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1 What is NHTSA analyzing, and why? 

The National Highway Traffic Safety Administration (NHTSA) is establishing revised Corporate 
Average Fuel Economy (CAFE) standards for passenger cars and light trucks produced for 
model years (MYs) 2024-2026.  On January 20, 2021, President Biden signed Executive Order 
(E.O.) 13990, Protecting Public Health and the Environment and Restoring Science to Tackle the 
Climate Crisis.  E.O. 13990 directed the agency to review the 2020 final rule that previously 
established CAFE standards for MYs 2021-2026, and to consider whether to suspend, revise, or 
rescind that action by issuing a proposal by July 2021.1  Because of President Biden’s direction, 
NHTSA reexamined the 2020 final rule and proposed to revise the fuel economy standards set in 
2020 so that they would instead have increased at a rate of 8 percent per year annually from MY 
2024 through MY 2026 for both passenger cars and light trucks.  In reviewing public comments 
on that proposal and considering the available information and analysis in light of NHTSA’s 
statutory mandate to insulate our nation’s economy against external factors associated with 
petroleum consumption, NHTSA is issuing final standards that increase in stringency for both 
passenger cars and light trucks at the rates of 8 percent, 8 percent, and 10 percent over MYs 
2024, 2025, and 2026, respectively.  NHTSA estimates that over the lives of vehicles produced 
prior to MY 2030, the final standards will save about 60 billion gallons of gasoline and increase 
electricity consumption by about 180 terawatt-hours (TWh).   

Accounting for emissions from both vehicles and upstream energy sector processes (e.g., 
petroleum refining and electricity generation), NHTSA estimates that the final standards will 
reduce greenhouse gas emissions by about 605 million metric tons of carbon dioxide (CO2), 
about 730 thousand tons metric tons of methane (CH4), and about 17 thousand tons of nitrous 
oxide (N2O).  For example, Figure 1-1 shows NHTSA’s estimate of future CO2 emissions under 
each alternative: 

 
1 86 Fed. Reg. 7037 (Jan. 25, 2021). 
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Figure 1-1 – Estimated Annual CO2 Emissions Attributable to Light-Duty On-Road Fleet 

Also accounting for vehicular and upstream emissions, NHTSA has estimated annual emissions 
of most criteria pollutants (i.e., pollutants for which the U.S. Environmental Protection Agency 
[EPA] has issued National Ambient Air Quality Standards).  NHTSA estimates that under each 
regulatory alternative, annual emissions of carbon monoxide (CO), volatile organic compounds 
(VOC), nitrogen oxide (NOX), and particulate matter 2.5 microns or less in diameter (PM2.5) 
attributable to the light-duty on-road fleet will decline dramatically between 2020 and 2050, and 
that emissions in any given year could be very nearly the same under each regulatory alternative.  
For example, Figure 1-2 shows NHTSA’s estimate of future NOX emissions under each 
alternative. 
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Figure 1-2 – Estimated Annual NOX Emissions Attributable to Light-Duty On-Road Fleet 

On the other hand, as discussed in the Final Regulatory Impact Analysis (FRIA) and Final 
Supplemental Environmental Impact Statement (Final SEIS), NHTSA projects that annual SO2 
emissions attributable to the light-duty on-road fleet could increase modestly under the action 
alternatives, because, as discussed above, NHTSA projects that each of the action alternatives 
could lead to greater use of electricity (for plug-in hybrid electric vehicles [PHEVs] and battery 
electric vehicles [BEVs]).  The adoption of actions—such as actions prompted by President 
Biden’s E.O. directing agencies to develop a Federal Clean Electricity and Vehicle Procurement 
Strategy—to reduce electricity generation emission rates beyond projections underlying 
NHTSA’s analysis (discussed in Chapter 5) could dramatically reduce SO2 emissions under all 
regulatory alternatives considered in the final rule.2 

For the “standard setting” analysis, the FRIA accompanying today’s notice provides additional 
detail regarding projected criteria pollutant emissions and health effects, as well as the inclusion 
of these impacts in the benefit-cost analysis.  For the “unconstrained” or “EIS” type of analysis, 
the Final SEIS accompanying the final rule presents much more information regarding projected 
criteria pollutant emissions, as well as model-based estimates of corresponding impacts on 
several measures of urban air quality and public health.  As mentioned above, these estimates of 

 
2 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-
climate-crisis-at-home-and-abroad/.  (Accessed: February 14, 2022). 

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/
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criteria pollutant emissions are based on a complex analysis involving interacting simulation 
techniques and a myriad of input estimates and assumptions.  Especially extending well past 
2040, the analysis involves a multitude of uncertainties.  Therefore, actual criteria pollutant 
emissions could ultimately be different from NHTSA’s current estimates for this final rule. 

This Technical Support Document (TSD) describes the supporting technical analysis that 
informed agency decision-makers in deciding to establish this rate of stringency increase for the 
CAFE standards for MYs 2024-2026. 

Chapter 1 of this TSD explains how NHTSA develops footprint-based curves for the regulatory 
alternatives that represent different levels of possible CAFE stringency.  Chapter 1 also presents 
the regulatory alternatives themselves and explains how the CAFE Model uses inputs to conduct 
the analysis. 

Chapter 2 of this TSD describes the development of the inputs that the CAFE Model (“the 
model”) uses, including the analysis fleet, the zero emissions vehicle (ZEV) Module, compliance 
credits, technology effectiveness values, technology adoption and availability, technology costs, 
and other inputs. 

Chapter 3 of this TSD describes the technology paths within the model. 

Chapter 4 of this TSD describes consumer responses to manufacturer compliance strategies, 
including macroeconomic assumptions that affect and describe consumer behavior, changes in 
fleet composition (including new vehicle sales and retirement or scrappage of existing vehicles), 
changes in vehicle miles traveled (VMT), and changes in fuel consumption. 

Chapter 5 of this TSD describes how the model simulates the environmental effects of the 
different regulatory alternatives, including greenhouse gas emissions effects, criteria pollutant 
emissions effects, and how health effects flow from those changes. 

Chapter 6 of this TSD describes how the model simulates the economic effects of the different 
regulatory alternatives, in terms of costs and benefits that accrue to consumers and to society. 

Chapter 7 of this TSD describes how the model simulates the safety effects of the different 
regulatory alternatives. 

1.1 Why does NHTSA conduct this analysis? 

When NHTSA promulgates new regulations, it generally presents an analysis that estimates the 
impacts of such regulations, and the impacts of other regulatory alternatives.  These analyses 
derive from statutes such as the Administrative Procedure Act (APA) and National 
Environmental Policy Act (NEPA), from Executive Orders (such as E.O. 12866 and E.O. 
13653), and from other administrative guidance (e.g., Office of Management Budget Circular A-
4).  For CAFE, the Energy Policy and Conservation Act (EPCA), as amended by the Energy 
Independence and Security Act (EISA), contains a variety of provisions that require NHTSA to 
consider certain compliance elements in certain ways and avoid considering other things, in 
determining maximum feasible CAFE standards.  Collectively, capturing all of these 
requirements and guidance elements analytically means that, at least for CAFE, NHTSA presents 
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an analysis that spans a meaningful range of regulatory alternatives, that quantifies a range of 
technological, economic, and environmental impacts, and that does so in a manner that accounts 
for EPCA’s express requirements for the CAFE program (e.g., that passenger cars and light 
trucks are regulated separately, and that the standard for each fleet must be set at the maximum 
feasible level in each model year).   

NHTSA’s decision regarding the final standards is thus supported by, although not dictated by, 
extensive analysis of potential impacts of the regulatory alternatives under consideration.  Along 
with the preamble to the final rule, this TSD, a FRIA, and a Final SEIS, together provide an 
extensive and detailed enumeration of related methods, estimates, assumptions, and results.  
NHTSA’s analysis has been constructed specifically to reflect various aspects of governing law 
applicable to CAFE standards and has been expanded and improved in response to comments 
received to the proposal, to the prior rulemaking, and based on additional work conducted over 
the last several months.  Further improvements, which could not be incorporated in this final rule 
analysis due to timeline considerations, scope of notice, and/or complexity, may be made in the 
future based on comments received to the proposal, the 2021 National Academy of Sciences 
(NAS) Report3 and other additional work generally previewed in these rulemaking documents.  
The analysis for this final rule aided NHTSA in implementing its statutory obligations, including 
the weighing of various considerations, by reasonably informing decision-makers about the 
estimated effects of choosing different regulatory alternatives. 

NHTSA’s analysis makes use of a range of data (i.e., observations of things that have occurred), 
estimates (i.e., things that may occur in the future), and models (i.e., methods for making 
estimates).  Two examples of data include (1) records of actual odometer readings used to 
estimate annual mileage accumulation at different vehicle ages and (2) CAFE compliance data 
used as the foundation for the “analysis fleet” containing, among other things, production 
volumes and fuel economy levels of specific configurations of specific vehicle models produced 
for sale in the United States.  Two examples of estimates include (1) forecasts of future gross 
domestic product (GDP) growth used, with other estimates, to forecast future vehicle sales 
volumes and (2) the “retail price equivalent” (RPE) factor used to estimate the ultimate cost to 
consumers of a given fuel-saving technology, given accompanying estimates of the technology’s 
“direct cost,” as adjusted to account for estimated “cost learning effects” (i.e., the tendency that it 
will cost a manufacturer less to apply a technology as the manufacturer gains more experience 
doing so). 

NHTSA uses the CAFE Compliance and Effects Modeling System (usually shortened to the 
“CAFE Model”) to estimate manufacturers’ potential responses to new CAFE and CO2 standards 
and to estimate various impacts of those responses.  DOT’s Volpe National Transportation 
Systems Center (often simply referred to as the “Volpe Center”) develops, maintains, and applies 
the model for NHTSA.  NHTSA has used the CAFE Model to perform analyses supporting every 

 
3 National Academies of Sciences, Engineering, and Medicine, 2021.  Assessment of Technologies for Improving 
Fuel Economy of Light-Duty Vehicles – 2025-2035, Washington, DC:  The National Academies Press (hereinafter, 
“2021 NAS Report”).  Available at https://www.nationalacademies.org/our-work/assessment-of-technologies-for-
improving-fuel-economy-of-light-duty-vehicles-phase-3, and for hard copy review at DOT headquarters.  
(Accessed: February 14, 2022). 

https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3
https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3
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CAFE rulemaking since 2001.  The 2016 rulemaking regarding heavy-duty pickup and van fuel 
consumption and CO2 emissions also used the CAFE Model for analysis. 

The basic design of the CAFE Model is as follows:  the system first estimates how vehicle 
manufacturers might respond to a given regulatory scenario, and from that potential compliance 
solution, the system estimates what impact that response will have on fuel consumption, 
emissions, and economic externalities.  In a highly summarized form, the following diagram 
shows the basic categories of CAFE Model procedures, and the sequential flow between 
different stages of the modeling.  The diagram does not present specific model inputs or outputs, 
as well as many specific procedures and model interactions.  The model documentation 
accompanying this TSD presents these details. 
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Figure 1-3 – CAFE Model Procedures and Logical Flow 

More specifically, the model may be characterized as an integrated system of models.  For 
example, one model estimates manufacturers’ responses, another estimates resultant changes in 
total vehicle sales, and still another estimates resultant changes in fleet turnover (i.e., scrappage).  
A regulatory scenario involves specification of the form, or shape, of the standards (e.g., flat 
standards, or linear or logistic attribute-based standards), scope of passenger car and light truck 
regulatory classes, and stringency of the CAFE standards for each model year to be analyzed.  
For example, a regulatory scenario may define CAFE standards that increase in stringency by 8 
percent per year for 3 consecutive years.  Additionally, and importantly, the model does not 
determine the form or stringency of the standards.  Instead, the model applies inputs specifying 
the form and stringency of standards to be analyzed and produces outputs showing the impacts of 
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manufacturers working to meet those standards.  Those outputs then become the basis for 
comparing between different potential stringencies.   

Manufacturer compliance simulation and the ensuing effects estimation, collectively referred to 
as compliance modeling, encompass numerous subsidiary elements.  Compliance simulation 
begins with a detailed user-provided4 initial forecast of the vehicle models offered for sale during 
the simulation period.  The compliance simulation then attempts to bring each manufacturer into 
compliance with the standards5 defined by the regulatory scenario contained within an input file 
developed by the user.   

Estimating impacts involves calculating resultant changes in new vehicle costs, estimating a 
variety of costs (e.g., for fuel) and effects (e.g., CO2 emissions from fuel combustion) occurring 
as vehicles are driven over their lifetimes before eventually being scrapped, and estimating the 
monetary value of these effects.  Estimating impacts also involves consideration of consumer 
responses – e.g., the impact of vehicle fuel economy, operating costs, and vehicle price on 
consumer demand for passenger cars and light trucks.  Both basic analytical elements involve the 
application of many analytical inputs.  Many of these inputs are developed outside of the model 
and not by the model. 

NHTSA also uses EPA’s Motor Vehicle Emissions Simulator (MOVES) model to estimate 
“tailpipe” (a.k.a. “vehicle” or “downstream”) emission factors for criteria pollutants,6 and uses 
four DOE and DOE-sponsored models to develop inputs to the CAFE Model, including three 
developed and maintained by DOE’s Argonne National Laboratory.  The agency uses the DOE 
Energy Information Administration’s (EIA’s) National Energy Modeling System (NEMS) to 
estimate fuel prices,7 and uses Argonne’s Greenhouse gases, Regulated Emissions, and Energy 
use in Transportation (GREET) model to estimate emissions rates from fuel production and 
distribution processes.8  DOT also sponsored DOE/Argonne to use Argonne’s Autonomie full-
vehicle modeling and simulation system to estimate the fuel economy impacts for over a million 

 
4 Because the CAFE Model is publicly available, anyone can develop their own initial forecast (or other inputs) for 
the model to use.  The DOT-developed Market Data file that contains the forecast used for this final rule is available 
on NHTSA’s website at https://www.nhtsa.gov/corporate-average-fuel-economy/cafe-compliance-and-effects-
modeling-system#downloads.  (Accessed: March 22, 2022). 
5 With appropriate inputs, the model can also be used to estimate impacts of manufacturers’ potential responses to 
new CO2 standards and to California’s ZEV program. 
6 See https://www.epa.gov/moves.  (Accessed: February 14, 2022).  Today’s final rule uses version MOVES3, 
available at https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves.  (Accessed: 
February 14, 2022). 
7 See https://www.eia.gov/outlooks/aeo/info_nems_archive.php.  (Accessed: February 14, 2022).  Today’s final rule 
uses fuel prices estimated using the AEO 2021 version of NEMS (see  
https://www.eia.gov/outlooks/aeo/pdf/02%20AEO2021%20Petroleum.pdf).  (Accessed: February 14, 2022) 
8 Information regarding GREET is available at https://greet.es.anl.gov/index.php.  (Accessed: February 14, 2022).  
Today’s final rule uses the 2021 version of GREET. 

https://www.nhtsa.gov/corporate-average-fuel-economy/cafe-compliance-and-effects-modeling-system#downloads
https://www.nhtsa.gov/corporate-average-fuel-economy/cafe-compliance-and-effects-modeling-system#downloads
https://www.epa.gov/moves
https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves
https://www.eia.gov/outlooks/aeo/info_nems_archive.php
https://www.eia.gov/outlooks/aeo/pdf/02%20AEO2021%20Petroleum.pdf
https://greet.es.anl.gov/index.php
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combinations of technologies and vehicle types.9,10  Other chapters in this TSD and discussion in 
the accompanying FRIA describe details of the agency’s use of these models.  In addition, as 
discussed in the Final SEIS accompanying today’s final rule, DOT relied on a range of climate 
models to describe impacts on climate, air quality, and public health.  The Final SEIS discusses 
and describes the use of these models. 

The CAFE Model, therefore, serves as a “hub” that connects and holds together a wide range of 
inputs, processes, and other models that all inform DOT’s analysis, and that, in turn, provides 
essential model results underlying the Final SEIS accompanying today’s final rule.  Though not 
exhaustive, the diagram on the following page shows most of the important connections between 
different elements of DOT’s analysis. 

 

 
9 As part of the Argonne simulation effort, individual technology combinations simulated in Autonomie were paired 
with Argonne’s BatPaC model to estimate the battery cost associated with each technology combination based on 
characteristics of the simulated vehicle and its level of electrification.  Information regarding Argonne’s BatPaC 
model is available at https://www.anl.gov/cse/batpac-model-software.  (Accessed: February 14, 2022). 
10 In addition, the impact of engine technologies on fuel consumption, torque, and other metrics was characterized 
using GT-POWER simulation modeling in combination with other engine modeling that was conducted by IAV 
Automotive Engineering, Inc. (IAV).  The engine characterization “maps” resulting from this analysis were used as 
inputs for the Autonomie full-vehicle simulation modeling.  Information regarding GT-POWER is available at 
https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software.  (Accessed: 
February 14, 2022). 

https://www.anl.gov/cse/batpac-model-software
https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software
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Figure 1-4 – Key Elements of DOT’s Analysis 
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To prepare for analysis supporting today’s final rule, DOT has refined and expanded the CAFE 
Model through ongoing development.  Examples of such changes, some informed by past 
external comments, made since early 2020 include: 

• Inclusion of 400- and 500-mile BEVs; 

• Inclusion of high compression ratio (HCR) engines with cylinder deactivation; 

• Accounting for manufacturers’ responses to both CAFE and CO2 standards jointly (rather 
than only separately); 

• Accounting for the ZEV mandates applicable in California and the Section 177 states; 

• Accounting for some vehicle manufacturers’ (BMW, Ford, Honda, VW, and Volvo) 
voluntary adoption of the California Framework Agreements through MY 2026, with 
greater rates of electrification than would have been required under the 2020 Federal final 
rule;11 

• Including CAFE civil penalties in the “effective cost” metric used when simulating 
manufacturers’ potential application of fuel-saving technologies; 

• Including refined procedures to estimate health effects and corresponding monetized 
damages attributable to criteria pollutant emissions; 

• Adding new procedures to estimate the impacts and corresponding monetized damages of 
highway vehicle crashes that do not result in fatalities; 

• Establishing procedures to ensure that modeled technology application and production 
volumes are the same across all regulatory alternatives in the earliest model years; and 

• Revising procedures to more precisely focus application of EPCA’s “standard setting 
constraints” (i.e., regarding the consideration of compliance credits and additional 
dedicated alternative fueled vehicles) to only those model years for which NHTSA is 
proposing or finalizing new standards. 

These changes reflect DOT’s long-standing commitment to ongoing refinement of its approach 
to estimating the potential impacts of new CAFE standards.  Following the proposal preceding 
today’s notice, NHTSA made several further changes to the CAFE Model, including: 

• Including new options for applying a dynamic fleet share model (of the relative shares 
passenger cars and light trucks comprise of the total U.S. new vehicle market); 

 
11 For more information on the Framework Agreements for Clean Cars, including the specific agreements signed by 
individual manufacturers, please see https://ww2.arb.ca.gov/news/framework-agreements-clean-cars.  (Accessed: 
February 14, 2022). 

https://ww2.arb.ca.gov/news/framework-agreements-clean-cars
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• Adding provisions allowing direct input of the number of miles to be included when 
valuing avoided fuel outlays in the models used to estimate impacts on the total sales of 
new vehicles and the scrappage of used vehicles; 

• Expanding reporting to include all estimates (for today’s analysis) of the social cost of 
carbon dioxide emissions (i.e., the SCC) when reporting total and net benefits to society; 

• Calculating and reporting the value of miles reallocated between new and used vehicles 
(when holding overall travel demand before accounting for the rebound effect constant 
between regulatory alternatives); 

• Including adjustments to reduce exclude finance costs from reported incremental costs to 
consumers, and reduce reported insurance costs by 20 percent (to prevent double-
counting of the costs to replace totaled vehicles); and 

• Incorporating revisions to allow direct specification of total VMT even in years for which 
the CAFE Model estimates new vehicle sales (in particular, for today’s analysis, 2021, to 
account for VMT recovering rapidly following the decline in the early months of the 
coronavirus disease of 2019 (COVID-19) pandemic. 

These changes reflect DOT’s long-standing commitment to ongoing refinement of its approach 
to estimating the potential impacts of new CAFE standards and, since the early 2000s, refining 
the CAFE Model DOT maintains to make such estimates, as shown in Figure 1-5. 
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Figure 1-5 – CAFE Model Refinement Milestones 
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Because the CAFE Model simulates a wide range of actual constraints and practices related to 
automotive engineering, planning, and production, such as common vehicle platforms, sharing of 
engines among different vehicle models, and timing of major vehicle redesigns, the analysis 
produced by the CAFE Model provides a transparent and realistic basis to show pathways 
manufacturers could follow over time in applying new technologies, which helps better assess 
impacts of potential future standards.  Furthermore, because the CAFE Model also accounts for 
regulatory compliance provisions (now including CO2 compliance provisions), such as 
adjustments for reduced refrigerant leakage, production “multipliers” for some specific types of 
vehicles (e.g., PHEVs), and carried-forward (i.e., banked) credits, the CAFE Model provides a 
transparent and realistic basis to estimate how such technologies might be applied over time in 
response to CAFE or CO2 standards. 

Considering the technological heterogeneity of manufacturers’ current product offerings, and the 
wide range of ways in which the many fuel economy-improving technologies included in the 
analysis can be combined, the CAFE Model has been designed to use inputs that provide an 
estimate of the fuel economy achieved for many tens of thousands of different potential 
combinations of fuel-saving technologies.  Across the range of technology classes encompassed 
by the analysis fleet, today’s analysis involves more than a million such estimates.  While the 
CAFE Model requires no specific approach to developing these inputs, the NAS has 
recommended, and stakeholders have commented, that full-vehicle simulation provides the best 
balance between realism and practicality.  DOE/Argonne has spent several years developing, 
applying, and expanding means to use distributed computing to exercise its Autonomie full-
vehicle modeling and simulation tool over the scale necessary for realistic analysis of CAFE.  
This scalability and related flexibility (in terms of expanding the set of technologies to be 
simulated) makes Autonomie well-suited for developing inputs to the CAFE Model. 

In addition, DOE/Argonne’s Autonomie also has a long history of development and widespread 
application by a wide range of users in government, academia, and industry.  Many of these 
users apply Autonomie to inform funding and design decisions.  These real-world exercises have 
contributed significantly to aspects of Autonomie important to producing realistic estimates of 
fuel economy levels, such as estimation and consideration of performance, utility, and drivability 
metrics (e.g., towing capability, shift busyness, frequency of engine on/off transitions).  This 
steadily increasing realism has, in turn, steadily increased confidence in the appropriateness of 
using Autonomie to make significant investment decisions.  Notably, DOE uses Autonomie for 
analysis supporting budget priorities and plans for programs managed by its Vehicle 
Technologies Office (VTO).   

Like any model, both Autonomie and the CAFE Model benefit from ongoing refinement.  
However, NHTSA is confident that this combination of models produces a realistic 
characterization of the potential impacts of potential new standards.  The majority of 
stakeholders that have supported the agency’s reliance on the DOE/Argonne Autonomie tool and 
DOT CAFE Model noted not only technical reasons to use these models, but also other reasons 
such as efficiency, transparency, and ease with which outside parties can exercise models and 
replicate the agency’s analysis. 

Today’s analysis exercises the CAFE Model in a manner that explicitly accounts for the fact that 
vehicle manufacturers face the combination of CAFE standards, EPA CO2 standards, and ZEV 
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mandates, and five manufacturers voluntary adoption of the California Framework Agreements 
(also applicable to these manufacturers’ total production for the U.S. market) through model year 
2026.  These regulations and contracts have important structural and other differences that affect 
the strategy a manufacturer could use to comply with each of the above, and NHTSA believes, as 
discussed at more length in the final rule preamble, that it is important for agency decision-
makers to be as informed as possible about the effects of the regulatory landscape in which 
future CAFE compliance would be occurring. 

As explained, the analysis is designed to reflect several statutory and regulatory requirements 
applicable to CAFE and tailpipe CO2 standard setting.  EPCA contains several requirements 
governing the scope and nature of CAFE standard setting.  Among these, some have been in 
place since EPCA was first signed into law in 1975, and some were added in 2007, when 
Congress passed EISA and amended EPCA.  The Clean Air Act (CAA), as discussed elsewhere, 
provides EPA with very broad authority under Section 202(a), and does not contain 
EPCA/EISA’s prescriptions.  In the interest of harmonization, however, EPA has adopted some 
of the EPCA/EISA requirements into its tailpipe CO2 regulations, and NHTSA, in turn, has 
created some additional flexibilities by regulation not expressly included by EPCA/EISA in 
order to harmonize better with some of EPA’s programmatic decisions.  EPCA/EISA 
requirements regarding the technical characteristics of CAFE standards and the analysis thereof 
include, but are not limited to, the following, and the analysis reflects these requirements as 
summarized: 

Corporate Average Standards: 49 U.S.C. 32902 requires that standards apply to the average fuel 
economy levels achieved by each corporation’s fleets of vehicles produced for sale in the United 
States.12  EPA has adopted a similar approach under Section 202(a) of the CAA in the interest of 
harmonization.  The CAFE Model calculates the CAFE and CO2 levels of each manufacturer’s 
fleets based on estimated production volumes and characteristics, including fuel economy levels, 
of distinct vehicle models that could be produced for sale in the United States. 

Separate Standards for Passenger Cars and Light Trucks: 49 U.S.C. 32902 requires the Secretary 
of Transportation (the Secretary) to set CAFE standards separately for passenger cars and light 
trucks.  EPA has adopted a similar approach under Section 202(a) of the CAA.  The CAFE 
Model accounts separately for passenger cars and light trucks, including differentiated standards 
and compliance. 

Attribute-Based Standards: 49 U.S.C. 32902 requires the Secretary of Transportation to define 
CAFE standards as mathematical functions expressed in terms of one or more vehicle attributes 
related to fuel economy.  This means that for a given manufacturer’s fleet of vehicles produced 
for sale in the United States in a given regulatory class and model year, the applicable minimum 
CAFE requirement (i.e., the numerical value of the requirement) is computed based on the 
applicable mathematical function, and the mix and attributes of vehicles in the manufacturer’s 
fleet.  EPA has also adopted attribute-based standards under its broad CAA Section 202(a) 

 
12 This differs from safety standards and traditional emissions standards, which apply separately to each vehicle.  For 
example, every vehicle produced for sale in the United States must, on its own, meet all applicable federal motor 
vehicle safety standards (FMVSS), but no vehicle produced for sale must, on its own, meet federal fuel economy 
standards.  Rather, each manufacturer is required to produce a mix of vehicles that, taken together, achieve an 
average fuel economy level no less than the applicable minimum level. 
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authority in its current GHG standards.  The CAFE Model accounts for such functions and 
vehicle attributes explicitly. 

Separately Defined Standards for Each Model Year: 49 U.S.C. 32902 requires the Secretary to 
set CAFE standards (separately for passenger cars and light trucks13) at the maximum feasible 
levels in each model year.  CAA Section 202(a) allows EPA to establish CO2 standards 
separately for each model year, and EPA has chosen to do this in the previous light-duty vehicle 
CO2 standard-setting rules.  The CAFE Model represents each model year explicitly, and 
accounts for the production relationships between model years.14 

Separate Compliance for Domestic and Imported Passenger Car Fleets:  49 U.S.C. 32904 
requires the EPA Administrator to determine CAFE compliance separately for each 
manufacturers’ fleets of domestic passenger cars and imported passenger cars, which 
manufacturers must consider as they decide how to improve the fuel economy of their passenger 
car fleets.  EPA does not face a similar requirement for CO2 standard compliance.  The CAFE 
Model accounts explicitly for this requirement when simulating manufacturers’ potential 
responses to CAFE standards and combines any given manufacturer’s domestic and imported 
cars into a single fleet when simulating that manufacturer’s potential response to CO2 standards. 

Minimum CAFE Standards for Domestic Passenger Car Fleets: 49 U.S.C. 32902 requires that 
domestic passenger car fleets meet a minimum standard, which is calculated as 92 percent of the 
industry-wide average level required under the applicable attribute-based CAFE standard, as 
projected by the Secretary at the time the standard is promulgated.  EPA’s GHG program does 
not contain a similar requirement.  The CAFE Model accounts explicitly for this requirement for 
CAFE standards and sets this requirement aside for CO2 standards. 

Civil Penalties for Noncompliance: 49 U.S.C. 32912 (and implementing regulations) prescribes a 
rate (in dollars per tenth of a mpg) at which the Secretary is to levy civil penalties if a 
manufacturer fails to comply with a CAFE standard for a given fleet in a given model year, after 
considering available credits.  Some manufacturers have historically demonstrated a willingness 
to pay civil penalties rather than achieving full numerical compliance across all fleets.  The 
CAFE Model calculates civil penalties for CAFE shortfalls and provides means to estimate that a 
manufacturer might stop adding fuel-saving technologies once continuing to do so would be 
effectively more “expensive” (after accounting for fuel prices and buyers’ willingness to pay for 
fuel economy) than paying civil penalties.  In contrast, the CAA does not authorize the EPA 
Administrator to allow manufacturers to sell noncompliant fleets and pay civil penalties; 
manufacturers who have chosen to pay civil penalties for CAFE compliance instead have tended 
to employ EPA’s more-extensive programmatic flexibilities to meet CO2 emissions standards.  
Thus, the CAFE Model does not allow civil penalty payment as an option for CO2 standards. 

 
13 49 U.S.C. chapter 329 uses the term “non-passenger automobiles,” while NHTSA uses the term “light trucks” in 
its CAFE regulations.  The terms’ meanings are identical. 
14 For example, a new engine first applied to given vehicle model/configuration in model year 2020 will most likely 
be “carried forward” to model year 2021 of that same vehicle model/configuration, in order to reflect the fact that 
manufacturers do not apply brand-new engines to a given vehicle model every single year.  The CAFE Model is 
designed to account for these real-world factors. 
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Dual-Fueled and Dedicated Alternative Fuel Vehicles: For purposes of calculating CAFE levels 
used to determine compliance, 49 U.S.C. 32905 and 32906 specify methods for calculating the 
fuel economy levels of vehicles operating on alternative fuels to gasoline or diesel through MY 
2020.  After MY 2020, methods for calculating alternative fuel vehicle (AFV) fuel economy are 
governed by regulation.  The CAFE Model can account for these requirements explicitly for each 
vehicle model.  However, 49 U.S.C. 32902 prohibits consideration of the fuel economy of 
dedicated AFV models when NHTSA determines what levels of CAFE standards are maximum 
feasible.  The CAFE Model therefore has an option to be run in a manner that excludes the 
additional application of dedicated AFV technologies in model years for which maximum 
feasible standards are under consideration.  As allowed under NEPA for analysis appearing in 
EISs informing decisions regarding CAFE standards, the CAFE Model can also be run without 
this analytical constraint.  CAA Section 202(a) does not similarly require EPA to avoid 
consideration of dedicated AFVs when setting CO2 standards.  The CAFE Model thus accounts 
for dual- and AFVs when simulating manufacturers’ potential responses to CO2 standards.15 

ZEV Mandates:  The CAFE Model can simulate manufacturers’ compliance with ZEV mandates 
applicable in California and Section 17716 states.  The approach involves identifying specific 
vehicle model/configurations that could be replaced with PHEVs or BEVs, and immediately 
making these changes in each model year, before beginning to consider the potential that other 
technologies could be applied toward compliance with CAFE or CO2 standards. 

Creation and Use of Compliance Credits: 49 U.S.C. 32903 provides that manufacturers may earn 
CAFE “credits” by achieving a CAFE level beyond that required of a given fleet in a given 
model year, and specifies how these credits may be used to offset the amount by which a 
different fleet falls short of its corresponding requirement.  These provisions allow credits to be 
“carried forward” and “carried back” between model years, transferred between regulated classes 
(domestic passenger cars, imported passenger cars, and light trucks), and traded between 
manufacturers.  However, credit use is also subject to specific statutory limits.  For example, 
CAFE compliance credits can be carried forward a maximum of five model years and carried 
back a maximum of three model years.  Also, EPCA/EISA caps the amount of credit that can be 
transferred between passenger car and light truck fleets and prohibits manufacturers from 
applying traded or transferred credits to offset a failure to achieve the applicable minimum 
standard for domestic passenger cars.  The CAFE Model explicitly simulates manufacturers’ 
potential use of credits carried forward from prior model years or transferred from other fleets.17  

 
15 For today’s analysis, NHTSA has exercised the CAFE Model accounting for EPA regulatory flexibilities. 
16 The term “Section 177 states” refers to states which have elected to adopt California’s standards in lieu of Federal 
requirements, as allowed under Section 177 of the CAA. 
17 The CAFE Model does not explicitly simulate the potential that manufacturers would carry CAFE or CO2 credits 
back (i.e., borrow) from future model years, or acquire and use CAFE compliance credits from other manufacturers.  
At the same time, because EPA has currently elected not to limit credit trading or transferring, the CAFE Model can 
be exercised in a manner that simulates unlimited (a.k.a. “perfect”) CO2 compliance credit trading throughout the 
industry (or, potentially, within discrete trading “blocs”).  NHTSA believes there is significant uncertainty in how 
manufacturers may choose to employ these particular flexibilities in the future: for example, while it is reasonably 
foreseeable that a manufacturer who over-complies in one year may “coast” through several subsequent years 
relying on those credits rather than continuing to make technology improvements, it is harder to assume with 
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49 U.S.C. 32902 prohibits consideration of manufacturers’ potential application of CAFE 
compliance credits when setting maximum feasible CAFE standards.  The CAFE Model can be 
operated in a manner that excludes the application of CAFE credits for a given model year under 
consideration for standard setting.  CAA 202(a) does not preclude the EPA Administrator from 
adopting analogous provisions.  With some exceptions, EPA’s baseline regulations limit the 
“life” of compliance credits from most model years to 5 years, and to limit borrowing to 3 years, 
but has not adopted any limits on transfers (between fleets) or trades (between manufacturers) of 
compliance credits.  The CAFE Model accounts for the absence of limits on transfers of CO2 
standards.  Insofar as the CAFE Model can be exercised in a manner that simulates trading of 
CO2 compliance credits, such simulations treat trading as unlimited.18   

Statutory Basis for Stringency: 49 U.S.C. 32902 requires the Secretary to set CAFE standards at 
the maximum feasible levels, considering technological feasibility, economic practicability, the 
need of the Nation to conserve energy, and the impact of other government standards.  
EPCA/EISA authorizes the Secretary to interpret these factors, and as the Department’s 
interpretation has evolved, NHTSA has continued to expand and refine its qualitative and 
quantitative analysis to account for these statutory factors.  For example, the Autonomie 
simulations reflect the agency’s judgment that it would not be economically practicable for a 
manufacturer to “split” an engine shared among many vehicle model/configurations into myriad 
versions each optimized to a single vehicle model/configuration.   

National Environmental Policy Act:  In addition, NEPA requires the Secretary to issue an EIS 
that documents the estimated impacts of regulatory alternatives under consideration.  The Final 
SEIS accompanying today’s final rule documents changes in emission inventories as estimated 
using the CAFE Model, but also documents corresponding estimates—based on the application 
of other models documented in the Final SEIS, of impacts on the global climate, on tropospheric 
air quality, and on human health.   

Other Aspects of Compliance:  Beyond these statutory requirements applicable to DOT and/or 
EPA are several specific technical characteristics of CAFE and/or CO2 regulations that are also 
relevant to the construction of today’s analysis.  For example, EPA has defined procedures for 

 
confidence that manufacturers will rely on future technology investments to offset prior-year shortfalls, or 
whether/how manufacturers will trade credits with market competitors rather than making their own technology 
investments.  Historically, carry-back and trading have been much less utilized than carry-forward, for a variety of 
reasons including higher risk and preference not to ‘pay competitors to make fuel economy improvements we should 
be making’ (to paraphrase one manufacturer), although NHTSA recognizes that carry-back and trading are used 
more frequently when standards increase more rapidly in stringency.  Given the uncertainty just discussed, and 
given also the fact that the agency has yet to resolve some of the analytical challenges associated with simulating use 
of these flexibilities, the agency considers borrowing and trading to involve sufficient risk that it is prudent to 
support today’s final rule with analysis that sets aside the potential that manufacturers could come to depend widely 
on borrowing and trading.  While compliance costs in real life may be somewhat different from what is modeled 
today as a result of this analytical decision, that is broadly true no matter what, and the agency does not believe that 
the difference would be so great that it would change the policy outcome.  Furthermore, a manufacturer employing a 
trading strategy would presumably do so because it represents a lower-cost compliance option.  Thus, the estimates 
derived from this modeling approach are likely to be conservative in this respect, with real-world compliance costs 
possibly being lower. 
18 To avoid making judgments about possible future trading activity, when exercising the model in this way, the 
agency combines all manufacturers into a single entity, so that the most cost-effective choices are made for the fleet 
as a whole. 
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calculating average CO2 levels, and has revised procedures for calculating CAFE levels, to 
reflect manufacturers’ application of “off-cycle” technologies that increase fuel economy.  
Although too little information is available to account for these provisions explicitly in the same 
way that the agency has accounted for other technologies, the CAFE Model does include and 
makes use of inputs reflecting the agency’s expectations regarding the extent to which 
manufacturers may earn such credits, along with estimates of corresponding costs.  Similarly, the 
CAFE Model includes and makes use of inputs regarding credits EPA has elected to allow 
manufacturers to earn toward CO2 levels (not CAFE) based on the use of air conditioner 
refrigerants with lower global warming potential, or on the application of technologies to reduce 
refrigerant leakage.  In addition, EPA has elected to provide that through certain model years, 
manufacturers may apply “multipliers” to plug-in hybrid electric vehicles, dedicated electric 
vehicles, fuel cell vehicles, and hydrogen vehicles, such that when calculating a fleet’s average 
CO2 levels (not CAFE), the manufacturer may, for example, “count” each electric vehicle twice.  
The CAFE Model accounts for these multipliers, based on current regulatory provisions or on 
alternative approaches.  Although these are examples of regulatory provisions that arise from the 
exercise of discretion rather than specific statutory mandate, they can materially impact 
outcomes. 

Besides the updates to the model described above, any analysis of regulatory actions that will be 
implemented several years in the future, and whose benefits and costs accrue over decades, 
requires many assumptions.  Over such time horizons, many, if not most, of the relevant 
assumptions in such an analysis are inevitably uncertain.19  It is natural that each successive 
CAFE analysis should update assumptions to reflect better the current state of the world and the 
best current estimates of future conditions.   

Several assumptions have been updated since the 2020 final rule for today’s final rule.  While 
NHTSA would have made these updates as a matter of course, we note that that the COVID-19 
pandemic has been profoundly disruptive, including in ways directly material to major analytical 
inputs such as fuel prices, GDP, vehicle production and sales, and highway travel.  As discussed 
below, for the analysis supporting the notice of proposed rulemaking (NPRM) preceding today’s 
notice, NHTSA updated its “analysis fleet” from a model year 2017 reference to a model year 
2020 reference, updated estimates of manufacturers’ compliance credit “holdings,” updated fuel 
price projections to reflect the U.S. Energy Information Administration’s (EIA’s) 2021 Annual 
Energy Outlook (AEO), updated projections of GDP and related macroeconomic measures, and 
updated projections of future highway travel.  Since that time, NHTSA has further updated 
macroeconomic and highway travel projections, reflecting the fact that these have recovered 
more rapidly than initially anticipated.  However, today’s analysis continues to rely on AEO 
2022 fuel price projections, as EIA did not issue AEO 2022 until after NHTSA had already 
completed today’s analysis. 

In addition, through E.O. 13990, President Biden has required the formation of an Interagency 
Working Group (IWG) on the Social Cost of Greenhouse Gases and charged this body with 
updating estimates of the social costs of carbon, nitrous oxide, and methane.  As discussed 
below, NHTSA has applied the IWG’s interim guidance, which contains cost estimates (per ton 

 
19 As often stated, “It’s difficult to make predictions, especially about the future.”  See, e.g., 
https://quoteinvestigator.com/2013/10/20/no-predict/.  (Accessed: February 14, 2022). 

https://quoteinvestigator.com/2013/10/20/no-predict/


  45 

of emissions) considerably greater than those applied in the analysis supporting the 2020 SAFE 
rule.  These and other updated analytical inputs are discussed in detail in the remainder of this 
TSD. 

1.2 What is NHTSA analyzing? 

1.2.1 Attribute-Based Standards 

As in the CAFE and CO2 rulemakings in 2010, 2012, and 2020, NHTSA is setting attribute-
based CAFE standards defined by a mathematical function of vehicle footprint, which has an 
observable correlation with fuel economy.  EPCA, as amended by EISA, expressly requires that 
CAFE standards for passenger cars and light trucks be based on one or more vehicle attributes 
related to fuel economy and be expressed in the form of a mathematical function.20  Thus, the 
final standards (and regulatory alternatives) take the form of fuel economy targets expressed as 
functions of vehicle footprint (the product of vehicle wheelbase and average track width) that are 
separate for passenger cars and light trucks.  Chapter 1.2.3 below discusses NHTSA’s continued 
reliance on footprint as the relevant attribute in this final rule. 

Under the footprint-based standards, the function defines a fuel economy performance target for 
each unique footprint combination within a car or truck model type.  Using the functions, each 
manufacturer thus will have a CAFE average standard for each year that is almost certainly 
unique to each of its fleets,21 based upon the footprints and production volumes of the vehicle 
models produced by that manufacturer.  A manufacturer will have separate footprint-based 
standards for cars and for trucks, consistent with 49 U.S.C. 32902(b)’s direction that NHTSA 
must set separate standards for cars and for trucks.  The functions are mostly sloped, so that 
generally, larger vehicles (i.e., vehicles with larger footprints) will be subject to lower mpg 
targets than smaller vehicles.  This is because, generally speaking, smaller vehicles are more 
capable of achieving higher levels of fuel economy, mostly because they tend not to have to 
work as hard (and therefore to require as much energy) to perform their driving task.  Although a 
manufacturer’s fleet average standards could be estimated throughout the model year based on 
the projected production volume of its vehicle fleet (and are estimated as part of EPA’s 
certification process), the standards with which the manufacturer must comply are determined by 
its final model year production figures.  A manufacturer’s calculation of its fleet average 
standards, as well as its fleets’ average performance at the end of the model year, will thus be 
based on the production-weighted average target and performance of each model in its fleet.22 

For passenger cars, consistent with prior rulemakings, NHTSA is defining fuel economy targets 
as shown in Equation 1-1.   

 
20 49 U.S.C. 32902(a)(3)(A). 
21 EPCA/EISA requires NHTSA and EPA to separate passenger cars into domestic and import passenger car fleets 
for CAFE compliance purposes (49 U.S.C. 32904(b)), whereas EPA combines all passenger cars into one fleet. 
22 As discussed in prior rulemakings, a manufacturer may have some vehicle models that exceed their target and 
some that are below their target.  Compliance with a fleet average standard is determined by comparing the fleet 
average standard (based on the production-weighted average of the target levels for each model) with fleet average 
performance (based on the production-weighted average of the performance of each model). 
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Equation 1-1 – Passenger Car Fuel Economy Footprint Target Curve 

Where: 

TARGETFE is the fuel economy target (in mpg) applicable to a specific vehicle model 
type with a unique footprint combination, 

a is a minimum fuel economy target (in mpg), 

b is a maximum fuel economy target (in mpg), 

c is the slope (in gallons per mile per square foot, or gpm, per square foot) of a line 
relating fuel consumption (the inverse of fuel economy) to footprint, and 

d is an intercept (in gpm) of the same line. 

Here, MIN and MAX are functions that take the minimum and maximum values, respectively, of 
the set of included values.  For example, MIN[40, 35] = 35 and MAX(40, 25) = 40, such that 
MIN[MAX(40, 25), 35] = 35. 

The resultant functional form is reflected below in graphs displaying the passenger car target 
function in each model year for each regulatory alternative. 

For light trucks, also consistent with prior rulemakings, NHTSA is defining fuel economy targets 
as shown in Equation 1-2. 
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Equation 1-2 – Light Truck Fuel Economy Target Curve 

Where: 

TARGETFE is the fuel economy target (in mpg) applicable to a specific vehicle model 
type with a unique footprint combination, 

a, b, c, and d are as for passenger cars, but taking values specific to light trucks, 

e is a second minimum fuel economy target (in mpg), 

f is a second maximum fuel economy target (in mpg), 
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g is the slope (in gpm per square foot) of a second line relating fuel consumption (the 
inverse of fuel economy) to footprint, and 

h is an intercept (in gpm) of the same second line. 

As for the passenger car target function, the resultant functional form is reflected below in graphs 
displaying the light truck target function in each model year for each regulatory alternative. 

Although the general model of the target function equation is the same for each vehicle category 
(passenger cars and light trucks) and each model year, the parameters of the function equation 
differ for cars and trucks.   

To be clear, as has been the case since NHTSA began establishing attribute-based standards, no 
vehicle needs meet the specific applicable fuel economy target, because compliance with CAFE 
standards is determined, per statute, based on corporate average fuel economy.  In this respect, 
CAFE standards are unlike, for example, Federal Motor Vehicle Safety Standards (FMVSS) and 
certain vehicle criteria pollutant emissions standards where each car must meet the requirements.  
CAFE standards apply to the average fuel economy levels achieved by manufacturers’ entire 
fleets of vehicles produced for sale in the United States.  Safety standards apply on a vehicle-by-
vehicle basis, such that every single vehicle produced for sale in the United States must, on its 
own, comply with minimum FMVSS.  When first mandating CAFE standards in the 1970s, 
Congress specified a more flexible averaging-based approach that allows some vehicles to 
“under-comply” (i.e., fall short of the overall flat standard, or fall short of their target under 
attribute-based standards) as long as a manufacturer’s overall fleet is in compliance. 

The required CAFE level applicable to a given fleet in a given model year is determined by 
calculating the production-weighted harmonic average of fuel economy targets applicable to 
specific vehicle model configurations in the fleet, as shown in Equation 1-3. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹,𝑖𝑖

𝑖𝑖

 

Equation 1-3 – Calculation for Required CAFE Level 

Where: 

CAFErequired is the CAFE level the fleet is required to achieve, 

i refers to specific vehicle model/configurations in the fleet, 

PRODUCTIONi is the number of model configuration i produced for sale in the United 
States, and 

TARGETFE,I is the fuel economy target (as defined above) for model configuration i. 

Chapter 1.2.2 describes the advantages of attribute-based standards, generally.  Chapter 1.2.3 
explains the specific decision, in past rules and for the current rule, to continue to use vehicle 
footprint as the attribute over which to vary stringency.  Chapter 1.2.4 discusses the 
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methodologies used to develop the current attribute-based standards.  Chapter 1.2.5 discusses 
methodologies previously used to reconsider the mathematical function for CAFE standards, 
while Chapters 1.2.6 and 1.2.7 discuss the approach used in the 2020 final rule, which has 
largely been retained for this rule.  Chapter 1.2.8 explains NHTSA’s decision for this final rule to 
continue to set standards of similar shape for MYs 2024-2026. 

1.2.2 Why attribute-based standards, and what are the benefits? 

As explained above, Congress expressly requires the CAFE standards to be attribute-based.  
Under attribute-based standards, every vehicle model has a fuel economy target, the levels of 
which depend on the level of that vehicle’s determining attribute (for the MY 2024-2026 
standards, footprint will continue to be the determining attribute, as discussed below).  The 
manufacturer’s fleet average CAFE performance is calculated by the harmonic production-
weighted average of those targets, as shown in Equation 1-4. 

𝑅𝑅𝑅𝑅q𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 

Equation 1-4 – Attribute-Based CAFE Requirement 

Here, i represents a given model23 in a manufacturer’s fleet, Productioni represents the U.S. 
production of that model, and Targeti represents the target as defined by the attribute-based 
standards.  This means no vehicle is required to meet its target; instead, manufacturers are free to 
balance improvements however they deem best within (and, given credit transfers, at least 
partially across) their fleets. 

While Congress expressly requires CAFE standards to be specified as a mathematical function 
dependent on one or more attributes related to fuel economy, Congress has provided NHTSA the 
authority to select specific attribute(s) and mathematical functions.  Before Congress amended 
EPCA to introduce these requirements, CAFE standards were specified as single values (e.g., 
27.5 mpg for passenger cars and 20.7 for light trucks).  Being wholly independent of fleet 
composition, these requirements posed a significantly greater technical challenge for 
manufacturers producing more larger vehicles for the U.S. market than for manufacturers 
focused more on smaller vehicles, because all else equal, smaller vehicles achieve greater fuel 
economy levels.  Therefore, these single-value requirements presented an inherent incentive to 
shift production toward smaller vehicles rather than increasing the application of fuel-saving 
technologies across their fleets.  In carrying out the Congressional requirement to adopt attribute-
based standards defined as a mathematical function, NHTSA has sought to reflect the trade-off—
i.e., the relationship—between the attribute and fuel economy, consistent with the overarching 
purpose of EPCA/EISA to conserve energy.  If the shape captures these trade-offs, every 
manufacturer is more likely to continue adding fuel-efficient technology across the distribution 
of the attribute within their fleet, instead of potentially changing the attribute—and other 
correlated attributes, including fuel economy—as a part of their compliance strategy.   

 
23 If a model has more than one footprint variant, here each of those variants is treated as a unique model, i, since 
each footprint variant will have a unique target. 
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1.2.3 Choosing Footprint as the Attribute 

49 U.S.C. 32902(b)(3)(A) states that the attribute used to set CAFE standards must be a “vehicle 
attribute related to fuel economy.”  While there are many vehicle attributes that are related to 
fuel economy, NHTSA (and EPA) have chosen to use vehicle footprint as the attribute since MY 
2011, the first year of CAFE standards set under EISA, and NHTSA is continuing this approach 
for MYs 2024-2026.  Footprint has an observable correlation to fuel economy.  There are several 
policy and technical reasons why NHTSA believes that footprint remains the most appropriate 
attribute on which to base the final standards for the vehicles covered by this rulemaking, even 
though some other vehicle attributes (notably, curb weight) are better correlated to fuel economy, 
and even though the 2021 NAS Report suggested adding another attribute. 

First, the 2002 NAS Report described at length and quantified the potential safety problem with 
average fuel economy standards that specify a single numerical requirement for the entire 
industry,24 identifying that smaller and lighter vehicles incentivized by those standards could be 
less safe for their occupants.  Since that report, NHTSA has sought to set CAFE standards with 
an eye toward possible safety effects associated with the standards.  Because vehicle size is 
correlated with vehicle safety for the occupants of that vehicle, and because CAFE standards can 
affect vehicle size when manufacturers are considering how to improve the fuel economy of their 
vehicles, it is important to choose an attribute correlated with vehicle size (mass or some 
dimensional measure). 

Vehicle mass is strongly correlated with fuel economy; on a per-mile basis, a vehicle with more 
mass takes more energy to move than a vehicle with less mass.  Footprint has some positive 
correlation with frontal surface area, likely a negative correlation with aerodynamics, and 
therefore fuel economy, but the relationship is less deterministic.  Mass and crush space are both 
important safety considerations.  Mass disparity in particular can affect crash outcomes.  
Although mass is more strongly correlated with fuel economy than footprint, NHTSA continues 
to believe that there is less risk of artificial manipulation (i.e., changing the attribute(s) to achieve 
a more favorable target) by increasing footprint under footprint-based standards than there would 
be by increasing vehicle mass under mass-based standards.  It is relatively easy for a 
manufacturer to add enough mass to a vehicle to decrease its applicable fuel economy target by a 
significant amount – even infotainment systems add weight through components, wiring, etc. – 
as compared to increasing vehicle footprint, which is a much more complicated change that 
typically takes place only with a vehicle redesign.  A mass-based attribute would be the wrong 
incentive if EPCA’s objective is energy conservation.  Changes in footprint can affect vehicle 
dynamics, for example, requiring reevaluation of compliance with certain FMVSS and safety 
system performance, among other things.  Mass-based standards can also discourage 
manufacturers from applying mass-efficient materials and designs, because their standards would 
become more stringent as mass is reduced. 

As discussed in NHTSA’s MY 2011 CAFE final rule,25 when first electing to adopt footprint-
based standards for both passenger cars and light trucks, NHTSA carefully considered other 
alternatives, including vehicle mass and “shadow” (overall width multiplied by overall length).  

 
24 See 2002 NAS Report at p. 5, finding 12. 
25 See 74 Fed. Reg. 14359 (Mar. 30, 2009). 
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Compared to both of these other alternatives, footprint is much less susceptible to gaming, 
because while there is some potential to adjust track width, wheelbase is more difficult (and 
expensive) to change, at least outside a planned vehicle redesign.  This is not to say that a 
footprint-based system eliminates manipulation, or that a footprint-based system eliminates the 
possibility that manufacturers will change vehicles in ways that compromise occupant protection.  
NHTSA is aware of research suggesting that the footprints of vehicles in the on-road fleet have 
been increasing over time.  Because many American consumers value utility (size and 
capability), larger vehicles are encouraged (relative to a mass-based approach).  Both the current 
footprint-based standards and the pre-EISA flat standards allow(ed) manufacturers to change the 
sizes and shapes of individual vehicles, if average standards were met. 

The question has also arisen periodically of whether NHTSA should instead consider multi-
attribute standards, such as those that also depend on weight, torque, power, towing capability, 
and/or off-road capability.  To date, every time NHTSA has considered options for which 
attribute(s) to select, the agency has concluded that a properly-designed footprint-based approach 
provides the best means of achieving the basic policy goals (i.e., by increasing the likelihood of 
improved fuel economy across the entire fleet of vehicles; by reducing disparities between 
manufacturers’ compliance burdens; and by reducing incentives for manufacturers to respond to 
standards by reducing vehicle size in ways that could compromise overall highway safety) 
involved in applying an attribute-based standard.  At the same time, footprint-based standards 
can be structured in a way that furthers the energy and environmental policy goals of EPCA by 
not creating inappropriate incentives to increase vehicle size in ways that could increase fuel 
consumption. 

In the 2021 NAS Report, the committee recommended that if Congress does not act to remove 
the prohibition at 49 U.S.C. 32902(h) on considering the fuel economy of dedicated AFVs (like 
BEVs) in determining maximum feasible CAFE standards, then NHTSA should account for the 
fuel economy benefits of ZEVs by “setting the standard as a function of a second attribute in 
addition to footprint – for example, the expected market share of ZEVs in the total U.S. fleet of 
new light-duty vehicles – such that the standards increase as the share of ZEVs in the total U.S. 
fleet increases.”26   

NHTSA considered this recommendation carefully and suggested an approach to implementing 
it in the Draft TSD, which would have included the expected market share of ZEVs as an 
attribute on which fuel economy could be based.  In doing so, NHTSA sought comment on 
whether the described approach would be consistent with the prohibition in 49 U.S.C. 32902(h) 
on considering the fuel economy of dedicated AFVs in setting maximum feasible CAFE 
standards.  As is discussed further in the preamble, many commenters disagreed that the 
described approach would be consistent with NHTSA’s statutory authority.  In considering the 
question further, NHTSA agrees.  While the agency appreciates the recommendation from the 
NAS committee, we remain uncertain that including electrification as an attribute on which to 

 
26 National Academies of Sciences, Engineering, and Medicine, 2021.  Assessment of Technologies for Improving 
Fuel Economy of Light-Duty Vehicles – 2025-2035, Washington, DC:  The National Academies Press (hereinafter, 
“2021 NAS Report”), at Summary Recommendation 5.  Available at https://www.nationalacademies.org/our-
work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3 and for hard copy 
review at DOT headquarters.  (Accessed: February 14, 2022). 

https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3
https://www.nationalacademies.org/our-work/assessment-of-technologies-for-improving-fuel-economy-of-light-duty-vehicles-phase-3
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base fuel economy standards could be done in a way consistent with our authority.  The 
described approach was thus not pursued for the final rule. 

1.2.4 Choosing the Mathematical Function to Specify Footprint-Based Standards 

In requiring NHTSA to “prescribe by regulation separate average fuel economy standards for 
passenger and non-passenger automobiles based on 1 or more vehicle attributes related to fuel 
economy and express each standard in the form of a mathematical function,” EPCA/EISA 
provides discretion regarding not only the selection of the attribute(s), but also regarding the 
nature of the function.  While NHTSA is continuing to employ the curve shapes that have been 
used since the 2012 final rule, which did not change under the 2020 final rule, the discussion is 
reiterated for purposes of completeness. 

The relationship between fuel economy and footprint, though directionally clear (i.e., fuel 
economy tends to decrease with increasing footprint), is theoretically vague, and quantitatively 
uncertain; in other words, not so precise as to a priori yield only a single possible curve.  The 
decision of how to specify this mathematical function therefore reflects some amount of 
judgment.  The function can be specified with a view toward achieving different environmental 
and petroleum reduction goals, encouraging different levels of application of fuel-saving 
technologies, avoiding any adverse effects on overall highway safety, reducing disparities of 
manufacturers’ compliance burdens, and preserving consumer choice, among other aims.  The 
following are among the specific technical concerns and resultant policy tradeoffs that NHTSA 
and EPA have previously considered in selecting the details of specific past and future curve 
shapes: 

1. Steeper footprint-based standards may create incentives to upsize vehicles, potentially 
oversupplying vehicles of certain footprints beyond what the market would naturally 
demand, and thus increasing the possibility that fleetwide (or total) fuel savings benefits 
will be forfeited artificially. 

2. Flatter standards (i.e., curves) increase the risk that the size of vehicles will be reduced, 
reducing any utility consumers would have gained from a larger vehicle. 

3. Given the same industry-wide average required fuel economy standard, flatter standards 
tend to place greater compliance burdens on full-line manufacturers, although this is not 
necessarily true if the vehicles are ZEVs. 

4. Given the same industry-wide average required fuel economy standard, dramatically 
steeper standards tend to place greater compliance burdens on limited-line manufacturers 
(depending, of course, on which vehicles are being produced), although this is not 
necessarily true if the vehicles are ZEVs. 

5. If cutpoints (i.e., locations of rapid change in slope, as with piecewise-linear functions) 
are adopted, given the same industry-wide average required fuel economy, moving small-
vehicle cutpoints to the left (i.e., up in terms of fuel economy) discourages the 
introduction of small vehicles, and reduces the incentive to downsize small vehicles. 
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6. If cutpoints are adopted, given the same industry-wide average required fuel economy, 
moving large-vehicle cutpoints to the right (i.e., down in terms of fuel economy) better 
accommodates the design requirements of larger vehicles – especially large pickups – and 
extends the size range over which downsizing is discouraged in ways that could 
compromise overall highway safety. 

1.2.5 Mathematical Functions that Have Been Used Previously 

Notwithstanding the aforementioned discretion under EPCA/EISA, data should inform 
consideration of potential mathematical functions, but how relevant data are defined and 
interpreted, and the choice of methodology for fitting a curve to those data, can and should 
include some consideration of specific policy goals.  This chapter summarizes the methodologies 
and policy concerns that were considered in developing previous target curves (for a complete 
discussion see the 2012 FRIA). 

As discussed below, the MY 2011 final curves followed a constrained logistic function defined 
specifically in the final rule.27  The MY 2012-2021 final standards and the MY 2022-2025 
augural standards were defined by constrained linear target functions of footprint, as shown in 
Equation 1-5.28 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
1

min �max �𝑐𝑐 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑑𝑑, 1
𝑎𝑎� , 1

𝑏𝑏�
 

Equation 1-5 – Constrained Linear Target Function 

Here, Target is the fuel economy target applicable to vehicles of a given footprint in square feet 
(Footprint).  The upper asymptote, a, and the lower asymptote, b, are specified in mpg; the 
reciprocal of these values represent the lower and upper asymptotes, respectively, when the 
curve is instead specified in gallons per mile (gpm).  The slope, c, and the intercept, d, of the 
linear portion of the curve are specified as gpm per change in square feet, and gpm, respectively. 

The min and max functions will take the minimum and maximum values within their associated 
parentheses.  Thus, the max function will first find the maximum of the fitted line at a given 
footprint value and the lower asymptote from the perspective of gpm.  If the fitted line is below 
the lower asymptote it is replaced with the floor, which is also the minimum of the floor and the 
ceiling by definition, so that the target in mpg space will be the reciprocal of the floor in mpg 
space, or simply, a.  If, however, the fitted line is not below the lower asymptote, the fitted value 
is returned from the max function and the min function takes the minimum value of the upper 
asymptote (in gpm space) and the fitted line.  If the fitted value is below the upper asymptote, it 
is between the two asymptotes and the fitted value is appropriately returned from the min 

 
27 See 74 Fed. Reg. 14196, 14363-14370 (Mar. 30, 2009) for NHTSA discussion of curve fitting in the MY 2011 
CAFE final rule. 
28 The right cutpoint for the light truck curve was moved further to the right for MYs 2017-2021, so that more 
possible footprints would fall on the sloped part of the curve.  In order to ensure that, for all footprints, future 
standards would be at least as high as MY 2016 levels, standards for light trucks for MYs 2017-2020 are the 
maximum of a “floor” target curve and the target curves for the given MY standard.  This is defined further in the 
2012 final rule.  See 77 Fed. Reg. 62624, at 62699-700 (Oct. 15, 2012), and in Table VII of 49 CFR 533.5(a). 
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function, making the overall target in mpg the reciprocal of the fitted line in gpm.  If the fitted 
value is above the upper asymptote, the upper asymptote is returned from the min function, and 
the overall target in mpg is the reciprocal of the upper asymptote in gpm space, or b. 

In this way, curves specified as constrained linear functions are specified by the following 
parameters in Equation 1-5. 

a = upper limit (mpg) 

b = lower limit (mpg) 

c = slope (gpm per ft2) 

d = intercept (gpm) 

The slope and intercept are specified as gpm per sq. ft. and gpm, instead of mpg per sq. ft. and 
mpg, because fuel consumption and emissions appear roughly linearly related to gallons per mile 
(the reciprocal of miles per gallon). 

1.2.5.1 NHTSA in MY 2008 and MY 2011 CAFE (Constrained Logistic) 

In 2009, for the MY 2011 CAFE rule, NHTSA estimated fuel economy levels by footprint from 
the MY 2008 fleet after normalization for differences in technology,29 but did not make 
adjustments to reflect other vehicle attributes (e.g., power-to-weight ratios).  Starting with the 
technology-adjusted passenger car and light truck fleets, NHTSA used minimum absolute 
deviation (MAD) regression without sales weighting to fit a logistic form as a starting point to 
develop mathematical functions defining the standards.  NHTSA then identified footprints at 
which to apply minimum and maximum values (rather than letting the standards extend without 
limit) and transposed those functions vertically (i.e., on a gallons per mile basis, uniformly 
downward) to produce the promulgated standards.  In the preceding 2006 rule for MY 2008-
2011 light truck standards, NHTSA examined a range of potential functional forms, and 
concluded that, compared to other considered forms, the constrained logistic form provided the 
expected and appropriate trend (decreasing fuel economy as footprint increases), but avoided 
creating “kinks” that the agency was then concerned would provide distortionary incentives for 
vehicle with neighboring footprints.30 

1.2.5.2 MY 2012-2016 Standards (Constrained Linear) 

In 2010, for the MY 2012-2016 rule, potential methods for specifying mathematical functions to 
define fuel economy and CO2 standards were reevaluated.  These methods were fit to the same 
MY 2008 data as the MY 2011 standard.  Considering these further specifications, the 
constrained logistic form, if applied to post-MY 2011 standards, would have likely contained a 
steep mid-section that would have provided undue incentive to increase the footprint of midsize 

 
29 See 74 Fed. Reg. 14196, 14363-14370 (Mar. 30, 2009) for NHTSA discussion of curve fitting in the MY 2011 
CAFE final rule. 
30 See 71 Fed. Reg. 17556, 17609-17613 (Apr. 6, 2006) for NHTSA discussion of “kinks” in the MYs 2008-2011 
light truck CAFE final rule (there described as “edge effects”).  A “kink,” as used here, is a portion of the curve 
where a small change in footprint results in a disproportionally large change in stringency. 
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passenger cars.31  A range of methods to fit the curves would have been reasonable, and a 
minimum absolute deviation (MAD) regression without sales weighting on a technology-
adjusted car and light truck fleet was used to fit a linear equation.  This equation was used as a 
starting point to develop mathematical functions defining the standards.  Footprints were then 
identified at which to apply minimum and maximum values (rather than letting standards extend 
without limit.  Finally, these constrained/piecewise linear functions were transposed vertically 
(i.e., on a gpm or CO2 basis, uniformly downward) by multiplying the initial curve by a single 
factor for each MY standard to produce the final attribute-based targets for passenger cars and 
light trucks described in the final rule.32  These transformations are typically presented as 
percentage improvements over a previous MY target curve. 

1.2.5.3 MY 2017 and Beyond Standards (Constrained Linear) – 2012 Final Rule 

The mathematical functions finalized in 2012 for MYs 2017 and beyond changed somewhat 
from the functions for the MY 2012-2016 standards.  These changes were made both to address 
comments from stakeholders, and to consider further some of the technical concerns and policy 
goals judged more preeminent under the increased uncertainty of the impacts of finalizing and 
proposing standards for model years further into the future.33  Recognizing the concerns raised 
by full-line OEMs, it was concluded that continuing increases in the stringency of the light truck 
standards would be more feasible if the light truck curve for MYs 2017 and beyond was made 
steeper than the MY 2016 truck curve and the right (large footprint) cutpoint was extended only 
gradually to larger footprints.  To accommodate these considerations, the 2012 final rule 
finalized the slope fit to the MY 2008 fleet using a sales-weighted, ordinary least-squares 
regression, using a fleet that had technology applied to make the technology application across 
the fleet more uniform, and after adjusting the data for the effects of weight-to-footprint.  
Information from an updated MY 2010 fleet was also considered to support this decision.  As the 
curve was vertically shifted (with fuel economy specified as mpg instead of gpm or CO2 
emissions) upwards, the right cutpoint was progressively moved for the light truck curves with 
successive model years, reaching the final endpoint for MY 2021. 

1.2.6 NHTSA’s Process for Reconsidering the Mathematical Functions in the 2020 Final Rule 

1.2.6.1 Why did NHTSA reconsider the mathematical functions? 

By shifting the developed curves by a single factor, it is assumed that the underlying relationship 
of fuel consumption (in gallons per mile) to vehicle footprint does not change significantly from 
the model year data used to fit the curves to the range of model years for which the shifted curve 
shape is applied to develop the standards.  However, it must be recognized that the relationship 
between vehicle footprint and fuel economy is not necessarily constant over time; newly 
developed technologies, changes in consumer demand, and even the curves themselves could 
influence the observed relationships between the two vehicle characteristics.  For example, if 
certain technologies are more effective or more marketable for certain types of vehicles, their 

 
31 75 Fed. Reg. 25362 (May 7, 2010). 
32 See generally 74 Fed. Reg. 49491-96 (Sept. 28, 2009); 75 Fed. Reg. 25357-62 (May 7, 2010). 
33 The MYs 2012-2016 final standards were signed April 1st, 2010—putting 6.5 years between its signing and the 
last affected model year, while the MYs 2017-2021 final standards were signed August 28th, 2012—giving just 
more than nine years between signing and the last affected final standards. 
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application may not be uniform over the range of vehicle footprints.  Further, if market demand 
has shifted between vehicle types, so that certain vehicles make up a larger share of the fleet, any 
underlying technological or market restrictions that inform the average shape of the curves could 
change.  That is, changes in the technology or market restrictions themselves, or a mere re-
weighting of different vehicle types, could change the observed unweighted or production-
weighted relationship between footprint and fuel economy. 

For the above reasons, the curve shapes were reconsidered in the 2018 proposal using the newest 
available data (at that time, from MY 2016).  With a view toward corroboration through different 
techniques, a range of descriptive statistical analyses were conducted that did not require 
underlying engineering models of how fuel economy and footprint might be related, and a 
separate analysis that used vehicle simulation results as the basis to estimate the relationship 
from a perspective more explicitly informed by engineering theory was conducted as well.  
Despite changes in the new vehicle fleet both in terms of technologies applied and in market 
demand, that analysis found that the underlying statistical relationship between footprint and fuel 
economy had not changed significantly since the MY 2008 fleet used for the 2012 final rule; 
therefore, EPA and NHTSA proposed in 2018 to continue to use the curve shapes fit in 2012.  
The analysis and reasoning supporting that decision, which this final rule also relies on, follows.  
Chapter 1.2.8 explains why NHTSA is continuing to employ these curve shapes for MYs 2024-
2026. 

1.2.6.2 What statistical analyses were considered? 

In considering previously how to address the various policy concerns discussed above, NHTSA 
considered data from the MY 2016 fleet, and performed a number of descriptive statistical 
analyses (i.e., involving observed fuel economy levels and footprints) using various statistical 
methods, weighting schemes, and adjustments to the data to make the fleets less technologically 
heterogeneous.  There were several adjustments to the data that were common to all the 
statistical analyses considered. 

With a view toward isolating the relationship between fuel economy and footprint, NHTSA 
excluded the few diesels in the fleet, as well as the limited number of vehicles with partial or full 
electric propulsion; when the fleet is normalized so that technology is more homogenous, 
application of these technologies is not allowed.  This is consistent with the methodology used in 
the 2012 final rule. 

NHTSA applied the above adjustments to all statistical analyses, regardless of the specifics of 
each of the methods, weights, and technology level of the data, considered to view the 
relationship of vehicle footprint and fuel economy.  Table 1-1 summarizes the different 
assumptions considered and the key attributes of each.  NHTSA considered all possible 
combinations of these assumptions, producing a total of eight footprint curves. 
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Table 1-1 – Summary of Assumptions Considered in the Statistical Analysis of the Footprint-Fuel Economy 
(FE) Relationship 

Varying 
Assumptions: Regression Type Regression Weights Technology Level 

Alternatives 
Considered: OLS MAD Production-

weighted 
Model-

weighted 
Existing 

Technology 
Max. 

Technology 

Details 

Ordinary 
Least 

Squares 
Regression 

Minimum 
Absolute 
Deviation 

Regression 

Points 
weighted by 
production 
volumes of 
each model. 

Equal weight for 
each model; 

collapses points 
with similar: 
footprint, FE, 

and curb weight. 

MY 2016 tech., 
excluding: 

HEV, PHEV, 
BEV, and 

FCV. 

Maximum tech. 
applied, 

excluding: 
HEV, PHEV, 

BEV, and FCV. 

Key Attributes 

Describes 
the average 
relationship 

between 
footprint 
and fuel 

economy; 
outliers can 

skew 
results. 

Describes 
the median 
relationship 

between 
footprint 
and fuel 

economy; 
does not 

give outliers 
as much 
weight. 

Tends towards 
higher-volume 
models; may 

systematically 
disadvantage 

manufacturers 
who produce 

fewer 
vehicles. 

Tends towards 
the space of the 
joint distribution 
of footprint and 

FE with the 
most models; 

gives low-
volume models 
equal weight. 

Describes 
existing 
market, 

including 
demand 

factors; may 
miss changes 
in curve shape 

due to 
advanced 

technology 
application. 

Captures 
relationship 

with 
homogenous 
technology 

application; may 
miss varying 

demand 
considerations 
for different 
segments. 

 

1.2.6.2.1 Existing Technology Level Curves 

The “existing technology” level curves excluded diesels and vehicles with electric propulsion, as 
discussed above, but made no other changes to each model year fleet.  Comparing the MY 2016 
curves to ones built under the same methodology from previous model year fleets showed 
whether the observed curve shape had changed significantly over time as standards became more 
stringent.  Importantly, those curves included any market forces that made technology 
application variable over the distribution of footprint.  Those market forces were not present in 
the “maximum technology” level curves:  by making technology levels homogenous, this 
variation was removed.  The existing technology level curves, built using both regression types 
and both regression weight methodologies from the MY 2008, MY 2010, and MY 2016 fleets, 
shown in more detail in Chapter 4.4.2.1 of the 2018 Preliminary Regulatory Impact Analysis 
(PRIA), supported the curve slopes finalized in the 2012 final rule.  The curves built from most 
methodologies using each fleet generally shifted but remained very similar in slope.  This 
suggested that the relationship of footprint to fuel economy, including both technology and 
market limits, did not significantly change after the 2012 final rule. 

1.2.6.2.2 Maximum Technology Level Curves 

As in prior rulemakings, NHTSA considered technology differences between vehicle models to 
be a significant factor producing uncertainty regarding the relationship between fuel 
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consumption and footprint.  Because attribute-based standards are intended to encourage the 
application of additional technology to improve fuel economy across the distribution of footprint 
in the fleet, NHTSA considered approaches in which technology application was simulated for 
purposes of the curve fitting analysis to produce fleets that are less varied in technology content.  
This approach helped to reduce “noise” (i.e., dispersion) in the plot of vehicle footprints and fuel 
consumption levels and to identify a more technology-neutral relationship between footprint and 
fuel consumption.  The results of that analysis for maximum technology level curves are also 
shown in Chapter 4.4.2.2 of the 2018 PRIA.  Especially if vehicles progress over time toward 
more similar size-specific efficiency, further removing variation in technology application both 
better isolated the relationship between fuel consumption and footprint and further supported the 
curve slopes established in the 2012 final rule. 

1.2.7 What other methodologies were considered? 

The methods discussed above are descriptive in nature, using statistical analysis to relate 
observed fuel economy levels to observed footprints for known vehicles.  As such, these methods 
were clearly based on actual data, answering the question of “how does fuel economy appear to 
be related to footprint?”  However, being independent of explicit engineering theory, they did not 
answer the question of “how might one expect fuel economy to be related to footprint?”  
Therefore, in addition to the above methods, an alternative methodology was also developed and 
applied, using full vehicle simulation, to come closer to answering the second question, 
providing a basis either to corroborate answers to the first, or to suggest that further investigation 
could be important. 

As discussed in the 2012 final rule, several manufacturers have confidentially shared with 
NHTSA what they describe as “physics-based” curves, with each original equipment 
manufacturer (OEM) showing significantly different shapes for the footprint-fuel economy 
relationships.  This variation affirms that while footprint is related to fuel economy, many other 
things are also related to fuel economy.  In reconsidering the shapes of the curves for the 2018 
NPRM, NHTSA developed a similar estimation of physics-based curves leveraging third-party 
simulation work from Argonne National Laboratories (Argonne).  Estimating physics-based 
curves helped to ensure that technology and performance were held constant for all footprints.  
This process augmented the largely-statistical analysis described above with an analysis that 
more explicitly incorporated engineering theory, which helped to corroborate that the 
relationship between fuel economy and footprint was in fact being characterized. 

A tractive energy prediction model was also developed to support the 2018 proposal.  Tractive 
energy is the amount of energy it will take to move a vehicle.34  Given a vehicle’s mass, frontal 
area, aerodynamic drag coefficient, and rolling resistance as inputs, the model predicted the 
amount of tractive energy required for the vehicle to complete the Federal test cycle.  This model 

 
34 Thomas, J. “Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results,” 
SAE Int. J. Passeng.  Cars - Mech. Syst. 7(4):2014, doi:10.4271/2014-01-2562.  Available at 
https://www.sae.org/publications/technical-papers/content/2014-01-2562/ and for hard copy review at DOT 
headquarters.  (Accessed: February 14, 2022). 

https://www.sae.org/publications/technical-papers/content/2014-01-2562/
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was used to predict the tractive energy required for the average vehicle of a given footprint35 and 
“body technology package” to complete the cycle.  The body technology packages considered 
are defined in Table 1-2.   

Using the absolute tractive energy predicted and tractive energy effectiveness values spanning 
possible internal combustion engines, fuel economy values were then estimated for different 
body technology packages and engine tractive energy effectiveness values.  Here, tractive energy 
effectiveness is defined as the share of the energy content of fuel consumed, which is converted 
into mechanical energy and used to move a vehicle – for internal combustion engine (ICE) 
vehicles, this will vary with the relative efficiency of specific engines.  Data from Argonne 
simulations suggested that the limits of tractive energy effectiveness are approximately 25 
percent for ICE vehicles that do not possess integrated starter generator, other hybrid, plug-in, 
pure electric, or fuel cell technology. 

Table 1-2 – Summary of Body Technology Packages Considered for Tractive Energy Analysis 

Body Tech. 
Package 

Mass Reduction 
Level 

Aerodynamics 
Level 

Roll Resistance 
Level 

1 0% 0% 0% 
2 0% 10% 10% 
3 10% 10% 10% 
4 10% 15% 20% 
5 15% 20% 20% 

Chapter 6 of the 2018 PRIA shows the resultant CAFE levels estimated for the vehicle classes 
Argonne simulated for this analysis, at different footprint levels and by vehicle “box.”  Pickups 
are considered 1-box, hatchbacks and minivans are 2-box, and sedans are 3-box.  These 
estimates were compared with the MY 2021 standards finalized in 2012.  The general trend of 
the simulated data points followed the pattern of the MY 2021 standards set in 2012 for all 
technology packages and tractive energy effectiveness values presented in the 2018 PRIA.  The 
tractive energy curves were intended to validate the curve shapes against a physics-based 
alternative, and the analysis suggested that the curve shapes tracked the physical relationship 
between fuel economy and tractive energy for different footprint values. 

The relationship between fuel economy and footprint remains directionally discernible but 
quantitatively uncertain.  Nevertheless, each standard must commit to only one function.  
Approaching the question “how is fuel economy related to footprint” from different directions 
and applying different approaches has given NHTSA confidence that the function we are 
continuing to apply appropriately and reasonably reflects the relationship between fuel economy 
and footprint. 

 
35The mass reduction curves used elsewhere in the 2018 analysis were used to predict the mass of a vehicle with a 
given footprint, body style box, and mass reduction level.  The ‘Body style Box’ is 1 for hatchbacks and minivans, 2 
for pickups, and 3 for sedans, and is an important predictor of aerodynamic drag.  Mass is an essential input in the 
tractive energy calculation.  
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1.2.8 Maintaining the Existing Footprint Curves for MYs 2024-2026 

Changes in the market that have occurred since NHTSA last examined the appropriateness of the 
footprint curves have been, for the most part, consistent with the trends in 2018.  For the most 
part, vehicle manufacturers have continued over the past several years to reduce their offerings 
of smaller footprint vehicles and increase their sales of larger footprint vehicles and continue to 
sell many small to mid-size crossovers and sport utility vehicles (SUVs).  While this trend may 
not be as optimal for reducing fuel consumption and carbon dioxide emissions as compared to 
manufacturers increasing their offerings of smaller footprint vehicles and reducing their sales of 
larger footprint vehicles, it does not appear that the trend has changed so dramatically over the 
last three years to warrant a detailed re-examination of that relationship as part of this final rule.  
Moreover, changes to the footprint curves can significantly affect manufacturers’ ability to 
comply.  Given the available lead time between now and the beginning of MY 2024, NHTSA 
believes it is unlikely any potential benefit of changing the shape of the footprint curves (when 
we are already significantly changing standard stringency) would outweigh the costs of doing so.  
NHTSA may explore changes to curve shapes in a future action. 

1.3 What does the CAFE Model need to conduct this analysis? 

To conduct the analysis described above, the CAFE Model needs a variety of inputs.  At a high 
level, the model needs the following regulatory alternatives: an analysis fleet (see Chapter 2.2), 
technology effectiveness values (see Chapter 2.4), technology cost information, (see Chapter 
2.6), and economic assumptions (see Chapter 4.1 for macroeconomic assumptions and Chapter 6 
for all others).  Additionally, for this final rule, NHTSA has added the specific inputs to enable 
the model to simulate compliance with California’s ZEV program (see Chapter 2.3).  Chapter 2 
discusses the required inputs in more detail. 

1.4 What are the regulatory alternatives under consideration in this final rule? 

Agencies typically consider regulatory alternatives in rulemaking analyses as a way of evaluating 
the comparative effects of different potential ways of accomplishing their desired goal.  NEPA 
requires agencies to compare the potential environmental impacts of their regulatory actions to 
those of a reasonable range of alternatives.  E.O. 12866 and E.O. 13563, as well as Office of 
Management and Budget (OMB) Circular A-4, also encourage agencies to evaluate regulatory 
alternatives in their rulemaking analyses. 

Alternatives analysis begins with a “No-Action” Alternative, typically described as what would 
occur in the absence of any regulatory action.  This final rule includes a No-Action Alternative, 
described below, and three “action alternatives.”  The final standards may, in places, be referred 
to as the “Preferred Alternative,” which is NEPA parlance, but NHTSA intends “final standards” 
and “Preferred Alternative” to be used interchangeably for purposes of this rulemaking. 

Regulations regarding implementation of NEPA require agencies to “rigorously explore and 
objectively evaluate all reasonable alternatives, and for alternatives which were eliminated from 
detailed study, briefly discuss the reasons for their having been eliminated.”36  This does not 

 
36 40 CFR 1502.14. 
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amount to a requirement that agencies evaluate the widest conceivable spectrum of alternatives.  
Rather, the range of alternatives must be reasonable and consistent with the purpose and need of 
the action.   

The different regulatory alternatives are defined in terms of percent-increases in CAFE 
stringency from year to year.  Readers should recognize that those year-over-year changes in 
stringency are not measured in terms of mile per gallon differences (as in, 1 percent more 
stringent than 30 miles per gallon in one year equals 30.3 miles per gallon in the following year), 
but rather in terms of shifts in the footprint functions that form the basis for the actual CAFE 
standards (as in, on a gallon per mile basis, the CAFE standards change by a given percentage 
from one model year to the next).  Under some alternatives, the rate of change is the same from 
year to year, while under others, it differs, and under some alternatives, the rate of change is 
different for cars and for trucks.  One action alternative is more stringent than the Preferred 
Alternative, while two are less stringent than the Preferred Alternative.  The alternatives 
considered in this final rule represent a reasonable range of possible agency actions. 

