3, in which the LV is moving initially but expected to stop by the time response begins, 
uses the brake onset range (BOR3) equation 

2 2v vFVP LVPBOR   . [15]3  2d  2drqd LV 

The logistic regression model, which proved to be as accurate as the linear models, but with 
lower required input accuracy, evaluates the probability that the driver is in a last-second hard 
braking situation rather than a last-second normal braking situation.  The inputs to the model are 
relative speed (vr), range (r), which are used to compute an inverse TTC value:  

vr 1
 . [16]

r TTC 

Then, a rough categorization of LV deceleration (aLV) is used to choose from three categories.  
The three categories are LV stationary, LV moving and braking, and LV moving and not 
braking. A separate equation was developed for each of these three scenarios.  For these reasons, 
this model is referred to as the “3-Tiered Inverse Time-to-Collision Model.”  It models the 
driver’s braking response as being based on an inverse TTC threshold that lowers linearly with 
speed—the driver becomes more sensitive as speed increases.   

In more detail, in the logistic regression method, the kinematic conditions (vFV, vLV, and r at 
braking) of a number of last-second braking trials, together with their associated “hard” or 
“normal” instruction, can be converted into a function.  The conditions associated with “hard” 
instructions are assigned a 1, indicating these are warning events.  The conditions associated with 
“normal” instructions are assigned 0, because the warning should not occur for these.  A formula 
is then developed to translate the inputs (kinematic conditions) into some value x. For example, 
x=f(vLV, vFV, r). A probability model is developed using x, in this case p=1/(1+e-x). In a driving 
situation, the kinematic conditions are fed into the probability equation, to give some probability 
that what the sensors see is a “hard” braking event.  If the probability of this observed situation 
exceeds a probability threshold, then a warning should be presented.  The probability threshold is 
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either selected by warning system designers, or potentially could be based on some driver 
characterization over time. 

The flow chart in Figure 8 describes the progression from developing the logistic regression 
equation based on the “hard” and “normal” last-second trials, to testing real-time conditions 
using the regression equation, and finally comparing it to a probability threshold to decide 
whether to alert or not. 

Logistic Regression 

Last second trials 
Vehicle and Radar data: 

vFV, vLV, r 
Instructions 

“hard” or “normal” 

p(hard given 
vFV, vLV,r) 

Develop equation for x 
x=f(conditions) 

x=ln((1/p)-1 

Designer p(threshold) 
p=0.75 

Current vFV, vLV, r 

x=f(vFV, vLV, r) 

Curent p(hard given 
current conditions) 

If current p greater than 
Designer p, then alert. 

Real-time Test 

Figure 8. CAMP Logistic Regression Logic Diagram 

The 3-Tiered Inverse TTC approach identified separate equations for the three different LV 
states; (1) lead vehicle moving and braking; (2) lead vehicle moving but not braking; and (3) lead 
vehicle stationary. Three coefficients (a, b, and c) from the appropriate equation are input into a 
brake onset range equation, 

b(v  v )FV LVBOR  , [17]
1

ln( 1)  a  c(vFV )p 
where p is a probability value. A value of 0.75 is considered a promising p value by Kiefer et al. 
The equations are predicted to generate an alert in about 15 percent of the cases where a driver 
was aware, and intending to steer later, rather than brake.  This is because the three equations are 
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developed based on when the driver would brake at the last second, and because this braking 
would occur earlier than last-second steering. 

NHTSA Algorithm (Brunson et al., 2002) 
NHTSA worked with the Johns Hopkins University Applied Physics Laboratory to develop a 
NHTSA FCW algorithm (Brunson, Kyle, Phamdo, & Preziotti, 2002).  The algorithm is only 
intended to function at 25 mph or above.  Separate modes are defined for cases where ACC is 
active and a tailgating mode is used when the FV is following closely.  The algorithm uses a 
driver-plus-system delay time of 1.6 s if the driver is not currently braking and 0.5 s if the driver 
is braking. Two somewhat unique aspects of this algorithm description are the inclusion of a 
driver sensitivity adjustment and also a three-stage (three-level) warning.  The NHTSA 
algorithm uses a lookup table to adjust the maximum expected host vehicle braking (aFVmax) 
when estimating the collision threat.  Driver sensitivity settings include near, middle, and far, 
which tend to describe how a driver might follow, with far being the most conservative style.  
The three alert levels are early, intermediate, and imminent.  Table 4 provides host vehicle 
braking levels expected for each of these alert levels.  As can be seen in the table, the maximum 
braking level used in the algorithm is 0.55g. 

Table 4. NHTSA Alert Sensitivity Settings and Alert Levels 

Warning Sensitivity Alert Level (aFVmax threshold in g’s) 
Early Intermediate Imminent 

Near 0.38 0.45 0.55 
Middle 0.32 0.40 0.55 
Far 0.27 0.35 0.55 

The first step of the algorithm is to estimate the time it will take both vehicles to come to a stop.  
Based on the driver’s selected warning sensitivity, during each iteration, the algorithm computes 
stop times for the FV (tFVs) for each of the warning three levels (differentiated by aFVmax) in 
parallel, and alerts according to the highest level appropriate.  A stop time is also computed for 
the lead vehicle (tLVs). This calculation describes the time it takes to dissipate speed.  Time for 
the LV to stop is computed as 

 v
tLVs  LV , [18]

aLV 

where vLV is the initial speed of the lead vehicle and aLV is the initial deceleration of the lead 
vehicle. Time for the FV to stop is computed as 

(v  a t )FV FV rt  t  , [19]FVs r aFV max 

unless the FV stops before the response time is reached (indicated by a negative value in the 
numerator of the second term), in which case, 

 vFVTFVs  . [20]
aFV 
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Using these estimates of time to stop, a distance required to miss the collision (Dmiss) is 
computed.  In situations where an LV is initially moving, and based on the time computations, is 
expected to come to a stop before the FV, the following equation is used to calculate the warning 
distance required to miss the lead vehicle:   

1 2 1 2 1 2D  r  (a  a )(t )  a (t )  (a  a )t t  v t  a t t  a (t ) .
miss FV FV max r LV LVs FV FV max r FVs r FVs LV FVs LVs FV max FVs2 2 2 

[21] 

In situations where the FV is expected to come to a stop before the lead vehicle based on the 
time-to-stop calculations, or where the LV is initially stopped, a time-to-miss value (tm) is 
calculated,  

v  (a  a )tr LV FV rtm   tr . [22]
a  aFV max LV 

In these situations, Equation 23 is used to estimate the distance needed to warn to achieve a miss. 

1 2 1 2D  r  v t  (a  a )(t )  (a  a )t t  (a  a )(t )miss r m LV FV max m FV FV max m r FV FV max r2 2 
[23] 

The three Dmiss values (one for each alert level) are compared to a threshold distance computed 
as 

D  2  v (0.1) , [24]thresh FV 

where vFV is in m/s and Dmiss is in meters.   
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CHAPTER 3:  METHODS 


This project explores the use of real crash and near-crash data for evaluation of CAS algorithms.  
A process was developed and applied to a set of publicly available algorithms using data 
collected during actual events. It should be noted that the algorithms tested were not production 
systems.  Figure 9 illustrates the subtasks involved in the methodology.   

Data – Vehicle 
sensor time-series 

values 
Conversion 

Variable 
Computation & 
Reconstruction 

Driver Performance 
Measurement 

Data - Eye glance 
and LV brake at 

each change in state 

Data Read 

Data Visualization 
Software 

Cumulated Real 
Event Data 

CAS Evaluation 

Cumulated Alert 
and Real Data 

Kinematic 
Analysis 

Frequency 
of Alerts 

Percent able to 
respond 

Algorithm Model 
– Knipling et al. 

Algorithm Model 
– CAMP Linear  

Algorithm Model 
– NHTSA 

Time series of 
alert states 

Time series of 
alert states 

Time series of 
alert states 

Alert Data 

Original 100-Car 
Data Collection 

Figure 9. Overall Method Schematic 

Each dashed outline in the figure surrounds a main component or components of the method.  
The method components include: 

1. Original 100-Car Study data collection; 
2. Data preparation; 
3. Algorithm modeling; 
4. Kinematic analysis; and 
5. CAS algorithm evaluation. 
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The 100-Car Study data provided the real data in a time-series format.  The next component of 
the method was to take the original 100-Car Study data and prepare it for further analysis and for 
use by alert algorithm models.  Models of the three alert algorithms were developed to read in 
the real data and output when alerts would occur.  This data were then merged with the real data.  
Also using the real data as a starting point, kinematic analysis was used to quantify the necessary 
timing and level of braking in each event.  Kinematic estimates and alert timing from real data 
are evaluated against distributions of driver reaction time to quantify whether or not sufficient 
reaction time was available based on the alert timing and kinematics.  The final step in the 
method was the evaluation of the alerts according to the necessary timing based on kinematics 
and the frequency in which alerts occur in driving data.  Driver performance measurements were 
also collected using the real-time data for use in further analysis and CAS development.   

Having described the general method, it is appropriate to consider some of the limitations or 
assumptions inherent in the method.  The approach described uses time-series data collected 
from instrumented vehicles during actual crashes or near-crashes.  Instrumentation used during 
the collection of data may be different than sensors proposed for a deployable CAS.  For 
example, forward range and range rate sensors may report or not report targets differently, 
depending on their design. Crashes and near-crashes used in this manner provide examples of 
events. The events used in this approach first must be located within collected data, and then are 
reviewed by video reductionists.  The target scenario for a CAS may not completely align with 
the event search procedures or with the classification of events made during video reduction.  
Within the method, these events are generalized, and records of events of these types are 
accumulating, but the range of events occurring on the roadways may differ from those located 
in this type of data.  Finally, in this approach, an alert is not actually presented to the driver.  
Different outcomes could occur upon presentation of an alert.  Driver behavior may change 
immediately or over time in the presence of a CAS.  As with any safety-related system, multiple 
independent approaches are recommended during testing and evaluation.  The method described 
here provides an informative alternative for system developers.  This method can provide 
evaluation of systems or system components, it tests systems in a non-hazardous manner, it can 
be conducted earlier and at lower cost than field operational trials, and it permits benchmarking 
algorithm alternatives.  The following sections provide additional detail on each of the 
components outlined with dashed lines in Figure 9.  

ORIGINAL 100-CAR STUDY DATA COLLECTION 

For the investigation conducted here, the primary data source is the driving performance data 
obtained in a subset (13 rear-end crashes and 70 near rear-end crashes) of the crashes and near-
crashes collected in the 100-Car Study. From the original 100-Car Study analysis, these events 
are defined as follows: 

 Crash: Any contact between the subject vehicle and another vehicle, fixed object, 
pedestrian cyclist, animal, etc. 

 Near-Crash: Defined as a conflict situation requiring a rapid, severe evasive maneuver to 
avoid a crash. 
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The crashes included in this subset were selected from the set of FV striking rear-end crashes 
recorded in the 100-Car Study that had video data available.  Sixty near-crashes were selected 
randomly from among the approximately 400 rear-end near-crashes identified in the 100-Car 
Study data set. The complete set of 400 rear-end near-crashes were not used to control the scope 
of the project. Ten near-crashes were also included which were classified as run-off-road 
crashes in the 100-Car Study. Table 5 describes the ages and estimated annual mileage of the 
drivers included in the dataset used for this investigation.  Sixty-seven different drivers were 
involved in the investigated events. Drivers in 34 of the events were female, and in 49 of the 
events the drivers were male.  Eleven drivers had more than one event, with 5 drivers having 
three events and 6 having two events.  The remaining 56 drivers had one event each. 

Table 5. Biographic data for drivers in selected events. 

Demographic data for 
drivers in selected 
crashes and near-

crashes 
Age 
(yrs) 

Estimated 
Annual 
Miles 

Average 35 21,516 
Maximum 68 75,000 
Minimum 18 10,000 

Two methods were used to provide a review of the potential for algorithms to provide benefit in 
preventing near-crashes and crashes. The first method was to estimate what type of 
improvement in driver response time might be expected from a collision warning, and to 
determine if this would be sufficient for avoiding a crash.  This estimate involved review of the 
crash data, kinematic analysis of time available to respond, and estimates of the percentage of 
people able to respond and avoid. The second method was to develop a basic measure to 
consider false-alarm rates of the potential algorithms. 

For a complete description of the 100-Car Study method, instrumentation, and data collection 
procedure, refer to the Dingus, Klauer, and Neale, et al. (2006) report.  In order to provide an 
abbreviated description, the following description is provided from Neale, Klauer, Dingus, 
Sudweeks, and Goodman (2005). 

100-Car Study Instrumentation 
The 100-Car Study instrumentation package was engineered by VTTI to be rugged, durable, 
expandable, and unobtrusive.  It constituted the seventh generation of hardware and software, 
developed over a 15-year period that has been deployed for a variety of purposes.  The system 
consisted of a Pentium-based computer that received and stored data from a network of sensors 
distributed around the vehicle. Data storage was achieved via the system’s hard drive, which 
was large enough to store data for several weeks of driving before requiring data downloading. 

Each of the sensing subsystems in the car was independent, so that any failures that occurred 
were constrained to a single sensor type.  Sensors included a vehicle network box that interacted 
with the vehicle network, an accelerometer box that obtained longitudinal and lateral kinematic 
information, a headway detection system to provide information on leading or following 
vehicles, side obstacle detection to detect lateral conflicts, an incident box to allow drivers to flag 
incidents for the research team, a video-based lane tracking system to measure lane-keeping 
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behavior, and video to validate any sensor-based findings.  The video subsystem was particularly 
important as it provided a continuous window into the happenings in and around the vehicle.  
This subsystem included five camera views monitoring the driver’s face and driver side of the 
vehicle, the forward view, the rear view, the passenger side of the vehicle, and an over-the-
shoulder view for the driver’s hands and surrounding areas.  An important feature of the video 
system is that it was digital, with software-controllable video compression capability.  This 
allowed synchronization, simultaneous display, and efficient archiving and retrieval of 100-Car 
Study data. A frame of compressed 100-Car Study video data is shown in Figure 10.  The 
driver’s face (upper left quadrant) is distorted to protect the driver’s identity.  The lower right 
quadrant is split with the left-side (top) and the rear (bottom) views. 

Figure 10. A Compressed Video Image From the 100-Car Study Data 

The modular aspect of the data collection system allowed for integration of instrumentation that 
was not essential for data collection, but which provided the research team with additional and 
important information.  These subsystems included automatic collision notification that informed 
the research team of the possibility of a collision; cellular communications that were used by the 
research team to communicate with vehicles on the road to determine system status and position; 
system initialization equipment that automatically controlled system status; and a GPS 
positioning subsystem that collected information on vehicle position.  The GPS positioning 
subsystem and cellular communications were often used in concert to allow for vehicle 
localization and tracking. 

The system included several major components and subsystems that were installed on each 
vehicle. These included the main Data Acquisition System unit that was mounted under the 
package shelf for the sedans (Figure 11) and behind the rear seat in the SUVs.    