The regulatory alternatives for this final rule are presented here as the percent-increases-per-year 
that they represent.  The sections that follow will present the alternatives as the literal 
coefficients which define standards curves increasing at the given percentage rates and will also 
explain the basis for the alternatives selected. 

Table 1-3 – Regulatory Alternatives Considered in this Final Rule 

Regulatory 
Alternative 

Year-Over-Year Stringency 
Increases (Passenger Cars) 

Year-Over-Year Stringency Increases 
(Light Trucks) 

2024 2025 2026 2024 2025 2026 
Alternative 0 
(No-Action) 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 

Alternative 1 9.14% 3.26% 3.26% 11.02% 3.26% 3.26% 
Alternative 2 8% 8% 8% 8% 8% 8% 
Alternative 

2.5 
(Preferred) 

8% 8% 10% 8% 8% 10% 

Alternative 3 10% 10% 10% 10% 10% 10% 

As for past rulemaking analyses, NHTSA has analyzed each of the regulatory alternatives in a 
manner that estimates manufacturers’ potential application of technology in response to the 
corresponding CAFE requirements and the estimated market demand for fuel economy, 
considering estimated fuel prices, estimated product development cadence, and the estimated 
availability, applicability, cost, and effectiveness of fuel-saving technologies.  The analysis 
sometimes shows that specific manufacturers could increase CAFE levels beyond requirements 
in ways estimated to, through avoided fuel outlays, “pay buyers back” very quickly (i.e., within 
30 months) for the corresponding additional costs to purchase new vehicles.  Consistent with the 
analysis published with the 2020 final rule, today’s analysis shows that if battery costs decline as 
projected while fuel prices increase as projected, BEVs should become increasingly attractive on 
this basis, such that the modeled application of BEVs (and some other technologies) clearly 
outstrips regulatory requirements after the mid-2030s. 
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Our No-Action Alternative is more nuanced than in any prior rulemaking.  In this analysis, 
Alternative 0 includes the national standards finalized in 2020 for both CAFE and GHG, as well 
as the voluntary California Framework Agreements (which affects five manufacturers – BMW, 
Ford, Honda, Volkswagen, and Volvo, together about 30 percent of the market) and the ZEV 
mandate that California and the Section 177 states have adopted.  NHTSA continues to believe 
that to properly estimate fuel economies (and achieved GHG emissions) in the No-Action 
Alternative, it is necessary to simulate all of these legal requirements affecting automakers and 
vehicle design simultaneously.  Consequently, the CAFE Model evaluates each requirement in 
each model year, for each manufacturer/fleet.  Differences among fleets and compliance 
provisions often creates over-compliance in one program, even if a manufacturer is able to 
exactly comply (or under-comply) in the other program.  This is similar to how manufacturers 
approach the question of concurrent compliance in the real world – when faced with multiple 
regulatory programs, the most cost-effective path may be to focus efforts on meeting one or two 
sets of requirements, even if that results in “more effort” than would be necessary for another set 
of requirements, in order to ensure that all regulatory obligations are met.  We elaborate on these 
new model capabilities below.  Generally speaking, the model treats each manufacturer as 
applying the following logic when making technology decisions: 

1. What do I need to carry over from last year? 

2. What should I apply more widely in order to continue sharing (of, e.g., engines) across 
different vehicle models? 

3. What new PHEVs or BEVs do I need to build in order to satisfy the ZEV mandates? 

4. What further technology, if any, could I apply that would enable buyers to recoup 
additional costs within 30 months after buying new vehicles? 

5. What additional technology, if any, should I apply in order to respond to CAFE and CO2 
standards? 

All the regulatory alternatives considered here include, for passenger cars, the following 
coefficients defining the combination of baseline federal CO2 standards and the California 
Framework Agreements. 
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Table 1-4 – Passenger Car CO2 Target Function Coefficients 

 2021 2022 2023 2024 2025 2026 

a (g/mi) 162 159 156 154 151 149 
b (g/mi) 221 217 214 210 207 203 

c (g/mi per s.f.) 3.94 3.88 3.82 3.77 3.71 3.65 
d (g/mi) 0.2 -0.1 -0.4 -0.6 -0.9 -1.2 
e (s.f.) 41 41 41 41 41 41 
f (s.f.) 56 56 56 56 56 56 

g (g/mi) 157 151 146 140 135 130 
h (g/mi) 215 207 199 192 185 178 

i (g/mi per s.f.) 3.84 3.70 3.56 3.43 3.30 3.18 
j (g/mi) -0.4 -0.4 -0.4 -0.4 -0.3 -0.3 

Coefficients a, b, c, d, e, and f define the current federal CO2 standards for passenger cars.  
Analogous to coefficients defining CAFE standards, coefficients a and b specify minimum and 
maximum passenger car CO2 targets in each model year.  Coefficients c and d specify the slope 
and intercept of the linear portion of the CO2 target function, and coefficients e and f bound the 
region within which CO2 targets are defined by this linear form.  Coefficients g, h, i, and j define 
the CO2 targets applicable to BMW, Ford, Honda, Volkswagen, and Volvo, pursuant to the 
agreements these manufacturers have reached with California.  Beyond 2026, the MY 2026 
federal standards apply to all manufacturers, including these five manufacturers.  The 
coefficients shown in Table 1-5 define the corresponding CO2 standards for light trucks.  
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Table 1-5 – Light Truck CO2 Target Function Coefficients 

 2021 2022 2023 2024 2025 2026 

a (g/mi) 207 203 200 196 193 190 
b (g/mi) 329 324 319 314 309 304 

c (g/mi per s.f.) 4.51 4.44 4.37 4.31 4.23 4.17 
d (g/mi) 21.5 20.6 20.2 19.6 19.6 19.0 
e (s.f.) 41 41 41 41 41 41 
f (s.f.) 68 74 74 74 74 74 

g (g/mi) 195 188 181 174 168 162 
h (g/mi) 335 324 312 300 289 278 

i (g/mi per s.f.) 4.28 4.12 3.97 3.82 3.68 3.54 
j (g/mi) 19.8 19.1 18.4 17.7 17.0 16.4 

All of the regulatory alternatives considered here also include NHTSA’s estimates of ways each 
manufacturer could introduce new PHEVs and BEVs in response to ZEV mandates.37  As 
discussed in greater detail below, these estimates force the model to convert specific vehicle 
model/configurations to either a BEV200, BEV300, or BEV400 at the earliest estimated 
redesign.  These “ZEV Candidates” define an incremental response to ZEV mandates (i.e., 
beyond PHEV and BEV production through MY 2020) comprise the following shares of 
manufacturers’ MY 2020 production for the U.S. market as shown in Table 1-6. 

 
37 NHTSA interprets EPCA/EISA as allowing consideration of already-built fully electric vehicles in its analytical 
baseline because (1) 49 U.S.C. 32902(h) clearly applies to the “maximum feasible” determination, which NHTSA 
has long held is informed by analytical results but not dictated by them; and (2) it would be arbitrary for NHTSA to 
interpret 32902(h) as requiring it to ignore already-built fully electric vehicles, because doing so would be 
unrealistic, would make the analysis less informative by biasing the cost-benefit results, and would be inconsistent 
with OMB guidance in Circular A-4. 
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Table 1-6 – ZEV “Candidates” as Share of MY 2020 Production 

Manufacturer BEV200 BEV300 BEV400 
BMW  1.9%  

Daimler 2.6%  0.8% 
FCA  1.1%  
Ford 0.1% 1.1%  
GM  1.0%  

Honda  1.8%  
Hyundai  1.3%  

Kia 1.7% 0.5%  
Jaguar – Land Rover 0.2% 1.4%  

Mazda 3.1%   
Mitsubishi 0.6% 1.2%  

Nissan  0.5%  
Subaru  2.2%  
Tesla    

Toyota 1.2% 0.7%  
Volvo 2.3% 0.7%  
VWA  1.5%  

 

For example, while Tesla obviously need not introduce additional BEVs to comply with ZEV 
mandates, our analysis indicates Nissan could need to increase BEV offerings modestly to do so, 
and Mazda and some other manufacturers may need to do considerably more than Nissan to 
introduce new BEV offerings. 

This representation of the Framework Agreements, CO2 standards and ZEV mandates applies 
equally to all regulatory alternatives, and NHTSA’s analysis applies the CAFE Model to 
examine each alternative treating each manufacturer as responding jointly to the entire set of 
requirements. 

1.4.1 “No-Action” Alternative 

The No-Action Alternative (also sometimes referred to as “Alternative 0”) applies the CAFE 
target curves set in 2020 for MYs 2024-2026, which raised stringency by 1.5 percent per year for 
both passenger cars and light trucks.   

Table 1-7 – Characteristics of No-Action Alternative – Passenger Cars 

 2024 2025 2026 
a (mpg) 51.78 52.57 53.37 
b (mpg) 38.74 39.33 39.93 

c (gpm per s.f.) 0.000433 0.000427 0.000420 
d (gpm) 0.00155 0.00152 0.00150 
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Table 1-8 – Characteristics of No-Action Alternative – Light Trucks 

 2024 2025 2026 
a (mpg) 41.55 42.18 42.82 
b (mpg) 26.82 27.23 27.64 

c (gpm per s.f.) 0.000484 0.000477 0.000469 
d (gpm) 0.00423 0.00417 0.00410 

 
These equations are presented graphically in Figure 1-6 and Figure 1-7, where the x-axis 
represents vehicle footprint and the y-axis represents fuel economy, showing that in “CAFE 
space,” targets are higher in fuel economy for smaller footprint vehicles and lower for larger 
footprint vehicles. 

 
Figure 1-6 – No-Action Alternative, Passenger Car Fuel Economy Target Curves 
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Figure 1-7 – No-Action Alternative, Light Truck Fuel Economy Target Curves 

EPCA, as amended by EISA, requires that any manufacturer’s domestically-manufactured 
passenger car fleet must meet the greater of either 27.5 mpg on average, or 92 percent of the 
average fuel economy projected by the Secretary for the combined domestic and non-domestic 
passenger automobile fleets manufactured for sale in the United States by all manufacturers in 
the model year.  The projection shall be published in the Federal Register when the standard for 
that model year is promulgated in accordance with 49 U.S.C. 32902(b).38  Any time NHTSA 
establishes or changes a passenger car standard for a model year, the minimum domestic 
passenger car standard (MDPCS) must also be evaluated or re-evaluated and established 
accordingly, but for purposes of the No-Action Alternative, the MDPCS is as it was established 
in the 2020 final rule, as shown in Table 1-9. 

Table 1-9 – No-Action Alternative – Minimum Domestic Passenger Car Standard 

2024 2025 2026 

41.8 mpg 42.4 mpg 43.1 mpg 
 

 
38 49 U.S.C. 32902(b)(4). 
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As the baseline against which the Action Alternatives are measured, the No-Action Alternative 
also includes several other actions that NHTSA believes will occur in the absence of further 
regulatory action, as discussed above.   

NHTSA accomplished much of this through expansion of the CAFE Model after the 2020 final 
rule.  The previous version of the model had been extended to apply to GHG standards as well as 
CAFE standards but had not been published in a form that simulated simultaneous compliance 
with both sets of standards.  As discussed at greater length in the current CAFE Model 
documentation, the updated version of the model simulates all the following simultaneously: 

1. Compliance with CAFE standards. 

2. Compliance with GHG standards applicable to all manufacturers. 

3. Compliance with alternative GHG emission reduction commitments applicable to a 
subset of manufacturers. 

4. Compliance with ZEV mandates. 

5. Further fuel economy improvements applied if sufficiently cost-effective for buyers. 

Inclusion of these actions in the No-Action Alternative means that they are necessarily included 
in each of the Action Alternatives.  That is, the impacts of all the alternatives evaluated in the 
final rule are against the backdrop of these State and voluntary actions by automakers.  This is 
important to remember, because it means that automakers will be taking actions that affect the 
technology mix on vehicles—which in some situations will alter fuel economy and the 
assessment of what is technological feasible to improve fuel economy even in the absence of 
new CAFE standards, and that costs and benefits attributable to those actions are therefore not 
attributable to possible future CAFE standards. 

One of the effects of the costs and benefits attributable to those actions not being attributable to 
possible future CAFE standards is that the effects of the final rule appear less cost-beneficial 
than they would otherwise.  The apparent “over-compliance” with the No-Action Alternative 
alluded to above, in particular, reduces the benefits attributable to the final standards.  There are 
several causes for this apparent over-compliance, as also listed above.  The following text 
explores one of them in more detail. 

Among the realities that face manufacturers is consumer demand for fuel economy.  While this 
topic creates much debate, for purposes of compliance simulations, the final rule analysis 
assumes that market demand for fuel economy can be represented by a 30-month payback 
(meaning that the value of future fuel savings (undiscounted) fully offsets the cost of the 
technology).  However, the benefit cost analysis accounts for the full lifetime fuel savings that 
accrue to vehicles affected by the final standards. 
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NHTSA staff believe that manufacturers do improve fuel economy even in the absence of 
standards, because: 

1) The last 15 years’ worth of CAFE compliance data show that they do. 

From 2004 – 2017 (the last year for which NHTSA has final compliance data and certified 
compliance positions), Figure 1-8 illustrates the extent of certified over-compliance by each 
manufacturer and fleet (as a percentage of the standard).  While some manufacturers’ compliance 
history, Jaguar Land Rover (JLR) for example, support the theory that manufacturers do not 
exceed their standards, some of these manufacturers serve a portion of the market (e.g., Jaguar 
buyers) almost certainly less concerned with fuel outlays than the bulk of the U.S. market, and 
the majority of the data tell a different story.  Some manufacturers have even exceeded their 
standards in certain fleets by 20 percent or more over many consecutive years (Honda passenger 
cars, or Subaru trucks, for example).  Others have similarly observed the auto industry’s secular 
march toward higher fuel economy over time, even in the absence of standards.”39 

 
Figure 1-8 – Percent Over-Compliance with CAFE Over Time 

2) Manufacturers have consistently told NHTSA that they make any fuel economy 
improvements for which the cost can be fully recovered within the first 2-3 years of 
ownership.  They have said that consumers typically shift toward improvements in other 
attributes after that point.   

 
39 https://www.theatlantic.com/science/archive/2020/04/trumps-auto-rollback-will-eliminate-13500-jobs-
cafe/609748/.  (Accessed: February 14, 2022). 

https://www.theatlantic.com/science/archive/2020/04/trumps-auto-rollback-will-eliminate-13500-jobs-cafe/609748/
https://www.theatlantic.com/science/archive/2020/04/trumps-auto-rollback-will-eliminate-13500-jobs-cafe/609748/
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The 2015 NAS report discussed this assumption explicitly, stating: “There is also empirical 
evidence supporting loss aversion as a possible cause of the energy paradox.  Greene (2011) 
showed that if consumers accurately perceived the upfront cost of fuel economy improvements 
and the uncertainty of fuel economy estimates, the future price of fuel, and other factors affecting 
the present value of fuel savings, the loss-averse consumers among them would appear to act as 
if they had very high discount rates or required payback periods of about 3 years.”40  Naturally, 
there are heterogeneous preferences for vehicle attributes in the marketplace, only one of which 
is the focus of this program.  At the same time that we are observing record sales of battery 
electric vehicles, we are also seeing sustained demand for pickup trucks with higher payloads 
and towing capacity.  This analysis, like all the CAFE analyses preceding it, uses an average 
value to represent these preferences across the market.   

3) As in previous CAFE analyses, our fuel price projections assume sustained increases in 
real fuel prices over the course of the rule (and beyond).  

As readers are certainly aware, fuel prices have changed over time – sometimes quickly, 
sometimes slowly, generally upward (see Figure 1-9). 

 

 
Figure 1-9 – Real Fuel Prices over Time 

In the 1990s, when fuel prices were historically low (as shown in Figure 1-9), manufacturers did 
not tend to improve their fuel economy, likely because there simply was very little consumer 
demand for improved fuel economy.  In subsequent decades, when fuel prices were higher, many 

 
40 National Research Council 2015, Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-
Duty Vehicles, at p. 317.  Washington, DC: The National Academies Press.  https://doi.org/10.17226/21744. 
(Accessed: February 14, 2022).  Available for review in hard copy at DOT headquarters. 
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of them have exceeded their standards in multiple fleets, and for multiple years (see Figure 1-8).  
Our current fuel price projections look more like the last two decades, where prices have been 
more volatile, but also closer to $3/gallon on average.   

In general, during periods of either less stringent standards or consistently higher fuel prices, 
manufacturers across the industry have over-complied by varying amounts across regulatory 
classes.  In recent years, as fuel prices have steadily declined on average and CAFE standards 
have continued to increase (since 2008 for light trucks and since 2011 for passenger cars), fewer 
manufacturers have exceeded their standards.  However, our compliance data shows that that at 
least some manufacturers do improve their fuel economy if fuel prices are high enough, even if 
they are not able to respond perfectly to fluctuations precisely when they happen.  In many cases, 
specific manufacturers have exceeded their standards by significantly larger margins than we 
simulate in the rulemaking analysis, as the graphs above illustrate.  This highlights the 
importance of fuel price assumptions both in the analysis and in the real world on the future of 
fuel economy improvements. 

4) Rulemaking analysis attempts to isolate the impact of the action being considered, which 
means that we need to capture accurately what else is happening besides the action.  

Given that fuel prices influence the degree to which manufacturers will increase fuel economy in 
the absence of regulation, the characterization of that behavior must be sufficiently flexible to 
accommodate multiple fuel price projections.  If, instead of our central analysis assumptions 
about fuel prices, we assumed fuel prices more like the historically low prices of the 1990s, this 
analysis would show little, if any, over-compliance.  Similarly, a multi-year spike in prices like 
the one that occurred from 2012 – 2014 should result in additional consumer demand for fuel 
economy – which we observed during that period.   

While the assumption in this analysis does result in some manufacturers continuing to improve 
fuel economy beyond the levels required in the baseline, the amount of this that occurs is 
generally small. 

Who is over-complying in the analysis, and by how much? 

Manufacturers separate into three distinct groups: the manufacturers in the Framework 
Agreements; manufacturers projected to be bound by the baseline GHG and/or CAFE standards; 
and manufacturers projected to exceed baseline requirements through the additional application 
of cost-effective technology (i.e., the 30-month payback assumption).  
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Table 1-10 – Simulated (and Recent) Compliance for CA Agreement Companies 

 

 

Table 1-10 shows that, for the Framework companies, the CA requirement is the binding 
constraint under the No-Action Alternative.  For example, in MY 2026, BMW over-complies 
with its passenger car (PC) GHG requirement but slightly under-complies with its light truck 
(LT) GHG requirement.  (Within the context of the simulation, under or over-complying by one 
percent is the equivalent of a gram or two per mile.  This is well within the precision of these 
simulations.)  Also in MY 2026, other Framework manufacturers achieve average CO2 levels 
generally closer to average CO2 requirements than in the past.  However, in every case, 
compliance with the Framework Agreements leads to significant over-compliance in the CAFE 
program. 

Also under the No-Action Alternative, some other manufacturers are generally bound by the 
baseline standards, as Table 1-11 shows.  However, while the Framework Agreements makes 
baseline GHG requirements unambiguously more challenging than baseline CAFE standards for 
participating manufacturers, results for these other manufacturers are less definitively one-sided.  
For example, while results suggest baseline GHG requirements could be more challenging for 
Hyundai than baseline CAFE requirements, MY 2026 results for some other manufacturers show 
similar degrees of overcompliance with CAFE and GHG requirements. 

Manufacturer Regulatory Class 2020 2026 2029 2020 2026 2029
Domestic Car
Imported Car -14% 16% 17%
Light Truck -1% 13% 13% 0% -3% 12%
TOTAL -9% 15% 16% -9% 1% 10%
Domestic Car -12% 10% 12%
Imported Car -19% 51% 51%
Light Truck 2% 17% 17% 3% 1% 15%
TOTAL -1% 15% 16% -1% 0% 13%
Domestic Car 3% 12% 12%
Imported Car 2% 15% 16%
Light Truck 5% 20% 20% 6% 4% 17%
TOTAL 4% 16% 16% 4% 0% 12%
Domestic Car -11% -4% 0%
Imported Car -14% 10% 15%
Light Truck -1% 21% 25% 2% 6% 19%
TOTAL -3% 15% 20% -2% 1% 14%
Domestic Car -17% 1% 3%
Imported Car -12% 23% 26%
Light Truck -8% 13% 14% -8% -3% 12%
TOTAL -10% 15% 17% -10% 0% 12%

BMW

Ford

Volvo

VWA

-16% 6%

Honda
2% -3% 9%

CAFE CO2

-17%

-14%

3% 8%

-3%

-16%

4% 13%

-14% 1%
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Table 1-11 – Simulated (and Recent) Compliance for Companies Bound by National GHG 

 

For some OEMs, over-compliance is instead the result of technology application.  For example, 
while Mazda PC over-complies with both CAFE and GHG, the GHG over-compliance (the 
binding standard here) is less than Mazda’s historical compliance.  However, Mazda’s LT fleet is 
over-complying through the application of cost-effective technology.  The same is generally true 
of Toyota’s PC fleet, though the LT fleet over-complies more than in recent years.   

Looking at the actual technologies that the CAFE Model is applying voluntarily, we see that in 
general, the model applies technologies that increase fuel economy for less than $40 per percent 
improvement – this is the amount that will pay back within the defined period.  An important 
exception is Subaru, which barely complies with its PC standard (in both programs), but 
significantly exceeds its LT standard in both programs.  While Subaru has historically exceeded 
its LT CAFE standard by comparable degrees, the over-compliance here is not driven by 
technology application, but rather by the assumed application of off-cycle (and air conditioning 
[AC]) credits.  As the figures below demonstrate, Subaru is not actually applying much on-cycle 
technology, but simply making the economic decision to maximize AC/OC, as some companies 
do.  Reliance on AC leakage and off-cycle credits has little impact on estimated real-world fuel 
savings (at least in the CAFE Model).  In fact, all of the companies in Table 1-12 are 
characterized by rapid increases in deployment of AC/OC credits toward compliance, which 
leaves many cost-effective technologies available.  

Manufacturer Regulatory Class 2020 2026 2029 2020 2026 2029
Domestic Car
Imported Car -18% 5% 7%
Light Truck -6% 4% 6% -9% 4% 5%
TOTAL -11% 4% 7% -17% 4% 3%
Domestic Car -27% 4% 7%
Imported Car -23% 13% 14%
Light Truck -7% 2% 5% -7% 2% 4%
TOTAL -9% 2% 5% -10% 2% 3%
Domestic Car -7% 3% 2%
Imported Car -13% 0% 2%
Light Truck -4% 1% 4% -5% 0% 3%
TOTAL -5% 1% 4% -6% 0% 1%
Domestic Car 12% 26% 27%
Imported Car -10% 2% 3%
Light Truck -6% 4% 4% -10% 1% 2%
TOTAL -9% 3% 4% -13% 0% 1%
Domestic Car
Imported Car -15% 0% 2%
Light Truck -11% 1% 3% -10% 2% 1%
TOTAL -11% 1% 3% -11% 2% 1%
Domestic Car
Imported Car -8% 2% 3%
Light Truck 0% 3% 3% 0% 3% 3%
TOTAL -3% 3% 3% -3% 2% 1%

Daimler

FCA

GM

Hyundai

JLR

Mitsubishi

-13%

-21%

1% -2%

0%

-29%

-39%

3% 1%

4% 2%

-9%

-8%

1%

-2% -2%

1% -3%
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Table 1-12 – Simulated Over-Compliance through Cost-Effective Technology Application

 

  

Manufacturer Regulatory Class 2020 2026 2029 2020 2026 2029
Domestic Car
Imported Car -5% 4% 5%
Light Truck -7% 5% 8% -8% 5% 7%
TOTAL -6% 4% 6% -7% 4% 4%
Domestic Car -14% 21% 21%
Imported Car -11% 4% 4%
Light Truck 0% 9% 9% -4% 6% 8%
TOTAL -5% 7% 8% -12% 5% 5%
Domestic Car 1% 5% 5%
Imported Car -12% 0% 0%
Light Truck -5% 8% 10% -9% 7% 9%
TOTAL -3% 5% 6% -7% 4% 4%
Domestic Car
Imported Car -15% 6% 6%
Light Truck 12% 29% 30% 11% 25% 24%
TOTAL 6% 23% 23% 5% 20% 19%
Domestic Car 4% 3% 7%
Imported Car 6% 11% 18%
Light Truck -6% 10% 12% -9% 10% 11%
TOTAL -1% 9% 13% -4% 8% 10%

Kia

Mazda

Nissan

Subaru

Toyota

-7%

-23%

CAFE CO2

-5%

-24%

3%

2% 2%

3% 1%

2% 1%

4% 2%

6% 10%
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The following tables show the technologies that the CAFE Model actually applies for a subset of 
manufacturers, showing the model year in which the technology is applied, the technology 
applied, and the ratio of the incremental costs to apply the technology to the affected vehicles 
divided by the fuel savings estimated to be realized during the first 30 months of vehicle 
operation.  For example, in the following table, the first voluntary application of improved 
accessories (IACC) incurs $0.70 of technology cost for every $1.00 of fuel savings (counting 
only fuel savings during the first 30 months of vehicle operation), and the first voluntary 
application of AERO15 reduces technology costs by $5.50 for every $1.00 of fuel savings. 

Table 1-13 – Kia Voluntary Technology Application 

Model Year Technology Costs/Savings 
2022 IACC 0.7 
2024 AERO15 -5.5 
2024 AERO15 -5.3 
2024 AERO20 -5.0 
2024 AERO20 -4.9 
2024 AERO15 -3.5 
2024 AERO15 -2.8 
2024 AERO20 -1.9 
2024 AERO20 -1.5 
2024 ROLL10 0.1 
2024 HCR1 0.4 
2024 ROLL20 0.4 
2024 IACC 0.5 
2024 ROLL20 0.5 
2024 IACC 0.6 
2024 ROLL20 0.7 
2024 HCR1 0.8 
2024 ROLL20 0.9 
2024 AT10L2 0.9 
2024 MR1 1.0 
2024 AERO15 1.0 
2025 HCR1 1.0 
2027 TURBO1 0.9 
2029 BEV200 -3.3 
2029 AERO20 0.2 

 

In theory, the technologies whose cost of application is negative should be applied regardless of 
regulatory pressure (or even fuel prices), because it would literally save manufacturers money to 
apply them.  Kia’s table illustrates a common theme—that a number of technologies appear to 
have attractive cost-effectiveness – notably aerodynamic improvements and low rolling 
resistance tires.  Given that Hyundai-Kia is targeting its share of HEV/PHEV/BEV to be closer 
to 25 percent by 2025 (and we simulate less than 3 percent in the baseline), our estimated over-
compliance in the baseline is almost certainly too low, rather than too high.41  (We do show one 

 
41 https://hyundainews.com/en-us/releases/2982.  (Accessed: January 18, 2022). 

https://hyundainews.com/en-us/releases/2982
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application of BEV being cost-effective enough to occur without a regulatory prompt as soon as 
MY 2029 for Kia.) 

 Table 1-14 – Mazda Voluntary Technology Application 

Model Year Technology Costs/Savings 
2023 ROLL20 0.8 
2023 AT8 0.9 
2025 AERO10 -4.2 
2025 AERO15 -3.5 
2025 AERO20 -1.4 
2026 MR1 0.6 
2026 AERO15 0.8 
2026 AERO15 0.9 

 
Mazda’s table tells a similar story – minor technologies that are either cost-saving, or very cost-
effective. 

Table 1-15 – Nissan Voluntary Technology Application 

Model Year  Technology  Costs/Savings 
2023   MR3  0.7 
2023   ROLL10  0.1 
2023   IACC  0.2 
2023   ROLL20  0.3 
2023   AT8L2  0.7 
2023   AT10L2  0.7 
2023   AERO15  0.9 
2023   TURBOD  0.9 
2024   AERO15  -5.0 
2024   AERO20  -4.6 
2024   AERO15  -4.8 
2024   AERO20  -4.4 
2024   IACC  0.6 
2024   IACC  0.7 
2024   ROLL20  0.7 
2024   HCR1  0.9 
2024   AERO15  1.0 
2025   MR1  -2.0 
2025   AERO20  -1.4 
2026   ROLL10  0.1 
2026   IACC  0.2 
2026   ROLL20  0.3 
2027   SAX  1.6 
2028   MR1  0.6 
2028   AERO15  0.8 
2028   AERO15  1.0 
2029   AERO10  1.2 
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2029 AERO15 1.0 
 

Nissan’s technology application is broader than the first two, but features many of the same 
technologies – aero, tires, certain cost-effective transmissions, certain cost-effective engines. 

As stated above, Subaru’s over-compliance is not a function of technology application, although 
we show this overcompliance leaves opportunities for Subaru to apply some additional 
technology not necessitated by baseline standards. 

Table 1-16 – Subaru Voluntary Technology Application 

Model Year Technology Costs/Savings 
2023 AERO15 -5.3 
2023 AERO15 -4.3 
2023 TURBO1 -0.4 
2023 ROLL10 0.1 
2023 IACC 0.4 
2023 ROLL20 0.5 
2023 IACC 0.6 
2023 ROLL20 0.6 
2023 ROLL20 0.7 
2023 ROLL20 0.6 
2023 IACC 0.6 
2024 HCR1 0.8 
2024 AERO15 1.0 
2029 AERO15 0.9 

 

Rather, Subaru exceeds both standards because we assume (a priori) that most manufacturers 
will make increasing use of AC/OC credits toward compliance in both programs.  Subaru’s OC 
credits are assumed to nearly triple during the rulemaking timeframe, and AC leakage credits to 
nearly double.  While CAFE does not account for AC leakage credits, manufacturers who opt to 
comply with GHG standards through their application leave cost-effective fuel economy 
technology on the table.  If instead, they opt to pursue compliance only through on-cycle fuel 
economy improvements, our analysis will still show some over-compliance in the LT fleet, but 
less than Subaru has typically exhibited. 

Table 1-17 – Toyota Voluntary Technology Application 

Model Year  Technology  Costs/Savings Model Year  Technology  Costs/Savings 
2022   HCR0  0.8 2024   HCR1  0.8 
2022   ROLL20  0.8 2025   AERO15  -5.8 
2022   AT8  0.8 2025   AERO20  -5.4 
2022   ROLL20  0.8 2026   ROLL10  0.1 
2022   AERO15  1.0 2026   IACC  0.2 
2022   AERO15  2.1 2026   ROLL20  0.4 
2022   HCR1  1.0 2026   AT8  0.4 
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2023   ROLL10  0.1 2026   ROLL20  0.4 
2023   IACC  0.4 2026   AT8  0.4 
2023   ROLL20  0.5 2026   ROLL20  0.4 
2023   ROLL10  0.1 2026   MR1  0.7 
2023   IACC  0.4 2026   AERO10  0.7 
2023   IACC  0.3 2026   AERO10  0.8 
2023   IACC  0.3 2026   AERO10  0.9 
2023   IACC  0.4 2026   TURBO1  1.0 
2023   ROLL20  0.4 2026   MR1  1.0 
2023   IACC  0.4 2026   EFR  1.0 
2023   AT8  0.4 2027   BEV200  -2.8 
2023   ROLL20  0.5 2027   MR1  0.9 
2023   IACC  0.5 2028   IACC  0.9 
2023   ROLL20  0.5 2028   AERO15  0.9 
2023   AT10L2  0.8 2028   AERO15  1.0 
2023   AERO15  1.0 2029   HCR1  0.1 
2024   AERO15  -3.8 2029   BEV200  0.3 
2024   AERO15  -3.4 2029   AERO10  -1.9 
2024   AERO15  -3.2 2029   AERO15  -1.4 
2024   AERO20  -1.6 2029   AERO20  0.1 
2024   AERO20  -1.5 2029   AERO15  0.9 
2024   AERO20  -1.4 2029   TURBO1  0.9 
2024   DEAC  0.6 2029   AERO15  0.9 
2024   IACC  0.8 2029   MR1  1.0 

 

We show Toyota applying more technology than the other manufacturers in this set.  Toyota has 
old truck engines that are infrequently redesigned (in the pickup segment), and the model takes 
advantage of cost-effective opportunities to upgrade them, as seems reasonable to expect that 
they will.42  The same technologies that appear cost-effective for other manufacturers, also 
appear cost-effective for Toyota (including several whose cost is negative).  And, similar to 
Subaru, we show Toyota nearly doubling their application of both OC and AC leakage credits 
during the rulemaking period.  If instead, they choose to comply through the application of fuel 
economy technology, many of these cost-effective technologies would be applied in service of 
compliance, rather than in excess of it. 

What does this over-compliance mean for costs and benefits attributable to the final rule? 

 
42 As discussed below, technology-related inputs to the agency’s analysis—in particular, inputs providing the basis 
for estimates of the fuel economy benefit achieved by applying a given combination of technologies—are based on 
applying technologies in a manner that holds vehicle performance and utility nominally constant.  Manufacturers 
could instead apply technologies in a manner that balances changes in fuel economy with changes in vehicle 
performance, utility, and cost, instead of using all of a given technology’s potential to improve fuel economy.  
However, the agency is unaware of any practicable means to simulate such tradeoffs and optimization for different 
categories of vehicles, or any practicable means to estimate how buyers’ valuation of different categories of vehicles 
could change in response to simultaneous changes in fuel economy, different measures of vehicle performance, and 
different measures of vehicle utility. 



  78 

Today’s analysis treats manufacturers’ decisions as being informed by fuel prices, applying the 
same functional approach for all regulatory alternatives and all fuel prices—that is, offsetting 
technology costs by fuel savings estimated to accrue over the first 30 months of vehicle 
operation.  Because less stringent standards tend to leave more technology “on the table” than 
more stringent standards, this approach attributes some costs and benefits to the No-Action 
Alternative, rather than to the incremental impact of more stringent action alternative.  
Notwithstanding uncertainties regarding manufacturers’ and buyers’ future decision making, 
NHTSA considers this the best practicable approach available at this time. 

NHTSA could have instead treated manufacturers’ decisions as being uninformed by fuel 
prices.43  With other inputs (including fuel prices) left at reference case value, doing so would 
have increased the agency’s estimates of additional costs and benefits attributable to the final 
rule by about 7.5 billion dollars (6 percent) and 6 billion dollars (4 percent), respectively, thus 
reducing the agencies estimates of net benefits by about 1.5 billion dollars (9 percent).44 

1.4.2 Action Alternatives 

In addition to the aforementioned No-Action Alternative, NHTSA has considered four “action” 
alternatives, each of which is more stringent than the No-Action Alternative during MYs 2024-
2026.  These action alternatives are as specified below, with Alternative 1 being the least 
stringent in MY 2026, Alternative 3 being the most stringent, and Alternative 2.5 (the Preferred 
Alternative) falling between Alternatives 2 and 3 in terms of MY 2026 stringency. 

1.4.2.1 Alternative 1  

Alternative 1 would increase CAFE stringency for MY 2024 by 9.14 percent for passenger cars 
and 11.02 percent for light trucks and increase stringency in MYs 2025 and 2026 by 3.26 percent 
per year for both passenger cars and light trucks. 

 

 
43 Such an approach would, for example, produce the same fuel economy changes when gasoline costs $4.00 per 
gallon (the 2030 price, in 2018 dollars, in the high oil price case considered in today’s sensitivity analysis) as when 
gasoline costs $2.00 per gallon (the corresponding low oil price value).   
44 These estimates reflect a 3 percent discount rate for climate-related damages, and a 3 percent discount rate for all 
other benefits and costs. 
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Table 1-18 – Characteristics of Alternative 1 – Passenger Cars 

 2024 2025 2026 
a (mpg) 56.15 58.04 60.00 
b (mpg) 42.00 43.41 44.88 

c (gpm per s.f.) 0.000400 0.000387 0.000374 
d (gpm) 0.00141 0.00136 0.00132 

Table 1-19 – Characteristics of Alternative 1 – Light Trucks 

 2024 2025 2026 
a (mpg) 46.17 47.73 49.34 
b (mpg) 27.73 28.67 29.63 

c (gpm per s.f.) 0.000436 0.000422 0.000408 
d (gpm) 0.00377 0.00365 0.00353 

These equations are represented graphically below: 

 
Figure 1-10 – Alternative 1, Passenger Car Fuel Economy, Target Curves 
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Figure 1-11 – Alternative 1, Light Truck Fuel Economy, Target Curves 

Under this alternative, the MDPCS is as follows: 

Table 1-20 – Alternative 1 - Minimum Domestic Passenger Car Standard 

2024 2025 2026 

44.9 mpg 46.4 mpg 47.9 mpg 

1.4.2.2 Alternative 2 

Alternative 2 would increase CAFE stringency at 8 percent per year. 
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Table 1-21 – Characteristics of Alternative 2 – Passenger Cars 

 2024 2025 2026 
a (mpg) 55.44 60.26 65.50 
b (mpg) 41.48 45.08 49.00 

c (gpm per s.f.) 0.000405 0.000372 0.000343 
d (gpm) 0.00144 0.00133 0.00122 

Table 1-22 – Characteristics of Alternative 2 – Light Trucks 

 2024 2025 2026 
a (mpg) 44.48 48.35 52.56 
b (mpg) 26.74 29.07 31.60 

c (gpm per s.f.) 0.000452 0.000416 0.000382 
d (gpm) 0.00395 0.00364 0.00334 

These equations are represented graphically below: 

 
Figure 1-12 – Alternative 2, Passenger Car Fuel Economy, Target Curves 
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Figure 1-13 – Alternative 2, Light Truck Fuel Economy, Target Curves 

Under this alternative, the MDPCS is as follows: 

Table 1-23 – Alternative 2 – Minimum Domestic Passenger Car Standard 

2024 2025 2026 

44.4 mpg 48.1 mpg 52.3 mpg 

 

1.4.2.3 Alternative 2.5 – Preferred Alternative 

In the proposal preceding this final rule, NHTSA sought comment on a possible modification to 
Alternative 2, which would have increased the stringency of CAFE standards by 10 percent 
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between model years 2025 and 2026, rather than by 8 percent.  Shown graphically, this 
possibility appears as shown below: 

 

Figure 1-14 – Graphic Representation of Possible Other Alternative 

 

The coefficients associated with this alternative have been determined as follows: 

 

Table 1-24 – Characteristics of Alternative 2.5 – Passenger Cars 

 2024 2025 2026 
a (mpg) 55.44 60.26 66.95 
b (mpg) 41.48 45.08 50.09 
c (gpm per s.f.) 0.000405 0.000372 0.000335 
d (gpm) 0.00144 0.00133 0.00120 

Table 1-25 – Characteristics of Alternative 2.5 – Light Trucks 

 2024 2025 2026 
a (mpg) 44.48 48.35 53.73 
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b (mpg) 26.74 29.07 32.30 
c (gpm per s.f.) 0.000452 0.000416 0.000374 
d (gpm) 0.00395 0.00364 0.00327 

These equations are represented graphically below:   

 

Figure 1-15 – Alternative 2.5, Passenger Car Fuel Economy, Target Curves 
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Figure 1-16 – Alternative 2.5, Light Truck Fuel Economy, Target Curves 

 

Under this alternative, the MDPCS is as follows: 

Table 1-26 – Alternative 2.5 – Minimum Domestic Passenger Car Standard 

2024 2025 2026 

44.3 mpg 48.2 mpg 53.5 mpg 

 

NHTSA considered this alternative as a way to evaluate the effects of CAFE standards could be 
considered a middle ground between Alternative 2 and Alternative 3 allowing for a slower ramp 
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in stringency than Alternative 3 but providing additional lead time to return to a fuel 
consumption trajectory exemplified by the standards announced in 2012. 

1.4.2.4 Alternative 3 

Alternative 3 would increase CAFE stringency at 10 percent per year.  When developing 
regulatory alternatives for consideration in the published NPRM, NHTSA calculated this would 
result in total fuel economy savings from vehicles produced during MYs 2021-2029 similar to 
total lifetime fuel economy savings that would have occurred if NHTSA had promulgated final 
CAFE standards for MYs 2021-2025 at the augural levels announced in 2012 and, in addition, if 
NHTSA had also promulgated MY 2026 standards that reflected a continuation of that average 
rate of stringency increase (4.48 percent for passenger cars and 4.54 percent for light trucks).  

Table 1-27 – Characteristics of Alternative 3 – Passenger Cars 

 2024 2025 2026 
a (mpg) 56.67 62.97 69.96 
b (mpg) 42.40 47.11 52.34 

c (gpm per s.f.) 0.000396 0.000356 0.000321 
d (gpm) 0.00141 0.00127 0.00114 

Table 1-28 – Characteristics of Alternative 3 – Light Trucks 

 2024 2025 2026 
a (mpg) 45.47 50.53 56.14 
b (mpg) 27.34 30.38 33.75 

c (gpm per s.f.) 0.000442 0.000398 0.000358 
d (gpm) 0.00387 0.00348 0.00313 

 

These equations are represented graphically below: 
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Figure 1-17 – Alternative 3, Passenger Car Fuel Economy, Target Curves 
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Figure 1-18 – Alternative 3, Light Truck Fuel Economy, Target Curves 

Under this alternative, the MDPCS is as follows:  

Table 1-29 – Alternative 3 – Minimum Domestic Passenger Car Standard 

2024 2025 2026 

45.2 mpg 50.3 mpg 55.9 mpg 

NHTSA considered this alternative as a way to evaluate the effects of CAFE standards that 
would return to a fuel consumption trajectory exemplified by the standards announced in 2012.   
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2 What inputs does the compliance analysis require? 

The CAFE Model applies various technologies to different vehicle models in each 
manufacturer’s product line to simulate how each manufacturer might make progress toward 
compliance with the specified standard.  Subject to a variety of user-controlled constraints, the 
model applies technologies based on their relative cost-effectiveness, as determined by several 
input assumptions regarding the cost and effectiveness of each technology, the cost of 
compliance (determined by the change in CAFE or CO2 credits, CAFE-related civil penalties, or 
value of CO2 credits, depending on the compliance program being evaluated), and the value of 
avoided fuel expenses.  For a given manufacturer, the compliance simulation algorithm applies 
technologies either until the manufacturer runs out of cost-effective technologies,45 until the 
manufacturer exhausts all available technologies, or, if the manufacturer is assumed to be willing 
to pay civil penalties or acquire credits from another manufacturer, until paying civil penalties or 
purchasing credits becomes more cost-effective than increasing vehicle fuel economy.  At this 
stage, the system assigns an incurred technology cost and updated fuel economy to each vehicle 
model, as well as any civil penalties incurred/credits purchased by each manufacturer.  This 
compliance simulation process is repeated for each model year included in the study period 
(through model year 2050 in this analysis). 

This point marks the system’s transition between compliance simulation and effects calculations.  
At the conclusion of the compliance simulation for a given regulatory scenario, the system 
produces a full representation of the registered light-duty vehicle population in the United States.  
The CAFE Model then uses this fleet to generate estimates of the following (for each model year 
and calendar year included in the analysis): lifetime travel, fuel consumption, carbon dioxide and 
criteria pollutant emissions, the magnitude of various economic externalities related to vehicular 
travel (e.g., congestion and noise), and energy consumption (e.g., the economic costs of short-
term increases in petroleum prices, or social damages associated with GHG emissions).  The 
system then uses these estimates to measure the benefits and costs associated with each 
regulatory alternative (relative to the No-Action Alternative).   

To perform this analysis, the CAFE Model uses millions of data points contained in several input 
files that have been populated by engineers, economists, and safety and environmental program 
analysts at both NHTSA and the DOT’s Volpe National Transportations Systems Center 
(Volpe).  In addition, some of the input data comes from modeling and simulation analysis 
performed by experts at Argonne National Laboratory using their Autonomie full vehicle 
simulation model and BatPaC battery cost model.  Other inputs are derived from other models, 
such as the U.S. Energy Information Administration’s (EIA’s) National Energy Modeling 
System (NEMS), Argonne’s “GREET” fuel-cycle emissions analysis model, and U.S. EPA’s 
“MOVES” vehicle emissions analysis model.  As NHTSA and Volpe are both organizations 
within DOT, we use DOT throughout these chapters to refer to the collaborative work performed 
for this analysis. 

 
45 Generally, the model considers a technology cost-effective if it pays for itself in fuel savings within 30 months.  
Depending on the settings applied, the model can continue to apply technologies that are not cost-effective rather 
than choosing other compliance options; if it does so, it will apply those additional technologies in order of cost-
effectiveness (i.e., most cost-effective first). 
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This Chapter 2 and the following Chapter 3 describe the inputs that the compliance simulation 
requires, including an in-depth discussion of the technologies used in the analysis, how they are 
defined in the CAFE Model, how they are characterized on vehicles that already exist in the 
market, how they can be applied to realistically simulate manufacturer’s decisions, their 
effectiveness, and their cost.  The inputs and analyses for the effects calculations, including 
economic, safety, and environmental effects, are discussed later in Chapters 4 through 7, 
although the overview of inputs below provides a brief description of the information contained 
in the input files that supports those calculations. 

2.1 Overview of Inputs to the Analysis  

The CAFE Model input files defining the analysis fleet and the fuel-saving technologies to be 
included in the analysis span more than a million records, but deal with a relatively discrete 
range of subjects (e.g., what vehicles are in the fleet, what are the key characteristics of those 
vehicles, what fuel-saving technologies are expected to be available, and how might adding those 
technologies impact vehicles’ fuel economy levels and costs).  The CAFE Model makes use of a 
considerably wider range of other types of inputs, and most of these are contained in other model 
input files.  The nature and function of many of these inputs remains unchanged relative to 2020 
versions, although DOT staff have updated the values of many of these same inputs.  The CAFE 
Model documentation accompanying today’s final rule lists and describes all model inputs and 
explains how inputs are used by the model.  Most input values are discussed below, in 
subsections discussing specific technical, economic, energy, safety, and environmental factors.  
The remainder of this subsection provides an overview of the scope of different model input 
files.  The overview is organized based on CAFE Model file types, as in the model 
documentation. 

2.1.1 Market Data File 

The “Market Data” file contains the detailed description—discussed above—of the vehicle 
models and model configurations each manufacturer produces for sale in the United States.  The 
file also contains a range of other inputs that, though not specific to individual vehicle models, 
may be specific to individual manufacturers.   

The file contains a set of specific worksheets, as follows: 

• “Manufacturers” worksheet:  Lists specific manufacturers, indicates whether 
manufacturers are expected to prefer paying CAFE fines to applying technologies that 
would not be cost-effective, indicates what “payback period” defines buyers’ willingness 
to pay for fuel economy improvements, enumerates CAFE and CO2 credits banked from 
model years prior to those represented explicitly, and indicates how sales “multipliers” 
are to be applied when simulating compliance with CO2 standards.  DOT staff have 
updated this worksheet to include inputs used to account for aspects of each 
manufacturer’s production relevant to compliance with ZEV mandates, as discussed 
further in Chapter 2.3, Simulating the Zero Emissions Vehicle Program. 

• “Credits and Adjustments” worksheet:  Enumerates estimates—specific to each 
manufacturer and fleet—of expected CO2 and CAFE adjustments reflecting improved AC 
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efficiency, reduced AC refrigerant leakage, improvements to “off cycle” efficiency, and 
production of flexible fuel vehicles (FFVs).  The model applies AC refrigerant leakage 
adjustments only to CO2 levels, and applies FFV adjustments only to CAFE levels. 

• “Vehicles” worksheet:  Lists vehicle models and model configurations each 
manufacturer produces for sale in the United States; identifies shared vehicle platforms; 
indicates which engine and transmission is present in each vehicle model configuration; 
specifies each vehicle model configuration’s fuel economy level, production volume, and 
average price; specifies several engineering characteristics (e.g., curb weight, footprint, 
and fuel tank volume); assigns each vehicle model configuration to a regulatory class, 
technology class, engine class, and safety class; specifies schedules on which specific 
vehicle models are expected to be redesigned and freshened; specifies how much U.S. 
labor is involved in producing each vehicle model/configuration; and indicates whether 
specific technologies are already present on specific vehicle model configurations, or, 
due to engineering or product planning considerations, should be skipped.  DOT staff 
have updated this worksheet to include inputs used to indicate which models might 
reasonably treated as candidates to be replaces with vehicles earning credit toward 
compliance with ZEV mandates, as discussed in Chapter 2.3, Simulating the Zero 
Emissions Vehicle Program.  DOT staff have also updated this worksheet to include 
inputs used to indicate which manufacturers are subject to the CARB’s “Framework 
Agreements,” as discussed in Chapter 1. 

• “Engines” worksheet:  Identifies specific engines used by each manufacturer and for 
each engine, lists a unique code (referenced by the engine code specified for each vehicle 
model configuration and identifies the fuel(s) with which the engine is compatible, the 
valvetrain design (e.g., dual overhead cam [DOHC]), the engine’s displacement, cylinder 
configuration and count, and the engine’s aspiration type (e.g., naturally aspirated, 
turbocharged).  The worksheet also indicates whether specific technologies are already 
present on specific engines or, due to engineering or product planning considerations, 
should be skipped. 

• “Transmissions” worksheet:  Similar to the Engines worksheet, identifies specific 
transmissions used by each manufacturer and for each transmission, lists a unique code 
(referenced by the transmission code specified for each vehicle model configuration and 
identifies the type (e.g., automatic or CVT) and number of forward gears.  Also, indicates 
whether specific technologies are already present or, due to engineering or product 
planning considerations, should be skipped. 

2.1.2 Technologies File 

The Technologies file identifies approximately six dozen technologies to be included in the 
analysis, indicates when and how widely each technology can be applied to specific types of 
vehicles, provides most of the inputs involved in estimating what costs will be incurred, and 
provides some of the inputs involved in estimating impacts on vehicle fuel consumption and 
weight.   

The file contains the following types of worksheets: 
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• “Parameters” worksheet:  Not to be confused with the “Parameters” file discussed 
below, this worksheet in the Technologies file indicates, for each technology class, the 
share of the vehicle’s curb weight represented by the “glider” (the vehicle without the 
powertrain). 

• “Technologies” worksheet:  For each named technology, specifies the share of the 
entire fleet to which the technology may be additionally applied in each model year. 

• “Technology Class” worksheets:  In a separate worksheet for each of the 10 technology 
classes discussed above (and an additional 2—not used for this analysis—for heavy-duty 
pickup trucks and vans), identifies whether and how soon the technology is expected to 
be available for wide commercialization, specifies the percentage of miles a vehicle is 
expected to travel on a secondary fuel (if applicable, as for PHEVs), indicates a vehicle’s 
expected electric power and all-electric range (AER) (if applicable), specifies expected 
impacts on vehicle weight, specifies estimates of costs for technologies in each model 
year (and factors by which electric battery costs are expected to be reduced in each model 
year), specifies any estimates of maintenance and repair cost impacts, and specifies any 
estimates of consumers’ willingness to pay for the technology. 

• “Engine Type” worksheets:  In a separate worksheet for each of 28 initial engine types 
identified by cylinder count, number of cylinder banks, and configuration (DOHC, unless 
identified as OHV or single overhead cam [SOHC]), specifies estimates of costs in each 
model year, as well as any estimates of impacts on maintenance and repair costs. 

2.1.3 Parameters File 

The “Parameters” file contains inputs spanning a range of considerations, such as economic and 
labor utilization impacts, vehicle fleet characteristics, fuel prices, scrappage and safety model 
coefficients, fuel properties, and emission rates.   

The file contains a set of specific worksheets, as follows: 

• “Economic Values” worksheet:  Specifies a variety of inputs, including social and 
consumer discount rates to be applied, the “base year” to which to discount social 
benefits and costs (i.e., the reference years for present value analysis), discount rates to be 
applied to the social cost of CO2 emissions, the elasticity of highway travel with respect 
to per-mile fuel costs (also referred to as the rebound effect), the gap between test (for 
certification) and on-road (i.e., real world) fuel economy, the fixed amount of time 
involved in each refuel event, the share of the tank refueled during an average refueling 
event, the value of travel time (in dollars per hour per vehicle), the estimated average 
number of miles between mid-trip electric vehicle (EV) recharging events (separately for 
each BEV considered in the analysis), the rate (in miles of capacity per hour of charging) 
at which EV batteries are recharged during such events, the values (in dollars per vehicle-
mile) of congestion and noise costs, costs of vehicle ownership and operation (e.g., sales 
tax), economic costs of oil imports, estimates of future macroeconomic measures (e.g., 
GDP), and rates of growth in overall highway travel (separately for low, reference, and 
high oil prices). 
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• “Vehicle Age Data” worksheet:  Specifies nominal average survival rates and annual 
mileage accumulation for cars, vans and SUVs, and pickup trucks.  These inputs are used 
only for displaying estimates of avoided fuel savings and CO2 emissions while the model 
is operating.  Calculations reported in model output files reflect, among other things, 
application of the scrappage model. 

• “Fuel Prices” worksheet:  Separately for gasoline, E85, diesel, electricity, hydrogen, 
and compressed natural gas (CNG), specifies historical and estimated future fuel prices 
(and average rates of taxation).  Includes values reflecting low, reference, and high 
estimates of oil prices. 

• “DFS Model Values” worksheet:  Specifies coefficients used by the dynamic fleet share 
model, which estimates the relative proportions of passengers and light trucks in the total 
U.S. market for new vehicles. 

• “Scrappage Model Values” worksheet:  Specifies coefficients applied by the scrappage 
model, which the CAFE Model uses to estimate rates at which vehicles will be scrapped 
(removed from service) during the period covered by the analysis. 

• “Historic Fleet Data” worksheet:  For model years not simulated explicitly (here, 
model years through 2016), and separately for cars, vans and SUVs, and pickup trucks, 
specifies the initial size (i.e., number new vehicles produced for sale in the United States) 
of the fleet, the number still in service in the indicated calendar year (here, 2016), the 
relative shares of different fuel types, and the average fuel economy achieved by vehicles 
with different fuel types, and the averages of horsepower, curb weight, fuel capacity, and 
price (when new). 

• “Safety Values” worksheet:  Specifies coefficients used to estimate the extent to which 
changes in vehicle mass impact highway safety.  Also, specifies statistical value of 
highway fatalities, the share of incremental risk (of any additional driving) internalized 
by drivers, rates relating the cost of damages from non-fatal losses to the cost of fatalities, 
and rates relating the occurrence of non-fatal injuries to the occurrence of fatalities.  DOT 
staff have updated this worksheet to include inputs used to estimate the occurrence and 
monetized damages from crashes resulting in injuries or property damage, but not 
fatalities.  Chapter 7 discusses these new estimation procedures. 

• “Fatality Rates” worksheet:  Separately for each model year from 1975-2050, and 
separately for each vehicle age (through 39 years) specifies the estimated nominal 
number of fatalities incurred per billion miles of travel by which to offset fatalities. 

• “Credit Trading Values” worksheet:  Specifies whether various provisions related to 
compliance credits are to be simulated (currently limited to credit carry-forward and 
transfers), and specifies the maximum number of years’ credits may be carried forward to 
future model years.  Also, specifies statutory (for CAFE only) limits on the quantity of 
credits that may be transferred between fleets, and specifies amounts of lifetime mileage 
accumulation to be assumed when adjusting the value of transferred credits.  Also, 
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accommodates a setting indicating the maximum number of model years to consider 
when using expiring credits. 

• “Employment Values” worksheet:  Specifies the estimated average revenue OEMs and 
suppliers earn per employee, the RPE factor applied in developing technology costs, the 
average quantity of annual labor (in hours) per employee, a multiplier to apply to U.S. 
final assembly labor utilization in order to obtain estimated direct automotive 
manufacturing labor, and a multiplier to be applied to all labor hours. 

• “Fuel Properties” worksheet:  Separately for gasoline, E85, diesel, electricity, 
hydrogen, and CNG, specifies energy density, mass density, carbon content, and tailpipe 
SO2 emissions (grams per unit of energy). 

• “Fuel Import Assumptions” worksheet:  Separately for gasoline, E85, diesel, 
electricity, hydrogen, and CNG, specifies the extent to which (a) changes in fuel 
consumption lead to changes in net imports of finished fuel, (b) changes in fuel 
consumption lead to changes in domestic refining output, (c) changes in domestic 
refining output lead to changes in domestic crude oil production, and (d) changes in 
domestic refining output lead to changes in net imports of crude oil. 

• “Emissions Health Impacts” worksheet:  Separately for NOX, SO2 and PM2.5 
emissions, separately for upstream and vehicular emissions, and for each of calendar 
years 2020, 2025, and 2030, specifies estimates of various health impacts, such as 
premature deaths, acute bronchitis, and respiratory hospital admissions.  Consulting with 
technical staff at EPA and Argonne National Laboratory, DOT staff have refined the 
structure of these inputs to account separately for refining, petroleum extraction, finished 
fuel distribution (i.e., transportation, storage, and distribution), and electricity generation, 
and to differentiate between gasoline and diesel vehicle emissions. 

•  “Greenhouse Emission Costs” worksheet:  For each calendar year through 2080, 
specifies low, average, and high estimates of the social cost of CO2 emissions, in dollars 
per metric ton.  Accommodates analogous estimates for CH4 and N2O. 

• “Criteria Pollutant Emission Costs” worksheet:  Separately for NOX, SO2 and PM2.5 
emissions, separately for upstream and vehicular emissions, and for each of calendar 
years 2016, 2020, 2025, and 2030, specifies social costs on a per-ton basis. 

• “Upstream Emissions (UE)” worksheets:  Separately for gasoline, E85, diesel, 
electricity, hydrogen, and CNG, and separately for calendar years 2020, 2025, 2030, 
2035, 2040, 2045, and 2050, and separately for various upstream processes (e.g., 
petroleum refining), specifies emission factors (in grams per million British thermal unit 
[BTU]) for each included criteria pollutant (e.g., NOX) and toxic air contaminant (e.g., 
benzene). 

• “Tailpipe Emissions (TE)” worksheets:  Separately for gasoline and diesel, for each of 
model years 1975-2050, for each vehicle vintage through age 39, specifies vehicle 
tailpipe emission factors (in grams per mile) for CO, VOC, NOX, PM2.5, CH4, N2O, 



  95 

acetaldehyde, acrolein, benzene, butadiene, formaldehyde, and diesel particulate matter 
10 microns or less in diameter (PM10). 

2.1.4 Scenarios File 

The CAFE Model represents each regulatory alternative as a discrete scenario, identifying the 
first-listed scenario as the baseline relative to which impacts are calculated.  Each scenario is 
described in a worksheet in the Scenarios input file, with standards and related provisions 
specified separately for each regulatory class (passenger car or light truck) and each model year.  
Inputs specify the standards’ functional forms and defining coefficients in each model year.  
Multiplicative factors and additive offsets are used to convert fuel economy targets to CO2 
targets, the two being directly mathematically related by a linear transformation.  Additional 
inputs specify minimum CAFE standards for domestic passenger car fleets, determine whether 
upstream emissions from electricity and hydrogen are to be included in CO2 compliance 
calculations, specify the governing rates for CAFE civil penalties, specify estimates of the value 
of CAFE credits (for CAFE Model operating modes applying these values), specify how flexible 
fuel vehicles (FFVs) and PHEVs are to be accounted for in CAFE compliance calculations, 
specific caps on adjustments reflecting improvements to off-cycle and AC efficiency and 
emissions, specify any estimated amounts of average Federal tax credits earned by HEVs, 
PHEVs, BEVs, and FCVs.  Consulting with CARB technical staff, DOT staff have added inputs 
to account for some manufacturers’ commitment to CARB’s “Framework Agreements,” as 
discussed above in Chapters 1 and 2.  DOT staff have also added inputs to identify specific 
model years for which new standards are being proposed or finalized.  The worksheets also 
accommodate some other inputs, such those as involved in analyzing standards for heavy-duty 
pickups and vans, not used in today’s analysis. 

2.1.5 Run Time Settings 

In addition to inputs contained in the above-mentioned files, the CAFE Model makes use of 
some settings selected when operating the model.  These include which standards (CAFE or 
CO2) are to be evaluated; what model years the analysis is to span; when technology application 
is to begin; whether use of compliance credits is to be simulated and, if so, until what model 
year; whether dynamic economic models are to be exercised and, if so, how many sales model 
iterations are to be undertaken and using what price elasticity; whether low, average, or high 
estimates are to be applied for fuel prices, SCC, and fatality rates; by how much to scale benefits 
to consumers; and whether to report an implicit opportunity cost.  DOT staff have also added 
inputs that can be used to require technology application and vehicle sales under each regulatory 
alternative to remain unchanged from the No-Action Alternative (i.e., the baseline) until some 
future model year.  For today’s analysis, DOT staff have introduced new settings to the model, 
supporting the selection of alternative dynamic fleet share models to be applied, and supporting 
the direct specification of the portion of accumulated driving (in miles) to be included when 
calculating avoided fuel savings offsetting purchase costs when estimating impacts on new 
vehicle sales and used vehicle scrappage. 
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2.1.6 Simulation Inputs 

As mentioned above, the CAFE Model makes use of databases of estimates of fuel consumption 
impacts and, as applicable, battery costs for different combinations of fuel saving technologies.  
For today’s analysis, DOT developed these databases using a large set of full vehicle and 
accompanying battery cost model simulations developed by Argonne National Laboratory.  To 
be used as files provided separately from the model and loaded every time the model is executed, 
these databases are prohibitively large, spanning more than a million records and more than half 
a gigabyte.  To conserve memory and speed model operation, DOT has integrated the databases 
into the CAFE Model executable file.  When the model is run, however, the databases are 
extracted and placed in an accessible location on the user’s disk drive.   

The databases, each of which is in the form of a simple (if large) text file, are as follows: 

• “FE1_Adjustments.csv”:  This is the main database of fuel consumption estimates.  
Each record contains such estimates for a specific indexed (using a multidimensional 
“key”) combination of technologies for each of the technology classes in the Market Data 
and Technologies files.  Each estimate is specified as a percentage of the “base” 
technology combination for the indicated technology class. 

• “FE2_Adjustments.csv”:  Specific to PHEVs, this is a database of fuel consumption 
estimates applicable to operation on electricity, specified in the same manner as those in 
the main database. 

• “Battery_Costs.csv”:  Specific to technology combinations involving vehicle 
electrification (including 12V stop-start systems), this is a database of estimates of 
corresponding base costs (before learning effects) for batteries in these systems.  As 
discussed below, for today’s analysis, DOT staff have adjusted some of the estimates in 
this file in order to better represent batteries used in 12V stop-start systems. 

2.1.7 Argonne National Laboratory Autonomie Simulation Databases 

As discussed above, the technology effectiveness values used in the CAFE Model come from a 
set of full vehicle simulations developed by Argonne National Laboratory using the Autonomie 
model.  While DOT adapts these prohibitively large simulation databases into the CAFE Model 
executable file, DOT provides a summary of simulation outputs for each vehicle technology 
class.  Argonne also provides assumptions summary files to describe the assumptions used in 
building vehicle models and for the BatPaC battery cost modeling.   

The workbooks Argonne provides for the full vehicle simulations are, as follows: 

 

• “CompactNonPerfo_2101.csv; CompactPerfo_2101.csv; MidsizeNonPerfo_2101.csv; 
MidsizePerfo_2101.csv; MidsizeSUVNonPerfo_2101.csv; MidsizeSUVPerfo_2101.csv; 
PickupNonPerfo_2101.csv; PickupPerfo_2101.csv; SmallSUVNonPerfo_2101.csv; 
SmallSUVPerfo_2101.csv”:  These are the ten databases that contain the outputs of the 
Autonomie full vehicle simulations.  These ten vehicle classes account for over one 
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million simulations that have been considered for this analysis.  These results are in raw 
absolute mpg form and then are converted to the appropriate incremental effectiveness 
value for use in the CAFE Model. 

• “ANL - All Assumptions_Summary_NPRM_022021.xlsx”:  This summary workbook 
provides broad summaries of assumptions used for the Autonomie full vehicle 
simulations, such as component weights, cold start penalties, component specifications, 
etc. 

• “ANL - Data Dictionary_January 2021.xlsx”:  This workbook contains descriptions of 
inputs and units for the Autonomie simulation results.  

• “ANL - Summary of Main Component Performance 
Assumptions_NPRM_022021.xlsx”:  This workbook contains another set of 
characteristics data for transmission efficiencies, engine fueling rates, and electric motor 
efficiencies.   

• “ANL_BatPac_Lookup_tables_Feb2021v2.xlsx”:  This contains the inputs, 
assumptions, and outputs of the battery pack modeling performed by Argonne for this 
analysis. 

2.2 The Market Data File  

The starting point for the evaluation of different stringency levels for future fuel economy 
standards is the analysis fleet, which is a snapshot of the recent light duty vehicle market.  The 
analysis fleet provides a reference from which to project how manufacturers could apply 
additional technologies to vehicles to cost-effectively improve vehicle fuel economy, in response 
to regulatory action and market conditions.46  As the scope of CAFE analysis has widened over 
successive rulemakings, the range of data that must be included for each vehicle in the analysis 
fleet has, in turn, widened, currently including nearly half a million pieces of information used 
and referenced in the CAFE Model analysis.   

The Market Data file contains information about manufacturer credit banks, fine payment 
preferences, and whether a manufacturer has voluntary adopted the California Framework 
Agreements, committed to exceed the standards set in the 2020 final rule.  Additionally, the 
Market Data file includes some information about the distribution of vehicle sales within the 
United States, recognizing the proportion of vehicles sold in California and Section 177 states, 
and in the rest of the United States.  This information supports the representation of ZEV 
mandates, discussed in detail.  Credit banks, fine payment preferences, and other information 
described in this paragraph appear on the “Manufacturers” tab of the Market Data file. 

The “Credits and Adjustments” tab of the Market Data file summarizes additional credits 
previously claimed by manufacturer, by regulatory class.  On this tab, the Market Data file 
includes historical data about claimed AC efficiency, AC leakage, off-cycle credits, and flex fuel 

 
46 The CAFE Model does not generate compliance paths a manufacturer should, must, or will deploy.  It is intended 
as a tool to demonstrate a compliance pathway a manufacturer could choose.  It is almost certain all manufacturers 
will make compliance choices differing from those projected by the CAFE Model. 
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vehicle (FFV) credits, as well as forward looking projections about credits that DOT believes 
may be claimed in the future.47   

The “Vehicles” tab of the Market Data file includes information about the vehicles sold in the 
United States in a given model year.  In this tab, DOT staff catalogue the types of vehicles sold 
(including the number sold, the regulatory class, the footprint, and the fuel economy), and 
information about those vehicles that informs the baseline for the analysis (for instance, which 
fuel saving technologies already appear on production vehicles).  The vehicles tab includes 
information necessary to link observed vehicles to effectiveness estimates for additional fuel 
saving technologies (with “technology class” assignments), and technology costs (with 
“technology class,” and “engine class” assignments, needed to point to relevant cost information 
in the technologies input file).  The Market Data file contains additional information about 
projected refresh and redesign cycles, and current part sharing of structural parts, engines, and 
transmissions (with “platforms,” “engine code,” and “transmission code”) that the CAFE Model 
takes into account when applying additional fuel saving technologies.  Estimates of manufacturer 
suggested retail price (MSRP), labor hours per vehicle, and percent U.S. content provide 
reference information used in other CAFE Model calculations. 

The Market Data file “Engines” and “Transmissions” tabs characterize technology content of 
engine and transmission systems in use in the observed fleet and link these systems back to 
observed vehicles via the “engine code” and “transmission code.” 

A reasonable characterization of the analysis fleet is key to estimating costs and benefits 
resulting from the rulemaking action.  The baseline sales volumes, fuel economies, and 
manufacturer fleet fuel economies when compared to future standards help DOT (via CAFE 
Model compliance simulations) evaluate how manufacturers may respond to any projected future 
standards (as future standards are outlined in the scenarios input file), in light of each 
manufacturer’s product portfolio and projected market conditions (with market conditions 
including cost of fuel saving technologies as outlined in the technologies input file, and projected 
fuel prices as outlined in the parameters input file).  The analysis fleet inputs, as characterized in 
the Market Data file, help DOT assess how and when technologies may be adopted in the future 
(considering refresh and redesign cycles and part sharing), help DOT account for technologies 
already applied to vehicles (reducing the likelihood of “double-counting” the effectiveness of 
technologies, which can occur if the analysis assumes already applied technologies are still 
available to improve a vehicle’s fuel economy), and help DOT account for the idea that some 
fuel saving technologies may not meet functional requirements for all vehicle types, or 
performance applications.  The Market Data file, and information outlined in this TSD, 
endeavors to make clear the baseline assumptions with respect to the fleet used in a rulemaking 
analysis. 

The market for light-duty automotive equipment in the United States is highly heterogeneous, 
and even half a million data points may not be enough to characterize every potentially relevant 
nuance of the automotive marketplace.  As for every CAFE rulemaking, today’s analysis fleet 

 
47 DOT discusses the flexibilities and credits, as well as the basis for these projections, in Chapter 3.8 and preamble 
Section VII. 
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reflects a balance between the exigencies of the rulemaking and the availability of supporting 
data. 

The following sections discuss the inputs included in the Market Data file, including vehicles 
and their technology content built in MY 2020 (i.e., the analysis fleet or baseline fleet), and 
baseline safety, economic, and manufacturer compliance positions. 

2.2.1 Characterizing Vehicles and their Technology Content  

Most of the information in the Market Data file is about specific vehicles, including sales, fuel 
economies, regulatory class, and the vehicle specifications (based on best information available 
at the time DOT staff assemble the Market Data file).  Beyond specifications, information in the 
Market Data file links parts of the analysis.  For instance, while the analysis fleet sets the 
baseline for fuel saving technology content already in use, by vehicle, the Market Data file also 
includes information linking individual vehicles to technology effectiveness estimates and 
technology costs (both of which may vary by the type of vehicle, and the configuration of 
equipment on the vehicle).  

In the Market Data file, DOT staff assign each vehicle a “technology class.”  The technology 
class is used to link the observed vehicle to effectiveness estimates and technology costs.  The 
CAFE Model references the Argonne National Laboratory (Argonne) Autonomie simulations for 
many effectiveness estimates used in the compliance simulation.  In these simulations, Argonne 
projects the fuel economies for ten different types of vehicles for many combinations of fuel 
saving technologies.  The technology class in the Market Data file points the CAFE Model to the 
most relevant reference set of effectiveness estimates for each vehicle.  Similarly, some costs for 
fuel saving technologies vary by the type of vehicle (for instance, a pound of weight saved on a 
small car may not cost the same as the cost of a pound of weight on a pickup truck, even if the 
two have adopted very little of the mass reduction technology considered in the analysis).  The 
technology class in the Market Data file also points the CAFE Model to the most relevant 
reference costs in the “Technologies File,” with costs for vehicle technologies being listed on the 
technology class tab.   

Just as some vehicle technology costs vary by type of vehicle (or technology class, as listed in 
the Market Data file and Technologies file), the cost of fuel saving engine technologies and some 
electrification systems vary by the engine architecture, or peak power output most closely 
associated with an engine architecture.  For instance, the cost of adding cylinder deactivation to a 
naturally aspirated dual overhead cam (DOHC) inline four-cylinder engine is not projected to be 
the same as adding cylinder deactivation to a naturally aspirated overhead valve (OHV) V eight-
cylinder engine.  Similarly, some naturally aspirated inline four cylinder engines may retain four 
cylinders when turbocharged (“4C1B” engine technology class, meaning an engine with four 
cylinders and one bank), but lower power variants might go to three cylinders when 
turbocharged (“4C1B_L” engine technology class), and thereby have lower projected costs in 
comparison for the step to turbocharging.  For a more detailed discussion of the mechanics of 
engine technology classes and engine costs, see Chapter 3.1.8.  The engine technology class in 
the Market Data file points the CAFE Model to the most relevant engine technology costs.   
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For each type of vehicle (or row), the Market Data file lists a certification fuel economy, sales 
volume, regulatory class, and footprint.  These are the bare minimum pieces of information 
needed to understand if a manufacturer is under or over complying with standards.  The Market 
Data file often includes a few rows for vehicles that may have identical certification fuel 
economies, regulatory classes, and footprints (with compliance sales volumes divided out among 
rows), because other pieces of information used in the CAFE Model may be dissimilar. 

For instance, in the reference materials used to create the Market Data file, for a nameplate curb 
weight may vary by trim level (with premium trim levels often weighing more on account of 
additional equipment on the vehicle), or a manufacturer may provide consumers the option to 
purchase a larger fuel tank size for their vehicle.  These pieces of information may not impact the 
observed compliance position directly, but curb weight (in relation to other vehicle attributes) is 
important to assess mass reduction technology already used on the vehicle, and fuel tank size is 
directly relevant to saving time at the gas pump, which the CAFE Model uses when calculating 
the value of avoided time spent refueling. 

The Market Data file also provides an inventory of fuel saving technologies already equipped on 
the observed vehicles.  A reasonable characterization is important: underestimating the amount 
of fuel saving technology content on a vehicle would allow the CAFE Model to apply that 
technology again in the compliance simulation (likely at a low cost) and create a “phantom” 
projection of potential fuel economy savings.  On the other hand, overestimating the amount of 
fuel saving technology content already on a vehicle would also remove the misapplied 
technologies from consideration, and confuse the cost accounting if that technology is replaced 
with another (for instance, if the assigned amount of engine technology content is higher than 
actually used, the projected incremental cost to switch to electrified technologies may be 
underestimated).  The assignment process for each technology is described in detail in Chapter 
3.1.5. 

For some fuel saving technologies, manufacturers share parts or systems to get the most from 
economies of scale.  The CAFE Model accounts for some relationships between vehicles that are 
important to consider.  For instance, similar engines and transmissions often appear on many 
types of vehicles.  Manufacturers often use platforms (with shared mass reduction technologies) 
on a family of vehicles.  The CAFE Model includes measures to maintain complexity in 
compliance simulations as it evaluates cost-effective compliance pathways.  DOT staff assign 
each vehicle in the Market Data file an “engine code,” and “transmission code,” and a 
“platform.”  With few exceptions, vehicles that share engine codes will adopt engine 
technologies together, and vehicles that share transmission codes will adopt transmission 
technologies together.  Vehicles that share platforms will adopt mass reduction technologies 
together.  Redesign cycles for all of the vehicles with shared components may not always be in 
sync, but vehicles in the family (with laggard redesigns and refreshes) inherit these shared 
systems at the first available opportunity.  

In limited cases, the Market Data file includes information about technologies that the CAFE 
Model may not apply.  For the row on the vehicle, engine, or transmission, and for the 
technology column listed in the Market Data file, “SKIP” appears in the spreadsheet cell.  
Generally, DOT staff have used data and logic to come up with these rules.  For instance, 
secondary axle disconnect (SAX) may not be applied to vehicles that drive power through two 
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wheels (because the SAX technology has a prerequisite of the vehicle driving all four wheels to 
be applied), so SKIP would appear in the Market Data file for vehicles to which the technology 
could not be applied (therefore acknowledging that manufacturers could not apply this particular 
fuel saving technology to achieve fuel economy improvements for a particular vehicle).  
Instances of SKIP logic includes SKIPs to high levels of aerodynamic improvements (taking into 
account form drag of some vehicle body styles), SKIPs to high levels of rolling resistance for 
performance vehicles (that have high needs for traction to meet handling objectives), and SKIPs 
to some engine packages (to account for low specific power output and torque requirements).  If 
SKIP is applicable for a technology, the rules for restricting technology for a specific set of 
vehicles are described in Chapter 3. 

The CAFE Model considers many types of fuel saving technologies, but some are very difficult 
to observe from public information available.  For instance, the rolling resistance of a set of tires 
may not appear on a public specifications sheet, and the inner workings and efficiencies of a 
transmission may be hard for DOT staff to assess (without detailed study, or confidential 
business information).  In these cases, DOT staff rely on best information available, and, 
occasionally, analyst judgement (or described analytical techniques, like in the case of mass 
reduction technology).  When manufacturers or suppliers do provide confidential business 
information, NHTSA often verifies the information in due time, usually through contracted 
analysis at independent labs.   

For today’s analysis, for some technologies (like rolling resistance and aerodynamic 
improvements), DOT staff relied on confidential information provided by manufacturers about 
their MY 2016 fleet, and carried these values forward, by nameplate, for the MY 2020 fleet.  
With this approach, it is possible that DOT underestimates the extent to which manufacturers 
have added more hard-to-observe technologies in the MY 2020 fleet since MY 2016, increasing 
the risk of “double counting” effectiveness (especially for aerodynamics, rolling resistance, and 
improved accessory devices).  While some technologies are difficult to observe, many 
technologies are straightforward to identify via specification sheets, marketing materials, or 
published technical papers, and to link with the most representative Argonne simulation, and 
equipment cost estimate.  Whether a technology is easy to observe, or difficult to observe, DOT 
staff assign baseline technology content for each vehicle in the Market Data file. 

The Market Data file catalogues DOT’s understanding of technologies already equipped on 
vehicles, with many vehicles not yet exhausting all technologies that may improve internal 
combustion engine efficiency.  The current technology assessment in the baseline fleet shows 
that many vehicles, even ones with advanced engine or transmission technologies, still may be 
marginally improved with the application of additional technologies.  Often, recently released 
engines or transmissions may be reasonably characterized as early adopters of some technologies 
already considered in the analysis, in combination with a representation of a previous generation, 
widely adopted technology. 

The following sections discuss the data sources used to populate the analysis fleet, and how DOT 
staff accurately characterize the starting point for the compliance simulation.   
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2.2.1.1 Data Sources Used to Populate the Analysis Fleet 

The Market Data file integrates information from many sources, including manufacturer 
compliance submissions, publicly available information, and confidential business information.  
At times, information is still incomplete, and DOT staff use analyst judgement in populating the 
analysis fleet.  When analyst judgement is used, DOT staff try to make clear the underlying data 
and logic informing the analysis.48 

DOT staff make every effort to use current, credible sources with information that may be shared 
with the public or independently verified.  DOT staff used mid-model year 2020 compliance data 
as the basis of the analysis fleet.  Compliance data contain information about projected sales 
volumes, vehicle fuel economies, vehicle footprints, and often contains some information about 
engine architecture, transmission architecture, and vehicle drive configuration.  For each vehicle 
nameplate, DOT staff identified and downloaded manufacturer specification sheets, usually from 
the manufacturer media website, or from online marketing brochures.49  From specification 
sheets, DOT staff gathered information to identify engine technologies, engine families, 
transmission technologies, transmission families, and electrified drivetrain technologies.  The 
team also recorded curb weights (often varying by powertrain, by drive configuration, and by 
trim level), peak horsepower, and occasionally a manufacturer reported the vehicle’s 
aerodynamic drag coefficient, and occasionally some information useful in identifying hard-to-
observe technologies, like improved accessory devices or SAX.  For additional information in 
about how specification sheets informed the assignment of a technology to a vehicle in the MY 
2020 fleet, see the technology specific “baseline assignment” sections in Chapter 3.   

Often, one entry in the compliance record (typically including a nameplate, sales volume, fuel 
economy, footprint, drive configuration, and basic description of the engine and transmission) 
describes a range of vehicles with attributes that may vary meaningfully for the CAFE Model 
analysis.  For instance, one compliance record may represent a range of trim levels, offered for 
sale at a range of prices, or spanning a range of curb weights.  In these cases, DOT staff divide 
compliance record sales volume evenly among the vehicle types with different attributes, thereby 
increasing the number of rows in the Market Data file and atomizing the sales volume of each 
individual row.  While this may seem superfluous from some perspectives, the atomization of 
sales in each row in the Market Data file plays an important role in the application of technology, 
especially the application of hybrid and electric vehicle technology, as the CAFE Model may add 
costly fuel saving technology only to the extent needed to comply with standards (reducing the 
likelihood of significant over compliance, after redesign cycles, and inheritance of shared engine, 
transmission, and mass reduction platform technology is taken into account). 

One consequence of using historical compliance data to populate the Market Data file is that the 
analysis carries forward fleet composition, or at least iterates the fleet from an observation taken 
in the past.  In other words, the Market Data file does not use forward looking information to 
project which nameplates may be introduced, or which nameplates will be retired, or evaluate 

 
48 Forward looking refresh/redesign cycles are one example of when analyst judgement is necessary.  
49 The catalogue of reference specification sheets (broken down by manufacturer, by nameplate) used to populate 
information in the Market Data file is available in the docket.  BMW Data, FCA Data, Ford Data, Hyundai Data, Kia 
Data, Mercedes Data, Nissan Data, Toyota Data, Volvo Data, GM Data, Honda Data, Mitsubishi Data, VW Data, 
and JLR Data. 
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how competitive positions may evolve as manufacturers add fuel saving technologies and adjust 
product plans over time.50  Similarly, manufacturers who submitted no compliance information 
in the baseline compliance year (perhaps because they had not yet commercialized products), are 
not included in the forward looking compliance simulation.  The Market Data file does identify 
some vehicle model/configurations for which each manufacturer may adopt ZEV candidate 
technology (in today’s case, battery electric vehicle technology), and more detail about how 
DOT staff selected these vehicles is described in Chapter 2.3.2, Calculation of ZEV Credits Per 
Manufacturer.  As a result, it is reasonable to expect the composition of the fleet (in terms of 
nameplates offered, and manufacturer market shares) to look very different in the future years 
beyond the rulemaking time frame than the CAFE Model’s projected compliance pathways. 

2.2.1.1.1 Source and Vintage of Fleet Data 

Using recent data for baseline assessments is more likely to reflect current market conditions 
than older data.  Recent data will inherently include manufacturer’s practical considerations 
about fuel saving technology characterization and efficiency, mix shifts in response to consumer 
preferences, and industry sales volumes that incorporate substantive macroeconomic events.  
Also, using recent data decreases the likelihood that the CAFE Model selects compliance 
pathways for future standards that affect vehicles already built in previous model years.51   

While current data are highly desirable, real-time data to support fleet characterization in the 
Market Data file are extremely difficult to come by.  There is a lag time for finalized model year 
compliance data and finalized compliance data for a given model year may not be available for a 
year or more after the last product for that model year rolls off the assembly line.  Further 
complicating matters, once DOT staff identify a suitable set of compliance data, it takes 
significant effort to translate those compliance data into the Market Data file, augment that 
information with data from specification sheets and confidential business information, 
characterize fuel saving technology content on each vehicle, and produce a high-quality file that 
is suitable for use in the CAFE Model.  DOT must balance the resources required to create the 
Market Data file (i.e., several staff for several months), with the availability of data and the 
timing of the rulemaking effort. 

For today’s analysis, DOT staff used mid-year compliance submissions from MY 2020 as the 
basis for the analysis fleet characterized in the Market Data file.  While mid-year data are not 
“final” data, historically, manufacturers’ mid-model year submissions change little between mid 
and final submissions.  Most manufacturers had submitted mid-model year 2020 data as of 
August 2020, when DOT staff began building the Market Data file used in today’s analysis.  
Moreover, by August of 2020, many manufacturers had shifted production to MY 2021 vehicles, 
so the “mid-year” vehicle volume data were stable, as production was mostly complete. 

 
50 The sales model in the CAFE Model does, at an industry level, adjust overall sales volume up or down, and sales 
share between light trucks and passenger cars in response to technology costs, fuel economies, and fuel prices.  
51 For example, in this analysis the CAFE Model must apply technology to the MY 2020 fleet from MYs 2021-2023 
for the compliance simulation that begins in MY 2024.  While manufacturers have already built MY 2021 and later 
vehicles, the most current, complete dataset with regulatory fuel economy test results to build the analysis fleet at 
the time of writing remains MY 2020 data.   
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MY 2020 was an important year for the automotive marketplace.  Light-duty sales dipped 
meaningfully in MY 2020 as compared to prior years, with the coronavirus pandemic and 
historically low gasoline prices causing an impact.  Manufacturers reacted to supply chain factors 
as well, with notable events including transmission factories shutting down due to tornados, and 
assembly plants idling due to coronavirus.  The MY 2020 Market Data file used in today’s 
analysis reflects the market impacts of these events.   

While MY 2020 may have been extraordinary, many long-term trends continued.  Manufacturers 
continued to integrate more fuel saving technology in redesigned vehicles, likely in response to 
steady increases in fuel economy stringency and consumer preferences.  Also, prices for new 
vehicles continued to rise, and many consumers continued to work with dealers and banks to 
finance or lease new cars and trucks.  The compliance data from MY 2020 reflect the extent to 
which manufacturers successfully integrated additional fuel saving technology into their 
products, and the extent to which the market adopted the products offered.   

While DOT staff used mid-MY 2020 compliance data as the basis for the Market Data file, the 
team often had to disaggregate compliance data to capture variation in curb weights, 
manufacturer suggested retail prices, and other market data fields that varied by trim level.  As a 
result, the specific trim level sales volumes are estimates that reflect a mostly even distribution of 
sales volume as reported at the compliance level across sub-divisions.  However, the combined 
compliance level reporting data are still reflected, exactly, in the Market Data file, when the 
atomized rows are aggregated.  With respect to the luxury option content, and sales volumes of 
an individual trim level (to the extent that the Market Data file row volume reflects a 
disaggregated compliance row), the Market Data file can only go so far.  However, the rows (and 
vehicle characteristics recorded) are well suited for use in the CAFE Model for projecting 
compliance pathways in response to regulatory alternatives.  

2.2.1.1.2 Treatment of Confidential Business Information in Fleet 
Development 

Some data in the Market Data file are informed by confidential business information.  For 
instance, some mid-year manufacturer compliance submissions are marked as confidential.  DOT 
staff occasionally considers confidential business information to assess vehicle engineering 
characteristics that, like rolling resistance and aerodynamic drag, are neither included in 
compliance data nor reliably available. 

Prior to the 2018 NPRM, DOT staff gave manufacturers the opportunity to confidentially share 
rolling resistance values and drag coefficients.  Manufacturers had commented extensively, in 
response to the Draft Technical Assessment Report (TAR), that their prior efforts to improve 
aerodynamics and tire rolling resistance had not been reasonably characterized in the Draft TAR 
Market Data file.  Many manufacturers volunteered engineering data (aerodynamic drag 
coefficients, and tire rolling resistance values) to inform DOT staff, resulting in a more informed 
characterization of fuel saving technology already equipped on vehicles, and a more informed 
mapping of observed vehicles onto reference Argonne simulations and projected technology 
costs.  However, this took place in 2017.  The Market Data file for today’s analysis still (in many 
cases) references previously submitted confidential business information, even though 
manufacturers may have integrated additional rolling resistance and aerodynamic technology 
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over the past few years.  DOT staff have supplemented the older confidential business 
information with recent studies and public information (as observed on specification sheets) 
when more recent, credible information is available.  Generally, DOT recognizes benefits from 
referencing recent, credible information to inform the characterization of vehicles in the Market 
Data file and baseline fleet.  

In addition, some transmission content, accessory efficiency improvements, and other vehicle 
technologies are difficult for DOT staff to objectively verify.  As a practical matter, DOT cannot 
do a teardown study of every vehicle in the fleet every time staff produce a new analysis fleet.  
Agency staff use engineering judgement, and occasionally rely upon supplier, manufacturer, and 
Argonne’s Advanced Mobility Technology Laboratory (AMTL)-presented information to inform 
the Market Data file. 

2.2.1.2 Technology Classes in the Fleet 

The Market Data file includes information the CAFE Model uses to connect each observed 
vehicle (per compliance data and DOT staff characterization of vehicle attributes, including fuel 
saving technologies), with estimates of the effectiveness of other possible combinations of fuel 
saving technologies, and prospective costs of those technologies.  The “Technology Class” 
assigned in the Market Data file is the link the CAFE Model uses.   

During the CAFE Model compliance simulations, the CAFE Model evaluates adding fuel saving 
technologies to each vehicle appearing in the Market Data file, at some projected fuel economy 
benefit.  The CAFE Model references incremental effectiveness estimates, provided by Argonne 
with the Autonomie software, to project how the fuel efficiency of a vehicle may improve with 
the application of additional fuel saving technologies.  For the CAFE Model to select the most 
relevant reference effectiveness estimate, informed by the catalogue of more-than-1-million 
Autonomie simulations, the Market Data file includes a reference “type” of vehicle (or 
“Technology class”), and the combination of fuel saving technologies already applied to that 
vehicle (technologies listed as “USED” on the vehicles, engines, and transmissions tabs of the 
Market Data file).  With this information, the CAFE Model knows the reference point, and which 
effectiveness estimates to use, for vehicle as it progresses through the compliance simulations.   

The CAFE Model considers costs of additional fuel saving technologies when forecasting which 
technologies manufacturers are likely to adopt in future scenarios.  Costs of technologies can 
vary (sometimes significantly) by vehicle type.  The “technologies” input file lists technology 
costs, and the CAFE Model uses the technology class (and engine class) in the Market Data file 
to lookup the most relevant technology costs for each vehicle, and fuel saving technology.  The 
CAFE Model also references battery costs for electrification technologies (with battery costs 
derived from Argonne’s BatPaC Model and Autonomie simulations), and these costs often vary 
significantly by technology class, and by combination of road load reducing technologies.   

The algorithm by which each vehicle model/configuration is assigned to a technology class is a 
two-step process.  First, a “size” of technology class is assigned to each nameplate; only the 
SmallCar, MedCar, SmallSUV, MedSUV, and Pickup classes are eligible to be assigned in this 
step.  The algorithm then evaluates whether to assign the performance variant of the initial 
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assignment to each vehicle within the nameplate.  Performance variants include the 
SmallCarPerf, MedCarPerf, SmallSUVPerf, MedSUVPerf, and PickupHT classes.  

The evaluations in both steps of the algorithm are conducted quantitatively using “fit scores,” 
which are calculations that take into account key characteristics of vehicles in the fleet and 
compare those to the baseline characteristics of each technology class.52  A vehicle receives a fit 
score for every technology class for which it is eligible.  The lower the fit score, the more closely 
aligned a vehicle’s characteristics are with the baseline characteristics for a given technology 
class.  Therefore, the algorithm will assign the technology class with the lowest fit score to a 
given vehicle. 

In the first step of the algorithm, the fit score used to assign the “size” of technology class 
evaluates each vehicle’s footprint and curb weight according to Equation 2-1.  (Both of these 
characteristics are recorded in the baseline fleet.)  The difference in curb weight between the 
vehicle and the class baseline is divided by a “pounds per 1 second” quantity53 that normalizes 
the equation such that curb weight and footprint are more equally weighted.  Note that the 
equation is also weighted by the ratio of individual vehicle sales to total sales for the nameplate, 
so that the initial assignment favors higher-selling vehicle models.  The MR0 curb weight is 
calculated as part of the mass reduction level assignment process.54 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=
𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

×  ��
𝑀𝑀𝑀𝑀0 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑

−  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
2

+ (𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)2 

Equation 2-1 – Size Fit Score 

In the second step, the fit score that evaluates the performance variant of the technology class as 
seen in Equation 2-2 takes a 0 to 60 miles per hour (mph) acceleration time into account.   

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = | (𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0 𝑡𝑡𝑡𝑡 60 𝑚𝑚𝑚𝑚ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) −
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0 𝑡𝑡𝑡𝑡 60 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) |  

Equation 2-2 – Performance Fit Score 

This characteristic is not consistently reported in publicly available data, so a 0 to 60 mph 
acceleration time for each vehicle is estimated based on its weight-to-horsepower ratio, 
calculated in Equation 2-3.  

 
52 Baseline 0 to 60 mph acceleration times are assumed for each technology class as part of the full vehicle 
simulations conducted in Autonomie.  For more information, see Chapter 2.4 Technology Effectiveness Values.  
DOT staff calculated class baseline curb weights and footprints by averaging the curb weights and footprints of 
vehicles within each technology class as assigned in previous analyses.  
53 This quantity is calculated by multiplying the vehicle’s horsepower by 2.744. 
54 For more information on how MR0 curb weight is calculated, see Chapter 3.4.2. 
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𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0 𝑡𝑡𝑡𝑡 60 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 [𝑘𝑘𝑘𝑘]
𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝑘𝑘𝑘𝑘]

 × 0.5991� + 1.8514  

Equation 2-3 – Vehicle Estimated 0 to 60 mph Acceleration Time 

The Pickup and PickupHT classes are evaluated slightly differently.  They use a different fit 
score calculation that considers the same vehicle characteristics as Equation 2-1, Equation 2-2, 
and Equation 2-3.  The first step of the algorithm will initially assign the Pickup class if a vehicle 
has been assigned the “pickup” body style.  The second step then assigns a fit score to Pickup 
and PickupHT that takes into account footprint, curb weight, and a 0 to 60 mph acceleration 
time, as seen in Equation 2-4. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=  ��
𝑀𝑀𝑀𝑀0 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

−  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�
2

+ (𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)2

+ (𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0 𝑡𝑡𝑡𝑡 60 𝑚𝑚𝑚𝑚ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0 𝑡𝑡𝑡𝑡 60 𝑚𝑚𝑚𝑚ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2
 

Equation 2-4 – Pickup Fit Score 

2.2.1.3 Fuel Saving Technology Content 

The CAFE Model considers the application of many technologies to improve vehicle fuel 
economy.  For each of these technologies, on each vehicle application, the CAFE Model needs 
reference cost and effectiveness values.  Importantly, the CAFE Model must also consider which 
technologies are already equipped on vehicles in the baseline fleet, and the Market Data file 
includes this information. 

The products offered in the U.S. automotive marketplace are highly heterogeneous, and 
manufacturers routinely update their products.  Over time, some innovation efforts and 
investments in research and development can pay off, and manufacturers may bring to market 
new fuel saving technologies.  The CAFE Model considers many technologies; some are nearly 
universally adopted in the MY 2020 fleet, some are used occasionally but show great future 
potential, and others have yet to be commercialized but are reasonable to include in the analysis 
based on reported activities in the supply chain and manufacturer interest.  Similarly, costs of 
technologies in the future may be uncertain, but the analysis inputs assume that innovations will 
occur to lower the real costs of many fuel saving technologies over time.  As manufacturers and 
suppliers bring technologies to market, intellectual property can significantly influence which 
manufacturers adopt technologies, and at what cost.55  While every application of technology 
may have its own nuance, the CAFE Model effectiveness and cost assumptions attempt to 
represent a general characterization of fuel saving technologies that is a reasonable 
representation of the technology for any manufacturer.  

 
55 Ford.  May 20, 2021.  Ford News Media: FORD COMMITS TO MANUFACTURING BATTERIES, TO FORM 
NEW JOINT VENTURE WITH SK INNOVATION TO SCALE NA BATTERY DELIVERIES. 
https://media.ford.com/content/fordmedia/fna/us/en/news/2021/05/20/ford-commits-to-manufacturing-
batteries.html.  (Accessed: February 15, 2022). 

https://media.ford.com/content/fordmedia/fna/us/en/news/2021/05/20/ford-commits-to-manufacturing-batteries.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2021/05/20/ford-commits-to-manufacturing-batteries.html
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If a technology is included in the analysis for possible application, the technology appears in the 
heading row of Market Data file, either on the vehicles tab, the engines tab, or the transmissions 
tab.  The baseline fleet identifies which combination of modeled technologies most reasonably 
represents the fuel saving technologies on each vehicle in the compliance data.  The fuel saving 
technologies considered in today’s analysis are listed in Table 2-1. 

Table 2-1 – Fuel Saving Technologies that the CAFE Model May Apply 

Technology Name Abbreviation 
Market 

Data File 
Location 

Technology Group 

Electric Power Steering EPS Vehicles tab Additional technologies 
Improved Accessory Devices IACC Vehicles tab Additional technologies 
Start-Stop system SS12V Vehicles tab Electrification 
Belt Integrated Starter Generator BISG Vehicles tab Electrification 
Strong Hybrid Electric Vehicle, Parallel SHEVP2 Vehicles tab Electrification 
Strong Hybrid Electric Vehicle, Power 
Split with Atkinson Engine SHEVPS Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR0 Engine (Alternative path for 
Turbo Engine Vehicles) 

P2HCR0 Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR1 Engine (Alternative path for 
Turbo Engine Vehicles) 

P2HCR1 Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR1D Engine (Alternative path 
for Turbo Engine Vehicles) 

P2HCR1D Vehicles tab Electrification 

Strong Hybrid Electric Vehicle, Parallel 
with HCR2 Engine (Alternative path for 
Turbo Engine Vehicles) 

P2HCR2 Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 20 miles of electric range PHEV20 Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 50 miles of electric range PHEV50 Vehicles tab Electrification 

Plug-in Hybrid Vehicle with TURBO1 
Engine and 20 miles of electric range PHEV20T Vehicles tab Electrification 

Plug-in Hybrid Vehicle with TURBO1 
Engine and 50 miles of electric range PHEV50T Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 20 miles of electric range 
(Alternative path for Turbo Engine 
Vehicles) 

PHEV20H Vehicles tab Electrification 

Plug-in Hybrid Vehicle with Atkinson 
Engine and 50 miles of electric range 
(Alternative path for Turbo Engine 
Vehicles) 

PHEV50H Vehicles tab Electrification 

Battery Electric Vehicle with 200 miles 
of range BEV200 Vehicles tab Electrification 
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Technology Name Abbreviation 
Market 

Data File 
Location 

Technology Group 

Battery Electric Vehicle with 300 miles 
of range BEV300 Vehicles tab Electrification 

Battery Electric Vehicle with 400 miles 
of range BEV400 Vehicles tab Electrification 

Battery Electric Vehicle with 500 miles 
of range BEV500 Vehicles tab Electrification 

Fuel Cell Vehicle FCV Vehicles tab Electrification 
Low Drag Brakes LDB Vehicles tab Additional technologies 
Secondary Axle Disconnect SAX Vehicles tab Additional technologies 
Baseline Tire Rolling Resistance ROLL0 Vehicles tab Rolling Resistance 
Tire Rolling Resistance, 10% 
Improvement ROLL10 Vehicles tab Rolling Resistance 

Tire Rolling Resistance, 20% 
Improvement ROLL20 Vehicles tab Rolling Resistance 

Baseline Aerodynamic Drag Technology AERO0 Vehicles tab Aerodynamic Drag 
Aerodynamic Drag, 5% Drag Coefficient 
Reduction AERO5 Vehicles tab Aerodynamic Drag 

Aerodynamic Drag, 10% Drag 
Coefficient Reduction AERO10 Vehicles tab Aerodynamic Drag 

Aerodynamic Drag, 15% Drag 
Coefficient Reduction AERO15 Vehicles tab Aerodynamic Drag 

Aerodynamic Drag, 20% Drag 
Coefficient Reduction AERO20 Vehicles tab Aerodynamic Drag 

Baseline Mass Reduction Technology MR0 Vehicles tab Mass Reduction 
Mass Reduction – 5.0% of Glider MR1 Vehicles tab Mass Reduction 
Mass Reduction – 7.5% of Glider MR2 Vehicles tab Mass Reduction 
Mass Reduction – 10.0% of Glider MR3 Vehicles tab Mass Reduction 
Mass Reduction – 15.0% of Glider MR4 Vehicles tab Mass Reduction 
Mass Reduction – 20.0% of Glider MR5 Vehicles tab Mass Reduction 
Mass Reduction – 28.2% of Glider MR6 Vehicles tab Mass Reduction 
Single Overhead Cam SOHC Engines tab Basic Engines 
Dual Overhead Cam DOHC Engines tab Basic Engines 
Engine Friction Reduction EFR Engines tab Engine Improvements 
Variable Valve Timing VVT Engines tab Basic Engines 
Variable Valve Lift VVL Engines tab Basic Engines 
Stoichiometric Gasoline Direct Injection SGDI Engines tab Basic Engines 
Cylinder Deactivation DEAC Engines tab Basic Engines 
Turbocharged Engine TURBO1 Engines tab Advanced Engines 
Advanced Turbocharged Engine TURBO2 Engines tab Advanced Engines 
Turbocharged Engine with Cooled 
Exhaust Gas Recirculation CEGR1 Engines tab Advanced Engines 

Advanced Cylinder Deactivation ADEAC Engines tab Advanced Engines 
High Compression Ratio Engine 
(Atkinson Cycle) HCR0 Engines tab Advanced Engines 

Advanced High Compression Ratio 
Engine (Atkinson Cycle) HCR1 Engines tab Advanced Engines 
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Technology Name Abbreviation 
Market 

Data File 
Location 

Technology Group 

Advanced High Compression Ratio 
Engine (Atkinson Cycle) with Cylinder 
Deactivation 

HCR1D Engines tab Advanced Engines 

High Compression Ratio Engine 
(Atkinson Cycle), with Cylinder 
Deactivation 

HCR2 Engines tab Advanced Engines 

Variable Compression Ratio Engine VCR Engines tab Advanced Engines 
Variable Turbo Geometry Engine VTG Engines tab Advanced Engines 
Variable Turbo Geometry Engine with 
eBooster VTGE Engines tab Advanced Engines 

Turbocharged Engine with Cylinder 
Deactivation TURBOD Engines tab Advanced Engines 

Turbocharged Engine with Advanced 
Cylinder Deactivation TURBOAD Engines tab Advanced Engines 

Advanced Diesel Engine ADSL Engines tab Advanced Engines 
Advanced Diesel Engine with 
Improvements DSLI Engines tab Advanced Engines 

Advanced Diesel Engine with 
Improvements and Advanced Cylinder 
Deactivation 

DSLIAD Engines tab Advanced Engines 

Compressed Natural Gas Engine CNG Engines tab Advanced Engines 

Many of the technologies in the CAFE Model may be applied in combination.  For instance, an 
engine and transmission may be selected independent of one another, and road load reducing 
technologies (mass reduction, aerodynamic drag, and rolling resistance) may be applied in any 
combination.  Basic engine technologies may be applied in any combination.  In the 
effectiveness estimates, some technologies have synergies, while others offer efficiency 
improvements from the same mechanism,56 and therefore provide less benefit in combination 
than the sum of their efficiency improvements generated, independently. 

Some technologies cannot appear together, on one vehicle (defined as a single row in the Market 
Data file), in the analysis.  For instance, a vehicle may only have one advanced engine at a time.  
Similarly, battery electric vehicles do not have an internal combustion engine or a conventional 
transmission, and the costs projected for battery electric vehicles include the fixed drive gearbox 
that transmits the electric motor torque to the tires. 

For additional information on the characterization of these technologies (including the cost, 
prevalence in the 2020 fleet, effectiveness estimates, and considerations for their adoption) see 
the appropriate technology section in Chapter 3. 

2.2.1.4 AC and Off-Cycle Fuel Consumption Improvement Values 

The Market Data file includes information about AC and off-cycle technologies, but the 
information is not currently broken out at a row level, vehicle by vehicle.  Instead, historical data 

 
56 For example, SHEVP2 paired with advanced engine technologies.  See Chapter 3.1.1 for further discussion. 
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(and forecast projections, which are used for analysis regardless of regulatory scenario) are listed 
by manufacturer, by fleet on the “Credits and Adjustments” tab of the Market Data file. 

AC and off-cycle fuel consumption improvement values (FCIV), or credits,57 significantly 
impact compliance pathways manufacturers choose.  Chapter 3.8, Simulating Off-Cycle and AC 
Efficiency Technologies, shows model inputs specifying estimated adjustments (all in 
grams/mile) for improvements to air conditioner efficiency and other off-cycle energy 
consumption, and for reduced leakage of air conditioner refrigerants with high global warming 
potential.  DOT estimated future values based on an expectation that manufacturers already 
relying heavily on these adjustments would continue do so, and that other manufacturers would, 
over time, also approach the limits on adjustments allowed for such improvements.  

Regulatory provisions regarding off-cycle technologies are new, and manufacturers have only 
recently begun including related detailed information in compliance reporting data.  For today’s 
analysis, though, such information was not sufficiently complete to support a detailed 
representation of the application of off-cycle technology to specific vehicle model/configurations 
in the MY 2020 fleet. 

2.2.1.5 Engine Configurations 

Engine configurations may affect the cost of engine technologies.  In that Market Data file, 
column “AE” on the vehicles tab lists the “Engine Technology Class,” so the CAFE Model may 
reference the powertrain costs in the technologies file that most reasonably align with the 
observed vehicle (or row).  DOT staff assign engine technology classes for all vehicles, including 
electric vehicles.  If an electric powertrain replaces and internal combustion engine, the electric 
motor specifications may be different (and hence costs may be different) depending on the 
capabilities of the internal combustion engine it is replacing, and the costs in the technologies file 
(on the engine tab) account for the power output and capability of the gasoline or electric 
drivetrain.   

2.2.1.6 Shared Engines, Transmissions, and Vehicle Platforms 

Parts sharing across products is important, and common in the industry.  Parts sharing helps 
manufacturers achieve economies of scale, deploy capital efficiently, and make the most of 
shared research and development expenses, while still presenting a wide array of consumer 
choices to the market.  The CAFE Model takes part sharing into account, with shared engines, 
shared transmissions, and shared mass reduction platforms.  Vehicles sharing a part (as 
recognized in the CAFE Model), will adopt fuel saving technologies affecting that part together. 

In the Market Data file used as an input to the CAFE Model, vehicle model/configurations that 
share engines are assigned the same engine code,58 vehicle model/configurations that share 

 
57 Adjustments to a vehicle’s fuel economy value based on off-cycle technologies are termed fuel consumption 
improvement values in NHTSA’s program because they increase the rated fuel economy of a vehicle, whereas the 
off-cycle benefits are called credits in the EPA program. 
58 Engines (or transmissions) may not be exactly identical, as specifications or vehicle integration features may be 
different.  However, the architectures are similar enough that it is likely the powertrain systems share R&D, tooling, 
and production resources in a meaningful way. 



  112 

transmissions have the same transmission code, and vehicles that adopt mass reduction 
technologies together share the same platform.  For more information about engine codes, 
transmission codes, and mass reduction platforms, see subsections in Chapter 3, Technology 
Pathways, Effectiveness, and Cost. 

2.2.1.7 Product Design Cycles 

Manufacturers often introduce fuel saving technologies at a major redesign of their product or 
adopt technologies at minor refreshes in between major product redesigns.  In most cases, the 
CAFE Model may apply new fuel saving technologies to a vehicle only in redesign years.  If a 
vehicle shares an engine or transmission, and the shared powertrain part has already incorporated 
additional fuel savings technology on other vehicle applications, the vehicle may inherit the 
upgraded shared engine or transmission at refresh or redesign. 

To support the CAFE Model accounting for new fuel saving technology introduction as it relates 
to product lifecycle, the Market Data file includes a projection of redesign years (column “BN”) 
and refresh years (column “BO”) for each vehicle.  DOT staff projected future redesign years 
and refresh years based on the historical cadence of that vehicle’s product lifecycle.  For new 
nameplates, DOT staff considered the manufacturer’s treatment of product lifecycles for past 
products in similar market segments. 

Table 2-2 – Sales Distribution by Age of Vehicle Engineering Design 

Most Recent 
Engineering 

Redesign Model 
Year of the 

Observed MY 
2020 Vehicle 

% of MY 
2020 Fleet 

(Unit Sales) 
by 

Engineering 
Design Age 

Portion of the 
Analysis Fleet 

Observations MY 
2020 Fleet by 
Engineering 
Design Age 

Age of 
Vehicle 

Engineering 
Design 

Portion of MY 2020 New 
Vehicle Sales with 

Engineering Designs as 
New or Newer than "Age 

of Vehicle Engineering 
Design" 

2007 0.6% 0.7% 13 100.0% 
2008 0.1% 0.4% 12 99.4% 
2009 1.1% 5.1% 11 99.3% 
2010 0.0% 0.0% 10 98.2% 
2011 2.4% 1.0% 9 98.2% 
2012 0.4% 0.6% 8 95.8% 
2013 2.4% 2.3% 7 95.4% 
2014 5.4% 6.0% 6 93.0% 
2015 9.8% 16.7% 5 87.7% 
2016 11.7% 9.3% 4 77.9% 
2017 9.8% 11.6% 3 66.2% 
2018 16.4% 12.2% 2 56.4% 
2019 24.0% 25.3% 1 40.0% 
2020 15.9% 8.8% 0 15.9% 
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Redesigns are major investments, and require coordination of product development, 
manufacturing, and marketing and sales.  Many manufacturers have redesigned a large portion of 
products sold in MY 2020 recently, as shown in Table 2-2. 

Manufacturers have different business strategies with respect to how frequently products are 
redesigned.  Some manufacturers use shorter product cycles, and others use longer product 
cycles.  Some manufacturers may use a shorter redesign cycle in one segment, and a longer 
redesign cycle in another.  On average across the industry, manufacturers redesign vehicles every 
6.5 years, as shown in Table 2-3.  Note that many manufacturers do not compete in the 
marketplace in every vehicle segment. 

Table 2-3 – Summary of Sales Weighted Average Time between Engineering Redesigns, by Manufacturer, by 
Vehicle Technology Class 

Manufacturer 
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BMW 5.6 6.1 6.3 6.5 - 6.2 - 6.2 - - 6.2 
Daimler - 5.8 6.3 6.4 10.0 6.9 6.9 8.2 - - 7.1 
FCA 7.0 6.8 - 8.2 8.1 8.2 8.8 8.9 9.0 10.0 9.0 
Ford - - 6.2 6.6 7.6 6.6 6.0 6.9 5.5 6.0 6.6 
GM 6.1 6.0 5.0 6.6 7.0 7.2 8.2 7.5 7.5 5.3 6.6 
Honda 6.7 5.8 4.9 5.0 5.2 5.1 - 5.9 7.0 - 5.5 
Hyundai Kia-H 5.5 4.9 5.0 6.1 5.4 5.1 - 6.0 - - 5.3 
Hyundai Kia-K 4.9 5.9 5.3 5.5 6.6 6.3 - 6.4 - - 5.8 
JLR - 7.8 - 6.9 6.2 6.1 7.0 6.5 - - 6.5 
Mazda 8.0 6.2 4.8 - 5.2 5.0 7.0 - - - 5.5 
Mitsubishi 9.7 - - - 6.0 6.0 - - - - 6.6 
Nissan 6.4 8.2 5.5 6.8 6.2 5.9 - 9.2 8.3 10.5 6.6 
Subaru 4.9 5.3 6.0 6.0 5.0 5.0 - 5.0 - - 5.0 
Tesla - - - 5.6 - - - 5.6 - - 5.6 
Toyota 5.1 5.3 6.1 5.9 6.2 5.7 6.0 6.7 10.3 9.4 6.5 
Volvo - 10.0 8.0 8.0 8.0 8.0 - 7.4 - - 7.7 
VWA 5.5 6.8 7.4 7.2 7.1 7.5 7.1 7.2 - - 6.9 
TOTAL 5.5 5.6 5.6 6.5 6.2 6.4 6.9 7.3 8.2 7.1 6.5 

Even for manufacturers with similar times between redesigns, offering products in similar 
segments, the expected timing of product redesigns are often out of phase.  When considering 
year-by-year analysis of standards, the timing of redesigns and the timing between redesigns 
often affect projected compliance pathways.  As shown in Table 2-4, many manufacturers have 
very recently redesigned significant products, and will have some time before they are expected 
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to redesign these products again.  The timing of redesigns, and the duration between redesigns 
affect how quickly manufacturers may respond to standards. 

Table 2-4 – Summary of Sales Weighted Average Age of Engineering Design in MY 2020 by Manufacturer, 
by Vehicle Technology Class 

 Manufacturer 
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BMW 0.8 1.4 4.3 4.4 - 3.9 - 2.4 - - 3.2 
Daimler - 2.7 2.5 4.2 8.0 4.4 1.5 2.1 - - 3.4 
FCA 6.0 4.7 - 8.2 3.4 0.5 3.5 5.0 1.3 2.9 3.9 
Ford - - 0.2 3.8 1.8 0.0 2.0 1.7 1.6 5.0 2.5 
GM 5.2 2.6 3.9 2.5 2.9 1.9 1.9 2.7 3.4 1.1 2.5 
Honda 4.3 4.1 2.3 2.9 3.2 1.0 - 3.6 3.0 - 3.2 
Hyundai Kia-H 2.5 2.9 0.0 3.6 2.2 1.0 - 0.0 - - 2.0 
Hyundai Kia-K 1.3 2.8 1.0 1.8 5.7 6.0 - 0.1 - - 2.6 
JLR - 6.0 - 3.2 3.0 1.6 6.0 4.1 - - 3.6 
Mazda 2.0 3.7 0.0 - 0.1 0.0 1.0 - - - 0.8 
Mitsubishi 5.0 - - - 4.0 4.0 - - - - 4.2 
Nissan 0.1 5.0 1.0 4.4 4.7 4.1 - 6.5 6.0 4.0 3.5 
Subaru 3.0 4.3 0.0 0.0 0.9 0.0 - 1.0 - - 1.2 
Tesla - - - 1.0 - - - 1.0 - - 1.0 
Toyota 1.6 1.5 2.0 1.7 2.3 2.6 0.0 4.4 4.1 13.0 2.9 
Volvo - 9.0 1.0 1.4 1.0 1.0 - 2.7 - - 2.1 
VWA 1.2 3.5 0.7 1.9 1.8 4.0 1.4 1.6 - - 2.1 
TOTAL 1.8 3.2 1.7 3.4 2.7 2.4 1.5 3.1 3.2 3.4 2.8 

Table 2-5 shows the resultant portion of each manufacturers MY 2020 total light-duty vehicle 
production volume (for the U.S. market) expected to be redesigned in each MY through 2029.   



  115 

Table 2-5 – Portion of Production Redesigned in Each MY Through 2029 

Name 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 
BMW 13% 25% 37% 13% 7% 14% 4% 39% 21% 7% 
Daimler 0% 9% 19% 22% 17% 8% 23% 7% 13% 10% 
Stellantis (FCA) 14% 6% 21% 7% 0% 0% 23% 13% 16% 2% 
Ford 41% 27% 9% 12% 9% 2% 41% 27% 9% 8% 
GM 2% 9% 12% 3% 30% 24% 20% 16% 7% 26% 
Honda 0% 5% 63% 22% 7% 4% 2% 34% 52% 5% 
Hyundai 22% 25% 16% 6% 32% 11% 35% 19% 2% 23% 
Kia 35% 25% 0% 0% 60% 12% 5% 3% 39% 26% 
Jaguar - Land Rover 7% 0% 13% 30% 35% 14% 7% 0% 0% 25% 
Mazda 68% 3% 0% 13% 7% 63% 14% 0% 0% 16% 
Mitsubishi 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 
Nissan 14% 26% 24% 10% 22% 10% 1% 22% 21% 35% 
Subaru 32% 5% 11% 16% 36% 27% 10% 11% 16% 36% 
Tesla 0% 0% 0% 0% 100% 0% 0% 100% 0% 0% 
Toyota 6% 5% 17% 8% 52% 2% 16% 6% 11% 36% 
Volvo 0% 0% 0% 32% 0% 1% 2% 64% 0% 0% 
VWA 13% 0% 10% 2% 31% 38% 10% 5% 8% 19% 
Average 15% 12% 19% 10% 25% 12% 18% 18% 16% 20% 

2.2.2 Characterizing Baseline Safety, Economic, and Compliance Positions  

In addition to characterizing technologies, some information in the Market Data file supports 
economic calculations in the CAFE Model.   

2.2.2.1 Safety Classes 

The CAFE Model considers the potential safety effect of mass reduction technologies and crash 
compatibility of different vehicle types.  Mass reduction technologies lower the vehicle’s curb 
weight, which may change crash compatibility and safety, depending on the type of vehicle.  
DOT staff assign each vehicle in the Market Data file a “Safety class” (in column “AG” on the 
vehicles tab) that best aligns with the mass-size-safety analysis.   

Baseline curb weight data, as recorded in the Market Data file, factor into the mass-size-safety 
analysis.  In nearly all cases, DOT staff sourced curb weight data appearing in the Market Data 
file from manufacturer specification sheets.  The curb weight data on the specification sheets 
may be generally representative of the weight of a vehicle row, but some deviation from that 
reported curb weight is expected depending on the option content of represented vehicles, and 
manufacturing variations. 

2.2.2.2 Labor and Modeled Vehicles 

The CAFE Model includes procedures to consider the direct labor impacts of manufacturer’s 
response to CAFE regulations, considering the assembly location of vehicles, engines, and 
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transmissions, the percent U.S. content (that reflects percent U.S. and Canada content),59 and the 
dealership employment associated with new vehicle sales.  Baseline labor information, by 
vehicle, is included in the Market Data input file.  Sales volumes included in and adapted from 
the market data also influence total estimated direct labor projected in the analysis.  

For the duration of the analysis, the percent U.S. content is held constant for each vehicle row.  
In practice, this may not be the case.  Changes to trade policy and tariff policy may affect percent 
U.S. content in the future.  Also, some technologies may be more or less likely to be produced in 
the United States, and if that is the case, their adoption could affect future U.S. content. 

The labor hours projected in the Market Data file per unit transacted at dealerships, per unit 
produced for final assembly, per unit produced for engine assembly, and per unit produced for 
transmission assembly are projected to remain constant for the duration of the analysis, and the 
origin of these activities is projected to remain unchanged.  In practice, it is reasonable to expect 
that plants could move locations, or engine and transmission technologies are replaced by 
another fuel saving technology (like electric motors and fixed gear boxes) that could require a 
meaningfully different amount of assembly labor hours. 

Table 2-6 – Sales Weighted Percent U.S. Content by Manufacturer, by Regulatory Class 

Manufacturer PC LT 

Total MY 2020 
Sales Weighted 

Percent U.S. 
Content 

Portion of 
Vehicles 

Assembled 
in the U.S. 

Portion of 
Engines 

Assembled 
in the U.S. 

Portion of 
Transmissions 
Assembled in 

the U.S. 

BMW 7.1% 29.3% 15.4% 42.4% 0.0% 0.0% 

Daimler 19.1% 36.2% 28.1% 41.2% 39.8% 0.0% 

FCA 47.7% 52.9% 52.2% 68.0% 41.3% 45.7% 

Ford 35.2% 47.5% 44.2% 83.4% 32.9% 88.5% 

GM 39.8% 47.0% 44.7% 68.3% 69.8% 86.1% 

Honda 55.8% 61.7% 58.3% 74.9% 85.9% 58.6% 

Hyundai Kia-H 21.8% 0.0% 19.4% 46.0% 46.0% 34.3% 

Hyundai Kia-K 12.8% 33.3% 20.7% 38.4% 17.2% 37.8% 

JLR 2.6% 6.3% 6.2% 0.0% 0.0% 31.7% 

Mazda 1.1% 1.1% 1.1% 0.0% 0.0% 0.0% 

Mitsubishi 0.0% 0.3% 0.2% 0.0% 0.0% 0.0% 

Nissan 29.0% 32.6% 30.1% 49.9% 47.5% 0.0% 

Subaru 35.5% 22.9% 25.6% 53.2% 0.0% 0.0% 

 
59 Percent U.S. content was informed by the 2020 Part 583 American Automobile Labeling Act Reports, appearing 
on NHTSA’s website. 
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Tesla60 50.6% 50.0% 50.6% 100.0% 100.0% 100.0% 

Toyota 35.2% 42.7% 38.7% 42.4% 46.0% 19.4% 

Volvo 10.2% 1.1% 3.4% 12.4% 0.0% 0.0% 

VWA 10.3% 8.8% 9.4% 13.5% 0.0% 0.0% 

TOTAL 32.4% 41.2% 37.4% 57.1% 44.1% 44.1% 

As observed from Table 2-6, manufacturers employ U.S. labor with varying intensity.  In many 
cases, vehicles certifying in the light truck (LT) regulatory class have a larger percent U.S. 
content than vehicles certifying in the passenger car (PC) regulatory class.   

2.2.2.3 Credit Banks 

Manufacturers may over-comply with CAFE standards and bank so-called over compliance 
credits.  As discussed further in preamble Section III.C.7, manufacturers may use these credits 
later, sell them to other manufacturers, or let them expire.  The CAFE Model does not explicitly 
trade credits between and among manufacturers, but analysts have adjusted starting credit banks 
to reflect trades that are likely to happen when the simulation begins (in MY 2020).  Considering 
information manufacturers have reported regarding compliance credits, and considering recent 
manufacturers’ compliance positions, DOT staff have estimated manufacturers’ potential use of 
compliance credits in earlier model years.  This aligns to an extent that represents how 
manufacturers could deplete their credit banks rather than producing high volume vehicles with 
fuel saving technologies in earlier model years.  This also avoids unrealistic application of 
technologies for manufacturers in early analysis years that typically rely on credits.  These 
assumptions are included in the Market Data input file. 

To estimate the size and potential disposition of manufacturer’s CAFE compliance credit banks, 
staff make use of data in NHTSA’s CAFE Public Information Center (PIC), which provides 
public access to a range of information regarding the CAFE program,61 including manufacturers’ 
credit balances.  However, there is a data lag in the information presented on the CAFE PIC that 
may not capture credit actions across the industry for as much as several months.  To address the 
limitations of the publicly available data, DOT staff examined preliminary compliance data for 
each manufacturer’s fleets in MYs 2018 and 2019, as well as verified credit transactions between 
manufacturers that have been reported to NHTSA.  From these sources, staff estimated 
compliance deficits or surpluses for each fleet based on fuel economy performance, then 
combined those estimates with credits either acquired from another manufacturer or traded from 
a model year fleet’s surplus. 

CAFE credits that are traded between manufacturers are adjusted to preserve the gallons saved 
that each credit represents.62,63  The adjustment occurs at the time of application rather than at 

 
60 Tesla does not have internal combustion engines, or multi-speed transmissions, even though they are identified as 
producing engine and transmission systems in the United States in the Market Data file. 
61 CAFE Public Information Center, https://one.nhtsa.gov/cafe_pic/home.  (Accessed: February 15, 2022). 
62 See 49 U.S.C. 32903(f), which requires the credit trading program preserve total oil savings.   
63 CO2 credits for EPA’s program are denominated in metric tons of CO2 rather than gram/mile compliance credits 
and require no adjustment when traded between manufacturers or fleets. 

https://one.nhtsa.gov/cafe_pic/home
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the time the credits are traded.  This means that a manufacturer that has acquired credits through 
trade, but has not yet applied them, may show a credit balance that is either considerably higher 
or lower than the real value of the credits when they are applied.  For example, a manufacturer 
that buys 40 million credits from Tesla may show a credit balance in excess of 40 million.  
However, when those credits are applied, they may be worth only 1/10 as much—making that 
manufacturer’s true credit balance closer to 4 million than 40 million. 

In order to accurately determine each manufacturer’s current credit position – inclusive of earned 
credits (or deficits), acquired credits that have not yet been applied, or transferred credits that 
have not yet been applied – DOT adjusted each credit transaction to reflect the true value of the 
credit in the current model year and fleet where it resides.64  Staff reevaluated existing 
compliance positions for MYs 2017-2019 after adjusting credit values and used analyst judgment 
to resolve deficits in those years.  The CAFE program allows manufacturers to pay civil penalties 
for non-compliance; however, manufacturers cannot comply with the minimum domestic 
passenger car standard with transferred credits,65 so a manufacturer must pay civil penalties if it 
fails to meet that standard.  Credits can then be applied to any remaining deficit between the 
domestic car fleet CAFE and the calculated standard.  However, in most other instances, 
manufacturers have preferred to apply credits when possible.  Credits expire five years after they 
are earned, so in MY 2018 (for example) expiring credits would have been earned in MY 2013.  
Manufacturers typically find trading partners for expiring credits, and we let no expiring credits 
go unused if there were opportunities to resolve deficits in MYs 2018 and 2019. 

Some manufacturers faced deficits in the MYs prior to 2020 that had not yet been resolved, 
despite holding positive credit balances (of mostly traded credits).  These credits were also 
applied, where appropriate to resolve compliance deficits – including transfers between fleets 
and credit carry-forward from older model years.  In a small number of cases, we assume some 
small amount of fine payment (aside from the minimum domestic standard) would be required to 
resolve deficits.  All of these actions were required to estimate credit banks in MYs 2015-2019 
across the industry because all of those credits can be carried forward into the analysis – 
beginning with MY 2015 credits that expire in MY 2020 and can be used to offset compliance 
deficits in the first year of the simulation. 

Staff reviewed credit balances, estimated the potential that some manufacturers could trade 
credits based on their projected compliance positions in the No-Action Alternative, and 
developed inputs that make carried-forward credits available in each of MYs 2020-2024, after 
subtracting credits assumed to be traded to other manufacturers, adding credits assumed to be 
acquired from other manufacturers through such trades, and adjusting any traded credits (up or 
down) to reflect their true value for the fleet and model year into which they were traded.66  
When identifying trading partners for credit transactions, staff examined hundreds of individual 
credit transactions that have occurred over the last decade and attempted to avoid trading credits 

 
64 Because compliance credits are specific to the model year and fleet in which they are earned, even if they are 
traded between manufacturers, traded credits must be traded into a specific model year and fleet. 
65 49 U.S.C. 32903(g)(4). 
66 The adjustments, which are based upon the CAFE standard and model year of both the party originally earning the 
credits and the party applying them, were implemented assuming the credits would be applied to the model year in 
which they were set to expire.  For example, credits traded into a domestic passenger car fleet for MY 2017 were 
adjusted assuming they would be applied in the domestic passenger car fleet for MY 2022. 
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between manufacturers that have not previously traded.  While the specific transactions are 
considered confidential business information, manufacturers report to NHTSA the fleet and 
model year in which the credits were earned, the fleet and model year into which they are traded, 
and the (unadjusted) quantity of traded credits.  DOT staff took a conservative approach, 
preserving credits in a manufacturer’s bank for future use if it was forced to take aggressive 
compliance actions (defined as applying technologies that did not “pay back” for new car buyers 
in the first three years of ownership).  This ensures that the CAFE Model has the maximal ability 
to balance the need for technology application against the need to minimize compliance costs in 
the early years of the program for manufacturers who have accumulated compliance credits. 

Manufacturers’ estimated credit banks for the domestic car, imported car, and light truck fleets 
are shown below.  While the CAFE Model will transfer expiring credits into another fleet (e.g., 
moving expiring credits from the domestic car credit bank into the light truck fleet), staff moved 
some of these credits into the initial banks to improve the efficiency of application and both to 
reflect better the projected shortfalls of each manufacturer’s regulated fleets and to represent 
observed behavior.  For context, a manufacturer that produces one million vehicles in a given 
fleet, and experiences a shortfall of 2 mpg, would need 20 million credits, adjusted for fuel 
savings, to offset the shortfall completely. 

Table 2-7 – Estimated Domestic Car CAFE Credit Banks 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW - - - -  
Daimler - - - -  
FCA - 3,808,660 7,463,700 6,904,300 6,710,380 
Ford 7,089,840 - - - - 
GM - - 20,648,600 10,107,600 9,624,540 
Honda - - - - - 
Hyundai Kia-H - - - -  
Hyundai Kia-K - - - - - 
JLR - - - - - 
Mazda - - - - - 
Mitsubishi - - - - - 
Nissan 62,285,000 29,295,800 20,845,700 - - 
Subaru - - - - - 
Tesla - - - - - 
Toyota 2,328,440 875,292 - 1,237,920 16,900,300 
Volvo - - - - - 
VWA 2,769,080 2,953,040 2,198,680 2,621,610 2,843,660 

Table 2-8 – Estimated Imported Car CAFE Credit Banks 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW 9,084,950 2,418,490 - - - 
Daimler 5,080,630 698,678 - 7,799,040 - 
FCA 11,545,600 11,685,400 5,504,460 5,416,840 5,368,870 
Ford - - 6,163,920 519,456 - 
GM 1,304,200 - 5,970,840 - - 
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 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
Honda - - 2,073,250 1,527,830 - 
Hyundai Kia-H - 8,901,780 - - - 
Hyundai Kia-K 3,565,710 3,940,200 3,093,680 4,362,850 389,371 
JLR 3,701,660 3,587,060 4,117,450 4,460,500 - 
Mazda - 14,670,500 1,825,340 2,873,730 - 
Mitsubishi 640,530 - 1,781,950 1,518,710 - 
Nissan 3,522,070 473,522 - - - 
Subaru 8,874,730 10,618,700 10,388,800 10,861,200 - 
Tesla - - - - - 
Toyota - - 3,458,500 159,407 5,336,410 
Volvo 219,505 - - 48,354 - 
VWA - 8,880,780 - - - 

Table 2-9 – Estimated Light Truck CAFE Credit Banks 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW 480,144 - - - - 
Daimler - - - -  
FCA - - 7,266,830 13,540,000 6,019,540 
Ford - - - - 11,227,400 
GM - 107,249 1,338,560 - - 
Honda - - - - - 
Hyundai Kia-H - - 883,431 - 101,044 
Hyundai Kia-K - - - - - 
JLR 3,535,400 3,533,360 1,871,660 4,318,390 - 
Mazda 1,260,690 4,289,380 1,116,210 1,150,140 640,075 
Mitsubishi 232,985 470,352 640,211 136,052 - 
Nissan 3,851,010 - - - - 
Subaru 2,068,050 1,082,840 4,412,450 2,524,660 8,440,450 
Tesla - - - - - 
Toyota 9,198,200 9,891,330 10,286,800 6,173,270 - 
Volvo - - 943,100 1,981,480 1,158,000 
VWA 2,790,830 3,588,920 4,038,400 - - 

The CAFE Model includes a similar representation of existing credit banks in EPA’s CO2 

program.  As discussed in Chapter 1, today’s analysis accounts for the combined effects of 
CAFE standards, federal CO2 standards, ZEV mandates, and the CARB/OEM “Framework 
Agreements” that specifies de facto federal CO2 standards for participating manufacturers.  
While the life of a CO2 credit, denominated in metric tons of CO2, has a five-year life, matching 
the lifespan of CAFE credits, such credits earned in the early MY 2009-2011 years of the EPA 
program, may be used through MY 2021.67  As inputs to today’s analysis, staff developed the 
CO2 compliance credit banks presented below for manufacturers’ passenger car (unlike EPCA, 

 
67 In the 2010 rule, EPA placed limits on credits earned in MY 2009, which expired prior to this rule.  However, 
credits generated in MYs 2010-2011 may be carried forward, or traded, and applied to deficits generated through 
MY 2021.  
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the CAA does not require EPA to differentiate between domestic and imported cars) and light 
truck fleets. 

Table 2-10 – Estimated Passenger Car CO2 Credit Banks (metric tons) 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW 1,300,000 835,000 1200000 940,000 1,200,000 
Daimler 1,950,000 1,300,000 1,300,000 1,500,000 1,300,000 
FCA 3,200,000 1,800,000 2,000,000 2,000,000 1,500,000 
Ford 3,000,000 6,300,000 - - - 
GM 3,600,000 3,800,000 2,100,000 3,500,000 - 
Honda 4,000,000 3,000,000 2,500,000 2,200,000 2,300,000 
Hyundai Kia-H 3,700,000 3,200,000 2,000,000 1,900,000 100,000 
Hyundai Kia-K 1,200,000 - - - - 
JLR 50,000 50,000 70,000 50,000 50,000 
Mazda 1,500,000 2,500,000 170,000 165,000 - 
Mitsubishi 330,000 300,000 171,000 200,000 53,000 
Nissan 2,300,000 2,000,000 650,000 - - 
Subaru 1,500,000 1,500,000 500,000 100,000 2,000,000 
Tesla - - - - - 
Toyota - - - - - 
Volvo 225,000 225,000 330000 270000 300,000 
VWA 1,250,000 1,350,000 2,000,000 2,050,000 2,100,000 

Table 2-11 – Estimated Light Truck CO2 Credit Banks (metric tons) 

 MY 2015 MY 2016 MY 2017 MY 2018 MY 2019 
BMW - - - - - 
Daimler 1,150,000 950,000 1,050,000 580,000 650,000 
FCA 5,950,000 7,900,000 2,700,000 8,000,000 9,500,000 
Ford - - - - - 
GM 5,050,000 550,000 - 2,000,000 - 
Honda 4,000,000 3,000,000  2,000,000  
Hyundai Kia-H 600,000 1,000,000 850,000 600,000 700,000 
Hyundai Kia-K 1,300,000 - - - - 
JLR 950,000 900,000 700,000 450,000 480,000 
Mazda 500,000 2,000,000 170,000 - - 
Mitsubishi 105,000 170,000 - - - 
Nissan 2,000,000 2,000,000 - - - 
Subaru 500,000 2,500,000 - - 500,000 
Tesla - - - - - 
Toyota 5,000,000 5,000,000 1,900,000 2,100,000 1,600,000 
Volvo - - 943,100 1,981,480 1,158,000 
VWA 2,790,830 3,588,920 4,038,400 - - 

While the CAFE Model does not simulate the ability to trade credits between manufacturers, it 
does simulate the strategic accumulation and application of compliance credits, as well as the 
ability to transfer credits between fleets to improve the compliance position of a less efficient 
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fleet by leveraging credits earned by a more efficient fleet.  The model prefers to hold on to 
earned compliance credits within a given fleet, carrying them forward into the future to offset 
potential future deficits.  This assumption is consistent with observed strategic manufacturer 
behavior dating back to 2009. 

From 2009 to present, no manufacturer has transferred CAFE credits into a fleet to offset a 
deficit in the same year in which they were earned.  This has occurred with credits acquired from 
other manufacturers via trade but not with a manufacturer’s own credits.  Therefore, the current 
representation of credit transfers between fleets—where the model prefers to transfer expiring, or 
soon-to-be-expiring credits rather than newly earned credits—is both appropriate and consistent 
with observed industry behavior. 

This may not be the case for CO2 standards, though it is difficult to be certain at this point.  The 
CO2 program seeded the industry with a large quantity of early compliance credits (earned in 
MYs 2009-201168) prior to the existence formal CO2 standards.  Early credits from MYs 2010 
and 2011, however, do not expire until 2021.  Thus, for manufacturers looking to offset deficits, 
it is more sensible to exhaust credits that were generated during later model years (which are set 
to expire within the next five years), rather than relying on the initial bank of credits from MYs 
2010 and 2011.  Considering that under the CO2 program manufacturers simultaneously comply 
with passenger car and light truck fleets, to more accurately represent the CO2 credit system the 
CAFE Model simulates (and, in effect, encourages) intra-year transfers between regulated fleets 
for the purpose of simulating compliance with the CO2 standards. 

2.2.2.4 Civil Penalty Payment Preferences 

EPCA requires that if a manufacturer does not achieve compliance with a CAFE standard in a 
given model year and cannot apply credits sufficient to cover the compliance shortfall, the 
manufacturer must pay civil penalties (i.e., fines) to the federal government.  Some 
manufacturers have sometimes elected to pay civil penalties rather than achieving compliance 
with CAFE standards.  Until recently, such penalties were assessed at $5.50 per 0.1 mpg of 
residual shortfall (i.e., after applying compliance credits) per vehicle in the noncompliance fleet 
with the penalty rate being adjusted to $14 for model years 2019 through 2021 and to $15 
beginning in model year 2022.  Additional adjustments to the rate will be assessed annually as 
required by law and otherwise as appropriate.  If inputs indicate that a manufacturer treats civil 
penalty payment as an economic choice (i.e., one to be taken if doing so would be economically 
preferable to applying further technology toward compliance), the CAFE Model, when 
evaluating the manufacturer’s response to CAFE standards in a given model year, will apply 
fuel-saving technology only up to the point beyond which doing so would be more expensive 
(after subtracting the value of avoided fuel outlays) than paying civil penalties. 

For today’s analysis, DOT has exercised the CAFE Model with inputs treating all manufacturers 
as treating civil penalty payment as an economic choice through model year 2023.  While DOT 
expects that only manufacturers with some history of paying civil penalties would actually treat 
penalty payment as an acceptable option, the CAFE Model does not currently simulate 

 
68 In response to public comment, EPA eliminated the possible use of credits earned in MY 2009 for future model 
years.  However, credits earned in MY 2010 and MY 2011 remain available for use.  
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compliance credit trading between manufacturers, and DOT expects that this treatment of 
penalty payment will serve as a reasonable proxy for compliance credit purchases some 
manufacturers might actually make through model year 2023.  These input assumptions for 
model years through 2023 reduce the potential that the model will overestimate technology 
application in the model years leading up to those for which the agency is finalizing new 
standards.  As in past CAFE rulemaking analyses (except that supporting the 2020 final rule), 
DOT has treated manufacturers with some history of fine payment (i.e., BMW, Daimler, FCA, 
Jaguar-Land Rover, Volvo, and Volkswagen) as continuing to treat civil penalty payment as an 
acceptable option beyond model year 2023, but has treated all other manufacturers as unwilling 
to do so beyond model year 2023. 

2.2.2.5 Payback 

The CAFE Model uses an “effective cost” metric to evaluate options to apply specific 
technologies to specific engines, transmissions, and vehicle model configurations.  Expressed on 
a $/gallon basis, this metric is computed by subtracting the estimated values of avoided fuel 
outlays and civil penalties from the corresponding technology costs and dividing the result by the 
quantity of avoided fuel consumption.  The value of fuel outlays is computed over a “payback 
period” representing the manufacturer’s expectation that the market will be willing to pay for 
some portion of fuel savings achieved through higher fuel economy.  Once the model has applied 
enough technology to a manufacturer’s fleet to achieve compliance with CAFE standards (and 
CO2 standards and ZEV mandates) in a given model year, the model will apply any further fuel 
economy improvements estimated to produce a negative effective cost (i.e., any technology 
applications for which avoided fuel outlays during the payback period are larger than the 
corresponding technology costs).  As discussed above in Chapter 1 and below in Chapter 3, DOT 
staff anticipate that manufacturers are likely to act as if the market is willing to pay for avoided 
fuel outlays expected during the first 30 months of vehicle operation. 

2.2.2.6 Zero Emissions Vehicles 

When considering other standards that may affect fuel economy compliance pathways, DOT 
included projected ZEVs that would be required for manufacturers to meet standards in 
California and Section 177 states, per the waiver granted under the Clean Air Act. 

To support the inclusion of the ZEV program in the analysis, DOT staff identified specific 
vehicle model/configurations that could adopt BEV technology in response to the ZEV program, 
independent of CAFE standards, at the first redesign.  These ZEVs are identified in the Market 
Data file as future BEV200s, BEV300s, or BEV400s.  Not all announced BEV nameplates 
appear in the MY 2020 Market Data file; in these cases, in consultation with NHTSA and 
CARB, DOT staff used the volume from a comparable vehicle in the manufacturer’s Market 
Data file portfolio as a proxy.69  The Market Data file also includes information about the portion 
of each manufacturer’s sales that occur in California and Section 177 states, which is helpful for 
determining how many ZEV credits each manufacturer will need to generate in the future to 

 
69 While manufacturers may introduce BEVs that are entirely new designs, staff anticipate that simulating BEVs as 
new versions of existing vehicle model/configurations should represent these designs reasonably for purposes of this 
analysis, given that CAFE Model inputs should account reasonably for electric powertrains supplanting 
conventional powertrains. 
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comply with the ZEV program with their own portfolio in the 2025 timeframe.  These new 
procedures are described in more detail in Chapter 2.3.  

2.2.2.7 California Agreements  

In 2020, five vehicle manufacturers reached a voluntary commitment with the State of California 
to  lower GHG emissions of their future nationwide fleets above and levels required by the 2020 
final rule.  For this analysis, compliance with this agreement is in the baseline case for 
designated manufacturers.  The Market Data input file contains inputs indicating whether each 
manufacturer has committed to exceed federal requirements per this agreement.  

2.3 Simulating the Zero Emissions Vehicle Program  

California’s ZEV program is one part of a program of coordinated standards that the California 
Air Resources Board (CARB) has enacted to control emissions of criteria pollutants and 
greenhouse gas emissions from vehicles.  The program began in 1990, within the low-emission 
vehicle (LEV) regulation,70 and has since expanded to include eleven other states.71 72  These 
states are usually referred to as Section 177 states, in reference to Section 177 of the Clean Air 
Act,73 but it is important to note that not all Section 177 states have adopted the ZEV program 
component.74  In the following discussion of the incorporation of the ZEV program into the 
CAFE Model, any reference to the Section 177 states refers to those states that have also adopted 
California’s ZEV program requirements. 

To account for the ZEV program, and particularly as other states have recently adopted 
California’s ZEV standards, DOT staff have included the main provisions of the ZEV program in 
the CAFE Model’s analysis of compliance pathways.  As explained below, incorporating the 
ZEV program into the model includes converting vehicles that have been identified as potential 
ZEV candidates into battery-electric vehicles (BEVs) at the first redesign opportunity, so that a 

 
70 California Air Resource Board (CARB), Zero-Emission Vehicle Program.  California Air Resources Board.  
https://ww2.arb.ca.gov/our-work/programs/zero-emission-vehicle-program/about.  (Accessed: February 15, 2022).  
71 Through 2020, the Section 177 states that had adopted the ZEV program included Colorado, Connecticut, Maine, 
Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, Vermont, and Washington. 
See Vermont Department of Environmental Conservation, Zero Emission Vehicles.  Accessed April 12, 2021.  
https://dec.vermont.gov/air-quality/mobile-
sources/zev#:~:text=To%20date%2C%2012%20states%20have,ZEVs%20over%20the%20next%20decade.  
(Accessed: February 15, 2022). 
72 The states of Minnesota, Nevada, and Virginia have recently adopted ZEV standards, which will go into effect for 
model year 2025.  As discussed in Section III.C of today’s Federal Register notice, reflecting these three states’ 
adoption of ZEV mandates would have only negligibly impacted the agency’s national-scale analysis.  See Green 
Car Reports, Minnesota adopts California EV mandate.  
https://www.greencarreports.com/news/1133027_minnesota-adopts-california-ev-mandate-makes-it-tougher-for-
plug-in-compliance-cars (Accessed February 15, 2022); State of Nevada Climate Initiative, Adopt Low-and Zero-
Emissions Passenger Vehicle Standards.  https://climateaction.nv.gov/policies/lev-zev/ (Accessed February 15, 
2022); Green Car Reports, Virginia becomes 15th Clean Cars State.  
https://www.greencarcongress.com/2021/03/20210330-
virginia.html#:~:text=30%20March%202021,become%20a%20Clean%20Cars%20state.  (Accessed: February 15, 
2022). 
73 Section 177 of the Clean Air Act allows other states to adopt California’s air quality standards. 
74 At the time of writing, Delaware and Pennsylvania are the two states that have adopted the LEV standards, but not 
the ZEV portion. 

https://ww2.arb.ca.gov/our-work/programs/zero-emission-vehicle-program/about
https://dec.vermont.gov/air-quality/mobile-sources/zev#:%7E:text=To%20date%2C%2012%20states%20have,ZEVs%20over%20the%20next%20decade
https://dec.vermont.gov/air-quality/mobile-sources/zev#:%7E:text=To%20date%2C%2012%20states%20have,ZEVs%20over%20the%20next%20decade
https://www.greencarreports.com/news/1133027_minnesota-adopts-california-ev-mandate-makes-it-tougher-for-plug-in-compliance-cars
https://www.greencarreports.com/news/1133027_minnesota-adopts-california-ev-mandate-makes-it-tougher-for-plug-in-compliance-cars
https://climateaction.nv.gov/policies/lev-zev/
https://www.greencarcongress.com/2021/03/20210330-virginia.html#:%7E:text=30%20March%202021,become%20a%20Clean%20Cars%20state
https://www.greencarcongress.com/2021/03/20210330-virginia.html#:%7E:text=30%20March%202021,become%20a%20Clean%20Cars%20state
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manufacturer’s fleet meets calculated ZEV credit requirements.  Since ZEV program compliance 
pathways happen independently from the adoption of fuel saving technology in response to 
increasing CAFE standards, the ZEV program is considered in the baseline of the CAFE Model, 
and in all other regulatory alternatives for CAFE standards. 

2.3.1 Overview of the ZEV Program 

Through its zero-emissions vehicle program, California requires that all manufacturers that sell 
cars within the state meet the ZEV credit standards.  The current credit requirements are 
calculated based on manufacturers’ California sales volumes.  Manufacturers primarily earn ZEV 
credits through the production of battery electric vehicles (BEVs), fuel cell electric vehicles 
(FCEVs), and transitional zero-emissions vehicles (TZEVs), which are vehicles with partial 
electrification, namely plug-in hybrids (PHEVs).  Total credits are calculated by multiplying the 
credit value each ZEV receives by the vehicle’s volume.  

The ZEV credit value per vehicle is calculated based on the vehicle’s range, according to the 
formula in Equation 2-5.  ZEVs may earn up to 4 credits each. 

𝑍𝑍𝑍𝑍𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  (0.01 ∗ 𝑈𝑈𝑈𝑈𝐷𝐷𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  + 0.5 

Equation 2-5 – ZEV Credits per Vehicle 

The TZEV (PHEV) credit formula also depends on the vehicle’s range, as seen in Equation 2-6. 

   𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  (0.01 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  +  0.03 

Equation 2-6 – TZEV Credits per Vehicle 

PHEVs with a US06 AER capability of 10 mi or higher receive an additional 0.2 credits.75  The 
maximum PHEV credit amount available per vehicle is 1.10.76  

2.3.2 Calculation of ZEV Credits per Manufacturer 

For the purposes of simulating the ZEV program, DOT staff calculated approximate ZEV credit 
targets as a first step in adding ZEV compliance to the baseline.  We built these credit targets 
based on examination of the ZEV regulation updates from 2018, estimation of national sales 
volumes by manufacturer, analysis of manufacturers’ market share in Section 177 states, and 
application of CARB’s credit requirement formulas. 

2.3.2.1 Characterizing the Market 

The CAFE Model is designed to present outcomes at a national scale, so the ZEV analysis 
considers the Section 177 states as a group as opposed to estimating each state’s ZEV credit 
requirements individually.  To capture the appropriate volumes subject to the ZEV requirement, 

 
75 US06 is one of the drive cycles used to test fuel economy and AER, specifically for the simulation of aggressive 
driving.  See https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules for more 
information, as well as Chapter 2.4 Technology Effectiveness Values and Chapter 3.3.4 in this document. 
76 13 CCR § 1962.2(c)(3). 
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we calculate each manufacturer’s total market share in Section 177 states.  We also calculate the 
market share of ZEVs in Section 177 states, in order to estimate as closely as possible the 
number of predicted ZEVs expected to be sold in those states.  These shares are later used to 
scale down national-level information in the CAFE Model to ensure that only Section 177 states 
are represented in the final calculation of ZEV credits projected to be earned by each 
manufacturer in future years. 

DOT staff used Polk’s National Vehicle Population Profile (NVPP) from January 2020, to 
calculate these percentages.77  These data include vehicle characteristics such as powertrain, fuel 
type, manufacturer, nameplate, and trim level, as well as the state in which vehicles were sold, 
which allows staff to identify the different types of ZEVs sold in the Section 177 state group.  At 
that time, model year 2019 data from the NVPP contained the most current estimate of new 
vehicle market shares by manufacturer, and best represented the registered vehicle population on 
January 1, 2020.   

Table 2-12 illustrates the estimated total and ZEV-only market shares of manufacturers in 
Section 177 states, using the 2019 model year data.  

Table 2-12 – Total and ZEV-only Market Shares in Section 177 States  

 Percent of Total Vehicle Sales in Section 
177 States 

Percent of ZEVs sold in Section 
177 States 

BMW 50.6% 76.3% 
Daimler 50.1% 85.5% 
FCA 24.4% 60.9% 
Ford 22.5% 50.0% 
General Motors 22.2% 72.1% 
Honda 41.0% 98.0% 
Hyundai  30.6% 90.8% 
Kia 29.8% 79.4% 
JLR 43.5% 57.8% 
Mazda 42.9% N/A78 
Mitsubishi 27.6% 71.2% 
Nissan 27.2% 72.0% 
Subaru 45.8% 91.1% 
Tesla 61.8% 61.8% 
Toyota 36.3% 84.8% 
Volvo 43.6% 64.4% 
VWA 39.4% 71.7% 

 
77 National Vehicle Population Profile (NVPP) 2020, IHS Markit – Polk. 
78 In the dataset used in the calculation of these percentages, Mazda was shown to have produced no ZEV-qualifying 
vehicles.  However, as discussed in Chapter 2.2, Mazda has indicated its intention to build electric vehicles in the 
future.  In the absence of ZEV market share data for Mazda, DOT staff assumed that 100 percent of future ZEVs 
would be sold in Section 177 states. 
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2.3.2.2 Estimating ZEV Credit Targets 

Volumes used for the ZEV credit requirement calculation are based on each manufacturer’s 
future assumed market share in Section 177 states.  The market shares shown in Table 2-12, 
calculated using NVPP data from model year 2019 as discussed in the previous section, are 
carried forward to future years.  The assumption to carry these data forward was made after 
examination of past market share data from model year 2016, from the 2017 version of the 
NVPP.79  Comparison of these data to the 2020 version showed that manufacturers’ market 
shares remain fairly constant in terms of geographic distribution.  Therefore, we determined that 
it was reasonable to carry forward the recently calculated market shares to future years.   

Table 2-13 – ZEV Credit Percentage Requirement Schedule80 

Year ZEV credit percentage requirement 
2020 9.5% 
2021 12% 
2022 14.5% 
2023 17% 
2024 19.5% 
2025 onward 22% 

We calculate total credits required for ZEV compliance by multiplying the percentages from 
CARB’s ZEV requirement schedule by the Section 177 state volumes, as seen in Equation 2-7.  
Table 2-13 shows CARB’s ZEV credit percentage requirements for each future year.  Note that 
CARB’s ZEV percentage requirements do not currently change after 2025.81 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀 ∗ 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 

Equation 2-7 – Required ZEV Credits Formula 

Where: 

 ReqCredits = Required credits 

 Sales Vol = National sales volumes 

 Mktshare = Share of sales in Section 177 states with ZEV standards 

 ZEVPercent = ZEV credit percentage requirement 

 M = Manufacturer 

 
79 National Vehicle Population Profile (NVPP) 2017, IHS Markit – Polk. 
80 13 CCR § 1962.2(b).  
81 13 CCR § 1962.2(b). 
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We generate national sales volume predictions for future years using CAFE Model outputs 
reporting sales by manufacturer, fleet, and model year.82  The compliance report used 
corresponds to the baseline scenario of 1.5 percent per year increases in standards for both 
passenger car and light truck fleets.  

The resulting national sales volume predictions by manufacturer are then multiplied by each 
manufacturer’s total market share in the Section 177 states to capture the appropriate volumes in 
the ZEV credits calculation (See Table 2-14).  Required credits by manufacturer, per year, are 
determined by multiplying the Section 177 state volumes by CARB’s ZEV credit percentage 
requirement.  These required credits are subsequently added to the CAFE Model inputs as targets 
for manufacturer compliance with ZEV standards in the CAFE baseline. 

Table 2-14 – Estimated Sales Volumes in Section 177 States 

Manufacturer Estimated Sales Volumes in Section 177 States 
2020 2021 2022 2023 2024 2025 

BMW 149,829 165,849 190,765 201,795 202,216 199,651 
Daimler 182,364 198,540 224,488 235,597 234,106 229,816 
FCA 366,807 390,980 432,127 448,646 440,582 429,043 
Ford 379,909 406,993 452,309 470,838 463,732 452,487 
GM 514,095 550,411 611,293 636,138 626,317 610,988 
Honda 530,745 581,491 661,838 696,726 694,599 683,396 
Hyundai 226,679 247,912 281,648 296,241 295,064 290,123 
Kia 177,618 195,613 223,839 236,221 236,119 232,722 
JLR 60,142 63,939 70,465 73,057 71,634 69,683 
Mazda 111,752 120,557 134,995 141,032 139,448 136,432 
Mitsubishi 31,086 33,331 37,078 38,615 38,052 37,144 
Nissan 280,583 306,345 347,417 365,121 363,353 357,058 
Subaru 344,272 370,757 414,381 432,524 427,250 417,736 
Tesla 121,113 137,263 161,629 172,779 175,058 174,092 
Toyota 643,330 702,964 797,883 838,869 835,161 820,928 
Volvo 45,299 48,840 54,653 57,082 56,414 55,186 
VWA 168,255 183,847 208,666 219,377 218,404 214,678 

 

2.3.3 Identifying ZEV Candidates in the Analysis Fleet  

The ZEV credit requirements estimated in the previous section serve as a target for simulating 
ZEV compliance in the baseline.  To achieve this, we determined a modeling philosophy for 
ZEV pathways, reviewed various sources for information regarding upcoming ZEV programs, 
and inserted those programs into the analysis fleet inputs.  The following sections elaborate on 
these components. 

 
82 These model outputs are available at https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/CAFE/2021-
NPRM-LD-2024-2026/Central%20Analysis/.  (Accessed: February 15, 2022). 

https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/CAFE/2021-NPRM-LD-2024-2026/Central%20Analysis/
https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/CAFE/2021-NPRM-LD-2024-2026/Central%20Analysis/
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2.3.3.1 Modeling Philosophy on ZEV Pathways 

As manufacturers can meet ZEV standards in a variety of different ways, using various 
technology combinations, DOT staff made certain simplifying assumptions in choosing ZEV 
pathways.  These assumptions were made in conjunction with guidance from CARB staff. 

First, we target 2025 compliance, as opposed to assuming manufacturers would perfectly comply 
with their credit requirements in each year prior to 2025.  This simplifying assumption was made 
upon review of past history of ZEV credit transfers, existing ZEV credit banks, and redesign 
schedules.  We focus on integrating ZEV technology throughout that timeline with the target of 
meeting 2025 obligations; thus, some manufacturers are estimated to over-comply or under-
comply, depending on their individual situations, in the years 2021-2024.   

Second, we determined that the most reasonable way to model ZEV compliance would be to 
allow under-compliance in certain cases and assume that some manufacturers would not meet 
their ZEV obligation on their own in 2025.  Instead, these manufacturers are assumed to prefer to 
purchase credits from another manufacturer with a credit surplus.  Reviews of past ZEV credit 
transfers between manufacturers informed the decision to make this simplifying assumption.83  
CARB staff advised that for these manufacturers, the CAFE Model should still project that each 
manufacturer meet approximately 80 percent of their ZEV requirements with technology 
included in their own portfolio.  Manufacturers that are observed to have generated many ZEV 
credits in the past or had announced major upcoming BEV initiatives are projected to meet 100 
percent of their ZEV requirements on their own, without purchasing ZEV credits from other 
manufacturers.84 

Third, we assume that manufacturers will meet their ZEV credit requirements in 2025 though the 
production of battery electric vehicles (BEVs).  As discussed in Chapter 2.3.1, manufacturers 
may choose to build PHEVs or fuel cell vehicles to earn some portion of their required ZEV 
credits.  However, we project that manufacturers will rely on BEVs to meet their credit 
requirements, based on reviews of press releases and industry news, as well as discussion with 
CARB staff.  Since nearly all manufacturers have announced some plans to produce BEVs at a 
scale meaningful to future ZEV requirements, we consider this to be a reasonable assumption.85  
Furthermore, as CARB only allows intermediate-volume manufacturers to meet their ZEV credit 
requirements through the production of PHEVs, and the volume status of these few 
manufacturers might change over the years, assuming BEV production for ZEV compliance is 
the most straightforward path. 

Fourth, to account for the new BEV programs announced by some manufacturers, we identify 
vehicles in the 2020 fleet that closely match the upcoming BEVs, by regulatory class, market 
segment, and redesign schedule.  We made an effort to distribute ZEV candidate vehicles by 
CAFE regulatory class (light truck, passenger car), by manufacturer, in a manner consistent with 

 
83 See https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/zev-program/zero-emission-vehicle-
credit-balances for past credit balances and transfer information.  (Accessed: February 15, 2022). 
84 The following manufacturers were assumed to meet 100 percent ZEV compliance: Ford, General Motors, 
Hyundai, Kia, Jaguar Land Rover, and Volkswagen Automotive.  Tesla was also assumed to meet 100 percent of its 
required standards, but we did not need to add additional ZEV substitutes to the baseline for this manufacturer. 
85 See Table 2-15 for a list of potential BEV programs recently announced by manufacturers. 

https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/zev-program/zero-emission-vehicle-credit-balances
https://ww2.arb.ca.gov/our-work/programs/advanced-clean-cars-program/zev-program/zero-emission-vehicle-credit-balances


  130 

the 2020 manufacturer fleet mix.  Since passenger car and light truck mixes by manufacturer 
could change in response to the CAFE policy alternative under consideration, this effort was 
deemed necessary in order to avoid redistributing the fleet mix in an unrealistic manner.  
However, there are some exceptions to this assumption, as some manufacturers are already a 
long way to meeting their ZEV obligation through 2025 with BEVs currently produced, and 
some manufacturers underperform their compliance targets more so in one fleet than another.  In 
these cases, we deviate from keeping the LT/PC mix of BEVs evenly distributed across the 
manufacturer’s portfolio.86  See Table 2-16 for examples of the regulatory class distribution 
across manufacturers.   

2.3.3.2 Manufacturer ZEV Efforts 

DOT staff identified future ZEV programs by manufacturer that could plausibly contribute 
towards the ZEV requirements for each manufacturer by 2025.  To obtain this information, staff 
examined various sources, including trade press releases, industry announcements, and investor 
reports.  In many cases, these BEV programs are in addition to programs already in production.87  
Some manufacturers have not yet released details of future electric vehicle programs at the time 
of writing, but have indicated goals of reaching certain percentages of electric vehicles in their 
portfolios by a specified year.  In these cases, we reviewed the manufacturer’s current fleet 
characteristics as well as the aspirational information in press releases and other news in order to 
make reasonable assumptions about the vehicle segment and range of those future EVs.88   

Table 2-15 lists the potential upcoming ZEV programs that we consider.  Overall, we assume 
that manufacturers will lean towards producing BEV300s rather than BEV200s, based on the 
information reviewed and an initial conversation with CARB staff.89  Phase-in caps are also 
considered, especially for BEV200, with the understanding that the CAFE Model will always 
pick BEV200 before BEV300 or BEV400, until the quantity of BEV200s is exhausted.  See 
Chapter 3.3.3 for details regarding phase-in caps in the CAFE Model. 

BEVs with smaller battery packs and less range, are less likely to meet all the performance needs 
of traditional pickup truck owners, such as long-range towing.  However, longer-range BEV 
pickups are being introduced, and may be joined by new markets in the form of electric delivery 
trucks and some light-duty electric truck applications in state and local government.  The extent 
to which BEVs will be used in these and other new markets is difficult to project.  We do 
identify certain trucks as upcoming BEVs for ZEV compliance, and these BEVs are expected to 
have higher ranges, due to the specific performance needs associated with these vehicles.  
Outside of the ZEV inputs described here, the CAFE Model does not handle the application of 
BEV technology with any special considerations as to whether the vehicle is a pickup truck or 
not.  See Chapter 3.3 for more information regarding BEV application in the CAFE Model. 

 
86 The GM light truck and passenger car distribution is one such example. 
87 Examples of BEV programs already in production include the Nissan Leaf and the Chevrolet Bolt. 
88 For example, see the entries under FCA and Mitsubishi in Table 2-15. 
89 BEV300s are battery-electric vehicles with 300-mile range.  See Chapter 3.3.2 for further information regarding 
electrification fleet assignments. 
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Table 2-15 – Potential Upcoming ZEV Programs90 

Manufacturer Nameplate Technology First Model 
Year Likely Fleet 

BMW i4 BEV300 2022 IC 
BMW iX3 BEV300 2022 LT 
BMW iNext BEV300 2024 LT 

Daimler Mercedes-Benz 
EQA SUV BEV200 2022 PC 

Daimler Mercedes-Benz 
EQE Sedan BEV200 2022 PC 

Daimler Mercedes-Benz 
EQS Sedan BEV400 2022 PC 

Daimler Mercedes-Benz 
EQB SUV BEV200 2023 LT 

Daimler Mercedes-Benz 
EQE SUV BEV200 2023 LT 

Daimler Mercedes-Benz G-
Class Electric BEV300 2023 LT 

Daimler Mercedes-Benz 
EQS SUV BEV400 2023 LT 

Daimler Mercedes-Benz 
EQC SUV BEV200 2024 LT 

FCA Jeep Wrangler EV BEV300 2023 LT 
FCA Car EV BEV300 2024 PC 
FCA SUV EV BEV300 2024 LT 
Ford Mustang Mach-e BEV200 2021 PC 
Ford Mustang Mach-e BEV300 2021 PC 

Ford F-150 Electric 
Pickup BEV300 2022 LT 

Ford E-Transit BEV200 2023 LT 
Ford Lincoln SUV BEV200 2024 LT 
Ford Lincoln SUV BEV300 2025 LT 
GM Cadillac Lyriq BEV300 2022 LT 
GM Bolt EUV BEV300 2022 PC 
GM GMC Hummer BEV400 2022 LT 
GM Cadillac Celestiq BEV300 2024 LT 

GM Chevrolet Electric 
Pickup BEV300 2025 LT 

Honda SUV EV BEV200 2025 LT 
Honda SUV EV BEV300 2025 LT 

 
90 See Car and Driver, Every Electric Vehicle that’s expected in the Next Five Years.  Car and Driver (Jan 12, 2021), 
https://www.caranddriver.com/news/g29994375/future-electric-cars-trucks/ (Accessed: February 15, 2022); Preston, 
B., Hot New Electric Cars Are Coming Soon.  Consumer Reports (Feb 4, 2021), 
https://www.consumerreports.org/hybrids-evs/hot-new-electric-cars-are-coming-soon/ (Accessed: February 15, 
2022); Docket No. NHTSA-2021-0053-0006, Press Releases for ZEV Candidate Vehicles. 

https://www.caranddriver.com/news/g29994375/future-electric-cars-trucks/
https://www.consumerreports.org/hybrids-evs/hot-new-electric-cars-are-coming-soon/
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Manufacturer Nameplate Technology First Model 
Year Likely Fleet 

Honda PC EV BEV300 2025 PC 

Hyundai Ioniq 5 (Midsize 
SUV) BEV300 2023 LT 

Hyundai Ioniq 6 Sedan BEV300 2023 PC 
Hyundai Genesis Essentia BEV300 2024 PC 
Hyundai Ioniq 7 SUV BEV300 2024 LT 
JLR Jaguar XJ Electric BEV200 2022 IC 
JLR Range Rover EV BEV300 2024 LT 

Kia 7 dedicated EVs by 
2026 BEV200 2023 PC 

Kia 7 dedicated EVs by 
2026 BEV300 2024 PC 

Kia 7 dedicated EVs by 
2026 BEV400 2025 PC 

Mazda MX-30 BEV200 2023 LT 
Mitsubishi Unknown BEV200 2022 LT 
Mitsubishi Unknown BEV300 2022 LT 
Nissan Ariya BEV300 2022 PC 
Nissan Ariya BEV300 2022 LT 

Subaru Electric SUV / Joint 
venture with Toyota BEV200 2022 LT 

Subaru Electric SUV / Joint 
venture with Toyota BEV300 2022 LT 

Toyota Electric SUV / Joint 
venture with Subaru BEV200 2022 LT 

Toyota Lexus EV SUC BEV300 2023 LT 
Volvo Polestar 2 BEV200 2021 PC 
Volvo XC40 Recharge BEV200 2022 LT 
Volvo XC40 Recharge BEV300 2023 LT 

VWA Audi E-Tron 
Sportback BEV200 2021 LT 

VWA ID.4 BEV300 2021 PC 
VWA Audi E-Tron GT BEV200 2022 PC 
VWA ID.4 BEV200 2022 LT 
VWA Audi Q4 e-tron BEV300 2022 LT 

VWA Porsche Taycan 
Cross Turismo BEV300 2022 PC 

VWA I.D. Buzz BEV300 2023 LT 
VWA I.D. Space Vizzion BEV300 2023 PC 
VWA Porsche Macan EV BEV300 2024 LT 
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2.3.3.3 Inserting ZEV Programs into the CAFE Model Analysis Fleet 

The CAFE analysis fleet summarizes the roughly 13.6 million light-duty vehicles produced and 
sold in the United States in the 2020 model year with more than 3,500 rows, each reflecting 
information for one vehicle type observed.  Each row includes the vehicle’s nameplate and trim 
level, the sales volume, engine, transmission, drive configuration, regulatory class, projected 
redesign schedule, and fuel saving technologies, among other attributes.  For a comprehensive 
discussion of how we built the analysis fleet, see Chapter 2.1.   