23 




 
 

 

 
 

 

Doppler radar antennas were mounted behind special plastic license plates on the front and rear 
of the vehicle (Figure 12). The location behind the plates allowed the vehicle instrumentation to 
remain inconspicuous to other drivers. 

Figure 11. The Main DAS Unit Mounted Under the “Package Shelf” of the Trunk 

Figure 12. Doppler Radar Antenna Mounted on the Front of a Vehicle 
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The final major components in the 100-Car Study hardware installation were mounted above and 
in front of the center rear-view mirror.  These components included an “incident” box which 
housed a momentary pushbutton that the subject could press whenever an unusual event 
happened in the driving environment.  Also contained in the housing was an unobtrusive 
miniature camera that provided the driver face view.  The camera was invisible to the driver 
since it was mounted behind a “smoked” plexiglas cover. 

Mounted behind the center mirror were the forward-view camera and the glare sensor (Figure 
13). This location was selected to be as unobtrusive as possible and did not occlude any of the 
driver’s normal field of view. 

Figure 13. The Incident Push Button and Camera Box Mounted Above the Rearview
 
Mirror 


100-Car Study Subjects 
One hundred drivers who commuted into or out of the Northern Virginia/Washington, DC, 
metropolitan area were initially recruited as primary drivers to have their vehicles instrumented 
or receive a leased vehicle for this study. Drivers were recruited by placing flyers on vehicles as 
well as by placing newspaper announcements in the classified section.  Drivers who had their 
private vehicles instrumented (78) received $125 per month and a bonus at the end of the study 
for completing necessary paperwork.  Drivers who received a leased vehicle (22) received free 
use of the vehicle, including standard maintenance, and the same bonus at the end of the study 
for completing necessary paperwork.  Drivers of leased vehicles were insured under the 
Commonwealth of Virginia policy. 

As some drivers had to be replaced for various reasons (for example, a move from the study area 
or repeated crashes in leased vehicles), 109 primary drivers were included in the study.  Since 
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other family members and friends would occasionally drive the instrumented vehicles, data was 
collected on 132 additional drivers. 

A goal of the original 100-Car Study was to maximize the potential to record crash and near-
crash events through the selection of subjects with higher than average crash or near-crash risk 
exposure. Exposure was manipulated through the selection of a larger sample of drivers below 
the age of 25, and by the selection of a sample that drove more than the average number of miles.  
The age by gender distribution of the primary drivers is shown in Table 6.  The distribution of 
miles driven by the subjects during the study appears as Table 7. As presented, the data are 
somewhat biased compared to the national averages in each case, based on TransStats (2001).  
Nevertheless, the distribution was generally representative of national averages when viewed 
across the distribution of mileages within the TransStats data. 

One demographic issue with the 100-Car Study data sample that needs to be understood is that 
the data was collected in only one area (i.e., Northern Virginia/Metro Washington, DC).  This 
area represents primarily urban and suburban driving conditions, often in moderate to heavy 
traffic. Thus, rural driving, as well as differing demographics within the United States, are not 
well represented.  

Table 6. Driver Age and Gender Distributions for Original 100-Car Study Dataset 

Gender 
Age N 

% of total Female Male 
Grand 
Total 

18-20 9 
8.3% 

7 
6.4% 

16 
14.7% 

21-24 11 
10.1% 

10 
9.2% 

21 
19.3% 

25-34 7 
6.4% 

12 
11.0% 

19 
17.4% 

35-44 4 
3.7% 

16 
14.7% 

20 
18.4% 

45-54 7 
6.4% 

13 
11.9% 

20 
18.3% 

55+ 5 
4.6% 

8 
7.3% 

13 
11.9% 

Total N 
Total 

Percentage 

43 

39.4% 

66 

60.6% 

109 

100.0% 
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Table 7. Actual Miles Driven During the Original 100-Car Study 

Actual Miles 
Driven 

Number 
of 

Drivers 
Percentage 
of Drivers 

0-9,000 29 26.6% 
9,001-12,000 22 20.2% 
12,001-15,000 26 23.9% 
15,001-18,000 11 10.1% 
18,001-21,000 8 7.3% 
> 21,000 13 11.9% 

A goal of the recruitment process was to attempt to avoid extreme drivers in either direction (i.e., 
very safe or very unsafe). Self reported historical data indicate that a reasonably diverse 
distribution of drivers was obtained. 

Vehicles 
Since 100 vehicles had to be instrumented with a number of sensors and data collection 
hardware, and since the complexity of the hardware required a number of custom mounting 
brackets to be manufactured, the number of vehicle types had to be limited for this study.  Six 
different vehicle models were selected based upon their prevalence in the Northern Virginia area.  
These included five sedan models (Chevrolet Malibu and Cavalier, Toyota Camry and Corolla, 
and Ford Taurus) and one SUV model (Ford Explorer).  The model years were limited to those 
with common body types and accessible vehicle networks (generally 1995 to 2003).  The 
distribution of these vehicle types was: 

 Toyota Camry – 17 percent; 
 Toyota Corolla – 18 percent; 
 Chevy Cavalier – 17 percent; 
 Chevy Malibu – 21 percent; 
 Ford Taurus – 12 percent; and 
 Ford Explorer – 15 percent. 

DATA PREPARATION 

Modeling the CAS algorithms using real data involves inputting variables such as range, relative 
speed, and acceleration levels into the algorithm models as if the data were being measured in 
real-time by vehicle sensors.  Several tasks were required to prepare the original 100-Car Study 
data for further use in this analysis.  The tasks involved in data preparation are illustrated in the 
highlighted portion of Figure 14. 
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Figure 14. Schematic of Data Preparation 

Data from the vehicles were stored in a VTTI binary format.  These data, which included vehicle 
measures including FV speed, FV acceleration, LV speed, range, and relative speed, were read 
into MATLAB using a Dynamic Link Library (DLL) that was developed for this purpose.  The 
DLL permits MATLAB code to query the binary data files for specific variables, which are then 
available for further use in the MATLAB environment.  Software was written in the MATLAB 
language to perform computation of variables such as LV speed, LV acceleration, TTC, 
headway, and rate of visual expansion.  Table 8 is a table indicating the measures needed for this 
investigation, the source of the data from the original 100-Car Study data file (and sensors), the 
computation used to reach the measure, and notes on the computation. 
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Table 8. Measures, Data Source, and Computations 

Measure Data Source(s) Computation Notes 
Range ( r ) Forward radar None 
FV speed (vFV) FV Speed sensor None 
FV acceleration(aFV) FV Accelerometer None 
LV speed (vLV) FV Speed sensor, 

forward radar: 
relative speed 

vLV = vFV + vr 

LV acceleration (aLV) FV accelerometer 
Forward radar: 
relative speed 

aLV = 
dt 

dvr  + aFV 
Algorithms used 
this computed value 
throughout. 
Kinematic 
modeling used an 
estimation of LV 
acceleration after 
FV deceleration 
influence was 
observed in 
standard LV 
computation. 

Relative speed (range 
rate) (vr) 

Forward radar None 

Headway Forward radar: 
range, FV speed Headway 

vFV 

r
 

TTC Forward radar:  
range, 
Forward radar: 
Relative speed 

TTC = 
rv 

r
 

TTCa Forward radar: 
range, Forward 
radar: Relative 
speed 

LV 

LVrr 

a 

ravv
TTCa 

22 


 where vr is relative speed, 
r is range, and aLV is LV 
acceleration using the 
time derivative of relative 
speed. 

Thetadot ( ) Constant LV width 
estimation of 6 ft, 
Forward radar: 
Range, Forward 
radar: Relative 
speed 

2 

)( 

r 

vW r  
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In addition to the values that were directly available from the original data, there were several 
situations where further work was required to obtain the necessary data for this analysis.  In 
some cases, the time-series values were missing from the original data or incomplete due to 
sensor problems. (For further information, the reader is referred to the evaluation of system 
performance in Dingus et al., 2006.)  In other cases, the sensor data was not of sufficient 
accuracy to represent the entire event.  For example, based on antenna design, radar data 
becomes inaccurate at shorter distances.  Omitting these events from analysis was not desirable 
for two reasons.  First, each event recorded, particularly the crashes, represents a rare research 
opportunity. Where available data can be used to reconstruct missing data, it permits analysis to 
continue. Second, there is potential for certain events to more frequently include missing or 
erroneous data when measured using the sensors available.  For example, if all crashes with 
erroneous short-range radar data were omitted from consideration, it would bias the sample of 
events remaining in the analysis toward longer-range and probably higher-speed events.  The 
following section describes the data reconstruction process.   

Data Reconstruction 
Inaccuracies in data were identified primarily through video review as well as through analysis 
using kinematic equations.  Data visualization software was used in combination with various 
custom software and hand calculations to review the events. Where missing data or inaccuracies 
were found, reconstruction of specific portions of data in crash and near-crash events was done 
using alternative sources such as other sensor values and video.  Reconstruction involved 
computing the missing variable at each time sample where it was necessary for describing the 
event and for use by algorithms.  In most cases, more than one alternative was available to use in 
reconstruction or for verifying reconstructed measures.  Methods used for reconstruction differed 
depending on the variable. 

FV speed 
Where speed was missing entirely from an original 100-Car Study data file, three methods were 
used to identify a speed at the start of an event.  GPS speed was used when it was available and 
when the vehicle had been traveling with minimal acceleration and deceleration based on 
accelerometer data.  Where radar was available, identification of a radar return from a stationary 
object such as a road sign was used to identify the FV speed.  If radar was not available, timing 
the passing of roadway paint hash marks was used.  In the state of Virginia, these markings are 
approximately 10 ft long with a 30-ft space between them.  The time used to travel this distance 
was used to provide an initial speed.  Once a deceleration from an initial speed had begun, the 
initial speed combined with accelerometer values recorded at each sample were used to compute 
FV speed at each sample.  If a dropout occurred in the original speed signal, it was normally for 
only a few time samples.  In these cases, straight line fills were used from the speed prior to the 
drop out to the speed at the end of the drop out. 

LV speed and acceleration 
The forward radar output is normally used as the source for computing LV speed and LV 
acceleration.  If radar output was unavailable in the original data file, LV speed was estimated by 
identifying a period near the start of an event where the headway (between the LV and the FV) 
appeared to be constant.  At this point, the FV speed was then used as a starting point for LV 
speed. To estimate LV speed over time during a deceleration, the time it took the vehicle to stop 
based on video was converted into decelerations and speeds.  In cases where an LV slowed but 

30 




31 

did not stop, a second period of constant headway was used to identify the lower speed, and 
similar methods were used to find decelerations and speeds during the interim segment. 

Range 
The forward radar output is normally used as the source of the range measurement.  If radar was 
unavailable, the number of time samples that occurred between when the LV passed a point on 
the roadway and when the FV passed the same point was used as an estimate of the elapsed time 
between when the vehicles passed the same point.  This FV speed was then divided by the 
elapsed time to estimate the range. 

Eye Glance Analysis 
Eye glance analysis was conducted specifically for this research effort.  For each event, video 
analysts reviewed the video frame by frame, recording locations where the driver was looking 
and when the driver’s gaze changed to a different location during the 4.5 s prior to driver 
response in the events.  During transitions, the gaze location was coded as the destination 
location.  Any frames where the eyes were closed, including blinks, were recorded as eye 
closure.  Table 9 describes the locations and codes used in the eye glance analysis.   

Table 9.  Gaze Locations and Codes 

Location  Code
Unknown/Missing 0 
Forward 1
Left Mirror 2 
Left Window 3 
Right Mirror 4 
Right Window 5 
Center Console 6 
Left Forward 7 
Right Forward 8 
Center Mirror 9 
Display 10
Object 11
Cell Phone 12 
Eyes Closed 13 
Passenger 14
No Video 69 

 

 

Figure 15 illustrates the coding of glances, with response being preceded by two periods where 
the driver is looking away from forward. The time between when a driver last looked forward, 
and various measures were collected.  In Figure 15, an example is presented of the measurement 
of time between a driver’s last forward glance and his or her maximum deceleration.   
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Figure 15. Example Glance Analysis and Measurement of Time From Last Forward 

Glance to Maximum Deceleration
 

In a similar manner, the video was reviewed to determine when the LV brake lights were on or 
off. Time samples where brake lights were off were coded with a zero.  Time samples where 
brake lights were fully on were coded with a one.  In some cases, brake lights were dim for one 
sample prior to being fully illuminated.  These cases were coded as brake lights off.  These codes 
were referenced by software during subsequent stages of the analysis and also used in graphical 
review of the timing of glances and LV brake states.   

Driver response point 
There are several stages to an event and a driver’s response to the event.  The following list 
provides a simplified view of the stages of an event and the driver’s response. 

1.	 An event occurs at some point in time. 
2.	 By recognizing features of the environment ahead, the driver perceives the event. 
3.	 Some time elapses during decision making. 
4.	 The driver begins response, normally a movement of some kind. 
5.	 The desired response control input is initiated, and 
6.	 The vehicle begins responding to the control input.  
7.	 The driver then monitors and controls performance, adjusting input until hopefully the 

crash is avoided. 

In certain events in actual driving, it is difficult to reliably identify an exact point in time when 
certain of these stages occur.  For example, an event may develop gradually, it may be unclear 
when driver perception occurs, or the driver may gradually increase attention or pursue graded 
stages of response. An indication of when the vehicle begins responding is often available, 
particularly in more severe events.  For example, using the accelerometer trace in Figure 16, the 
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driver’s response is seen as a transition directly from a fairly steady state, near zero level of 
acceleration (left of the triangle), to some deceleration (right of the triangle). 

Figure 16. Example of Direct Transition to the Minimum Acceleration 

In other cases, an initial response may later require greater response.  This may occur due to 
some change ahead, for example, an LV begins braking harder.  It could also occur because the 
FV driver misjudged the distance or speed of the LV.  In Figure 17, an FV acceleration plot is 
shown with an example of a driver decelerating at an initial level (to the left of the triangle), and 
later responding with a stronger deceleration (right of the triangle).  

Figure 17. Example of Driver Response Point Preceded by Deceleration 

Analysis and summary of driver responses in this research will use the time in which response is 
observable in deceleration, and more specifically, the deceleration found following this transition 
to some final deceleration, as a reference point.  This driver response point was selected with the 
objective of omitting any initial stages of response from the analysis.  Selection of a driver 
response point was done by visually inspecting variables such as throttle level, FV brake state, 
and video for context, with the objective of isolating the portion of a driver’s response where a 
braking response of sufficient magnitude has been initiated.  Event videos were observed to 
determine factors, such as when the driver was looking ahead, what events were occurring ahead, 
and particularly what changes were occurring and where the timing of these changes was shortly 
followed by a sharp change or “knee” in acceleration.  The point where this “knee” occurred in 
accelerometer data was selected as the driver response point and will be referred to as such in 
this report.  In the current investigation, no attempt was made to identify driver perception point 
in time or movement time.  The driver response point provides a point in time where event 
extrapolation starts for portions of the analysis (described later in the Kinematics Analysis 
section) and for summarizing driver response times of the involved driver.  Note that the driver 
response point from the events is not used in any way to evaluate the effectiveness of an alert.  
Response times used for evaluating alert timing are drawn from a population distribution.  This 
process is described in the Algorithm Evaluation section of this report. 