In order to simulate manufacturers’ compliance with their particular ZEV credits target, 142 
rows in the analysis fleet are identified as substitutes for future ZEV programs (See  

Table 2-15).  As the goal of the ZEV analysis is to simulate compliance with the ZEV program 
in the baseline, and the analysis fleet only contains vehicles produced during model year 2020, 
we identify existing models in the analysis fleet that share certain characteristics with upcoming 
BEVs.  We also focus on identifying substitute vehicles with redesign years similar to the future 
BEV’s introduction year.  The sales volumes of those existing models, as predicted for 2025, are 
then used to simulate production of the upcoming BEVs.  We were able to identify a 
combination of rows that would meet the ZEV target, could contribute productively towards 
CAFE program obligations (by manufacturer and by fleet), and would introduce BEVs in each 
manufacturer’s portfolio in a way that reasonably aligned with projections and announcements.  
We tag each of these rows with information in the Market Data file,91 instructing the CAFE 
Model to apply the specified BEV technology to the row at the first redesign year, regardless of 
the scenario or type of CAFE or GHG simulation. 

The CAFE Model does not optimize compliance with the ZEV mandate; it relies upon the inputs 
described in this chapter in order to estimate each manufacturer’s resulting ZEV credits.  The 
resulting amount of ZEV credits earned by manufacturer for each model year can be found in the 
CAFE Model’s output files.   

Not all ZEV-qualifying vehicles in the United States earn ZEV credits, as they are not all sold in 
states that have adopted ZEV regulations.  In order to reflect this in the CAFE Model, which 
only estimates sales volumes at the national level, we use the percentages calculated in Chapter 
2.3.2.1 to scale down the national-level volumes.  These percentages (representing the share of 
ZEVs sold in Section 177 states) may be found in Table 2-12.  Multiplying national-level ZEV 
sales volumes by these percentages ensures that only the ZEVs sold in Section 177 states count 
towards the ZEV credit targets of each manufacturer.92  See Chapter 5.8 of the CAFE Model 
Documentation for a detailed description of how the model applies these ZEV technologies and 
any changes made to the model’s programming for the incorporation of the ZEV program into 
the baseline.  

 
91 See Chapter 2.2 for further information on the Market Data file. 
92 The single exception to this assumption is Mazda, as Mazda has not yet produced any ZEV-qualifying vehicles at 
the time of writing.  Thus, the percentage of ZEVs sold in Section 177 states cannot be calculated from existing data.  
However, Mazda has indicated its intention to produce ZEV-qualifying vehicles in the future, so DOT staff assumed 
that 100 percent of future ZEVs would be sold in Section 177 states for the purposes of estimating ZEV credits in 
the CAFE Model. 
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As discussed in Chapter 2.3.3.1, DOT staff made an effort to distribute the newly identified ZEV 
candidates between CAFE regulatory classes (light truck and passenger car) in a manner 
consistent with the proportions seen in the 2020 analysis fleet, by manufacturer.  The resulting 
distribution of the ZEV candidates compared to the observed fleet mix distribution in the 2020 
analysis fleet is shown in Table 2-16.  As mentioned previously, there are a few exceptions to 
this assumption in cases where manufacturers’ regulatory class distribution of current or planned 
ZEV programs clearly differed from their regulatory class distribution as a whole.   

Table 2-16 – Regulatory Class Distributions 

Manufacturer 2020 LT sales 
(percent) 

LT ZEV candidates 
(percent) 

2020 PC sales 
(percent) 

PC ZEV candidates 
(percent) 

BMW 37.2% 52.0% 62.8% 48.0% 
Daimler 52.9% 46.1% 47.1% 53.9% 
FCA 86.2% 87.1% 13.8% 12.9% 
Ford 73.5% 75.0% 26.5% 25.0% 
GM 67.5% 0.0% 32.5% 100.0% 
Honda 42.3% 45.9% 57.7% 54.1% 
Hyundai 10.7% 31.9% 89.3% 68.1% 
Kia 38.5% 43.9% 61.5% 56.1% 
JLR 95.8% 88.6% 4.2% 11.4% 
Mazda 51.7% 0.0% 48.3% 100.0% 
Mitsubishi 54.3% 0.0% 45.7% 100.0% 
Nissan 30.9% 68.3% 69.1% 31.7% 
Subaru 79.0% 77.5% 21.0% 22.5% 
Tesla93 3.1% N/A 96.9% N/A 
Toyota 46.9% 59.1% 53.1% 40.9% 
Volvo 74.7% 86.1% 25.3% 13.9% 
VWA 58.0% 86.1% 42.0% 13.9% 

In some instances, the regulatory distribution of flagged ZEV candidates leans towards a higher 
portion of PCs.  The reasoning behind this differs in each case, but there is an observed pattern in 
the 2020 analysis fleet of fewer BEVs being light trucks, especially pickups.  The 2020 analysis 
fleet contains no BEV pickups in the light truck segment.  The slow emergence of electric 
pickups could be linked to the specific performance needs associated with pickup trucks.  
However, the market for BEVs may emerge in unexpected ways that are difficult to project.  
Examples of this include anticipated electric delivery trucks and light-duty electric trucks used 
by state and local governments.  Due to these considerations, we tagged some trucks as BEVs for 
ZEV, and expected that these would generally be of higher ranges. 

 
93 No ZEV candidates were flagged for Tesla, as Tesla is already compliant with the ZEV program and its vehicles 
in the 2020 fleet are already EVs. 
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Table 2-17 shows the portion of BEVs observed in the analysis fleet, by manufacturer and by 
regulatory class, and compares those percentages to the regulatory class distribution in the 2020 
analysis fleet overall. 

Table 2-17 – Portion of Battery Electric Vehicles Observed in the Analysis Fleet 

Manufacturer 
2020 LT 

Sales 
(percent) 

2020 PC 
Sales 

(percent) 

2020 BEVs 
Observed 
(percent) 

Portion of LT 
BEVs Observed 
in 2020 (percent) 

Portion of PC 
BEVs Observed 
in 2020 (percent) 

BMW 37.2% 62.8% 0.67% 0% 100% 
Daimler 52.9% 47.1% 0.07% 0% 100% 
FCA 86.2% 13.8% 0.00% N/A N/A 
Ford 73.5% 26.5% 0.00% N/A N/A 
GM 67.5% 32.5% 1.22% 0% 100% 
Honda 42.3% 57.7% 0.00% N/A N/A 
Hyundai Kia-H 10.7% 89.3% 0.81% 0% 100% 
Hyundai Kia-K 38.5% 61.5% 0.16% 0% 100% 
JLR 95.8% 4.2% 1.34% 100% 0% 
Mazda 51.7% 48.3% 0.00% N/A N/A 
Mitsubishi 54.3% 45.7% 0.00% N/A N/A 
Nissan 30.9% 69.1% 1.12% 0% 100% 
Subaru 79.0% 21.0% 0.00% N/A N/A 
Tesla 3.1% 96.9% 100.00% 3% 97% 
Toyota 46.9% 53.1% 0.00% N/A N/A 
Volvo 74.7% 25.3% 0.00% N/A N/A 
VWA 58.0% 42.0% 1.21% 15% 85% 

Table 2-18 shows the scope of the fleet affected, including the penetration rates of BEVs 
observed in the 2020 fleet prior to and after the simulation of the ZEV program in the baseline.  
The penetration rate of BEVs in 2025 is also shown.  These rates are all based on 2020 baseline 
volumes and 2025 projected sales volumes in the baseline scenario.  For further discussion of the 
effects of increased BEV penetration rates in the baseline fleet, see FRIA Chapter 6.3.1. 

Table 2-18 – Penetration of BEVs due to Simulation of the ZEV Program 

Manufacturer 

Penetration 
Rate of BEVs 
Observed in 

2020 fleet 

2020 
Observed 

BEV 
Volume 

Penetration 
Rate of BEVs 

(Observed and 
Added) in 2020 

2025 ZEV 
Candidate 

Volume 

Penetration 
Rate of ZEV 

Candidates in 
2025 

BMW 0.67% 1997 2.58% 7396 1.90% 
Daimler 0.07% 258 3.48% 14108 3.07% 
FCA 0% 0 1.08% 18957 1.08% 
Ford 0% 0 1.24% 25534 1.28% 
GM 1.22% 28197 2.24% 26798 0.98% 
Honda 0% 0 1.78% 30675 1.83% 
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Manufacturer 

Penetration 
Rate of BEVs 
Observed in 

2020 fleet 

2020 
Observed 

BEV 
Volume 

Penetration 
Rate of BEVs 

(Observed and 
Added) in 2020 

2025 ZEV 
Candidate 

Volume 

Penetration 
Rate of ZEV 

Candidates in 
2025 

Hyundai 0.81% 6003 2.13% 13567 1.42% 
Kia 0.16% 965 2.40% 17882 2.27% 
JLR 1.34% 1858 2.98% 2655 1.67% 
Mazda 0% 0 3.09% 9135 2.88% 
Mitsubishi 0% 0 1.73% 2217 1.65% 
Nissan 1.12% 11558 1.66% 6280 0.48% 
Subaru 0% 0 2.27% 20779 2.28% 
Tesla 100.00% 196000 100% 0 0.00% 
Toyota 0% 0 1.96% 39540 1.74% 
Volvo 0% 0 2.96% 3653 2.89% 
VWA 1.21% 5187 2.70% 7525 1.38% 

2.4 Technology Effectiveness Values  

The next inputs required to simulate manufacturers’ decision-making processes for the year-by-
year application of technologies to specific vehicles are estimates of how effective each 
technology would be at reducing fuel consumption.  For this analysis, we use full-vehicle 
modeling and simulation to estimate the fuel economy improvements manufacturers could make 
to a fleet of vehicles, considering the vehicles’ technical specifications and how combinations of 
technologies interact.  Full-vehicle modeling and simulation uses physics-based models to 
predict how combinations of technologies perform as a full system under defined conditions. 

A model is a mathematical representation of a system, and simulation is the behavior of that 
mathematical representation over time.  In this analysis, the model is a mathematical 
representation of an entire vehicle,94 including its individual components such as the engine and 
transmission, overall vehicle characteristics such as mass and aerodynamic drag, and the 
environmental conditions, such as ambient temperature and barometric pressure.  We simulate 
the model’s behavior over test cycles, including the 2-cycle laboratory compliance tests (or 2-
cycle tests),95 to determine how the individual components interact.  The 2-cycle tests are test 
cycles used to measure fuel economy and emissions for CAFE compliance, and therefore are the 
relevant test cycles for determining technology effectiveness when establishing CAFE standards.  
In the laboratory, 2-cycle testing involves sophisticated test and measurement equipment, 
carefully controlled environmental conditions, and precise procedures to provide the most 

 
94 Each full vehicle model in this analysis is composed of sub-models, which is why the full vehicle model could 
also be referred to as a full system model, composed of sub-system models. 
95 EPA’s compliance test cycles are used to measure the fuel economy of a vehicle.  For readers unfamiliar with this 
process, it is like running a car on a treadmill following a program—or more specifically, two programs.  The 
“programs” are the “urban cycle,” or Federal Test Procedure (abbreviated as “FTP”), and the “highway cycle,” or 
Highway Fuel Economy Test (abbreviated as “HFET”), and they have not changed substantively since 1975.  Each 
cycle is a designated speed trace (of vehicle speed versus time) that all certified vehicles must follow during testing.  
The FTP is meant roughly to simulate stop and go city driving, and the HFET is meant roughly to simulate steady 
flowing highway driving at about 50 mph.  
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repeatable results possible with human drivers.  These structured procedures serve as a uniform 
assessment for fuel economy measurements. 

Full-vehicle modeling and simulation was initially developed to avoid the costs of designing and 
testing prototype parts for every new type of technology.  For example, if a truck manufacturer 
has a concept for a light-weight tailgate and wants to determine the fuel economy impact for the 
weight reduction, the manufacturer can use physics-based computer modeling to estimate the 
impact.  The vehicle, modeled with the proposed change, can be simulated on a defined test route 
and under defined test conditions, such as city or highway driving in warm ambient temperature 
conditions, and compared against the baseline vehicle without the change.  Full-vehicle modeling 
and simulation allows the consideration and evaluation of different designs and concepts before 
building a single prototype.  In addition, full vehicle modeling and simulation is beneficial when 
considering technologies that provide small incremental improvements.  These improvements are 
difficult to measure in laboratory tests due to variations in how vehicles are driven over the test 
cycle by human drivers, variations in emissions measurement equipment, and variations in 
environmental conditions.96 

Full-vehicle modeling and simulation requires detailed data describing individual vehicle 
technologies and performance-related characteristics.  Those data generally come from design 
specifications, laboratory measurements, and other subsystem simulations or modeling.  One 
example of data used as an input to the full vehicle simulation are engine maps for each engine 
technology that define how much fuel is consumed by the engine technology across its operating 
range. 

Using full-vehicle modeling and simulation to estimate technology efficiency improvements has 
two primary advantages over using single or limited point estimates.  An analysis using single or 
limited point estimates may assume that, for example, one fuel economy improving technology 
with an effectiveness value of 5 percent by itself and another technology with an effectiveness 
value of 10 percent by itself, when applied together achieve an additive improvement of 15 
percent.  Single point estimates generally do not provide accurate effectiveness values because 
they do not capture complex relationships among technologies.  Technology effectiveness often 
differs significantly depending on the vehicle type (e.g., sedan versus pickup truck) and the way 
in which the technology interacts with other technologies on the vehicle, as different 
technologies may provide different incremental levels of fuel economy improvement if 
implemented alone or in combination with other technologies.  Any oversimplification of these 
complex interactions leads to less accurate and often overestimated effectiveness estimates. 

In addition, because manufacturers often add several fuel-saving technologies simultaneously 
when redesigning a vehicle, it is difficult to isolate the effect of individual technologies using 
laboratory measurement of production vehicles alone.  Modeling and simulation offer the 
opportunity to isolate the effects of individual technologies by using a single or small number of 
baseline vehicle configurations and incrementally adding technologies to those baseline 
configurations.  This provides a consistent reference point for the incremental effectiveness 

 
96 Difficulty in controlling for such variability is reflected, for example, in 40 CFR 1065.210, Work input and output 
sensors, which describes complicated instructions and recommendations to help control for variability in real world 
(non-simulated) test instrumentation set up. 
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estimates for each technology and for combinations of technologies for each vehicle type.  
Vehicle modeling also reduces the potential for overcounting or undercounting technology 
effectiveness. 

An important feature of this analysis is that the incremental effectiveness of each technology and 
combinations of technologies should be accurate and relative to a consistent baseline vehicle.  
We use the absolute fuel economy values from the full vehicle simulations only to determine 
incremental effectiveness, but not to assign an absolute fuel economy value to any vehicle model 
or configuration.   

For this analysis, the baseline absolute fuel economy value for each vehicle in the analysis fleet 
is based on CAFE compliance data.97  For subsequent technology changes, we apply the 
incremental effectiveness values of one or more technologies to the baseline fuel economy value 
to determine the absolute fuel economy achieved for applying the technology change.  We 
determine the effectiveness values using full vehicle simulations performed in Autonomie, a 
physics-based full-vehicle modeling and simulation software developed and maintained by the 
U.S. Department of Energy’s Argonne National Laboratory.   

As an example, if a Ford F-150 2-wheel drive crew cab and short bed in the analysis fleet has a 
fuel economy value of 30 mpg for CAFE compliance, we consider 30 mpg the reference absolute 
fuel economy value.  A similar full vehicle model node in the Autonomie simulation may begin 
with an average fuel economy value of 32 mpg, and with the incremental addition of a specific 
technology X its fuel economy improves to 35 mpg, a 9.3 percent improvement.  In this example, 
the incremental fuel economy improvement (9.3 percent) from technology X is applied to the F-
150’s 30 mpg absolute value. 

We determine the incremental effectiveness of technologies as applied to the thousands of 
unique vehicle and technology combinations in the analysis fleet.  Although, as mentioned 
above, full-vehicle modeling and simulation reduces the work and time required to assess the 
impact of moving a vehicle from one technology state to another, it would be impractical—if not 
impossible—to build a unique vehicle model for every individual vehicle in the analysis fleet.  
Therefore, as discussed in the following chapters, the Autonomie analysis relies on ten vehicle 
technology class models that are representative of large portions of the analysis fleet vehicles.  
The vehicle technology classes ensure that we reasonably represent key vehicle characteristics in 
the full vehicle models.  The next sections discuss the details of the technology effectiveness 
analysis input specifications and assumptions. 

2.4.1 Full-Vehicle Modeling, Simulation Inputs, and Data Assumptions  

This analysis uses Argonne’s full vehicle modeling tool, Autonomie, to build vehicle models 
with different technology combinations to determine the effectiveness of those technologies over 
simulated regulatory test cycles.  We consider over 50 technologies as inputs to the Autonomie 

 
97 See Chapter 2.2.1 Characterizing Vehicles and their Technology Content for further discussion of CAFE 
compliance data.  
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modeling.98  These inputs consist of engine technologies, transmission technologies, powertrain 
electrification, light-weighting, aerodynamic improvements, and tire rolling resistance 
improvements.  Chapter 3 broadly discusses each of the technology groupings definitions, inputs, 
and assumptions.  We include a deeper discussion of the Autonomie modeled subsystems, and 
how inputs feed the sub models resulting in outputs, in the Argonne Autonomie documentation 
that accompanies this analysis.   

We develop Autonomie model inputs considering real-world and compliance test cycle 
constraints, to the extent the modeling tool allows.  Examples include using an engine knock 
model in engine map development, noise-vibration-harshness (NVH) constraints on cylinder 
deactivation, and NVH constraints on the number of engine on/off events (e.g., from start/stop 
12V micro hybrid systems). 

One of the important inputs to the Autonomie model is the set of engine fuel map models.  The 
engine map models define the fuel consumption rate for an engine equipped with specific 
technologies when operating over a variety of engine load (torque) and engine speed conditions.  
We developed the engine map models by creating a base, or root, engine map and then 
modifying that root map, incrementally, to isolate the effects of the added technologies.  These 
engine maps, developed by IAV using their GT-Power modeling tool, are based on real-world 
engine designs.  One important feature of the IAV’s GT Power modeling tool is the embedded 
IAV knock model, which was also developed using real-world engine data.99,100  This ensures 
that the engine maps appropriately include real-world constraints as the Autonomie built vehicles 
are simulated on the test cycles.   

Although the same engine map models are used for all vehicle technology classes, the 
effectiveness varies based on the characteristics of each class.  For example, a compact car with a 
turbocharged engine will have a different effectiveness value than a pickup truck with the same 
engine technology type.  The engine map models development and specifications are discussed 
further in TSD Chapter 3.1. 

Other key Autonomie inputs and assumptions are default values and recommendations from 
Argonne’s technical teams, based on test data and technical publication review.101  For other 
Autonomie model inputs, such as, for example, throttle time response and shifting strategies for 
different transmission technologies, assumptions are based on the latest test data and current 

 
98 Islam, E. S., A. Moawad, N. Kim, R. Vijayagopal, and A. Rousseau.  A Detailed Vehicle Simulation Process to 
Support CAFE Standards for the MY 2024-2026 Analysis. ANL/ESD-21/9 [hereinafter Autonomie model 
documentation].  ANL - All Assumptions_Summary_NPRM_022021.xlsx, ANL - Data Dictionary_January 
2021.xlsx, ANL - Summary of Main Component Performance Assumptions_NPRM_022021.xlsx, and 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx. 
99 Engine knock in spark ignition engines occurs when combustion of some of the air/fuel mixture in the cylinder 
does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel 
mixture explodes outside of the envelope of the normal combustion front.  
100 See IAV material submitted to the docket; IAV_20190430_Eng 22-26 Updated_Docket.pdf, 
IAV_Engine_tech_study_Sept_2016_Docket.pdf, IAV_Study for 4 Cylinder Gas Engines_Docket.pdf. 
101 An example of a default assumption is the cylinder deactivation methodology within Autonomie.  The controller 
within Autonomie has been developed, using test data, to consider NVH and cold start operation when to enable 
cylinder deactivation.  
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market information.102  The Autonomie modeling tool did not simulate vehicle attributes 
determined to have minimal impacts on fuel economy, like whether a vehicle had a sunroof or 
leather seats, as those attributes would have trivial impact in the overall analysis. 

Because this analysis models ten different vehicle types (i.e., vehicle classes) to represent the 
thousands of vehicles in the analysis fleet, improper assumptions about an advanced technology 
could lead to errors in estimating effectiveness.  Autonomie is a sophisticated full-vehicle 
modeling tool that requires extensive technology characteristics based on both physical and 
intangible data, like proprietary software (e.g., control strategies for cylinder deactivation).  For a 
few technologies, we did not have publicly available data but had received confidential business 
information confirming the potential availability of the technology in the market during the 
rulemaking timeframe.  For some advanced technologies, such as advanced cylinder deactivation 
(ADEAC), we adopt a method in the CAFE Model to represent the effectiveness of the 
technology and did not explicitly simulate the technologies in the Autonomie model.  For this 
limited set of technologies, we determined that effectiveness could reasonably be represented as 
a fixed value.103  Effectiveness values for technologies not explicitly simulated in Autonomie are 
discussed further in the individual technology sections of this TSD.  

2.4.2 Defining Vehicle Classes in Autonomie  

Argonne builds full-vehicle models and runs simulations for many combinations of technologies, 
but it does not simulate literally every single vehicle model/configuration in the analysis fleet.  
Not only would it be impractical to assemble the requisite detailed information specific to each 
vehicle/model configuration, much of which would likely only be provided on a confidential 
basis, but doing so would increase the scale of the simulation effort by orders of magnitude.  
Instead, Argonne simulates ten different vehicle types, corresponding to the five “technology 
classes” generally used in CAFE analysis over the past several rulemakings, each with two 
performance levels and corresponding vehicle technical specifications (e.g., small car, small 
performance car, pickup truck, performance pickup truck, and so on). 

Technology classes are a means of specifying common technology input assumptions for 
vehicles that share similar characteristics.  Because each vehicle technology class has unique 
characteristics, the effectiveness of technologies and combinations of technologies is different 
for each technology class.  Conducting Autonomie simulations uniquely for each technology 
class provides a specific set of simulations and effectiveness data for each technology class.  In 
this analysis the technology classes are compact cars, midsize cars, small SUVs, large SUVs, and 
pickup trucks.  In addition, for each vehicle class there are two levels of performance attributes 
(for a total of 10 technology classes).  The high performance and low performance vehicles 
classifications allow for better diversity in estimating technology effectiveness across the fleet. 

 
102 See further details in Chapter 2.2 and in Chapter 3’s individual technology pathway sections. 
103 For this analysis, 12 out of 50 plus technologies use fixed offset effectiveness values.  The total effectiveness of 
these technologies cannot be captured on the 2-cycle test or, like ADEAC, they are a new technology where robust 
data that could be used as an input to the technology effectiveness modeling does not yet exist.  Specifically, these 
technologies are LDB, SAX, EPS, IACC, EFR, HCR1D, BEV400, BEV500, ADEAC, DSLI, DSLIAD and 
TURBOAD. 
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Argonne developed a vehicle characteristics database to capture baseline vehicle attributes that 
are used to build the full vehicle models.  Representative vehicle attributes and characteristics are 
identified from publicly available information and automotive benchmarking databases such as 
A2Mac1,104 Argonne’s Downloadable Dynamometer Database (D3),105  EPA compliance and 
fuel economy data,106 and EPA’s guidance on the cold start penalty on 2-cycle tests.107  The 
resulting vehicle technology class baseline characteristics assumptions database consists of over 
100 different attributes like vehicle frontal area, drag coefficient, fuel tank weight, transmission 
housing weight, transmission clutch weight, hybrid vehicle component weights, weights for 
components that comprise engines and electric machines, tire rolling resistance, transmission 
gear ratios and final drive ratios.   

Argonne then assigns each of the ten vehicle types a set of baseline attributes based on 
representative values determined from the compiled vehicle databases.  For example, the 
characteristics of a MY 2020 Honda Civic are considered along with a wide range of other 
compact cars to identify representative characteristics for the base compact car technology class 
models.  These vehicle technology class attributes coupled with technology attributes are 
compiled as inputs for the full-vehicle Autonomie simulations.  The simulations then determine 
the fuel economy improvement from applying each combination of technologies to the baseline 
technology set. 

For each vehicle technology class and for each vehicle attribute, Argonne estimates the attribute 
value using statistical distribution analysis of publicly available data and data obtained from the 
A2Mac1 benchmarking database.  Some vehicle attributes are based on test data and vehicle 
benchmarking, like the cold-start penalty for the FTP test cycle and vehicle electrical accessories 
load.  Table 2-19 shows some key attributes that are assigned to the baseline reference vehicles.  
The Autonomie model documentation includes more detail about vehicle attributes used in this 
analysis,108 and values for each vehicle technology class are provided with the Argonne Input 
and Assumptions files.109  

 
104 A2Mac1: Automotive Benchmarking.  (Proprietary data).  Retrieved from https://www.a2mac1.com.  A2Mac1 is 
subscription-based benchmarking service that conducts vehicle and component teardown analyses.  Annually, 
A2Mac1 removes individual components from production vehicles such as oil pans, electric machines, engines, 
transmissions, among the many other components.  These components are weighed and documented for key 
specifications which is then available to their subscribers. 
105 Downloadable Dynamometer Database (D3).  Argonne National Laboratory, Energy Systems Division.  
https://www.anl.gov/es/downloadable-dynamometer-database.  (Accessed: February 15, 2022). 
106 Data on Cars used for Testing Fuel Economy.  EPA Compliance and Fuel Economy Data.  
https://www.epa.gov/compliance-and-fuel-economy-data/data-cars-used-testing-fuel-economy.  (Accessed: 
February 15, 2022). 
107 EPA PD TSD at 2-265-2-266. 
108 Autonomie model documentation, Chapter 5. 
109 ANL - All Assumptions_Summary_NPRM_022021.xlsx, ANL - Data Dictionary_January 2021.xlsx, ANL - 
Summary of Main Component Performance Assumptions_NPRM_022021.xlsx, and 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx. 
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Table 2-19 – Reference Autonomie  

Vehicle Class Performance 
Category 

0-60 
MPH 

Time (s) 

Towing 
(kg) 

Drag 
Coefficient 

Tire 
Rolling 

Resistance 

Frontal 
Area 
(m2) 

Estimated 
Curb Weight 

(kg) 

Base Elec 
Acc Load 

(w) 

Cold Start Penalty 
(bag1/bag2 %) 

NA*:TC 

Compact Car Low 10 N/A 0.3 0.009 2.3 1337 250 14.6/2.3:13.8/1.7 

Midsize Car Low 9 N/A 0.3 0.009 2.35 1431 250 14.6/2.3:13.8/1.7 

Small SUV Low 9 N/A 0.36 0.009 2.65 1633 250 14.6/2.3:13.8/1.7 

Midsize SUV Low 9 N/A 0.38 0.009 2.85 1746 300 14.6/2.3:13.8/1.7 

Pickup Low 10 3000 0.42 0.009 3.25 1675 300 14.6/2.3:13.8/1.7 

Compact Car High 8 N/A 0.3 0.009 2.3 1835 300 14.6/2.3:13.8/1.7 

Midsize Car High 6 N/A 0.3 0.009 2.35 1801 300 14.6/2.3:13.8/1.7 

Small SUV High 7 N/A 0.36 0.009 2.65 2103 300 14.6/2.3:13.8/1.7 

Midsize SUV High 7 N/A 0.38 0.009 2.85 2011 300 14.6/2.3:13.8/1.7 

Pickup High 7 4350 0.42 0.009 3.25 2481 300 14.6/2.3:13.8/1.7 

These are the reference points for the baseline vehicles. 
* NA = Naturally Aspirated. 
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One notable vehicle attribute is engine mass.  We did not believe it appropriate to assign a single 
engine mass for each vehicle technology class.  To account for the difference in weight for 
different engine types, Argonne performed a regression analysis of engine peak power versus 
weight, based on attribute data taken from the A2Mac1 benchmarking database.  For example, to 
account for the weight of different engine sizes, like 4-cylinder versus 8-cylinder or turbocharged 
versus naturally aspirated engines, Argonne developed a relationship curve between peak power 
and engine weight based on the A2Mac1 benchmarking data.  Argonne uses the developed 
relationship to estimate mass for all engines.  The analysis applies secondary weight reduction 
associated with changes in engine technology by using this linear relationship between engine 
power and engine weight.   

For example, when a vehicle in the analysis fleet with an 8-cylinder engine adopts a more fuel-
efficient 6-cylinder engine, the total vehicle weight reflects the updated engine weight with two 
fewer cylinders based on the peak power versus engine weight relationship.  The Autonomie 
simulation data accounts for the impact of engine mass reduction on effectiveness directly in the 
Autonomie simulation data through the application of the above relationship.  Engine mass 
reduction through downsizing is, therefore, appropriately not included as part of vehicle mass 
reduction technology that is discussed in Chapter 3.4, because doing so would result in double 
counting the impacts.  We use two separate curves, one for naturally aspirated engines and the 
other for turbocharged engines, to improve the precision of the engine weight estimates. 

In addition, we hold some attributes at constant levels within each technology class to maintain 
vehicle functionality, performance, and utility, including NVH, safety, and other utilities 
important for customer satisfaction.  For example, in addition to the vehicle performance 
constraints discussed in Chapter 2.4.5, the analysis does not allow the frontal area of the vehicle 
to change in order to maintain utility like ground clearance, head-room space, and cargo space.  
Another example is the cold-start penalty used to account for fuel economy degradation for 
heater performance and emissions system catalyst light-off.110  This allows the analysis to 
capture discrete improvements in technology effectiveness while maintaining vehicle attributes 
that are important like vehicle utility, consumer acceptance and compliance with criteria 
emission standards.  These constraints are considered as manufacturers consider them in the real 
world. 

2.4.3 Building Representative Vehicles and Vehicle Optimization  

Before any simulation is initiated in Autonomie, Argonne must “build” a vehicle by assigning 
reference technologies and initial attributes to the components of the vehicle model representing 
each technology class.111  The reference technologies are baseline technologies that represent the 
first step on each technology pathway used in the analysis.  For example, a compact car is built 
by assigning it a baseline engine (DOHC, VVT, PFI), a baseline transmission (5-speed automatic 
transmission (AT5)), a baseline level of aerodynamic improvement (AERO0), a baseline level of 
rolling resistance improvement (ROLL0), a baseline level of mass reduction technology (MR0), 
and corresponding attributes from the Argonne vehicle assumptions database like individual 

 
110 The catalyst light-off is the temperature necessary to initiate the catalytic reaction and this energy is generated 
from the engine.  
111 Further discussion of this process is in Chapter 5 of the Autonomie model documentation. 
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component weights.112  A baseline vehicle will have a unique starting point for the simulation 
and a unique set of assigned inputs and attributes, based on its technology class. 

The next step in the process is to run a powertrain sizing algorithm that ensures the built vehicle 
meets or exceeds defined performance metrics, including low-speed acceleration (time required 
to accelerate from 0-60 mph), high-speed passing acceleration (time required to accelerate from 
50-80 mph), gradeability (the ability of the vehicle to maintain constant 65 miles per hour speed 
on a six percent upgrade), and towing capacity.  Together, these performance criteria are widely 
used by the automotive industry as metrics to quantify vehicle performance attributes that 
consumers observe and that are important for vehicle utility and customer satisfaction. 

In the compact car example used above, we assign an initial specific engine design and engine 
power, transmission, AERO, ROLL, and MR technologies, and other attributes like vehicle 
weight.  If the built vehicle does not meet all the performance criteria as the vehicle is simulated 
over the defined test cycles in the first iteration, then the engine power is increased to meet the 
performance requirement.  The increase in power achieved by increasing engine displacement, 
which might involve an increase in number of cylinders, may lead to an increase in the engine 
weight.  This iterative process then determines if the compact car with increased engine power 
and corresponding updated engine weight meets the required performance metrics.  The iterative 
process stops once all the performance requirements are met for the baseline vehicle, and it is at 
this point the compact car technology class vehicle model is ready for simulation.  For further 
discussion of the vehicle performance metrics, see Chapter 2.4.5. 

Autonomie then adopts a single fuel saving technology to the baseline vehicle model, keeping 
everything else the same except for that one technology and the attributes associated with it.  For 
example, the model applies an 8-speed automatic transmission in place of the baseline 6-speed 
automatic transmission (AT6), which would lead either to an increase or decrease in the total 
weight of the vehicle based on the technology class assumptions.  Autonomie then confirms 
whether performance metrics are met for this new vehicle model through the previously 
discussed sizing algorithm and iterations.  Once a technology is assigned to the vehicle model 
and the resulting vehicle meets its performance metrics, the vehicle model is used as an input to 
the full vehicle simulation.  As an example, for just the 6-speed to 8-speed automatic 
transmission technology update, the initial ten vehicle models (one for each technology class) are 
created, plus the ten new vehicle models with the updated 8-speed automatic transmission, for a 
total of 20 different vehicle models for simulation.  This permutation process is repeated for each 
of the over 50 technologies considered, which results in more than one million optimized vehicle 
models.  Figure 2-1 shows a flow chart of the process for building vehicle models in Autonomie 
for simulation. 

 
112 Further discussion of this setup is in Chapter 5.2 of the Autonomie model documentation. 
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Figure 2-1 – Autonomie Technology Adoption Process for Vehicle Building with Compact Car Technology 
Class as an Example 

Some technologies require extra steps for optimization before the vehicle models are built for 
simulation.  For example, the sizing and optimization process is more complex for the electrified 
vehicles (e.g., HEVs, PHEVs) compared to vehicles with only internal combustion engines, as 
discussed further below.  During the vehicle building process, the following items are considered 
for optimization:  

• Vehicle weight is adjusted in response to switching from one type of engine or 
transmission technology to another. 

• Vehicle performance is decreased or increased in response to the addition of mass 
reduction technologies. 

• Vehicle performance is decreased or increased in response to the addition of a new 
technology like AERO or ROLL for the same hybrid electric machine. 

• Electric vehicle battery size is decreased or increased in response to the addition of 
MASS, AERO and/or ROLL technologies. 

Every time a vehicle adopts a new technology, the vehicle weight is updated to reflect the new 
component weight.  For some technologies, the direct weight change is easy to assess.  For 
example, when a vehicle is updated to a higher geared transmission the weight of the original 
transmission is replaced with the corresponding transmission weight (e.g., the weight of a vehicle 
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moving from a AT6 to an 8-speed automatic transmission is updated based on the 8-speed 
transmission weight). 

For other technologies, like engine technologies, assessing the updated vehicle weight is more 
complex.  As discussed earlier, modeling a change in engine technology involves both the new 
technology adoption and a change in power (because the reduction in vehicle weight leads to 
lower engine loads, and a resized engine).  When a vehicle adopts new engine technology, the 
associated weight change to the vehicle is accounted for based on the earlier discussed regression 
analysis of weight versus power.  The engine weight regression analysis includes mass data for 
19 different engine technologies that consist of unique components to achieve fuel economy 
improvements.  This regression analysis is technology agnostic by taking the approach of using 
engine peak power versus engine weight because it removed biases to any specific engine 
technology in the analysis.  Although using the regression does not estimate the specific weight 
for each individual engine technology, such as variable valve timing (VVT) or stoichiometric 
gasoline direct injection (SGDI), this process provides a reasonable estimate of the weight 
differences among engine technologies.  

Figure 2-2 shows an example of the engine mass regression for the naturally aspirated, forced air 
induction, and diesel engines.  Argonne updated the regression for this analysis to reflect the 
latest data from A2Mac1, which resulted in two changes.  First, small naturally aspirated 4-
cylinder engines that adopt turbocharging technology reflect the increased weight of associated 
components like ducting, clamps, the turbocharger itself, a charged air cooler, wiring, fasteners, 
and a modified exhaust manifold.  Second, larger cylinder count engines like naturally aspirated 
8-cylinder and 6-cylinder engines that adopt turbocharging and downsized technologies have less 
weight due to having fewer engine cylinders.  For example, a naturally aspirated 8-cylinder 
engine that adopts turbocharging technology when downsized to a 6-cylinder turbocharged 
engine appropriately reflects the added weight of turbocharging components, and the lower 
weight of fewer cylinders. 
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Figure 2-2 – Engine Mass Determination as a Function of Power and Type of Air Induction and Engine Type 

As with conventional vehicle models, Autonomie also builds electrified vehicle models from the 
ground up.  To capture improvements for electrified vehicles for this analysis, Argonne applies 
the same mass regression analysis process that considers electric motor weight versus electric 
motor power for vehicle models that adopt electric motors.  Argonne analyzed benchmarking 
data for hybrid and electric vehicles from the A2Mac1 database to develop a regression curve of 
electric motor peak power versus electric motor weight.113  Figure 2-3 below shows the electric 
motor mass regression as a function of peak power.  

 
113 Autonomie model documentation, Chapter 5.2.10 Electric Machines System Weight. 
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Figure 2-3 – Electric Motor Mass Determination as Function of Peak Power 

2.4.4 Sizing Powertrains 

We maintain performance neutrality in the full vehicle simulations by resizing engines, electric 
machines, and hybrid electric vehicle battery packs at specific incremental technology steps.  To 
address product complexity and economies of scale, engine resizing is limited to specific 
incremental technology changes that would typically be associated with a major vehicle or 
engine redesign.  This is intended to reflect manufacturers’ comments to DOT on how they 
consider engine resizing and product complexity, and DOT’s observations on industry product 
complexity. 

When a powertrain does need to be resized, Autonomie attempts to mimic manufacturers’ 
practices to the greatest extent possible.  As discussed earlier, the Autonomie vehicle building 
process is initiated by building a baseline vehicle model with a baseline engine, transmission, 
and other baseline vehicle technologies.  This baseline vehicle model (for each technology class) 
is sized to meet a specific set of performance criteria, including acceleration and gradeability. 

The modeling also accounts for the industry practice of platform, engine, and transmission 
sharing to manage component complexity and the associated costs.114  At a vehicle refresh cycle, 
a vehicle may inherit an already resized powertrain from another vehicle within the same engine-

 
114 For example, Ford EcoBoost Engines are shared across ten different models in MY 2019.  
https://www.ford.com/powertrains/ecoboost/.  (Accessed: February 15, 2022). 
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sharing platform that adopted the powertrain in an earlier model year.  In the Autonomie 
modeling, when a new vehicle adopts fuel saving technologies that are inherited, the engine is 
not resized (the properties from the baseline reference vehicle are used directly and unchanged) 
and there may be a small change in vehicle performance.  For example, in Figure 2-1 above, 
Vehicle 2 inherits Eng01 from Vehicle 1 while updating the transmission.  Inheritance of the 
engine with the new transmission may change performance.  This example illustrates how 
manufacturers generally manage manufacturing complexity for engines, transmissions, and 
electrification technologies. 

Autonomie implements different powertrain sizing algorithms depending on the type of 
powertrain being considered because different types of powertrains contain different components 
that must be optimized.115  For example, Autonomie’s conventional powertrain resizing 
algorithm considers only the reference power of the conventional engine (e.g., Eng01, a basic 
VVT engine, is rated at 108 kilowatts and this is the starting reference power for all technology 
classes), versus the power-split hybrid (SHEVPS) resizing algorithm that must separately 
optimize engine power, battery size (energy and power), and electric motor power.  An engine’s 
reference power rating can either increase or decrease depending on the architecture, vehicle 
technology class, and whether it includes other advanced technologies. 

Performance requirements also differ depending on the type of powertrain because vehicles with 
different powertrain types may need to meet different criteria.  For example, a PHEV) powertrain 
that can travel a certain number of miles on its battery energy alone (referred to as AER, or as 
performing in electric-only mode) is also sized to ensure that it can meet the performance 
requirements of a US06 drive cycle in electric-only mode. 

The powertrain sizing algorithm is an iterative process that attempts to optimize individual 
powertrain components at each step.  For example, the sizing algorithm for conventional 
powertrains estimates required power to meet gradeability and acceleration performance and 
compares it to the reference engine power for the technology class.  If the power required to meet 
gradeability and acceleration performance exceeds the reference engine power, the engine power 
is updated to the new value.  Similarly, if the reference engine power exceeds the gradeability 
and acceleration performance power, it is decreased to the lower power rating.  If the change in 
power requires a change in the engine design, like increasing displacement (e.g., going from a 
1.8-liter to 2.4-liter engine) or increasing cylinder count (e.g., going from an I4 to a V6), the 
engine weight will also change.  The new engine power is used to update the weight of the 
engine. 

Next, the conventional powertrain sizing algorithm enters an acceleration algorithm loop to 
verify low-speed acceleration performance (the time it takes to go from 0 mph to 60 mph).  In 
this step, Autonomie adjusts engine power to maintain a performance attribute for the given 
technology class and updates engine weight accordingly.  Once this performance criteria are met, 
Autonomie ends the low-speed acceleration performance algorithm loop and enters a high-speed 
acceleration (the time it takes to go from 50 mph to 80 mph) algorithm loop.  Again, Autonomie 

 
115 Autonomie model documentation, Chapter 8.3.1 Conventional-Vehicle Sizing Algorithm; Chapter 8.3.2 Split-
HEV Sizing Algorithm; Chapter 8.3.3 Parallel HEV Sizing Algorithm; 8.3.4 Parallel PHEV sizing Algorithm; 8.3.5 
Split PHEV (Vehicle Sizing Algorithm; Chapter 8.3.6 Voltec PHEV Vehicle Sizing Algorithm; Chapter 8.3.7 BEV 
Sizing Algorithm. 
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might need to adjust engine power to maintain a performance attribute for the given technology, 
and it exits this loop once the performance criteria are met.  At this point, the sizing algorithm is 
complete for the conventional powertrain based on the designation for engine type, transmission 
type, aerodynamic improvement type, mass reduction technology, and low rolling resistance 
technology.  Figure 2-4 below shows the sizing algorithm for conventional powertrains.  Each 
circle in the flow chart is a closed loop system and the loop must be completed to move to the 
next loop; e.g., the acceleration performance loop must be complete before the model sizes 
components to meet the passing acceleration performance loop.  This allows us to avoid under- 
or oversizing components, engines, and electric motors to minimize over and under compliance 
in the analysis.  

 

Figure 2-4 – Conventional Powertrain Sizing Algorithm 

Depending on the type of powertrain considered, the sizing algorithms may size to meet the 
different performance criteria in a different order.  For example, the electrified powertrain sizing 
algorithm considers different requirements, including range, and battery power in addition to 
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performance.  The powertrain sizing algorithms for electrified vehicles are considerably more 
complex and are discussed in further detail in Autonomie model documentation.116 

2.4.5 Performance Neutrality 

The purpose of this analysis is to examine the impact of technology application that can improve 
fuel economy.  A fuel economy improvement can be realized by improving the powertrain that 
propels the vehicle (e.g., by replacing a 6-cylinder engine with a smaller, turbocharged 4-
cylinder engine), or by reducing the vehicle’s loads or burdens (e.g., by lowering aerodynamic 
drag, reducing vehicle mass and/or rolling resistance).  Either way, these changes reduce energy 
consumption and create a range of choices for vehicle manufacturers.  At the two ends of the 
range, the manufacturer can choose to either: 

A)  Design a vehicle that does same the amount of work as before but uses less fuel. 

For example, a redesigned pickup truck would receive a turbocharged V6 engine in place of the 
outgoing naturally aspirated V8.  The pickup would offer no additional towing capacity, 
acceleration, larger wheels and tires, expanded infotainment packages, or customer convenience 
features, but would achieve a higher fuel economy rating. 

Or: 

B)  Design a vehicle that does more work and uses the same amount of fuel as before. 

For example, a redesigned pickup truck would receive a turbocharged V6 engine in place of the 
outgoing naturally aspirated V8, but with engine efficiency improvements that allow the same 
amount of fuel to do more work.  The pickup would offer increased towing capacity, faster 
acceleration, larger wheels and tires, an expanded (heavier) infotainment package, and more 
convenience features, while maintaining (not improving) the fuel economy rating of the previous 
year’s model. 

In other words, automakers weigh the trade-offs between vehicle performance/utility and fuel 
economy, and they choose a blend of these attributes to balance meeting fuel economy and 
emissions standards and meeting utility requirements during research and development. 

Historically, vehicle performance has improved over the years.  The average horsepower is the 
highest that it has ever been; all vehicle types have improved horsepower by at least 43 percent 
compared to the 1978 model year, and pickup trucks have improved by 49 percent.117  Since 
1978, vehicles’ 0-60 acceleration time has improved by 40-49 percent depending on vehicle 
type.118  Fuel economy has also improved, but the horsepower and acceleration trends show that 
not 100 percent of technological improvements have been applied to fuel savings.  While future 

 
116 Autonomie model documentation, Chapter 8.3.1 Conventional-Vehicle Sizing Algorithm; Chapter 8.3.2 Split-
HEV Sizing Algorithm; Chapter 8.3.3 Parallel HEV Sizing Algorithm; 8.3.4 Parallel PHEV sizing Algorithm; 8.3.5 
Split PHEV (Vehicle Sizing Algorithm; Chapter 8.3.6 Voltec PHEV Vehicle Sizing Algorithm; Chapter 8.3.7 BEV 
Sizing Algorithm. 
117  “The 2021 EPA Automotive Trends Report, Greenhouse Gas Emissions, Fuel Economy, and Technology since 
1975,” EPA-420-R-21-023, November 2021, at pp. 20-7 [hereinafter 2021 EPA Automotive Trends Report]. 
118 2021 EPA Automotive Trends Report, at pp. 26-7. 
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trends are uncertain, the past trends suggest vehicle performance is unlikely to decrease, as it 
seems reasonable to assume that customers will, at a minimum, demand vehicles that offer the 
same utility as today’s fleet. 

For this rulemaking analysis, we analyze technology pathways manufacturers could use for 
compliance that attempt to maintain vehicle attributes, utility, and performance.  Using this 
approach allows us to assess the costs and benefits of potential standards under a scenario where 
consumers continue to get the similar vehicle attributes and features, other than changes in fuel 
economy.  The purpose of constraining vehicle attributes is to simplify the analysis and reduce 
variance in other attributes that consumers may value across the analyzed regulatory alternatives.  
This allows for a streamlined accounting of costs and benefits by not requiring the values of 
other vehicle attributes that trade off with fuel economy.  The CAFE Model maintains the initial 
performance and utility levels of the analysis fleet, while considering real world constraints faced 
by manufacturers. 

To maintain performance neutrality when applying fuel economy technologies, it is first 
necessary to characterize the performance levels of each of the vehicle models in the baseline 
fleet.  As discussed in Chapter 2.4.2, above, we assign each individual vehicle model in the 
analysis fleet to one of ten vehicle “technology classes”— the class that is most similar to the 
vehicle model.  The technology classes include five standard class vehicles (compact car, 
midsize car, small SUV, midsize SUV, pickup) plus five “performance” versions of these same 
body styles.119  Each vehicle class has a unique set of attributes and characteristics, including 
vehicle performance metrics, that describe the typical characteristics of the vehicles in that class. 

The analysis uses four criteria to characterize vehicle performance attributes and utility:  

• Low-speed acceleration (time required to accelerate from 0-60 mph) 

• High-speed acceleration (time required to accelerate from 50-80 mph)  

• Gradeability (the ability of the vehicle to maintain constant 65 miles per hour 
speed on a six percent upgrade); and   

• Towing capacity 

Low-speed and high-speed acceleration target times are typical of current production vehicles 
and range from 6 to 10 seconds depending on the vehicle class; for example, the midsize SUV 
performance class has a low- and high-speed acceleration target of 7 seconds.120  The 
gradeability criterion requires that the vehicle, given its attributes of weight, engine power, and 
transmission gearing, be capable of maintaining a minimum of 65 mph while going up a six 
percent grade.  The towing criterion, which is applicable only to the pickup truck and 
performance pickup truck vehicle technology classes, is the same as the gradeability requirement 
but adds an additional payload/towing mass (3,000 lbs. for pickups, or 4,350 lbs. for 
performance pickups) to the vehicle, essentially making the vehicle heavier. 

 
119 Separate technology classes better account for performance diversity across the fleet. 
120 Note, for all vehicle classes, the low and high-speed acceleration targets use the same value.  See Chapter 2.2. 
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In addition, to maintain the capabilities of certain electrified vehicles, the analysis requires that 
those vehicles be capable of achieving the accelerations and speeds of certain standard driving 
cycles.  Autonomie uses the US06 “aggressive driving” cycle and the Urban Dynamometer 
Driving Schedule (UDDS) “city driving” cycle to ensure that core capabilities of BEVs and 
PHEVs, such as driving certain speeds and/or distances in electric-only mode, are maintained.  In 
addition to the four criteria discussed above, the following performance criteria are applied to 
these electrified vehicles: 

• Battery electric vehicles (BEV) are sized to be capable of completing the US06 
“aggressive driving” cycle. 

• Plug-in hybrid vehicles with 50-mile AER (PHEV50) are sized to be capable of 
completing the US06 “aggressive driving” cycle in electric-only mode. 

• Plug-in hybrid vehicles with 20-mile AER (PHEV20) are sized to be capable of 
completing the UDDS “city driving” cycle in electric-only (charge depleting) mode.121 

Together, these performance criteria are widely used by the automotive industry as metrics to 
quantify vehicle performance attributes that consumers observe and that are important for vehicle 
utility and customer satisfaction.122 

When fuel-saving technologies are applied that significantly affect vehicle performance, such as 
replacing a pickup truck’s V8 engine with a turbocharged V6 engine, Autonomie iteratively 
resizes the vehicle powertrain (engine, electric motors, and/or battery) such that the above 
performance criteria are maintained.  For example, if the aforementioned engine replacement 
causes an improvement in acceleration, the engine may be iteratively resized until vehicle 
acceleration performance is shifted back to the initial target time for that vehicle technology 
class.  For the low and high-speed acceleration criteria, engine resizing iterations continue until 
the acceleration time is within plus or minus 0.2 seconds of the target time,123,124 which 
reasonably balances the precision of engine resizing with the number of simulation iterations 
needed to achieve performance within the 0.2 second window, and the associated computer 
resources and time required to perform the iterative simulations. 

 
121 PHEV20s are blended-type plug-in hybrid vehicles, which are capable of completing the UDDS cycle in charge 
depleting mode without assistance from the engine.  However, under higher loads, this charge depleting mode may 
use supplemental power from the engine. 
122 Conlon, B., Blohm, T., Harpster, M., Holmes, A. et al., “The Next Generation “Voltec” Extended Range EV 
Propulsion System,” SAE Int. J. Alt. Power. 4(2):2015, doi:10.4271/2015-01-1152.  Kapadia, J., Kok, D., Jennings, 
M., Kuang, M., et al., "Powersplit or Parallel - Selecting the Right Hybrid Architecture," SAE Int. J. Alt. Power. 
6(1):2017, doi:10.4271/2017-01-1154.  Islam, E., A. Moawad, N. Kim, and A. Rousseau, 2018a, An Extensive 
Study on Vehicle Sizing, Energy Consumption and Cost of Advance Vehicle Technologies, Report No. ANL/ESD-
17/17, Argonne National Laboratory, Lemont, Ill., Oct 2018. 
123 For example, if a vehicle has a target 0-60 acceleration time of 6 seconds, a time within 5.8-6.2 seconds is 
accepted. 
124 With the exception of a few performance electrified vehicle types which, based on observations in the 
marketplace, use different criteria to maintain vehicle performance without battery assist.  Performance PHEV20, 
and Performance PHEV50 resize to the performance of a conventional six-speed automatic (CONV 6AU).  
Performance SHEVP2, engines/electric-motors are resized if the 0-60 acceleration time is worse than the target, but 
not if the acceleration time is better than the target time. 
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The Autonomie simulation resizes until the least capable of the performance criteria is met, to 
ensure the pathways do not degrade any of the vehicle performance metrics.  It is possible that as 
one criterion target is reached after the application of a specific technology or technology 
package, other criteria may be better than their target values.  For example, if the engine size is 
decreased until the low-speed acceleration target is just met, it is possible that the resulting 
engine size would cause high speed acceleration performance to be better than its target.  Or, a 
PHEV50 may have an electric motor and battery appropriately sized to operate in all electric 
mode through the repeated accelerations and high speeds in the US06 driving cycle, but the 
resulting motor and battery size enables the PHEV50 to slightly over-perform in 0-60 
acceleration, which utilizes the power of both the electric motor and combustion engine. 

To address product complexity and economies of scale, we limit engine resizing to specific 
incremental technology changes that would typically be associated with a major vehicle or 
engine redesign.  Manufacturers have repeatedly and consistently told NHTSA that the high 
costs for redesign and the increased manufacturing complexity that would result from resizing 
engines for small technology changes preclude them from doing so.  It would be unreasonable 
and unaffordable to resize powertrains for every unique combination of technologies.  Engine 
displacements are further described in Chapter 3.1. 

To address this issue, the Autonomie simulations allow engine resizing when mass reduction is 
applied at several different levels,125 and when one powertrain architecture is replaced with 
another architecture during a redesign cycle.126  At its refresh cycle, a vehicle may also inherit an 
already resized powertrain from another vehicle within the same engine-sharing platform.  The 
analysis does not resize the engine in response to adding technologies that have smaller effects 
on vehicle performance.  For instance, if MR1 is applied to a vehicle, causing the 0-60 mile per 
hour time to improve slightly, the model would not resize the engine.  This criterion better 
reflects what is feasible for manufacturers to do.127 

Because the regulatory analysis compares differences in impacts among the alternatives, we 
believe that having consistent performance across the alternatives is an important aspect of 
performance neutrality.  If the vehicle fleet had performance gains which varied significantly 
depending on the alternative, performance differences would impact the comparability of the 
simulations. 

In order to confirm that there are minimal differences in performance metrics across regulatory 
alternatives, we analyzed the sales-weighted average 0-60 mph acceleration performance of the 
entire simulated vehicle fleet for MYs 2020 and 2029.  The analysis compared performance 
under the baseline standards and Preferred Alternative.  Two inputs are required for this 

 
125 For more detail on glider mass calculations, see Chapter 3.4. 
126 Some engine and accessory technologies may be added to an engine without an engine architecture change.  For 
instance, manufacturers may adapt, but not replace engine architectures to include cylinder deactivation, VVL, belt-
integrated starter generators, and other basic technologies.  However, switching from a naturally aspirated engine to 
a turbo-downsized engine is an engine architecture change typically associated with a major redesign and radical 
change in engine displacement. 
127 For instance, a vehicle would not get a modestly bigger engine if the vehicle comes with floor mats, nor would 
the vehicle gets a modestly smaller engine without floor mats.  This example demonstrates small levels of mass 
reduction.  If manufacturers resized engines for small changes, manufacturers would have dramatically more part 
complexity, potentially losing economies of scale. 
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performance neutrality analysis.  The first input required is the CAFE Model’s Vehicles Report, 
which lists the MY 2020 sales volumes and the resulting “tech key” for every vehicle in the 
analysis fleet for every simulated model year.  The tech key is a string of characters that 
summarizes the technologies applied to that vehicle, as deemed necessary by the CAFE Model 
simulations of manufacturers’ responses to different potential standards.  The second input is the 
full set of Autonomie simulation databases, which include the 0-60 and 50-80 mph acceleration 
times related to every tech key.   

Using a spreadsheet program, each vehicle in the Vehicles Report is matched, via tech key, with 
the appropriate acceleration time in the Autonomie simulation databases.  This process 
effectively assigned a 0-60 mph time to every vehicle in the fleet for four scenarios: 1) MY 2020 
under the no action scenario (i.e., No-Action Alternative), 2) MY 2020 under the Preferred 
Alternative, 3) MY 2029 under the no action scenario, and 4) MY 2029 under the Preferred 
Alternative.128  Using the MY 2020 sales volumes as weights, we calculated the weighted 
average 0-60 mph acceleration time for the analysis fleet in each of the four above scenarios.  
This analysis identified that the analysis fleet under no action standards in MY 2029 had a 
0.0.0615 percent better 0-60 mph acceleration time than under the Preferred Alternative, 
indicating there is minimal difference in performance between the alternatives.  Figure 2-5 shows 
the spread of 0-60 mph acceleration times between the No-Action Alternative and Preferred 
Alternative.  This assessment shows that for this analysis, the performance difference is minimal 
across regulatory alternatives and across the simulated model years, which allows for fair, direct 
comparison among the alternatives. 

  

 
128 The baseline reference for both the No-Action Alternative and the Preferred Alternative is MY 2020 fleet 
performance.  
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Figure 2-5 – 0-60 mph Acceleration Times for Analysis Fleet, No-Action Alternative Standard and Preferred 
Alternative Standard129 

As we attempt to minimize the performance shift occurring over the relevant analysis years, it 
must be noted that a small increase in performance is expected and would be reasonable.  This 
increase is attributed to the analysis recognizing the practical constraints on the number of 
unique engine displacements manufacturers can implement, and therefore not resizing 
powertrains for every individual technology and every combination of technologies when the 
performance impacts are small.  Perfectly equal performance with zero percent change would not 
be achievable while accounting for these real-world resizing constraints.  The performance 
analysis in the 2011 NAS report shared a similar view on performance changes, stating that 

 
129 The sales weighted average in MY 2020 is 7.36 seconds.  The change in sales weighted average performance for 
the No-Action Alternative and Preferred Alternative are 7.09 seconds and 7.10 seconds, respectively, in 2029.  This 
equates to 0.0615 percent difference in performance between the two alternatives.  In the 2020 final rule, this 
difference was 4 percent, which demonstrates that successive Autonomie analyses are improving performance 
neutrality across alternatives. 
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“truly equal performance involves nearly equal values… within 5 percent.”130  We determined 
that the change in performance seen for this analysis is reasonable and is well within the 5 
percent bound discussed by the NAS in its 2011 report. 

2.4.6 Simulating the Built Vehicles on Test Cycles  

After Autonomie builds vehicle models for every combination of technologies and vehicle 
classes represented in the analysis, Autonomie simulates the vehicles’ performance on test cycles 
to calculate the effectiveness improvement of adding fuel-economy-improving technologies to 
the vehicle.  Simulating vehicles’ performance using tests and procedures specified by federal 
law and regulations minimizes the potential variation in determining technology effectiveness. 

Autonomie simulates vehicles in a very similar process as the test procedures and energy 
consumption calculations that manufacturers must use for CAFE compliance.131,132,133  Argonne 
simulates each vehicle model across several test cycles to evaluate technology effectiveness.  For 
vehicles with conventional powertrains and micro hybrids, Autonomie simulates the vehicles per 
EPA 2-cycle test procedures and guidelines.134  For mild and full hybrid electric vehicles and 
FCVs, Autonomie simulates the vehicles using the same EPA 2-cycle test procedure and 
guidelines, and the drive cycles repeat until the initial and final state of charge (SOC) are within 
a SAE J1711 tolerance.  For PHEVs, Autonomie simulates vehicles per similar procedures and 
guidelines as prescribed in SAE J1711.135  For BEVs Autonomie simulates vehicles per similar 
procedures and guidelines as prescribed in SAE J1634.136 

2.4.7 Implementation in the CAFE Model   

While the Autonomie model produces a large amount of information about each simulation 
run—for a single technology combination, in a single technology class—the CAFE Model only 
uses two elements of that information: battery costs and fuel consumption on the city and 
highway cycles.  We combine the fuel economy information from the two cycles to produce a 
composite fuel economy for each vehicle, and on each fuel for dual fuel vehicles.  Plug-in 
hybrids are the only dual-fuel vehicles in the Autonomie simulation, and require efficiency 
estimates for operation on both gasoline and electricity, as well as an estimate of the utility 
factor, or the number of miles driven on each fuel.  The fuel economy information for each 
technology combination, for each technology class, is converted into a single number for use in 
the CAFE Model.  

 
130 National Research Council.  2011.  Assessment of Fuel Economy Technologies for Light-Duty Vehicles.  
Washington, DC – The National Academies Press, at 62.  http://nap.edu/12924.  (Accessed: February 15, 2022). 
131 EPA, “How Vehicles are Tested.”  https://www.fueleconomy.gov/feg/how_tested.shtml.  (Accessed: February 
15, 2022). 
132 Autonomie model documentation, Chapter 6 Test Procedures and Energy Consumption Calculations. 
133 EPA Guidance Letter.  “EPA Test Procedures for Electric Vehicles and Plug-in Hybrids.”  Nov. 14, 2017.  
https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf. 
(Accessed: February 15, 2022).   
134 40 CFR part 600. 
135 PHEV testing is broken into several phases based on SAE J1711: charge-sustaining on the city cycle, charge-
sustaining on the HWFET cycle, charge-depleting on the city and HWFET cycles.   
136 SAE J1634.  “Battery Electric Vehicle Energy Consumption and Range Test Procedure.”  July 12, 2017.   
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As described in greater detail below, each Autonomie simulation record represents a unique 
combination of technologies, and we create a technology “key” or technology state vector that 
describes all the technology content associated with a record.  The 2-cycle fuel economy of each 
combination is converted into fuel consumption (gallons per mile) and then normalized relative 
to the starting point for the simulations.  In each technology class, the combination with the 
lowest technology content is the VVT (only) engine, with a 5-speed transmission, no 
electrification, and no body-level improvements (mass reduction, aerodynamic improvements, or 
low rolling resistance tires).  This is the reference point (for each technology class) for all of the 
effectiveness estimates in the CAFE Model.  The improvement factors that the model uses are a 
given combination’s fuel consumption improvement relative to the reference vehicle in its 
technology class.  

For the majority of the technologies analyzed within the CAFE Model, the fuel economy 
improvements are derived from the database of Autonomie’s detailed full-vehicle modeling and 
simulation results.  In addition to the technologies found in the Autonomie simulation database, 
the CAFE modeling system also incorporates a handful of technologies that are included for 
CAFE modeling but are not explicitly simulated in Autonomie.  The total effectiveness of these 
technologies either could not be captured on the 2-cycle test, or there are no robust data usable as 
an input to the full-vehicle modeling and simulation, like with emerging technologies such as 
ADEAC.  These additional technologies are discussed further in Chapter 3’s individual 
technologies sections.  For calculating fuel economy improvements attributable to these 
additional technologies, the model uses defined fuel consumption improvement factors that are 
constant across all technology combinations in the database and scale multiplicatively when 
applied together.  The Autonomie-simulated and additional technologies are then externally 
combined, forming a single dataset of simulation results (referred to as the vehicle simulation 
database, or simply, database), which may then be utilized by the CAFE modeling system.  

To incorporate the results of the combined database of Autonomie-simulated and additional 
technologies, while still preserving the basic structure of the CAFE Model’s technology 
subsystem, it is necessary to translate the points in this database into corresponding locations 
defined by the technology pathways.  By recognizing that most of the pathways are unrelated and 
are only logically linked to designate the direction in which technologies are allowed to progress, 
it is possible to condense the paths into a smaller number of groups based on the specific 
technology.  In addition, to allow for technologies present on the Basic Engine and Dynamic 
Road Load (DLR, i.e., MASS, AERO, and ROLL) paths to be evaluated and applied in any 
given combination, we established a unique group for each of these technologies. 

As such, the following technology groups are defined within the modeling system: engine cam 
configuration (CONFIG), VVT engine technology (VVT), VVL engine technology (VVL), 
SGDI engine technology (SGDI), DEAC engine technology (DEAC), non-basic engine 
technologies (ADVENG), transmission technologies (TRANS), electrification and hybridization 
(ELEC), low rolling resistance tires (ROLL), aerodynamic improvements (AERO), mass 
reduction levels (MR), EFR engine technology (EFR), electric accessory improvement 
technologies (ELECACC), LDB technology (LDB), and SAX technology (SAX).  The 
combination of technologies along each of these groups forms a unique technology state vector 
and defines a unique technology combination that corresponds to a single point in the database 
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for each technology class evaluated within the modeling system.  This technology state vector is 
commonly referred to as a ‘technology key’ or ‘tech key’ in this analysis. 

As an example, a technology state vector describing a vehicle with a SOHC engine, variable 
VVT (only), a AT6, a belt-integrated starter generator, rolling resistance (level 1), aerodynamic 
improvements (level 2), mass reduction (level 1), electric power steering, and low drag brakes, is 
specified as “SOHC; VVT; ; ; ; ; AT6; BISG; ROLL10; [aero drag reduction, level 4] AERO20; 
MR1; ; EPS; LDB ; .”137  By assigning each unique technology combination a tech key such as 
the one in the example, the CAFE Model can identify the initial technology state of each vehicle 
in the analysis fleet and map it to a point (unique technology combination) in the database. 

Once a vehicle is assigned (or mapped) to an appropriate technology state vector (from one of 
approximately three million unique combinations, which are defined in the vehicle simulation 
database as CONFIG; VVT; VVL; SGDI; DEAC; ADVENG; TRANS; ELEC; ROLL; AERO; 
MR; EFR; ELECACC; LDB; SAX), adding a new technology to the vehicle simply represents 
progress from a previous state vector to a new state vector.  The previous state vector simply 
refers to the technologies that are currently in use on a vehicle.  The new state vector, however, 
is computed within the modeling system by adding a new technology to the combination of 
technologies represented by the previous state vector, while simultaneously removing any other 
technologies that are superseded by the newly added one. 

For example, consider the vehicle with the state vector described as: SOHC; VVT; AT6; BISG; 
ROLL10; AERO20; MR1; EPS; LDB.  Assume the system is evaluating PHEV20 as a candidate 
technology for application on this vehicle.  The new tech state vector for this vehicle is computed 
by removing SOHC, VVT, AT6, and BISG technologies from the previous state vector,138 while 
also adding PHEV20, resulting in the following: PHEV20; ROLL10; AERO20; MR1; EPS; 
LDB. 

From here, it is relatively simple to obtain a fuel economy improvement factor for any new 
combination of technologies and apply that factor to the fuel economy of a vehicle in the analysis 
fleet.  The formula for calculating a vehicle’s fuel economy after application of each successive 
technology represented within the database is defined as the ratio of the fuel economy 
improvement factor associated with the technology state vector before application of a candidate 
technology and after the application of a candidate technology.139  The resulting improvement is 
applied to the original compliance fuel economy value for a discrete vehicle in the analysis fleet, 
as discussed previously in this chapter. 

 

 
137 In the example technology state vector, the series of semicolons between VVT and AT6 correspond to the engine 
technologies which are not included as part of the combination, while the gap between MR1 and EPS corresponds to 
EFR and the omitted technology after LDB is SAX.  The extra semicolons for omitted technologies are preserved in 
this example for clarity and emphasis, and will not be included in future examples. 
138 For more discussion of how the CAFE Model handles technology supersession, see S4.5 of the CAFE Model 
Documentation. 
139 For more discussion of how the CAFE Model calculates a vehicle’s fuel economy where the vehicle switches 
from one type of fuel to another, for example, from gasoline operation to diesel operation or from gasoline operation 
to plug-in hybrid/electric vehicle operation, see S4.6 of the CAFE Model Documentation. 
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2.4.8 Compliance and Real-World Fuel Economy “Gap” 

The statutorily mandated vehicle fuel economy test cycles for NHTSA CAFE and EPA GHG 
program compliance consist of two separate test cycles, the “city” and “highway” cycles, 
commonly referred to as the 2-cycle tests.  In 2008, EPA introduced three additional test cycles 
to bring “label” values from two-cycle testing in line with efficiency values consumers were 
experiencing in the real world, particularly for hybrids.  This is known as 5-cycle testing. 

Generally, the revised 5-cycle testing values have proven to be a good approximation of what 
consumers will experience during vehicle operation, significantly better than the previous 2-
cycle test values. 

The CAFE regulatory analysis utilizes “on-road” fuel economy values, which are the ratio of 5-
cycle to 2-cycle testing values, i.e., the CAFE compliance values to the “label” values. 

For this analysis, DOT applied a certain percent difference between the 2-cycle test and 5-cycle 
test to represent the gap in compliance fuel economy and real-world fuel economy.140  This 
percent difference, or “gap”, is calculated as shown in Equation 2-8. 

2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 5𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ 100 = "𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔" (%) 

Equation 2-8 – Percent Difference Between 2-cycle and 5-cycle Tests 

Table 2-20 below shows a summary of the inputs used for the fuel economy gap for different 
fuel types.141  The underlying data for this was from EPA test data.142  These data are average 
fleet-wide values; in reality the true fuel economy gap will be lower for some vehicles and higher 
for other vehicles.  

Table 2-20 – 2-Cycle to 5-Cycle "Gap" Used for this Analysis, by Fuel Type 

 Cars Vans/SUVs Pickups 
Gasoline 24% 24% 24% 
Ethanol-85 24% 24% 24% 
Diesel 24% 24% 24% 
Electricity 29% 29% 29% 
Hydrogen 29% 29% 29% 
Compressed Natural Gas 24% 24% 24% 

2.5 Defining Technology Adoption in the Rulemaking Timeframe 

As discussed in Chapter 2.2, starting with a fixed analysis fleet, the CAFE Model estimates ways 
each manufacturer could potentially apply specific fuel-saving technologies to specific vehicle 
model/configurations in response to, among other things (such as fuel prices), CAFE standards, 

 
140 For more details see the CAFE Model Documentation. 
141 This input is specific in the CAFE Model Parameters file. 
142 Download Fuel Economy Data. EPA. https://www.fueleconomy.gov/feg/download.shtml.  (Accessed: February 
15, 2022). 



  161 

CO2 standards, commitments some manufacturers have made to CARB’s Framework 
Agreements, and ZEV mandates imposed by California and several other states.  The CAFE 
Model follows a year-by-year approach to simulating manufacturers’ potential decisions to apply 
technology, accounting for multiyear planning within the context of estimated schedules for 
future vehicle redesigns and refreshes during which significant technology changes may most 
practicably be implemented. 

The modeled technology adoption for each manufacturer under each regulatory alternative 
depends on this representation of multiyear planning, and on a range of other factors represented 
by other model characteristics and inputs, such as the logical progression of technologies defined 
by the model’s technology pathways; the technologies already present in the analysis fleet; 
inputs directing the model to “skip” specific technologies for specific vehicle 
model/configurations in the analysis fleet (e.g., because SAX cannot be applied to 2-wheel-drive 
vehicles, and because manufacturers already heavily invested in engine turbocharging and 
downsizing are unlikely to abandon this approach in favor of using high compression ratios); 
inputs defining the sharing of engines, transmissions, and vehicle platforms in the analysis fleet; 
the model’s logical approach to preserving this sharing; inputs defining each regulatory 
alternative’s specific requirements; inputs defining expected future fuel prices, annual mileage 
accumulation, and valuation of avoided fuel consumption; and inputs defining the estimated 
efficacy and future cost (accounting for projected future “learning” effects) of included 
technologies; inputs controlling the maximum pace the simulation is to “phase in” each 
technology; and inputs further defining the availability of each technology to specific technology 
classes. 

Two of these inputs—the “phase-in cap” and the “phase-in start year”—apply to the 
manufacturer’s entire estimated production and, for each technology, define a share of 
production in each model year that, once exceeded, will stop the model from further applying 
that technology to that manufacturer’s fleet in that model year.  The influence of these inputs 
varies with regulatory stringency and other model inputs.  For example, setting the inputs to 
allow immediate 100 percent penetration of a technology will not guarantee any application of 
the technology if stringency increases are low and the technology is not at all cost effective.  
Also, even if these are set to allow only very slow adoption of a technology, other model aspects 
and inputs may nevertheless force more rapid application than these inputs, alone, would suggest 
(e.g., because an engine technology propagates quickly due to sharing across multiple vehicles, 
or because BEV application must increase quickly in response to ZEV requirements).  For 
today’s analysis, nearly all of these inputs are set at levels that do not limit the simulation at all.   

As discussed below in Chapter 3.1, for the most advanced engines (ADEAC, variable 
compression ratio, variable turbocharger geometry, and turbocharging with cylinder 
deactivation), DOT has specified phase-in caps and phase-in start years that limit the pace at 
which the analysis shows the technology being adopted in the rulemaking timeframe.  For 
example, today’s analysis applies a 34 percent phase-in cap and MY 2019 phase-in start year for 
ADEAC, meaning that in MY 2021 (using a MY 2020 fleet, the analysis begins simulating 
further technology application in MY 2021), the model will stop adding ADEAC to a 
manufacturer’s MY 2021 fleet once ADEAC reaches more than 68 percent penetration, because 
34% x (2021 – 2019) = 34% x 2 = 68%.   
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As discussed in Chapter 3.3, today’s analysis also applies phase-in caps and corresponding start 
years to prevent the simulation from showing unlikely rates of applying battery-electric vehicles 
(BEVs), such as showing that a manufacturer producing very few BEVs in MY 2020 could 
plausibly replace every product with a 300- or 400-mile BEV by MY 2025..  Also, as discussed 
in Chapter 3.4, today’s analysis applies phase-in caps and corresponding start years intended to 
ensure that the simulation’s plausible application of the highest included levels of mass reduction 
(20 and 28.2 percent reductions of vehicle “glider” weight) do not, for example, outpace 
plausible supply of raw materials and development of entirely new manufacturing facilities. 

These model logical structures and inputs act together to produce estimates of ways each 
manufacturer could potentially shift to new fuel-saving technologies over time, reflecting some 
measure of protection against rates of change not reflected in, for example, technology cost 
inputs.  This does not mean that every modeled solution would necessarily be economically 
practicable.  Using technology adoption features like phase-in caps and phase-in start years is 
one mechanism that can be used so that the analysis better represents the potential costs and 
benefits of technology application in the rulemaking timeframe. 

2.6 Technology Costs  

We estimate present and future costs for fuel-saving technologies taking into consideration the 
type of vehicle, or type of engine if technology costs vary by application.  These cost estimates 
are based on three main inputs.  First, direct manufacturing costs (DMCs), or the component and 
labor costs of producing and assembling the physical parts and systems, are estimated assuming 
high volume production.  DMCs generally do not include the indirect costs of tools, capital 
equipment, financing costs, engineering, sales, administrative support or return on investment.  
We account for these indirect costs via a scalar markup of direct manufacturing costs (the retail 
price equivalent, or RPE).  Finally, costs for technologies may change over time as industry 
streamlines design and manufacturing processes.  To reflect this, we estimate potential cost 
improvements with learning effects (LE).  The retail cost of equipment in any future year is 
estimated to be equal to the product of the DMC, RPE, and LE.  Considering the retail cost of 
equipment, instead of merely direct manufacturing costs, is important to account for the real-
world price effects of a technology, as well as market realities. 

2.6.1 Direct Manufacturing Costs  

Direct manufacturing costs (DMCs) are the component and assembly costs of the physical parts 
and systems that make up a complete vehicle.  The analysis uses agency-sponsored tear-down 
studies of vehicles and parts to estimate the DMCs of individual technologies, in addition to 
independent tear-down studies, other publications, and confidential business information.  In the 
simplest cases, the agency-sponsored studies produced results that confirmed third-party industry 
estimates and aligned with confidential information provided by manufacturers and suppliers.  In 
cases with a large difference between the tear-down study results and credible independent 
sources, we scrutinized the study assumptions, and sometimes revised or updated the analysis 
accordingly. 

Due to the variety of technologies and their applications, and the cost and time required to 
conduct detailed tear-down analyses, the agency did not sponsor teardown studies for every 
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technology.  In addition, the analysis includes some fuel-saving technologies that are pre-
production or sold in very small pilot volumes.  For those technologies, we could not conduct a 
tear-down study to assess costs because the product is not yet in the marketplace for evaluation.  
In these cases, we rely upon third-party estimates and confidential information from suppliers 
and manufacturers; however, there are some common pitfalls with relying on confidential 
business information to estimate costs.  The agency and the source may have had incongruent or 
incompatible definitions of “baseline.”  The source may have provided DMCs at a date many 
years in the future, and assumed very high production volumes, important caveats to consider for 
agency analysis.  In addition, a source may provide incomplete and/or misleading information.  
In other cases, intellectual property considerations and strategic business partnerships may have 
contributed to a manufacturer’s cost information and could be difficult to account for in the 
CAFE Model as not all manufacturers may have access to proprietary technologies at stated 
costs.  We carefully evaluate new information in light of these common pitfalls, especially 
regarding emerging technologies.  

While costs for fuel-saving technologies reflect the best estimates available today, technology 
cost estimates will likely change in the future as technologies are deployed and as production is 
expanded.  For emerging technologies, we use the best information available at the time of the 
analysis and will continue to update cost assumptions for any future analysis.  Chapter 3 
discusses each category of technologies (e.g., engines, transmissions, electrification) and the cost 
estimates we use for this analysis. 

2.6.2 Indirect Costs (Retail Price Equivalent) 

As discussed above, direct costs represent the cost associated with acquiring raw materials, 
fabricating parts, and assembling vehicles with the various technologies manufacturers are 
expected to use to meet future CAFE standards.  They include materials, labor, and variable 
energy costs required to produce and assemble the vehicle.  However, they do not include 
overhead costs required to develop and produce the vehicle, costs incurred by manufacturers or 
dealers to sell vehicles, or the profit manufacturers and dealers make from their investments.  All 
of these items contribute to the price consumers ultimately pay for the vehicle.  These 
components of retail prices are illustrated in Table 2-21.  

Table 2-21 – Retail Price Components 

Direct Costs 

  Manufacturing Cost Cost of materials, labor, and variable energy needed 
for production 

Indirect Costs 
Production Overhead  

            Warranty Cost of providing product warranty 
            Research and Development Cost of developing and engineering the product 

            Depreciation and amortization Depreciation and amortization of manufacturing 
facilities and equipment 

            Maintenance, repair, operations Cost of maintaining and operating manufacturing 
facilities and equipment 

Corporate Overhead  
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            General and Administrative   Salaries of nonmanufacturing labor, operations of 
corporate offices, etc. 

            Retirement Cost of pensions for nonmanufacturing labor 
            Health Care Cost of health care for nonmanufacturing labor 
Selling Costs  

            Transportation Cost of transporting manufactured goods 

            Marketing Manufacturer costs of advertising manufactured 
goods 

Dealer Costs  

             Dealer selling expense Dealer selling and advertising expense 
             Dealer profit Net Income to dealers from sales of new vehicles 

Net income Net income to manufacturers from production and 
sales of new vehicles 

To estimate the impact of higher vehicle prices on consumers, we must consider both direct and 
indirect costs.  To estimate total consumer costs, we multiply direct manufacturing costs by an 
indirect cost factor to represent the average price for fuel-saving technologies at retail. 

Historically, the method most commonly used to estimate indirect costs of producing a motor 
vehicle has been the RPE.  The RPE markup factor is based on an examination of historical 
financial data contained in 10-K reports filed by manufacturers with the Securities and Exchange 
Commission.  It represents the ratio between the retail price of motor vehicles and the direct 
costs of all activities that manufacturers engage in. 

Figure 2-6 indicates that for more than three decades, the retail price of motor vehicles has been, 
on average, roughly 50 percent above the direct cost expenditures of manufacturers.  This ratio 
has been remarkably consistent, averaging roughly 1.5 with minor variations from year to year 
over this period.  At no point has the RPE markup exceeded 1.6 or fallen below 1.4.143  During 
this time frame, the average annual increase in real direct costs was 2.5 percent, and the average 
annual increase in real indirect costs was also 2.5 percent.  Figure 2-6 illustrates the historical 
relationship between retail prices and direct manufacturing costs.144 

An RPE of 1.5 does not imply that manufacturers automatically mark up each vehicle by exactly 
50 percent.  Rather, it means that, over time, the competitive marketplace has resulted in pricing 
structures that average out to this relationship across the entire industry.  Prices for any 
individual model may be marked up at a higher or lower rate depending on market demand.  The 
consumer who buys a popular vehicle may, in effect, subsidize the installation of a new 
technology in a less marketable vehicle.  But, on average, over time and across the vehicle fleet, 

 
143 Based on data from 1972-1997 and 2007.  Data were not available for intervening years, but results for 2007 
seem to indicate no significant change in the historical trend.  
144 Rogozhin, A., Gallaher, M., & McManus, W., 2009, Automobile Industry Retail Price Equivalent and Indirect 
Cost Multipliers.  Report by RTI International to Office of Transportation Air Quality.  U.S. Environmental 
Protection Agency, RTI Project Number 0211577.002.004, February, Research Triangle Park, N.C. 
Spinney, B.C., Faigin, B., Bowie, N., & St. Kratzke, 1999, Advanced Air Bag Systems Cost, Weight, and Lead 
Time analysis Summary Report, Contract NO. DTNH22-96-0-12003, Task Orders – 001, 003, and 005.  
Washington, D.C., U.S. Department of Transportation. 
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the retail price paid by consumers has risen by about $1.50 for each dollar of direct costs 
incurred by manufacturers. 