Cumulated Real Event Data 
Once the data were reviewed and reconstructed, or created in the case of the glance locations and 
lead vehicle brake states, they were cumulated.  With each run, the software retrieved the 
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necessary vehicle data, computed the desired measures, and overlaid on it the eye glance and LV 
braking data for the event.  These cumulated data were used for subsequent steps in the analysis. 

ALGORITHM MODELING 

Three algorithms were selected for modeling and testing with actual event data.  In modeling the 
algorithms, the first objective was to evaluate the potential of testing algorithms with real-world 
data. The second objective was to provide some initial understanding of how various algorithms 
might perform in actual crash or near-crash conditions.  The three algorithms selected for testing 
were the LVS and LVM equations described by Knipling et al. (1993), the linear regression-
based algorithm described by Kiefer et al. (1999) from work at CAMP, and an algorithm 
developed by Brunson et al. (2002) for NHTSA.  The three algorithms will be referred to as the 
Knipling algorithm, the CAMP linear algorithm, and the NHTSA algorithm. 

The three algorithms were coded in MATLAB programming language.  Coding of algorithms 
involved detailed review of the reports in which they were described, and then testing equations 
and alert logic in components.  The NHTSA algorithm description included ranges at which the 
alert would occur based on a set of LV and FV scenarios.  This permitted validation of the 
algorithm model performance against the intended performance. This type of validation was not 
available for the CAMP linear and Knipling models.  In the highlighted area in Figure 18, the 
relationships of the three models to the previous data preparation are illustrated. 
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Figure 18. Schematic of Algorithm Models 

The computed variables, including any reconstructed portions, were provided to each of the three 
models. The amount of data input into the models was sufficient to ensure all of the algorithms 
had the necessary inputs to alert, according to their design, if they were going to alert.  The 
algorithm models each operated as an independent function that received the time-series data as 
input and output time-series data indicating alert states.  Once the alert data were collected for 
each of the models, they were then cumulated with the real data for further analysis. 

Certain limitations were used to scope the algorithm modeling effort.  These limitations apply to 
all of the algorithms, except as noted below. 

	 No effort was made to model when alerts would terminate or how long conditions needed 
to be met to be considered an alert.  If conditions for an alert being presented are met for 
an algorithm for at least one time sample, this was considered an alert (an exception to 
this occurs with the NHTSA algorithm, which specified how many samples were need to 
generate an alert). Duration of the alert is not part of the model. 
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 Various methods are also proposed in the algorithm literature for handling noise in 
measurements, target dropouts, and smoothing methods.  No effort was made to 
incorporate smoothing specific to an algorithm.  Some correction of radar dropouts was 
made and the corrected data were provided to all three of the algorithms. 

 Radar target selection was done by the experimenter prior to inputting values into the 
algorithms.  In this way, target selection differences between CASs were eliminated from 
this evaluation. 

 Samples in the data were considered to be made 0.1 s apart. 

The following sections provide further details on the scope of modeling for each algorithm and 
any specifics of the algorithms.  

Knipling Algorithm 
Knipling et al. (1993) Equations 7 and 8 described in the Literature Review section of this report 
were implemented into an algorithm model.  Equation 7 (repeated below) was developed for 
application in LVS scenarios, 

2v 
r  t v  FV . [7]W d FV 2aFV 

All values in the equation are in English units (ft, ft/s, ft/s2). FV speed (vFV) is an input from the 
time series.  Host vehicle deceleration (aFV) is a constant value that represents the expected level 
of braking from the FV driver upon issuance of the alert.  A value of 0.6g was used for this 
constant in accordance with Knipling et al.  This equation was implemented into software to 
permit processing of the time-series data.  In the software, a warning range (rW) is computed at 
each time sample.  If the LV speed evaluated by the forward radar is less than 1 mph and the 
speed of the FV is greater than the speed of the lead vehicle (also according to the Knipling 
specification), and the actual range observed from the radar falls below the computed warning 
range, then an alert is issued.  The estimated time delay of the driver and braking system 
combined (td), are constant inputs.  A total delay time (TDT) value of 2.05 s was used for this 
constant as proposed by Knipling et al.  

For the LVM situations, Knipling et al. provides Equation 8: 

2 2v vFV LVr   t v  . [8]w d FV2a 2aFV LV 

In the same way as the LVS equation, when the computed rW is less than the range reported by 
the radar, a warning is issued as long as the speed of the lead vehicle is less than the speed of the 
FV and as long as the lead vehicle is decelerating. 

When either the warning conditions of the LVS or LVM equations were met, the Knipling 
algorithm model issued a warning.  This is equivalent to combining the logic of the two warnings 
into a vehicle system with a single warning enunciator.  The driver would not be aware of which 
condition was triggering the warning. 
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CAMP Linear Algorithm 
The CAMP linear algorithm chosen (Kiefer et al., 1999) is somewhat primitive compared to 
more recent efforts including the logistic regression approach described in the literature review 
section of this report (or see Kiefer et al., 2003), but provides a good algorithm example for a 
few reasons. The CAMP linear algorithm incorporates terms developed through regression of 
data obtained in last-second braking tests with drivers on a test track, and so it is intended to 
accommodate human preferences or behaviors, rather than solely considering kinematics of the 
situation. The specification provided in the CAMP work also permits modeling of additional 
algorithm characteristics that must be considered in actual vehicle implementation, such as the 
minimum speeds at which the warning system would function.   

The first step in CAMP algorithm is to predict the FV speed and LV speed forward in time to 
where the FV driver’s response would begin.  A driver reaction time value of 1.52 s was 
identified in the test-track studies as an estimate of a “too early” warning and so could be 
implemented in an adjustable CAS system as an algorithm constant used to achieve a 
conservative warning setting. Although the model of the CAMP algorithm permits simulating 
other settings, values reported in this document use the 1.52-s value.  This value added to a 0.2-s 
brake-system delay generates a TDT of 1.72 s.  The system delay is intended to accommodate 
delays in system interfaces and for the vehicle to begin slowing.  Using this time delay, at each 
point in the time-series data, observed lead and FV conditions are predicted forward to estimate 
the state of the two vehicles after the delay (Equations 9 and 10). 

The next step is to compute a delay time range that is the estimated range that will be lost during 
the response time of the driver and brake system (Equation 12).  A required deceleration value is 
calculated which incorporates the linear regression values from driver testing.  The deceleration 
required (ft/s and ft/s2) formula (Equation 11) used is repeated here, 

Decel Required  5.308  0.685a  2.570(v  0)  0.086(v  v ) ,LV LV FVP LVP 

[11] 

where aLV is acceleration of the LV (ft/s2 with a negative value indicating deceleration), vLV is 1 
when the lead vehicle is moving and 0 when stationary, and vFV and vLVP indicating the speed of 
the FV and predicted speed of the LV in ft/s. 

This deceleration required value is analogous to the 0.6g constant used in the Knipling algorithm 
except that in the CAMP algorithm, the expected driver deceleration varies as a function of the 
current speeds and accelerations of the two vehicles.  The deceleration-required value is input 
into the equations to determine the brake onset range.  For each point in time, the sum of the 
applicable brake onset range and the delay time range then creates a warning range.  This 
warning range is applied in the same manner as the Knipling application.  If the actual range is 
observed to be below the computed warning range, the warning is issued unless certain 
conditions override it. The FV speed must be greater than 10 mph for the warning to be issued.  
Other conditions are used to manage sensor issues such as reported lead-vehicle speeds being 
less than zero, or to squelch specific cases that meet the computed conditions but would not be 
appropriate for a warning (e.g., if the speed of the FV after the response delay is predicted to be 
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lower than the speed of the lead vehicle). These conditions were replicated in the algorithm 
model, but they will not be described further here. 

NHTSA Algorithm 
The third algorithm modeled is the NHTSA algorithm developed by Brunson et al. (2002).  This 
algorithm provides several additional factors of interest in modeling.  Their description 
incorporates three alert sensitivity settings—near, middle, and far—to potentially accommodate 
various driving styles. The alert also has three stages—early, intermediate, and imminent.  
According to the algorithm description, the algorithm model developed for this investigation 
permits use of a driver setting which selects between the same three levels of alert sensitivity— 
near, middle, and far.  These levels are intended to accommodate different driving styles by 
allowing drivers to adjust the system to a desired level of sensitivity.  In most of this report, only 
output from the “near” sensitivity setting will be reported.  This level provides an “early” alert 
when host vehicle braking will be from 0.38g to 0.45g. An intermediate alert will occur when 
braking will be from 0.45g to 0.55g. An imminent alert will be issued when host vehicle braking 
is expected to need to exceed 0.55g. In the Alert Frequency section of the report, values from 
the “near” and “far” sensitivity settings will be reported. 

The NHTSA algorithm also varies logic based on whether the host vehicle is braking or not.  The 
algorithm normally uses a 1.5-s estimate of human response time (RT) and 0.1 s for algorithm 
logic timing, for a total of 1.6 s TDT.  If the host vehicle is braking, a driver response time of 
0.5 s is substituted for the normal TDT, and only the imminent alert warning is issued.   

The first step in this algorithm is to calculate the time required for the lead and following 
vehicles to stop (Equations 18 and 19). Based on these equations, estimates of the timing for the 
two vehicles coming to a stop are made.  These states dictate which equation is used to estimate 
the distance by which the FV will miss the LV, referred to as Dmiss. If the LV is expected to 
come to a stop first, Equation 21,  

1 2 1 2 1 2D  r  (a  a )(t )  a (t )  (a  a )t t  v t  a t t  a (t )miss FV FV max r LV LVs FV FV max r FVs r FVs LV FVs LVs FV max FVs2 2 2 

[21] 

is used, where aFVmax is a constant based on the driver setting (near, middle, or far), tr is the 1.6-s 
TDT value, r is range taken from the radar sensor, tLVs and tFVs are the estimates of time to stop 
based on measured velocities and accelerations.  If the LV is stationary at the start, or the FV is 
expected stop before the LV, the formula used is Equation 23, 

D  r  v t  
1

(a  a )(t )2  (a  a )t t  
1

(a  a )(t )2 ,miss r m LV FV max m FV FV max m r FV FV max r2 2 
[23] 

where tm is the time a miss will occur (i.e., closing rate equals zero; Equation 22).  As with the 
CAMP Linear algorithm, various exceptions are used to control specific situations.  For example, 
if the LV is at constant speed or accelerating (defined as aFV greater than or equal to –1 m/s2), 
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then the FV should stop before the LV.  In this situation, Dmiss from Equation 23 is used.  In 
calculating the time for the FV and LV to stop, and in the Dmiss computation, denominators that 
are less than 0.001 and greater than –0.001 are replaced with 0.001. 

Miss distances are calculated for each of three different expected deceleration levels to compute 
the three stages of the alert.  These are compared to a distance threshold (Dthresh) computed using 
Equation 24. If the Dmiss value for any of the alerts is observed to be less than Dthresh, then the 
appropriate alert is made active. 

The alert algorithm is specified to be active only when host vehicle speed is greater than 20.57 
mph and speed has exceeded 25 mph.  For the purposes of this modeling effort, no requirement 
of the vehicle exceeding 25 mph was implemented.  In other words, the alert was permitted any 
time the host vehicle speed was greater than 20.57 mph.  According to the specification, only 
imminent level alerts are issued if the host vehicle driver is braking.  If the brakes are applied, 
the estimated reaction time is set to 0.5 s rather than the normal 1.5 s. 

A few deviations from the algorithm specification were present in this algorithm model.  Rather 
than having higher stages of the alert override lower stages, as would be expected in 
implementation, in this investigation the three levels were evaluated separately.  This permits 
tracking the timing of each stage of the alert.  Cumulating the stages into one would be a simple 
adjustment to current model code.  The NHTSA crash avoidance system also includes a 
tailgating mode. To control the scope of the algorithm modeling task, this mode was not 
modeled.  Finally, in the NHTSA implementation, an alert condition was required to exist for 
two out of the previous three samples.  In this algorithm model, the alert was issued on the 
second sample after an alert condition first occurred. 

KINEMATIC ANALYSIS 

Kinematic analysis was used to characterize alternative outcomes and to identify where in time 
braking would need to occur to avoid collision. In the crashes, driver response (either braking or 
steering) was not present, was too late, or was not of a sufficient level to avoid a collision.  In the 
near-crashes, the driver response was obviously sufficient to avoid collision, but varied in other 
ways. A braking level employed might have been more than necessary, and is typically earlier 
than the last instant necessary to avoid.  Kinematic analysis was used to determine the 
boundaries where braking had to occur to avoid collision.  This approach permits use of the near-
crashes as well as the crashes to contribute examples of initial conditions to the analysis.  The 
response of the involved driver becomes one of the available alternatives, in addition to the 
simulated alternatives of no driver response and driver responses at different levels of braking.  
Kinematic analysis permitted locating the vehicles and consideration of different response 
alternatives while making use of the initial conditions and behavior of the lead vehicle 
throughout the event. For computation of position at each time interval, Equation 25, 

1 2x2  x1  v1t  at , [25]
2 

was used where x2 is the position at some point in time for a vehicle starting at x1 and traveling at 
velocity v1 for time t and accelerating at a. Because at each instant in time, the speed, 
acceleration, and separation of the vehicles was changing, software routines were developed that 
used the speed and acceleration values of the LV as they were observed in the actual situation at 
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each sample to determine a position of the lead vehicle over time.  The performance of the FV 
was then varied to model different levels and timing of following-driver braking.  In most of the 
analysis, velocity was a measured value.  In parts of the analysis where prediction of a vehicle 
speed was necessary (v2), Equation 26, 
 
v2  v1  at , [26]
 
was used. 
 
Having selected a driver response point as described previously, kinematic analysis was used to 
explore four alternative outcomes to the actual event.  For near-crash situations, the first 
alternative to explore was the no-response alternative.  The FV speed and average acceleration 
levels at the point just before the driver’s response were used to project forward in time had the 
driver not responded to the forward event. This computation provides a prediction of FV speed 
at each time interval, as well as position on an absolute coordinate system.  In this way, the event 
can be generalized beyond the responses of the involved driver.  Initial conditions of the event 
are used, while a range of alternative driver responses are considered.   
 
As mentioned earlier, the LV position during this time period was calculated according to that  
vehicle’s observed speeds and accelerations over time.  At this point, some specifics on the use 
of the radar data are necessary. During kinematic analysis of the crashes and the near-crashes, it 
became apparent that computation of LV deceleration levels using the time derivative of range 
rate added to the measured acceleration of the FV would over estimate decelerations of the LV 
once heavy braking began by the FV driver.  Essentially, once heavy deceleration began in the 
FV, this deceleration appeared to outweigh the computed relative acceleration.  This was 
observed when comparing estimated acceleration of the LV to factors such as whether its brake 
lights were on or whether the LV was still moving when the acceleration levels indicated it 
should have stopped. For this reason, LV acceleration from the point of FV driver response 
forward was computed based on LV acceleration in the five samples prior to the FV driver 
response point. LV speed was taken directly from radar.  These two values were used in the 
position equation to compute an absolute position of the LV in the same coordinate system set up 
for the FV. Because the velocity term in the position equation (Equation 25) is much larger than 
the acceleration term, and the velocity term is updated with each sample, rather than 
accumulating error, any difference between the estimated LV acceleration and actual LV 
acceleration appeared to generate minimal error in computation of a position. This was verified 
by comparing computed position against radar range measures at various times during the event, 
or computing the time it took the lead vehicle to travel a known distance. 
 
The next three alternatives identified the points in time where the FV vehicle would need to 
begin braking at three possible braking levels (i.e., 0.5g, 0.675g, or 0.85g) to avoid colliding with 
the LV. These three levels of deceleration were used to explore outcome of the investigation 
over a range of braking levels. The process for making this estimate was to use the time-series 
data from just before the driver response point value to estimate speeds, acceleration, and 
position had the FV driver not intervened.  In Figure 19, axis B illustrates a case where this 
forward prediction is used until the tested level of braking began.  Once the tested level of 
braking begins, the estimates of speeds and positions utilize the tested level of braking.   
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Figure 19.  Braking Alternative Investigation Method 

In some cases, the tested braking level would need to be initiated at a point prior to the driver 
response point.  This case is illustrated on axis C in Figure 19.  At each point in time, based on 
the actual vehicle values, the predicted vehicle values, or the acceleration level being tested, the 
spatial relationship of the two vehicles was computed.  An iterative software routine was 
developed to perform the predictions for the FV and use the actual measures for the LV to find 
the point in time where the FV driver needed to employ each of the three levels of braking to just 
avoid colliding with the LV.  In iterations testing brake onset points occurring prior to the driver 
response point, the measured FV speeds and accelerations for the appropriate point in time were 
used.   
 
To provide an illustration of the kinematic analysis method, results are provided in graphical 
form for one of the events.  Range, speed, accelerations, pedal actuation, headway, and status of 
the LV brake lights over time are portrayed in the first three plots in Figure 20.  In the fourth 
plot, vertical lines indicate the point in time where the three levels of braking would need to be 
present to avoid this particular crash. 
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Figure 20. Time-Series Data With Required Braking Points Indicated (Time Axis in 

Tenths of a Second) 


To avoid collision, the specified level of braking must be achieved at or before the time indicated 
and that level of deceleration must be maintained until the situation is resolved, either by the FV 
stopping or decelerating to the point where collision will not occur.  If the braking used was 
portrayed over time, it would make a discrete step from the initial level of acceleration or 
deceleration present before driver response, to the specified level of braking (e.g., 0.5g), and 
would remain at that level until the situation resolved.  The FV deceleration shown in Figure 20 
is recast in Figure 21 as a 0.5g that represents the type of braking simulated in the three braking 
level alternatives. 
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Figure 21. Simulation Braking Plot 

This method of kinematic analysis was applied to each of the events to find the point in time 
where braking was required in each case.  An adjustment to this approach to provide some 
consideration of braking onset will be described and used in the algorithm simulation section of 
this report.  

DRIVER PERFORMANCE MEASUREMENT 

After completing the data preparation tasks, software code was developed to collect various 
driver performance measures from the data.  The software reviewed the eye-glance codes found 
in the 4.5 s prior to the response point and output summary values for each of the events.  
Braking behavior following the driver response was also collected and summarized for each 
event. Measures of the conditions at the time of the driver response and at the point in time of 
away glances were also tabulated by the software.  In each case, the software wrote text files for 
each event.  These files were then cumulated and analyzed using SAS and Microsoft Excel. 

ALGORITHM EVALUATION  

Once the algorithms were developed and tested, the real data were then input into the algorithms 
to determine at what point in the events the alert would occur.  Figure 22 illustrates the method 
used for reviewing algorithm performance.   

43 




 
 

  

      

Vehicle 
e series 

ues
Conve

Varia  
Comput  
Reconstr

Data Eye glance 
and LV brake at 

each change in state

Data

alization 
are

Cumulat  
Even

 

 

  

 
 

 

 
 

 

 

Algorithm Model 
– Knipling et al. 

Algorithm Model 
– CAMP Linear  

Algorithm Model 
– NHTSA  

Time series of 
alert states 

Time series of 
alert states 

Time series of 
alert states 

Alert Data 

Data – 
sensor tim -

val 
rsion 

ble 
ation & 
uction

 -

 Read 

Data Visu 
Softw 

ed Real 
t Data 

Driver Performance 
Measurement 

Original 100-Car 
Data Collection 

CAS Evaluation 

Kinematic 
Analysis 

Frequency 
of Alerts 

Percent able to 
respond 

Cumulated Alert 
and Real Data 

Figure 22. Schematic Highlighting CAS Evaluation 

The approach builds on the methods used in countermeasure benefits estimations work by Najm 
et al. (1995). Time-series data from the vehicle sensors were transferred into the algorithm 
models.  Each algorithm model output when the alerts were on or off, in time-series format to 
align with the real data.  The kinematic analysis provided points in time where braking was 
required based on the real data. Combining when braking needed to occur and when alerts 
would be given permitted an estimation of what crash avoidance improvement might be obtained 
if an alert were present. There are three components to this estimate: (1) the timing of the alert 
presentation; (2) the kinematic analysis; and (3) an estimate of human response time.  These 
components are shown as blocks below the time axis in Figure 23.   
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Figure 23. Estimate Approach 

First, the recorded real data are input into the algorithm model (labeled with a 1 in Figure 23).  
Within the data, some situation or event develops ahead.  For example, a lead vehicle stops 
abruptly. The algorithm model predicts the point in time where an alert would start.  Next, the 
previously described kinematic estimate (labeled with a 2 in Figure 23) is used to identify the 
point in time when specific level of braking is required to avoid collision.  The final component 
(labeled with a 3 in Figure 23) uses estimates of human brake response time to determine what 
percentage of the population would be able to respond at each point in time after the alert is 
issued. 

In actual driving, it is often difficult to identify the “start” of a crash or near-crash event.  This is 
in part because crashes are frequently a result of multiple causes, each of which may begin at 
different times.  Identification of the start can depend on what information is available.  This 
methodology avoids attempting this determination by measuring the time between when 
algorithms would alert (alert model) in actual events and when braking is required to avoid a 
crash (kinematic model).  Having identified this time, it is compared to the reaction-time 
distribution to estimate the percentage of the people who could respond in the available amount 
of time.   

Though the stimuli are somewhat different, Taoka (1989) provides a distribution of brake 
reaction times based on work by Sivak et al. (1982).  In the work of Sivak et al., a lead vehicle’s 
brake lights were illuminated, without deceleration, and the time until the following vehicle 
decelerated was measured.  The data were gathered on public roads without the measured 
subject being aware of the testing.  This distribution was used as the estimate of human response 
time.  This distribution was converted into a cumulative distribution describing the percentage of 
the population who would be expected to respond by each point in time after an alert.  This 
cumulative distribution is shown in Figure 24.  Selection of distributions drawn from driver 
responses in other scenarios could be selected to test other situations and warning types, or to 
explore evaluation model sensitivity.  An example of the cumulated data, the alert states, the 
human response distribution, driver glance behavior (distraction was present), and the kinematic 
estimates of where braking is required is shown for an event in Figure 25. 
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Figure 24. Human RT Cumulative Distribution Estimate 
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The first three plots in Figure 25 repeat the vehicle data shown in Figure 20.  An active alert for 
each of the algorithms is indicated in the fourth plot.  Knipling and the CAMP linear are 
presented in the first two horizontal lines.  The three stages of the NHTSA algorithm are shown 
below the Knipling and the CAMP linear lines. In the bottom plot in Figure 25, the response-
time distributions for each of the alerts are presented, illustrating how the number of people able 
to respond grows as time progresses following the start of the alert.  Note that the response-time 
distributions for the Knipling and NHTSA imminent alerts are located on top of one another in 
the bottom plot because they started at the same point in time.  The intersection of a vertical 
braking-required line with the reaction-time distribution (indicated with a horizontal arrow 
pointing to the y-axis) identifies the estimated percent of the population expected to respond 
successfully using that braking level.  This plot also includes a characterization of where the 
driver was looking at each point in time.  The numeric eye-glance location codes presented 
earlier in this report (Table 9) were divided by 10 for presentation in the plot. 

Two estimates were made of algorithm performance that involved differences in the timing of 
the brake application.  In the first estimate, shown as Estimate 1 in Figure 26, deceleration at the 
three different tested levels was applied as a step function, and the percentage of people able to 
respond at that time was identified.  The second approach, shown as Estimate 2 in Figure 26, 
used an additional delay in application of the brakes.   
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Figure 26. Model Approach With Two Estimates Illustrated 
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This delay is based on the time observed to reach different levels of braking found in the crash 
and near-crash investigation. Based on these values, Estimate 2 incorporated an additional 0.2 s 
to reach 0.5g, 0.3 s to reach 0.675g, and 0.5 s to reach 0.85g.  Deceleration was still applied as a 
step function and starting from the point where braking was needed in Estimate 1 (based on 
kinematics), translated the time when braking was necessary earlier in time.  If no alert is issued, 
the delay is not necessary.  In actual braking, there is an onset to reach the maximum level that 
extends over the time periods used.  If the addition of a delay for a higher braking level 
translated the start point prior to the start point of a lower level, the start point for the lower 
braking level was used for it and the higher braking level.  This type of situation arose in low-
speed situations where the time to start braking at two levels might have been near each other in 
time.  Estimate 1 provides a reference point, and is of interest, for example, when considering 
automated braking systems or potential benefit of pre-charging a braking system based on CAS 
state. However, Estimate 2 more realistically characterizes results that would be expected for 
typical vehicle braking systems and human operators.  For this reason, most of the reported 
results use Estimate 2. 

A component of the NHTSA algorithm will cause it to have lower performance when evaluated 
with this evaluation method.  This NHTSA algorithm reduces its expected reaction time if a 
driver is already braking at the time of alert.  The algorithm evaluation method performed here 
uses the same reaction time estimate regardless of whether or not the driver is braking at the time 
of alert. In crash and near-crash events where the driver is braking at the time of the alert, the 
NHTSA algorithm will have lower estimates of the percentage of the population able to respond 
than would be able to respond if real reaction time is lower for drivers when their foot is already 
on the brake.  Following-vehicle acceleration levels are summarized in the results section of this 
report. Time to reach a deceleration level is primarily composed of driver response time.  
Though they are part of the total solution, the times for onset discussed in the previous paragraph 
comprise a small part of the overall response time and outcome. 

49 




 

 

 

 

  

 

 
 

 

 

CHAPTER 4: RESULTS 


DRIVER PERFORMANCE 

The driver performance measures describe where drivers were looking prior to responding, the 
conditions in the forward path during the event, and the deceleration drivers employed during 
response. The following sections present descriptive statistics of the measures as well as 
analyses conducted to explore possible relationships between the variables. 

Visual Behavior Prior to Driver Response 
As was described in the Literature Review section, driver attention, and specifically visual 
behavior, appears to be a key component crash involvement.  CAS design also may benefit from 
consideration of where drivers are looking in the seconds prior to response.  Various analyses 
were conducted on visual behavior during the events to assist with these issues.  The first 
analysis recorded the amount of time drivers were looking to different locations during the 4.5 s 
leading up to response. Reported times can consist of a single glance or the total time from 
multiple glances.  Where response was not present, as in some of the crashes, the 4.5 s prior to 
collision was used. Table 10 provides a summary of the average times spent looking at different 
locations during this period. 

Table 10. Allocation of Glances During 4.5 s Prior to Driver Response (or Collision) 

Time Categories 

Number of 
events with 

glances meeting 
category Average (s) 

Minimum 
(s) 

Maximum 
(s) 

Time spent looking forward 81 2.9 0 4.5 
Time spent not looking forward 76 1.6 0 4.5 
Time spent looking at an object other than 
cell phone 

9 0.2 0 4.5 

Time with eyes closed 47 0.4 0 4.5 
Time looking at mirrors 17 0.1 0 1.8 
Time looking forward with the lead vehicle 
brake lights on before response (not 
necessarily continuous) 

76 1.3 0 4.5 

Time looking at cell phone 5 0.1 0 3.9 

The first column describes the categories into which the time was allocated.  Seventy-six of the 
83 events involved drivers not looking forward for some period of time during the 4.5 s.  Of the 
4.5 s, the average time not looking forward was 1.6 s.  Of the cases of not looking forward, 
fourteen were to a cell phone or some other object.  Seventeen cases were to mirrors.  In 76 cases 
the driver was looking forward prior to response while LV brake lights were on for an average of 
1.3 s and as long as 4.5 s. 

The next analysis considered the conditions present in the forward scene at the time drivers 
looked away, first by evaluating whether the LV brake lights were on when drivers looked away, 
and then by considering the visual angle of expansion and TTC-related measures.  Table 11 
provides the number of events found where the FV driver looked away from forward after the 
LV brake lights were illuminated.  This includes both LVS and LVM cases. 
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Table 11.  Number of Events Where Driver Looked Away From Forward With LV Brake 
Lights on in Near-Crashes 

Events that include looks away from 
forward with LV brake lights on 

Number Glance Location 
16 Eyes closed 0.2 s or longer 
6 Forward left 
6 Object 
5 Forward right 
3 Cell phone 
3 Center console 
2 Window - left 
1 Mirror - right 
1 Mirror - left 
1 Mirror - center 
44  

The duration of time for which the brake lights were on in these events prior to the away-from-
forward glance ranged from 0.1 s to 2.8 s with a mean of 0.7 s.  Some of these events involved 
multiple glances away to one or more locations.  The first location in the sequence of glances 
was used in the frequency count.  Excluding blinks (eye closure of 0.1 s or less), in 44 of the 83 
events, drivers looked away from a lead vehicle when its brake lights were already illuminated. 
The most common look away was for eye closure.  There were 16 events in which the driver 
closed his or her eyes for 0.2 s or longer when the LV brake lights were already illuminated.  The 
average duration was 0.9 s.  Glances forward left and glances to an object were the next most 
common with six events having glances to these locations with the LV already braking.  Glances 
to the forward right were the next most common with five cases.  Forward-left and -right glances 
may be a result of drivers evaluating lane-change options to get out from behind a braking 
vehicle, or they may be for other reasons.   
 