 

Figure 2-6 – Historical Data for Retail Price Equivalent (RPE), 1972-1997 and 2007 

It is also important to note that direct costs associated with any specific technology will change 
over time as some combination of learning and resource price changes occurs.  Resource costs, 
such as the price of steel, can fluctuate over time and can experience real long-term trends in 
either direction, depending on supply and demand.  However, the normal learning process 
generally reduces direct production costs as manufacturers refine production techniques and seek 
out less costly parts and materials for increasing production volumes.  By contrast, this learning 
process does not generally influence indirect costs.  The implied RPE for any given technology 
would thus be expected to grow over time as direct costs decline relative to indirect costs.  The 
RPE for any given year is based on direct costs of technologies at different stages in their 
learning cycles, and that may have different implied RPEs than they did in previous years.  The 
RPE averages 1.5 across the lifetime of technologies of all ages, with a lower average in earlier 
years of a technology’s life, and, because of learning effects on direct costs, a higher average in 
later years. 

NHTSA has used RPE in all of the safety and most previous CAFE rulemakings to estimate 
costs.  In 2011 the National Academy of Sciences recommended RPEs of 1.5 for suppliers and 
2.0 for in-house production be used to estimate total costs.145  The former Alliance of 
Automobile Manufacturers also advocated these values as appropriate markup factors for 
estimating costs of technology changes.146  In their 2015 report, the National Academy of 

 
145 Effectiveness and Impact of Corporate Average Fuel Economy Standards, Washington, D.C. - The National 
Academies Press; NRC, 2011. 
146 Communication from Chris Nevers (Alliance) to Christopher Lieske (EPA) and James Tamm (NHTSA) VIA 
Regulations.gov http://www.regulations.gov Docket ID Nos. NHTSA-2018-0067; EPA-HQ-OAR-2018-0283, p. 
143.  

http://www.regulations.gov/
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Sciences recommend 1.5 as an overall RPE markup.147  An RPE of 2.0 has also been adopted by 
a coalition of environmental and research groups (Northeast States Center for a Clean Air Future 
[NESCCAF], ICCT, Southwest Research Institute, and TIAX-LLC) in a report on reducing 
heavy truck emissions, and 2.0 is recommended by the U.S. Department of Energy for estimating 
the cost of hybrid-electric and automotive fuel cell costs (see Vyas et al. (2000) in Table 2-22 
below).  Table 2-22 below also lists other estimates of the RPE.  Note that all RPE estimates vary 
between 1.4 and 2.0, with most in the 1.4 to 1.7 range. 

Table 2-22 – Alternate Estimates of the RPE148 

Author and Year Value, Comments 

Jack Faucett Associates for EPA, 1985 1.26 initial value, later corrected to 1.7+ by Sierra 
research 

Vyas et al., 2000 1.5 for outsourced, 2.0 for OEM, electric, and hybrid 
vehicles 

NRC, 2002 1.4 (corrected to > by Duleep) 
McKinsey and Company, 2003 1.7 based on European study 

CARB, 2004 1.4 (derived using the Jack Faucett Associates initial 1.26 
value, not the corrected 1.7+ value) 

Sierra Research for American Automobile 
Association (AAA), 2007 2.0 or >, based on Chrysler data 

Duleep, 2008 1.4, 1.56, 1.7 based on integration complexity 
NRC, NAS 2011 1.5 for Tier 1 supplier, 2.0 for OEM 
NRC, NAS 2015 1.5 for OEM 

The RPE has thus enjoyed widespread use and acceptance by a variety of governmental, 
academic, and industry organizations. 

As in previous CAFE and safety rulemaking analyses, we relied on the RPE to account for 
indirect manufacturing costs.  The RPE accounts for indirect costs like engineering, sales, and 

 
147 Assessment of Fuel Economy Technologies for Light Duty Vehicles.  Washington, D.C. - The National 
Academies Press; Cost, Effectiveness, and Deployment of Fuel Economy Technologies in Light Duty Vehicles.  
Washington, D.C. – The National Academies Press, 2015. 
148 Duleep, K.G. “2008 Analysis of Technology Cost and Retail Price.”  Presentation to Committee on Assessment 
of Technologies for Improving Light Duty Vehicle Fuel Economy, January 25, Detroit, MI.; Jack Faucett 
Associates, September 4, 1985.  Update of EPA’s Motor Vehicle Emission Control Equipment Retail Price 
Equivalent (RPE) Calculation Formula.  Chevy Chase, MD - Jack Faucett Associates; McKinsey & Company, 
October 2003.  Preface to the Auto Sector Cases.  New Horizons - Multinational Company Investment in Developing 
Economies, San Francisco, CA.; NRC (National Research Council), 2002.  Effectiveness and Impact of Corporate 
Average Fuel Economy Standards, Washington, D.C. - The National Academies Press; NRC, 2011.  Assessment of 
Fuel Economy Technologies for Light Duty Vehicles.  Washington, D.C. - The National Academies Press; Cost, 
Effectiveness, and Deployment of Fuel Economy Technologies in Light Duty Vehicles.  Washington, D.C. – The 
National Academies Press, 2015; Sierra Research, Inc., November 21, 2007, Study of Industry-Average Mark-Up 
Factors used to Estimate Changes in Retail Price Equivalent (RPE) for Automotive Fuel Economy and Emissions 
Control Systems, Sacramento, CA - Sierra Research, Inc.; Vyas, A. Santini, D., & Cuenca, R. 2000.  Comparison of 
Indirect Cost Multipliers for Vehicle Manufacturing.  Center for Transportation Research, Argonne National 
Laboratory, April.  Argonne, Ill. 
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administrative support, as well as other overhead costs, business expenses, warranty costs, and 
return on capital considerations. 

In past rulemakings a second type of indirect cost multiplier has also been examined.  Known as 
the “Indirect Cost Multiplier” (ICM) approach.  ICMs were first examined alongside the RPE 
approach in the 2010 rulemaking regarding standards for MYs 2012-2016.  Both methods have 
been examined in subsequent rulemakings. 

Consistent with the 2020 final rule, we continue to employ the RPE approach as a cost multiplier 
for this analysis.  A detailed discussion of indirect cost methods and the basis for our use of the 
RPE to reflect these costs is available in the FRIA for the 2020 SAFE rule.149 

2.6.3 Stranded Capital Costs  

The idea behind stranded capital is that manufacturers amortize research, development, and 
tooling expenses over many years, especially for engines and transmissions.  The traditional 
production life-cycles for transmissions and engines have been a decade or longer.  If a 
manufacturer launches or updates a product with fuel-saving technology, and then later replaces 
that technology with an unrelated or different fuel-saving technology before the equipment and 
research and development investments have been fully paid off, there will be unrecouped, or 
stranded, capital costs.  Quantifying stranded capital costs accounts for such lost investments.  

As we observed previously, manufacturers may be shifting their investment strategies in ways 
that may alter how stranded capital could be considered.  For example, some suppliers sell 
similar transmissions to multiple manufacturers.  Such arrangements allow manufacturers to 
share in capital expenditures or amortize expenses more quickly.  Manufacturers share parts on 
vehicles around the globe, achieving greater scale and greatly affecting tooling strategies and 
costs. 

As a proxy for stranded capital in recent CAFE analyses, the CAFE Model has accounted for 
platform and engine sharing and includes redesign and refresh cycles for significant and less 
significant vehicle updates.  This analysis continues to rely on the CAFE Model’s explicit year-
by-year accounting for estimated refresh and redesign cycles, and shared vehicle platforms and 
engines, to moderate the cadence of technology adoption and thereby limit the implied 
occurrence of stranded capital and the need to account for it explicitly.  In addition, confining 
some manufacturers to specific advanced technology pathways through technology adoption 
features acts as a proxy to indirectly account for stranded capital.  Adoption features specific to 
each technology, if applied on a manufacturer-by-manufacturer basis, are discussed in each 
technology section.  We will monitor these trends to assess the role of stranded capital moving 
forward. 

2.6.4 Cost Learning  

Manufacturers make improvements to production processes over time, which often result in 
lower costs.  “Cost learning” reflects the effect of experience and volume on the cost of 

 
149 Final Regulatory Impact Analysis, The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 
2021-2026 Passenger Cars and Light Trucks, USDOT, EPA, March, 2020, pp. 354-76. 
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production, which generally results in better utilization of resources, leading to higher and more 
efficient production.  As manufacturers gain experience through production, they refine 
production techniques, raw material and component sources, and assembly methods to maximize 
efficiency and reduce production costs.  Typically, a representation of this cost learning, or 
learning curves, reflects initial learning rates that are relatively high, followed by slower learning 
as additional improvements are made and production efficiency peaks.  This eventually produces 
an asymptotic shape to the learning curve, as small percent decreases are applied to gradually 
declining cost levels.  These learning curve estimates are applied to various technologies that are 
used to meet CAFE standards. 

We estimate cost learning by considering methods established by T.P. Wright and later expanded 
upon by J.R. Crawford.150,151  Wright, examining aircraft production, found that every doubling 
of cumulative production of airplanes resulted in decreasing labor hours at a fixed percentage.  
This fixed percentage is commonly referred to as the progress rate or progress ratio, where a 
lower rate implies faster learning as cumulative production increases.  J.R. Crawford expanded 
upon Wright’s learning curve theory to develop a single unit cost model, which estimates the 
cost of the nth unit produced given the following information is known: (1) cost to produce the 
first unit; (2) cumulative production of n units; and (3) the progress ratio. 

As pictured in Figure 2-7, Wright’s learning curve shows the first unit is produced at a cost of 
$1,000.  Initially cost per unit falls rapidly for each successive unit produced.  However, as 
production continues, cost falls more gradually at a decreasing rate.  For each doubling of 
cumulative production at any level, cost per unit declines 20 percent, so that 80 percent of cost is 
retained.  The CAFE Model uses the basic approach by Wright, where cost reduction is 
estimated by applying a fixed percentage to the projected cumulative production of a given fuel 
economy technology. 

 
150 Wright, T. P., Factors Affecting the Cost of Airplanes.  Journal of Aeronautical Sciences, Vol. 3 (1936), pp.124-
25.  Available at http://www.uvm.edu/pdodds/research/papers/others/1936/wright1936a.pdf.  (Accessed: February 
15, 2022).  
151 Crawford, J.R., Learning Curve, Ship Curve, Ratios, Related Data, Burbank, California-Lockheed Aircraft 
Corporation (1944). 
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Figure 2-7 – Wright’s Learning Curve (Progress Ratio = 0.8) 

The analysis accounts for learning effects with model year-based cost learning forecasts for each 
technology that reduces direct manufacturing costs over time.  We evaluate the historical use of 
technologies and review industry forecasts to estimate future volumes to develop the model year-
based technology cost learning curves. 

The following section discusses the development of model year-based cost learning forecasts, 
including how the approach has evolved from the 2012 rulemaking for MY 2017-2025 vehicles, 
and how we developed the progress ratios for different technologies considered in the analysis.  
Finally, we discuss how these learning effects are applied in the CAFE Model. 

2.6.4.1 Time versus Volume-Based Learning 

For the 2012 joint CAFE and GHG rulemaking, we developed learning curves as a function of 
vehicle model year.152  Although the concept of this methodology is derived from Wright’s 
cumulative production volume-based learning curve, its application for CAFE technologies was 
more of a function of time.  More than a dozen learning curve schedules were developed, varying 
between fast and slow learning, and assigned to each technology corresponding to its level of 
complexity and maturity.  The schedules were applied to the base year of direct manufacturing 
cost and incorporate a percentage of cost reduction by model year, declining at a decreasing rate 
through the technology’s production life.  Some newer technologies experience 20 percent cost 
reductions for introductory model years, while mature or less complex technologies experience 
0-3 percent cost reductions over a few years. 

 
152 CAFE 2012 Final Rule, NHTSA DOT, 77 Fed. Reg. 62624 (Oct. 15, 2012). 
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In their 2015 report to Congress, the National Academy of Sciences (NAS) recommended 
NHTSA “continue to conduct and review empirical evidence for the cost reductions that occur in 
the automobile industry with volume, especially for large-volume technologies that will be relied 
on to meet the CAFE/GHG standards.”153 

In response, we incorporated statically projected cumulative volume production data of fuel 
economy improving technologies, representing an improvement over the previously used time-
based method.  Dynamic projections of cumulative production are not feasible with current 
CAFE Model capabilities, so we developed one set of projected cumulative production data for 
most vehicle technologies for the purpose of determining cost impact.  We obtained historical 
cumulative production data for many technologies produced and/or sold in the United States to 
establish a starting point for learning schedules.  Groups of similar technologies or technologies 
of similar complexity may share identical learning schedules. 

The slope of the learning curve, which determines the rate at which cost reductions occur, has 
been estimated using research from an extensive literature review and automotive cost tear-down 
reports (see below).  The slope of the learning curve is derived from the progress ratio of 
manufacturing automotive and other mobile source technologies. 

2.6.4.2 Deriving the Progress Ratio Used in this Analysis 

Learning curves vary among different types of manufactured products.  Progress ratios can range 
from 70 to 100 percent, where 100 percent indicates no learning can be achieved.154  Learning 
effects tend to be greatest in operations where workers often touch the product, while effects are 
less substantial in operations consisting of more automated processes.  As automotive 
manufacturing plant processes become increasingly automated, a progress ratio towards the 
higher end would seem more suitable.  We incorporated findings from automotive cost-teardown 
studies with EPA’s 2015 literature review of learning-related studies to estimate a progress ratio 
used to determine learning schedules of fuel economy improving technologies. 

EPA’s literature review examined and summarized 20 studies related to learning in 
manufacturing industries and mobile source manufacturing.155  The studies focused on many 
industries, including motor vehicles, ships, aviation, semiconductors, and environmental energy.  
Based on several criteria, EPA selected five studies providing quantitative analysis from the 
mobile source sector (progress ratio estimates from each study are summarized in Table 2-23, 
below).  Further, those studies expand on Wright’s learning curve function by using cumulative 
output as a predictor variable, and unit cost as the response variable.  As a result, EPA 
determined a best estimate of 84 percent as the progress ratio in mobile source industries.  
However, of those five studies, EPA at the time placed less weight on the Epple et al. (1991) 

 
153 Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles, National Research 
Council of the National Academies (2015), available at https://www.nap.edu/resource/21744/deps_166210.pdf.  
(Accessed: February 15, 2022). 
154 Martin, J., “What is a Learning Curve?” Management and Accounting Web, University of South Florida, 
available at:  https://www.maaw.info/LearningCurveSummary.htm.  (Accessed: February 15, 2022). 
155 Cost Reduction through Learning in Manufacturing Industries and in the Manufacture of Mobile Sources, U.S. 
Environmental Protection Agency (2015).  Prepared by ICF International and available at 
https://19january2017snapshot.epa.gov/sites/production/files/2016-11/documents/420r16018.pdf.  (Accessed: 
February 15, 2022). 
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study, because of a disruption in learning due to incomplete knowledge transfer from the first 
shift to introduction of a second shift at a North American truck plant.  While learning may have 
decelerated immediately after adding a second shift, we note that unit costs continued to fall as 
the organization gained experience operating with both shifts.  We recognize that disruptions are 
an essential part of the learning process and should not, in and of themselves, be discredited.  For 
this reason, the analysis uses a re-estimated average progress ratio of 85 percent from those five 
studies (equally-weighted). 

Table 2-23 – Progress Ratios from EPA’s Literature Review 

Author (Publication Date) Industry Progress Ratio (Cumulative 
Output Approach) 

Argote et al. (1997)156 Trucks 85% 
Benkard (2000)157 Aircraft (commercial) 82% 
Epple et al. (1991)158 Trucks 90% 
Epple et al. (1996)159 Trucks 85% 
Levitt et al. (2013)160 Automobiles 82% 

In addition to EPA’s literature review, this progress ratio estimate was informed based on 
NHTSA’s findings from automotive cost-teardown studies.  We routinely evaluate costs of 
previously issued Federal Motor Vehicle Safety Standards (FMVSS) for new motor vehicles and 
equipment.  We also engage contractors to perform detailed engineering “tear-down” analyses 
for representative samples of vehicles, to estimate how much specific FMVSS add to the weight 
and retail price of a vehicle.  As part of the effort, the agency examines cost and production 
volume for automotive safety technologies.  In particular, we estimated costs from multiple cost 
tear-down studies for technologies with actual production data from the Cost and weight added 
by the Federal Motor Vehicle Safety Standards for MY 1968-2012 passenger cars and LTVs 
(2017).161 

We chose five vehicle safety technologies with sufficient data to estimate progress ratios of each, 
because these technologies are large-volume technologies and are used by almost all vehicle 

 
156 Argote, L., Epple, D., Rao, R. D., & Murphy, K., The acquisition and depreciation of knowledge in a 
manufacturing organization - Turnover and plant productivity, Working paper, Graduate School of Industrial 
Administration, Carnegie Mellon University (1997). 
157 Benkard, C. L., Learning and Forgetting - The Dynamics of Aircraft Production, The American Economic 
Review, Vol. 90(4), pp. 1034–54 (2000). 
158 Epple, D., Argote, L., & Devadas, R., Organizational Learning Curves - A Method for Investigating Intra-Plant 
Transfer of Knowledge Acquired through Learning by Doing, Organization Science, Vol. 2(1), pp. 58–70 (1991). 
159Epple, D., Argote, L., & Murphy, K., An Empirical Investigation of the Microstructure of Knowledge Acquisition 
and Transfer through Learning by Doing, Operations Research, Vol. 44(1), pp. 77–86 (1996). 
160 Levitt, S. D., List, J. A., & Syverson, C., Toward an Understanding of Learning by Doing - Evidence from an 
Automobile Assembly Plant, Journal of Political Economy, Vol. 121 (4), pp. 643-81 (2013). 
161 Simons, J. F., Cost and weight added by the Federal Motor Vehicle Safety Standards for MY 1968-2012 
Passenger Cars and LTVs (Report No. DOT HS 812 354).  Washington, D.C. - National Highway Traffic Safety 
Administration (November 2017), at pp. 30-33.  
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manufacturers.  Table 2-24 includes these five technologies and yields an average progress rate 
of 92 percent. 

Table 2-24 – Progress Ratios Researched by NHTSA 

Technology Progress Ratio 

Anti-lock Brake Systems 87% 
Driver Airbags 93% 
Manual 3-pt lap shoulder safety belts 96% 
Adjustable Head Restraints 91% 
Dual Master Cylinder 95% 

For the final progress ratio used in the CAFE Model, we averaged the five progress rates from 
EPA’s literature review and five progress rates from NHTSA’s evaluation of automotive safety 
technologies results.  This resulted in an average progress rate of approximately 89 percent.  The 
agency placed equal weight on progress ratios from all 10 sources.  More specifically, we placed 
equal weight on the Epple et al. (1991) study, because disruptions have more recently been 
recognized as an essential part in the learning process, especially in an effort to increase the rate 
of output. 

2.6.4.3 Obtaining Appropriate Baseline Years for Direct Manufacturing Costs to 
Create Learning Curves 

We obtained direct manufacturing costs for each fuel economy improving technology from 
various sources, as discussed above.  To establish a consistent basis for direct manufacturing 
costs in the rulemaking analysis, we adjusted each technology cost to MY 2018 dollars.  For each 
technology, the DMC is associated with a specific model year, and sometimes a specific 
production volume, or cumulative production volume.  The base model year is established as the 
MY in which direct manufacturing costs are assessed (with learning factor of 1.00).  With the 
aforementioned data on cumulative production volume for each technology and the assumption 
of a 0.89 progress ratio for all automotive technologies, we can solve for an implied cost for the 
first unit produced.  For some technologies, we used modestly different progress ratios to match 
detailed cost projections if available from another source (for instance, batteries for plug-in 
hybrids and battery electric vehicles). 

This approach produces reasonable estimates for technologies already in production, and some 
additional steps are required to set appropriate learning rates for technologies not yet in 
production.  Specifically, for technologies not yet in production in MY 2017, the cumulative 
production volume in MY 2017 is zero, because manufacturers have not yet produced the 
technologies.  For pre-production cost estimates in previous CAFE rulemakings, we often relied 
on confidential business information sources to predict future costs.  Many sources for pre-
production cost estimates include significant learning effects, often providing cost estimates 
assuming high volume production, and often for a timeframe late in the first production 
generation or early in the second generation of the technology.  Rapid doubling and re-doubling 
of a low cumulative volume base with Wright’s learning curves can provide unrealistic cost 
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estimates.  In addition, direct manufacturing cost projections can vary depending on the initial 
production volume assumed.  Accordingly, we carefully examined direct costs with learning, and 
made adjustments to the starting point for those technologies on the learning curve to better align 
with the assumptions used for the initial direct cost estimate. 

2.6.4.4 Cost Learning as Applied in the CAFE Model 

For this analysis, we apply learning effects to the incremental cost over the null technology state 
on the applicable technology tree.  After this step, we calculate year-by-year incremental costs 
over preceding technologies on the tech tree to create the CAFE Model inputs.162  The shift from 
incremental cost accounting to absolute cost accounting in recent CAFE analyses made cost 
inputs more transparently relatable to detailed model output, and relevant to this discussion, 
made it easier to apply learning curves in the course of developing inputs to the CAFE Model. 

We group certain technologies, such as advanced engines, advanced transmissions, and non-
battery electric components and assigned them to the same learning schedule.  While these 
grouped technologies differ in operating characteristics and design, we chose to group them 
based on their complexity, technology integration, and economies of scale across manufacturers.  
The low volume of certain advanced technologies, such as hybrid and electric technologies, 
poses a significant issue for suppliers and prevents them from producing components needed for 
advanced transmissions and other technologies at more efficient high scale production.  The 
technology groupings consider market availability, complexity of technology integration, and 
production volume of the technologies that can be implemented by manufacturers and suppliers. 

In addition, we expanded model inputs to extend the explicit simulation of technology 
application through MY 2050.  Accordingly, we updated the learning curves for each technology 
group to cover MYs through 2050.  For MYs 2017-2032, we expect incremental improvements 
in all technologies, particularly in electrification technologies because of increased production 
volumes, labor efficiency, improved manufacturing methods, specialization, network building, 
and other factors.  While these and other factors contribute to continual cost learning, we believe 
that many fuel economy improving technologies considered in this rule will approach a flat 
learning level by the early 2030s.  Specifically, older and less complex internal combustion 
engine technologies and transmissions will reach a flat learning curve sooner when compared to 
electrification technologies, which have more opportunity for improvement.  For batteries and 
non-battery electrification components, we estimate a steeper learning curve that will gradually 
flatten after MY 2040.  For a more detailed discussion of the electrification learning curves, see 
Chapter 3.3.  The following Table 2-25 and Table 2-26 show the learning curve schedules for 
CAFE Model technologies for MYs 2017-2033 and MYs 2034-2050.

 
162 The Technologies file contains these CAFE Model inputs.   
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Table 2-25 – Learning Curve Schedule for CAFE Model Technologies, MYs 2017-2033 

Technology 

Model Year 

20
17

 

20
18

 

20
19

 

20
20

 

20
21

 

20
22

 

20
23

 

20
24

 

20
25

 

20
26

 

20
27

 

20
28

 

20
29

 

20
30

 

20
31

 

20
32

 

20
33

 

MR0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ROLL0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
AERO0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ADSL, DSLI 0.91 0.89 0.88 0.87 0.85 0.84 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 
VVT, VVL, 
SGDI, DEAC 0.96 0.95 0.94 0.94 0.93 0.93 0.92 0.91 0.91 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.88 

HCR0, HCR1, 
HCR1D 0.80 0.78 0.77 0.75 0.74 0.73 0.73 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

HCR2 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 
EFR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.94 0.92 0.90 0.89 0.87 0.85 0.83 0.83 
TURBO1 0.85 0.83 0.82 0.80 0.79 0.78 0.78 0.77 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.74 0.74 
TURBO2, 
CEGR1, VTG, 
VTGE, 
DSLIAD 

1.01 1.00 0.99 0.97 0.96 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.83 0.81 0.81 0.80 0.80 

CNG 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91 0.91 0.91 
ADEAC, VCR 1.04 1.00 0.97 0.95 0.92 0.90 0.88 0.87 0.86 0.84 0.83 0.82 0.82 0.81 0.80 0.80 0.80 
MT5 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
MT6 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86 0.86 
MT7 1.06 1.00 0.96 0.89 0.84 0.78 0.75 0.72 0.70 0.68 0.65 0.63 0.62 0.61 0.59 0.58 0.58 
AT5, AT6, 
AT8, DCT6, 
DCT8 

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

AT6L2, AT7, 
AT8L2, 
AT8L3, AT9, 
AT10, AT10L2 

1.00 1.00 0.89 0.84 0.80 0.78 0.76 0.74 0.73 0.72 0.71 0.70 0.70 0.69 0.69 0.68 0.68 
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Technology 

Model Year 

20
17

 

20
18

 

20
19

 

20
20

 

20
21

 

20
22

 

20
23

 

20
24

 

20
25

 

20
26

 

20
27

 

20
28

 

20
29

 

20
30

 

20
31

 

20
32

 

20
33

 

CVT, CVTL2A, 
CVTL2B 0.91 0.90 0.89 0.87 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.82 0.81 0.81 0.80 0.80 0.80 

EPS 0.93 0.91 0.89 0.88 0.86 0.85 0.84 0.82 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.75 0.75 
IACC 0.93 0.88 0.83 0.79 0.76 0.73 0.71 0.69 0.67 0.66 0.64 0.63 0.62 0.61 0.60 0.60 0.60 
SS12V 1.68 1.61 1.55 1.50 1.45 1.41 1.37 1.33 1.30 1.27 1.25 1.23 1.21 1.19 1.18 1.18 1.15 
BEV 1.00 0.93 0.87 0.83 0.77 0.72 0.69 0.64 0.61 0.59 0.56 0.55 0.53 0.52 0.52 0.51 0.49 
BISG 1.00 0.94 0.87 0.78 0.73 0.69 0.66 0.63 0.61 0.59 0.58 0.56 0.55 0.54 0.54 0.53 0.53 
SHEVPS 1.00 0.96 0.92 0.89 0.87 0.84 0.82 0.78 0.76 0.74 0.73 0.72 0.71 0.70 0.69 0.69 0.68 
SHEVP2 1.00 0.96 0.93 0.90 0.87 0.85 0.82 0.79 0.76 0.75 0.74 0.73 0.71 0.70 0.69 0.69 0.69 
PHEV20 1.00 0.96 0.92 0.88 0.85 0.81 0.78 0.76 0.73 0.70 0.69 0.67 0.66 0.66 0.65 0.64 0.60 
PHEV50 1.00 0.96 0.92 0.88 0.84 0.81 0.78 0.74 0.71 0.69 0.68 0.66 0.64 0.63 0.63 0.62 0.59 
FCV 1.71 1.64 1.57 1.50 1.43 1.37 1.31 1.25 1.19 1.14 1.09 1.04 0.99 0.95 0.90 0.86 0.83 
MR1 0.77 0.74 0.71 0.68 0.66 0.65 0.63 0.62 0.61 0.60 0.59 0.58 0.57 0.56 0.56 0.55 0.55 
MR2 0.69 0.67 0.64 0.63 0.61 0.59 0.58 0.57 0.56 0.55 0.54 0.53 0.53 0.52 0.51 0.51 0.51 
MR3 0.73 0.70 0.68 0.67 0.65 0.64 0.63 0.61 0.60 0.59 0.58 0.57 0.56 0.56 0.55 0.55 0.55 
MR4 0.87 0.82 0.79 0.75 0.70 0.67 0.64 0.63 0.61 0.59 0.57 0.56 0.55 0.54 0.53 0.53 0.53 
MR5, MR6 1.00 1.00 0.93 0.88 0.84 0.80 0.78 0.76 0.73 0.71 0.69 0.67 0.66 0.65 0.64 0.63 0.63 
ROLL10 0.88 0.85 0.82 0.80 0.78 0.76 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.68 0.67 0.66 0.66 
ROLL20 0.85 0.77 0.72 0.68 0.65 0.62 0.60 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.52 0.51 0.51 
LDB 0.93 0.91 0.89 0.87 0.85 0.84 0.82 0.80 0.79 0.77 0.76 0.75 0.74 0.73 0.72 0.72 0.72 
SAX 0.73 0.70 0.67 0.65 0.64 0.62 0.61 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.54 0.53 0.53 
AERO5, AERO10, 
AERO15, AERO20 0.87 0.84 0.81 0.79 0.77 0.75 0.73 0.72 0.70 0.69 0.68 0.67 0.66 0.66 0.65 0.64 0.64 

Batteries 1.14 1.09 1.05 1.00 0.96 0.91 0.87 0.83 0.79 0.76 0.72 0.69 0.66 0.63 0.60 0.58 0.57 
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Table 2-26 – Learning Curve Schedules for CAFE Model Technologies, MYs 2034-2050 

Technology 
Model Year 

20
34

 

20
35

 

20
36

 

20
37

 

20
38

 

20
39

 

20
40

 

20
41

 

20
42

 

20
43

 

20
44

 

20
45

 

20
46

 

20
47

 

20
48

 

20
49

 

20
50

 

MR0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ROLL0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
AERO0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
ADSL, DSLI 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 
VVT, VVL, 
SGDI, DEAC 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 

HCR0, HCR1, 
HCR1D 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

HCR2 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 
EFR 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 
TURBO1 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 
TURBO2, 
CEGR1, VTG, 
VTGE, DSLIAD 

0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

CNG 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 
ADEAC, VCR 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
MT5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
MT6 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 
MT7 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 
AT5, AT6, AT8, 
DCT6, DCT8 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

AT6L2, AT7, 
AT8L2, AT8L3, 
AT9, AT10, 
AT10L2 

0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 
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Technology 
Model Year 

20
34

 

20
35

 

20
36

 

20
37

 

20
38

 

20
39

 

20
40

 

20
41

 

20
42

 

20
43

 

20
44

 

20
45

 

20
46

 

20
47

 

20
48

 

20
49

 

20
50

 

CVT, CVTL2A, 
CVTL2B 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

EPS 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.73 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.72 
IACC 0.60 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.57 
SS12V 1.12 1.09 1.07 1.04 1.01 0.99 0.96 0.94 0.92 0.89 0.87 0.85 0.83 0.81 0.79 0.77 0.75 
BEV 0.48 0.47 0.46 0.46 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 
BISG 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 
SHEVPS 0.68 0.68 0.67 0.67 0.67 0.66 0.66 0.66 0.65 0.65 0.65 0.64 0.64 0.64 0.63 0.63 0.63 
SHEVP2 0.68 0.67 0.67 0.66 0.66 0.65 0.65 0.64 0.64 0.63 0.63 0.62 0.62 0.61 0.60 0.60 0.59 
PHEV20 0.57 0.54 0.53 0.51 0.50 0.48 0.47 0.47 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.43 
PHEV50 0.57 0.54 0.53 0.51 0.50 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.46 0.45 0.45 0.45 0.45 
FCV 0.80 0.76 0.75 0.73 0.72 0.70 0.69 0.68 0.67 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.64 
MR1 0.55 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.53 
MR2 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 
MR3 0.55 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.53 
MR4 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 
MR5, MR6 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.60 0.60 
ROLL10 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.63 0.63 0.63 
ROLL20 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 
LDB 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.70 0.70 0.70 0.70 0.70 0.70 0.69 0.69 0.69 0.69 
SAX 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 
AERO5, 
AERO10, 
AERO15, 
AERO20 

0.64 0.64 0.63 0.63 0.63 0.63 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.61 0.61 

Batteries 0.56 0.55 0.53 0.52 0.51 0.50 0.49 0.48 0.47 0.46 0.46 0.45 0.44 0.43 0.42 0.41 0.40 
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Each technology in the CAFE Model is assigned a learning schedule developed from the 
methodology explained previously.  For example, the following chart shows learning rates for 
several technologies applicable to midsize sedans, demonstrating that while we estimate that 
such learning effects have already been almost entirely realized for engine turbocharging (a 
technology that has been in production for many years), we estimate that significant 
opportunities to reduce the cost of the greatest levels of mass reduction (e.g., MR5) remain, and 
even greater opportunities remain to reduce the cost of batteries for HEVs, PHEVs, BEVs.  In 
fact, for certain advanced technologies, we determined that the results predicted by the standard 
learning curves progress ratio was not realistic, based on unusual market price and production 
relationships.  For these technologies, we developed specific learning estimates that may diverge 
from the 0.89 progress rate.  As shown in Figure 2-8, these technologies include: turbocharging 
and downsizing level 1 (TURBO1), variable turbo geometry electric (VTGE), aerodynamic drag 
reduction by 15 percent (AERO15), mass reduction level 5 (MR5), 20 percent improvement in 
low-rolling resistance tire technology (ROLL20) over the baseline, and belt integrated 
starter/generator (BISG).  

 

Figure 2-8 – Examples of Year-by-Year Cost Learning Effects (Midsize Sedan) 

2.6.5 Cost Accounting 

To facilitate specification of detailed model inputs and review of detailed model outputs, the 
CAFE Model continues to use absolute cost inputs relative to a known base component cost, 
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such that the estimated cost of each technology is specified relative to a common reference point 
for the relevant technology pathway.  For example, the cost of a 7-speed transmission is 
specified relative to a 5-speed transmission, as is the cost of every other transmission technology.  
Conversely, in some earlier versions of the CAFE Model, incremental cost inputs were estimated 
relative to the technology immediately preceding on the relevant technology pathway.  For our 7-
speed transmission example, the incremental cost would be relative to a 6-speed transmission.  
This change in the structure of cost inputs does not, by itself, change model results, but it does 
make the connection between these inputs and corresponding outputs more transparent.  The 
CAFE Model Documentation accompanying our analysis presents details of the structure for 
model cost inputs.163  The individual technologies sections in Chapter 3 provide a detailed 
discussion of cost accounting for each technology.  

3 Technology Pathways, Effectiveness, and Cost  

Vehicle manufacturers meet increasingly stringent fuel economy standards by applying 
additional fuel-economy-improving technologies to their vehicles.  For us to assess what 
increases in fuel economy standards could be achievable and at what cost, we first need accurate 
characterizations of fuel-economy-improving technologies.  We collected data on over 50 fuel-
economy-improving technologies that manufacturers could apply to their vehicles to meet future 
stringency levels.  This includes determining technology effectiveness values, technology costs, 
and how we realistically expect manufacturers could apply the technologies in the rulemaking 
timeframe.  The characterization of these technologies, the technology effectiveness values, and 
technology cost assumptions build on work from DOT, EPA, the National Academy of Sciences, 
and other federal and state government agencies including the Department of Energy’s Argonne 
National Laboratory and the California Air Resources Board.   

After spending approximately a decade refining the technology pathways, effectiveness, and cost 
assumptions used in successive CAFE Model analyses, we have developed guiding principles to 
ensure that the CAFE Model’s simulation of manufacturer compliance pathways results in 
impacts that we would reasonably expect to see in the real world.  These guiding principles are 
as follows: 

The fuel economy improvement from any individual technology must be considered in 
conjunction with the other fuel-economy-improving technologies applied to the vehicle.  
Certain technologies will have complimentary or non-complimentary interactions with the full 
vehicle technology system.  For example, there is an obvious fuel economy benefit that results 
from converting a vehicle with a traditional internal combustion engine to a battery electric 
vehicle; however, the benefit of the electrification technology depends on the other road load 
reducing technologies (i.e., mass reduction, aerodynamic, and rolling resistance) on the vehicle.   

Technologies added in combination to a vehicle will not result in a simply additive fuel 
economy improvement from each individual technology.  As discussed above, full vehicle 
modeling and simulation provides the required degree of accuracy to project how different 
technologies will interact in the vehicle system.  For example, as discussed further below, a 
parallel hybrid architecture powertrain improves fuel economy, in part, by allowing the internal 

 
163 See CAFE Model Documentation S4.7 Technology Cost Tables. 
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combustion engine to spend more time operating at efficient engine speed and load conditions.  
This reduces the advantage of adding advanced internal combustion engine technologies, which 
also improve fuel economy, by broadening the range of speed and load conditions for the engine 
to operate at high efficiency.  This redundancy in fuel savings mechanism results in a reduced 
effectiveness improvement when the technologies are added to each other. 

The effectiveness of a technology depends on the type of vehicle the technology is being 
applied to.  For example, applying mass reduction technology results in varying effectiveness as 
the absolute mass reduced is a function of the starting vehicle mass, which varies across 
technology classes. 

The cost and effectiveness values for each technology should be reasonably representative of 
what can be achieved across the entire industry.  Each technology model employed in the 
analysis is designed to be representative of a wide range of specific technology applications used 
in industry.  Some vehicle manufacturer’s systems may perform better and cost less than our 
modeled systems and some may perform worse and cost more.  However, employing this 
approach will ensure that, on balance, the analysis captures a reasonable level of costs and 
benefits that would result from any manufacturer applying the technology.   

The baseline for cost and effectiveness values must be identified before assuming that a cost or 
effectiveness value could be employed for any individual technology.  For example, as 
discussed below, this analysis uses a set of engine map models that were developed by starting 
with a small number of baseline engine configurations, and then, in a very systematic and 
controlled process, adding specific well-defined technologies to create a new map for each 
unique technology combination. 

The following sections discuss the engine, transmission, electrification, mass reduction, 
aerodynamic, tire rolling resistance, and other vehicle technologies considered in this analysis.  
Each section discusses: 

• how we define the technology in the CAFE Model,164  
• how we assigned the technology to vehicles in the analysis fleet used as a starting 

point for this analysis,  
• any adoption features applied to the technology, so the analysis better represents 

manufacturers’ real-world decisions,  
• the technology effectiveness values, and  
• technology cost.   

Please note that the following technology effectiveness sections provide examples of the range 
of effectiveness values that a technology could achieve when applied to the entire vehicle 
system, in conjunction with the other fuel-economy-improving technologies already in use on the 
vehicle.  To see the incremental effectiveness values for any particular vehicle moving from one 

 
164 Note, due to the diversity of definitions industry sometimes employs for technology terms, or in describing the 
specific application of technology, the terms defined here may differ from how the technology is defined in the 
industry. 
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technology key to a more advanced technology key, see the FE_1 and FE_2 Adjustments files 
that are installed as part of the CAFE Model executable file, and not in the input/output folders.  
Similarly, the technology costs provided in each section are examples of absolute costs seen in 
specific model years, for specific vehicle classes.  Please refer to the Technologies file to see all 
absolute technology costs used in the analysis across all model years.   

3.1 Engine Paths  

Internal combustion engines convert chemical energy in fuel to useful mechanical power.  The 
chemical energy is converted to mechanical power by being burned or oxidized inside the 
engine.  The air/fuel mixture entering the engine and burned fuel/exhaust by-products leaving the 
engine are the working fluids in the engine.  The engine power output is a direct result of the 
work interaction between these fluids and the mechanical components of the engine.165  The 
generated mechanical power is used to perform useful work, such as vehicle propulsion.   

For this analysis, the extensive variety of light duty vehicle internal combustion (IC) engine 
technologies are classified into discrete engine technology paths.  These paths are used to model 
the most representative characteristics, costs, and performance of the fuel-economy improving 
technologies most likely available during the rulemaking time frame.  The technology paths are 
intended to be representative of the range of potential performance levels for each of the 
technologies.  We did not include technologies unlikely to be feasible in the rulemaking 
timeframe, technologies unlikely to be compatible with U.S. fuels, or technologies for which 
there was not appropriate data available to allow the simulation of effectiveness across all 
vehicle technology classes in this analysis.   

The following section discusses how IC engine technologies considered in this analysis are 
defined.  We describe the CAFE Model’s general engine technology categories and discuss the 
engine technologies’ relative effectiveness.  We also review how the categories are assigned to 
the baseline fleet as well as the engine paths adoptions features.  Finally, we provide the modeled 
cost for engine technology application to vehicles. 

3.1.1 Engine Modeling in the CAFE Model 

This analysis models IC engine technologies manufacturers can use to improve fuel economy.  
Some engine technologies can be incorporated into existing engines with minor or moderate 
changes to the engines, but many engine technologies require an entirely new engine 
architecture.  

For the CAFE analysis, we divide engine technologies into two categories, “basic engine 
technologies” and “advanced engine technologies.”  “Basic engine technologies” refer to 
technologies adaptable to an existing engine with minor or moderate changes to the engine.  
“Advanced engine technologies” refer to technologies that generally require significant changes 
or an entirely new engine architecture.  The words “basic” and “advanced” are not meant to 
confer any information about the level of sophistication of the technology.  Many advanced 

 
165 Heywood, John B. Internal Combustion Engine Fundamentals. McGraw-Hill Education, 2018.  Chapter 1. 
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engine technology definitions also include some basic engine technologies, and these basic 
technologies are accounted for in the advanced engine’s costs and effectiveness values.   

3.1.2 Basic Engines 

In the CAFE Model, basic engine technologies may be applied individually or in combination 
with other basic engine technologies.  The basic engine technologies include VVT, variable 
valve lift (VVL), SGDI, and cylinder deactivation.  Cylinder deactivation includes a basic level 
(DEAC) and an advanced level (ADEAC).   

The model applies the basic engine technologies across two engine architectures: dual over-head 
camshaft (DOHC) engine architecture and single over-head camshaft (SOHC) engine 
architecture.  A third architecture exists, over-head valves (OHV), where the camshaft is not 
mounted overhead.  We mapped engines with this architecture to SOHC engines.  Figure 3-1 
shows the basic engine technologies. 

 

Figure 3-1 – Basic Engine Technologies Path 

3.1.2.1 Variable Valve Timing  

VVT is a family of valve-train designs that dynamically adjusts the timing of the intake valves, 
exhaust valves, or both, in relation to piston position.  VVT can reduce pumping losses, provide 
increased engine torque and horsepower over a broad engine operating range, and allow unique 
operating modes, such as Atkinson cycle operation, to further enhance efficiency.166  As 
discussed below, VVT is nearly universally used in the MY 2020 fleet.  VVT enables more 
control of in-cylinder air flow for exhaust scavenging and combustion relative to fixed valve 
timing engines.  Engine parameters such as volumetric efficiency, effective compression ratio, 

 
166 National Research Council 2015. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-
Duty Vehicles. Washington, DC: The National Academies Press. https://doi.org/10.17226/21744, at p. 31 
[hereinafter 2015 NAS report].  (Accessed: February 15, 2022). 
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and internal exhaust gas recirculation (iEGR) can all be enabled and accurately controlled by a 
VVT system. 

3.1.2.2 Variable Valve Lift  

VVL dynamically adjusts the distance a valve travels from the valve seat.  The dynamic 
adjustment can optimize airflow over a broad range of engine operating conditions.  The 
technology can increase effectiveness by reducing pumping losses and by affecting the fuel and 
air mixture motion and combustion in-cylinder.167  VVL is less common in the MY 2020 fleet 
than VVT, but still prevalent.  Some manufacturers have implemented a limited, discrete 
approach to VVL.  The discrete approach allows only limited (e.g., two) valve lift profiles versus 
allowing a continuous range of lift profiles. 

3.1.2.3 Stoichiometric Gasoline Direct Injection  

SGDI sprays fuel at high pressure directly into the combustion chamber, which provides cooling 
of the in-cylinder charge via in-cylinder fuel vaporization to improve spark knock tolerance and 
enable an increase in compression ratio and/or more optimal spark timing for improved 
efficiency.168  SGDI is common in the MY 2020 fleet, and many advanced engines also use the 
technology.  

3.1.2.4 Cylinder Deactivation 

Basic cylinder deactivation (DEAC) disables intake and exhaust valves and turns off fuel 
injection for the deactivated cylinders during light load operation.  DEAC is characterized by a 
small number of discrete operating configurations.169  The engine runs temporarily as though it 
were a smaller engine, reducing pumping losses and improving efficiency.  DEAC is present in 
the MY 2020 baseline fleet. 

ADEAC systems, also known as rolling or dynamic cylinder deactivation systems, allow a 
further degree of cylinder deactivation than the base DEAC.  ADEAC allows the engine to vary 
the percentage of cylinders deactivated and the sequence in which cylinders are deactivated, 
essentially providing “displacement on demand” for low load operations.  A small number of 
vehicles have ADEAC in the MY 2020 baseline fleet. 

3.1.2.5 Camshafts Configuration 

For this analysis DOHC engine configurations have two camshafts per cylinder head, one 
operating the intake valves and one operating the exhaust valves.170  The basic engine 
technologies that can be applied to DOHC engines include VVT, VVL, SGDI and DEAC.  To 
represent the possible configurations of basic engine technologies in the analysis, we developed 
engine fuel map models for each of the technology combinations, as seen in Table 3-1.  Each of 
these engines incrementally add technology to Eng01, a basic VVT engine with port fuel 

 
167 2015 NAS report, at p. 32. 
168 2015 NAS report, at p. 34. 
169 2015 NAS report, at p. 33. 
170 2015 NAS report, at p. 31. 
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injection (PFI), while holding all other assumptions constant, such as ambient temperature, 
ambient pressure, base engine geometry, and fuel type.  The approach to creating the engine map 
models is discussed in more detail in Chapter 3.1.3.  DOHC engines are the most common 
camshaft configuration of the baseline engine technologies in the MY 2020 baseline fleet. 

We did not create specific engine map models for the application of the ADEAC technology.  To 
simulate the application of ADEAC, a net effectiveness improvement was applied to an existing 
engine technology configuration.  We developed the net effectiveness from performance reported 
in the literature,171,172,173 and confidential business information (CBI) provided from industry.  
The final effectiveness values are a function of engine cylinder count and are discussed in more 
detail in Chapter 3.1.7.   

Table 3-1 – DOHC Engine Map Models 

Engines Technologies Notes 

Eng01 DOHC VVT 
Parent NA engine, Gasoline, 2.0L, 4 

cyl, NA, PFI, DOHC, dual cam VVT, 
CR10.2 

Eng02 DOHC VVT+VVL VVL added to Eng01 

Eng03 DOHC VVT+VVL+SGDI SGDI added to Eng02, CR11 

Eng04 DOHC VVT+VVL+SGDI+DEAC Cylinder deactivation added to Eng03 

Eng18 DOHC VVT + SGDI Gasoline, 2.0L, 4 cyl, NA, SGDI, 
DOHC, dual cam VVT 

Eng19 DOHC VVT + DEAC Cylinder deactivation added to Eng01 

Eng20 DOHC VVT + VVL + DEAC Cylinder deactivation added to Eng02 

Eng21 DOHC VVT + SGDI + DEAC Cylinder deactivation added to Eng18 

SOHC engines are characterized by having a single camshaft in the cylinder head operating both 
the intake and exhaust valves.174  The model considers four basic engine technologies, VVT, 
VVL, SGDI, and DEAC for SOHC engines.  Like DOHC engines, engine map models for 
SOHC engines use an incremental improvement approach.  The SOHC engine maps models are 
based on Eng01, with the removal of one camshaft.  We included SOHC VVT Eng5a in previous 

 
171 Wilcutts, M., Switkes, J., Shost, M., and Tripathi, A., “Design and Benefits of Dynamic Skip Fire Strategies for 
Cylinder Deactivated Engines,” SAE Int. J. Engines 6(1):278-288, 2013, available at  
https://doi.org/10.4271/2013-01-0359.  (Accessed: February 15, 2022). 
172 Eisazadeh-Far, K. and Younkins, M., “Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition 
Engines,” SAE Technical Paper 2016-01-0672, 2016, available at  
https://doi.org/10.4271/2016-01-0672.  (Accessed: February 15, 2022). 
173 EPA, 2018.  “Benchmarking and Characterization of a Full Continuous Cylinder Deactivation System.”  
Presented at the SAE World Congress, April 10-12, 2018.  Available at 
https://www.regulations.gov/document/EPA-HQ-OAR-2018-0283-0029.  (Accessed: February 15, 2022). 
174 2015 NAS report, at p. 31. 
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analyses but did not include it for this analysis.  We found that the Eng5a map model’s internal 
friction, inherited from the DOHC engine it was based on, was too high and artificially increased 
BSFC.  As a result of the issue identified with Eng5a, the model applies friction reduction of 0.1 
bar over the entire operating range for engine maps 5b, 6a, 7a, and 8a to bring performance of 
the engines in line with existing data (see Chapter 3.1.7 for discussion of engine map 
validation).175  SOHC engines are not common in the MY 2020 baseline fleet. 

Table 3-2 shows the SOHC engine map models, and Chapter 3.1.7 discusses how we modeled 
the configurations.  To represent the effectiveness of several other SOHC engine technology 
combinations, the CAFE Model uses adjustments created from existing related engine map 
models.  Table 3-3 shows the additional SOHC technology combinations with performance 
values drawn from alternative engine map models. 

Table 3-2– SOHC Engine Map Models 

Engine Technologies Notes 

Eng5a SOHC VVT Eng01 converted to SOHC  
Reference Only 

Eng5b SOHC VVT (level 1 Engine 
Friction Reduction) 

Eng5a 2.0L, 4cyl, NA, PFI, single cam VVT with 
valvetrain friction reduction 

Eng6a SOHC VVT+VVL (level 1 Engine 
Friction Reduction) 

Eng02 converted to SOHC with valvetrain friction 
reduction 

Eng7a SOHC VVT+VVL+SGDI (level 1 
Engine Friction Reduction) 

Eng03 converted to SOHC with valvetrain friction 
reduction, addition of VVL and SGDI 

Eng8a SOHC VVT+VVL+SGDI+DEAC 
(level 1 Engine Friction Reduction) 

Eng04 converted to SOHC with valvetrain friction 
reduction, addition of DEAC 

Table 3-3 – SOHC Emulated Engines from Analogous Models 

Engine Performance 
is Based on Technologies  Notes 

Eng18 SOHC+VVT+SGDI See Chapter 3.1.7 for effectiveness discussion 

Eng19 SOHC VVT+DEAC See Chapter 3.1.7 for effectiveness discussion 

Eng20 SOHC VVT+VVL+DEAC See Chapter 3.1.7 for effectiveness discussion 

Eng21 SOHC VVT+SGDI+DEAC See Chapter 3.1.7 for effectiveness discussion 

3.1.3 Advanced Engines 

In the CAFE Model, advanced engine technologies generally refer to families of engine 
technology that require significant changes in engine structure, or an entirely new engine 
architecture.  The advanced engine technologies represent the application of alternate 
combustion cycles or changes in the application of forced induction to the engine. 

 
175 Note, the engine friction reduction applied to these engines is not the engine friction reduction technology 
discussed later in this chapter. 
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Figure 3-2 – The Advanced Engine Technology Paths 

3.1.3.1 Forced Induction Engines 

Forced induction engines, or turbocharged downsized engines, are characterized by technology 
that can create greater-than-atmospheric pressure in the engine intake manifold when higher 
output is needed.  The raised pressure results in an increased amount of airflow into the cylinder 
supporting combustion, increasing the specific power of the engine.  Increased specific power 
means the engine can generate more power per unit of cylinder volume.  The higher power per 
cylinder volume allows the overall engine volume to be reduced, while maintaining performance.  
The overall engine volume decrease results in an increase in fuel efficiency by reducing parasitic 
loads associated with larger engine volumes.176   

Cooled exhaust gas recirculation is also part of the advanced forced induction technology path.  
The basic recycling of exhaust gases using VVT is called internal EGR (iEGR) and is included 
as part of the performance improvements provided by the VVT basic engine technology.  Cooled 
EGR (cEGR) is a second method for diluting the incoming air that takes exhaust gases, passes 
them through a heat exchanger to reduce their temperature, and then mixes them with incoming 
air in the intake manifold.177  Diluting the incoming air with inert exhaust gas reduces pumping 
losses, improving BSFC.  The dilution also reduces combustion rates, temperatures, and 

 
176 2015 NAS report, at p. 34. 
177 2015 NAS report, at p. 35. 
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pressures, mitigating knock and reducing the need for fuel enrichment.  The exhaust gas 
displaces some incoming air, and heats the incoming air, lowering the air’s density.   

Five levels of turbocharged engine downsizing technologies are considered in this analysis: a 
‘basic’ level of turbocharged downsized technology (TURBO1), an advanced turbocharged 
downsized technology (TURBO2), an advanced turbocharged downsized technology with cooled 
exhaust gas recirculation applied (cEGR), a turbocharged downsized tL2echnology with basic 
cylinder deactivation applied (TURBOD), and a turbocharged downsized technology with 
advanced cylinder deactivation applied (TURBOAD).  See Table 3-4 for a list of the specific 
engine map models used to represent the technology levels. 

The baseline turbocharged downsized technology (TURBO1) engine represents a basic level of 
forced air induction technology being applied to a DOHC-based engine.  The TURBO1 engine 
category assumes application of SGDI, VVT and VVL to the engine.  The engine map model 
developed to represent the baseline turbocharged downsized engine operates with enough boost 
pressure to achieve a brake mean effective pressure (BMEP) of 18bar.  

The turbocharged engine with cylinder deactivation (TURBOD) is defined by the application of 
basic cylinder deactivation to the TURBO1 engine.  The turbocharged downsized with advanced 
cylinder deactivation (TURBOAD) engine is defined by the application of an advanced cylinder 
deactivation technology to the TURBOD engine. 

The advanced turbocharged downsized technology (TURBO2) engine category represents an 
advanced application of forced air induction.  The engine map model assumes a DOHC-based 
engine and application of SGDI, VVT and VVL.  The engine map model represents performance 
of an engine boosted to achieve a BMEP of 24bar. 

The advanced turbocharged downsized technology with exhaust gas recirculation (CEGR1) 
represents an advanced application of forced air induction coupled with cooled exhaust gas 
recirculation (cEGR).  The modeled engine map is based on the TURBO2 map with the cEGR 
technology applied.   

 

Table 3-4 – Turbocharged Engine Downsizing Technology Engine Map Models 

Engine Technology Notes 

Eng12 TURBO1 Parent Turbocharged Engine, Gasoline, 1.6L, 4 cyl, 
turbocharged, SGDI, DOHC, VVT, VVL, engine BMEP 18 bar 

Eng12DEAC 

TURBOD Eng12 with DEAC applied, engine BMEP 18bar 

TURBOAD Eng12DEAC with ADEAC, see Chapter 3.1.7 for effectiveness 
discussion 

Eng13 TURBO2 Eng12 downsized to 1.2L, Engine BMEP increased to 24 bar 
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Eng14 CEGR1 Cooled external EGR added to Eng13,  
engine BMEP 24 bar 

3.1.3.2 Atkinson Engines 

Atkinson engines, or high compression ratio (HCR) engines, represent a class of engines that 
achieve a higher level of fuel efficiency by implementing an alternate combustion cycle.178  
Historically, the Otto combustion cycle has been used by most gasoline-based spark ignition 
engines.  Increased research into improving fuel economy has resulted in the development of 
alternate combustion cycles that allow for greater levels of thermal efficiency.  One such 
alternative combustion cycle is the Atkinson cycle.  Atkinson cycle operation is achieved by 
allowing the expansion stroke of the engine to overextend allowing the combustion products to 
achieve the lowest possible pressure before the exhaust stroke.179,180,181  Currently, there are two 
common approaches to achieving Atkinson Cycle operation: either the exhaust valve timing is 
modified or the intake valve timing is modified.  If the exhaust valve timing is modified, the 
exhaust valve will not open until enough expansion has occurred for the cylinder pressure to be 
as close to atmospheric pressure as the cylinder geometry allows.  If the intake valve timing is 
modified, the intake valve will stay open during some portion of compression stroke.  When the 
intake valve stays open, some of the fresh charge is driven back into the intake manifold by the 
rising piston, so the cylinder is never filled completely with fresh air, effectively creating a 
longer expansion stroke than compression stroke.182  It is important to note that in both cases, the 
geometric compression ratio of the engine will be different (higher) than the actual, or effective, 
compression ratio of the engine.183,184   

One major disadvantage of the Atkinson cycle is a significant reduction in power density.185,186  
The reduction in power density of the engine is a result of the decreased amount of air drawn into 
the cylinder compared to the total volume of the cylinder.  The trade-off in power density for 
thermal efficiency generally relegates these engines to lower power applications, such as in 
parallel with an electric powertrain, like in the Toyota Prius, or in conjunction with road load 

 
178 See the 2015 NAS report, Appendix D, for a short discussion on thermodynamic engine cycles. 
179 Otto cycle is a four-stroke cycle that has four piston movements over two engine revolutions for each cycle.  First 
stroke: intake or induction; seconds stroke: compression; third stroke: expansion or power stroke; and finally, fourth 
stroke: exhaust. 
180 Compression ratio is the ratio of the maximum to minimum volume in the cylinder of an internal combustion 
engine. 
181 Expansion ratio is the ratio of maximum to minimum volume in the cylinder of an IC engine when the valves are 
closed (i.e., the piston is traveling from top to bottom to produce work). 
182 Heywood, John B. Internal Combustion Engine Fundamentals.  McGraw-Hill Education, 2018.  Chapter 5. 
183 Geometric compression ratio is the ratio of the maximum volume when a cylinder is at full expansion versus the 
minimum volume in a cylinder at full compression. 
184 Effective compression ratio is the difference in volume in a cylinder when the volume of gas is held constant to 
the volume in a cylinder at full compression.  
185 Power density is the engine power per unit of displacement (= [Engine Power]/[Engine Displacement]). 
186 Heywood, John B. Internal Combustion Engine Fundamentals.  McGraw-Hill Education, 2018.  Chapter 5. 
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reducing technologies that reduce the need for engine power to maintain vehicle 
performance.187,188 

Descriptions of Atkinson cycle engines and Atkinson mode engine technologies have been used 
interchangeably in association with HCR engines for rulemaking analyses.  Both technologies 
achieve a higher thermal efficiency than traditional Otto cycle-only engines, however, the two 
engine types operate differently.  For purposes of this analysis, Atkinson technologies can be 
categorized into two groups: (1) Atkinson-enabled engines and (2) Atkinson engines. 

3.1.3.2.1 Atkinson Enabled Engines - Non-Hybrid Electric Vehicle Engines 

Atkinson-enabled engines, or high compression ratio (HCR) engines, dynamically swing 
between an Otto cycle like behavior (very little expansion over-stroke) to a more Atkinson cycle 
intensive behavior (large expansion over-stroke) based on engine demand.  During high loads the 
engine will reduce the Atkinson level behavior by increasing the dynamic compression ratio, 
reducing over-stroke, sacrificing efficiency for increased power density.  While at low loads the 
engine will increase the Atkinson level behavior by reducing the dynamic compression ratio, 
increasing the over-stroke, improve efficiency but reduce power density.  The hybrid combustion 
cycle can be used to address, but not eliminate, the low power density issues that can constrain 
the application of an Atkinson-only engine and allow for a wider application of the technology.   

The level of efficiency improvement experienced by a vehicle employing an Atkinson-enabled 
engine is directly related to how much of the engine’s operation time is spent at high Atkinson 
levels.  Vehicles that must maintain a high level of torque reserve, that experience operation at a 
high load for long portions of their operating cycle, or that have high base road loads, will see 
little to no benefit from this technology, over other advanced engine technologies.  This power 
density constraint results in manufacturers typically limiting the application of this technology to 
vehicles with a lower road load, and lower relative need for torque reserves. 

Three HCR engines are available in the analysis: (1) the baseline Atkinson-enabled engine 
(HCR0) with VVT and PFI, (2) the enhanced Atkinson enabled engine (HCR1) with VVT and 
SGDI, and finally, (3) the enhanced Atkinson enabled engine with DEAC (HCR1D).  A 
summary of each of the engine technologies is shown in Table 3-5.  

For this analysis, the effectiveness of HCR1D is represented by applying an offset to the HCR1 
engine.  The offset applied is the same effectiveness difference between TURBO1 technology 
and the TURBOD technology.  The details on how this is performed are discussed in Chapter 
3.1.7. 

Table 3-5 – Atkinson Enabled Engine Map Models 

 
187 Toyota.  “Under the Hood of the All-new Toyota Prius.”  Oct. 13, 2015.  Available at 
https://global.toyota/en/detail/9827044.  (Accessed: February 15, 2022). 
188 Road load reducing technologies include rolling resistance reduction technologies, vehicle mass reduction and 
aerodynamic drag reduction. 

Engine Technology Notes 
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3.1.3.2.2 Atkinson Engines - Hybrid Electric Vehicle Engines 

Atkinson engines are engines that operate full-time in the Atkinson cycle.  The most common 
method of achieving Atkinson operation is the use of late intake valve closing.  This method 
allows backflow from the combustion chamber into the intake manifold, reducing the dynamic 
compression ratio, and providing a higher expansion ratio.  The higher expansion ratio improves 
thermal efficiency but reduces power density.  The low power density generally relegates these 
engines to hybrid vehicle applications only.  Coupling the engines to electric motors and 
significantly reducing road loads can compensate for the lower power density and maintain 
desired performance levels for the vehicle.189  The Toyota Prius is an example of a vehicle that 
uses an Atkinson engine.  The 2017 Toyota Prius achieved a peak thermal efficiency of 40 
percent.190 

Table 3-6 shows the Atkinson engine map model used in this analysis.  The engine is only used 
in HEV powertrains.  

 

Table 3-6 – Atkinson Engine Map Model 

Engine Technology Notes 

Eng26 

SHEVPS 
PHEV20 
PHEV50 

PHEV20H 
PHEV50H 

1.8L Atkinson engine 

3.1.3.3 Miller Cycle Engines  

The Miller cycle is another type of overexpansion combustion cycle, similar to the Atkinson 
cycle.  The Miller cycle, however, operates in combination with a forced induction system that 
helps address the impacts of reduced power density during high load operating conditions.  

 
189 Toyota.  “Under the Hood of the All-new Toyota Prius.”  Oct. 13, 2015.  Available at 
https://global.toyota/en/detail/9827044.  (Accessed: February 15, 2022). 
190 Matsuo, S., Ikeda, E., Ito, Y., and Nishiura, H., “The New Toyota Inline 4 Cylinder 1.8L ESTEC 2ZR-FXE 
Gasoline Engine for Hybrid Car,” SAE Technical Paper 2016-01-0684, 2016, https://doi.org/10.4271/2016-01-0684.  
(Accessed: February 15, 2022). 

Eng22b HCR0 Atkinson-enabled 2.5L DOHC, VVT, PFI, CR14 

Eng24 

HCR1 Non-HEV Atkinson mode, Gasoline, 2.0L, 4 cyl, DOHC, NA, 
SGDI, VVT, CR 13.1, 93 AKI 

HCR1D Eng24 with DEAC,  
see Chapter 3.1.7 for effectiveness discussion. 
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Miller cycle-enabled engines use a similar technology approach as seen in Atkinson-enabled 
engines to effectively create an expanded expansion stroke of the combustion cycle.   

Miller cycle enabled engines have a similar trade-off in power density as Atkinson engines; the 
lower power density requires a larger volume engine in comparison to an Otto cycle-based 
turbocharged system, for similar applications.191  However, the forced air induction does 
mitigate power density issues, and allows for a wider application of the engine technology.  
Miller cycle enabled engines may use a variable geometry turbocharger to increase engine power 
density over a broader range of operating conditions and increase the amount of Miller cycle 
operation.  The application of an electronic assist or electronic boost system may further mitigate 
the power density reduction, particularly at low-speed operating conditions. 

In the analysis, we use two engine map models to represent Miller cycle enabled engines, see 
Table 3-7.  The baseline Miller cycle-enabled engine includes the application of a variable turbo 
geometry technology (VTG).  The advanced Miller cycle enabled system includes the 
application of a 48V-based electronic boost system (VTGE).  VTG technology allows the system 
to vary boost level based on engine operational needs.  The use of a variable geometry 
turbocharger also supports the use of cooled exhaust gas recirculation.192   

An electronic boost system has an electric motor added to assist a turbocharger at low engine 
speeds.  The motor assist mitigates turbocharger lag and low boost pressure at low engine 
speeds.  The electronic assist system can provide extra boost needed to overcome the torque 
deficits at low engine speeds.193 

 

Table 3-7 – Miller Cycle Engine Map Models 

Engine Technology Notes 

Eng23b VTG Miller Cycle, 2.0L DOHC, VTG, SGDI, cEGR, VVT, VVL, CR12 

Eng23c VTGE Eng23b with a 48V electronic supercharger and battery pack 

3.1.3.4 Variable Compression Ratio Engines 

Variable compression ratio (VCR) engines work by changing the length of the piston stroke of 
the engine to optimize the compression ratio and improve thermal efficiency over the full range 
of engine operating conditions.  Engines that use VCR technology are currently in production, 
but appear to be targeted primarily towards limited production, high performance, and very high 

 
191 National Academies of Sciences, Engineering, and Medicine 2021.  Assessment of Technologies for Improving 
Light-Duty Vehicle Fuel Economy 2025-2035.  Washington, DC: The National Academies Press. 
https://doi.org/10.17226/26092, Section 4 [hereinafter 2021 NAS report].  (Accessed: February 15, 2022).  
192 2015 NAS report, at p. 116. 
193 2015 NAS report, at p. 62. 
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BMEP (27-30 bar) applications.  Nissan is the only manufacturer to use this technology in the 
MY 2020 baseline fleet. 

One engine map model represents a VCR system.  See Table 3-8 for more information on the 
VCR technology. 

Table 3-8 – Variable Compression Ratio Engine Map Model 

Engine Technology Notes 

Eng26a VCR VVT, SGDI, Turbo, cEGR, VCR CR 9-12 

   

3.1.3.5 Diesel Engines 

Diesel engines have several characteristics that result in superior fuel efficiency over traditional 
gasoline engines, including reduced pumping losses due to lack of (or greatly reduced) throttling, 
high pressure direct injection of fuel, a combustion cycle that operates at a higher compression 
ratio,194 and a very lean air/fuel mixture relative to an equivalent-performance gasoline 
engine.195  However, diesel technologies require additional enablers, such as a NOX adsorption 
catalyst system or a urea/ammonia selective catalytic reduction system, for control of NOX 
emissions. 

For the analysis, we considered three levels of diesel engine technology (see Table 3-9).  The 
baseline diesel engine technology (ADSL) is based on a standard 2.2L turbocharged diesel 
engine.  We developed a more advanced diesel engine (DSLI) by starting with the ADSL system 
and incorporating a combination of low pressure and high pressure EGR, reduced parasitic loss, 
friction reduction, incorporating a highly-integrated exhaust catalyst with low temp light off 
temperatures, and closed loop combustion control.  We developed the most advanced diesel 
system (DSLIAD) by adding advanced cylinder deactivation technology to the DSLI system. 

Table 3-9 – Diesel Engine Map Models 

Engine Technology Notes 

Eng17 ADSL 2.2L turbocharged diesel engine, 

Eng17 DSLI Eng17 with cEGR, friction reduction, reduced parasitic loss, low temp 
catalyst, combustion control 

Eng17 DSLIAD Eng17 with DSLI modifications, advanced cylinder deactivation 

 
194 Diesel cycle is also a four-stroke cycle like the Otto Cycle, except in the intake stroke no fuel is injected and fuel 
is injected late in the compression stroke at higher pressure and temperature. 
195 See the 2015 NAS report, Appendix D, for a short discussion on thermodynamic engine cycles. 
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3.1.3.6 Alternative Fuel Engines 

Compressed natural gas (CNG) systems are internal combustion engines that run on natural gas 
as a fuel source.  The fuel storage and supply systems for these engines differ tremendously from 
gasoline, diesel, and flex fuel vehicles.196  CNG engines are a baseline-only technology and are 
not applied to any vehicle that did not already include a CNG engine.  The MY 2020 baseline 
fleet does not include any dedicated CNG vehicles. 

3.1.4 Engine Friction Reduction Technologies 

The engine friction reduction (EFR) technology is a general engine improvement that represents 
future technologies that reduce the internal friction of an engine.  EFR technology is not 
available for application until MY 2023.  The future technologies do not significantly change the 
function or operation of the engine but reduce the energy loss due to the rotational or rubbing 
friction experienced in the bearings or cylinder during normal operation.  These technologies can 
include improved surface coatings, lower-tension piston rings, roller cam followers, optimal 
thermal management and piston surface treatments, improved bearing design, reduced inertial 
loads, improved materials, or improved geometry.   

3.1.5 Baseline Engine Assignments  

Manufacturers have steadily improved the fuel economy of their vehicles through 
implementation of greater levels of fuel economy improving technology in their fleets.197  We 
built a 2020 analysis fleet to best capture the current level of these advances and update the 
market data inputs for the CAFE Model.  We built the fleet using mid-model year 2020 CAFE 
compliance data, press releases, vehicle benchmarking studies, technical publications, and CBI.  
We use these sources to ensure the fleet is represented as accurately as possible. 

We use data for each manufacturer to determine which platforms share engines.  Within each 
manufacturer’s fleet, we assign unique identification designations (engine codes) based on 
configuration, technologies applied, displacement, compression ratio, and power output.  We use 
power output to distinguish between engines that might have the same displacement and 
configuration but significantly different horsepower ratings.   

The CAFE Model identifies leaders and followers for a manufacturer’s vehicles that use the 
same engine, indicated by sharing the same engine code.  The model automatically determines 
which engines are leaders by using the highest sales volume row of the highest sales volume 
nameplate that is assigned an engine code.  This leader-follower relationship allows the CAFE 
Model simulation to maintain engine sharing as more technology is applied to engines.   

As an example, the 2020 Chevrolet Silverado has five different engine displacements available.  
The engines include a 2.7L turbocharged I4, a 4.3L naturally aspirated V6, a 5.3L naturally 

 
196 Flexible fuel vehicles (FLEX) are designed to run on gasoline or gasoline-ethanol blends of up to 85 percent 
ethanol. 
197 “The 2021 EPA Automotive Trends Report, Greenhouse Gas Emissions, Fuel Economy, and Technology since 
1975,” EPA-420-R-21-023, November 20211975,” EPA-420-R-21-003, January 2021 [hereinafter 2020 EPA 
Automotive Trends Report]. 
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aspirated V8, a 6.2L naturally aspirated V8, and a 3.0L turbo diesel I6.  As discussed above, we 
assign each engine one unique engine code or assign one engine multiple codes if there are 
variants that use different technologies.  For example, we assign the 2020 Chevrolet Silverado 
naturally-aspirated 5.3L V8 engine one of three engine codes: 115301 (gasoline only with 
cylinder deactivation), 115302 (gasoline only with skip fire), and 115303 (flex fuel vehicle with 
cylinder deactivation).198  All Silverados that use one of these engines will reference the same 
engine code.  We then assign the appropriate corresponding technology to each engine code, and 
the model can accurately account for further engine improvements at each vehicle redesign and 
propagate them to each vehicle model that uses the engine code. 

We accurately represent each engine using engine technologies and engine technology classes.  
We assign each engine code technology that most closely corresponds to an engine map, as 
discussed in Chapter 3.1.6.  We use a single engine map model to represent each engine 
technology.  We assign each individual vehicle’s initial fuel economy value based on CAFE 
compliance data for that vehicle, and not based on these maps.  Then, the compliance modeling 
uses these engine maps to determine a percent efficiency gain from the application of a new 
technology which would be applied to that baseline value for each individual vehicle, see 
Chapter 3.1.7.   

The engine technology classes are a second identifier used in the analysis to accurately account 
for engine costs.  The engine technology class is formatted as number of cylinders followed by 
the letter C, number of banks followed by the letter B, and an engine head configuration 
designator, which is _SOHC for single overhead cam, _ohv for overhead valve, or blank for dual 
overhead cam.  Table 3-10 shows examples of observed engines with their corresponding 
assigned engine technologies as well as engine technology classes. 

 

Table 3-10 – Examples of Observed Engines and Their Corresponding Engine Technology Class and 
Technology Assignments 

VEHICLE ENGINE OBSERVED 

ENGINE 
TECHNOLOGY 

CLASS 
ASSIGNED 

ENGINE 
TECHNOLOGY 

ASSIGNED 

GMC Acadia Naturally Aspirated DOHC Inline 4 
cylinder 4C1B VVT, SGDI 

VW Arteon Turbocharged DOHC Inline 4 cylinder 6C2B TURBO1 

Bentley Bentayga Turbocharged DOHC W12 w/ cylinder 
deactivation 16C4B TURBOD 

Honda Passport Naturally Aspirated SOHC V6 6C2B_SOHC VVT, VVL, 
SGDI, DEAC 

Honda Civic Turbocharged DOHC Inline 4 cylinder 4C1B TURBO1 

 
198 Market Data file, ‘Vehicles’ Tab, Line 482, 484, 497, Column H. 
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VEHICLE ENGINE OBSERVED 

ENGINE 
TECHNOLOGY 

CLASS 
ASSIGNED 

ENGINE 
TECHNOLOGY 

ASSIGNED 

Cadillac CT5 Turbocharged DOHC V6 w/ cylinder 
deactivation 8C2B TURBOD 

Ford Escape Turbocharged DOHC Inline 3 cylinder 4C1B_L TURBO1 

Chevrolet Silverado Naturally Aspirated OHV V8 w/ skip fire 8C2B_ohv ADEAC 

As discussed in the engine cost section (see Chapter 3.1.8) the cost tables for a given engine 
class include downsizing (to an engine architecture with fewer cylinders) when turbocharging 
technology is applied; therefore, the turbocharged engines observed in the baseline fleet (that 
have already been downsized) often map to an engine class with more cylinders.  For instance, 
an observed TURBO1 V6 engine would map to an 8C2B (V8) engine class, because the turbo 
costs on the 8C2B engine class tab assume a V6 (6C2B) engine architecture.  Similarly, as 
indicated above, the TURBO1 I3 in the Ford Escape maps to the 4C1B_L (I4) engine class, 
because the turbo costs on the 4C1B_L engine class tab assume a I3 (3C1B) engine architecture.  
Some instances can be more complex, including low horsepower variants for 4 cylinder engines, 
and are shown in Table 3-11.  Diesel engines map to engine technology classes that match the 
observed cylinder count since naturally aspirated diesel engines are not found in new light duty 
vehicles in the U.S. market.  Table 3-12 includes the full list of engine classes included in the 
CAFE Model analysis and the corresponding cylinder count that would be observed on engines 
included in that class. 

Table 3-11 – Engine Technology Class Assignment Logic 

OBSERVED 
GASOLINE 

ENGINE 
ARCHITECTURE 

OBSERVED 
NUMBER OF 
CYLINDERS 

HORSEPOWER 
NATURALLY 
ASPIRATED 
OR TURBO 

ENGINE 
TECHNOLOGY 

CLASS 
ASSIGNED 

Inline 3 Any NA 3C1B 

Inline 3 Any Turbo 4C1B_L 

Inline 4 <=180 NA 4C1B_L 

Inline 4 <=180 Turbo 4C1B 

Boxer 4 <=180 NA 4C2B_L 

Boxer 4 <=180 Turbo 4C2B 

Inline 4 >180 NA 4C1B 

Inline 4 >180 Turbo 6C2B 

Boxer 4 >180 Turbo 6C2B 

Inline 5 Any Turbo 6C2B 

W 16 Any Turbo 16C4B 
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Table 3-12 – Observed Cylinder Count by Engine Technology Class and Engine Technology 

BROAD ENGINE 
TECHNOLOGY 
CATEGORY 

BASIC 
ENGINE TURBOCHARGED 

ADVANCED 
NATURALLY 
ASPIRATED 

DIESEL 

Included Technologies 
VVT, VVL, 

SGDI, 
DEAC 

TURBO1, TURBO2, 
TURBOD, TURBOAD, 

CEGR1, VCR, VTG, 
VTGE 

ADEAC, HCR0, 
HCR1, HCR1D, 

HCR2 

ADSL, 
DSLI, 

DSLIAD 

2C1B_SOHC 2 2 2 2 
2C1B 2 - 2 2 
3C1B_SOHC 3 - 3 3 
3C1B 3 - 3 3 
4C1B_L_SOHC 4 3 4 4 
4C1B_SOHC 4 4 4 4 
4C1B_L 4 3 4 4 
4C1B 4 4 4 4 
4C2B_SOHC 4 4 4 4 
4C2B_L 4 3 4 4 
4C2B 4 4 4 4 
5C1B_SOHC 5 - 5 5 
5C1B 5 - 5 5 
6C1B_SOHC 6 - 6 6 
6C1B 6 - 6 6 
6C1B_ohv 6 - 6 6 
6C2B_SOHC 6 - 6 6 
6C2B 6 4 or 5 6 6 
6C2B_ohv 6 - 6 6 
8C2B_SOHC 8 - 8 8 
8C2B 8 6 8 8 
8C2B_ohv 8 - 8 8 
10C2B_SOHC 10 - 10 10 
10C2B 10 8 10 10 
10C2B_ohv 10 - 10 10 
12C2B_SOHC 12 - 12 12 
12C2B 12 10 12 12 
12C4B_SOHC 12 - 12 12 
12C4B 12 10 12 12 
16C4B_SOHC 16 - 16 16 
16C4B 16 12 or 16 16 16 

We added one new engine technology, HCR1D, to the available engine technologies in the 
analysis from the 2020 final rule.  Having a large number of technologies modeled allows us to 
accurately characterize technologies present on engines in the analysis fleet.  This collection of 
technologies represents the best available information we have, at the time of this action, 
regarding both currently available engine technologies and engine technologies that could be 
feasible for application to the U.S. fleet during the rulemaking timeframe.  We believe this effort 



  197 

has yielded the most technology-rich and accurate analysis fleet utilized in the CAFE Model to 
date. 

A full look at the engine technology penetration by engine technology class is detailed in Table 
3-13.  It is important to note that advanced engine technologies can include some of the basic 
engine technologies.  For example, VVT is found in virtually all engines on the market and is 
assigned to all basic engines, all advanced engines, and all strong hybrids in the CAFE Model; 
only BEVs do not have VVT since they do not have engine valves.  Further details on which 
technologies are included for each advanced engine can be found in Chapter 3.1.3.  As can be 
seen in Table 3-13, there are many engine technology classes that are not observed in the 
analysis fleet but are maintained to ensure that we can accurately classify all technologies in the 
fleet. 
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Table 3-13 – Observed Engine Technologies by Engine Technology Class in Analysis Fleet 
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199 Note that advanced engines often include basic engine technologies as well.  Further discussion on this is found throughout Chapter 3.1. 
200 All basic engines include VVT so it is used as a proxy for all basic engine technologies.  This sum excludes VVL, SGDI, DEAC, and SHEVP2 since 
including them would only serve to double count vehicles because there are no vehicles that exclusively have these technologies. 
201 Dashes indicate no vehicles with this combination were observed while any numbers, including 0.00 percent, indicate that the combination was observed. 
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3.1.6 Engine Adoption Features  

Engine adoption features are defined through a combination of technology path logic, refresh and 
redesign cycles, and phase-in capacity limits.  Figure 3-3 shows the technology paths available 
for engines in the CAFE Model.  Engine technology development and application typically 
results in an engine design moving from the basic engine tree to one of the advanced engine 
trees.  Once an engine design moves to the advanced engine tree it is not allowed to move to 
alternate advanced engine trees.  Table 3-14 provides a brief description of each technology and 
details when a technology can be applied for the first time or indicates if a technology can only 
be assigned as a baseline technology.  Technologies applicable only during a platform redesign 
can be applied during a platform refresh, if another vehicle platform that shares engine codes 
(i.e., uses the same engine) has already applied the technology during a redesign, first.  For 
example, models of the GMC Acadia and the Cadillac XT4 use the same engine (represented by 
engine code 112011 in the Market Data file); if the XT4 adds a new engine technology during a 
redesign, then the Acadia may also add the same engine technology during the next refresh or 
redesign.  This allows the model to maintain engine sharing relationships while also maintaining 
refresh and redesign schedules.  See Chapter 2.2.1.7 for more discussion on platform refresh and 
redesign cycles. 

 

Figure 3-3 – Engine Technology Paths Available 

 

Table 3-14 – Technology Application Schedule 

Technology Application 
Level 

Application 
Schedule Description 

SOHC Engine Baseline Only Single Overhead Camshaft Engine 
DOHC Engine Baseline Only Double Overhead Camshaft Engine 

Diesel Eng.

DOHC SOHC OHV
(maps to SOHC)

TURBO1 HCR0

Basic Engine Path

Engine Configuration Path Turbo Eng. HCR Eng. ADEAC Eng.