To explore possible relationships between the forward road conditions and where drivers look, a 
method similar to one introduced by Tijerina (1999) was used (see Literature Review section of 
this report).  In the present analysis, a value for several variables was taken at the last sample 
before a driver looked away from the forward view.  In this analysis, only near-crashes were 
used.  Glances to any location other than directly forward in the road were considered as an away 
glance.  Left-forward or right-forward glances were considered away because though forward, 
they indicate the LV is likely not within the driver’s foveal vision.  The variables considered 
were the difference in speed between the vehicles (range rate), time-to-collision, and rate of 
angular expansion of the lead vehicle, and were considered as possible factors influencing how 
long the driver looked away.  In addition to glances away from forward, eye closures lasting 0.2s 
or longer were included in this analysis.  Figure 27 shows a plot relating the difference in speed 
between the vehicles at the last point a driver was looking forward to the length of time the 
driver looked away from forward. 
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Figure 27. Duration of Away Glances Related to Difference in Speed – Predictions Not 

Significant (Negative Indicates Closing on LV) 


As would be expected based on other driver visual behavior research, most glances away were 
less than approximately 1.5 to 2 s.  Regression analysis was conducted on two sets of data.  One 
set included all of the points shown above.  A second set eliminated points where the closure rate 
on the lead vehicle was theoretically below threshold (i.e., rate of visual expansion was less than 
0.003 rad/s). Neither regression function indicated significant relationships between the 
measures.   

The rate of visual expansion (thetadot) just prior to a glance away related to duration of away 
glance is shown in Figure 28 for cases where the FV was closing on the LV.  It appears that 
longer glances away may be more common when thetadot is near zero.  In other words, when 
relative motion is not apparent, drivers judge that it is safe to look away for longer periods of 
time than if the vehicles are clearly closing. 
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Figure 28. Duration of Away Glances Related to Rate of Visual Expansion (thetadot – 
rad/s) 

Figure 29 and Figure 30 present plots of the duration of glances away from forward relative to 
TTC and TTCa at the time of the away glance.  Though the figures extend to 20 s, there is some 
indication in the literature that the driver’s ability to accurately judge TTC becomes questionable 
at greater than 10 s TTC (Hoffmann & Mortimer, 1994; Schiff & Detwiler, 1979).  The lowest 
TTC found at the time of a glance away was 1.8 s.  The remaining TTCs were above 2.0 s. No 
relationship appears to be present in the data between duration of away looks and TTC.   
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Figure 29. Duration of Away Glances Related to TTC (s) 

Similarly, no clear relationship is visible when viewing TTCa related to the duration of an away-
from-forward glance (Figure 30).  Five TTCa observations at the time of a look away were found 
below 2 s. 
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Figure 30. Duration of Away Glances Related to TTCa (s) 

Correlations between various glance behavior measures and driving performance measures were 
explored using regression analysis in an attempt to identify relationships that might be used in 
CAS evaluation or design. Table 12 indicates various relationships explored using the near-crash 
events. 
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Table 12. Investigated Variables as Possible Predictors of Responses 

Possible Predictor Dependent Variable Rsquares 
Time not looking forward Mean deceleration 

Maximum deceleration 
<0.02, not significant 
(NS) 

Time lead vehicle brake 
lights were on while the FV 
driver was looking forward 

Mean deceleration 
Maximum deceleration 

<0.01, NS 

Time not looking forward Time between last 
forward look and 
maximum deceleration 

0.38, p<0.0001 (Figure 
31) 

Time not looking forward Time from response to 
maximum deceleration 

0.1, NS 

Time not looking forward Time to maximum 
deceleration/ 
Deceleration duration 

0.005, NS 

Forward measures at time of 
response: range, FV speed, 
FV acceleration, LV speed, 
LV acceleration, range rate, 
headway, TTC, TTCa, and 
thetadot. 

Time not looking 
forward 

all less than 0.15, NS 

Results of the regression of the amount of time not looking forward in the 4.5 s related to the 
time between when the driver looked forward and when maximum braking was achieved is 
shown in Figure 31. 
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Figure 31. Time to Reach Maximum Deceleration Versus Time Not Looking Forward in 
4.5 s Prior to Response 

 

 

These results could indicate either that when drivers spend more time looking away, they must 
brake more quickly when they do brake, or it could mean that in these events drivers reacted 
more quickly after having spent time looking away.  Based on reaction time literature, the former 
is more likely (i.e., in the events observed, more rapid response was necessary in cases where the 
driver had been looking away more). 

Driving Situation at Response 
To characterize the events according to the conditions ahead of the FV at the time drivers 
responded, range, FV speed, FV acceleration, LV speed, LV acceleration, range rate, headway, 
TTC, TTCa, and thetadot (rate of change of visual angle) were captured for a single time sample 
(~0.1 s) and were each captured at a point prior to intervention.  For the near-crashes, these 
values were collected one sample prior to driver response.  In crashes in which no driver 
response was present prior to impact, values were taken from 2.0 s prior to impact, which on 
average would place the point at a similar TTCa as the response points selected in the near-
crashes. 

In Table 13, the values indicate ranges at the selected point of less than 72 ft in all of the crashes.  
FV speeds for the crashes ranged from 37.5 mph to as low as 1.4 mph.  FV drivers were both 
accelerating and decelerating at this point.  LV speeds ranged from 0 mph to 18.6 mph.  The FV 
was closing on the LV in all but one case.  Headway ranged from a minimum of 0.8 s to a 
maximum of 2.6 s.  TTCs were under 10 s with an average of 3.1 s.  TTCa, which takes LV 
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acceleration into account, shows time-to-collisions as low as 0.9 s with an average of 1.8 s.  
Table 14 provides the same type of data for the 70 near-crashes.  To provide an overall 
description of all of the events, these forward measures for both crashes and near-crashes are 
combined in Table 15.  Frequency distributions are provided in Figure 32 and means are shown 
in Figure 33. 

Table 13.  Forward Conditions at Driver Response in Crashes 

FV FV LV LV Range 
Range Speed Accel Speed Accel Rate Headway TTC TTCa Thetadot 

Crashes 
average 

min 
max 

(ft) 
22.0 
4.9 
71.8 

(mph) 
9.6 
1.4 
37.5 

(g) 
0.00 
-0.11 
0.13 

(mph) 
3.6 
0.0 
18.6 

(g) 
-0.13 
-0.51 
0.04 

(mph) 
-6.0 

-20.8 
0.0 

(s) 
1.7 
0.8 
2.6 

(s) 
3.1 
1.2 

10.1 

(s) (rad/s) 
1.8 0.127
0.9 -0.004
3.4 0.407

 
 
 

 

Table 14.  Forward Conditions at Driver Response in Near-Crashes 

FV FV LV LV Range 
Near- Range Speed Accel Speed Accel Rate Headway TTC TTCa Thetadot

Crashes (ft) (mph) (g) (mph) (g) (mph) (s) (s) (s) (rad/s) 
average 41.6 32.6 -0.06 21.9 -0.20 -10.1 0.9 3.2 2.0 0.1 

min 3.5 1.9 -0.41 0.0 -0.52 -30.2 0.3 0.6 0.3 0.0 
max 120.9 61.5 0.31 54.4 0.29 2.4 3.3 11.5 4.9 0.7 

 

 

Table 15.  Forward Conditions at Driver Response in Both Crashes and Near-Crashes 
Crashes 

and FV FV LV LV Range 
Near- Range Speed Accel Speed Accel Rate Headway TTC TTCa Thetadot 

Crashes (ft) (mph) (g) (mph) (g) (mph) (s) (s) (s) (rad/s) 
average 38.7 29.0 -0.05 19.0 -0.2 -9.4 1.0 3.2 1.9 0.10

min 3.5 1.4 -0.41 0.0 -0.5 -30.2 0.3 0.6 0.3 -0.02
max 120.9 61.5 0.31 54.4 0.3 2.4 3.3 11.5 4.9 0.75
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Figure 32.  Distributions of Forward Roadway Measures 2 s Prior to Impact in Crashes 
and at Time of Driver Response for Near-Crashes 



 

There were 14 events where the FV was traveling at less than 10 mph and 22 events where the 
FV was traveling at less than 20 mph.  Only two events occurred where the FV was traveling 
above 60 mph. Approximately one-half (55%) of the events involved headways of between 0.5 s 
and 1 s (note: this is taken at the time of driver response or 2 s prior to impact).  Vehicles were at 
less than 100 ft separation at this time in all of the events, with 57 percent at less than 40 ft.  
TTCa was less than 4 s at this point in 83 percent of the events, and less than 2 s in 55 percent of 
the events. No driver responses were recorded with the rate of visual expansion between 0.003 
and –0.003 rad/s. 

For additional understanding of how the events vary according to speed, the reported measures 
for range rate, thetadot, TTC, and TTCa are provided in Figure 33.  Whiskers on the bars 
indicate one standard deviation above and below the mean. 
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Figure 33. Forward Roadway Means by Speed at Time of Driver Response 

 
As reflected by the overall mean, the following vehicle is, on average, decelerating slightly at the 
time of response across the speed range except for below 10 mph, where the mean is positive.  
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The mean range rate at response does not rise continually with increasing following vehicle 
speeds, but the spread in the values appears to generally increase with speed.  Mean headway at 
the time of response is generally higher when following vehicle speed is below 10 mph.  At 
higher speeds, the mean headway at the time of response (i.e., driver response point) is fairly 
consistent at approximately 1 s, until the highest speed events, where headways appear to be 
shorter.  Mean range generally increases with speed. TTCa is lower than TTC due to the 
inclusion of the deceleration of the lead vehicle in TTCa.  TTC has a larger spread in values than 
TTCa.  By looking at the rate of angular expansion (thetadot) in the events, all of the drivers’ 
responses were found to occur at what is considered above the 0.003 rad/s threshold for detecting 
the rate of angular expansion, and thetadot appears to be well above threshold in all but two of 
the events.  Two near-threshold events occurred within the 30–40 mph speed range.  Higher 
speed events have a smaller thetadot at the time of driver response, as well as less variance.   

Deceleration Performance During Event 
A deceleration indicating driver response was present in three of the 13 crashes.  In two of these 
decelerations, it appeared the driver had reached a maximum, which then was followed by lower 
deceleration up to the crash.  The maximums reached in these two events were 0.87g and 0.80g.  
The mean deceleration was 0.66g for both events.  In the third, it appeared the driver had not 
reached a limit in deceleration before collision occurred.  For the near-crashes, beginning with 
the driver response point, the deceleration that was employed during the event was measured in 
several ways.  Table 16 provides descriptive statistics of these measures.   

Table 16.  Summary Values Describing Deceleration Responses for Near-Crashes 

Near-
Crashes 
-0.38 
-0.72 
2.8 
-0.4 
1.1 

0.4 

Measure 
Average mean deceleration used (g) 
Average maximum deceleration used (g) 
Average duration of deceleration used (s) 
Average difference between mean level of braking and maximum level of braking (g) 
Average time from where no response is visible to where the maximum level of braking 
occurs (s) 
Average fraction of overall deceleration time at which maximum deceleration occurs 

Maximum deceleration was almost twice the mean deceleration for near-crashes.  Figure 34  
provides a cumulative distribution of the mean and maximum decelerations observed for the 
near-crashes. 
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Figure 34. Mean and Maximum Decelerations Obtained in Near-Crashes 

 

 

Output from the eye glance analysis was used to characterize the amount of time the drivers were 
looking forward before responding to the event.  Figure 35 provides four cumulative 
distributions related to driver response timing and decelerations.   
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Figure 35. Various Response Measures in Near-Crashes 

 

 

 

These values include situations where drivers looked forward and needed to respond rapidly, as 
well as situations where the driver was looking forward for some time before the event occurred.  
Approximately 55 percent of the drivers responded by starting deceleration within about 1 s of 
looking forward. The time from the start of the deceleration (driver response point) to the 
maximum deceleration, the time from when the driver looked forward to when his or her 
response began, and the duration of the decelerations are also shown.   

KINEMATIC ANALYSIS 

A number of kinematic measures provide useful support information surrounding the design of 
CAS algorithms.  After identifying where braking at different levels was required, comparing the 
timing to when drivers actually responded (i.e., driver response point) provides an indication of 
both the time available to get to the braking level and the criticality of the event at the time of 
response. Summary values for each of the three levels are provided in Table 17 and distributions 
are provided in Figure 36. 

64 




Average time between driver 
response and need for 

specified braking to avoid 
collision 

0.5g 0.675g 0.85g 
Average (s) 0.5 0.8 1.0 

Min (s) -1.1 -0.7 -0.4 
Max (s) 2.1 2.5 2.7  
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Table 17. Summary Values of Time Available to Initiate Deceleration 

Figure 36. Distributions of Time Available to Initiate Deceleration at the Time of the 

Driver’s Response 


Negative time values indicate that a crash could no longer be avoided at the levels of braking 
indicated. At the time of driver response, for approximately 22 percent of events, 0.5g or higher 
average braking was no longer sufficient to avoid collision.  Approximately 10 percent were too 
late to avoid with a 0.675g average deceleration, and 5 percent required greater than 0.85g to 
avoid colliding. 

Having looked at how much time drivers had available to avoid a collision using various levels 
of deceleration, the next analysis characterized the actual time drivers used to reach 0.5g, 0.675g, 
and 0.85g. Because in most of the rear-end crashes, the driver either never responded until after 
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impact, or responded too late to achieve a maximum in braking before impact, only two of the 
rear-end crashes provided deceleration data which could be reliably interpreted for determining 
this value. In one of these, the driver reached 0.5g in 0.3 s and 0.675g one-tenth of a second later 
at 0.4 s, but never reached 0.85g before impact.  The driver in the second crash reached 0.5g, 
0.675g, and 0.85g all within the same sample defining 0.3 s after response started.  For more 
data, the near-crashes were investigated in the same manner. Because near-crashes did not result 
in collision, it is difficult to evaluate whether the driver was braking to the full capability of 
themselves or the vehicle, or simply to some level that was sufficient.  Figure 37 provides the 
distributions of the times used to reach each of the three deceleration levels.   

Figure 37. Frequency of Times to Reach Stated Deceleration Level in Near-Crashes 

Each of the distributions are skewed to the right, with the tail probably being composed of less 
critical events or events within the sample where a driver descended to the indicated braking 
level in a more controlled manner than those in the shorter cases. Based on these distributions, it 
appears that 0.2 to 0.3 s would encompass most of the decelerations to 0.5g. The highest level of 
0.85g appears to take at least 0.3 s for most drivers.  It is difficult to explain the two nodes in the 
0.675g distribution. The second node may represent more controlled cases and the first the more 
critical cases. The next discussion considers the time between the driver’s response and when 
braking at a specific level was required. 

To estimate the time available for the driver (or some automated system) to brake and avoid for 
each event, the time prior to the predicted impact point was compared to where in time braking at 
some level was necessary to avoid impact (Table 18).  The predicted impact point is the point in 
time where had the driver not intervened, the vehicles would have collided.  The time this would 
occur was compared to the point in time where each of the three levels of braking would need to 
begin to avoid the predicted impact.  Cumulative distributions of the times needed to brake prior 
to impact are presented in Figure 38.  
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Table 18.  Time Before Impact Where Braking Is Needed 

 

Average time prior to 
predicted impact where 
the braking at specified 

level is needed. 
0.5g 0.675g 0.85g 

Average (s) 1.0 0.8 0.6
Min (s) 0.1 0.1 0.1
Max (s) 2.0 1.7 1.7
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Figure 38.  Time Needed to Brake to Avoid 

All of the events could be avoided if braking at 0.85g was started and maintained 1.7 s prior to 
predicted impact or earlier. All of the events could be avoided with a 0.5g deceleration starting 
2.0 s prior to the predicted point of impact.  Approximately 20 percent of the events could be 
avoided if the driver responded with 0.5g or greater of braking as late as half a second before the 
predicted impact. 

ALGORITHM EVALUATION 
The algorithms did not alert for all 83 of the events tested.  In Table 19, each of the algorithms is 
listed with the number of events for which an alert was generated.  Reasons for not generating 
alerts include the parameter selection within the algorithms, algorithm logic, state of driver 
inputs, and vehicle speed requirements.  The three levels of the NHTSA alert each had specific 
criterion as described in previous sections.   
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Table 19. Number of Events in Which an Alert Occurred for 83 Events Tested 

 

Number of Percent of 
Events With Events With 

Algorithm Alert Alert 
Knipling 81 98%
CAMP Linear 71 86% 
NHTSA Early 45 54% 
NHTSA Intermediate 42 51% 
NHTSA Imminent 56 67% 

  

Estimate of Percentage of Population Avoiding Collision 
In this investigation, the primary method of evaluating the effectiveness of the alert algorithms is 
to estimate the percentage of the population who would have been able to respond to an alert in 
time to brake and avoid collision.  Results of Estimate 1, which is an estimate of the percentage 
of the population who would be expected to have avoided the collision if the alert was their first 
indication of the event, are provided in Table 20 for the 13 crashes. 

Table 20.  Estimate 1 Based on 13 Crashes - Population Who Could Avoid Collision – No 
Delay in Reaching Specified Braking Level Included 

 
Based on 13 Crashes 

Estimated Percent of the Population Who Could Avoid 
Collision – No inclusion of brake onset time to reach stated 

deceleration level 

 
Braking Level Maintained 
After Response 0.5g 0.675g 0.85g 

  mean mean mean 
Knipling 63% 67% 70% 
CAMP Linear 22% 29% 30% 
NHTSA Early 11% 13% 14% 
NHTSA Intermediate 11% 13% 14% A

lg
or

ith
m

 

NHTSA Imminent 11% 13% 14% 

These estimates provide an overall comparison of the algorithms using the crashes selected from 
the 100-Car Study data.  For example, based on the timing of the Knipling algorithm, an average 
of 63 percent of the population would have been able to avoid collision if they responded 
instantaneously with a 0.5g deceleration level.  If people respond with an instantaneous 0.675g 
deceleration, 67 percent would avoid collision in the crashes tested.  If the alert would not have 
been generated, a zero is included in the average for percent of the population who could avoid 
collision based on the alert.    
 
In the next analysis, a delay time to reach each of the tested levels of braking was incorporated.  
These delay time estimates encompass the time required for the vehicle to reach the three levels 
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Based on 13 Crashes 

Braking Level Maintained 
After Response 

Knipling 

CAMP Linear 

NHTSA Early 

NHTSA Intermediate 

NHTSA Imminent 

Estimated Percent of the Population Who Could Avoid 

Collision – Includes 0.2 s to reach 0.5g, 0.3 s to reach 0.675g
 

0.5g

mean

52%

22%

10%

9%

9%

and 0.5 s to reach 0.85g 

 0.675g

 mean

 53% 

24% 

12% 

12% 

12% 

0.85g 

 mean 

45% 

23% 

12% 

12% 

12% 

 

 

   

  

  

  

  

  

 

of braking, and were discussed previously in the Kinematic Analysis section of this report.  
Estimates that include a factor for the delay times are provided in Table 21. 

Table 21. Estimate 2 Based on 13 Crashes - Population Who Could Avoid Collision – Delay 
Used Before Reaching Specified Braking Level 

With the delays included, the percentage avoiding collision drops in Estimate 2 as compared to 
those found in Estimate 1.  The same two estimates were made for the 70 near-crashes.  Results 
of this analysis are shown in Table 22, and Table 24 provides the results for both the crashes and 
near crashes. 

Table 22. Estimate 1 Based on 70 Near-Crashes - Population Who Could Avoid Collision – 
No Delay in Reaching Specified Braking Level Included 

Based on 70 Near-Crashes 
Estimated Percent of the Population Who Could Avoid 

Collision – No inclusion of brake onset time to reach stated 
deceleration level 

Braking Level Maintained 
After Response 0.5g 0.675g 0.85g 

mean mean mean 

Knipling 52% 65% 70% 

CAMP Linear 68% 78% 80% 

NHTSA Early 39% 47% 51% 

NHTSA Intermediate 34% 43% 47% 

NHTSA Imminent 35% 48% 55% 
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Based on 13 Crashes and Estimated Percent of the Population Who Could Avoid Collision 
70 Near-Crashes - Includes 0.2 s to reach 0.5g, 0.3 s to reach 0.675g and 0.5 s to reach 

 0.85g  

Braking Level Maintained 
 After Response 0.5g 0.675g  0.85g 

  mean   mean  mean 

Knipling 47%  55%  57% 

CAMP Linear 56%  63%  64% 

NHTSA Early 30%  36%  37% 

NHTSA Intermediate 26%  32%  33% 

NHTSA Imminent 25%  33%  35% 
 

 

Table 23. Estimate 2 Based on 70 Near-Crashes – Population Who Could Avoid Collision – 

Delay Used Before Reaching Specified Braking Level 


Based on 70 Near-Crashes 

Estimated Percent of the Population Who Could Avoid 
Collision 

- Includes 0.2 s to reach 0.5g, 0.3 s to reach 0.675g and 0.5 s 
to reach 0.85g 

Braking Level Maintained 
After Response 0.5g 0.675g 0.85g 

mean mean mean 

Knipling 46% 55% 57% 

CAMP Linear 62% 70% 71% 

NHTSA Early 34% 41% 41% 

NHTSA Intermediate 29% 36% 37% 

NHTSA Imminent 28% 37% 39% 

Table 24. Estimate 2 Based on 13 Crashes and 70 Near-Crashes – Population Who Could 

Avoid Collision – Delay Used Before Reaching Specified Braking Level 


All subsequent analyses will make use of the delay for brake response values provided by 
Estimate 2.  To investigate the performance of the different algorithms according to speed, both 
crashes and near-crashes were considered together and results were separated into groups based 
on the speed of the FV at the time of driver response in the actual event.  Table 25 provides the 
estimates of these values for each of the algorithms for individuals responding with a 0.5g 
deceleration.  The values are presented graphically in the Figure 39. 
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Number 

0.5g Braking Response 

of CAMP NHTSA NHTSA NHTSA 
events Knipling Linear Early Intermediate Imminent 

< 10 14 47% 7% 0% 0% 0%
10-20 8 61% 72% 0% 0% 0%ph

) 
 (m 20-30 14 61% 81% 43% 38% 38%

30-40 30 43% 62% 31% 26% 25%

FV
 S

pe
ed

40-50 9 37% 57% 48% 34% 28%
50-60 6 42% 65% 42% 41% 45%
60-70 2 6% 32% 0% 0% 0%

  
        

       
       
       
       
       
       

Table 25.  Estimates 2 – Population Who Could Avoid Collision Using a 0.5g Deceleration – 
Separated According to Speed of the FV 

 



 

 

 

 

 

 

Figure 39. Percentage of the Population Who Could Avoid Collision Given Using a 0.5g 
Deceleration in Response to the Indicated Alert – by FV Speed 

As can be seen in the figure, at lower speeds, the CAMP Linear and NHTSA algorithms are 
disabled, and so do not provide alerts.  The CAMP Linear warnings at below 10 mph are due to 
an alert occurring at above 10 mph, but the driver responding at below 10 mph.  Investigation of 
the events in the 30-to-40-mph speed group indicates that the downward notch in the 30-to-40-
mph speed range for the NHTSA alert is primarily due to the reaction time adjustment for 
braking drivers that was previously discussed.  Actual levels are expected to be higher. 
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Number 

0.675g Braking Response 

of CAMP NHTSA NHTSA NHTSA 
events Knipling Linear Early Intermediate Imminent 

< 10 14 49% 8% 0% 0% 0%
10-20 8 62% 73% 0% 0% 0%ph

) 
 (m 20-30 14 67% 85% 49% 46% 48%

30-40 30 56% 74% 40% 34% 36%

FV
 S

pe
ed

40-50 9 48% 69% 59% 45% 41%
50-60 6 52% 72% 45% 44% 57%
60-70 2 28% 63% 0% 0% 7%

  
        

       
       
       
       
       
       

 
 

The same method was applied for a braking level of 0.675g and results are provided in Table 27 
below.  Figure 40 presents these values graphically. 

Table 26.  Estimates 2 - Population Who Could Avoid Collision Using a 0.675g Deceleration 
– Separated According to Speed of the FV 



 

 Figure 40. Percentage of the Population Who Could Avoid Collision Using a 0.675g
 
Deceleration in Response to the Indicated Alert – by FV Speed 
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Due to the higher braking level employed at response, the benefits found with a 0.675g response 
(Figure 40) are generally greater than those found for a 0.5g response (Figure 39).  At the 0.675g 
level and above, the CAMP algorithm appears to perform better in the highest speed case than 
the other algorithms.  This could potentially be due to the use of the linear regression adjustment 
for acceleration of the lead vehicle and relative speeds.  For individuals braking with a 0.85g 
deceleration, Table 27 presents the results at the different speeds and is followed by Figure 41 
illustrating the results. 

Table 27.  Estimates 2 - Population Who Could Avoid Collision Using a 0.85g Deceleration 
– Separated According to Speed of the FV 

Number 
0.85g Braking Response 

of CAMP NHTSA NHTSA NHTSA 
events Knipling Linear Early Intermediate Imminent 

< 10 14 49% 8% 0% 0% 0%
10-20 8 62% 73% 0% 0% 0%ph

) 
 (m 20-30 14 67% 85% 49% 47% 48%

30-40 30 58% 75% 41% 35% 37%

FV
 S

pe
ed

40-50 9 51% 71% 62% 48% 44%
50-60 6 52% 72% 45% 44% 60%
60-70 2 32% 66% 0% 0% 11%



 

 Figure 41. Percentage of the Population Who Could Avoid Collision Given Using a 0.85g 
Deceleration in Response to the Indicated Alert – by FV Speed 

Conditions at Alert 
Further understanding of alert performance in the crashes and near-crashes is achieved by 
reviewing the relationship of the vehicles at the time of alert and the state of various values at the 
time of the alert.  Figure 42 through Figure 51 describe the mean values as well as maximum and 
minimum values for the range to the forward vehicle, speed of the FV, relative speeds, speed of 
the lead vehicle, headway, acceleration levels of the two vehicles, TTC, TTCa, and rate of 
angular expansion (thetadot). Where vehicles are separating, generating a negative time for TTC 
and TTCa, the TTC and TTCa values are not included in the summary values portrayed in the 
figures. Table 19 provides the number of events in which an alert would occur in the events for 
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each of the alerts tested. The summary values described in Figure 42 through Figure 51 are 
based on the number of alerts shown previously in Table 19. 
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Figure 42. Mean Range at Alert for the Algorithms 
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Figure 43. Mean FV Speed at Alert for the Algorithms 
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Figure 44. Mean LV Speed at Alert for the Algorithms 
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Figure 45. Mean Relative Speed at Alert for the Algorithms 
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Figure 46. Mean Headway at Alert for the Algorithms 
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Figure 47. Mean FV Acceleration at Alert for the Algorithms 
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Figure 48. Mean LV Acceleration at Alert for the Algorithms 

0 
20 
40 
60 
80 

100 
120 

Knipling et al CAMP Linear NHTSA Early NHTSA 
Intermediate 

NHTSA 
Imminent 

T
T

C
 (

s)
 

Algorithm 

TTC atAlert 
Mean 

Maximum 

Minimum 

Figure 49. Mean TTC at Alert for the Algorithms 
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Figure 50. Mean TTCa at Alert for the Algorithms 
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Figure 51. Mean Thetadot (Rate of Visual Expansion) at Alert for the Algorithms 

Most alerts were issued at ranges of 100 ft or less, though there were cases of longer range 
warnings (Figure 42). The minimum speeds at which the different alerts are active is evident in 
Figure 43 when looking at the minimum values at which alerts were issued.  The Knipling 
algorithm has alerts occurring at minimum FV speeds of approximately 2 mph, while the CAMP 
Linear algorithm minimum values were approximately 11 mph and the NHTSA algorithm has a 
minimum alert speed of approximately 21 mph.  LV speeds at the time of the alert ranged from 
stationary to almost 60 mph.  In most of the events, the LV was going less than 40 mph at the 
time of the alert (Figure 44).  The difference in speed between the vehicles at the time of alert 
was less than 15 mph in almost all of the cases (Figure 45).  Headway at the time of alert was 
between 0.5 and 2 s in most cases (Figure 46). Alerts were issued in cases where the FV was 
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accelerating and when it was decelerating.  The NHTSA early and intermediate alerts did not 
occur at high levels of FV deceleration, as expected based on the squelching of these two levels 
of the NHTSA algorithm when the FV driver is already braking (Figure 47).  
 
The mean acceleration of the LV at the time of alert was –0.2g, with –0.4g and greater being 
within one standard deviation of the mean.  An LV acceleration of 0.77g was included in the data 
(Figure 48).  The shortest TTCs occurred with the Knipling algorithm, which had the shortest 
TTC at alert of 0.9 s.  The other algorithms had minimum TTCs of above 1.1 s.  When not 
including negative TTCs, the maximum TTCs at alert was at approximately 100 s (Figure 49).  
For the alerts that were restricted to speeds above 10 mph, no alerts occurred at TTCa values of 
less than 1.2 s.  The Knipling alert, which operated at lower speeds, provided some alerts at less 
than 0.7 s TTCa.  The maximum TTCa at alert was 6.6 s (Figure 50). 
 
Thetadot values at the time of alert are below 0.1 rad/s for the CAMP linear and NHTSA 
algorithms.  The distributions of the alerts extending below zero thetadot indicates that alerts 
were generated in closing situations as well as separating situations.  The Knipling algorithm 
remained active down to lower speeds; therefore, it alerted where vehicles were much closer than 
the other algorithms.  This is indicated by the higher mean thetadot and larger distribution for 
this algorithm. 

Alert Frequency 
The frequency of false alarms is an important design issue in any CAS.  To provide a preliminary 
method for considering the number of false alarms when using real-driving data, a set of three 
trip files were selected from the driving data, each with a different driver.  Descriptive data on 
the three trip files used are shown in Table 28. 