 ADEAC ADSL

TURBO2 HCR1 DSLI

CEGR1 HCR1D DSLIAD
VVT

VCR Eng. VTG Eng. Adv. Turbo Alt. Fuel

CNG

VTGE TURBOAD

HCR2

VVL SGDI DEAC

VCR VTG TURBOD
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Technology Application 
Level 

Application 
Schedule Description 

OHV Engine Baseline Only Overhead Valve Engine (maps to SOHC) 
EFR Engine Redesign Only Improved Engine Friction Reduction 
VVT Engine Baseline Only Variable Valve Timing 
VVL Engine Redesign Only Variable Valve Lift 
SGDI Engine Redesign Only Stoichiometric Gasoline Direct Injection 
DEAC Engine Redesign Only Cylinder Deactivation 

TURBO1 Engine Redesign Only Turbocharging and Downsizing, Level 1 
TURBO2 Engine Redesign Only Turbocharging and Downsizing, Level 2 
CEGR1 Engine Redesign Only Cooled Exhaust Gas Recirculation, Level 1 
HCR0 Engine Redesign Only High Compression Ratio Engine, Level 0 
HCR1 Engine Redesign Only High Compression Ratio Engine, Level 1 

HCR1D Engine Redesign Only High Compression Ratio Engine, Level 1 with 
Cylinder Deactivation 

HCR2 Engine Redesign Only High Compression Ratio Engine, Level 2 
ADEAC Engine Redesign Only Advanced Cylinder Deactivation 
ADSL Engine Redesign Only Advanced Diesel 
DSLI Engine Redesign Only Diesel Engine Improvements 

DSLIAD Engine Redesign Only Diesel Engine Improvements with ADEAC 
VCR Engine Redesign Only Variable Compression Ratio Engine 
VTG Engine Redesign Only Variable Turbo Geometry 

VTGE Engine Redesign Only Variable Turbo Geometry (Electric) 
TURBOD Engine Redesign Only Turbocharging and Downsizing with DEAC 

TURBOAD Engine Redesign Only Turbocharging and Downsizing with ADEAC 
CNG Engine Baseline Only Compressed Natural Gas Engine 

Engine technology adoption depends on technology path and phase-in caps.  Figure 3-4 shows a 
flowchart of how engines can progress from one engine path to another.  These paths are 
primarily tied to ease of implementation of additional technology and how closely related the 
technologies are.  Table 3-15 details the phase-in caps that apply to engine technology.  Few of 
the caps in the model would restrict implementation of engine technology during the rulemaking 
timeframe.  In reality, the phase-in caps are not binding because the model has several other less 
advanced technologies available to apply first at a lower cost, as well as the redesign schedules.  
As discussed earlier in Chapter 2.2, 100 percent of the analysis fleet will not redesign by 2025, 
which is the last year that phase-in caps could apply to the engine technologies discussed in this 
section.   
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Figure 3-4 – Engine Path Flowchart 
 

Table 3-15 – Engine Technology Phase-In Caps 

Technology Technology Pathway Phase-In 
Cap 

Phase-In 
Start Year 

First Year 100% 
Phase-In Allowed 

EFR Engine Improvements 20% 2017 2021 
VVL Basic Engine 100% 2000 2000 
SGDI Basic Engine 100% 2000 2000 
DEAC Basic Engine 100% 2004 2004 
TURBO1 Turbo Engine 100% 2004 2004 
TURBO2 Turbo Engine 100% 2010 2010 
CEGR1 Turbo Engine 100% 2010 2010 
HCR0 HCR Engine 100% 2010 2010 
HCR1 HCR Engine 100% 2017 2017 
HCR1D HCR Engine 100% 2017 2017 
HCR2 HCR Engine 100% 2017 2017 
ADEAC ADEAC Engine 34% 2019 2021 
ADSL Diesel Engine 100% 2010 2010 
DSLI Diesel Engine 100% 2010 2010 
DSLIAD Diesel Engine 34% 2023 2025 
VCR VCR Engine 20% 2019 2023 
VTG VTG Engine 34% 2016 2018 
VTGE VTG Engine 20% 2016 2020 
TURBOD Advanced Turbo Engine 20% 2016 2020 
TURBOAD Advanced Turbo Engine 34% 2020 2022 

Diesel Engine
Path

Alt. Fuel Engine
Path

ADEAC Engine
Path

VTG Engine
Path

HCR Engine
Path

Adv. Turbo 
Engine

Path

Basic Engine
Path

Turbo Engine
Path

VCR Engine
Path
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3.1.6.1 Basic Engines 

Basic engine technologies in the CAFE Model are represented by four technologies: VVT, VVL, 
SGDI, and DEAC.  We assume that 100 percent of basic engine platforms use VVT as a 
baseline, based on wide proliferation of the technology in the U.S. fleet.  The remaining three 
technologies, VVL, SGDI, and DEAC, can all be applied individually or in any combination of 
the three.  An engine can jump from the basic engines path to any other engine path except the 
Alternative Fuel Engine Path. 

3.1.6.2 Turbocharged Downsized Engines 

Turbo downsizing allows manufacturers to maintain vehicle performance characteristics while 
reducing engine displacement and cylinder count.  Any basic engine can adopt one of the turbo 
engine technologies (TURBO1, TURBO2 and CEGR1).  Vehicles that have turbocharged 
engines in the baseline fleet will stay on the turbo engine path to prevent unrealistic engine 
technology change in the short timeframe considered in the rulemaking analysis.  Turbo 
technology is a mutually exclusive technology in that it cannot be adopted for HCR, diesel, 
ADEAC, or CNG engines. 

3.1.6.3 Non-HEV Atkinson Mode Engines 

Non-HEV Atkinson mode engines are a collection of engines in the HCR engine pathway 
(HCR0, HCR1, HCR1D and HCR2).  Atkinson engines excel in lower power applications for 
lower load conditions, such as driving around a city or steady state highway driving without 
large payloads, thus their adoption is more limited than some other technologies.  We expanded 
the availability of HCR technology compared to the 2020 final rule because of new observed 
applications in the market.202  However, currently there are three categories of adoption features 
specific to the HCR engine pathway:203 currently, we do not allow vehicles with 405 or more 
horsepower to adopt HCR engines due to their prescribed duty cycle being more demanding and 
likely not supported by the lower power density found in HCR-based engines.204  Currently, we 
also exclude pickup trucks and vehicles that share engines with pickup trucks from receiving 
HCR engines; the duty cycle for these heavy vehicles, particularly when hauling cargo or towing, 
are required to have significant torque reserves.  Maintenance of a significant torque reserve 
requires a calibration of an HCR based engine that minimizes the advantages.205  Finally, we 
currently restrict HCR engine application for some manufacturers that are heavily performance-

 
202 For example, the Hyundai Palisade and Kia Telluride have a 291 hp V6 HCR1 engine.  The specification sheets 
for these vehicles are located in the docket for this action. 
203 See Chapter 3.1.4 for a discussion of why HCR2 and P2HCR2 were not used in the central analysis.  “SKIP” 
logic was used to remove this engine technology from application, however as discussed below, we maintain HCR2 
and P2HCR2 in the model architecture for sensitivity analysis and for future engine map model updates. 
204 Heywood, John B. Internal Combustion Engine Fundamentals.  McGraw-Hill Education, 2018.  Chapter 5. 
205 This is based on CBI conversation with manufacturers that currently employ HCR-based technology but saw no 
benefit when the technology was applied to truck platforms in their fleet. 
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focused, and have demonstrated a significant commitment to power dense technologies such as 
turbocharged downsizing.206   

3.1.6.4 Advanced Cylinder Deactivation Technology 

ADEAC technology, or dynamic cylinder deactivation (e.g., Dynamic Skip Fire), can be applied 
to any engine with basic technology.  This technology represents a naturally aspirated engine 
with ADEAC.  Additional technology can be applied to these engines by moving to the 
Advanced Turbo Engine Path. 

3.1.6.5 Miller Cycle Engines 

Miller cycle (VTG and VTGE) engines can be applied to any basic and turbocharged engine.  
VTGE technology is enabled using a 48V system that presents an improvement from traditional 
turbocharged engines, and accordingly VTGE includes the application of a mild hybrid (BISG) 
system. 

3.1.6.6 Variable Compression Ratio Engines 

VCR engines can be applied to basic and turbocharged engines, but the technology is limited to 
OEMs and partnered OEMs that have already implemented the technology.207  VCR technology 
requires a complete redesign of the engine, and in the analysis fleet, only two of Nissan’s models 
had incorporated this technology.   

Few manufacturers and suppliers provided information about VCR technologies, and we 
reviewed several design concepts that could achieve a similar functional outcome.  In addition to 
design concept differences, intellectual property ownership complicates the ability to define a 
VCR hardware system that could be widely adopted across the industry.  VCR engines are 
complex, costly by design, and address many of the same efficiency losses as mainstream 
technologies like downsize turbocharging, making it unlikely that a manufacturer that has 
already started down an incongruent technology path would adopt VCR technology.  Because of 
these issues, we limited adoption of the VCR engine technology to OEMs that have already 
employed the technology and their partners.  We do not believe any other manufacturers will 
invest to develop and market this technology in their fleet in the rulemaking time frame. 

3.1.6.7 Advanced Turbocharged Downsized Engines 

Advanced turbo engines are becoming more prevalent as the technologies mature.  TURBOD 
combines TURBO1 and DEAC technologies and represents the first advanced turbo.  
TURBOAD combines TURBO1 and ADEAC technologies and is the second and last level of 
advanced turbos.  Engines from either the Turbo Engine Path or the ADEAC Engine Path can 
adopt these technologies.   

 
206 There are three manufactures that met the criteria (near 100 percent turbo downsized fleet, and future hybrid 
systems are based on turbo-downsized engines) described and were excluded: BMW, Daimler, and Jaguar Land 
Rover. 
207 Nissan and Mitsubishi are strategic partners and members of the Renault-Nissan-Mitsubishi Alliance. 
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3.1.6.8 Diesel Engines 

Any basic engine technologies (VVT, VVL, SGDI, and DEAC) can adopt ADSL and DSLI 
engine technologies.  Any basic engine and diesel engine can adopt DSLIAD technology in this 
analysis; however, we applied a phase-in cap and year for this technology at 34 percent and MY 
2023, respectively.  In our engineering judgement, this is a rather complex and costly technology 
to adopt and it would take significant investment for a manufacturer to develop.  For more than a 
decade, diesel engine technologies have been used in less than one percent of the total light-duty 
fleet production and have been found mostly on medium and heavy-duty vehicles. 

3.1.6.9 Alternative Fuel Engines 

Adoption features for alternative fueled compressed natural gas (CNG) engines have been 
carried over from the 2020 final rule.  Because CNG is considered an alternative fuel under 
EPCA/EISA, it cannot be adopted during the rulemaking timeframe for NHTSA’s standard 
setting analysis.   

3.1.6.10 Engine Lubrication and Friction Reduction 

We allow the CAFE Model to apply EFR to any engine technology except for DSLI and 
DSLIAD.  DSLI and DSLIAD inherently have incorporated engine friction technologies from 
ADSL.  In addition, friction reduction technologies that apply to gasoline engines cannot 
necessarily be applied to diesel engines due to the higher temperature and pressure operation in 
diesel engines. 

3.1.7 Engine Effectiveness  

The CAFE Model considers both effectiveness and cost in selecting any technology changes.  
Technology effectiveness is the fuel consumption reduction achieved by changing a vehicle from 
one combination of technologies to another combination of technologies, see Chapter 2.4.   

We simulate effectiveness values for engine technologies in two ways.  We either calculate the 
value based on the difference in full vehicle simulation results created using the Autonomie 
modeling tool, or we determine the effectiveness values using an alternate calculation method, 
including analogous improvement or fuel economy improvement factors.   

The effectiveness values for the engine technologies, for all ten vehicle technology classes, are 
shown in Figure 3-5.  Each of the effectiveness values shown is representative of the 
improvements seen for upgrading only the listed engine technology for a given combination of 
other technologies.  In other words, the range of effectiveness values seen for each specific 
technology (e.g., TURBO1) represents the addition of the TURBO1 technology to every 
technology combination that could select the addition of TURBO1.  See Table 3-16 for several 
specific examples.  We show the change in fuel consumption values between entire technology 
keys,208 and not the individual technology effectiveness values.  Using the change between 

 
208 Technology key is the unique collection of technologies that constitutes a specific vehicle, see Chapter 2.4.7. 
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whole technology keys captures the complementary or non-complementary interactions among 
technologies. 

Table 3-16 – Example of Effectiveness Calculations Shown in Figure 3 5* 

Tech Vehicle 
Tech Class Initial Technology Key 

Fuel Consumption 
Effectiveness 

(%) Initial 
(gal/mile) 

New 
(gal/mile) 

TURBO1 Medium Car DOHC;VVT;;;;;AT8L2;SS12V; 
ROLL10;AERO5;MR2 0.0282 0.0248 12.15 

TURBO1 Medium Car DOHC;VVT;;;;;AT8L2;CONV; 
ROLL10;AERO5;MR2 0.0292 0.0254 13.13 

TURBO1 Medium Car DOHC;VVT;;;;;AT8L2;BISG; 
ROLL10;AERO5;MR2 0.0275 0.0237 13.80 

TURBO1 Medium Car DOHC;VVT;;;;;AT6;SS12V; 
ROLL10;AERO5;MR2 0.0312 0.0269 13.80 

*The ‘Tech’ is added to the ‘Initial Technology Key’ replacing the existing engine technology, resulting 
in the new fuel consumption value.  The percent effectiveness is found by determining the percent 

improved fuel consumption of the new value versus the initial value.209 

Some advanced engine technologies have values that indicate low effectiveness.  We determined 
the low effectiveness resulted from the application of advanced engines to existing SHEVP2 
architectures.  This effect is expected and illustrates the importance of using the full vehicle 
modeling to capture interactions between technologies, and capture instances of both 
complimentary technologies and non-complimentary technologies.  In this instance, the SHEVP2 
powertrain improves fuel economy, in part, by allowing the engine to spend more time operating 
at efficient engine speed and load conditions.  This reduces the advantage of adding advanced 
engine technologies, which also improve fuel economy, by broadening the range of speed and 
load conditions for the engine to operate at high efficiency.  This redundancy in fuel savings 
mechanism results in a lower effectiveness when the technologies are added to each other. 

 
209 The full data set we used to generate this example can be found in the FE_1 Improvements file. 
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Figure 3-5 – Engine Technologies Effectiveness Values for all Vehicle Technology Classes210 

The following sections discuss how we determined the effectiveness of the engine technologies 
on the simulated vehicle system’s performance in the rulemaking analysis.  We first discuss the 
values determined directly from the Autonomie simulations, followed by the values that are 
determined using alternative modeled approaches. 

3.1.7.1 Autonomie Modeled Values 

The Autonomie model’s full vehicle simulation results provide most of the effectiveness values 
that we use as inputs to the CAFE Model.  For a full discussion of the Autonomie modeling see 
Chapter 2.4.1.  The Autonomie modeling uses engine map models as the primary inputs for 
simulating the effects of different engine technologies. 

Engine maps provide a three-dimensional representation of engine performance characteristics at 
each engine speed and load point across the operating range of the engine.  Engine maps have the 
appearance of topographical maps, typically with engine speed on the horizontal axis and engine 
torque, power, or brake mean effective pressure (BMEP)211 on the vertical axis.  A third engine 

 
210 The box shows the inner quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.  The 
blue dots show effectiveness values outside those thresholds.  The full data set we used to generate this example can 
be found in the FE_1 Improvements file. 
211 Brake mean effective pressure is an engineering measure, independent of engine displacement, that indicates the 
actual work an engine performs. 
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characteristic, such as brake-specific fuel consumption (BSFC),212 is displayed using contours 
overlaid across the speed and load map.  The contours provide the values for the third 
characteristic in the regions of operation covered on the map.  Other characteristics typically 
overlaid on an engine map include engine emissions, engine efficiency, and engine power.  We 
refer to the engine maps developed to model the behavior of the engines in this analysis as 
engine map models. 

The engine map models we use in this analysis are representative of technologies that are 
currently in production or are expected to be available in the rulemaking timeframe.  We develop 
the engine map models to be representative of the performance achievable across industry for a 
given technology, and they are not intended to represent the performance of a single 
manufacturer’s specific engine.  We target a broadly representative performance level because 
the same combination of technologies produced by different manufacturers will have differences 
in performance, due to manufacturer-specific designs for engine hardware, control software, and 
emissions calibration. 

Accordingly, we expect that the engine maps developed for this analysis will differ from engine 
maps for manufacturers’ specific engines.  However, we intend and expect that the incremental 
changes in performance modeled for this analysis, due to changes in technologies or technology 
combinations, will be similar to the incremental changes in performance observed in 
manufacturers’ engines for the same changes in technologies or technology combinations. 

Note that we never apply absolute BSFC levels from the engine maps to any vehicle model or 
configuration for the rulemaking analysis.  We only use the absolute fuel economy values from 
the full vehicle Autonomie simulations to determine incremental effectiveness for switching 
from one technology to another technology.  The incremental effectiveness is applied to the 
absolute fuel economy of vehicles in the analysis fleet, which are based on CAFE compliance 
data.  For subsequent technology changes, we apply incremental effectiveness changes to the 
absolute fuel economy level of the previous technology configuration.  Therefore, for a 
technically sound analysis, it is most important that the differences in BSFC among the engine 
maps be accurate, and not the absolute values of the individual engine maps.  However, 
achieving this can be challenging. 

For this analysis, we use a small number of baseline engine configurations with well-defined 
BSFC maps, and then, in a very systematic and controlled process, add specific well-defined 
technologies to create a BSFC map for each unique technology combination.  This could 
theoretically be done through engine or vehicle testing, but we would need to conduct tests on a 
single engine, and each configuration would require physical parts and associated engine 
calibrations to assess the impact of each technology configuration, which is impractical for the 
rulemaking analysis because of the extensive design, prototype part fabrication, development, 
and laboratory resources that are required to evaluate each unique configuration.  We and the 
automotive industry use modeling as an approach to assess an array of technologies with more 
limited testing.  Modeling offers the opportunity to isolate the effects of individual technologies 
by using a single or small number of baseline engine configurations and incrementally adding 
technologies to those baseline configurations.  This provides a consistent reference point for the 

 
212 Brake-specific fuel consumption is the rate of fuel consumption divided by the power being produced. 
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BSFC maps for each technology and for combinations of technologies that enables us to 
carefully identify and quantify the differences in effectiveness among technologies.   

The Autonomie model documentation provides a detailed discussion on how the Autonomie 
model uses engine map models as inputs to the full vehicle simulations.  Additionally, the 
Autonomie model documentation contains the engine map model topographic figures, and 
additional engine map model data can be found in the Autonomie input files.213 

3.1.7.1.1 IAV Engine Map Models 

IAV GmbH (IAV) Engineering developed most of the engine map models we use in this 
analysis.  IAV is one of the world’s leading automotive industry engineering service partners 
with an over 35-year history of performing research and development for powertrain 
components, electronics, and vehicle design.214  The primary outputs of IAV’s work for this 
analysis are engine maps that model the operating characteristics of engines equipped with 
specific technologies.  

IAV developed the engine map models using the GT-POWER© Modeling tool (GT-POWER).  
GT-POWER is a commercially available, industry standard, engine performance simulation tool.  
GT-POWER can be used to predict detailed engine performance characteristics such as power, 
torque, airflow, volumetric efficiency, fuel consumption, turbocharger performance and 
matching, and pumping losses.215  IAV developed the engine maps using software within the 
GT-Suite developed by Gamma Technologies.  IAV’s GT-POWER engine modeling includes 
sub-models to enforce operating constraints for the engine.  The sub-models interface with base 
GT-POWER model as shown in Figure 3-6, and are listed below. 

• Heat release through a predictive combustion model 

• Knock characteristic through a kinetic fit knock model 

• Physics-based heat flow model  

• Physics based friction model  

• IAV’s proprietary Optimization Toolbox216 

 
213 ANL - All Assumptions_Summary_NPRM_022021.xlsx, ANL - Data Dictionary_January 2021.xlsx, ANL - 
Summary of Main Component Performance, Assumptions_NPRM_022021.xlsx, 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx. 
214 IAV Automotive Engineering, https://www.iav.com/en.  (Accessed: February 15, 2022). 
215 For additional information on the GT-POWER tool please see: https://www.gtisoft.com/gt-suite-
applications/propulsion-systems/gt-power-engine-simulation-software.  (Accessed: February 15, 2022). 
216 IAV’s Optimization Toolbox is a module of IAV Engine.  IAV Engine is the basic platform for designing engine 
mechanics and provides many tools that have proven their worth across the globe in several decades of automotive 
development work at IAV.  The modules help designers, computation engineers and simulation specialists in 
designing mechanical engine components—for example, in laying out valvetrains and timing gears as well as 
crankshafts. 
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Figure 3-6 – Overview of the Engine Model and Sub-Models Used to Develop Engine Maps 

IAV uses benchmark production engine test data, component test data, and manufacturers’ and 
suppliers’ technical publications to develop a one-dimensional GT-POWER engine model that 
serves as the baseline, or root, engine technology configuration (Eng01) for the maps in this 
analysis.  IAV then incrementally adds technologies to the root model to create the families of 
engine map models.  IAV develops each new engine model using a similar overall method.  IAV 
defines the characteristics of the root engine, Eng01 in the case of basic DOHC engines, and 
optimizes the root engine’s combustion parameters while minimizing fuel consumption and 
maintaining performance.  IAV then uses the optimized engine model to simulate operation and 
develop a BMEP/BSFC-based engine map for the modeled engine.   

IAV then starts with the root engine model (Eng01, DOHC+VVT only) and integrates a new 
technology, such as SGDI.  IAV re-optimizes the new engine (Eng18, DOHC+VVT+SGDI) for 
all combustion parameters while minimizing fuel consumption and maintaining performance.  
IAV then again uses the resultant new engine model to simulate operation and develop a new 
BMEP/BSFC based engine map, in this case Eng18.  The new engine map (Eng18) can then be 
directly compared to the root engine map (Eng01) and the differences in those engine maps 
specifically shows the impact of adding the SGDI technology.  IAV repeats this process starting 
from each of the root engine maps to create the engine technology groups discussed in 
Chapters3.1.2 and 3.1.3, see Table 3-17 for information about all engine maps.   

IAV uses the following baseline engine modeling assumptions and techniques across the sub-
models to isolate the effect of adding technologies to an engine. 
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• All gasoline engine optimization assumes the use of Tier 3 (E10 87 Anti-Knock Index 
(AKI))217 fuel to ensure the engines are capable of operating on regular gasoline (87 
pump octane = (R+M)/2).218,219 

• Ambient conditions are fixed at 25 degrees C and 990 mbar barometric pressure. 

• Relevant engine geometries/parameters are measured and modeled with friction/flow 
losses, heat transfer, etc. and calibrated to match measurements. 

• Displacement normalized mechanical friction is modeled as a function of engine speed 
and specific load. 

• A combustion model is trained and used to predict fuel heat release rate in response to 
physical effects such as cylinder geometry, pressure, temperature, turbulence, residual 
gas concentration, etc. 

• The combustion stability model is trained using Coefficient of Variation (COV) of 
Indicated Mean Effective Pressure (IMEP)220,221 data to estimate EGR tolerance and to 
identify the maximum amount of EGR that may be used without adversely impacting 
vehicle driveability, especially at low loads.   

o The knock222 correlation model based on in-cylinder conditions and fuel octane 
rating is trained and used to predict if knock occurs (and at what intensity).  
Furthermore, a COV of IMEP threshold of 3 percent or less is applied.223 

 
217 Currently, throughout the United States, pump fuel is a blend of 90 percent gasoline and 10 percent ethanol. 
218 Octane rating or the Anti-Knock Index (AKI) rating of the fuel is expressed as the average of Research Octane + 
Motor Octane (R+M/2).  In the United States, typically there are three distinct grades of fuel available, each 
provides a different octane rating.  In most regions of the United States, the lowest octane fuel is 87 AKI, midgrade 
typically 89-90 AKI, and premium 91-94 AKI.  In higher altitude regions, the lowest octane fuel is typically 85 AKI.  
219 “Octane in depth” U.S. Energy Information Administration: 
https://www.eia.gov/energyexplained/gasoline/octane-in-depth.php.  (Accessed: February 15, 2022). 
220 Indicated Mean Effective Pressure (IMEP) is the mean effective pressure calculated with indicated (theoretical) 
power of the engine. 
221 Industry and researchers use a measurement known as coefficient of variation of indicated mean effective 
pressure (COV of IMEP) to evaluate combustion stability. 
222 Engine knock in spark ignition engines occurs when combustion of some of the air/fuel mixture in the cylinder 
does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel 
mixture explodes outside of the envelope of the normal combustion front.  Engine knock can result in unsteady 
operation and damage to the engine. 
223 Industry commonly recognizes values of COV of IMEP greater than 3.0 percent as unacceptable because above 
those levels the combustion instability creates a noticeable and objectionable drivability problem for vehicle 
occupants, referred to as “surge.”  Surge is perceived as the vehicle accelerating and decelerating erratically, instead 
of running smoothly. 
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o In high load and speed engine operational regions, fuel enrichment is used to 
mitigate knock per best industry practice.  Fuel enrichment was tuned in parallel 
with cEGR addition, when cEGR was integrated on an engine.224 

• The behavior of engine air intake and exhaust systems and fuel injection systems is 
simulated by developing load controllers for fuel/air path actuators.  Engine combustion 
control, through use of onboard sensors, is simulated by developing targeting controllers 
to drive optimal combustion phasing, constrained by knock, just as in a physical engine. 

• Careful modeling practice is used to provide confidence that calibrations will scale and 
predict reasonable and reliable values as parameters are changed across the various 
engine technology combinations. 

 

Before use in the Autonomie analysis, IAV validates the generated engine maps against IAV’s 
global database of benchmarked data, engine test data, single cylinder test data, prior modeling 
studies, technical studies, and information presented at conferences.225  IAV also validates the 
effectiveness values from the simulation results against detailed engine maps produced from the 
Argonne engine benchmarking programs, as well as published information from industry and 
academia, which ensures reasonable representation of simulated engine technologies.226   

IAV provides the families of engine BMEP/BSFC maps to Argonne as an input for the full 
vehicle modeling and simulation.  For a full discussion on how Argonne integrates the engine 
map models into the Autonomie simulations, refer to the Autonomie model documentation.227  
The engine map models that we use in this analysis and their specifications are shown in Table 
3-17.  

 
224 Fuel enrichment is extra fuel is injected at the intake manifold port or directly into the cylinder.  Fuel 
vaporization and the fuel’s thermal mass reduces combustion and exhaust temperatures.  Changes to the air/fuel ratio 
also impact combustion speed which impacts the knock limit. 
225 Friedrich, I., Pucher, H., and Offer, T., "Automatic Model Calibration for Engine-Process Simulation with Heat-
Release Prediction," SAE Technical Paper 2006-01-0655, 2006, https://doi.org/10.4271/2006-01-0655.  (Accessed: 
February 15, 2022). 
Rezaei, R., Eckert, P., Seebode, J., and Behnk, K., "Zero-Dimensional Modeling of Combustion and Heat Release 
Rate in DI Diesel Engines," SAE Int. J. Engines 5(3):874-885, 2012, https://doi.org/10.4271/2012-01-1065.  
(Accessed: February 15, 2022). 
Multistage Supercharging for Downsizing with Reduced Compression Ratio (2015).  MTZ Rene Berndt, Rene 
Pohlke, Christopher Severin, and Matthias Diezemann IAV GmbH.  Symbiosis of Energy Recovery and Downsizing 
(2014).  September 2014 MTZ Publication Heiko Neukirchner, Torsten Semper, Daniel Luederitz and Oliver Dingel 
IAV GmbH. 
226 Bottcher, L., Grigoriadis, P. “ANL – BSFC map prediction Engines 22-26.”  IAV (April 30, 2019).  
IAV_20190430_ANL_Eng 22-26 Updated_Docket.pdf. 
227 Islam, E. S., A. Moawad, N. Kim, R. Vijayagopal, and A. Rousseau.  A Detailed Vehicle Simulation Process to 
Support CAFE Standards for the MY 2024-2026 Analysis. ANL/ESD-21/9. 
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Table 3-17 – Engine Map Models Used in This Analysis 

Engines Technologies Notes 

Eng01 DOHC+VVT Parent NA engine, Gasoline, 2.0L, 4 cyl, NA, PFI, DOHC, 
dual cam VVT, CR10.2 

Eng02 DOHC+VVT+VVL VVL added to Eng01 
Eng03 DOHC+VVT+VVL+SGDI SGDI added to Eng02, CR11 

Eng04 DOHC+VVT+VVL+SGDI 
+DEAC Cylinder deactivation added to Eng03 

Eng5a SOHC+VVT+PFI 
Eng01 converted to SOHC (gasoline, 2.0L, 4cyl, NA, PFI, 

single cam VVT) 
For Reference Only 

Eng5b SOHC+VVT (level 1 Red. 
Friction) 

Eng5a with valvetrain friction reduction (small friction 
reduction) 

Eng6a SOHC+VVT+VVL (level 1 Red. 
Friction) 

Eng02 with valvetrain friction reduction (small friction 
reduction) 

Eng7a SOHC+VVT+VVL+SGDI (level 
1 Red. Friction) 

Eng03 with valvetrain friction reduction (small friction 
reduction), addition of VVL and SGDI 

Eng8a SOHC+VVT+VVL+SGDI 
+DEAC (level 1 Red. Friction) 

Eng04 with valvetrain friction reduction (small friction 
reduction), addition of DEAC 

Eng12 DOHC Turbo 1.6l 18bar 
Parent Turbocharged Engine, Gasoline, 1.6L, 4 cyl, 
turbocharged, SGDI, DOHC, dual cam VVT, VVL 

Engine BMEP: 18 bar 
Eng12 
DEAC DOHC Turbo 1.6l 18bar Eng12 with DEAC applied, Engine BMEP 18bar 

Eng13 DOHC Turbo 1.2l 24bar Eng12 downsized to 1.2L,  
Engine BMEP 24 bar 

Eng14 DOHC Turbo 1.2l 24bar + 
Cooled EGR 

Cooled external EGR added to Eng13 
Engine BMEP 24 bar 

Eng17 Diesel Diesel, 2.2L (measured on test bed) 
Eng18 DOHC+VVT+SGDI Gasoline, 2.0L, 4 cyl, NA, SGDI, DOHC, VVT 
Eng19 DOHC+VVT+DEAC Cylinder deactivation added to Eng01 
Eng20 DOHC+VVT+VVL+DEAC Cylinder deactivation added to Eng02 
Eng21 DOHC+VVT+SGDI+DEAC Cylinder deactivation added to Eng18 

Eng22b DOHC+VVT Atkinson-enabled 2.5L DOHC, VVT, PFI, CR14 

Eng24 Current SkyActiv 2.0l 93AKI Non-HEV Atkinson mode, Gasoline, 2.0L, 4 cyl, DOHC, NA, 
SGDI, VVT, CR 13.1, 93 AKI 

Eng25 Future SkyActiv 2.0l CEGR 
93AKI+DEAC 

Non-HEV Atkinson mode, Gasoline, 2.0L, 4 cyl, DOHC, NA, 
SGDI, VVT, cEGR, DEAC CR 14.1,  

93 AKI 
For Reference Only 

Eng26 Atkinson Cycle Engine HEV and PHEV Atkinson Cycle Engine 1.8L 

Eng23b DOHC+VTG+VVT+VVL+SGDI 
+cEGR 

Miller Cycle, 2.0L DOHC, VTG, SGDI, cEGR, VVT, VVL, 
CR12 

Eng23c DOHC+VTG+VVT+SGDI 
+cEGR+Eboost Eng23b with an 48V Electronic supercharger and battery pack 

Eng26a DOHC+VCR+VVT+SGDI 
+Turbo+cEGR VVT, SGDI, Turbo, cEGR, VCR CR 9-12 
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3.1.7.1.2 Non-IAV Engine Map Models 

Two engine map models shown in Table 3-17, Eng24 and Eng25, were not developed as part of 
the IAV modeling effort, and only Eng24 is used in this analysis.   

The Eng24 and Eng25 engine maps are equivalent to the ATK and ATK2 models developed for 
the 2016 Draft TAR, EPA Proposed Determination, and Final Determination.228  The ATK1 
engine model is based directly on the 2.0L 2014 Mazda SkyActiv-G (ATK) engine.  The ATK2 
represents an Atkinson engine concept based on the Mazda engine, adding cEGR, cylinder 
deactivation, and an increased compression ratio (14:1).  In this analysis, Eng24 and Eng25 
correspond to the HCR1 and HCR2 technologies. 

The following sections discuss the approach for inclusion of the existing HCR1 engine map, 
additional engine maps, and research underway to develop an updated family of HCR engine 
map models. 

3.1.7.1.2.1 High Compression Ratio 1 (HCR1) 

We use the HCR1 engine map model despite using high octane fuel in model development 
because the performance of an existing engine (Mazda SkyActiv) on low octane fuel can be 
observed.229  We are careful to maintain vehicle performance and utility attributes when 
considering the application of Atkinson-type technologies for manufacturers that indicated 
interest in pursuing that technology pathway.  Current Atkinson-capable engines have 
incorporated other technologies to reduce load to maximize time in Atkinson operation and to 
offset the decrease in power density.  This includes improved accessories, addition of friction 
reduction technologies, and other technologies that reduce engine load.  Although modern 
improvements to engines have allowed Atkinson operation to occur more often (because of 
lower engine loads) for passenger cars, larger vehicles capable of carrying more cargo and 
occupants, and towing larger and heavier trailers, have more limited potential Atkinson 
operation.  Adoption features considered for HCR engines are discussed further in Chapter 3.1.6. 

We believe the HCR1 engine map does reflect improvements that are representative of the 
technology in the rulemaking timeframe, and the simulated effectiveness of the engine map 
model is incremental to other Atkinson-based engine technologies modeled for this analysis, see 
Figure 3-5.  We use the engine map models for HCR0 and HCR1D in conjunction with the 
HCR1 map model to reflect the incremental effectiveness path for applying HCR technology, see 
Chapter 3.1.3.   

 
228 Ellies, B., Schenk, C., and Dekraker, P., "Benchmarking and Hardware-in-the-Loop Operation of a 2014 
MAZDA SkyActiv 2.0L 13:1 Compression Ratio Engine," SAE Technical Paper 2016-01-1007, 2016, 
doi:10.4271/2016-01-1007; Schenk, C. and Dekraker, P., "Potential Fuel Economy Improvements from the 
Implementation of cEGR and CDA on an Atkinson Cycle Engine," SAE Technical Paper 2017-01-1016, 2017, 
doi:10.4271/2017-01-1016. 
229 Ellies, B., Schenk, C., and Dekraker, P., "Benchmarking and Hardware-in-the-Loop Operation of a 2014 
MAZDA SkyActiv 2.0L 13:1 Compression Ratio Engine," SAE Technical Paper 2016-01-1007, 2016, 
doi:10.4271/2016-01-1007. 
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3.1.7.1.2.2 High Compression Ratio 2 (HCR2) 

We do not allow application of the HCR2 engine in this analysis for all vehicles in the baseline 
fleet.230  We believe the use of HCR0, HCR1, and the new addition of HCR1D reasonably 
represent the application of Atkinson Cycle engine technologies within the current light-duty 
fleet and the anticipated applications of Atkinson Cycle technology in the MY 2024-2026 
timeframe. 

 

We are currently working with IAV and Argonne to develop an updated family of HCR engine 
map models that will include cEGR, cylinder deactivation and a combination thereof.  The new 
engine map models will closely align with the baseline assumptions used in the other IAV-based 
HCR engine map models used for our analysis.  These engine map models will be available for 
future actions after model testing and validation is complete.  We believe the timing for 
including the new engine map models is reasonable, because a manufacturer that could apply this 
technology in response to CAFE standards is likely not do so before MY 2026, as the application 
of this technology will require an engine redesign.  We also believe this is reasonable given 
manufacturer’s statements that there are diminishing returns to additional conventional engine 
technology improvements considering vehicle electrification commitments. 

3.1.7.2 Alternative Modeled Values 

For most engine technologies considered in the analysis, we derive the fuel economy 
improvements from the database of Autonomie full-vehicle simulation results.  However, the 
analysis also incorporates a handful of engine technologies not explicitly simulated in 
Autonomie.  The total effectiveness of these technologies either could not be captured on the 2-
cycle test, or there are no robust data that could be used as an input to the full-vehicle simulation.   

We use two alternate methods for modeling the effectiveness of these engine technologies.  The 
methods include application of analogous simulation results or the application of static 
improvement factors. 

3.1.7.2.1 Analogous Effectiveness Values 

We determine analogous effectiveness values by using representative effectiveness values for a 
given technology when applied to a reasonably similar base engine, an example of this is the 
application of SGDI to the baseline SOHC engine.  Currently there is no engine map model for 
the SOHC+VVT+SGDI engine configuration.  To create the effectiveness data required as an 
input to the CAFE Model, first, we conduct a pairwise comparison between technology 
configurations that included the DOHC+VVT engine (Eng1) and the DOHC+VVT+SGDI 
(Eng18) engine.  Then, we use the results of that comparison to generate a data set of emulated 
performance values for adding the SGDI technology to the SOHC+VVT engine (Eng5b) 
systems.  

 
230 See 85 FR. 24425-27 for more information (Apr. 30, 2020). 
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We perform the pairwise comparison by finding the difference in fuel consumption performance 
between every technology configuration using the analogous base technology (e.g., Eng1) and 
every technology configuration that only changes to the analogous technology (e.g., Eng18).  
The individual changes in performance between all the technology configurations are then added 
to the same technology configurations that use the new base technology (e.g., Eng5b) to create a 
new set of performance values for the new technology (e.g., SOHC+VVT+SGDI).  Table 3-18 
shows the engine technologies where analogous effectiveness values are used. 

Table 3-18 – Engine Technology Performance Values Determined by Analogous Effectiveness Values 

Analogous Baseline  Analogous Technology New Base Technology  New Technology 

Eng1 
DOHC+VVT 

Eng18 
DOHC+VVT+SGDI 

Eng5b 
SOHC+VVT SOHC+VVT+SGDI 

Eng1 
DOHC+VVT 

Eng19 
SOHC+VVT+DEAC 

Eng5b 
SOHC+VVT SOHC+VVT+DEAC 

Eng1 
DOHC+VVT 

Eng20 
DOHC+VVT+VVL+ 

DEAC 

Eng5b 
SOHC+VVT 

SOHC+VVT+VVL+ 
DEAC 

Eng1 
DOHC+VVT 

Eng21 
DOHC+VVT+SGDI+D

EAC 

Eng5b 
SOHC+VVT 

SOHC+VVT+SGDI+ 
DEAC 

Eng12 (TURBO1) Eng12DEAC 
(TURBOD) Eng24 (HCR1) HCR1D 

3.1.7.2.2 Fuel Efficiency Improvement Factors 

We apply a static fuel efficiency improvement factor for some technologies where there is either 
no appropriate analogous technology or where there are not sufficient data to create a full engine 
map model.  The improvement factors are generally based on literature review or CBI provided 
by stakeholders.  Table 3-19 provides a summary of the technology effectiveness values that we 
simulate using improvement factors, and the value and rules for how we apply the improvement 
factors.  Advanced cylinder deactivation (ADEAC, TURBOAD, DSLIAD), advanced diesel 
engines (DSLIA), and engine friction reduction (EFR) are the three technologies that we model 
using improvement factors. 

The application of the advanced cylinder deactivation is responsible for three of the five 
technologies using an improvement factor in this analysis.  The initial advanced cylinder 
deactivation technology was based on a technical publication that used a MY 2010 SOHC VVT 
basic engine.231  Additional information about the technology effectiveness came from a 

 
231 Wilcutts, M., Switkes, J., Shost, M., and Tripathi, A., "Design and Benefits of Dynamic Skip Fire Strategies for 
Cylinder Deactivated Engines," SAE Int. J. Engines 6(1):278-288, 2013, available at https://doi.org/10.4271/2013-
01-0359.  Eisazadeh-Far, K. and Younkins, M., "Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition 
Engines," SAE Technical Paper 2016-01-0672, 2016, available at https://doi.org/10.4271/2016-01-0672.  (Accessed: 
February 15, 2022). 
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benchmarking analysis of pre-production 8-cylinder OHV prototype systems.232  However, at the 
time of the analysis no studies of production versions of the technology were available, and the 
only technology effectiveness data that could be garnered was from existing studies, not 
operational information.  Thus, only estimates of effect could be developed and not a full model 
of operation.  No engine map model could be developed, and no other technology pairs were 
analogous. 

To model the effects of advanced cylinder deactivation, we use an improvement factor based on 
the information referenced above and apply it across the engine technologies.  We predict the 
effectiveness values for naturally aspirated engines by using full vehicle simulations of a basic 
engine with DEAC, SGDI, VVL, and VVT, and adding 3 percent or 6 percent improvement 
based on engine cylinder count: 3 percent for engines with 4 cylinders or less and 6 percent for 
all other engines.  We predict the effectiveness values for turbocharged engines using full vehicle 
simulations of the TURBOD engine and adding 1.5 percent or 3 percent improvement based on 
engine cylinder count: 1.5 percent for engines with 4 cylinders or less and 3 percent for all other 
engines.  For diesel engines, we predict effectiveness values by using the DSLI effectiveness 
values and adding 4.5 percent or 7.5 percent improvement based on vehicle technology class: 4.5 
percent improvement for small and medium non-performance cars, small performance cars, and 
small non-performance SUVs, and 7.5 percent improvement for all other vehicle technology 
classes. 

We model advanced engine technology application to the baseline diesel engine by applying an 
improvement factor to the ADSL engine technology combinations.  A 12.8 percent improvement 
factor is applied to the ADSL technology combinations to create the DSLI technology 
combinations.  We base the performance improvement on the application of a combination of 
low pressure and high pressure EGR, reduced parasitic loss, advanced friction reduction, 
incorporation of highly-integrated exhaust catalyst with low-temp-light-off temperatures, and 
closed loop combustion control.233,234,235,236 

As discussed in Chapter 3.1.4, the application of the EFR technology does not simulate the 
application of a specific technology, but the application of an array of potential improvements to 
an engine.  All reciprocating and rotating components in the engine are potential candidates for 
friction reduction, and minute improvements in several components can add up to a measurable 

 
232 EPA, 2018.  “Benchmarking and Characterization of a Full Continuous Cylinder Deactivation System.”  
Presented at the SAE World Congress, April 10-12, 2018.  Retrieved from 
https://www.epa.gov/sites/default/files/2019-04/documents/sae-2018-benchmarking-characterization-full-
continuous-cylinder-deactivation-system.pdf.  (Accessed: February 15, 2022). 
233 NAS 2015 p. 104. 
234 Hatano, J., Fukushima, H., Sasaki, Y., Nishimori, K., Tabuchi, T., Ishihara, Y. “The New 1.6L 2-Stage Turbo 
Diesel Engine for HONDA CR-V.” 24th Aachen Colloquium - Automobile and Engine Technology 2015.   
235 Steinparzer, F., Nefischer, P., Hiemesch, D., Kaufmann, M., Steinmayr, T.  “The New Six-Cylinder Diesel 
Engines from the BMW In-Line Engine Module.” 24th Aachen Colloquium - Automobile and Engine Technology 
2015.   
236 Eder, T., Weller, R., Spengel, C., Böhm, J., Herwig, H., Sass, H. Tiessen, J., Knauel, P. “Launch of the New 
Engine Family at Mercedes-Benz.” 24th Aachen Colloquium - Automobile and Engine Technology 2015.   
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fuel economy improvement.237,238,239,240  Because of the incremental nature of this analysis, a 
range of 1-2 percent improvement was identified initially, and narrowed further to a specific 1.39 
percent improvement.  The final value is likely representative of a typical value industry may be 
able to achieve in future years. 

Table 3-19 – Engine Technologies Modeled Using Efficiency Improvement Factors 

Baseline Technology  Fuel Efficiency Improvement Factor New Technology 

DEAC 3% for ≤ 4 Cylinders 
6% for > 4 Cylinders ADEAC 

TURBOD 1.5% for ≤ 4 Cylinders 
3% for > 4Cylinders TURBOAD 

ADSL 12.8% DSLI 

DSLI 

4.5% for small and medium non-
performance cars and SUVs, and small 

performance cars.   
7.5% for all other technology classes 

DSLIAD 

All Engine Technologies 1.39% EFR 

3.1.8 Engine Costs 

The CAFE Model considers both cost and effectiveness in selecting any technology changes.  
We allocate considerable resources to sponsoring research to determine direct manufacturing 
costs (DMCs) for fuel saving technologies.241  We apply a learning factor and RPE to the DMC 
values to determine the total overall cost of the technology for a given model year.  The full list 
of engine technology costs used in this analysis, across all model years, and in 2018 dollars, can 
be found in the Technologies file.  We discuss the application of RPE and cost learning to the 
DMCs in Chapter 2.6. 

We use absolute costs in this analysis instead of relative costs, which were used prior to the 2020 
CAFE rulemaking.  We use absolute costs to ensure the full cost of the IC engine is removed 
when electrification technologies are applied, specifically for the transition to BEVs.  This 

 
237 “Polyalkylene Glycol (PAG) Based Lubricant for Light- & Medium-Duty Axles,” 2017 DOE Annual Merit 
Review.  Ford Motor Company, Gangopadhyay, A., Ved, C., Jost, N. 
https://energy.gov/sites/prod/files/2017/06/f34/ft023_gangopadhyay_2017_o.pdf.  (Accessed: February 15, 2022). 
238 “Power-Cylinder Friction Reduction through Coatings, Surface Finish, and Design,” 2017 DOE Annual Merit 
Review.  Ford Motor Company.  Gangopadhyay, A. Erdemir, A.  
https://energy.gov/sites/prod/files/2017/06/f34/ft050_gangopadhyay_2017_o.pdf.  (Accessed: February 15, 2022). 
239 “Nissan licenses energy-efficient engine technology to HELLER,” https://newsroom.nissan-
global.com/releases/170914-01-e?lang=en-US&rss&la=1&downloadUrl=%2Freleases%2F170914-01-
e%2Fdownload.  (Accessed: February 15, 2022). 
240 “Infiniti’s Brilliantly Downsized V-6 Turbo Shines,” http://wardsauto.com/engines/infiniti-s-brilliantly-
downsized-v-6-turbo-shines.  (Accessed: February 15, 2022). 
241 FEV prepared several cost analysis studies for EPA on subjects ranging from advanced 8-speed transmissions to 
belt alternator starter, or start/stop systems.  NHTSA contracted Electricore, EDAG, and Southwest Research for 
teardown studies evaluating mass reduction and transmissions.  The 2015 NAS report on fuel economy technologies 
for light-duty vehicles also evaluated the agencies' technology costs developed based on these teardown studies. 
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analysis models the cost of adopting BEV technology by first removing the costs associated with 
IC powertrain systems, then applying the BEV system costs.  Interested readers can still 
determine relative costs through comparison of the absolute costs for the initial technology 
combination and the new technology combination. 

The costs that we use to model the application of engine technologies can be found across 
multiple tabs of the Technologies file.  We determine engine costs based on engine size and 
configuration, instead of vehicle technology class.  We designate the engine cost tabs in the 
Technologies file based on number of cylinders and number of cylinder banks.  An example of 
the designations is 4C1B, which is a 4-cylinder 1 bank engine; this engine configuration is more 
commonly known as an I-4 engine.  There are also tabs for SOHC engines, OHV engines (1 
camshaft per bank) and ‘L’ designated engines.  The ‘L’ designation accounts for the cost of 
turbo downsizing for smaller engines, which is new for this analysis. 

The cost tabs use DOHC (2 camshafts per bank) architecture as the baseline, so the SOHC (1 
camshaft per bank) engine and OHV (1 camshaft per bank) engine designations are for engines 
with a SOHC architecture or OHV architectures respectively.  However, for costing purposes, we 
assume all engines are DOHC once advanced engine technologies are applied.  We determine 
cylinder count, engine architecture, and configuration by assignment in the analysis fleet file, see 
Chapter 3.1.2.  Table 3-20 gives a summary of some of the more common engine designations.  
For a full discussion about the Technologies file, see the CAFE Model Documentation.  

Table 3-20 – Summary of Common Engine Configurations in CAFE Model Input File 

Engine Costing 
Designation Cylinders Camshafts Represented Cylinder 

Configurations 
2C1B 2 2 2-cylinder engine 
3C1B 3 2 ‘I’ configuration engine 
4C1B 4 2 ‘I’ configuration engine 
4C2B 4 4 ‘V’ or ‘H’ configuration engine 
5C1B 5 2 ‘I’ configuration engine 
6C1B 6 2 ‘I’ configuration engine 
6C2B 6 4 ‘V’ or ‘H’ configuration engine 
8C2B 8 4 ‘V’ or ‘H’ configuration engine 

When the model applies forced-induction technology to a naturally aspirated engine, the engine 
has a significant boost in power density and can be reduced in size, while maintaining similar 
performance.242  The analysis models this reduction in engine size, and, thus, cost, by assuming a 
reduction in the total cylinder count when determining the absolute costs of the new engine in the 
Technologies file.  For example, the cost of forced induction-based technologies (e.g., TURBO1) 
is found in the DOHC V8 naturally aspirated tab (8C2B) of the Technologies file, however, it 
assumes only 6-cylinders when calculating costs.  Table 3-21 provides a small example set of the 
costing configurations for turbo downsized technologies versus the base engine configuration 
costing tab. 

 
242 Heywood 2018, Chapter 6.2.8. 
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Table 3-21 – Examples of how Engine Configuration is Assumed to Change for Cost Purposes when Turbo-
Downsizing Technology is Applied 

NATURALLY ASPIRATED 
COSTING 

CONFIGURATIONS 

TURBO DOWNSIZED 
COSTING CONFIGURATION 

4C1B 4C1B* 
6C2B 4C1B 
8C2B 6C2B 

10C2B 8C2B 
* NOTE:  For this analysis, cost for turbo downsizing a low output 
4-cylinder naturally aspirated engine assumes transition to a 3-
cylinder turbocharged engine. 

We allow additional downsizing beyond what has been previously modeled because 
manufacturers have downsized low output naturally aspirated engines to small architecture turbo 
engines.243,244,245  We identify low-output naturally aspirated 4-cylinder engines in the baseline 
fleet that are allowed to downsize to turbocharged 3-cylinder engines, see Chapter 3.1.2.  These 
engines use the costing tabs in the Technologies file with the ‘L’ designation.  

Table 3-22 shows the assumed cylinder count and camshaft count used for determining 
technology costs for each engine architecture.  The CAFE Model only uses the assumed cylinder 
count for determining technology cost, and initial cylinder count is based on the baseline fleet 
assignment, see Chapter 3.1.2.  For effectiveness, Autonomie modeling uses engine displacement 
and power only, and does not directly use cylinder count.  

 
243 Richard Truett, “GM Bringing 3-Cylinder back to North America.” Automotive News, December 01, 2019. 
https://www.autonews.com/cars-concepts/gm-bringing-3-cylinder-back-na.  (Accessed: February 15, 2022). 
244 Stoklosa, Alexander, “2021 Mini Cooper Hardtop.” Car and Driver, December 2, 2014. 
https://www.caranddriver.com/reviews/a15109143/2014-mini-cooper-hardtop-manual-test-review.  (Accessed: 
February 15, 2022). 
245 Leanse, Alex "2020 For Escape Options: Hybrid vs. 3-Cylinder EcoBoost vs. 4-Cylinder EcoBoost." 
MotorTrend, Sept 24, 2019.  https://www.motortrend.com/news/2020-ford-escape-engine-options-pros-and-cons-
comparison.  (Accessed: February 15, 2022). 
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Table 3-22 – Assumed Cylinder and Camshaft Count Used for Costing for each Engine Architecture for Applied Technology 

Engine 
Architecture 

Basic 
Engine 

(Cyl/Cam) 

TURBO1 
(Cyl/Cam) 

TURBO2 
(Cyl/Cam) 

CEGR1 
(Cyl/Cam) 

ADEAC 
(Cyl/Cam) 

HCR0 
(Cyl/Cam) 

HCR1 
(Cyl/Cam) 

HCR1D 
(Cyl/Cam) 

VCR 
(Cyl/Cam) 

VTG 
(Cyl/Cam) 

TURBOD 
(Cyl/Cam) 

TURBOAD 
(Cyl/Cam) 

2C1B_SOHC 2/1 2/2 2/2 2/2 2/1 2/1 2/1 2/1 2/2 2/2 2/2 2/2 
2C1B 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 
3C1B_SOHC 3/1 3/2 3/2 3/2 3/1 3/1 3/1 3/1 3/2 3/2 3/2 3/2 
3C1B 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 
4C1B_L_SOHC 4/1 3/2 3/2 3/2 4/1 4/1 4/1 4/1 3/2 3/2 3/2 3/2 
4C1B_SOHC 4/1 4/2 4/2 4/2 4/1 4/1 4/1 4/1 4/2 4/2 4/2 4/2 
4C1B_L 4/2 3/2 3/2 3/2 4/2 4/2 4/2 4/2 3/1 3/1 3/1 3/1 
4C1B 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 
4C2B_SOHC 4/2 4/4 4/4 4/4 4/2 4/2 4/2 4/2 4/4 4/4 4/4 4/4 
4C2B_L 4/4 3/2 3/2 3/2 4/4 4/4 4/4 4/4 3/2 3/2 3/2 3/2 
4C2B 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 
5C1B_SOHC 5/1 4/2 4/2 4/2 5/1 5/1 5/1 5/1 4/2 4/2 4/2 4/2 
6C1B_SOHC 6/1 4/2 4/2 4/2 6/1 6/1 6/1 6/1 4/2 4/2 4/2 4/2 
6C1B 6/2 4/2 4/2 4/2 6/2 6/2 6/2 6/2 4/2 4/2 4/2 4/2 
6C1B_ohv 6/1 4/2 4/2 4/2 6/1 6/1 6/1 6/1 4/2 4/2 4/2 4/2 
6C2B_SOHC 6/2 4/2 4/2 4/2 6/2 6/2 6/2 6/2 4/2 4/2 4/2 4/2 
6C2B 6/4 4/2 4/2 4/2 6/4 6/4 6/4 6/4 4/2 4/2 4/2 4/2 
6C2B_OHV 6/2 4/2 4/2 4/2 6/2 6/2 6/2 6/2 4/2 4/2 4/2 4/2 
8C2B_SOHC 8/2 6/2 6/2 6/2 8/2 8/2 8/2 8/2 6/2 6/2 6/2 6/2 
8C2B 8/4 6/4 6/4 6/4 8/4 8/4 8/4 8/4 6/4 6/4 6/4 6/4 
8C2B_ohv 8/2 6/2 6/2 6/2 8/2 8/2 8/2 8/2 6/2 6/2 6/2 6/2 
10C2B_SOHC 10/2 8/2 8/2 8/2 10/2 10/2 10/2 10/2 8/2 8/2 8/2 8/2 
10C2B 10/4 8/4 8/4 8/4 10/4 10/4 10/4 10/4 8/4 8/4 8/4 8/4 
10C2B_ohv 10/2 8/2 8/2 8/2 10/2 10/2 10/2 10/2 8/2 8/2 8/2 8/2 
12C2B_SOHC 12/2    12/2 12/2 12/2 12/2     

12C2B 12/4    12/4 12/4 12/4 12/4     

12C4B_SOHC 12/4    12/4 12/4 12/4 12/4     

12C4B 12/8    12/8 12/8 12/8 12/8     

16C4B_SOHC 16/4    16/4 16/4 16/4 16/4     

16C4B 16/8    16/8 16/8 16/8 16/8     
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3.1.8.1 Basic Engines 

DMCs for basic engine technologies are based on engine cylinder and bank count and 
configuration.  DMC examples are shown in Table 3-23.  We source these costs from 
publications and historical cost studies,246,247 and update them to 2018$ for the analysis.  The 
DMC for each technology is a function of unit cost times either the number of cylinders or 
number of banks, based on how the technology is applied to the system. 

Table 3-23 – Examples of Basic Engine Technology DMC Used for this Analysis in 2018$ 

Engine Technologies – Direct Manufacturer Costs (2018$) for Basic Engine 
Technologies 

Incremental 
To Tech Basis Unit 

DMC 

DMC for DMC for DMC for DMC for DMC for 
4-

Cylinder 
4-

Cylinder 
6-

Cylinder 
6-

Cylinder 
8-

Cylinder 
1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

VVT bank 81.72 81.72 163.44 81.72 163.44 163.44 Base Engine 
VVL cylinder 55.76 223.04 223.05 334.57 334.57 446.09 VVT 
SGDI cylinder 61.68 246.73 246.73 370.09 370.09 493.46 VVT 
DEAC cylinder 31.95 127.80 127.80 191.70 191.70 255.60 VVT 
ADEAC 
SOHC cylinder 45.99 183.96 183.96 275.94 275.94 367.92 VVT, SGDI, 

DEAC 
ADEAC 
DOHC cylinder 85.85 343.40 343.40 515.10 515.10 686.80 VVT, SGDI, 

DEAC 

We apply RPE and learning to the incremental DMCs, see Chapter 2.6.  To reach an absolute 
cost baseline, we sum the basic engine technology costs to establish an overall absolute cost for 
the technology combinations.  For a full listing of all absolute costs see the Technologies file.  
For the basic engines, to calculate an absolute cost, we assign a base engine cost to the engine, 
examples are shown in Table 3-24, then add an incremental cost for each basic engine 
technology, examples are shown in Table 3-25.  As an example, a 4C1B DOHC engine with 
VVT and VVL has an absolute cost of $5516.82 (5,090.94+114.19+311.69) in MY 2020 in 
2018$.  

 
246 Kolwich, Greg, “Diesel Cost Analysis,” FEV, Oct. 13, 2015. FEV P311732-02 at p. 259. 
247 2015 NAS report, at p. 7. 
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Table 3-24 – Examples of Base Absolute Costs for MY 2020 Basic Engine Technologies in 2018 Dollars 

 4C1B (2018$) 6C2B (2018$) 8C2B (2018$) 
SOHC 5,013.49 5,675.87 6,306.65 
DOHC 5,090.94 5,830.76 6,461.54 
OHV NA 5,490.91 6,306.65 

Table 3-25 – Example Incremental Costs for Adding Basic Engine Technologies for MY 2020 in 2018$. 

 4C1B (2018$) 6C2B (2018$) 8C2B (2018$) 
VVT 114.19 228.39 228.39 
VVL 311.69 467.53 623.37 
SGDI 344.78 517.17 689.55 
DEAC 177.65 209.63 236.28 
ADEAC* 564.8 879.31 753.07 

*NOTE: ADEAC costs appear as absolute costs in the Technologies file. 

3.1.8.2 Advanced Engines 

We determine the costs of the advanced engine technologies by adding the lump cost of the 
advanced engine technology to the basic engine technology costs, and then applying the RPE and 
learning factor based on the year that the technology is applied.  The costs for forced induction, 
Atkinson engines, Miller engines, VCR engines, diesel engines, and alternative fuel engines are 
discussed below. 

3.1.8.2.1 Forced Induction Engines 

We calculate the absolute cost for TURBO1 by adding the advanced engine cost to the baseline 
VVT engine.  We calculate the TURBO2 absolute cost by adding the incremental cost to the 
TURBO1 engine cost.  We calculate the CEGR absolute cost by adding the incremental cost to 
the TURBO2 cost.  The cost relationship is summarized in Table 3-26. 

For TURBOD technology costs, we add the incremental cost of DEAC to the TURBO1 
technology, applying the rules for cost downsizing discussed above.  For TURBOAD costs, we 
add the incremental cost of ADEAC to the TURBOD technology cost, also applying the same 
rules for cost downsizing discussed above. 

Table 3-26 below shows the DMCs for forced induction engines in this analysis, in 2018 dollars.  
Table 3-27 shows example absolute costs for the 4C1B turbo engines,248 across multiple model 
years, demonstrating the application of both the RPE and learning rates.  Table 3-28 shows 
example absolute costs for the 6C2B turbo engines, across multiple model years, with RPE and 
learning rates applied.  These costs can be found in the Technologies file. 

 
248 These costs represent the cost for a 6C2B naturally aspirated engine to become a forced induction (turbo) engine, 
per examples discussed in . 
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Table 3-26 – Examples of Turbocharged Downsized Engine DMC in 2018 Dollars 

Engine Technologies – Direct Manufacturer Costs (2018$) for Turbocharged Technologies 

Incremental 
To Tech Basis Unit 

DMC 

DMC for DMC for DMC for DMC for DMC for 
4-

Cylinder 
4-

Cylinder 
6-

Cylinder 
6-

Cylinder 
8-

Cylinder 
1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

TURBO1 None - 874.77 874.77 881.13 881.13 1443.80 VVT 
TURBO2 None - 241.14 241.14 241.14 241.14 406.48 TURBO1 
CEGR1 None - 288.83 288.83 288.83 288.83 288.83 TURBO2 
TURBOD - - 172.33 172.33 172.33 172.33 204.17 TURBO1 
TURBOAD - - 364.93 364.93 364.93 364.93 547.39 TURBOD 

Table 3-27 – Examples Absolute Costs Used for I4 Turbocharged Engines in 2018 Dollars (costs include 
DMCs, RPE and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 
TURBO1 6,264.69 6,215.86 6,173.75 6,156.88 
TURBOD 6,444.89 6,392.32 6,345.15 6,325.78 
TURBOAD 7,042.71 6,942.03 6,847.59 6,811.54 
TURBO2 6,861.47 6,772.50 6,616.76 6,554.61 
CEGR1 7,288.46 7,178.04 6,984.74 6,907.60 

Table 3-28 – Examples Absolute Costs used for V6 Turbocharged Engines in 2018 Dollars (costs include 
DMC, RPE and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 
TURBO1 7,112.60 7,059.27 7,020.02 6,994.87 
TURBOD 7,292.80 7,235.74 7,192.35 7,163.77 
TURBOAD 7,890.63 7,785.45 7,701.57 7,649.52 
TURBO2 7,731.51 7,636.00 7,498.58 7,402.08 
CEGR1 8,158.51 8,041.54 7,873.26 7,755.08 

3.1.8.2.2 Atkinson Engines 

We use DMCs for HCR0 and HCR1 based on the 2015 NAS analysis, but the cost accounting is 
aggregated differently than the 2015 NAS report.  We include other types of technology present 
in the engines, like SGDI, and the configuration of the engine, such as SOHC versus DOHC in 
the cost estimates.  Finally, we determine the HCR1D technology cost by adding the DEAC cost 
to the HCR1 engine costs.  Examples of the DMC values are shown in Table 3-29. 



  227 

We then apply an RPE factor and learning curve.  Table 3-30 and Table 3-31 show examples of 
the full absolute costs used for the engine technologies.  To see all costs across all model years, 
please see the Technologies file.  

Table 3-29 – Examples of HCR Technology DMC Used for the Final Rule Analysis in 2018 Dollars 

Engine Technologies – Direct Manufacturer Costs (2018$) for Atkinson Enabled 
Technologies 

Incremental 
To 

Tech Basis Unit 
DMC 

DMC for DMC for DMC for DMC for DMC for 
4-

Cylinder 
4-

Cylinder 
6-

Cylinder 
6-

Cylinder 8-Cylinder 

1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 2-Bank Engine 

HCR0 none - 573.61 573.61 846.07 846.07 1155.26 VVT 
HCR1 none - 618.89 618.89 891.35 891.35 1200.54 HCR0 
HCR1D - - 127.80 127.80 191.70 191.70 255.60 HCR1 

Table 3-30 – Examples of Absolute Costs for I4 HCR Engines (costs include DMC, RPE and learning rate 
factor) in 2018 Dollars 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 
HCR0 5,843.55 5,812.69 5,803.22 5,801.68 
HCR1 5,898.80 5,851.67 5,831.19 5,826.67 
HCR1D 6,079.00 6028.13 6,002.59 5,995.57 

Table 3-31 – Examples of Absolute Costs for V6 HCR Engines (costs include DMC, RPE and learning rate 
factor) in 2018 Dollars 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 
HCR0 6,990.13 6,942.58 6,928.79 6,925.64 
HCR1 7,045.38 6,981.56 6,958.18 6,950.62 
HCR1D 7,258.02 7,189.79 7,161.53 7,149.92 

3.1.8.2.3 Miller Cycle Engines 

We use cost data from an FEV technology cost assessment, performed for ICCT, to estimate the 
DMC for Miller cycle engines with VTG.249  We considered costs from the 2015 NAS study that 

 
249 Aaron Isenstadt and John German (ICCT); Mihai Dorobantu (Eaton); David Boggs (Ricardo); Tom Watson (JCI) 
“Downsized, boosted gasoline engines,” ICCT. Working Paper 2016-22, 28 October 2016. 
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referenced a NESCCAF 2004 report,250 but believe the reference material from the FEV report 
provides more updated cost estimates for the VTG technology. 

Despite not using the 2015 NAS report cost data, we did use the NAS 2015 methodology for 
aggregating the individual component and system costs to establish a DMC for the Miller cycle 
engine for each engine configuration.  We use a value of $525 (2010$) plus cost of cEGR1, 
minus cost of VVT, VVL, and SGDI for the VTG cost estimate.  From the VTG estimate we 
build a cost for electrically-assisted variable supercharger VTGE (Eng23c) engines based on the 
2015 NAS report that uses a cost of $1050 (2010$) plus the cost of the mild hybrid battery.  
Examples of the DMC for these technologies are shown in Table 3-32.  Example costs are shown 
in Table 3-33 for 4C1B engines and Table 3-34 for 6C2B engines, and include application of the 
RPE and learning factors.  Costs for all engine architectures and model years can be seen in the 
Technologies file. 

Table 3-32 – Examples of DMC Used for Miller Cycle Engines (VTG, VTGE) in 2018 Dollars 

Engine Technologies - Direct Manufacturer Costs (2018$) for Miller 
Technologies 

Incremental To 
Tech 

DMC for DMC for DMC for DMC for 
4-Cylinder 6-Cylinder 6-Cylinder 8-Cylinder 

1-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

VTG 
(w/cEGR) 

603.14 603.14 603.14 603.14 VVT 

VTGE 1499.78 1499.78 1499.78 1499.78 VTG 

Table 3-33 – Examples of Miller Cycle I4 Engines’ Absolute Costs Used for VTG and VTGE Technology 
(costs include DMC, RPE and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 
VTG 7,663.31 7,547.20 7,343.96 7,262.86 
VTGE 9,148.86 8,772.73 8,326.43 8,146.77 

 

 
250 “Reducing Greenhouse Gas Emissions from Light-Duty Motor Vehicles.”  NESCCAF.  September 23, 2004 
Report.  Available at https://www.nesccaf.org/documents/rpt040923ghglightduty.pdf.  (Accessed: February 15, 
2022). 
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Table 3-34 – Examples of Miller Cycle V6 Engines’ Absolute Costs Used for VTG and VTGE Technologies 
(costs include DMC, RPE and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 

VTG 8,532.58 8,410.25 8,234.25 8,110.65 
VTGE 10,018.13 9,635.78 9,257.62 8,994.56 

3.1.8.2.4 Variable Compression Ratio Engines 

The base DMCs that we use for VCR engines are based on data from the 2015 NAS report.251  
The 2015 NAS cost for VCR in MY 2025 uses a naturally aspirated engine; however, for this 
analysis, we add the cost of cEGR.  Table 3-35 shows an example estimated DMC for the VCR 
technology.  Examples of the absolute costs for 4C1B and 6C2B engines, respectively, are in 
Table 3-36 and Table 3-37.  

Table 3-35 – Examples of VCR DMCs in 2018$ 

Engine Technologies - Direct Manufacturer Costs (2018$) 

Incremental To 
Tech Basis Unit 

DMC 

DMC for DMC for DMC for 
4-Cylinder 6-Cylinder 8-Cylinder 

1-Bank Engine 2-Bank Engine 2-Bank Engine 

VCR cylinder 171.47 685.87 1028.80 1371.73 TURBO1 

Table 3-36 – Examples of Absolute VCR Engine Costs for I4 Engine Configuration (costs include DMC, RPE 
and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 
VCR 7,472.47 7,326.44 7,188.83 7,138.25 

Table 3-37 – Examples of Absolute VCR Engine Costs for V6 Engine Configuration (costs include DMC, RPE 
and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 
VCR 8,320.38 8,169.86 8,048.82 7,976.24 

 

 
251 2015 NAS report, at p. 7. 
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3.1.8.2.5 Diesel Engines 

Diesel engine DMCs are based on the baseline engine cost.  The baseline diesel engine (ADSL) 
cost is based on the cost of a modern light duty diesel engine.252  The second level of diesel 
technology (DSLI) includes the cost of incorporating a combination of low pressure and high 
pressure EGR, reduced parasitic loss, advanced friction reduction, incorporation of highly-
integrated exhaust catalyst with low temperature light-off, and closed loop combustion control.  
In both packages, the cost includes after-treatment systems to meet the emissions standards for 
criteria pollutants.253  For DSLIAD technologies, we add the incremental cost of ADEAC to 
DSLI. 

Example costs for the diesel technologies are shown in Table 3-38 and Table 3-39.  All diesel 
engine technology costs are shown in the Technologies file. 

Table 3-38 – Examples of Absolute Diesel Engine Costs for I4 Engine Configuration (costs include DMC, 
RPE and learning rate factor) 

 4C1B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2026 MY 2029 
ADSL 9,832.87 9,619.75 9,438.06 9,373.18 
DSLI 10,344.73 10,108.61 9,907.31 9,835.43 
DSLIAD 10,942.56 10,658.32 10,409.75 10,321.18 

Table 3-39 – Examples of Absolute Diesel Engine Costs for V6 Engine Configuration (costs include DMC, 
RPE and learning rate factor) 

 6C2B Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 
ADSL 11,512.42 11,257.06 11,065.55 10,961.64 
DSLI 12,179.07 11,893.75 11,679.77 11,563.66 
DSLIAD 13,075.80 12,718.32 12,443.61 12,292.29 

3.1.8.2.6 Alternative Fuel Engines 

Examples of costs for CNG engine technologies are shown in Table 3-40 and Table 3-41.254  
CNG engine costs across all model years can be found in the Technologies file. 

 
252 2015 NAS report, at pp. 104–05. 
253 2015 NAS report, at p. 104.  
254 2015 NAS report, at p. 61. 
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Table 3-40 – Examples of Absolute CNG Engine Costs for I4 Engine Configuration (costs include DMC, RPE 
and learning rate factor) 

 4C1B Costs (2018$) 
Technologies MY 2018 MY 2021 MY 2026 MY 2029 
CNG 11,893.10 11,752.83 11,611.72 11,541.17 

Table 3-41 – Examples of CNG Engine Costs for V6 Engine Configuration (costs include DMC, RPE and 
learning rate factor) 

 6C2B Costs (2018$) 
Technologies MY 2018 MY 2021 MY 2025 MY 2029 
CNG 12,748.76 12,606.09 12,462.91 12,389.57 

3.1.8.3 Engine Friction Reduction Technologies 

EFR costs are based on the 2015 NAS assessment for low friction lubrication and engine friction 
reduction level 2 (LUB2_EFR2).255  The 2015 NAS report provides estimates of $51 (I4 
DOHC), and $72 (V6 SOHC and DOHC) for midsize cars, in 2015 dollars, relative to level 1 
engine friction reduction (EFR1), which costs about $12 per cylinder.  For this analysis, we 
estimate EFR DMCs to be $14.05 per cylinder in 2016 dollars.  Table 3-42 shows the EFR DMC 
for the final rule analysis in 2018 dollars and MY 2017 learning rate.  Examples are shown in 
Table 3-43 and Table 3-44. 

Table 3-42 – Example of EFR DMC Used in 2018 Dollars 

Engine Technologies - Direct Manufacturer Costs (2018$) for EFR 

Incremental 
To Tech Basis Unit DMC 

DMC for DMC for DMC for DMC for DMC for 
4-Cylinder 4-Cylinder 6-Cylinder 6-Cylinder 8-Cylinder 

1-Bank 
Engine 

2-Bank 
Engine 

1-Bank 
Engine 

2-Bank 
Engine 

2-Bank 
Engine 

EFR cylinder 11.10 44.40 44.40 66.61 66.61 88.81 VVT 

Table 3-43 – Example of EFR Costs Used for the I4 Engine in 2018 Dollars (cost includes DMC, RPE and 
learning rate factor) 

 Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 
EFR 66.61 66.61 63.97 59.01 

 

 

 
255 2015 NAS report, at p. 7. 
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Table 3-44 – Example of EFR Costs Used for V6 in 2018 Dollars (cost includes DMC, RPE and learning rate 
factor) 

 Costs (2018$) 
Technology MY 2018 MY 2021 MY 2025 MY 2029 
EFR 99.92 99.92 95.96 88.51 

3.2 Transmission Paths 

Transmissions transmit torque from the engine to the wheels.  Transmissions primarily use two 
mechanisms to improve fuel efficiency: (1) a wider gear range, which allows the engine to 
operate longer at higher efficiency speed-load points; and (2) improvements in friction or 
shifting efficiency (e.g., improved gears, bearings, seals, and other components), which reduce 
parasitic losses.  

For this analysis, we classify all light duty vehicle transmission technologies into discrete 
transmission technology paths.  We use the paths to model the most representative 
characteristics, costs, and performance of the fuel-economy improving transmissions most likely 
available during the rulemaking time frame. 

The following sections discuss how we define the transmission technologies in this analysis, the 
CAFE Model’s general technology categories, and the transmission technologies’ relative 
effectiveness and costs.  The following sections also provide an overview of how we assign 
transmission technologies to the MY 2020 fleet, as well as the transmission adoption features.   

3.2.1 Transmission Modeling in the CAFE Model 

We model two major categories of transmissions for this analysis: automatic and manual.  
Automatic transmissions are characterized by automatically selecting and shifting between 
transmission gears for the driver during vehicle operation.  We further subdivide automatic 
transmissions into four subcategories: traditional automatic transmissions (AT), dual clutch 
transmissions (DCT), continuously variable transmissions (CVT and eCVT), and direct drive 
transmissions (DD).  Manual transmissions (MT) require direct control by the driver to select 
and shift between gears during vehicle operation. 

We also include the application of high efficiency gearbox (HEG) technology improvements as 
options to the transmission technologies.  HEG improvements for transmissions represent 
incremental advancements in technology that improve efficiency, such as reduced friction seals, 
bearings and clutches, super finishing of gearbox parts, and improved lubrication.  These 
advancements are all aimed at reducing frictional and other parasitic loads in transmissions to 
improve efficiency.  We consider three levels of HEG improvements in this analysis based on the 
National Academy of Sciences (NAS) 2015 recommendations, and CBI data.256  We apply HEG 
efficiency improvements to ATs and CVTs, as those transmissions inherently have higher 
friction and parasitic loads related to hydraulic control systems and greater component 

 
256 2015 NAS Report, at p. 191.  
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complexity, compared to MTs and DCTs.  We identify transmissions by technology type, gear 
count, and HEG technology level using the naming conventions shown in Table 3-45, below.   

Table 3-45 – Naming Conventions used for Transmission Technology Pathways 

Transmission Name 
5-speed automatic AT5 
6-speed automatic baseline AT6 
6-speed automatic level 2 HEG AT6L2 
7-speed automatic level 2 HEG AT7L2 
8-speed automatic baseline AT8 
8-speed automatic level 2 HEG AT8L2 
8-speed automatic level 3 HEG AT8L3 
9-speed automatic level 2 HEG AT9L2 
10-speed automatic level 2 HEG AT10L2 
10-speed automatic level 3 HEG AT10L3 
6-speed dual-clutch  6DCT 
8-speed dual-clutch  8DCT 
Continuous variable transmission CVT 
Continuous variable transmission level 2HEG CVTL2 
5-speeed manual transmission MT5 
6-speed manual transmission  MT6 
7-speed manual transmission MT7 

The CAFE Model pathways for transmission technologies are shown in Figure 3-7.  We assign 
baseline-only technologies (the greyed MT5, AT5, AT7L2, AT9L2, and CVT nodes) only as 
initial vehicle transmission configurations.   

 

Figure 3-7 – CAFE Model Pathways for Transmission Technologies 
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3.2.1.1 Automatic Transmissions 

We separate automatic transmissions into three major ‘branches’ as shown in Figure 3-7: ATs, 
DCTs, and CVTs.   

Direct drive transmissions are not discussed in detail in this analysis and are not specifically 
shown in the technology pathways.  DD transmissions are classified as automatic transmissions 
but have a direct connection between the wheels and a drive motor.  In a DD transmission, the 
ratio between wheel speed and motor speed remains constant.  DD transmissions are considered 
integral parts of electrified drivetrains (such as in BEVs) and are not applied as a standalone 
technology.  See Chapter 3.2.3 for a discussion of how we assign the DD transmission in the 
baseline fleet.  

Electronic continuously variable transmissions (eCVT) are also not discussed in detail in this 
analysis and are not specifically shown in the technology pathways.  eCVTs are classified as 
CVTs, but the eCVT module contains both an electric traction motor and generator coupled to 
the ICE through a single planetary gear set.257  eCVTs are considered integral parts of electrified 
drivetrains (such as power-split hybrids) and are not applied as a standalone technology.  See 
Chapter 3.2.3 for a discussion of how we assign the eCVT in the baseline fleet. 

 

3.2.1.1.1 Traditional Automatic Transmissions 

Conventional planetary gear automatic transmissions (AT) are the most popular transmission.258  
ATs typically contain three or four planetary gear sets that provide the various gear ratios.  Gear 
ratios are selected by activating solenoids that engage or release multiple clutches and brakes as 
needed.  We include ATs with gear counts ranging from five speeds to ten speeds in this 
analysis, see Figure 3-7.259 

ATs are packaged with torque converters, which provide a fluid coupling between the engine and 
the driveline and provide a significant increase in launch torque.  When transmitting torque 
through this fluid coupling, energy is lost due to the churning fluid.  These losses can be 
eliminated by engaging the torque convertor clutch to directly connect the engine and 
transmission (“lockup”). 

In general, ATs with a greater number of forward gears and with larger overall ratio spread offer 
more potential for fuel consumption reduction, but at the expense of higher control complexity.  
Transmissions with a higher number of gears typically offer a wider overall speed ratio and more 
opportunity to operate the engine near its most efficient point.  For the Draft TAR and 2020 final 
rule, we and EPA surveyed automatic transmissions in the market to assess trends in gear count 

 
257 Light Duty Technology Cost Analysis, Power-Split and P2 HEV Case Studies, EPA-420-R-11-015 (November 
2011).  
258 2021 EPA Automotive Trends Report.  
259 Specifically, we considered five-speed automatic transmissions (AT5), six-speed automatic transmissions (AT6), 
seven-speed automatic transmission (AT7), eight-speed automatic transmissions (AT8), nine-speed automatic 
transmissions (AT9), and ten-speed automatic transmissions (AT10). 
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and purported fuel economy improvements.260  Based on that survey, and also EPA’s more 
recent Automotive Trends Reports,261 we model ATs with a range of 5 to 10 gears with three 
levels of HEG technology. 

3.2.1.1.2 Continuously Variable Transmissions 

Conventional continuously variable transmissions (CVT) consist of two cone-shaped pulleys, 
connected with a belt or chain.  Moving the pulley halves allows the belt to ride inward or 
outward radially on each pulley, effectively changing the speed ratio between the pulleys.  This 
ratio change is smooth and continuous, unlike the step changes of other transmission varieties.262 

One advantage of CVTs is that they continue to transmit torque during ratio changes.  In ATs 
and some DCTs, energy from the engine is wasted during a ratio change or shift.  ATs and some 
DCTs have a delay during shifts caused by the torque disruption during gear changes.  Another 
advantage of a CVT is that with its effectively “infinite” number of gear steps, within its ratio 
range it can maintain engine operation closer to the maximum efficiency for the required power.  
AT’s efficiency peaks with 9 to 10 gears,263,264 and approaches the CVT’s ability to operate the 
engine at the most efficient operating point.  While a CVT can improve fuel economy over ATs 
with fewer gears, it typically provides minimal improvement over 9- and 10-speed ATs.   

We model two types of CVT systems in the analysis, the baseline CVT and a CVT with HEG 
technology applied, see Figure 3-7.  As discussed above, eCVTs are not modeled as a standalone 
technology but are incorporated in power split hybrids (SHEVPS). 

3.2.1.1.3 Dual Clutch Transmissions 

Dual clutch transmissions (DCT), like automatic transmissions, automate shift and launch 
functions.  DCTs use separate clutches for even-numbered and odd-numbered gears, allowing the 
next gear needed to be pre-selected, resulting in faster shifting.  The use of multiple clutches in 
place of a torque converter results in lower parasitic losses than ATs.265   

However, DCTs have limited penetration in the fleet.266  DCTs have encountered issues with 
customer acceptance.267  The NAS also stated in its 2021 report, “... attempts by some 
automakers to introduce this technology to the U.S. market were met with significant customer 
acceptance issues; for instance, customers accustomed to a torque convertor based automatic 
transmission performance seem to have concerns with a start-up clutch, mostly at lower speeds.  

 
260 Draft TAR at 5-50, 5-51; Final Regulatory Impact Analysis accompanying the 2020 final rule, at p. 549. 
261 2021 EPA Automotive Trends Report 
262 2015 NAS report, at 171. 
263 Robinette, D. & Wehrwein, D. “Automatic Transmission Technology Selection Using Energy Analysis,” 
presented at the CTI Symposium 9th International 2015 Automotive Transmissions, HEV and EV Drives.   
264 Greimel, H.  “ZF CEO - We’re not chasing 10-speeds,” Automotive News, November 23, 2014, 
http://www.autonews.com/article/20141123/OEM10/311249990/zf-ceo:-were-not-chasing-10-speeds.  (Accessed: 
February 15, 2022).   
265 2015 NAS report, at p. 170. 
266 2020 EPA Automotive Trends Report, at p. 57. 
267 See 2015 NAS report, at 170-1.  For example, Honda has tried adding additional technology like torque converts 
to the DCT to improve consumer acceptance, with limited success. 
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Therefore, some automakers have since transitioned away from DCTs, and other automakers 
scrapped introduction plans prior to launch.”268 

Generally, DCTs are very cost-effective technologies in the simulation, but consumer acceptance 
issues limit their appeal in the American market.  Because of the limited appeal, we constrain 
application of additional DCT technology to vehicles already using DCT technology, and only 
models two types of DCTs in the analysis, see Figure 3-7. 

3.2.1.2 Manual Transmissions 

Manual transmissions (MT) are transmissions that require direct control by the driver to operate 
the clutch and shift between gears.  In a manual transmission, gear pairs along an output shaft 
and parallel layshaft are always engaged.  The driver selects gears via a shift lever.  The lever 
operates synchronizers, which speed match the output shaft and the selected gear before 
engaging the gear with the shaft.  During shifting operations (and during idle), the driver 
disengages a clutch between the engine and transmission to decouple engine output from the 
transmission.  

Automakers today offer a minimal selection of new vehicles with manual transmissions.269  The 
NAS also recognizes in its 2021 report that “Manual transmissions have all but left the U.S. 
light-duty market except in sports performance categories.”270  As a result of reduced market 
presence, we only include three variants of manual transmissions in the analysis, see Figure 3-7.   

3.2.2 Transmission Analysis Fleet Assignments 

To understand manufacturers’ potential pathways for compliance and the feasibility of different 
potential stringencies, it is important to first understand the baseline state of technology in their 
fleets.  The analysis fleet provides a snapshot of the U.S. vehicle market for the 2020 model year.  
It includes transmission assignments for each vehicle and the degree of transmission sharing 
among those vehicles.  Assignments map the transmissions modeled in Autonomie to the real-
world transmissions they best represent in terms of configuration, cost, and effectiveness. 

3.2.3 Transmission Characteristics Considered in Baseline Fleet Assignments 

“Assignment” refers to the process of identifying which Autonomie transmission model is most 
like a vehicle’s real-world transmission, taking into account the transmission’s configuration and 
generic costs.  Table 3-46 lists the Autonomie transmission models and their acronyms that we 
use in the CAFE Model input files.  For convenience, we refer to these technologies by their 
acronyms in this section. 

We classify the wide variety of transmissions on the market into discrete transmission 
technology paths.  We use the paths to model the most representative characteristics, costs, and 

 
268 National Academies of Sciences, Engineering, and Medicine 2021. Assessment of Technologies for Improving 
Light-Duty Vehicle Fuel Economy 2025-2035. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/26092, at pp. 4-56 [hereinafter 2021 NAS report].  (Accessed: February 15, 2022). 
269 2020 EPA Automotive Trends Report, at p. 61. 
270 2021 NAS report, at pp. 4-54. 
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performance of the fuel economy-improving technologies most likely available during the 
rulemaking time frame.  Due to uncertainty regarding the costs and capabilities of emerging 
technologies, some new and pre-production technologies are not a part of this analysis. 

To assess the feasibility of different stringencies, it is important to accurately establish the 
baseline technology content of the fleet.  Underestimating the amount of technology in the 
baseline would lead to overestimating the actual technology application needed for 
manufacturers to comply with standards and cause the analysis to incorrectly apply technologies 
that are already present on baseline vehicles.  Conversely, overestimating the technology present 
in the analysis fleet would artificially (and incorrectly) limit the technologies manufacturers 
might apply to meet standards.  

Manufacturer mid-model year CAFE compliance submissions and publicly available 
manufacturer specification sheets serve as the basis for baseline transmission assignments.  We 
use these data to assign transmissions in the analysis fleet and determine which platforms share 
transmissions.  Common transmissions and how we characterize them are discussed in Chapter 
3.2.3.   

Table 3-46 – Transmission Technologies 

Transmission Name 
5-speed automatic AT5 
6-speed automatic baseline AT6 
6-speed automatic level 2 high-efficiency gearbox (HEG) AT6L2 
7-speed automatic level 2 HEG AT7L2 
8-speed automatic baseline AT8 
8-speed automatic level 2 HEG AT8L2 
8-speed automatic level 3 HEG AT8L3 
9-speed automatic level 2 HEG AT9L2 
10-speed automatic level 2 HEG AT10L2 
10-speed automatic level 3 HEG AT10L3 
6-speed dual-clutch  DCT6 
8-speed dual-clutch  DCT8 
Continuously variable transmission CVT 
Continuously variable transmission level 2 HEG CVTL2 
5-speed manual transmission MT5 
6-speed manual transmission  MT6 
7-speed manual transmission MT7 
Direct drive DD 
Electronic continuously variable transmission eCVT 

We specify transmission type, number of gears, and high-efficiency gearbox (HEG) level for the 
baseline fleet assignment.  Transmission types in the analysis include automatic, manual, dual-
clutch, and continuously variable, as described in Chapter 3.2.1.  HEG levels represent 
incremental improvements in transmission technology that improve efficiency for automatic and 
continuously variable transmissions.  See Chapter 3.2.1 for further discussion of HEG levels. 
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The number of gears in the assignments for automatic and manual transmissions usually match 
the number of gears listed by the data sources, with some exceptions.  We did not model four-
speed transmissions in Autonomie due to their rarity and low likelihood of being used in the 
future, so we assign 2020 vehicles with an AT4 or MT4 to an AT5 or MT5 baseline, 
respectively.  Some dual-clutch transmissions are also an exception; we assign dual-clutch 
transmissions with seven gears to DCT6. 

For automatic and continuously variable transmissions, identifying the most appropriate 
transmission path model requires additional steps; this is because identifying HEG level from 
specification sheets alone is not always straightforward.  We review age of the transmission 
design, relative performance versus previous designs, and technologies incorporated to assign an 
HEG level.   

No automatic transmissions in the MY 2020 analysis fleet are at HEG Level 3.  In addition, we 
did not assign HEG Level 2 technology to any six-speed automatic transmissions.  However, we 
found all 7-speed, all 9-speed, all 10-speed, and some 8-speed automatic transmissions to be 
advanced transmissions operating at HEG Level 2 equivalence.  Eight-speed automatic 
transmissions developed after MY 2017 are assigned HEG Level 2.  All other transmissions are 
assigned to their respective transmission’s baseline level.  The baseline (HEG level 1) 
technologies available include AT6, AT8, and CVT.  

We assign any vehicle in the analysis fleet with an electric powertrain a direct drive (DD) 
transmission.  We assign any vehicle in the analysis fleet with a power-split hybrid (SHEVPS) 
powertrain an electronic continuously variable transmission (eCVT).  These designations are for 
informational purposes only.  If specified, the transmission will not be individually replaced or 
updated by the model, because of the integrated nature of these transmissions.  For further 
discussion of how the model handles transmissions on electrified vehicles, see Chapter 3.2.1.   

Table 3-47 shows the prevalence of each technology as assigned in the baseline fleet. 

Table 3-47 – Penetration Rates of Transmission Technologies in the 2020 Baseline Fleet 

Transmission Technology Sales Volume Penetration Rate 
MT5 11,116 0.08% 
MT6 141,093 1.04% 
MT7 455 0.003% 
AT5 137,622 1.01% 
AT6 2,223,646 16.36% 
AT6L2 - 0% 
AT7L2 67,193 0.49% 
AT8 3,253,670 23.94% 
AT8L2 372,087 2.74% 
AT8L3 - 0% 
AT9L2 1,539,691 11.33% 
AT10L2 1,407,973 10.36% 
AT10L3 - 0% 
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DCT6 162,334 1.19% 
DCT8 156,656 1.15% 
CVT 1,184,424 8.71% 
CVTL2 2,248,223 16.54% 
DD/eCVT (Total HEV/BEV) 686,368 5.05% 
Total Automatic 9,001,882 66.23% 
Total Manual 152,664 1.12% 
Total Dual-Clutch 318,990 2.35% 
Total Continuously Variable 3,432,647 25.25% 

3.2.4 Other Transmission Characteristics Recorded and Used to Identify Common 
Transmissions 

Manufacturers often use transmissions that are the same or similar on multiple vehicles.  To 
reflect this, we consider shared transmissions for manufacturers as appropriate.  For more 
information, see Chapter 2.2.1.6. 

In addition to technology type, gear count, and HEG level, we characterize transmissions in the 
analysis fleet by drive type and vehicle architecture.  We consider front-, rear-, all-, and four-
wheel drive in the analysis.  The definition of drive types in the analysis does not always align 
with manufacturers’ drive type designations; see the end of this subsection for further discussion.  
These characteristics, supplemented by information such as gear ratios and production locations, 
show that manufacturers use transmissions that are the same or similar on multiple vehicle 
models.  Manufacturers have told us they do this to control component complexity and 
associated costs for development, manufacturing, assembly, and service.  If multiple vehicle 
models share technology type, gear count, drive configuration, internal gear rations, and 
production location, the transmissions are treated as a single group for the analysis.  Vehicles in 
the analysis fleet with the same transmission configuration adopt additional fuel-saving 
transmission technology together, as described in Chapter 2.2.1.6. 

We designate and track common transmissions in the CAFE Model input files using transmission 
codes.  Transmission codes are six-digit numbers that are assigned to each transmission and 
encode information about them.  This information includes the manufacturer, drive 
configuration, transmission type, and number of gears.  Table 3-48 lists the possible values for 
each digit in the transmission code and its meaning. 
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Table 3-48 – Transmission Codes Guide 

Transmission Code Digit Meaning  Values Notes 

First and Second Manufacturer 

11 - General Motors 
12 - Fiat-Chrysler 

13 - Ford 
14 - Tesla 

21 - Honda 
22 - Nissan 
23 - Toyota 
24 - Mazda 

25 - Mitsubishi 
26 - Subaru 

31 - Hyundai 
32 - Kia 

41 - BMW 
42 - Volkswagen 

43 - Daimler 
44 - Jaguar-Land Rover 

45 - Volvo 

First digit indicates 
manufacturer 

heritage region: 
1 - USA 
2 - Japan 

3 - South Korea 
4 - Europe 

Third  Drive 
Configuration 

1 - Front-Wheel Drive 
2 - All-Wheel Drive 

3 - Rear-Wheel Drive 
4 - Four-Wheel Drive 

Drive configuration 
determined by 

vehicle architecture 

Fourth  Transmission 
Type 

1 - Manual 
2 - Automatic 

3 - Continuously Variable 
4 - Dual-Clutch 

 

Fifth  Number of 
Gears 

0 - 10-speed 
1 - Continuously variable 

5 - 5-speed 
6 - 6-speed 
7 - 7-speed 
8 - 8-speed 
9 - 9-speed 

 

Sixth  Transmission 
Variant 1 through 9  

An example of a transmission code is 132281, which corresponds to the Ford Escape’s all-wheel 
drive (AWD), 8-speed automatic transmission.  Transmission codes can be decoded by reading 
the code from left to right: “13” is the manufacturer code for Ford, “2” indicates an AWD 
vehicle, “2” indicates an automatic transmission, “8” indicates eight speeds, and “1” means this 
is the first variant of this particular transmission.   

We assign different transmission codes to variants of a transmission that may appear to be 
similar based on the characteristics considered in the analysis but are not mechanically identical.  
We distinguish among transmission variants by comparing their internal gear ratios and 
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production locations.  For example, several Ford nameplates carry a rear-wheel drive, 10-speed 
automatic transmission (AT10).  These nameplates comprise a wide variety of body styles and 
use cases, so the analysis assigns different transmission codes to these different nameplates.  
Because the nameplates have different transmission codes, they are not treated as “shared” for 
the purposes of analysis in the CAFE Model and can adopt transmission technologies 
independently.  

Note that when determining the drive type of a transmission, the assignment of aAWD versus 
four-wheel drive is determined by vehicle architecture.  This assignment does not necessarily 
match the drive type used by the manufacturer in specification sheets and marketing materials.  
Vehicles with a powertrain capable of providing power to all wheels and a transverse engine 
(front-wheel drive architecture) are assigned AWD.  Vehicles with power to all four wheels and 
a longitudinal engine (rear-wheel drive architecture) are assigned four-wheel drive. 

3.2.5 Transmission Adoption Features 

When evaluating transmission technologies to improve fuel economy, the CAFE Model 
considers current transmission architecture.  If a manufacturer has already committed to 
advanced automatic, manual, continuously variable, or dual-clutch transmissions on a vehicle, 
the CAFE Model will consider higher-tier fuel-saving technologies along the current path.  
Transmission level technology pathways are illustrated in Figure 3-8 below.271   

Technology pathways are designed to prevent “branch hopping” – changes in transmission type 
that would correspond to significant changes in transmission architecture – for vehicles that are 
relatively advanced on a given pathway.  For example, any automatic transmission with more 
than five gears cannot move to a dual-clutch transmission.  For a more detailed discussion of 
path logic applied in the analysis, including technology supersession logic and technology 
mutual exclusivity logic, please see CAFE Model Documentation S4.5 Technology Constraints 
(Supersession and Mutual Exclusivity).272  Additionally, the CAFE Model prevents “branch 
hopping” to prevent stranded capital associated with moving from one transmission architecture 
to another.  Stranded capital is discussed in more detail in Chapter 2.6.3. 

 
271 Technologies that were not assigned in the baseline fleet include MT5, AT5, AT7L2, AT9L2, and CVT; they are 
indicated by the grey boxes. 
272 Available at https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system.  
(Accessed: February 15, 2022). 
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Figure 3-8 – Transmission-Level Technology Pathways 

Some technologies that we model in the analysis are not yet in production, and therefore are not 
assigned in the baseline fleet.  Nonetheless, these technologies, which we project will be 
available in the analysis timeframe, are available for future adoption.  For instance, we do not 
observe any AT10L3s in the baseline fleet, but it is plausible that manufacturers that employ 10-
speed automatic transmission, Level 2 (AT10L2) technology may improve the efficiency of 
those AT10L2s in the rulemaking timeframe.  

Note that when electrification technologies are adopted, the transmissions associated with those 
technologies will supersede the existing transmission on a vehicle.  The transmission technology 
is superseded if the model applies P2 hybrid, plug-in hybrid, or battery electric vehicle 
technologies.  For more information, see Chapter 3.3.3. 

The following sections discuss specific adoption features applied to each type of transmission 
technology.  

3.2.5.1 Automatic Transmissions (AT) 

The automatic transmission path precludes adoption of other transmission types once a platform 
progresses past an AT6.  We use this restriction to avoid the significant level of stranded capital 
loss that could result from adopting a completely different transmission type shortly after 
adopting an advanced transmission, which would occur if a different transmission type were 
adopted after AT6 in the rulemaking timeframe.   

Vehicles that did not start out with AT7L2 or AT9L2 transmissions cannot adopt those 
technologies in the model.  Vehicles with those technologies are primarily luxury performance 
vehicles.  It is likely that other vehicles will not adopt those technologies, as vehicles that have 
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moved to more advanced automatic transmissions have overwhelmingly moved to 8-speed and 
10-speed transmissions.273 

3.2.5.2 Continuously Variable Transmissions (CVT) 

CVT adoption is limited by technology path logic.  Vehicles that do not originate with a CVT or 
vehicles with multispeed transmissions beyond AT6 in the baseline fleet cannot adopt CVTs.  
Vehicles with multispeed transmissions greater than AT6 demonstrate increased ability to 
operate the engine at a highly efficient speed and load.  Once on the CVT path, the platform is 
only allowed to apply improved CVT technologies.  The analysis restricts the application of 
CVT technology on larger vehicles because of the higher torque (load) demands of those 
vehicles and CVT torque limitations based on durability constraints.  Additionally, this 
restriction is used to avoid stranded capital.   

3.2.5.3 Dual-Clutch Transmissions (DCT) 

The analysis allows vehicles in the baseline fleet that have DCTs to apply an improved DCT and 
allows vehicles with an AT5 to consider DCTs.  Drivability and durability issues with some 
DCTs have resulted in a low relative adoption rate over the last decade.  This is also broadly 
consistent with manufacturers’ technology choices.274 

3.2.5.4 Manual Transmissions (MT) 

Manual transmissions can only move to more advanced manual transmissions because other 
transmission types do not provide a similar driver experience.  Manual transmissions cannot 
adopt AT, CVT, or DCT technologies.  Other transmissions cannot move to MT because manual 
transmissions lack automatic shifting associated with the other transmission types and in 
recognition of the low customer demand for manual transmissions.275 

3.2.6 Transmission Effectiveness  

We use the Autonomie full vehicle simulation tool to understand how transmissions work within 
the full vehicle system to improve fuel economy, and how changes to the transmission subsystem 
influence the performance of the full vehicle system.  The full vehicle simulation approach 
clearly defines the contribution of individual transmission technologies and separates those 
contributions from other technologies in the full vehicle system.  The modeling approach follows 
the recommendations of the National Academy of Sciences in its 2015 light duty vehicle fuel 
economy technology report to use full vehicle modeling supported by application of collected 
improvements at the sub-model level.276   

The Autonomie tool models transmissions as a sequence of mechanical torque gains.  The torque 
and speed are multiplied and divided, respectively, by the current ratio for the selected operating 
condition.  Furthermore, torque losses corresponding to the torque/speed operating point are 

 
273 2021 EPA Automotive Trends Report, at p. 64, figure 4.21. 
274 Ibid. 
275 Ibid. 
276 2015 NAS report, at 292. 
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subtracted from the torque input.  Torque losses are defined based on a three-dimensional 
efficiency lookup table that has the following inputs: input shaft rotational speed, input shaft 
torque, and operating condition.  A detailed discussion of the Autonomie transmission modeling 
can be found in Chapters 4 and 5 of the Autonomie model documentation. 

We populate transmission template models in Autonomie with characteristics data to model 
specific transmissions.  Characteristics data are typically tabulated data for transmission gear 
ratios, maps for transmission efficiency, and maps for torque converter performance, as 
applicable.  Different transmission types require different quantities of data.  The characteristics 
data for these models come from peer-reviewed sources, transmission and vehicle testing 
programs, results from simulating current and future transmission configurations, and 
confidential data obtained from OEMs and suppliers.277   

For example, the 10-speed automatic transmission (AT10L2) efficiency curve uses data from 
South-West Research Institute (SWRI) for the 2017 Ford F-150 10R80 transmission.278,279  The 
10R80 transmission is a 10-speed, rear-wheel-drive transmission that Ford is currently using in 
both cars and trucks, including the Ford F-150, Ford Mustang, Ford Expedition, Lincoln 
Navigator, and Ford Ranger.280  Since this transmission is used in both cars and trucks, the 
SWRI data for this transmission are applicable to multiple vehicle classes.  

We model HEG improvements by modeling improvements to the efficiency map of the 
transmission.  As an example, the baseline AT8 model data comes from a transmission 
characterization study.281  The AT8L2 has the same gear ratios as the AT8, however, we improve 
the gear efficiency map to represent application of the HEG level 2 technologies.  The AT8L3 
models the application of HEG level 3 technologies using the same principle, further improving 
the gear efficiency map over the AT8L2 improvements. 

As discussed above, we determine effectiveness values for the transmission technologies using 
Autonomie modeling; however, we did not use Autonomie to calculate effectiveness values for 
the AT6L2.  The model for this specific technology is inconsistent with the other transmission 
models and overpredicts effectiveness results as a result of an overestimated efficiency map.  To 
address the issue, we use an analogous effectiveness value from the AT7L2 transmission model 

 
277 Downloadable Dynamometer Database.: https://www.anl.gov/energy-systems/group/downloadable-
dynamometer-database (Accessed: February 15, 2022); Kim, N., Rousseau, N., Lohse-Bush, H.., “Advanced 
Automatic Transmission Model Validation Using Dynamometer Test Data,” SAE 2014-01-1778, SAE World 
Congress, Detroit, April 2014; Kim, N., Lohse-Bush, H., Rousseau, A.., “Development of a model of the dual clutch 
transmission in Autonomie and validation with dynamometer test data,” International Journal of Automotive 
Technologies, March 2014, Volume 15, Issue 2, pp 263–71. 
278 Autonomie model documentation, Chapter 5.3. 
279 Wileman, C. (2021, July). Light-duty vehicle transmission benchmarking, 2017 Ford F-150 with 10R80 and 2018 
Honda Accord with Earth Dreams CVT (Report No. DOT HS 813 163). National Highway Traffic Safety 
Administration. 
280 The More You Know About The 10R80…The Better Off You Are!, Gears Magazine (September 1, 2020), 
https://gearsmagazine.com/magazine/the-more-you-know-about-the-10r80-the-better-off-you-are.  (Accessed: 
February 15, 2022). 
281 Autonomie model documentation, Chapter 5.3. 
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in place of the effectiveness value from the AT6L2 map.  For additional discussion on how we 
use analogous effectiveness values please see Chapter 3.2.6. 

We group transmissions by technology type (AT, DCT, CVT, etc.) and gear count (5,6,7, etc.).  
We subdivide the transmission groups further by HEG technology level.  The effectiveness 
values for the transmission technologies, for all ten vehicle technology classes, are shown in 
Figure 3-9.  Each of the effectiveness values shown is representative of the improvements seen 
for upgrading only the listed transmission technology for a given combination of other 
technologies.  In other words, the range of effectiveness values seen for each specific 
technology, e.g., AT10L3, represents the addition of the AT10L3 technology to every 
technology combination that could add AT10L3.  We emphasize that the graph shows the change 
in fuel consumption values between entire technology keys,282 and not the individual technology 
effectiveness values.  Using the change between whole technology keys captures the 
complementary or non-complementary interactions among technologies.  In the graph, the box 
shows the inner quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x 
IQR.  The blue dots show values for effectiveness that are outside these bounds. 

Note that the effectiveness for the MT5, AT5, eCVT and DD technologies is not shown.  The 
DD and eCVT transmissions do not have a standalone effectiveness because it is only 
implemented as part of Electrification powertrains.  The MT5 and AT5 also have no 
effectiveness values because both technologies are baseline technologies against which all other 
technologies are compared. 

 
282 Technology key is the unique collection of technologies that constitutes a specific vehicle (see Chapter 2.4.7). 
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Figure 3-9 – Transmission Technologies Effectiveness Values for all Vehicle Technology Classes283 

We comprehensively simulate 18 transmission technologies using the Autonomie tool.  Each 
transmission is modeled with defined gear ratios, gear efficiencies, gear spans, and unique shift 
logic for the configuration.  The following sections discuss specific shift logic employed in the 
Autonomie modeling.   

3.2.6.1 Shift Logic 

Transmission shifting logic has a significant impact on vehicle energy consumption.  Argonne 
models shift logic in Autonomie to maximize powertrain efficiency while maintaining acceptable 
drive quality.  The logic used in the Autonomie full vehicle modeling relies on two components: 
(1) the shifting controller, which provides the logic to select appropriate gears during simulation; 
and (2) the shifting initializer, an algorithm that defines shifting maps (i.e., values of the 
parameters of the shifting controller) specific to the selected set of modeled vehicle 
characteristics and modeled powertrain components.284 

3.2.6.1.1 Shifting Controller 

The shift controller is the logic that governs shifting behavior during simulated operation.  Inputs 
from the model inform the shift controller performance.  The inputs include the specific engine 

 
283 The data used to create this figure can be found in the FE_1 Improvements file. 
284 Autonomie model documentation, Chapter 4.4.5. 
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and transmission and instantaneous conditions in the simulation.  The model adjusts shifting 
logic based on engine characteristics to maximize the advantages of the engine technology.  
Instantaneous conditions include values such as vehicle speed, driver demand, and a shifting map 
unique to the full vehicle configuration.285   

3.2.6.1.2 Shifting Initializer 

The shifting initializer is an algorithm that defines shifting maps (i.e., values of the parameters of 
the shifting controller) specific to the selected set of modeled vehicle characteristics and modeled 
powertrain components.  The shifting initializer is run for every unique combination of vehicle 
technologies modeled in the Autonomie tool and is an input to the full vehicle simulation.  The 
shifting initializer creates a shifting map that optimizes fuel economy performance for the 
powertrain and road load combination within the constraints of performance neutrality.286,287 

3.2.7 Transmission Costs 

The CAFE Model uses both cost and effectiveness in selecting technology updates during the 
compliance simulation.  We use information from sponsored research, CBI, and the National 
Academy of Sciences to determine direct manufacturing costs (DMCs) for fuel saving 
technologies.288  We apply a learning factor and RPE to the DMC to determine the total overall 
cost of the technology for a given model year (i.e., an absolute cost).  The full list of transmission 
technology costs across all model years, in 2018 dollars, can be found in Technologies input file.  
Chapter 2.6 discusses how we apply the RPE and learning curves to technology DMCs. 

This analysis uses absolute costs instead of relative costs, which were used in prior rulemaking 
analyses.  We use absolute costs to ensure the full cost of the transmission is removed when the 
model applies electrification technologies.  This analysis models the cost of adoption of BEV 
technology by first removing the costs associated with existing powertrain systems, then 
applying the BEV system costs.  An interested reader can still determine relative costs by 
comparing the absolute costs for the initial technology combination to the new technology 
combination. 

3.2.8 Automatic Transmissions 

We use automatic transmission DMCs from recommended relative costs discussed in the NAS 
2015 report and NAS-cited studies.  Table 3-49 shows the cost for the automatic transmissions in 
the current analysis with learning curve and RPE adjustments applied. 

DMC estimates for all automatic transmissions are based on cost estimates from Table 5.7, Table 
5.9, and Table 8A.2a of the 2015 NAS report, unless noted otherwise.289  In the cases of level 

 
285 See Autonomie model documentation, Chapter 4.4.5, for more information on the shifting controller. 
286 See Chapter 2.4.5 for more information on performance neutrality. 
287 See Autonomie model documentation, Chapter 4.4.5.2, for more information on the shifting initializer algorithm. 
288 FEV prepared several cost analysis studies for EPA on subjects ranging from advanced 8-speed transmissions to 
belt alternator starter, or start/stop systems.  NHTSA contracted Electricore, EDAG, and Southwest Research for 
teardown studies evaluating mass reduction and transmissions.  The 2015 NAS report on fuel economy technologies 
for light-duty vehicles also evaluated the agencies' technology costs developed based on these teardown studies. 
289 2015 NAS report, at p. 189, pp. 298–99. 
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two (L2) and level three (L3) transmissions, when not already included in the cost estimate, we 
add the costs for HEG level 2 or level 3 technologies to the base transmission cost. 

The AT9 technology DMCs are based on estimates from Table 8A.2a of the 2015 NAS report.290  
The NAS-reported AT9 cost is relative to the AT8 and does not account for the cost of the HEG 
technology.  In our analysis, the AT9 is only equipped with level 2 HEG technology.  Therefore, 
we calculate the costs for the AT9L2 by adding the cost estimate for one additional gear to the 
AT8L2 cost.291 

For AT10 technologies, we use DMCs from Table 8A.2a of the 2015 NAS report.292  The NAS 
AT10 cost is relative to the AT8 and does not account for the cost of HEG technology.  For the 
current analysis, the AT10 is only equipped with either level 2 or level 3 HEG technology.  The 
costs for the AT10L2 reflect adding two more gears to the AT8L2.  The costs for the AT10L3 
reflect adding level 3 HEG technology to AT10L2. 

Table 3-49 – Summary of Absolute Automatic Transmission Technology Costs for Automatic Transmissions, 
including Learning Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

AT5 Automatic Transmission $ 2,085.30 $ 2,085.30 $ 2,085.30 $ 2,085.30 
AT6 Automatic Transmission $ 2,063.19 $ 2,063.19 $ 2,063.19 $ 2,063.19 
AT6L2 Automatic Transmission $ 2,397.50 $ 2,323.16 $ 2,303.65 $ 2,294.85 
AT7L2 Automatic Transmission $ 2,351.16 $ 2,292.16 $ 2,276.53 $ 2,269.53 
AT8 Automatic Transmission $ 2,195.51 $ 2,195.32 $ 2,195.18 $ 2,195.15 
AT8L2 Automatic Transmission $ 2,530.24 $ 2,431.30 $ 2,405.33 $ 2,393.61 
AT8L3 Automatic Transmission $ 2,787.99 $ 2,631.74 $ 2,590.74 $ 2,572.25 
AT9L2 Automatic Transmission $ 2,659.49 $ 2,531.80 $ 2,498.29 $ 2,483.17 
AT10L2 Automatic Transmission $ 2,659.49 $ 2,531.80 $ 2,498.29 $ 2,483.17 
AT10L3 Automatic Transmission $ 2,917.97 $ 2,737.81 $ 2,684.21 $ 2,662.29 

3.2.9 Continuously Variable Transmissions 

Table 3 shows CVT costs with learning curve and RPE adjustments.  The DMC for CVT and 
CVTL2 use data from the 2015 NAS report Table 8A.2a.293 

 

 
290 2015 NAS report, at pp. 29899. 
291 2015 NAS report, at pp. 298–99. 
292 2015 NAS report, at pp. 298–99. 
293 2015 NAS report, at pp. 298–99. 
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Table 3-50 – Summary of Absolute Transmission Costs for Continuously Variable Transmissions, including 
Learning Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

CVT CVT $ 2,341.87 $ 2,330.48 $ 2,322.63 $ 2316.55 
CVTL2 CVT $ 2,534.64 $ 2,514.69 $ 2,500.94 $ 2,490.29 

3.2.10 Dual Clutch Transmissions 

Table 3-50 shows the absolute cost for DCTs with learning curve and RPE adjustments.  The 
DMC for the DCTs use data from the 2015 NAS report Table 8A.2a.294 

Table 3-50 – Summary of Absolute Transmission Costs for Dual-Clutch Transmissions, including Learning 
Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

DCT6 Sequential Transmission $ 2,115.92 $ 2,115.88 $ 2,115.84 $ 2,115.84 
DCT8 Sequential Transmission $ 2,654.56 $ 2,653.75 $ 2,653.15 $ 2,653.02 

3.2.11 Manual Transmissions 

Table 3-51 shows the absolute costs for the MTs with learning curve and RPE adjustments.  The 
costs for MTs are based on previous rulemaking values that have seen no significant change 
since established.295   

Table 3-51 – Summary of Absolute Transmission Costs for Manual Transmissions, including Learning 
Effects and Retail Price Equivalent for the Current Analysis 

Name Technology Pathway C-2017 C-2021 C-2025 C-2029 

MT5 Manual Transmission $ 1,563.97 $ 1,563.97 $ 1,563.97 $ 1,563.97 
MT6 Manual Transmission $ 1,939.24 $ 1,925.76 $ 1,917.08 $ 1,911.82 
MT7 Manual Transmission $ 2,357.13 $ 2,186.30 $ 2,100.64 $ 2,044.10 

3.3 Electric Paths 

The electric paths include a large set of technologies that share the common element of using 
electrical power for certain vehicle functions that were traditionally powered mechanically by 
engine power.  Electrification technologies thus can range from electrification of specific 
accessories (for example, electric power steering to reduce engine loads by eliminating parasitic 
losses) to electrification of the entire powertrain (as in the case of a battery electric vehicle). 

 
294 2015 NAS report, at pp. 298-99. 
295 Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate 
Average Fuel Economy Standards, EPA-420-R-12-901 (August 2012), at pp. 3–111. 
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The electrified vehicles in this analysis have a partly or fully electrified powertrain.  Beginning 
with the fewest electrification components, mild and micro hybrids typically only provide engine 
on/off functions with minimal electrical assist.  The micro hybrid technology we use in this 
analysis is 12V start-stop (SS12V), and the mild hybrid technology we use in this analysis is a 
48V belt integrated starter generator (BISG).   

Hybrid electric vehicles (HEVs) use electrical components and a battery to manage power flows 
and assist the engine for improved efficiency and/or performance.  In many cases, HEVs can also 
support a limited amount of all-electric propulsion.  The HEVs (also referred to as strong 
hybrids) that we include in this analysis include both power-split (SHEVPS) and parallel 
(SHEVP2) architectures.   

Plug-in hybrid electric vehicles (PHEVs) have a primarily electric powertrain and use a 
combination of batteries and an engine for propulsion energy.  We include PHEVs with an AER 
of 20 and 50 miles in the analysis, to encompass the range of PHEV AER in the market.   

BEVs have an all-electric powertrain and use only batteries for propulsion energy.  We include 
BEVs with ranges of 200, 300, 400, and 500 miles in the analysis.  Finally, fuel cell electric 
vehicles (FCEVs) are another form of electrified vehicle that have a fully electric powertrain.  
FCEVs use a fuel cell system to convert the hydrogen fuel into electrical energy.   

Table 3-52 below shows an overview of these electrified technologies and their designations in 
the analysis.  Like other technologies in this analysis, these technologies are not representative of 
any specific manufacturer’s design or architecture, but encompass the range of effectiveness and 
cost for these types of powertrains in the rulemaking timeframe.  For example, the BEV200 
efficiency and cost is not supposed to represent exactly a Tesla Model 3 or a Nissan Leaf. 

Table 3-52 – Overview of Electrification Technologies Used in This Analysis 

Electric System Technologies 

Micro-Hybrid* 12V start-stop 

Mild-Hybrid** 48V BISG 
Strong Hybrid SHEVPS and SHEVP2 

PHEV*** PHEV20, PHEV50 

BEV BEV200, BEV300, 
BEV400, and BEV500 

FCEV Fuel cell 
*This system does not have electrical assist or 
regeneration braking capabilities.   
**Mild Hybrid is a BISG in this analysis and it is 
an engine mounted belt integrated starter generator. 
***PHEVs in this analysis include both power split 
(PS) and P2 hybrid architecture. 
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The cost effectiveness of electrification technologies is based on the effectiveness and cost of the 
battery and non-battery components.  The battery strongly influences the cost of electrified 
vehicles, particularly where the battery is the main source of energy for propulsion of the 
vehicle.  Because developments in battery technology may apply to more than one category of 
electrified vehicles, they are discussed collectively in Chapter 3.3.5.  That section details battery-
related topics that directly affect the specification and costing of batteries for all types of 
electrified vehicles that we consider. 

Non-battery electrification components also have an influence on both the effectiveness and cost 
of electrified vehicles.  In this analysis, non-battery electrification components include 
propulsion components like one or more electric machines (an umbrella term that includes what 
are commonly known as motors, generators, and motor/generators).  Electric machines 
commonly act as motors to provide propulsion, and/or act as generators to enable regenerative 
braking and the conversion of mechanical energy to electrical energy for storage in the battery.   

Non-battery electrification components also include power electronics that process and route 
electric power between the energy storage and propulsion components.  More specifically, power 
electronics that we include in this analysis are motor controllers, which issue complex commands 
to control torque and speed of the propulsion components precisely; inverters and rectifiers, 
which convert and manage direct current (DC) and alternating current  power flows between the 
battery and the propulsion components; onboard battery chargers, for charging the BEV or 
PHEV battery from alternating current line power; and DC-to-DC converters that are sometimes 
needed to allow DC components of different DC voltages to work together. 

In addition, onboard chargers are charging devices installed on-board electrified vehicles to 
allow charging from grid electrical power.  Onboard chargers travel with the vehicle and are 
distinct from stationary charging equipment.  Level 1 charging refers to charging powered by a 
standard household 110-120V alternating current power outlet.  Level 2 charging refers to 
charging at 220-240V alternating current power.  DC fast charging refers to systems that charge 
at rapid rate beyond Level 2.  As discussed further below, the analysis assumes that BEVs are 
capable of up to 50kW charging, and we include the cost of an onboard charger in plug-in 
electric vehicle costs. 

Each electrified vehicle architecture includes different non-battery components, in addition to 
different conventional vehicle technologies (e.g., internal combustion engines or transmissions in 
the case of micro, mild, and strong hybrids and PHEVs), that influence the total cost of the 
vehicle.  The process by which the CAFE Model prices non-battery components and adds or 
subtracts components as necessary to complete the powertrain architecture is discussed in 
Chapter 3.3.5. 

The following subsections discuss how each electrification technology is defined in the CAFE 
Model and the electrification pathways down which a vehicle can travel in the compliance 
simulation.  The subsections also discuss how we assign electrified vehicle technologies to 
vehicles in the MY 2020 analysis fleet, any limitations on electrification technology adoption, 
and the specific effectiveness and cost assumptions that we use in the Autonomie and CAFE 
Model analysis. 
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3.3.1 Electrification Modeling in the CAFE Model 

As explained before, the CAFE modeling system defines technology pathways for grouping and 
establishing a logical progression of technologies on a vehicle.  Technologies that share similar 
characteristics form cohorts that we represent and interpret within the CAFE Model as discrete 
entities.  We lay these entities out into pathways (or paths), which the system uses to define 
relations of mutual exclusivity between conflicting sets of technologies.   

The technologies that we include on the modeling system’s three vehicle-level electrification and 
electric improvements paths are illustrated in Figure 3-10 below.  As shown in the Electrification 
path, the baseline-only CONV technology is grayed out.  We use this technology to denote 
whether a vehicle comes in with a conventional powertrain (i.e., a vehicle that does not include 
any level of hybridization) and to allow the model to properly map to the Autonomie vehicle 
simulation database results.  If multiple branches converge on a single technology, the subset of 
technologies disabled from adoption extend only up the point of convergence. 
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Figure 3-10 – Electrification Paths in the CAFE Model 

The CAFE Model defines the technology pathway for each type of electrification grouping in a 
logical progression.  Whenever the CAFE Model converts a vehicle model to one of the available 
electrified systems, modeling algorithms will update both effectiveness and costs for the vehicle.  
Additionally, all technologies on the different electrification paths are mutually exclusive and are 
evaluated in parallel.  For example, the model may evaluate PHEV20 technology prior to having 
to apply SS12V or strong hybrid technology.  We discuss the specific set of algorithms and rules 
further in the sections below and include more detailed discussions in the CAFE Model 
Documentation.  The following sections discuss the specifications of each electrification 
technology used in the analysis. 

3.3.1.1 Micro-Hybrids 

12-volt stop-start (SS12V), sometimes referred to as start-stop, idle-stop, or a 12-volt micro 
hybrid system, is the most basic hybrid system that facilitates idle-stop capability.  In this 
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system, the integrated starter generator is coupled to the internal combustion (IC) engine.  When 
the vehicle comes to an idle-stop the IC engine completely shuts off, and, with the help of the 12-
volt battery, the engine cranks and starts again in response to throttle application or release of the 
brake pedal to move the vehicle.  The 12-volt battery used for the start-stop system is an 
improved unit compared to a traditional 12-volt battery, and is capable of higher power, 
increased life cycle, and capable of minimizing voltage drop on restart.  This technology is 
beneficial to reduce fuel consumption and emissions when the vehicle frequently stops, such as 
in city driving conditions or in stop and go traffic.  SS12V can be applied to all vehicle 
technology classes.   

3.3.1.2 Mild Hybrids 

The belt integrated starter generator (BISG), sometimes referred to as a mild hybrid system or P0 
hybrid, provides idle-stop capability and uses a higher voltage battery with increased energy 
capacity over conventional automotive batteries.  These higher voltages allow the use of a 
smaller, more powerful and efficient electric motor/generator, which replaces the standard 
alternator.  In BISG systems, the motor/generator couples to the engine via belt (similar to a 
standard alternator).  In addition, these motor/generators can assist vehicle braking and recover 
braking energy while the vehicle slows down (regenerative braking) and in turn can propel the 
vehicle at the beginning of launch, allowing the engine to be restarted later.  Some limited 
electric assist also provides improved engine efficiency during acceleration.  Like the micro 
hybrids, BISGs can be applied to all vehicles in the analysis.  We assume all mild hybrids are 48 
volt systems with engine belt-driven motor/generators.   

We did not include crank integrated starter generator (CISG) systems, sometimes referred to as a 
P1 hybrids, in the analysis.296  A CISG typically has a 48 volt motor/generator that is mounted 
between the engine and the transmission in a custom housing.  CISG systems avoid losses 
associated with BISG belt slipping, however they increase the weight of the powertrain and 
require more significant changes to the powertrain architecture than BISG systems.  The size of 
the motor/generator increases the overall length of the powertrain, often causing packaging and 
integration issues, and making it difficult for most vehicles to adopt CISG technology.  In some 
cases, the increased length powertrain may not fit in an existing vehicle design.  In other cases, 
the increased size of the powertrain may interfere with other critical powertrain components such 
as exhaust and air inlet piping systems that must also be housed in the same space. 

The model can apply mild hybrid technology to all vehicle technology classes and all 
conventional engine technologies except for Engine 26a (VCR).  Chapter 3.3.4 discusses further 
details of the technology specification and effectiveness. 

3.3.1.3 Strong Hybrids 

A strong hybrid vehicle is a vehicle that combines two or more propulsion systems, where one 
uses gasoline (or diesel), and the other captures energy from the vehicle during deceleration or 
braking, or from the engine, and stores that energy so it may be used by the vehicle.  Strong 

 
296 Past CAFE analyses included a CISG system that was similar to the BISG system effectiveness but was more 
expensive (similar to the cost presented for the system in the 2015 NAS report).  The 2021 NAS report refers to all 
mild hybrid systems as BISG systems. 
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hybrids reduce fuel consumption through three major mechanisms, including (1) capturing 
energy during braking and some decelerations that might otherwise be lost to the braking system, 
and using the stored energy to provide launch assist, coasting, and propulsion during stop and go 
traffic conditions, (2) capturing energy from the engine under some conditions to enable the 
engine to operate at a more efficient operating point and by storing the energy such as by 
charging the battery, and (3) potentially enabling engine downsizing.  The effectiveness of the 
strong hybrid system for improving fuel economy depends on how the above factors are 
balanced, and the stored energy is applied.  For example, the captured energy may be used 
primarily to allow longer periods with the internal combustion engine off, or to supplement 
engine power to allow the engine to operate at more efficient conditions, potentially in 
combination with a downsized engine.  Conversely, for some performance vehicles, hybrid 
technologies may be applied primarily for acceleration performance improvement without engine 
downsizing. 

We include the following strong hybrid systems in the analysis: hybrids with “P2” parallel 
drivetrain architectures (SHEVP2),297 and hybrids with power-split architectures (SHEVPS).   

P2 parallel hybrids (SHEVP2) are a type of hybrid vehicle that use a transmission-integrated 
electric motor placed between the engine and a gearbox or CVT, with a clutch that allows 
decoupling of the motor/transmission from the engine.  Figure 3-11 below shows the SHEVP2 
configuration.  Although similar to the configuration of the CISG system discussed previously, a 
P2 hybrid generally has a larger electric motor and battery in comparison to the CISG.  
Disengaging the clutch allows all-electric operation and more efficient brake-energy recovery.  
Engaging the clutch allows coupling of the engine and electric motor and, when combined with a 
transmission, reduces gear-train losses relative to power-split or 2-mode hybrid systems.  P2 
hybrid systems typically rely on the internal combustion engine to deliver high, sustained power 
levels.  The system uses electric-only mode when power demands are low or moderate. 

 
297 Depending on the location of electric machine (motor with or without inverter), the parallel hybrid technologies 
are classified as P0–motor located at the primary side of the engine, P1–motor located at the flywheel side of the 
engine, P2–motor located between engine and transmission, P3–motor located at the transmission output, and P4–
motor located on the axle.   
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Figure 3-11 – P2 Strong Hybrid Architecture Showing the Motor/Generator Coupled to the Engine through a 
Clutch298 

An important feature of the SHEVP2 system is that it can be applied in conjunction with most 
engine technologies.  Accordingly, once a vehicle is converted to a SHEVP2 powertrain in the 
compliance simulation, the CAFE Model allows the vehicle to adopt the most conventional 
engine technologies that are cost effective, regardless of whether a conventional engine 
technology is less advanced than the conventional engine technology that the vehicle started 
with.  For example, a vehicle in the MY 2020 analysis fleet that starts with a TURBO2 engine 
could adopt a TURBO1 engine with the SHEVP2 system, if that TURBO1 engine allows the 
vehicle to meet its fuel economy goal cost effectively.  This is based in part on comments to past 
analyses that asserted that although manufacturers could adopt SHEVP2 systems into existing 
powertrain architectures, adopting the SHEVP2 system afforded the opportunity for the 
manufacturer to incorporate a less expensive conventional engine technology alongside it.   

In addition, as discussed in Chapter 3.1.7, the SHEVP2 powertrain improves fuel economy, in 
part, by allowing the engine to spend more time operating at engine speed and load conditions 
that have high efficiency.  The effectiveness improvement for SHEVP2 is reduced when 
combined with advanced engine technologies, which also improve fuel economy by broadening 
the range of engine speed and load conditions where the engine operates at high efficiency.  In 
other words, there is only a minimal additional effectiveness improvement if a SHEVP2 
powertrain is combined with an advanced engine, making SHEVP2 less cost effective in those 
cases.  Including a less advanced engine technology with the SHEVP2 powertrain allows a 
similar efficiency improvement at a lower cost.  Chapter 3.3.3 and the CAFE Model 
Documentation S4 also discuss this logic. 

The power-split hybrid (SHEVPS) is a hybrid electric drive system that replaces the traditional 
transmission with a single planetary gear set (the power-split device) and a motor/generator.  
This motor/generator uses the engine either to charge the battery or to supply additional power to 
the drive motor.  A second, more powerful motor/generator is connected to the vehicle’s final 

 
298 2015 NAS report, at p. 133. 
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drive and always turns with the wheels.  The planetary gear splits engine power between the first 
motor/generator and the drive motor either to charge the battery or to supply power to the 
wheels.  During vehicle launch, or when the battery SOC is high, the engine, which is not as 
efficient as the electric drive, is turned off and the electric motor propels the vehicle.299  During 
normal driving, the engine output is used both to propel the vehicle and to generate electricity.  
The electricity generated can be stored in the battery and/or used to drive the electric motor.  
During heavy acceleration, both the engine and electric motor (by consuming battery energy) 
work together to propel the vehicle.  When braking, the electric motor acts as a generator to 
convert the kinetic energy of the vehicle into electricity to charge the battery. 

Figure 3-12 below shows the SHEVPS architecture with the two motor/generator design.  The 
analysis separates the two motor/generators to appropriately size each to maintain performance, 
and to capture the associated costs.  Chapter 3.3.4 and Chapter 3.3.5.2 include more discussion 
of the SHEVPS motor effectiveness and cost.  

 

 

Figure 3-12 – Power Split (PS) Strong Hybrid Architecture with the Separate Generator and Motor 
Electrically Connected via the Battery and also via a Planetary Gear Set300 

The parallel hybrid drivetrain, although enhanced by the electrification components, remains 
fundamentally similar to a conventional powertrain.  In contrast, the power-split hybrid 
drivetrain is novel and considerably different than a conventional powertrain.  Although these 
hybrid architectures are quite different, both types provide start-stop or idle-stop functionality, 
regenerative braking capability, and vehicle launch assist.  A SHEVPS has a higher potential for 
fuel economy improvement than a SHEVP2, although its cost is also higher and engine power 
density is lower.301 

 
299 Autonomie model documentation, Chapter 4.13.2. 
300 2015 NAS report, at p. 133. 
301 Kapadia, J., Kok, D., Jennings, M., Kuang, M. et al., "Powersplit or Parallel - Selecting the Right Hybrid 
Architecture," SAE Int. J. Alt. Power. 6(1):2017, doi:10.4271/2017-01-1154. 
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To expand on the hybrid powertrain configurations, Table 3-53 below shows the configuration of 
conventional engines and transmissions used with strong hybrids for this analysis.  The SHEVPS 
powertrain configuration is paired with a planetary transmission (eCVT) and Atkinson engine 
(Eng26).  This configuration is designed to maximize efficiency at the cost of reduced towing 
capability and real-world acceleration performance.302  In contrast, the SHEVP2 powertrains are 
paired with an advanced 8-speed automatic transmissions (AT8L2) and can be paired with most 
conventional engines,303 as discussed above.   

Table 3-53 – Configuration of Strong Hybrid Architectures with Transmissions and Engines 

CAFE Model 
Technologies 

Transmission 
Options 

Engine 
Options 

(PC/SUV) 

Engine 
Options 

(LT) 

SHEVPS Planetary - eCVT Eng 26 - 
Atkinson N/A 

SHEVP2304 AT8L2 

All Engines 
except for 
VTGE and 

VCR 

All 
Engines 

except for 
VTGE and 

VCR 
See further details in Chapter 3.3.4 Electrification Effectiveness 

3.3.1.4 Plug-In Hybrids 

Plug-in hybrid electric vehicles (PHEV) are hybrid electric vehicles with the means to charge 
their battery packs from an outside source of electricity (usually the electric grid).  These 
vehicles have larger battery packs with more energy storage and a greater capability to be 
discharged than other non-plug-in hybrid electric vehicles.  PHEVs also generally use a control 
system that allows the battery pack to be substantially depleted under electric-only or blended 
mechanical/electric operation and batteries that can be cycled in charge-sustaining operation at a 
lower SOC than non-plug-in hybrid electric vehicles.  These vehicles generally have a greater 
AER than typical strong HEVs. 

Unlike the micro, mild, and strong hybrids, PHEVs utilize two different types of fuels for energy 
of propulsion system; one, an onboard battery, charged by plugging the vehicle into the electrical 
grid, and two, a conventional engine with fuel tank for gasoline (or diesel).  Depending on how 
these vehicles are operated, they could, in any particular mode of operation, use electricity 
exclusively, operate like a conventional hybrid, or operate in some combination of these two 
modes.   

 
302 Kapadia, J., D, Kok, M. Jennings, M. Kuang, B. Masterson, R. Isaacs, A. Dona. 2017. Powersplit or Parallel - 
Selecting the Right Hybrid Architecture. SAE International Journal of Alternative Powertrains 6 (1): 68–76. 
https://doi.org/10.4271/2017-01-1154.  (Accessed: February 15, 2022). 
303 We did not model SHEVP2s with VTGE (Eng23c) and VCR (Eng26a).  
304 Engine 01, 02, 03, 04, 5b, 6a, 7a, 8a, 12, 12-DEAC, 13, 14, 17, 18, 19, 20, 21, 22b, 23b, 24, 24-Deac.  See 
Chapter 3.1 for these engine specifications.  
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For CAFE compliance, PHEV gasoline equivalent fuel economy is measured two ways per EPA 
regulations: first in a “charge depleting mode” with the vehicle operating on electricity with a 
fully charged battery, and second with the battery depleted and in a “charge sustaining mode” 
and the vehicle operating on gasoline.  The overall fuel economy is calculated by weighting the 
two measured values.  Through MY 2015, these two measured values were weighted equally to 
calculate overall PHEV fuel economy.  Optionally beginning in MY 2016, and mandatory 
beginning in MY 2020, manufacturers use the EPA “utility factor” method for weighting the two 
measured values for calculating PHEV fuel economy.  The “utility factor” weighting is based on 
the vehicle’s all electric range (AER).  The utility factor method follows Society of Automotive 
Engineers (SAE) recommend practice J1711.305,306,307,308  As discussed in Chapter 2.4, the 
Autonomie full vehicle model simulates powertrains accounting for these compliance 
procedures.   

 

 

Figure 3-13 – Fuel Economy Label for the 2020 BMW 530e Plug-in Showing the Electricity and Gasoline 
Miles-per-Gallon Equivalent (MPGe)309 

 
305 Guidance Document. “EPA Test Procedure for Electric Vehicles and Plug-in Hybrids.” 
https://fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf. November 
14, 2017.  (Accessed: February 15, 2022). 
306 76 Fed. Reg. 39477, 39504-39505 (Jul. 6, 2011). 
307 40 CFR 600.116-12(b). 
308 For more detailed information on the development of this SAE utility factor approach, see http:// www.SAE.org, 
specifically SAE J2841 ‘‘Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey 
Data,’’ September 2010. 
309 Fueleconomy.gov. https://www.fueleconomy.gov/feg/UsedCarLabel.jsp.  (Accessed: February 15, 2022). 
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The methodology that we use to assign fuel economy values to PHEVs in the analysis fleet also 
accounts for the changes in the regulations and these procedures, and we discuss them further in 
Chapter 2.2 and Chapter 3.3.2. 

We include four PHEV architectures that reflect combinations of two levels of AER and two 
engine types.  We use 20 miles AER and 50 miles AER to reasonably span the various AER in 
the market in the rulemaking time frame, and their effectiveness and cost.  We use an Atkinson 
engine and a turbocharged downsized engine to span the variety of engines in the market.  

PHEV20/PHEV20H and PHEV50/PHEV50H are essentially a SHEVPS with a larger battery 
and the ability to drive with the engine turned off.  In the CAFE Model, the designation for “H” 
in PHEVxH could represent another type of engine configuration, but for this analysis we use the 
same effectiveness values as PHEV20 and PHEV50 to represent PHEV20H and PHEV50H, 
respectively.  The PHEV20/PHEV20H represents a “blended-type” plug-in hybrid, which can 
operate in all-electric (engine off) mode only at light loads and low speeds and must blend 
electric motor and engine power together to propel the vehicle at medium or high loads and 
speeds.  The PHEV50/PHEV50H represents an extended range electric vehicle (EREV), which 
can travel in all-electric mode even at higher speeds and loads.     

PHEV20T and PHEV50T are 20 mile and 50 mile AER vehicles based on the SHEVP2 engine 
architecture.  The PHEV versions of these architectures include larger batteries and motors to 
meet performance in charge sustaining mode at higher speeds and loads as well as similar 
performance and range in all electric mode in city driving, at higher speeds and loads.  For this 
analysis, the CAFE Model considers these PHEVs to have an advanced 8-speed automatic 
transmission (AT8L2) and TURBO1 (Eng12) in the powertrain configuration.  Further 
discussion of engine sizing, batteries, and motors for these PHEVs is discussed in Chapter 3.3.4 
includes more discussion of PHEV engine sizing, batteries, and motors. 

Table 3-54 below shows the different PHEV configurations that we use in this analysis.   

Table 3-54 – Configuration of Plug-in Hybrid Architectures with Transmissions and Engines 

CAFE Model 
Technologies 

Transmission 
Options 

Engine 
Options 

(PC/SUV) 

Engine 
Options 

(LT) 

PHEV20/PHEV20H Planetary - 
eCVT 

Eng 26 – 
Atkinson 
Engine 

N/A 

PHEV20T AT8L2 Eng 12 - 
Turbo1 

Eng 12 - 
Turbo1 

PHEV50/PHEV50H Planetary - 
eCVT 

Eng 26 - 
Atkinson N/A 

PHEV50T AT8L2 Eng 12 - 
Turbo1 

Eng 12 - 
Turbo1 

See further details in Chapter 3.3.4 Electrification Effectiveness 
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3.3.1.5 Battery Electric Vehicles 

BEVs are equipped with all-electric drive systems powered by energy-optimized batteries 
charged primarily by electricity from the grid.  BEVs do not have a combustion engine or 
traditional transmission.  Instead, BEVs rely on all electric powertrains, with an advanced 
transmission packaged with the powertrain.  The range of battery electric vehicles vary by 
vehicle and battery pack size. 

We simulate BEVs with ranges of 200, 300, 400 and 500 miles in the CAFE Model.  BEV range 
is measured pursuant to EPA test procedures and guidance.310  The CAFE Model assumes that 
BEV transmissions are unique to each vehicle (i.e., the transmissions are not shared by any other 
vehicle) and that no further improvements are available.   

A key note about the BEVs offered in this analysis is that the CAFE Model does not account for 
vehicle range when considering additional BEV technology adoption.  That is, the CAFE Model 
does not have an incentive to build BEV300, 400, and 500s, because the BEV200 is just as 
efficient as those vehicles and counts the same toward compliance, but at a significantly lower 
cost because of the smaller battery.  While manufacturers have been building 200-mile range 
BEVs, those vehicles have generally been passenger cars.  Manufacturers have told us that 
greater range is important for meeting the needs of broader range of consumers and to increase 
consumer demand.  More recently, there has been a trend towards manufacturers building higher 
range BEVs in the market, and manufacturers building crossover utility vehicle (CUV)/SUV and 
pickup truck BEVs.  To simulate the potential relationship of BEV range to consumer demand, 
we include several adoption features for BEVs.  These are discussed further in Chapter 3.3.3. 

In Chapters 3.3.2 and 3.3.3 we discuss the analysis fleet assignments and adoption features for 
BEVs, how we rely on Argonne’s expertise and other sources to evaluate effectiveness and 
performance, and how we determine costs for both the battery and non-battery components. 

3.3.1.6 Fuel Cell Electric Vehicles 

Similar to BEVs, fuel cell electric vehicles (FCEVs) use an all-electric drivetrain, but unlike 
BEVs, FCEVs do not solely rely on batteries; rather, electricity to run the FCEV electric motor is 
mainly generated by an onboard fuel cell system.  FCEV architectures are similar to series 
hybrids,311 but with the engine and generator replaced by a fuel cell.  Commercially available 
FCEVs consume hydrogen to generate electricity for the fuel cell system, with most automakers 
using high pressure gaseous hydrogen storage tanks.  FCEVs are currently produced in limited 
numbers and are available in limited geographic areas where hydrogen refueling stations are 

 
310 BEV electric ranges are determined per EPA guidance Document. “EPA Test Procedure for Electric Vehicles and 
Plug-in Hybrids.” https://fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-
2017.pdf. November 14, 2017.  (Accessed: February 15, 2022). 
311 Series hybrid architecture is a strong hybrid that has the engine, electric motor, and transmission in series.  The 
engine in a series hybrid drives a generator that charges the battery.  
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accessible.  For reference, in MY 2020, only four FCEV models were offered for sale, and since 
2014 only 12,081 FCEVs have been sold.312, 313 

For this analysis, the CAFE Model simulates a FCEV with a range of 320 miles.  Any type of 
powertrain could adopt a FCEV powertrain; however, to account for limited market penetration 
and unlikely increased adoption in the rulemaking timeframe, we use technology phase-in caps 
to control how many FCEVs a manufacturer could build.  Chapter 3.3.3 includes more 
discussion of FCEV adoption features.   

3.3.2 Electrification Analysis Fleet Assignments  

We identify electrification technologies present in the baseline fleet as the starting point for the 
regulatory analysis.  These assignments are based on manufacturer-submitted CAFE compliance 
information, publicly available technical specifications, marketing brochures, articles from 
reputable media outlets, and data from Wards Intelligence.314   

Table 3-55 lists every electrification technology considered in the analysis, including the 
acronym that we use in the documentation and input files as well as a brief description.  For 
brevity, we refer to technologies by their acronyms in this section.  Note that some electrification 
technologies are not eligible for assignment in the baseline; they are indicated by the gray rows 
in Table 3-55 and do not appear in Table 3-56. 

Table 3-55 – CAFE Model Electric Paths Technologies 

Technology Description 
SS12V 12-Volt Stop-Start (Micro Hybrid) 
BISG 48V Belt Mounted Integrated Starter/Generator (Mild Hybrid) 
SHEVP2 P2 (Parallel) Strong Hybrid/Electric Vehicle 
SHEVPS Power Split Strong Hybrid/Electric Vehicle 
P2HCR0 SHEVP2 with Level 0 High Compression Ratio Engine 
P2HCR1 SHEVP2 with Level 1 High Compression Ratio Engine 
P2HCR1D SHEVP2 with Level 1 High Compression Ratio Engine with Cylinder Deactivation 
P2HCR2 SHEVP2 with Level 2 High Compression Ratio Engine 
PHEV20 Plug-In Hybrid with 20-mile Range 
PHEV50 Plug-In Hybrid with 50-mile Range 
PHEV20T PHEV20 with Turbo Engine 
PHEV50T PHEV50 with Turbo Engine 
PHEV20H PHEV20 with High Compression Ratio Engine 
PHEV50H PHEV50 with High Compression Ratio Engine 

 
312 Argonne National Lab. “Light Duty Electric Drive Vehicles Monthly Sales Update.” Energy Systems Division. 
https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates. Light Duty Electric Drive Vehicles 
Monthly Sales Updates _ ANL.pdf.  (Accessed: February 15, 2022). 
313 Market Data file: Honda Clarity, Hyundai Nexo and Nexo Blue, and Toyota Mirai. 
314 “U.S. Car and Light Truck Specifications and Prices, '20 Model Year.” Wards Intelligence, 3 Aug. 2020, 
wardsintelligence.informa.com/WI964244/US-Car-and-Light-Truck-Specifications-and-Prices-20-Model-Year.  
(Accessed: February 15, 2022). 
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Technology Description 
BEV200 200-mile Battery Electric Vehicle 
BEV300 300-mile Battery Electric Vehicle 
BEV400 400-mile Battery Electric Vehicle 
BEV500 500-mile Battery Electric Vehicle 
FCV Fuel Cell Electric Vehicle 

Table 3-56 gives the baseline fleet penetration rates of eligible electrification technologies.  Over 
half the fleet has some level of electrification, with the vast majority of these being micro 
hybrids.  BEVs represent less than 2 percent of MY 2020 baseline fleet; BEV300 is the most 
common BEV technology, and we observe no BEV500s.  

Table 3-56 – Penetration Rate of Electrification Technologies in the MY 2020 Fleet 

Electrification 
Technology 

Sales Volume with this 
technology  

Penetration Rate in 
2020 Baseline Fleet 

None                                  5,791,220  42.61% 
SS12V                                  6,837,257  50.30% 
BISG                                    258,629  1.90% 
SHEVP2                                        6,409  0.05% 
SHEVPS                                    378,523  2.78% 
PHEV20                                      46,393  0.34% 
PHEV20T                                      18,943  0.14% 
PHEV50                                        2,392  0.02% 
PHEV50T                                            18  0.0001% 
BEV200                                      72,123  0.53% 
BEV300                                    145,900  1.07% 
BEV400                                      34,000  0.25% 
BEV500                                            0    0% 
FCV                                          744  0.005% 

3.3.2.1 Micro and Mild Hybrids 

Micro and mild hybrids refer to the presence of SS12V and BISG, respectively.  We use the data 
sources discussed above to identify the presence of these technologies on vehicles in the fleet.  
We only assign micro and mild hybrid technology if we could confirm its presence with 
manufacturer brochures or technical specifications. 

3.3.2.2 Strong Hybrids 

Strong hybrid technologies include SHEVPS and SHEVP2.  For a discussion of differences in 
architecture between these technologies, see Chapter 3.3.1.3.  Note that P2HCR0, P2HCR1, 
P2HCR1D, and P2HCR2 are not assigned in the fleet and are only available to be applied by the 
model.  When possible, manufacturer specifications are used to identify the strong hybrid 



  264 

architecture type.  In the absence of more sophisticated information, we determine hybrid 
architecture by number of motors.  We assign hybrids with one electric motor P2, and those with 
two PS. 

3.3.2.3 Plug-In Hybrids 

Plug-in hybrid technologies that we assign in the baseline fleet include PHEV20/20T and 
PHEV50/50T; we do not assign PHEV20H and PHEV50H in the fleet and they can only be 
applied by the model.  We assign vehicles with an electric-only range of 40 miles or less as 
PHEV20; we assign those with a range above 40 miles as PHEV50.  We assign vehicles as 
PHEV20T/50T if the engine is turbocharged (i.e., if it would qualify for one of technologies on 
the turbo engine technology pathway).315  

We calculate individual gasoline and electric fuel economy values as part of characterizing 
PHEVs in the baseline fleet.  This is necessary because the certification fuel economies for 
PHEVs reported in compliance data are a single value that combine both types of fuel 
economies.  To calculate each PHEV’s gas fuel economy, we scale values derived from 
fueleconomy.gov by a factor of 1.3.316  The scaled gas fuel economy become the final value that 
we use in the Market Data file.   

To compute electric fuel economy, we calculate utility factors, which define the proportion of 
miles traveled by PHEVs using electricity according to mathematical curves defined by the 
SAE.317  These curves use each vehicle’s AER as the input; range values are derived from the 
same source as the baseline gas fuel economy values and are also scaled by a factor of 1.3.  
Analyst-defined utility factors or a default value of 0.5318 are also an option for each PHEV.  Of 
the three possible utility factors—the calculated value, the analyst-defined value, or 0.5—we 
applied the greatest value.   

We then follow the SAE standard for calculating the utility factor-weighted electric fuel 
economy319 while defining a functional relationship to calculate it from known values, which is 
given in Equation 3-1.  Note that the equation is divided by 2.1897, the petroleum equivalency 
factor, because this factor is later accounted for in the model. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹) × (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹) × (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹 −𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹) × (1 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

×  1
2.1897

   

 
315 See Chapter 3.1 for more information on turbocharged engines in the analysis. 
316 The 1.3 scalar value accounts for the adjustment procedure used by EPA when deriving fuel economy label 
(“window sticker”) values, which are calculated by multiplying measured fuel economies by a factor of 0.7. More 
information can be found at https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-
PHEVs-11-14-2017.pdf.  (Accessed: February 15, 2022). 
317 J2841: Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data. SAE 
International, 21 Sept. 2010, www.sae.org/standards/content/j2841_201009.  (Accessed: February 15, 2022).  
318 A utility factor of 0.5 indicates that exactly half of a PHEV’s miles traveled are on gas fuel, while the other half 
are on electric power. 
319 J1711: Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric 
Vehicles, Including Plug-in Hybrid Vehicles. SAE International, 8 June 2010, 
www.sae.org/standards/content/j1711_201006.  (Accessed: February 15, 2022).  
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Equation 3-1 – Electric Fuel Economy 

This approach has some limitations.  In some cases, the electric fuel economy values or utility 
factors appear unrealistic.  This is due to the certification fuel economy values that 
manufacturers report in compliance data, which often already include a petroleum equivalency 
factor and AC or off-cycle adjustment provisions.  Manufacturers are not required to report these 
values individually to the agencies for each vehicle.  We will consider how to better collect these 
data moving forward. 

3.3.2.4 Fuel Cell and Battery Electric Vehicles 

Fuel cell and battery electric vehicle technologies include BEV200/300/400/500 and FCEV.  
Vehicles with all-electric powertrains that used hydrogen fuel are assigned FCEV.  The BEV 
technologies are assigned to vehicles based on range according to the thresholds listed in Table 
3-57.  These range thresholds best account for vehicles’ existing range capabilities while 
allowing room for the model to potentially apply more advanced electrification technologies. 

Table 3-57 – Range Thresholds for Assigning BEV Technologies 

Vehicle Electric 
Range [miles] Technology Assigned 

<250 BEV200 
250 to 349 BEV300 
350 to 449 BEV400 

>450 BEV500 

3.3.3 Electrification Adoption Features  

We apply several adoption features to the electrification technologies.  The hybrid/electric 
technology path logic dictates how vehicles could adopt different levels of electrification 
technology.  Figure 3-14 shows the electrification technology pathways; these are discussed in 
detail in each technologies’ section below.  Broadly speaking, more advanced levels of 
hybridization or electrification supersede all prior levels, while certain technologies within each 
level are mutually exclusive.  We model (from least to most electrified) micro hybrids, mild 
hybrids, strong hybrids, plug-in hybrids, and fully electric vehicles. 

As discussed further below, SKIP logic—restrictions on the adoption of certain technologies—
apply to plug-in (PHEV) and strong hybrid vehicles (SHEV).  Some technologies on these 
pathways are “skipped” if a vehicle is high performance, requires high towing capabilities as a 
pickup truck, or belongs to certain manufacturers who have demonstrated that their future 
product plans will more than likely not include the technology.  We expand on the specific 
criteria for SKIP logic for each applicable electrification technology later in this section.   

This section also discusses the supersession of engines and transmissions on vehicles that adopt 
SHEV or PHEV powertrains.  To manage the complexity of the analysis, we model these types 
of hybrid powertrains with several specific engines and transmissions, rather than in multiple 
configurations.  The SHEV and PHEV cost and effectiveness values account for these specific 
engines and transmissions.   
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Finally, phase-in caps limit the adoption rates of battery electric (BEV) and fuel cell vehicles 
(FCV).  These phase-in caps account for current market share, scalability, and reasonable 
consumer adoption rates of each technology.  Chapter 3.3.3.4 discusses phase-in caps and the 
reasoning behind them in detail.   

 

 

 

Figure 3-14 – Electrification Technology Pathways 

The following sections discuss the adoption features that the model applies to each type of 
electrification technology. 
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3.3.3.1 Micro and Mild Hybrids 

For this analysis, micro and mild hybridization refers to the presence of SS12V and BISG on a 
vehicle, respectively.  The only adoption feature for these technologies is path logic, as 
illustrated in the lower left corner of Figure 3-14.  The pathway consists of a linear progression 
starting with a conventional powertrain with no electrification at all, which is superseded by 
SS12V, which in turn is superseded by BISG.  Vehicles can only adopt micro and mild hybrid 
technology if the vehicle did not already have a more advanced level of electrification.   

3.3.3.2 Strong Hybrids 

The strong hybrid technologies include SHEVP2, SHEVPS, P2HCR0, P2HCR1, P2HCR1D, and 
P2HCR2.  The adoption features that we apply to strong hybrid technologies include path logic, 
powertrain substitution, and vehicle class restrictions.  Per the defined technology pathways, 
SHEVPS, SHEVP2, and the P2HCR technologies are considered mutually exclusive.  In other 
words, when the model applies one of these technologies, the others are immediately disabled 
from future application.  However, all vehicles on the strong hybrid pathways can still advance 
to one or more of the plug-in hybrid technologies.   

When the model applies any strong hybrid technology to a vehicle, the transmission technology 
on the vehicle is superseded.  Regardless of the transmission originally present, P2 hybrids adopt 
an 8-speed automatic transmission (AT8L2), and PS hybrids adopt a continuously variable 
transmission (eCVT).  When the model applies the SHEVP2 technology, the model can consider 
various engine options to pair with the SHEVP2 architecture according to existing engine path 
constraints, taking into account relative cost effectiveness.  For SHEVPS technology, the 
existing engine is replaced with a hybrid full Atkinson cycle engine.320 

SKIP logic is also used to constrain adoption for SHEVPS, P2HCR0, P2HCR1, and P2HCR1D.  
(No SKIP logic applies to SHEVP2; P2HCR2 is restricted from all vehicles in the 2020 fleet, as 
discussed further in Chapter 3.1)  These technologies are “skipped” for vehicles with engines321 
that meet one of the following conditions: 

• The engine belongs to an excluded manufacturer;322 

• The engine belongs to a pickup truck (i.e., the engine is on a vehicle assigned the 
“pickup” body style); 

• The engine’s peak horsepower is more than 405 HP; or if  

• The engine is on a non-pickup vehicle, but is shared with a pickup. 

The reasons for these conditions are similar to those for the SKIP logic that we apply to HCR 
engine technologies, discussed in more detail in Chapter 3.1.3.  In the real world, pickups and 
performance vehicles with certain powertrain configurations cannot adopt the technologies listed 

 
320 Designated Eng26 in the list of engine map models used in the analysis.  See Chapter 3.1 for more information. 
321 This refers to the engine assigned to the vehicle in the 2020 baseline fleet. 
322 Excluded manufacturers included BMW, Daimler, and Jaguar Land Rover. 
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above and maintain vehicle performance without redesigning the entire powertrain.  SKIP logic 
is put in place to prevent the model from pursuing compliance pathways that are ultimately 
unrealistic. 

3.3.3.3 Plug-In Hybrids 

Plug-in hybrid (PHEV) technologies include PHEV20/20H/20T and PHEV50/50H/50T.  They 
supersede the micro, mild, and strong hybrids, and can only be replaced by full electric 
technologies.  Plug-in hybrid technology paths are also mutually exclusive, with the PHEV20 
technologies able to progress to the PHEV50 technologies. 

The engine and transmission technologies on a vehicle are superseded when PHEV technologies 
are applied to a vehicle.  For all PHEV20T/50T plug-in technologies, the model applies an 
AT8L2 transmission and for all PHEV20/50 (PHEV20H/50H) plug-in technologies, the model 
applies an eCVT transmission.  For PHEV20/50 and PHEV20H/50H, the vehicle receives a 
hybrid full Atkinson cycle engine.323  For PHEV20T/50T, the vehicle receives a TURBO1 
engine.324 

SKIP logic applies to PHEV20/20H and PHEV50/50H under the same four conditions listed for 
the strong hybrid technologies in the previous section, for the same reasons previously discussed.   

3.3.3.4 Fuel Cell and Battery Electric Vehicles 

The adoption of BEVs and FCEVs is limited by both path logic and phase-in caps.  
BEV200/300/400/500 and FCEV are applied as end-of-path technologies that supersede previous 
levels of electrification.   

The main adoption feature applicable to BEVs and FCEVs is phase-in caps, which are defined in 
the CAFE Model input files as percentages that represent the maximum rate of increase in 
penetration rate for a given technology.  They are accompanied by a phase-in start year, which 
determines the first year the phase-in cap applies.  Together, the phase-in cap and start year 
determine the maximum penetration rate for a given technology in a given year; the maximum 
penetration rate equals the phase-in cap times the number of years elapsed since the phase-in 
start year.  Note that phase-in caps do not inherently dictate how much a technology is applied by 
the model.  Rather, they represent how much of the fleet could have a given technology by a 
given year.  Because BEV200 costs less and has higher effectiveness values325 than other 
advanced electrification technologies, the model will have vehicles adopt it first, until it is 
restricted by the phase-in cap.   

Table 3-58 shows the phase-in caps, phase-in year, and maximum penetration rate through 2050 
for BEV and FCEV technologies.  For comparison, we also list the actual penetration rate of 
each technology in the 2020 baseline fleet in the fourth column from the left.   

 
323 Designated Eng26 in the list of engine map models used in the analysis.  See Chapter 3.1 for more information. 
324 Designated Eng12 in the list of engine map models used in the analysis.  See Chapter 3.1 for more information. 
325 This is because BEV200 uses fewer batteries and weighs less than BEVs with greater ranges. 
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Table 3-58 – Phase-In Caps for Fuel Cell and Battery Electric Vehicle Technologies 
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BEV200 0.09% 1998 0.53% 1.98% 2.43% 2.88% 3.33% 3.78% 4.23% 4.68% 
BEV300 0.70% 2009 1.07% 7.70% 11.20% 14.70% 18.20% 21.70% 25.20% 28.70% 
BEV400 1.25% 2016 0.25% 5.00% 11.25% 17.50% 23.75% 30.00% 36.25% 42.50% 
BEV500 4.25% 2021 - - 17.00% 38.25% 59.50% 80.75% 102.00% 123.25% 
FCV 0.018% 2016 0.005% 0.072% 0.162% 0.252% 0.342% 0.432% 0.522% 0.612% 

The BEV200 phase-in cap is informed by manufacturers’ tendency to move away from low-
range vehicle offerings, in part because of potential consumer hesitancy to adopt this technology.  
In some cases, the advertised range on most electric vehicles may not reflect the actual real 
world range in cold and hot ambient conditions and real-world driving conditions, affecting the 
utility of these lower range vehicles.326  Many manufacturers have told us that the portion of 
consumers willing to accept a vehicle with our lowest range model is small, with manufacturers 
targeting range values above 250 miles.327,328  

Furthermore, the average BEV range has steadily increased over the past decade,329 perhaps in 
part as batteries become more cost effective.  EPA observed in its 2021 Automotive Trends 
Report that “the average range of new EVs has climbed substantially.  In model year 2020, the 
average new EV is projected to have a 286-mile range, or about four times the range of an 
average EV in 2011.  This difference is largely attributable to higher production of new EVs with 
much longer ranges.”330  Based on the cited examples and basis described in this section, the 
maximum growth rate for BEV200 in the model is set accordingly low to less than 0.1 percent 
per year.  While this rate is significantly lower than that of the other BEV technologies, the 
BEV200 phase-in cap allows the penetration rate of low-range BEVs to grow by a multiple of 
what is currently observed in the market. 

For BEV300, 400, and 500, phase-in caps are intended to conservatively reflect potential 
challenges in the scalability of BEV manufacturing, and implementing BEV technology on many 
vehicle configurations, including larger vehicles.  In the short term, the penetration of BEVs is 

 
326 AAA. “AAA Electric Vehicle Range Testing.” February 2019. 
https://www.aaa.com/AAA/common/AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf.  (Accessed: 
February 15, 2022). 
327 For example, in February 2021, Tesla, the United States’ highest-selling BEV manufacturer, discontinued the 
Standard Range Model Y because its range did not meet the company’s “standard of excellence.” 
328 Baldwin, Roberto.  “Tesla Model Y Standard Range Discontinued; CEO Musk Tweets Explanation.”  Car and 
Driver, 30 Apr. 2021, www.caranddriver.com/news/a35602581/elon-musk-model-y-discontinued-explanation.  
(Accessed: February 15, 2022). 
329 2021 EPA Automotive Trends Report, at p. 56, figure 4.17. 
330 2021 EPA Automotive Trends Report, at p. 58. 
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largely limited by battery availability.331  For example, Tesla is not yet producing electric vans 
because of cell production constraints, and it remains a bottleneck in the company’s expansion 
into new product lines.332  Incorporating battery packs that provide greater amounts of electric 
range into vehicles also poses its own engineering challenges.  Heavy batteries and large packs 
may be difficult to integrate for many vehicle configurations and require structural vehicle 
modifications.  Pickup trucks and large SUVs in particular require higher levels of energy as the 
number of passengers and/or payload increases, for towing and other high-torque applications.  
We use the BEV400 and 500 phase-in caps to reflect these transitional challenges. 

The phase-in cap for FCEVs is assigned based on existing market share as well as historical 
trends in FCEV production.  FCEV production share in the past five years has been extremely 
low, and we set the phase-in cap accordingly.333  As with BEV200, however, the phase-in cap 
still allows for the market share of FCEVs to grow several times over.   

3.3.4 Electrification Effectiveness 

For this analysis, we consider a range of electrification technologies which, when modeled, result 
in varying levels of effectiveness at reducing fuel consumption.  As discussed above, the 
modeled electrification technologies include micro hybrids, mild hybrids, two different strong 
hybrids, two different plug-in hybrids with two separate all electric ranges, full battery electric 
vehicles and FCEVs.  Each electrification technology consists of many complex sub-systems 
with unique component characteristics and operational modes.  As discussed further below, the 
systems that contribute to the effectiveness of an electrified powertrain in the analysis include the 
vehicle’s battery, electric motors, power electronics, and accessory loads.  We discuss the 
procedures for modeling each of these sub-systems below, and in Chapter 2.4, and the 
Autonomie model documentation.  

Argonne uses data from their AMTL to develop Autonomie’s electrified powertrain models.  The 
modeled powertrains are not intended to represent any specific manufacturer’s architecture but 
are intended to act as surrogates predicting representative levels of effectiveness for each 
electrification technology. 

As we discuss in Chapter 2.4, certain technologies’ effectiveness for reducing fuel consumption 
requires optimization through the appropriate sizing of the powertrain.  Autonomie uses sizing 
control algorithms based on data collected from vehicle benchmarking,334 and sized the modeled 
electrification components based on the performance neutrality considerations discussed above.  
This analysis iteratively minimizes the size of the powertrain components to maximize efficiency 
while enabling the vehicle to meet multiple performance criteria.  The Autonomie simulations 
use a series of resizing algorithms that contain “loops,” such as the acceleration performance 
loop (0-60 mph), which automatically adjust the size of certain powertrain components until a 

 
331 See, e.g., Cohen, Ariel. “Manufacturers Are Struggling To Supply Electric Vehicles With Batteries.” Forbes, 
Forbes Magazine, 25 March 2020, www.forbes.com/sites/arielcohen/2020/03/25/manufacturers-are-struggling-to-
supply-electric-vehicles-with-batteries.  (Accessed: February 15, 2022). 
332 Hyatt, Kyle.  “Tesla Will Build an Electric Van Eventually, Elon Musk Says.”  Roadshow, CNET, 28 Jan. 2021, 
https://www.cnet.com/roadshow/news/tesla-electric-van-elon-musk.  (Accessed: February 15, 2022). 
333 2021 EPA Automotive Trends Report, at p. 56, figure 4.14. 
334 Autonomie model documentation, Chapter 8.3. 
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criterion, like the 0-60 mph acceleration time, is met.  As the algorithms examine different 
performance or operational criteria that must be met, no single criterion can degrade; once a 
resizing algorithm completes, all criteria will be met, and some may be exceeded as a necessary 
consequence of meeting others.   

As discussed in Chapter 2.4, Autonomie applies different powertrain sizing algorithms 
depending on the type of vehicle considered because different types of vehicles not only contain 
different powertrain components to be optimized, but they must also operate in different driving 
modes.  While the conventional powertrain sizing algorithm must consider only the power of the 
engine, the more complex algorithm for electrified powertrains must simultaneously consider 
multiple factors, which could include the engine power, electric machine power, battery power, 
and battery capacity.  Also, while the resizing algorithm for all vehicles must satisfy the same 
performance criteria, the algorithm for some electric powertrains must also allow those 
electrified vehicles to operate in certain driving cycles, like the US06 cycle, without assistance of 
the combustion engine, and ensure the electric motor/generator and battery can handle the 
vehicle’s regenerative braking power, all-electric mode operation, and intended range of travel.   