Table 28.  Description of Alert Frequency Test Trips 

Number 
Maximum Average of In-

Time Speed Speed Path 
Trip Driver (min) Miles (mph) (mph) Vehicles 

1 middle age male 22 6.6 47.0 18.7 56 
2 young male 14 3.8 43.5 17.9 17 

middle age 
3 female 26 13.7 65.2 32.6 19
 Totals 62 24     92 
 Averages 21 8 52 23 31

 

 

A total of 24 miles were driven in the three trips with a total drive time of approximately one 
hour.  Maximum speeds for the trips ranged from 43 to 65 mph with average speeds between 18 
and 33 mph.  In total, the 24 miles are primarily composed of suburban driving with a section of 
highway driving.  In an actual algorithm evaluation, the selection of test trip files would be done 
in a more systematic manner.  Trip files might be selected in a stratified method to include 
factors of interest to designers and those appropriate for ensuring the population of drivers is 
accommodated.  Possible factors might include a range of driving regimes, for example, and 



 

 

 

 
 
 

  
  

 
 

 

drivers identified to have various driving styles.  No attempt was made to select a certain driver 
type (e.g., high risk or crash involved) beyond the demographics described above. 

The elements of a CAS that are being tested here, specifically the logic governing timing of 
alerts, are generally separate from the strategies employed in selecting relevant targets from 
among the many potential targets passing through a sensor’s field of view. Target selection is 
usually made prior to delivering a target to the CAS alert algorithm components considered in 
this report.  To focus on the CAS alert algorithms, once the trip files were selected, they were 
reviewed by an experimenter who used video data to identify in-path vehicles.  In this manner, 
an experimenter acted as a substitute for CAS target selection processing. Radar targets that did 
not represent in-path vehicles were not provided to the algorithms.  Vehicles were considered in-
path based on the route the driver followed. For example, in curves, only the vehicle ahead in 
the driver’s lane was included in analysis.  Having eliminated radar targets that were not relevant 
to this investigation, the data with only the remaining targets were processed by each of the alert 
algorithm models.  As in the previous algorithm testing, no modeling was done of the duration of 
alerts.  If situations arose in the tested trips where a specific algorithm’s trigger criteria 
“flickered” (e.g., conditions were present which made an alert go on and off and back on), 
multiple alerts might be included in these values, though in implementation there may be 
controls to limit this behavior.  However, this type of situation would not be common due to the 
difficulty of maintaining kinematic conditions around the threshold of an alert condition. 

The result of this investigation is an approximate frequency of the number of alerts that would 
occur during the trip tested based on targets presented in an identical manner to three different 
alert algorithms.  No effort was made to evaluate the appropriateness of the alerts.  In this 
review, the alerts are only evaluated on whether the frequency is realistic for implementation.  
Both the NTHSA high sensitivity (“far”) alert and the NHTSA low sensitivity (“near”) alerts 
were included in this analysis.  Table 30 provides the frequency of alerts found in each of the trip 
files as well as totals by alert algorithm across the three tested trips. 

Table 29. Alert Frequencies Per Trip 

 Alert Frequency 

Trip Knipling 
CAMP 
Linear 

NHTSA 
Early - 
High 

Sensitivity 

NHTSA 
Intermediate 

- High 
Sensitivity 

NHTSA 
Imminent 

- High 
Sensitivity 

NHTSA 
Early - 

Low 
Sensitivity 

NHTSA 
Intermediate 

- Low 
Sensitivity 

NHTSA 
Imminent 

- Low 
Sensitivity 

1 9 10 3 1 1 1 1 1 
2 7 7 0 0 0 0 0 0 
3 4 4 1 1 1 1 1 1 

Total 20 21 4 2 2 2 2 2 

As can be seen in the table, the Knipling and CAMP linear alert had higher numbers of alerts 
than the NHTSA alert at high and low sensitivity.  It is also possible to see that the NHTSA alert 
at high sensitivity generated two more alerts than the NHTSA algorithm at low sensitivity.   

Other trip-related measures can be used to normalize the values for further comparison.  Table 30 
provides the number of alerts that might be expected from each algorithm per 100 miles driven. 
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Table 30. Estimated Number of Alerts per 100 Miles Driven 

Estimated number of alerts per 100 miles driven 

Knipling 
CAMP 
Linear 

NHTSA 
Early - 
High 

Sensitivity 

NHTSA 
Intermediate 

- High 
Sensitivity 

NHTSA 
Imminent 

- High 
Sensitivity 

NHTSA 
Early - 

Low 
Sensitivity 

NHTSA 
Intermediate 

- Low 
Sensitivity 

NHTSA 
Imminent 

- Low 
Sensitivity 

83 87 17 8 8 8 8 8 

Due to the difficulty in eliminating false alarms while maintaining a conservative algorithm, 
some CAS designers are considering the potential value in incorporating eye tracking to assist in 
making the decision on whether or not to alert.  Using the crashes and near-crashes in this 
investigation, the driver’s location of gaze was recorded at the time each of the alerts was 
initiated (Table 31).   

Table 31. Number of Alerts by Location of Driver’s Gaze at the Start of the Alert 
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Knipling et al  52  0 7 2 1 2 1 3 1 0 4 3 4 1  81  36%  
CAMP Linear  52  0 4 1 0 0 0 0 3 0 1 3 6 1  71  27%  
NHTSA Early  35  1  3 0 0 0 0 1 2 0 1 0 0 0  43  19%  
NHTSA Intermediate  31  1 3 1 0 0 0 1 2 0 1 0 1 0  41  24%  
NHTSA Imminent  44  1 4 1 0 0 0 0 2 0 2 1 1 0  56  21%  

If alerts are squelched when the driver was looking forward, the number of alerts generated for 
these near-crashes and crashes would be reduced to approximately 20 percent to 40 percent of 
the number of alerts issued if this strategy was not implemented.     

Review of the visual stimuli at the time of alerts may provide additional guidance regarding the 
potential benefit of alerts in different conditions.  Because these alerts occurred in crash and 
near-crash events, they may indicate that drivers need alerts even when they are looking forward.  
The CAS may recognize the need to brake in some scenarios before the driver, even if he or she 
is looking ahead and can discern the closure rate on an LV.  One approximation for when this 
would occur is when the rate of angular expansion is below the proposed threshold of 
0.003 rad/s. The rate of angular expansion at the time the alert would occur is tabulated below in 
Table 32 for each of the alert algorithms tested. 
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Table 32.  Number and Percent of Alerts Issued in Situations Where the Rate of Angular 
Expansion Was Less Than 0.003 Rad/s 

 

Percent of Alerts 

Total 
Angular Expansion 
Below 0.003 Rad/s 

With Angular 
Expansion Below 

0.003 Rad/s 
Knipling 81 2 2%
CAMP Linear 71 6 8% 
NHTSA Early 43 5 12% 
NHTSA Intermediate 41 4 10% 
NHTSA Imminent 56 1 2% 

    

 

 

As can be seen in Table 32, at the time of some alerts, drivers may not be able to perceive the 
rate of closure on the LV.  For example, when the NHTSA algorithm is set to the most 
aggressive of the three alternative settings, approximately 11 percent of the early alerts would 
have initiated at a point where the driver may not have been able to perceive the rate of closing 
on the LV.  At first guess it might be expected that this situation arises only in cases where the 
LV is too far away for the driver to evaluate the rate of closure.  However, further investigation 
of events in which these alerts occurred indicates that in 11 of the 12 events, the headway at the 
time of alert was less than 2.1 s and range was less than 100 ft (Table 33). 

Table 33.  Frequency of Events in Which an Alert Was Provided When Thetadot Was 
0.003 Rad/s or Less at the Time of Alert 

Range (ft) Frequency
0ft-25 0
25ft-50 3
50ft-75 4
75ft-100 4
100ft-125 0
125+ 1
Total 12

 
 
 
 
 
 
 

Table 34 provides descriptive statistics for the 11 cases where alerts were issued at less than 100 
ft.  One event occurred in which an alert was issued at 153 ft; values for this event are shown in 
Table 35. 
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Table 34.  Descriptive Statistics for Forward Measures Where Thetadot Was 0.003 Rad/s 
or Less at the Time of Alert 

 Average Maximum Minimum 
Range (ft) 65 97 28 
Speed of SV (mph) 38 56 29 
Acceleration of SV (g) 0.02 0.07 -0.10 
Speed of LV (mph) 37 55 27 
Acceleration of LV (g) -0.39 -0.16 -0.77 
Range Rate (mph) -0.9 -0.3 -2.9 
Headway (s) 1.2 2.1 0.5 
TTC (s) 59.6 100.6 23.0 
TTCa (s) 3.3 4.8 2.5 
Thetadot 0.0020 0.0030 0.0008 

 
 

Table 35.  Values for Forward Measures for Single Case Where Range Was Greater Than 
100 ft and Thetadot Was Less Than 0.003 Rad/s at the Time of Alert 

Range (ft) 153
Speed of SV (mph) 22
Acceleration of SV (g) 0.09
Speed of LV (mph) 21
Acceleration of LV (g) -0.31
Range Rate (mph) -1.4
Headway (s) 4.7
TTC (s) 72.8
TTCa (s) 5.3
Thetadot 0.0005

 
 
In events such as these, it appears that although the driver may be looking ahead, an alert may 
provide them information earlier than they are able to perceive it themselves.  However, if the 
driver looks ahead at the time of the alert, he or she may not be able to perceive the rate of 
closure. 



 

 

 

 

 

CHAPTER 5: CONCLUSIONS AND REAR-END CAS RECOMMENDATIONS 

OVERVIEW 

The objective of this effort was to investigate the potential for using real crash and near-crash 
data for evaluation of CAS algorithms.  To this end, a method was presented that can be used to 
evaluate forward collision warning algorithms, as was demonstrated here, or other types of 
warning algorithms.  The method avoids relying on response times of a relatively small number 
of involved drivers by estimating CAS benefit using distributions from a larger population.  
Opportunities for further development of the approach are discussed later in these conclusions. 

There may be some differences from the crash sample used in this analysis and the near-crashes 
when considered on certain dimensions.  For example, in terms of deceleration responses, means 
appear to differ in average duration of a deceleration or time to reach maximum braking.  It is 
difficult to determine if this is due to the crash decelerations being cut short or to a more rapid 
response. Speeds at the start of crash events may be generally lower than the average for the 
near-crashes. The two groups were combined in most parts of this analysis to provide both 
realistic events and a broader range of event severities and conditions.  Averages in the 
evaluation of the percentage of people who could respond to the alerts in time for the near-
crashes were higher than the crashes primarily because the crashes include more low-speed 
scenarios than the near-crashes.  The NTHSA and CAMP linear algorithms do not function at the 
lowest speeds, and so benefit estimates are lower.  It is also expected that the near-crashes could 
include less critical (i.e., less pressing, immediate, severe) events on average than the crashes.   

DRIVING PERFORMANCE 

Eye Glance Analysis 
The drivers on average spent more than one-third of the 4.5 s prior to response not looking 
toward the LV.  Approximately 9 percent of the time was with the eyes closed.  Looking away 
from the LV after it had begun braking was common.  More than half of the events involved 
drivers looking away from the LV while its brake lights were on.  This occurs in LVS and LVM 
situations.  In LVM situations, it may be that drivers’ expectancy of strong LV braking was low.  
In LVS events, the drivers may be diverting attention to other tasks, either driving-related or 
secondary. 

The number of events that arose while drivers were looking away from the LV for driving-
related reasons was approximately equal to the number of events that arose when the driver was 
attending to non-driving-related tasks.  Twenty percent of the events arose while the driver was 
looking to the sides or mirrors for driving reasons.  These driving-related glances primarily 
involved drivers performing driving-related tasks such as checking a gap prior to a lane change 
or monitoring other traffic.  It appears that glances away from forward for driving reasons may 
commonly be coincident with LV decelerating scenarios.  Examples of this are scenarios where 
the FV is traversing a yield area or making a right turn behind an LV, and also scenarios on 
highways where drivers attempt lane changes after noticing that an LV is braking.  Use of 
mirrors was also present during this latter scenario, but the related glances appear to be shorter in 
duration and less frequent. 
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Based on the distribution of thetadot at the time of driver response in the near-crashes, it appears 
that the drivers are responding when the rate of change in the visual angle is greater than 
0.003 rad/s. Determination of whether the visual angle rate of expansion becoming detectable is 
guiding driver response is not clear from the present analysis.  Braking when thetadot is 
considered detectable agrees with the values found by Kiefer et al., in which drivers selected 
last-second braking at or above the visual angle expansion rate of 0.003 rad/s.  It is possible that 
some of the present data represent cases where drivers are aware they are closing on an LV based 
on perceiving a change in visual angle (theta), but response is delayed until the rate of change in 
visual angle (thetadot) is perceptible.  Had earlier perception of the closure rate been possible, 
the driver may have responded earlier. 

In the investigation of glances away from the road, in cases where the rate of visual expansion 
was near zero, glances of both long and short duration were observed.  Where the absolute value 
of the rate of visual expansion was greater, it appears that drivers do not take longer glances 
away. Counter to what might be expected, both high closing rates and high separation rates 
appear to have lower numbers of long duration away glances.  This dataset, which is based on 
near-crashes and crashes, primarily of cases of the FV closing on the LV, does not include a 
sufficient number of data points to explore this possible relationship fully.  Tijerina (1999) 
presents range-rate values that show a similar distribution as was found for thetadot in the 
present investigation. Based on his data and this data, it appears that the likelihood of longer-
duration away glances is higher when range rate, or thetadot, is closer to zero and shorter when it 
is either positive or negative. Additional factors may be present in situations where vehicle are 
separating that could explain a tendency for shorter away glances.  When a driver is merging, or 
slowing to make a turn, the vehicle is likely traveling at slower speeds than surrounding traffic.  
In these situations, away-from-forward glances are needed, but driving demands limit the 
opportunity for longer away glances. Based on the data tested, TTC and TTCa do not appear to 
provide guidance in how long people look away from the road.  However, the dataset is biased 
toward scenarios of short TTC and TTCa.  It does appear that the frequency of glances away at 
TTC and TTCa of below 2 s is low. 

Driver Response in Crashes and Near-Crashes 
The maximum decelerations achieved in the events tested were much greater than the mean 
deceleration across the event.  Though the 90th percentile maximum deceleration was close to 
1.0g, the 90th percentile mean deceleration was 0.6g. None of the events tested involved a mean 
deceleration of greater than 0.75g. A 0.6g mean deceleration is greater than the 90th percentile of 
the responses employed in the near-crashes.  Based on this, the 0.6g value proposed for the 
Knipling algorithm and the 0.55g used in the imminent alert levels of the NHTSA algorithm 
appear to be high compared to the average level found in these events.  The CAMP algorithm 
required deceleration values that are a function of vehicle speeds and lead vehicle accelerations 
were not analyzed. 

Based on the time for drivers to reach their maximum deceleration, and time to reach the tested 
0.5g, 0.675g, and 0.85g levels, a system delay of approximately 0.2 s that commonly appears in 
the algorithms does not appear to be sufficient.  Whether because of vehicle dynamics, human 
behavior, or brake system performance, a value of 0.3 s appears to be a better estimate of a 
median value, particularly for braking at higher levels.  A delay of 0.4 s may be appropriate as a 
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conservative value, and this value (and even higher) may be useful in modeling efforts 
describing more modulated driver inputs than are found in emergency situations. 

Avoidance Timing 
To avoid collision in all but one of these events, if 0.5g braking could be achieved by 2 s prior to 
the predicted impact point, and then maintained, the collision would be avoided.  Though it 
should not be expected with a human controlling braking with current braking systems, if 0.85g 
could be reached and maintained, braking could be as late as 1.4 s prior to what otherwise would 
end in a collision.   

The fastest responses in the sample did not reach their maximum deceleration level until 0.3 s 
after looking forward.  In approximately 35 percent of the events, at the time of the driver’s 
response, it was too late to successfully avoid collision with less than a 0.5g-braking response. If 
a response was started 1.2 s (including 0.2 s for brake onset) earlier, all of the events could have 
been managed with a 0.5g deceleration. If the responses were started 0.7 s (including 0.2 s for 
brake onset) earlier, all but the latest 10 percent of the responses could have managed the event 
with 0.5g. 

CAS ALGORITHM EVALUATION 

Percentage Able to Avoid Collision 
For approximations of realistic results for an algorithm, the NHTSA values will be used because 
the false alarm rate for this algorithm is closest to an acceptable level for implementation.  In this 
approach, the set of 13 crashes and 70 near-crashes are used to represent the distribution of 
events that occur in the population.  If the NHTSA algorithm (i.e., all three levels) false-alarm 
rate is acceptable, an optimistic estimate would be that approximately 30 percent of drivers 
traveling at greater than 20 mph would avoid collision with an LV if the algorithm was set at the 
“near” setting, and they responded with a 0.5g average deceleration. The higher brake response 
tests (i.e., 0.675g and 0.85g) indicate greater potential benefit, but it does not appear drivers will 
achieve these higher average levels of braking.  If all FV speed events are included in the 
estimate, because this alert is not functioning at low speeds, approximately 20 to 25 percent of 
drivers would be able to avoid collision.  Reducing the false alarm rate, and the controls 
necessary to select valid targets, will likely lower these estimates.  Other factors such as possible 
changes in driver behavior and alert effectiveness in achieving the necessary driver response are 
not included in this estimate and could affect results.  

Beyond complete collision avoidance, benefits would be attained in terms of crash mitigation.  
Though drivers are not able to avoid a collision completely, the speed differences at impact 
would be reduced.  Additionally, the evaluation performed here only involved braking as a driver 
response. Steering is typically possible at later TTCs, and in combination with braking, would 
potentially permit collision avoidance in some cases. 

Based on the 100-Car Study crashes, rear-end collisions with the FV traveling at low speeds 
appear to be fairly common.  As the analysis of benefits according to FV speed shows, other than 
the Knipling algorithm, the algorithms tested here do not address these low-speed events (see 
discussion of algorithm performance at different speeds in the Results section).  A set of factors 
appear to come together in some low-speed driving situations that cause these events.  When at 
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low speed, the driving task more frequently requires glances to the side, to the rear, and to 
mirrors (e.g., when merging, turning at an intersection, or when in a yield lane).  In Table 31, 
comparison of the number of times drivers were looking away from forward at the time of a 
Knipling alert versus the other alerts indicates the potential benefit of a low-speed-capable 
algorithm.  The Knipling algorithm presented 15 alerts when drivers were looking to windows, 
mirrors, or the center console.  The CAMP linear algorithm, which appears to have similar alert 
frequency levels to the Knipling algorithm, alerted for half this number.  The main reason for this 
difference is that the Knipling algorithm generated warnings below 10 mph, where these glances 
occur, whereas the other algorithms were disabled at these speeds.  In addition to the need for the 
driver to look around more at these speeds to guide his or her own vehicle, the traffic at low 
speeds is also less predictable than at higher speeds, requiring the driver to monitor more areas 
where threats could develop. Algorithms designed for low-speed situations may reduce the 
numbers of these types of collisions. 

Conditions at Alert 
The largest differences between the algorithms, measured according to percentage of the 
population able to avoid collision, arise according to differences in the conditions ahead and 
whether or not the alerts are active (i.e., enabled based on speed), and appear less related to 
specific timing or braking assumptions of the alerts.  This is illustrated primarily by the 
minimum and maximum measures of range, relative speed, headway, and thetadot.  Looking at 
the CAMP Linear algorithm, for example, the means and distributions are similar to the other 
alerts, but it alerted in a few cases much earlier than the other algorithms.  The Knipling 
algorithm conditions include shorter distance and lower speed cases than the other algorithms 
because it did not include a lower speed limit.  

Frequency of Alerts 
The method of selecting trip files and using human selection of in-path targets provided a useful 
first cut at estimating false-alarm rates by considering frequency of alerts of any types.  The 
method could also be used for investigating the influence of driving styles on alert frequency 
incorporating data from drivers of different types (e.g., conservative or aggressive) in the test 
data. 

The event duration, human response time, average driver braking levels, and frequency of alerts 
with the tested algorithms begin to define the challenge of developing a CAS that provides 
sufficient warning without having a high number of false alarms.  If a TTCa of 1.8 s is an 
example of a point that will be the late limit of a driver response, adding a driver response-time 
distribution to this of 1.5 s to account for about 75 percent of the population, a TTCa of 2.3 s is 
necessary. The TTCa values for the alerts tested were all at approximately this timing, yet they 
appear to have alert frequency levels that are above what would be acceptable. 

Though it is difficult to determine a frequency of alerts that is considered too high, the frequency 
of alerts found for the tested Knipling and CAMP linear algorithms would clearly be annoying.  
The frequency of the NHTSA algorithm appears to be closer to an acceptable level, but would 
probably still be annoying. 

For a somewhat distant reference point, of 30 potential alert sounds tested by CAMP (Kiefer et 
al., 1999), participants responded on average from neutral to moderate/strong agreement that the 
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tested sound would be annoying if it occurred once a day where a driving response was not 
needed. If this is interpreted to mean that no alert sound would be acceptable once a day as a 
false alarm, then this would be a lower limit.  The participants also considered if the sounds 
occurred once a week and on average and, “perhaps disagreed” that some of them would be 
annoying if heard once a week. From the frequency values developed here, the NHTSA alert 
would occur at least once a day for people who drive 100 mi a week or more.  Additional alerts 
would potentially arise in the field due to target selection issues that were eliminated from 
consideration here. As algorithms develop, evaluation of the impact of alert frequency on alert 
effectiveness will also need to be considered. 

Graded Alerts 
The graded alert of the NHTSA Algorithm provides an opportunity to evaluate one type of 
graded warning.  This alert uses three levels of expected response braking to determine when to 
activate the three levels of alert.  In the crashes and near-crashes tested, with the algorithm tuned 
to the “near” setting, the stages of the alert occurred 0.3 s apart or less.  A review of the events 
when using the “far” setting provided similar separation.  In the events found in the frequency 
analysis tests using compete trips and both the “near” and “far” sensitivity settings, 0.2- to 0.3-s 
separations were also found, though two cases of an early warning were present without the 
occurrence of the intermediate and high warning levels.  Though further testing is warranted, 
based on these values, it appears that three levels of warning are probably more than will be 
useful to drivers, and the time separation between even two levels may be too short for drivers to 
process and act on. 

Speeds and Warnings 
The NHTSA algorithm had lower performance in the 30-to-40-mph FV speed cases than it did in 
the adjacent speed groups.  Investigation of these events indicated that for many of them, the 
driver was braking at some level prior to where conditions for the alert were met.  With the 
NTHSA algorithm, braking in the host vehicle shifts the reaction time estimate used in the 
algorithm to 0.5 s and disables the two lower urgency alerts.  For these reasons, the alert was 
presented later and so the reaction-time distribution indicated fewer people would respond in 
time.  How well this logic performs is unknown at this time.  The values reported here represent 
the case where reaction time for braking drivers is the same as reaction time of non-braking 
drivers. The Knipling alert had late warnings when the FV was driving above 30 mph as 
compared to when the FV was driving between 10 and 30 mph.  Similar to the Knipling 
algorithm, performance of the CAMP linear algorithm was best where the FV was traveling 
between 10 and 30 mph.  The alerts may have better performance in low-speed events (once the 
speed cut-off is met) and again at freeway speeds.  This may be due to better outcome of braking 
at the lower speeds and longer range initial conditions at the higher speeds.  In events occurring 
in the middle speed range, it takes time for deceleration to reduce speed, and initial conditions 
may not be long enough to permit the alert to give early warning.  For the one case tested at 
above 60 mph, the estimates of the percentage able to respond is low, as it was for the other 
algorithms.  The NHTSA algorithm provided similar or greater benefit in the 50-to-60-mph 
events as it did in the 20-to-30-mph events. 
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CAS ALGORITHM EVALUATION METHOD 

To provide the most understanding of why an algorithm is failing, it is helpful to monitor the 
subcomponents of an algorithm and in cases of algorithm logic, sometimes it is necessary to 
observe the transition of the algorithm states over time.  This permits determination of cases 
where different components of an algorithm become active or where one term of an equation is 
overriding others. It also permits determination of cases where an algorithm breaks down and 
why. Tracking each level of the NHTSA multistage alert is an example of this.  Other examples 
where this would be useful would be to log the miss-distance calculation in the NHTSA equation 
during the events or the deceleration-required term in the CAMP linear algorithm.  Tracking 
these components permits CAS evaluation to go beyond determination of the equation working 
or not working to actually determining what adjustments might be made to components of an 
algorithm to improve performance.  Determination of the elements of an algorithm that will be 
monitored can vary according to the purpose of an investigation and type of algorithm. 
Similarly, the utility of pass-fail criteria may vary.  Early in the development process, pass-fail 
may be less valuable than directional guidance on parts of the algorithm or the complete 
algorithm.  Later in an evaluation process, pass-fail criteria may be useful. 

FUTURE WORK 

There are a number of areas where further work would be useful. The most obvious next step is 
to use the method, software, and prepared data developed here to test new algorithm models or 
variations on the tested models, for example by using different response braking estimates or 
adjustments to decision logic.  It may also be of benefit to further develop the current evaluation 
method.  Alternative RT distributions might be considered, including distributions based on 
response to an alert, on specific warning modalities, on real crash and near-crash data, or from 
other experimental scenarios.  Accommodation in the evaluation process of an RT for when 
drivers are already braking may improve application across algorithm models.  It appears that the 
need for additional braking arises fairly frequently when a driver is already braking.  Specific 
analysis of the frequency of this scenario and countermeasure approaches appears appropriate. 

In the process of developing a CAS evaluation method, this investigation collected additional 
detail on the conditions present in a set of 70 crash and 13 near-crash events.  In many ways, 
further investigation of individual groups of events and expanding to a larger set of events is now 
desirable. For example, investigating responses that occurred immediately after the driver 
looked forward would permit quantification of a response time following different types of 
distraction. Considering only the cases where drivers were looking forward throughout the event 
might permit evaluation of detection thresholds and determination of whether drivers are 
delaying response according to some measurable stimuli. Also related to the visual stimuli, of the 
73 events used in this investigation, the tested algorithms provided alerts in 11 events at a time 
that the rate of visual expansion that is believed to be below what is perceptible.  The timing 
needed to make judgments and the behavior of drivers in these situations are factors that 
influence the efficacy of alerts. Specific investigation of the progression of visual stimuli in real 
crash and near-crash events and the timing of driver responses may assist in CAS design and 
understanding of driver perception and response in these situations.  Due to the frequency of 
low-speed events and the identification of conditions which may be associated with low-speed 
events, targeted investigations of this driving regime and countermeasures design are also 
warranted.   
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Additional quantification of the decelerations present in near-crash, crash, and baseline 
conditions may be useful for several reasons.  Identification of differences may permit 
differentiation of these types of events based on the nature of the deceleration.  For example, the 
shape of the onset and offset may be different in emergency situations when compared to 
baseline conditions.  Identification of differences in these areas could be useful during data 
mining as well as CAS design.  Further understanding of the capabilities of drivers and vehicles 
in achieving and maintaining different levels of braking is also necessary.  Further analysis of 
decelerations should quantify decelerations over time—for example, how drivers maintain or 
adjust braking during an event. 

A number of areas exist where better understanding of glance behavior may provide benefit.  
With changes that have occurred in vehicle design, in-vehicle systems, and the prevalence of 
handheld electronic devices, it may be appropriate to update measurements of time spent 
monitoring the forward road in baseline conditions as well as within crash or near-crash 
conditions. The present findings describing driving-necessary-but-away-from-forward glances 
expose a possible opportunity for driver support.  A CAS system that is able to supplement the 
driver in situations where away glances will occur will reduce the number of crashes that arise in 
these situations. Further understanding of glances related to driving scenarios is needed, 
including factors such as roadway geometry, relationships between involved vehicles, and driver 
expectations in different scenarios.  The frequency of FV drivers looking away from an already 
braking LV indicates a need for further understanding of factors that influence FV driver 
expectancies.  

In the present study, no attempt was made to define the start of an event or detection time.  While 
difficult if not impossible to determine implicitly, some approximation of where these events 
occur in time would be useful in relating performance in real events to experimental situations.  
In subsequent analysis, it may be possible to develop a set of definitions that could provide 
acceptable definitions of the start of an event.   

In this investigation, steering as a method of avoidance was not considered.  Further 
investigation of the frequency and timing of any steering maneuvers would be beneficial.  It may 
be possible to determine the presence of differences in timing of steering responses and to 
evaluate steering thresholds such as those proposed by Talmadge et al. (2000), Smith, Najm, and 
Lam (2003), and Kiefer et al. (2003).  Steering as a response to alerts could then be incorporated 
into estimates of benefits from the algorithms. 

The evaluation performed in this investigation described benefit in terms of complete collision 
avoidance. Additional work could quantify benefits obtained through reduction in impact 
speeds. 

Investigation of the degree to which the selected events replicate the distribution of events found 
in the general rear-end crash event population may be useful.  If differences are found, a 
weighting system could then be applied to each of the events used in the analysis, or to a 
stratified grouping of the events, to replicate frequencies found in the larger population.  At 
present, however, it appears that the 100-Car Study sample includes a number of events that are 
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common, but that are not present in the commonly used databases.  For example, Dingus et al. 
(2006) found that many accidents are not police reported.  Non-fatal accidents and lower severity 
collisions appear not to make it into databases, whereas they are captured in the 100-Car Study 
data. 

Testing target selection routines using time-series data is also feasible.  Similar to the way in-
path vehicles were isolated in the current investigation, various types of roadway targets, sensor 
signal filters, driving behaviors and other variables could be passed to target selection routines 
and results could be compared across routines. 

The method described in this work provides an approach that will continue to evolve as 
naturalistic data accumulate.  Current efforts to collect larger datasets will provide a broader 
sampling of naturalistic driving and greater numbers of crashes of various types. Accumulation 
of these data will facilitate early design, testing and evaluation of a range of applications in real-
driving situations. 
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