To establish the effectiveness of the technology packages, Autonomie simulates the vehicles’ 
performance on compliance test cycles, as discussed in Chapter 2.4.335,336,337  For vehicles with 
conventional powertrains and micro hybrids, Autonomie simulates the vehicles using the 2-cycle 
test procedures and guidelines.338  For mild HEVs, strong HEVs, and FCEVs, Autonomie 
simulates the same 2-cycle test, with the addition of repeating the drive cycles until the final 
SOC is approximately the same as the initial SOC, a process described in SAE J1711.  For 
PHEVs, Autonomie simulates vehicles performing the test cycles per guidance provided in SAE 
J1711.339  For BEVs and FCEVs, Autonomie simulates vehicles performing the test cycles per 
guidance provided in SAE J1634.340 

The range of effectiveness for the electrification technologies in this analysis is a result of the 
interactions between the components listed above and how the modeled vehicle operates on its 
respective test cycle.  This range of values will result in some modeled effectiveness values 
being close to real-world measured values, and some modeled values that will depart from 
measured values, depending on the level of similarity between the modeled hardware 
configuration and the real-world hardware and software configurations.  This modeling approach 
comports with the National Academy of Science 2015 recommendation to use full vehicle 
modeling supported by application of lumped improvements at the sub-model level.341  The 

 
335 EPA, “How Vehicles are Tested.”  https://www.fueleconomy.gov/feg/how_tested.shtml.  (Accessed: February 
15, 2022). 
336 Autonomie model documentation, Chapter 6. 
337 EPA Guidance Letter.  “EPA Test Procedures for Electric Vehicles and Plug-in Hybrids.”  Nov.  14, 2017.  
https://www.fueleconomy.gov/feg/pdfs/EPA%20test%20procedure%20for%20EVs-PHEVs-11-14-2017.pdf.  
(Accessed: February 15, 2022). 
338 40 CFR part 600. 
339 PHEV testing is broken into several phases based on SAE J1711.  charge-sustaining on the city and HWFET 
cycle, and charge-depleting on the city and HWFET cycles.   
340 SAE J1634.  “Battery Electric Vehicle Energy Consumption and Range Test Procedure.”  July 12, 2017.   
341 2015 NAS report, at 292. 
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approach allows the isolation of technology effects in the analysis supporting an accurate 
assessment. 

The range of effectiveness values for the electrification technologies, for all ten vehicle 
technology classes, is shown in Figure 3-15 below.  In the graph, the box shows the inner 
quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.342  The blue 
dots show values outside these bounds. 

 

  

Figure 3-15 – Electrification Technology Effectiveness Values for All the Vehicle Technology Classes343 

The following sections discuss the data that we use to model each electrification component, 
including the batteries, electric motors, power electronics, and accessories, and the Autonomie 
models that we use to simulate the effectiveness of each electrified powertrain technology on its 
respective test cycle. 

 
342 The IQR is the interquartile range – the difference between the upper quartile and the lower quartile.  Each 
whisker shows the data points between that range. 
343 The data used to create this figure can be found the FE_1 Improvements file. 
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3.3.4.1 Batteries, Electric Motors, Power Electronics, and Accessories 

Autonomie determines the effectiveness of each electrified powertrain type by modeling the 
basic components, or building blocks, for each powertrain, and then combining the components 
modularly to determine the overall efficiency of the entire powertrain.  The basic building blocks 
that comprise an electrified powertrain in the analysis include the battery, electric motors, power 
electronics, and accessory loads.  Autonomie identifies components for each electrified 
powertrain type, and then interlinks those components to create a powertrain architecture.  
Autonomie then models each electrified powertrain architecture and provides an effectiveness 
value for each architecture.  For example, Autonomie determines a BEV’s overall efficiency by 
considering the efficiencies of the battery, the electric traction drive system (the electric machine 
and power electronics) and mechanical power transmission devices.  Or, for a SHEVP2, 
Autonomie combines a very similar set of components to model the electric portion of the hybrid 
powertrain, and then also includes the combustion engine and related power for transmission 
components.   

For this analysis, Autonomie employs a set of electric motor efficiency maps created by Oak 
Ridge National Laboratory (ORNL): one for a traction motor and an inverter, the other for a 
motor/generator and inverter.344  Autonomie also uses test data validations from technical 
publications to determine the peak efficiency of BEVs and FCEVs.  The electric motor 
efficiency maps, created from production vehicles as shown in Table 3-59 below, represent 
electric motor efficiency as a function of torque and motor RPM.  These efficiency maps provide 
nominal and maximum speeds, as well as a maximum torque curve.  Argonne uses the maps to 
determine the efficiency characteristics of the motors but scales them such that their peak 
efficiency value corresponds to the latest state of the art technologies for different electrified 
powertrains.  Specifically, Argonne scales the maps to have total system peak efficiencies 
ranging from 96-98 percent depending on the powertrain type.345  The maps also include some of 
the losses due to power transfer through the electric machine.346  Table 3-59 shows the electric 
machine efficiency map sources for the different powertrain configurations that we use in this 
analysis.   

Table 3-59 – Electric Machine Efficiency Map Sources for Different Powertrain Configurations 

Powertrain Type Source of Efficiency Map for Motor1 
(Traction Motor) + Inverter 

Source of Efficiency Map for 
Motor2 (Motor/Generator) + 

Inverter 

SS12V, BISG Camry EM1 data from ORNL  

SHEVP2  Sonata HEV data from ORNL  

SHEVPS, PHEV20 Camry EM1 data from ORNL Camry EM2 Data from ORNL 
PHEV50 Camry EM1 data from ORNL Sonata HEV Data from ORNL 

 
344 Oak Ridge National Laboratory (2008).  Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System. 
Submitted to the U.S. Department of Energy; Oak Ridge National Laboratory (2011).  Annual Progress Report for 
the Power Electronics and Electric Machinery Program. 
345 See Autonomie model documentation, Chapter 5.6.2. 
346 See Autonomie model documentation, Chapters 4.7 and 5.6. 
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BEV and FCEV347 Chevrolet Bolt EM data from SAE paper  

Beyond the powertrain components, Autonomie also considers electric accessory devices that 
consume energy and affect overall vehicle effectiveness, such as headlights, radiator fans, wiper 
motors, engine control units (ECU), transmission control unit (TCU), cooling systems, and safety 
systems.  In real-world driving, the electrical accessory load on the powertrain varies depending 
on the how the driver uses certain features and the condition in which the vehicle is operating, 
such as for night driving or hot weather driving.  However, for regulatory test cycles related to 
fuel economy, the electrical load is repeatable because the fuel economy regulations control for 
these factors, as discussed in Chapter 2.4.348  Accessory loads during test cycles do vary by 
powertrain type and vehicle technology class, since distinctly different powertrain components 
and vehicle masses will consume different amounts of energy. 

The baseline fleet consists of different vehicle types with varying accessory electrical power 
demand.  For instance, vehicles with different motor and battery sizes will require different 
capacities of electric cooling pumps and fans to manage component temperatures.  Autonomie 
has built-in models that can simulate these varying sub-system electrical loads.  However, for 
this analysis, we use a fixed (by vehicle technology class and powertrain type), constant power 
draw to represent the effect of these accessory loads on the powertrain on the 2-cycle test.  We 
intend and expect that fixed accessory load values will, on average, have similar impacts on 
effectiveness as found on actual manufacturers’ systems.  This process is in line with the past 
analyses.349,350  For this analysis, we aggregate electrical accessory load modeling assumptions 
for the different powertrain types and classes from data from the Draft TAR, EPA Proposed 
Determination,351 CBI from manufacturers,352 research and development data from DOE’s 

 
347 Burak Ozpineci, Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric 
Motors Program, ORNL/SPR-2014/532, https://info.ornl.gov/sites/publications/Files/Pub52422.pdf, November 
2014.  (Accessed: February 15, 2022).  (For FCVs, we used data from the Nissan Leaf). 
348 NHTSA Benchmarking, “Laboratory Testing of a 2017 Ford F-150 3.5 V6 EcoBoost with a 10-speed 
transmission.”  DOT HS 812 520. 
349 Draft Technical Assessment Report (July 2016), Chapter 5. 
350 EPA Proposed Determination TSD (November 2016), at pp. 2–270. 
351 EPA Proposed Determination TSD (November 2016), at pp. 2–270. 
352 Alliance of Automobile Manufacturers Comments on Draft TAR, at p. 30. 
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Vehicle Technologies Office,353,354,355 and DOT-sponsored vehicle benchmarking studies 
completed by Argonne’s AMTL.356  These assumptions are provided below in Table 3-60.357 

Table 3-60 – Accessory Load Assumptions in Watts by Vehicle Class and Powertrain Type 

Vehicle Class Performance Category 

Accessory Load (Watts) by Vehicle 
Powertrain Type 

Conventional HEVs 
PHEVs 

and 
BEVs 

Compact Base 250 275 375 
Compact Premium 300 375 475 
Midsize Base 250 275 375 
Midsize Premium 300 375 475 
Small SUV Base 300 325 425 
Small SUV Premium 300 375 475 
Midsize SUV Base 300 325 425 
Midsize SUV Premium 350 375 475 
Pickup Base 300 325 425 
Pickup Premium 300 375 475 

The following sections discuss how the assumptions for each powertrain type are simulated 
across the test cycle to meet modeling and performance requirements. 

 
353 DOE VTO Power Electronics Research and Development. https://www.energy.gov/eere/vehicles/vehicle-
technologies-office-electric-drive-systems.  (Accessed: February 15, 2022). 
354 Argonne National Laboratory, Advanced Mobility Technology Laboratory (AMTL).  
https://www.anl.gov/es/advanced-mobility-technology-laboratory.  (Accessed February 15, 2022). 
355 DOE’s lab years are ten years ahead of manufacturers’ potential production intent (e.g., 2020 Lab Year is MY 
2030).   
356  Stutenberg, K., Kim, N., Russo, D. M., Islam, E., Kim, K., Lohse-Busch, H., Rousseau, A., Vijayagopal, R. 
(2021, July). Vehicle technology assessment, model development, and validation of a 2018 Honda Accord LX with 
a 1.5L I4 and continuously variable transmission (Report No. DOT HS 813 159). National Highway Traffic Safety 
Administration., Stutenberg, K., Kim, N., Russo, D. M., Islam, E., Kim, K., Lohse-Busch, H., Rousseau, A., & 
Vijayagopal, R. (2021, July). Vehicle technology assessment, model development and validation of a 2018 Toyota 
Camry XLE with a 2.5L I4 and 8-speed automatic transmission (Report No. DOT HS 813 160). National Highway 
Traffic Safety Administration., Stutenberg, K., Kim, N., Russo, D. M., Islam, E., Lohse-Busch, H., Rousseau, A., & 
Vijayagopal, R. (2021, July). Vehicle technology assessment, model development, and validation of a 2019 Acura 
MDX Sport Hybrid (Report No. DOT HS 813 161). National Highway Traffic Safety Administration., Jehlik, F., 
Kim, N., Islam, E., Lohse-Busch, H., Rousseau, A., Stutenberg, K., & Vijayagopal, R. (2021, July). Vehicle 
technology assessment, model development, and validation of a 2019 Infiniti QX50 (Report No. DOT HS 813 162). 
National Highway Traffic Safety Administration., Lohse-Busch, H., Stutenberg, K., Ilieve, S., & Duoba, M. (2018, 
July). Laboratory testing of a 2017 Ford F-150 3.5L V6 EcoBoost with a 10-speed transmission (Report No. DOT 
HS 812 520). Washington, DC: National Highway Traffic Safety Administration., Lohse-Busch, H., Stutenberg, K., 
Ilieve, S., & Duoba, M. (2018, July). Laboratory testing of a 2017 Ford F-150 3.5L V6 EcoBoost with a 10-speed 
transmission (Report No. DOT HS 812 520). Washington, DC: National Highway Traffic Safety Administration. 
357 See ANL - Summary of Main Component Performance Assumptions_NPRM_022021, ANL - All 
Assumptions_Summary_NPRM_022021.xlsx. 
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3.3.4.2 Micro Hybrids 

Autonomie represents a micro hybrid system using SS12V technology.  The SS12V system in 
this analysis does not provide any brake energy recovery.  The effectiveness improvement from 
SS12V systems is attributable to the amount of fuel saved during the engine idling period on the 
2-cycle test.  Although the SS12V system only provides minimal benefit on the 2-cycle test,358 
the fuel economy improvement from SS12V systems is also credited in the analysis through the 
application of off-cycle FCIVs.  For further discussion of the SS12V system models, see the 
Autonomie model documentation.359  

Micro hybrid systems normally do not provide propulsion assist, so this technology has little to 
no impact on the vehicle performance metrics.  Thus, in this analysis, Autonomie does not resize 
the powertrain when a vehicle adopts a micro hybrid system because with or without the micro 
hybrid system, the combustion engine size must be retained to maintain performance metrics 
such as acceleration. 

3.3.4.3 Mild Hybrids 

The mild hybrid system in Autonomie is a 48V BISG.360  The main focus of mild hybrid vehicles 
is to provide idle-stop and capture some regenerative braking energy, and although they also can 
provide some assistance to the engine during the initial propelling of the vehicle, this is done to 
improve efficiency and does not significantly improve acceleration performance.  With BISG 
mild hybrids, the electric machine is linked to the engine through a belt, and thus the potential 
power assistance is usually limited.  In this analysis a BISG uses a 10 kW motor/generator paired 
with a 403 watt-hour battery pack to better align with BISG systems emerging in the 
marketplace.361  The specification of this system is provided in the Autonomie summary 
assumptions files.362 

Like the modeled micro hybrid system, the effectiveness improvement from the mild hybrid 
system is attributable to the amount of fuel saved during the engine idling period on the 2-cycle 
test, and additional fuel economy benefits are credited through the application of off-cycle 
FCIVs.  Also similar to the mild hybrid system, Autonomie does not resize the vehicle 
powertrain with the addition of the 48V BISG technology.  However, the BISG system model 
allows limited assist to propel the vehicle and limited regenerative braking.   

 
358 The regulatory two-cycle test only contains 18 percent vehicle idling, which is not always representative of real-
world operation.  See EPA Detailed Test Information, https://www.fueleconomy.gov/feg/fe_test_schedules.shtml.  
(Accessed: February 15, 2022). 
359 See Autonomie model documentation, Chapters 4.6, 4.7 and 4.13. 
360 These systems are 48V Direct Current (DC) electrical systems.  
361 See, e.g., Bosch 48V battery, https://www.bosch-mobility-solutions.com/en/solutions/batteries/48v-battery/; 
A123 Systems 48V battery, http://www.a123systems.com/automotive/products/systems/48v-battery/; K.C. Colwell, 
The 2019 Ram 1500 eTorque Brings Some Hybrid Tech, If Little Performance Gain, to Pickups, Car and Driver 
(March 14, 2019), https://www.caranddriver.com/reviews/a22815325/2019-ram-1500-etorque-hybrid-pickup-drive.  
(Accessed: February 15, 2022). 
362 See ANL - Summary of Main Component Performance Assumptions_NPRM_022021, ANL - All 
Assumptions_Summary_NPRM_022021.xlsx, and ANL_BatPac_Lookup_tables_Feb2021v2.xlsx. 
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3.3.4.4 Strong Hybrids  

As discussed earlier, this analysis considers two types of strong hybrid technology, a power-split 
hybrid (SHEVPS) architecture and a P2 hybrid (SHEVP2) architecture.  The SHEVPS model in 
Autonomie includes a power-split device, two electric machines, and an engine, and allows for 
various interactions between these components.  The SHEVP2 model in Autonomie is based on 
the pre-transmission (P2) configuration where the electric motor is placed between the engine 
and transmission for direct flow of power to the wheels.  The vehicle is propelled either by the 
combustion engine, electric motor, or both simultaneously, but the speed/efficiency region of 
operation for SHEVP2s under any engine/motor combination is ultimately dictated by the 
transmission gearing and speed.  A detailed discussion of the SHEVPS and SHEVP2 modeling 
and validation are provided in the Autonomie model documentation.363  Autonomie full vehicle 
models representing the strong hybrids are based on vehicle test data from vehicle 
benchmarking.   

As discussed previously in this section, power-split hybrids utilize a full-time Atkinson mode 
engine, two electric machines, and a planetary gear set transmission along with a battery pack to 
propel the vehicle.  The smaller motor/generator (EM1) is used to control the engine speed and 
the engine is used to either charge the battery or to supply additional electric power to the second 
“drive” motor.  The more powerful drive motor/generator (EM2) is permanently connected to the 
vehicle’s final drive and always turns with the wheels.  The Autonomie SHEVPS model and 
controls are based on a few high-level characteristics of real-world strong hybrid power-split 
systems that drive how the components are sized to meet performance metrics.  For example: 

• In the initial vehicle launch, when SOC is stable, the electric motor is the only propulsion 
system; and 

• In normal city driving, the engine could both propel the vehicle and through the 
generator/motor charge the battery. 

The SHEVPS resizing algorithm makes an initial estimate of the size of the engine, battery, and 
electric motors.  The initial estimates for the combustion engine and EM2 sizes are based on the 
peak power required for acceleration performance and the continuous power required for 
gradeability performance.  The initial estimates for the battery and EM1 power are based on the 
maximum regenerative braking power.  With these initial size estimates, the algorithm computes 
the vehicle mass, and runs simulations to determine if 0-60 and 50-80 mph acceleration 
performance is acceptable.  If acceleration is not satisfactory (too fast or too slow), the algorithm 
iteratively adjusts the sizes of the engine, motors, and battery, and runs simulations until a 
minimum powertrain size is found that meets all performance requirements.  With each iteration, 
the engine, battery, and motor characteristics are also updated for gradeability performance and 
regeneration, if necessary.  Figure 3-16 below shows the general steps of the SHEVPS sizing 
algorithm.  Detailed descriptions are available in the Autonomie model documentation. 

 
363 Autonomie model documentation, Chapters 4.13, 4.16, and 6. 
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Figure 3-16 – Simplified SHEVPS Sizing Algorithm in Autonomie 

The SHEVP2 uses a combustion engine and a multi-speed transmission-integrated electric motor 
(EM1).  As discussed earlier, this SHEVP2 allows most engines and an advanced eight speed 
transmission to integrate with an electric motor.  To minimize the number of Autonomie 
simulations for combinations of engines and transmissions for all ten vehicle classes,364 we use 
the AT8L2 as the only transmission that can be integrated with SHEVP2.  As manufacturers 
continue to increase gear counts from the common five and six speed gears and improve 
transmission internals, this improvement is carried into the SHEVP2 architecture.  In MY 2020, 
about 50 percent of the fleet had transmissions with seven gears or higher.365  Additionally, the 
higher-geared eight speed automatic transmission enables the maximization of engine efficiency 
by allowing the engine to operate in the more efficient region as compared to a lower geared 
transmission.  These benefits are further discussed in Chapter 3.2.  

As with SHEVPS, the SHEVP2 resizing algorithm starts by estimating the size of the engine, 
battery, and electric motor based on performance criteria or an estimated regenerative braking 
power, and then by calculating the associated vehicle mass.  The algorithm then uses a 
simulation loop to find a more precise value of regenerative braking power generated in the 
UDDS “city driving” cycle and adjusts the electric motor size and vehicle mass accordingly.  
Next, the algorithm uses simulation loops to optimize the engine, motor, and battery sizes in 
relation to acceleration performance criteria.  If the acceleration criteria require downsizing the 
powertrain, the electric motor size is not reduced as this would not be suitable to handle 
regenerative braking power.  If the acceleration criteria cause the electric motor to increase in 
size, the algorithm then returns to the regenerative braking loop and subsequently all other loops 
until all components are optimized.  Figure 3-17 below shows a simplified sizing algorithm for 
SHEVP2s.   

 
364 For this analysis, there are 1,103,760 simulation results for all ten vehicles classes.  That number does not include 
the simulations associated with sizing of components for different powertrains. 
365 See Chapter 3.2 for a more detailed breakdown of transmission penetration rates.  
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Figure 3-17 – Simplified SHEVP2 Sizing Algorithm in Autonomie 

To maintain performance neutrality, the acceleration optimization loops in the SHEVP2 
algorithm differ between the non-performance vehicle class and the performance class.  For 
performance classes, Autonomie does not resize the powertrain to avoid reducing the 
performance in SHEVP2 hybrids compared to the same vehicle with a conventional powertrain.  
This mimics the observed marketplace trend in which parallel hybrid models tend to retain a 
similar engine size as the non-hybrid models bearing the same nameplate.  For non-performance 
classes, SHEVP2 powertrains allow engine downsizing.  This algorithm is discussed in the 
Autonomie model documentation with a more detailed flow chart of the closed loop design.366 

In addition, we limit adoption of some advanced engine technologies with strong hybrids in 
cases where the electrification technology would have little effectiveness benefit beyond the 
benefit of the advanced engine system but would substantially increase costs.  Specifically, we 
do not model strong hybrid technologies with VCR engines (eng26a) and eBoost engines 
(eng23c).  We believe that manufacturers would not consider these combinations because the 
combination of electrification and advanced engine technologies are not as cost-effective as other 
technologies.   

3.3.4.5 Plug-in Hybrids 

The effectiveness of the PHEV systems is dependent on both the vehicle’s battery pack size and 
range, in addition to the other fuel economy-improving technologies on the vehicle (e.g., 
aerodynamic and mass reduction technologies).   

 
366 Autonomie model documentation, Chapter 8.3.3. 
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As discussed earlier in Chapter 3.3.1, Autonomie follows EPA regulatory guidance using the 
SAE J1711 test procedure to model the incremental effectiveness of adding PHEV technology to 
a vehicle.  The procedure from this guidance is divided into several phases that model charge 
sustaining, charge depleting, and cold weighting calculations for different test cycles.  This is 
described in detail in the Autonomie model documentation.367 

The resizing algorithm for PHEVs, similar to strong HEVs, considers the power needed for 
acceleration performance and all-electric mode operation (compared to regenerative braking for 
strong HEVs); the PHEV resizing algorithms use these metrics for an initial estimation of 
engine, motor(s) and battery powers, and battery capacity.  The initial mass of the vehicle is then 
computed, including the weight for a larger battery pack and charging components.368  However, 
since PHEVs offer expanded electric driving capacity, their resizing algorithm must also yield a 
powertrain with the ability to achieve certain driving cycles and range in electric only mode, in 
which the engine remains off for all or most the operation.  The analysis sizes the PHEV electric 
motor and battery power so that the vehicle can complete either the city cycle (UDDS) or US06 
(aggressive, high speed) driving cycle in electric mode, and the battery energy storage capacity 
to achieve the specified AER on the 2-cycle tests on the basis of adjusted energy values.369,370   

For this analysis, we classify PHEVs into four technology levels, as discussed previously: (1) 
PHEV20 indicating a vehicle with an AER of 20 miles and powertrain system based on SHEVPS 
hybrid architecture; (2) PHEV50 indicating a vehicle with an AER of 50 miles and powertrain 
system based on SHEVPS hybrid architecture; (3) PHEV20T indicating a vehicle with an AER 
of 20 miles and powertrain system based on SHEVP2 hybrid architecture; and (4) PHEV50T 
indicating a vehicle with AER of 50 miles and powertrain system based on SHEVP2 hybrid 
architecture.   

The PHEV20, PHEV20T, PHEV50, and PHEV50T resizing algorithms are functionally equal, 
and differ only in the type of electric mode driving cycle simulated in each (UDDS for 
PHEV20/20T, or US06 for PHEV50/50T).  These algorithms simulate the driving cycles in an 
iterative loop to determine the size of the electric motors and the battery required to complete the 
cycles.  In the case of PHEV20 and PHEV20T, the power of the electric motors and battery must 
be sized to propel the vehicle through the UDDS cycle in “charge-depleting (CD) mode”; in this 
mode, the electric machine alone propels the vehicle except during high power demands, at 
which point the engine may turn on and provide propulsion assistance.  The PHEV50 and 
PHEV50T motor(s) and battery must be sized to power the vehicle through the US06 cycle in 
“electric vehicle (EV) mode,” where the engine is always off.  Then, all PHEV algorithms adjust 
the battery capacity, or vehicle range, by ensuring the battery energy content is sufficient to 
complete a simulated UDDS + Highway Fuel Economy Test (HWFET) combined driving cycle, 
based on EPA-adjusted energy consumption.  Finally, the algorithm sizes the engine, electric 
motor(s), and battery powers accordingly to meet 0-60 and 50-80 mph acceleration targets.  All 
loops are repeated until the acceleration targets are met without needing to resize the electric 

 
367 Autonomie model documentation, Chapter 6.  
368 Autonomie model documentation, Chapter 8.3. 
369 Battery sizing and the definition of the combined 2-cycle test’s AER is discussed in detail in Chapter 6 of the 
Autonomie model documentation.   
370 Argonne has incorporated SAE J1711, Recommend Practice for Measuring Exhaust Emissions and Fuel 
Economy of Hybrid-Electric Vehicles, Including Plug-In Hybrid Vehicles, into the Autonomie modeling. 
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motors, at which point the resizing algorithm finishes. Figure 3-18 below shows the general steps 
of the PHEV sizing algorithm.  Detailed steps can be seen in the Autonomie model 
documentation.371 

 

Figure 3-18 – Simplified PHEV Sizing Algorithm in Autonomie 

Table 3-61 below shows a summary of PHEV components and denotes if they are eligible to be 
resized in the Autonomie sizing algorithm.  As discussed earlier, the Autonomie sizing algorithm 
is automated and any change in one of the component checks in the steps shown in Figure 3-18 
requires the components to be revaluated and sized appropriately.   

Table 3-61 – Summary of Components that Could Resize as Part of PHEV Sizing Algorithm 

  IC Engine Electric 
Motor 

Battery 
Power 

Battery 
Capacity 

PHEV20 

Inherited from 
sized 

conventional 
vehicle and 

resized 

Resized Resized Resized 

PHEV50 

Inherited from 
sized 

conventional 
vehicle and 

resized 

Resized Resized Resized 

 
371 Autonomie model documentation, Chapter 8.3.4-8.3.6. 



  282 

PHEV20T 

Inherited from 
sized 

conventional 
vehicle and not 

resized 

Resized Resized Resized 

PHEV50T 

Inherited from 
sized 

conventional 
vehicle and not 

resized 

Resized Resized Resized 

3.3.4.6 Battery Electric Vehicles 

The effectiveness of BEVs is dependent on the efficiency of the components that transfer power 
from the battery to the driven wheels.  These components include the battery, electric machine, 
power electronics, and mechanical gearing.  For this analysis, we use efficiency maps from 
production vehicles to calculate electric machine efficiency and scale the electric machine 
efficiency such that the peak efficiency value corresponds to the latest state-of-the-art 
technologies.  The range of a BEV in the analysis depends on the vehicle’s class and the battery 
pack size. 

An important note about Autonomie’s BEV model is that it does not simulate any one 
manufacturer’s technology, architecture, battery pack, thermal, or SOC control strategies.  Those 
BEV characteristics are unique for each manufacturer’s vehicle models.  And, like many other 
parts of this analysis, these technology models in Autonomie are discrete representative designs.  
Accordingly, the absolute MPGe from Autonomie could vary significantly compared to 
production vehicles in the market in the rulemaking time frame.372   

Another important note about BEVs in this analysis is that the effectiveness of a BEV built in the 
CAFE Model is independent of the effectiveness of the conventional powertrain it replaces.  As 
vehicles adopt BEV technology, the CAFE Model uses the Autonomie databases to determine 
the added incremental efficiency that will bring a specific vehicle up to the appropriate fuel 
economy level that allows the manufacturer’s fleet to achieve compliance.  Since the CAFE 
Model considers a variety of vehicle types with differing powertrain types, vehicle technology 
classes, performance criteria, and physical properties (curb weight, etc.), each with a different 
overall effectiveness, the efficiency increment needed to achieve BEV effectiveness will vary 
with each case.  The effectiveness used in the CAFE Model represents the difference between the 
performance of the full vehicle models’ simulations—the full vehicle model representing the 
baseline vehicle and the full vehicle model representing the end-state—with all additional fuel 
economy improving technology applied, as we discuss in Chapter 2.4. 

As we discuss in Chapter 3.3.1, Autonomie follows EPA regulatory guidance using the SAE 
J1634 test procedure to determine incremental effectiveness for BEVs in the CAFE Model 
analysis.  The procedure from this guidance uses the multi-cycle test (MCT) method from SAE 

 
372 Paul Seredynski (2010-12-21). "Decoding Electric Car MPG: With Kilowatt-Hours, Small Is Beautiful". 
Edmunds.com. Retrieved 2011-02-17. https://www.edmunds.com/fuel-economy/decoding-electric-car-mpg.html.  
(Accessed: February 15, 2022). 
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J1634.  Autonomie’s BEV model starts with the battery at full charge or maximum SOC, and 
simulates the vehicle on the MCT until the battery is empty or has reached a minimum SOC.373   

The resizing algorithm for BEVs is functionally the same as the PHEV algorithm, however, 
BEVs do not use a combustion engine, and thus the BEV algorithm does not include this 
component.  The model calculates initial estimates of motor and battery powers based on 
acceleration performance, gradeability performance, and vehicle range.  Then, the algorithm 
successively runs four simulation loops to finetune the powertrain size to ensure that all 
performance and operational criteria are maintained.  First, the BEV motor and battery are sized 
to power the vehicle through the US06 cycle.  Next, the battery capacity is adjusted to ensure the 
energy content is sufficient to complete a simulated UDDS+HWFET combined driving cycle, 
based on EPA adjustment factors to represent sticker values, and to meet the vehicle range 
requirement.  Finally, the electric motor and battery powers are sized to meet 0-60 and 50-80 
mph acceleration targets.  If either acceleration simulation loop results in a change to the electric 
motor size, the algorithm repeats all simulation loops.  The algorithm finishes once the 
acceleration targets are met without resizing the electric motors.  Figure 3-19 below shows a 
simplified sizing algorithm for BEVs.  

 

Figure 3-19 – Simplified BEV Sizing Algorithm in Autonomie 

For further detailed discussion of how Autonomie simulates BEVs, see the Autonomie model 
documentation.374 

 
373 The minimum and maximum SOC for BEVs in this analysis is 5 to 95 percent.  
374 Autonomie model documentation, Chapters 4.6, 4.7, 4.13, 4.14, and 5.8. 
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3.3.4.7 Fuel Cell Electric Vehicles 

The fuel-cell system in the analysis is modeled to represent hydrogen consumption as a function 
of the produced power, assuming normal-temperature operating conditions with a peak system 
efficiency of 64 percent.  The system’s specific power is 860 W/kg.  The hydrogen storage 
technology selected is a high-pressure tank with a specific weight of 0.04 kg H2/kg, sized to 
provide a 320-mile range on the 2-cycle tests on the basis of adjusted energy values. 

The sizing algorithm for FCEVs is similar to PHEVs and BEVs, but is adapted for the specific 
components of a FCEV powertrain: the electric motor, fuel-cell, hydrogen (H2) fuel tank, and 
battery pack.  During very low power operation, the battery pack alone powers the motor/wheels, 
depleting the battery charge.  At moderate driving loads, the fuel cell provides electrical power 
(generated by consuming stored H2) to the motor and also to charge the battery.  Under heavy 
loads, both the fuel cell and battery deliver electric power to the motor.   

To begin the FCEV sizing algorithm, the model calculates initial estimates of motor, fuel cell, 
and battery powers based on criteria for acceleration, gradeability, and vehicle range.  The 
algorithm successively runs four simulation loops to finetune powertrain size, ensuring that all 
performance and operational criteria are maintained.  First, the FCV motor and battery are sized 
to power the vehicle through the US06 cycle.  Next, the model adjusts the on-board mass of H2 
fuel, as well as the fuel tank mass, to ensure the vehicle can complete a simulated 2-cycle test 
and meet the range requirement.  Finally, the algorithm sizes the electric motor and fuel cell 
powers accordingly to meet 0-60 and 50-80 mph acceleration targets.  If either acceleration 
simulation loop results in a change to the electric motor size, the algorithm repeats all simulation 
loops.  Once the acceleration targets are met without resizing the electric motor, the algorithm 
completes.  Figure 3-20 below shows a simplified sizing algorithm for FCVs. 
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Figure 3-20 – Simplified Fuel Cell Vehicle Sizing Algorithm 

3.3.5 Electrification Costs  

The total cost to electrify a vehicle in this analysis is based on the battery the vehicle requires, 
the non-battery electrification component costs the vehicle requires, and the traditional 
powertrain components that must be added or removed from the vehicle to build the electrified 
powertrain. 

3.3.5.1 Battery Pack Modeling 

We work collaboratively with the experts at Argonne National Laboratory to generate battery 
costs using BatPaC, which is a model designed to calculate the cost of a vehicle battery for a 
specified battery power, energy, and type.  Argonne uses BatPaC to create lookup tables for 
battery cost and mass that the Autonomie simulations reference when a vehicle receives an 
electrified powertrain.  The BatPaC battery cost estimates are generated for a base year, in this 
case for MY 2020.  Accordingly, the BatPaC inputs fairly characterize the state of the market in 
MY 2020, including with a widely-utilized cell chemistry, average estimated battery pack 
production volume per plant, and plant efficiency (i.e., plant cell yield).  For two specific 
electrified vehicle applications, BEV400 and BEV500, we do not use BatPaC to generate battery 
pack costs.  Rather, we scale the BatPaC-generated BEV300 costs to match the range of BEV400 
and BEV500 vehicles to compute a direct manufacturing cost for those vehicles’ batteries.  

To reflect how we expect batteries could lower in cost over the timeframe considered in the 
analysis, we apply a learning rate to the direct manufacturing cost.  Broadly, the learning rate 
that we apply to batteries reflects middle-of-the-road year-over-year improvements until MY 
2032, and then the learning rates incrementally become shallower as battery technology is 
expected to mature in MY 2033 and beyond.  We performed additional analysis with BatPaC to 
confirm that these learning rates are reasonable for this analysis, and this is described in detail 
below.   

The following sections discuss Argonne’s process for generating battery pack direct 
manufacturing costs, our scaling for BEV400 and BEV500 costs, and the learning rate for battery 
pack costs. 

3.3.5.1.1 Battery Pack Costs from BatPaC  

BatPaC is a software designed for policymakers and researchers interested in estimating the 
manufacturing cost of lithium-ion batteries for electric drive vehicles.375  The model provides 
data needed to design and build a battery pack, such as dimensions of the cell, estimate of 
materials, and manufacturing cost, with the manufacturing costs based on a “baseline plant” 
designed for a battery of intermediate size and production scale.  A user can configure BatPaC 
with alternative chemistries, charging constraints, battery configurations, production volumes, 
and cost factors for other battery designs by customizing these parameters in the modeling tool.  
BatPaC calculations are based on a generic pack design that reasonably represents the weight and 

 
375 BatPaC: Battery Manufacturing Cost Estimation, Argonne National Laboratory, https://www.anl.gov/tcp/batpac-
battery-manufacturing-cost-estimation.  (Accessed: February 15, 2022). 
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manufacturing cost of batteries deployed commercially.  The advantage of using this approach is 
the ability to model a wide range of commercial design specifications for various classes of 
vehicles. 

For this analysis, we use BatPaC version 4.0 (October 2020 release) to estimate the battery cost 
for electrification technologies.376  Similar to past rulemaking analyses, running individual 
BatPaC simulations for each full vehicle simulation requiring an electrified powertrain would 
have been computationally intensive and impractical, given that approximately 750,000 
simulated vehicles out of the 1.1 million total simulated vehicles have an electrified powertrain.  
Accordingly, Argonne staff builds “lookup tables” with BatPaC to provide battery pack 
manufacturing costs, battery pack weights, and battery pack cell capacities for vehicles modeled 
in the large-scale simulation runs. 

Figure 3-21 illustrates the inputs generated in Autonomie to create the BatPaC-based lookup 
tables, and the outputs characterized in the BatPaC-based lookup tables that are used to provide 
estimates referenced in this analysis.  The peak power requirement or total energy requirement 
from the Autonomie simulations is used as an input to the BatPaC model, and outputs from the 
model include cost, mass, pack capacity, and voltage.  

 

 

Figure 3-21 – Flowchart Showing How Autonomie Calls BatPaC Look-up Tables 

While manufacturers’ battery pack specifications are highly heterogeneous in the real world, we 
endeavor to develop battery pack costs that fairly encompass the cost of battery packs for 
vehicles in each technology class with a direct manufacturing cost (DMC) base year of MY 
2020.  As detailed in the BatPaC model documentation, the costs of materials, labor, and capital 
equipment in the model are based upon Argonne’s estimates of 2018 values, “[t]hus, if BatPaC is 
used to calculate the current costs of batteries at current production levels (say 30,000 all-electric 
(BEV) packs per year) we expect it to provide good estimates of current battery prices to OEMs.  
Estimates done for ten years in the future should be at production levels of 100,000 to 500,000 

 
376 Nelson, Paul A., Ahmed, Shabbir, Gallagher, Kevin G., and Dees, Dennis W.  Modeling the Performance and 
Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, Third Edition (ANL/CSE-19/2), available at 
https://publications.anl.gov/anlpubs/2019/03/150624.pdf.  (Accessed: February 15, 2022).  To request the BatPaC 
model used in this analysis, submit the request using the instructions at https://www.anl.gov/cse/batpac-model-
software.  (Accessed: February 15, 2022). 

BatPaC 
Lookup 
Tables 

Inputs from Autonomie to 
BatPaC: 

Battery total energy (kWhr) 
Battery pack peak power 

(kW)  

Outputs from BatPaC: 
Battery pack manufacturing cost ($) 

Battery pack mass (kg) 
Battery pack capacity (Ah)  

Nominal battery system voltage 
(V) 
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units per year, which will result in lower pack prices because of the assumed increase in the 
degree of plant automation.”377   

We used vehicle teardown reports to determine commonly-utilized battery pack chemistries for 
each modeled electrification technology.  In addition, we looked at vehicle sales volumes in MY 
2020 to determine a reasonable base production volume assumption.  The Autonomie model 
documentation details other specific assumptions that Argonne uses to simulate battery packs 
and their associated costs for the full vehicle simulation modeling, including updates to the 
battery management unit costs, and the range of power and energy requirements used to bound 
the lookup tables.378  We discuss specific considerations for three notable BatPaC specifications 
– battery cell chemistry, plant production volume, and cell yield – in turn, below. 

Applying learning curves to the battery pack DMC in subsequent analysis years lowers the cost 
such that the cost of a battery pack in any future model year could be representative of the cost to 
manufacture a battery pack, regardless of potentially diverse parameters such as cell chemistry, 
cell format (e.g., cylindrical, prismatic, or pouch), or production volume.  Our assumptions for 
battery pack learning curves are discussed in detail following the discussion of BatPaC inputs 
and assumptions. 

3.3.5.1.1.1 Battery Cell Chemistry 

We use three different cell chemistries to establish initial battery pack costs.379  We select cell 
chemistries based on the type of electrified powertrain.  To determine which chemistries 
reasonably represent manufacturer’s packs for different vehicle types in MY 2020, we and 
Argonne survey industry trends, current and future battery cell chemistry, and vehicles in the 
A2Mac1 database, a widely-used industry database that has component level information of the 
vehicles in the marketplace,380 in addition to other reports.  The Autonomie model 
documentation includes more detail about the reports referenced for this analysis.381 Table 3-62 
shows the battery chemistries that we use by electrification technology for this analysis.   

Table 3-62 – Battery Chemistries Assumed by Applications 

Electrification 
Technology 

Battery 
Chemistry 

Micro HEV AGM 
Mild HEV LFP 

HEV NMC622 
PHEV NMC622 
BEV NMC622 

 
377 Id. at pp. 1-2. 
378 Autonomie model documentation, Chapter 5.9. 
379 As discussed below, a cost reduction is built into the battery pack learning curve that assumes potential changes 
to battery chemistry in later years.   
380 A2Mac1:  Automotive Benchmarking.  (Proprietary data).  Retrieved from https://portal.a2mac1.com/.  
(Accessed: February 15, 2022). 
381 Autonomie model documentation, Chapter 5.9. 
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As we discuss further in Chapter 3.3.5 below, we use a lower cost SS12V (micro HEV) battery 
based on absorbed-glass-mat (AGM) chemistry for this analysis, which is more widely used in 
the industry.  The cost is fixed across vehicle classes, and we did not develop this cost in 
BatPaC.  For mild HEVs we use the LFP-G382  chemistry because power and energy 
requirements for mild hybrids are very low, the charge and discharge cycles are high, and the 
battery raw materials are much less expensive than a nickel manganese cobalt (NMC)-based cell 
chemistry.  

We use NMC622-G for all other electrified vehicle technology initial battery pack cost 
calculations.383  We recognize there is ongoing research and development in several battery 
chemistry options that may have the potential to reduce costs and increase battery capacity.  
However, in this analysis, we account for the potential cost savings for future battery cell 
chemistries in the learning rate cost reduction.  As discussed above, the battery chemistry we use 
is intended to reasonably represent what is in use in MY 2020, the DMC base year for our 
BatPaC calculations.  As discussed further in the Autonomie model documentation, Argonne 
references battery cell teardown analysis reports from the A2Mac1 database and Total Battery 
Consulting to evaluate different assumptions for the different modeled electrification 
technologies.  Of the five fully electrified vehicles surveyed for this analysis, four of those 
vehicles use NMC622, and one uses NMC532-G.384   

Stakeholders had commented to the 2020 final rule that batteries using NMC811 chemistry had 
either recently come into the market or was imminently coming into the market, and therefore we 
should have selected NMC811 as the appropriate chemistry for modeling battery pack costs.  
Similar to the other technologies considered in this analysis, we endeavor to use technology that 
is a reasonable representation of what the industry could achieve in the model year or years 
under consideration, in this case the base DMC year of 2020, as discussed above.  At the time of 
this current analysis, the referenced A2Mac1 teardown reports and other reports provide the best 
available information about the range of battery chemistries actually employed in the industry.  
At the time of writing, we have still not found examples of NMC811 in commercial application 
across the industry in a way that we believe selecting NMC811 would have represented industry 
average performance in MY 2020.  As discussed in Chapter 3.3.5.1.4, we did analyze the 
potential future cost of NMC811 in the composite learning curve generated to ensure the battery 
learning curve projections are reasonable. 

3.3.5.1.1.2 Battery Plant Production Volume 

In practice, a single battery plant can produce different battery packs with either different cell 
chemistries or with the same cell chemistries with different power, energy, and thermal strategies 
(for example, with the Hyundai Kona and Hyundai Ioniq, see Table 3-64 below).  However, in 
BatPaC, a battery plant is assumed to manufacture and assemble a specific battery pack design, 
and all cost estimates are based on one single battery plant manufacturing only that specific 
battery pack.  For example, if a manufacturer has more than one EV and each uses a specific 
battery pack design, a BatPaC user would include manufacturing volume assumptions for each 

 
382 Lithium Iron Phosphate (LiFePO4). 
383 Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2). 
384 Autonomie model documentation, Chapter 5.9.2.3. 
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design separately to represent each plant producing each specific battery pack.  As a 
consequence, we examine battery pack designs for vehicles sold in MY 2020 to determine a 
reasonable manufacturing plant production volume assumption.  We consider each assembly line 
and material processing designed for a specific battery pack and for a specific EV as an 
individual battery plant.  Since battery technologies are still evolving, it is likely to be some time 
before battery cells can be treated as commodity where in the specific numbers of cells are used 
for varying battery pack requirements and everything else remains the same.  Table 3-63 shows 
the assumed baseline battery manufacturing plant production volume for this analysis.  

Table 3-63 – Battery Manufacturing Plant Production Volume Assumption for Different Electrification 
Technologies 

Technology Production 
Volume 

Mild Hybrid 100,000 
HEV 100,000 

PHEV20 25,000 
PHEV50 25,000 
BEV200 25,000 
BEV300 25,000 

Similar to the 2020 final rule, we use BEV sales as a starting point to analyze potential base 
modeled battery manufacturing plant production volume assumptions, as actual production data 
for specific battery manufacturing plants are extremely hard to obtain.  We associate the 
production volume of individual battery packs designed for specific BEVs to the sales volume of 
those specific BEVs because, as explained above, BatPaC assumes that each battery plant 
produces a specific battery pack design.   

We observe battery pack designs for BEVs sold both in the U.S and globally.  Manufacturers 
design BEVs to suit local or regional duty cycles, customer preferences, affordability, supply 
constraints, and local laws.  As a consequence, BEVs sold in the United States may have 
different performance metrics and battery technology compared to same BEV sold in other parts 
of the world.  For example, the U.S. Tesla Model 3 and Model Y battery packs use a lithium 
nickel cobalt aluminum oxide (NCA)-based cell,385 and the same vehicles for sale in China use 
LFP-G-based packs.386  Even though the battery packs are built for the same vehicle model, the 
battery packs will likely have different costs due to the different cell chemistries.387  In addition 
to cost differences due to different chemistries, the total battery capacity, battery pack design, 
vehicle range, battery pack mass, charge and discharge cycles, end of life, and other parameters 
differ across markets.  As a result, we consider U.S. sales and not global sales when estimating 
battery pack production volume. 

 
385 Nickel Manganese Cobalt Aluminum. 
386 See Electric Vehicle Database, Tesla Model 3 Standard Range Plus LFP, https://ev-database.uk/car/1320/Tesla-
Model-3-Standard-Range-Plus-LFP.  (Accessed: February 15, 2022).  
387 For example, BatPaC estimates the cost of LFP-G to be 15 to 20 percent cheaper than a similarly sized NCA-
based cell chemistry battery pack. 
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Table 3-64 shows the production volume, cell size, cell format and available battery pack 
information for MY 2020 EVs sold in the United States, using sales volume data from the MY 
2020 Market Data file used in this analysis (sales volumes for all models aggregated by 
nameplate).  Review of Table 3-64 shows there is no standardization of the cell size, total 
energy, or the pack size across different vehicle manufacturers, or even between different BEVs 
under the same manufacturer.388  Each battery pack is custom designed and sized to account for 
vehicle performance, vehicle class, and packaging space.  Therefore, to align with the BatPaC 
assumption that a plant would only produce battery packs of one specific design, using sales 
volume data for each nameplate, because each nameplate uses a different battery pack design, 
provided a reasonable baseline.  As seen in Table 3-64, averaging MY 2020 BEV production 
volume results in an average production volume of 16,995, which is lower than our assumption 
of 25,000 units for the plant. 

In selecting a battery pack manufacturing volume estimate that would be representative for an 
industry-wide assessment, we sought to accurately account for both the production volumes and 
representative practices of the industry.  Ongoing reductions in battery cost based on increasing 
manufacturing volumes in future model years is discussed in Chapter 3.3.5.1.4.  

Table 3-64 – MY 2020 BEVs by Cell Type and Production Volume 

Vehicle Cell Type 
MY 2020 
Production 
Volume 

Number 
of cells in 
battery 
pack 

No. of cells in 
each module 

Total 
no. of 
modules 

Cell size 
(millimeters) 

Total 
Energy 
(kWh) 

Porsche Taycan Pouch 4,394 396 12 33  79.2 
Audi e-tron Pouch 793 432 12 36 326 x 96 x 11 95 

Chevrolet Bolt Pouch 28,197 288 24 (2 modules) + 
30 (8 modules) 10 261 x 97 x 13 60 

Hyundai Kona Pouch 6,003 288 180 (5modlues) + 
30 (8 modules) 10 263 x 93 x 14 64 

Hyundai Ioniq  Pouch 2,300 180 30 6  39 
Jaguar I-Pace Pouch 1,858 432 12 36 286 x 98 x 11.4 90 
Nissan Leaf Pouch 11,558 196 8 24 261 x 216 x 7.91 40 
Daimler EQC Pouch 258 384 48, 72 2, 6  80 
BMW i3 Prismatic 1,529 96 12 8 174 x 45 x 126 40 

 
388 See Gustavo Henrique Ruffo, Tesla Model Y Battery Pack Is Different From Model 3: Check Out How It Differs, 
Inside EVs (April 23, 2020), https://insideevs.com/news/414440/tesla-model-y-battery-different-model-3s/; Kyle 
Field, Tesla Model 3 Battery Pack & Battery Cell Teardown Highlights Performance Improvements, Clean Technica 
(January 28, 2019), https://cleantechnica.com/2019/01/28/tesla-model-3-battery-pack-cell-teardown-highlights-
performance-improvements.  (Accessed: February 15, 2022).  For example, while both the Tesla Model 3 and Model 
Y use the same cylindrical cell format 2170, the battery pack is not identical.  There are a number of differences in 
the battery pack used in the Model Y, such as a protective cover for fuses, caps on the safety switch for high voltage 
terminals, foam pack around outside edge of battery pack, among other differences.  Similarly, in the Model S/X, the 
battery pack uses a serpentine cooling system that routes cooling fluids through the battery pack, whereas in the 
Model 3, the cooling system is a manifold base that has dedicated cooling channels between each row of cells.  
Model X has dual motors as standard equipment and hence energy (kWh) unlocked from the battery pack is more 
than Model S. 
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Mini Cooper Pouch 468     42 

Kia Niro Pouch 965 294 27 (2 modules) + 
30 (8 modules) 10 98 x 301 x 14.7 39 

Tesla Model S Cylindrical 
18650 14,000 6,216 84 74 18 diameter x 65 60 

Tesla Model X Cylindrical 
18650 20,000 6,216 84 74 18 diameter x 65 70 

Tesla Model 3 Cylindrical 
2170 106,000 2,976 96 31 21 diameter x 65 50 

Tesla Model Y Cylindrical 
2170 56,000 2,976 96 31 21 diameter x 65 75 

Total  254,323      

Average  16,955      

Subsequent to the publication of the proposed rule for MYs 2024-2026, DOE released a report 
titled “Lithium-ion Battery Supply Chain for E-Drive Vehicles in the United States: 2010-
2020.”389  One table in the report shows the battery cell manufacturer, battery pack manufacturer, 
battery size (total energy), and production volume for several vehicle makes and models.390  This 
table is similar to our Table 3-64, above, but has added information for the battery cell 
manufacturer and the battery pack manufacturer.  The table in the report shows that the battery 
cell manufacturer is not always the battery pack manufacturer, and as shown in Table 3-64, a 
battery pack is unique for each BEV.  As stated above, each battery pack is custom designed to 
meet performance characteristics, such as initial launch speed, passing speed, range, cold 
weather performance, thermal management, both battery and occupant safety, packaging, and 
cost, among other characteristics.  Further, the report shows the average BEV production volume 
for model years 2018 to 2020 is 12,235, which is considerably less than 25,000 units assumed for 
a plant and a lower estimate than our 16,995 average presented above. 

DOE’s report also provides battery cell and battery pack manufacturing capacity across different 
countries.  For the BEVs sold in the United States, a considerable portion of the battery pack is 
manufactured and assembled in the United States, with the next major battery pack 
manufacturers supplying the U.S. fleet being Germany, Japan, and South Korea.391  The report 
indicated the progression of battery pack production capacity in the U.S in GWh over time.  
Based on DOE’s estimates of production capacity, we can estimate that there is an approximate 
difference in pack production of 25,000 packs between years.392  This updated production data 

 
389 Lithium-Ion Battery Supply Chain for E-Drive Vehicles in the United States: 2010-2020, ANL/ESD-21/3 
390 Table B-1 (page 66 of the report: Lithium-Ion Battery Supply Chain for E-Drive Vehicles in the United States: 
2010-2020).  This table shows all BEVs from 2010-2020, including the BEVs that are no longer in production. For 
our analysis, only the models from 2018-2020 that are in production are considered. 
391 Figure ES-1 in the report titled “Lithium-Ion Battery Supply Chain for E-Drive Vehicles in the United States: 
2010-2020.” 
392 The numbers in the column under U.S. is plotted and linear curve fit is generated.  The equation for the linear 
curve fit is used to calculate average battery pack production capacity.  The values were converted from GWh to 
kWh and then divided by 75kWh to generate number of battery packs (one battery pack equal to one vehicle). The 
differences in the production volume between the years were calculated to arrive at 23,380. 
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from DOE provides another reference point for our 25,000-unit per plant production volume 
estimate. 

3.3.5.1.1.3 Cell Yield Assumptions 

Manufacturing plant efficiency is another parameter important to estimate battery pack costs.  
BatPaC version 4.0 defines manufacturing plant efficiency in terms of cell yield, or the number 
of cells that are usable out of the total number of cells that the plant produces.393  An advanced 
and mature battery manufacturing plant can be expected to produce greater than 95 percent good 
cells, and a cell yield of 95 percent is suggested as a default value in BatPaC as a forward-
looking estimate.  Because battery pack technology and battery pack manufacturing processes 
are proprietary, however, the data on plant efficiencies are not widely reported.  We continue to 
use the 95 percent value for this analysis and will explore acquiring additional data on cell yield 
for future analyses.  

3.3.5.1.2 BEV400 and 500 Battery Pack Costs  

New for the NPRM and carried into this analysis are the BEV400 and BEV500 technologies.  
We initially examined using BatPaC to model the cost and weight of battery packs for BEV400 
and BEV500s, however, initial values from the model could not be validated and were based on 
assumptions for smaller sized battery packs.  The initial results provided cost and weight 
estimates for BEV400 battery packs out of alignment with current examples of BEV400s in the 
market, and there are currently no examples of BEV500 battery packs in the market against 
which to validate the pack results.   

As a result, we use a modified form of an analogous estimate to determine the longer-range 
battery pack costs.  To generate the costs for BEV400 and BEV500 battery packs, we scale the 
BatPaC-generated costs for BEV300s proportional to the range for BEV400 and BEV500 
vehicles.  Simply put, the initial costs for the BEV400 battery pack equal 4/3 times the cost of 
the BEV300 battery, and the initial costs for a BEV500 battery pack equal 5/3 times the cost of 
the BEV300 battery.  The analogous initial costs then have the same learning curve applied, as 
discussed in Chapter 3.3.5.1.4, to determine costs in future model years.   

3.3.5.1.3 Battery Pack Direct Manufacturing Costs 

The following tables show battery pack costs for HEV, PHEV20, PHEV50, BEV200 and 
BEV300 for all vehicle technology classes.  The tables shown here demonstrate how the cost per 
kWh varies with the size of the battery pack.  While the overall cost of a battery pack will go up 
for higher kWh battery packs, the cost per kWh goes down.  This represents the cost of hardware 
that is needed in all battery packs, but is deferred across more kWh in larger packs, which 
reduces the per kWh cost.   

The full range of BatPaC-generated battery direct manufacturing costs is located in 
ANL_BatPac_Lookup_tables_Feb2021v2.xlsx.  Note that these charts represent the direct 

 
393 Cells might not be usable because of, for example, manufacturing defects, among other reasons.   
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manufacturing cost using a dollar per kWh metric; battery absolute costs used in the analysis by 
technology key can be found in the Battery Cost file.   

Table 3-65 – HEV Battery Pack Costs - Compact to Midsize 

$/kW at Pack Level (Total Energy) for Compact to Midsize Vehicle Technology Class 

HEV Energy, kWh 
0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Po
w

er
, k

W
 

10.0 $105 $106 $108 $110 $112 $114 $116 $117 $119 $121 $123 $124 
20.0 $55 $56 $57 $58 $59 $59 $60 $61 $62 $63 $64 $65 
30.0 $39 $39 $39 $40 $41 $41 $42 $42 $43 $44 $44 $45 
40.0 $31 $31 $31 $31 $32 $32 $33 $33 $34 $34 $34 $35 
60.0    $23 $23 $23 $24 $24 $24 $24 $25 $25 
80.0      $19 $19 $19 $19 $20 $20 $20 
100.0        $17 $17 $17 $17 $17 

 

Table 3-66 – HEV Battery Pack Costs - SUV to Pickup 

$/kW at Pack Level (Total Energy) for SUV to Pickup Vehicle Technology Class 

HEV 
Energy, kWh 

0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Po
w

er
, k

W
 

10.0 $12
3 

$12
4 

$12
6 

$12
8 

$13
0 

$13
2 

$13
4 

$13
5 

$13
7 

$13
9 

$14
1 

$14
2 

20.0 $64 $64 $65 $66 $67 $68 $69 $70 $71 $71 $72 $73 
30.0 $44 $44 $45 $45 $46 $47 $47 $48 $48 $49 $50 $50 
40.0 $34 $35 $35 $35 $36 $36 $37 $37 $37 $38 $38 $39 
60.0   $25 $25 $25 $26 $26 $26 $26 $27 $27 $27 
80.0      $20 $21 $21 $21 $21 $21 $21 
100.

0 
       $18 $18 $18 $18 $18 

 

Table 3-67 – Battery Costs for PHEV20 – Compact to Midsize 

$/kW at Pack Level (Total Energy) for Compact to 
Midsize Vehicle Technology Class 

PHEV20 Energy, kWh 
5.0 10.0 20.0 

Po
w

er
, k

W
 

30.0 $518 $321 $219 
40.0 $522 $323 $219 
60.0 $531 $326 $221 
80.0 $560 $329 $222 
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$/kW at Pack Level (Total Energy) for Compact to 
Midsize Vehicle Technology Class 

PHEV20 Energy, kWh 
5.0 10.0 20.0 

100.0 $574 $334 $224 
120.0 $589 $340 $226 
140.0 $614 $352 $227 
160.0 $641 $362 $229 
200.0  $383 $233 
240.0  $402 $242 
280.0  $427 $250 

 

Table 3-68 – Battery Packs costs for PHEV20 – SUV to Pickup 

$/kWh at Pack Level (Total Energy) for SUV to 
Pickup Vehicle Technology Class 

PHEV20 
Energy, kWh 

5.0 10.0 20.0 

Po
w

er
, k

W
 

30.0 $562 $339 $228 
40.0 $565 $340 $228 
60.0 $573 $343 $230 
80.0 $592 $346 $231 
100.0 $605 $349 $232 
120.0 $619 $361 $234 
140.0 $642 $366 $235 
160.0 $668 $375 $237 
200.0  $395 $240 
240.0  $413 $248 
280.0  $437 $255 

Table 3-69 – Battery Pack Costs for PHEV50 – Compact to Midsize 

$/kWh at Pack Level (Total Energy) for Compact to Midsize Vehicle 
Technology Class 

PHEV50 
Energy, kWh 

10.0 20.0 30.0 40.0 50.0 60.0 

Po
w

er
, k

W
 60.0 $419 $266 $213 $186 $169 $158 

80.0 $423 $268 $214 $187 $170 $158 
100.0 $426 $269 $215 $187 $170 $159 
120.0 $431 $271 $216 $188 $171 $159 
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$/kWh at Pack Level (Total Energy) for Compact to Midsize Vehicle 
Technology Class 

PHEV50 
Energy, kWh 

10.0 20.0 30.0 40.0 50.0 60.0 
140.0 $437 $272 $216 $189 $171 $160 
160.0 $446 $274 $217 $189 $172 $160 
200.0 $467 $278 $220 $191 $173 $161 
240.0 $485 $284 $222 $192 $174 $162 
280.0 $508 $291 $224 $194 $175 $163 

 

Table 3-70 – Battery Packs Costs for PHEV50 – SUV to Pickup 

$/kWh at Pack Level (Total Energy) for SUV to Pickup Vehicle 
Technology Class 

PHEV50 
Energy, kWh 

10.0 20.0 30.0 40.0 50.0 60.0 

Po
w

er
, k

W
 

60.0 $425 $269 $215 $187 $170 $159 
80.0 $428 $271 $216 $188 $171 $159 
100.0 $431 $272 $216 $189 $171 $160 
120.0 $436 $273 $217 $189 $172 $160 
140.0 $442 $275 $218 $190 $172 $161 
160.0 $451 $276 $219 $191 $173 $161 
200.0 $471 $280 $221 $192 $174 $162 
240.0 $489 $286 $223 $193 $175 $163 
280.0 $512 $293 $226 $195 $176 $164 
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Table 3-71 – Battery Packs Costs for BEV200 – Compact to Midsize 

$/kWh at Pack Level (Total Energy) for Compact 
to Midsize Vehicle Technology Class 

BEV200 
Energy, kWh 

30.0 50.0 70.0 90.0 
Po

w
er

, k
W

 
20.0 $231 $178 $155 $140 
40.0 $233 $179 $155 $141 
60.0 $234 $180 $156 $141 
80.0 $235 $181 $156 $142 
100.0 $237 $182 $157 $142 
120.0 $238 $182 $157 $143 
140.0 $240 $183 $158 $143 
160.0 $241 $184 $159 $143 
180.0 $243 $185 $159 $144 
200.0 $244 $186 $160 $144 
240.0 $248 $188 $161 $145 

 

Table 3-72 – Battery Packs Costs for BEV200 – SUV to Pickup 

$/kWh at Pack Level (Total Energy) for SUV to Pick up 
Vehicle Technology Class 

BEV200 
Energy, kWh 

30.0 50.0 70.0 90.0 120.0 

Po
w

er
, k

W
 

20.0 $244 $186 $160 $145 $131 
40.0 $245 $187 $161 $145 $132 
60.0 $246 $188 $161 $146 $132 
80.0 $248 $188 $162 $146 $132 
100.0 $249 $189 $162 $146 $132 
120.0 $250 $190 $163 $147 $133 
140.0 $251 $190 $163 $147 $133 
160.0 $252 $191 $164 $147 $133 
180.0 $254 $192 $164 $148 $134 
200.0 $255 $193 $165 $148 $134 
240.0 $258 $194 $166 $149 $134 
280.0 $261 $196 $167 $150 $135 
320.0 $267 $197 $168 $151 $136 
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$/kWh at Pack Level (Total Energy) for SUV to Pick up 
Vehicle Technology Class 

BEV200 
Energy, kWh 

30.0 50.0 70.0 90.0 120.0 
400.0 $280 $201 $170 $152 $137 

 

Table 3-73 – Battery Packs Costs for BEV300 – Compact to Midsize 

$/kWh at Pack Level (Total Energy) for Compact to 
Midsize Vehicle Technology Class 

BEV300 
Energy, kWh 

30.0 50.0 70.0 90.0 120.0 

Po
w

er
, k

W
 

20.0 $244 $186 $160 $145 $131 
40.0 $245 $187 $161 $145 $132 
60.0 $246 $188 $161 $146 $132 
80.0 $248 $188 $162 $146 $132 
100.0 $249 $189 $162 $146 $132 
120.0 $250 $190 $163 $147 $133 
140.0 $251 $190 $163 $147 $133 
160.0 $252 $191 $164 $147 $133 
180.0 $254 $192 $164 $148 $134 
200.0 $255 $193 $165 $148 $134 
240.0 $258 $194 $166 $149 $134 
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Table 3-74 – Battery Packs Costs for BEV300 – SUV to Pickup 

$/kWh at Pack Level (Total Energy) for SUV to Pickup Vehicle 
Technology Class 

BEV300 
Energy, kWh 

30.0 50.0 70.0 90.0 120.0 140.0 160.0 
Po

w
er

, k
W

 

20.0 $252 $191 $164 $148 $133 $127 $122 
40.0 $253 $192 $164 $148 $133 $127 $122 
60.0 $254 $193 $165 $148 $134 $127 $122 
80.0 $255 $193 $165 $149 $134 $127 $122 
100.0 $257 $194 $166 $149 $134 $128 $122 
120.0 $258 $194 $166 $149 $134 $128 $123 
140.0 $259 $195 $167 $150 $135 $128 $123 
160.0 $260 $196 $167 $150 $135 $128 $123 
180.0 $261 $196 $167 $151 $135 $129 $123 
200.0 $262 $197 $168 $151 $135 $129 $123 
240.0 $265 $198 $169 $152 $136 $129 $124 
280.0 $268 $200 $170 $152 $136 $130 $124 
320.0 $273 $201 $171 $153 $137 $130 $125 
400.0 $286 $204 $173 $155 $138 $131 $125 

3.3.5.1.4 Battery Pack Learning Curves 

A battery pack constitutes 20 percent to 30 percent of the vehicle curb weight and up to one third 
the cost of battery electric vehicles.394  As a consequence of the rapid changes in battery 
materials, production, and other factors, there is inherent uncertainty in estimating the cost of 
future battery packs.  

We continue to use the battery learning curves developed using BatPaC for the 2018 NPRM and 
2020 final rule.395  For the 2018 NPRM, we had used BatPaC v3.0 to model costs for a range of 
battery production volume inputs.  The range of production volumes were selected to represent 
estimated volumes of production for MY 2015, MY 2020, MY 2025.  We identified the change 
in cost for the estimated changes in production volumes linked to model years and used this rate 
to develop learning curves out to MY 2032.  For MYs 2033 to 2050, we scaled down the 
learning rate in steps based on literature values and market research.  We discussed in the 2020 
final rule that this learning curve was intended to be agnostic to future advances in battery 
chemistry, production volume necessary to achieve economies of scale, or energy density of the 
battery pack.396 

 
394 Based on review of BEV vehicle curb weight, battery pack mass, and cost information from the A2Mac1 
database.  
395 See 85 Fed. Reg. 24174, 24510 (Apr. 30, 2020). 
396 Id. 
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We determined this approach was a reasonable method for developing representative learning 
curves for manufacturing technologies that are currently rapidly changing and uncertain.  
However, based on stakeholder feedback to the 2020 final rule, we reexamined these learning 
curves in the NPRM.  The learning curve analysis uses a similar approach as the previous 
learning curve analysis but with updated modeling tools and inputs.  The learning curve analysis 
generates a composite learning curve using BatPaC v4.0 (October 2020 release) and accounts for 
a range of potential parameters.  The analysis discussed in this section did not result in a change 
to the 2018 NPRM and 2020 final rule learning curve, but confirmed that the ~4.5 percent year 
over year reduction in battery costs for model years through 2032 reasonably represents a 
potential future pathway for electric vehicle battery development. 

The analysis uses BatPaC to model the input parameters described above – plant production 
volume, battery chemistry, and cell yield – and their effect on battery cost.  While there are a 
range of parameters that can ultimately influence battery manufacturing cost, including other 
vehicle improvements (e.g., mass reduction technology, aerodynamic improvements, or tire 
rolling resistance improvements all effect the size and energy of a battery required to propel a 
vehicle where all else is equal) and the availability of materials required to manufacture the 
battery, we believe these parameters have a meaningful influence on the total cost of a battery 
pack.397  

We use these parameters to determine a composite learning curve.  The composite learning curve 
here is a blended learning curve that accounts for our best estimate of changes, over time, in 
production volume, cell chemistry, and plant efficiency.  We use the composite learning curve 
developed here to estimate future battery pack direct manufacturing costs and compare those 
future costs to estimated future costs from various other sources.   

We use the following assumptions as a base for the composite battery learning curve analysis.  
These assumptions are selected based on existing commercially available technologies and 
anticipated increases in production volume, and serve as a data “snapshot” representative of the 
battery technology advancements anticipated in the rulemaking timeframe: 

1. The base year production volume assumption is 25,000 battery pack units manufactured 
in a plant.  As explained in Chapter 3.3.5.1.1.2, we use a production volume of 25,000 
units in the base year 2020 based on BEV sales in MY 2020.  We believe it is reasonable 
to use sales as a proxy for production volume, as battery packs are generally uniquely 
designed for each vehicle and likely need unique production lines for each design.   

2. Production volume increases linearly in steps of 25,000 units per battery pack design per 
year per plant.  This assumption is based on an analysis of Tesla’s historical ramp up of 
battery pack production.  We look at Tesla's U.S. sales volume data for MYs 2012-2017 
to determine the rate of increase that a manufacturer could achieve for battery 

 
397 The cost of raw material also has a meaningful influence on the future cost of the battery pack.  As the production 
volume goes up, the demand for battery critical raw materials also goes up, which has an offsetting impact on the 
efficiency gains achieved through economies of scale, improved plant efficiency, and advanced battery cell 
chemistries.  We do not consider future battery raw material price fluctuations for this analysis, however that may be 
an area for further exploration in future analyses.  Comments on materials prices are discussed in Section III.D.3.e 
Electrification Costs of the preamble. 
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manufacturing year over year.398  Although Tesla's sales data for MYs 2012-2017 does 
not increase in a linear fashion, linearizing the data shows an approximately 25,000 unit 
year over year increase. 

3. The cost reduction that results from a production volume increase is only relative to the 
previous production volume. 

4. The ~4.5 percent year over year learning rate is applicable until MY 2032.  The learning 
rates for post-MY 2033 are the same as those used in the 2020 final rule.399   

5. We anticipate cell chemistry improvements will happen sometime during the middle or 
later part of this decade.  For this analysis we limit the battery cell chemistry selection to 
NMC622-G and NMC811-G.  We acknowledge there are cell chemistries currently being 
researched that reduce or eliminate cobalt or change the electrolyte from liquid to solid; 
however, at this time we do not have sufficient data to estimate cost for those advanced 
battery cell chemistries.  Therefore, we assume that for near term (2024-2027) and 
midterm (2027-2032) cost projection, lithium ion NMC will continue to be the 
predominant battery cell chemistry. 

6. We limit maximum production to 200,000 units per battery pack design, per year, per 
plant.  This assumption is based on the Tesla Gigafactory theoretical maximum capacity 
of 35 GWh, where there are 2 production lines running for 2 different types of BEVs: one 
production line of 200,000 units manufacturing a 75 kWh battery pack (similar to the 
Model 3 with 200 plus mile range) and a second production line of 200,000 units 
manufacturing an 85 kWh battery pack (similar to the Model Y with 300 plus mile 
range).  The total capacity of the plant would be 32 GWh. 

7. We assume a high level of uncertainty in this learning curve analysis and characterize the 
uncertainties with a sensitivity analysis. 

We begin the learning curve analysis by comparing the DMC of battery packs for each battery 
cell chemistry as a function of production volume for BEV200 vehicles. 400  We assume a 
baseline production volume of 25,000 units and successive production volume increases are 
modeled in 25,000 unit increments.  The increase in production volumes represent expected 
increases in production volume each year beyond the base year.  See Table 3-75 for the total 
battery pack costs as a function of production volume for battery packs using NMC622-G cell 
chemistry.  Table 3-76 shows the percentage cost reduction as a function of production volume 

 
398 See CAFE Public Information Center, Tesla Manufacturer Performance Report, 
https://one.nhtsa.gov/cafe_pic/cafe_pic_home.htm.  (Accessed: February 15, 2022). 
399 For MY 2033 - MY 2035, the learning rate slows from 4.5 percent per year to 4.0 percent per year as production 
volume reaches 200,000 plus units per year.  For MY 2036 - MY 2039, we anticipate a much lower learning rate of 
2.0 percent per year as battery technology starts to approach some level of maturity and cost stability and for MY 
2039 - MY 2044, the learning rate further slows down to 1.5 percent per year, and finally for MY 2044 - MY 2050, 
the learning rate is just around 0.3 percent.  The rate of reduction in learning rate for the out years from MY 2036 is 
based on similar learning rate reduction for other commodity fuel saving technology components such as automatic 
transmissions. 
400 Battery sizes vary based on the other technologies on the vehicle; the tables below assume a vehicle with MR0, 
ROLL0, and AERO0.  
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for battery packs using NMC622-G cell chemistry.  The DMCs shows that as production volume 
increases, there is a decrease in battery pack cost.   

We assume, across industry, that different battery manufacturing plants are functioning at unique 
points within the production volume range considered in this learning curve analysis, and each 
plant is increasing the production volume in subsequent years.  In Table 3-76, we calculate the 
average cost reduction across all vehicle classes to be 3.3 percent year over year as a function of 
production volume.  We average to linearize the cost reduction across all manufacturers and 
create a value representative of cost reductions for the whole industry, which includes plants first 
starting at ~25,000 battery packs per year and plants that are already near ~200,000 battery packs 
per year.  For example, battery manufacturing plant A is producing 50,000 units per year and 
increases production to 75,000 units, achieving a 4.7 percent reduction in cost.  Similarly, battery 
plant B goes from producing 125,000 units to 150,000 units per year, achieving a 1.9 percent 
reduction in cost.  The industry average in this example (considering only 2 plants) would be 3.3 
percent.  In reality, there are many more plants with different rates of production, however we 
believe that the resulting overall average cost decrease based on production volume alone of 3.3 
percent is reasonable.  

The same production volume analysis is repeated using the NMC811-G battery chemistry.  The 
analysis with the new chemistry also shows an overall average cost reduction of 3.3 percent year 
over year, based on increased production volume.  The BatPaC simulation results are shown in 
Table 3-77 and Table 3-78.  

In the second step, the cost reductions when battery cell chemistry changes from NMC622-G to 
NMC811-G for different levels of production volume are determined and shown in Table 3-79.  
The change in chemistry results in an average 5.2 percent cost reduction. 
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Table 3-75 – Battery Pack Direct Manufacturing Cost (DMC) as a Function of Production Volume for BEV200, Non-performance Vehicles, Using 
NMC622-G as Battery Cell Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC622-G, Cell Yield 95%401 

Year Production 
Volume 

Compact Car 
60 kWh Battery Pack 

Medium Car 
65 kWh Battery Pack 

Medium SUV 
82 kWh Battery Pack 

Pickup 
95 kWh Battery Pack 

Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh 

Base Year 25,000 $10,060 $167402 $10,581 $163 $12,509 $153 $13,862 $146 
Base year +1 50,000 $9,188 $153 $9,683 $149 $11,475 $140 $12,759 $134 
Base year + 2 75,000 $8,756 $146 $9,237 $142 $10,959 $134 $12,207 $128 
Base year + 3 100,000 $8,478 $141 $8,949 $138 $10,626 $130 $11,850 $125 
Base year + 4 125,000 $8,276 $138 $8,742 $134 $10,385 $127 $11,591 $122 
Base year + 5 150,000 $8,121 $135 $8,581 $132 $10,198 $124 $11,391 $120 
Base year + 6 175,000 $7,995 $133 $8,451 $130 $10,047 $123 $11,228 $118 
Base year + 7 200,000 $7,890 $132 $8,342 $128 $9,920 $121 $11,092 $117 

 

Table 3-76 – Percentage Cost Reduction as a Function of Production Volume for BEV200, Non-performance Vehicles, Using NMC622-G as Battery Cell 
Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC622-G, Cell Yield 95% 

Year Production 
Volume 

Compact Car 
60 kWh Battery 

Pack 

Medium Car 
65 kWh Battery 

Pack 

Medium SUV 
82 kWh Battery 

Pack 

Pickup 
95 kWh Battery 

Pack 
Base year 25,000 - - - - 

 
401 The numbers here reflect $/kWh at the pack level and not at the cell level.  The total cost of the pack for pickups is higher relative to another vehicle class.  
Since bigger packs have more cells, the number of cells in production have to increase in proportion to the number of packs, and due to economies of scale 
achieved for higher number of battery packs, cell cost as measured in $/kWh. 
402 Battery Pack cost in $/kWh, Total Cost/Battery Energy Rating, $10,060/60 = $168/kWh for NMC622-G, Cell Yield of 95 Percent and Production 
Volume=25,000. 
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BEV 200 (Non-Performance), Cell Chemistry NMC622-G, Cell Yield 95% 

Year Production 
Volume 

Compact Car 
60 kWh Battery 

Pack 

Medium Car 
65 kWh Battery 

Pack 

Medium SUV 
82 kWh Battery 

Pack 

Pickup 
95 kWh Battery 

Pack 
Base Year + 1 50,000 -8.7% -8.5% -8.3% -8.0% 
Base Year + 2 75,000 -4.7% -4.6% -4.5% -4.3% 
Base Year + 3 100,000 -3.2% -3.1% -3.0% -2.9% 
Base Year + 4 125,000 -2.4% -2.3% -2.3% -2.2% 
Base Year + 5 150,000 -1.9% -1.8% -1.8% -1.7% 
Base Year + 6 175,000 -1.6% -1.5% -1.5% -1.4% 
Base Year + 7 200,000 -1.3% -1.3% -1.3% -1.2% 

Average -3.4% -3.3% -3.2% -3.1% 
Average across all vehicle 

technology class -3.3% 

 

Table 3-77 – Battery Pack DMC as a Function of Production Volume for BEV200, Non-performance Using NMC811-G as Battery Cell Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC811-G, Cell Yield 95% 

Year Production 
Volume 

Compact Car 
60 kWh Battery Pack 

Medium Car 
65 kWh Battery Pack 

Medium SUV 
82 kWh Battery Pack 

Pickup 
95 kWh Battery Pack 

Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh 

Base year 25,000 $9,595 $160 $10,062 $155 $11,899 $145 $13,165 $139 
Base year + 1 50,000 $8,749 $146 $9,191 $141 $10,896 $133 $12,098 $127 
Base year + 2 75,000 $8,329 $139 $8,758 $135 $10,396 $127 $11,565 $122 
Base year + 3 100,000 $8,060 $134 $8,480 $130 $10,074 $123 $11,220 $118 
Base year + 4 125,000 $7,865 $131 $8,279 $127 $9,841 $120 $10,970 $115 
Base year + 5 150,000 $7,714 $129 $8,123 $125 $9,661 $118 $10,777 $113 
Base year + 6 175,000 $7,593 $127 $7,998 $123 $9,515 $116 $10,620 $112 
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BEV 200 (Non-Performance), Cell Chemistry NMC811-G, Cell Yield 95% 

Year Production 
Volume 

Compact Car 
60 kWh Battery Pack 

Medium Car 
65 kWh Battery Pack 

Medium SUV 
82 kWh Battery Pack 

Pickup 
95 kWh Battery Pack 

Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh Total Cost $/kWh 

Base year +7 200,000 $7,491 $125 $7,893 $121 $9,392 $115 $10,489 $110 

 

Table 3-78 – Percentage Cost Reduction as a Function of Production Volume for BEV200, Non-performance Using NMC811-G as Battery Cell 
Chemistry 

BEV 200 (Non-Performance), Cell Chemistry NMC811-G, Cell Yield 95% 

 Production 
Volume 

Compact Car 
60 kWh Battery 

Pack 

Medium Car 
65 kWh Battery 

Pack 

Medium SUV 
82 kWh Battery 

Pack 

Pickup 
95 kWh Battery 

Pack 
Base Year 25,000 - - - - 

Base Year + 1 50,000 -8.8% -8.7% -8.4% -8.1% 
Base Year + 2 75,000 -4.8% -4.7% -4.6% -4.4% 
Base Year + 3 100,000 -3.2% -3.2% -3.1% -3.0% 
Base Year + 4 125,000 -2.4% -2.4% -2.3% -2.2% 
Base Year + 5 150,000 -1.9% -1.9% -1.8% -1.8% 
Base Year + 6 175,000 -1.6% -1.5% -1.5% -1.5% 
Base Year + 7 200,000 -1.3% -1.3% -1.3% -1.2% 

Average -3.4% -3.4% -3.3% -3.2% 
Average across vehicle Technology 

class -3.3% 
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Table 3-79 – Percentage Cost Reduction due to Change in Battery Cell Chemistry (NMC622-G to NMC811-G) 

BEV200 (Non-Performance), Cell Chemistry NMC622-G to NMC811-G, Cell Yield 95% 

 Production 
Volume 

Compact Car 
60 kWh Battery 

Pack 

Medium Car 
65 kWh Battery 

Pack 

Medium SUV 
82 kWh Battery 

Pack 

Pickup 
95 kWh Battery 

Pack 
Base Year 25,000 -4.6% -4.9% -4.9% -5.0% 

Base Year + 1 50,000 -4.8% -5.1% -5.0% -5.2% 
Base Year + 2 75,000 -4.9% -5.2% -5.1% -5.3% 
Base Year + 3 100,000 -4.9% -5.2% -5.2% -5.3% 
Base Year + 4 125,000 -5.0% -5.3% -5.2% -5.4% 
Base Year + 5 150,000 -5.0% -5.3% -5.3% -5.4% 
Base Year + 6 175,000 -5.0% -5.4% -5.3% -5.4% 
Base Year + 7 200,000 -5.1% -5.4% -5.3% -5.4% 

Average -4.9% -5.2% -5.2% -5.3% 
Average across vehicle Technology 

classes -5.2% 
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After considering cell chemistry, we compute the total cost of the battery pack as a function of manufacturing cell yield values.  Cell 
yield is a measure of plant efficiency for manufacturing battery packs.  A higher cell yield means more efficient use of raw materials, 
processing of raw materials, energy, floor space, machinery, labor, and other inputs, which result in lower costs.  A lower cell yield 
means some of the inputs are not efficiently used, which means more raw materials, energy, labor, and other inputs are used to 
produce same number of battery packs, resulting in higher battery pack costs. Table 3-75 above shows battery pack costs for 
NMC622-G with cell yield of 95 percent, and Table 3-80 and Table 3-81 show battery pack cost with a cell yield input of 90 percent 
and 85 percent, respectively, for NMC622-G.   

Table 3-80 – Total Battery Pack Cost for Cell Yield of 90 Percent 

90% Cell Yield; BEV 200 Non-Performance, Cell Chemistry NMC622-G 

Production 
Volume 

Compact Car 
(60 kwh) 

Medium Car 
(65 kwh)  Medium SUV 

(82 kwh) 
Pickup 

(95 kwh) 
Total 
Cost $/kWh Total 

Cost $/kWh Total 
Cost $/kWh Total 

Cost $/kWh 

25,000 $10,389 $173 $10,929 $168 $12,933 $158 $14,339 $151 
50,000 $9,492 $158 $10,005 $154 $11,868 $145 $13,202 $139 
75,000 $9,046 $151 $9,544 $147 $11,335 $138 $12,632 $133 

100,000 $8,759 $146 $9,248 $142 $10,992 $134 $12,264 $129 
125,000 $8,551 $143 $9,034 $139 $10,743 $131 $11,997 $126 
150,000 $8,391 $140 $8,868 $136 $10,550 $129 $11,789 $124 
175,000 $8,261 $138 $8,773 $135 $10,393 $127 $11,621 $122 
200,000 $8,153 $136 $8,621 $133 $10,263 $125 $11,480 $121 
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Table 3-81 – Total Battery Pack Cost for Cell Yield of 85 Percent 

85% Cell Yield; BEV 200 Non-Performance, Cell Chemistry NMC622-G 
 Compact Car 

(60 kwh) 
Medium Car 

(65 kwh) 
Medium SUV 

(82 kwh) 
Pickup 

(95 kwh) 
Production 

Volume 
Total 
Cost $/kWh Total 

Cost $/kWh Total 
Cost $/kWh Total 

Cost $/kWh 

25,000 $10,755 $179 $11,317 $174 $13,405 $163 $14,869 $157 
50,000 $9,828 $164 $10,362 $159 $12,304 $150 $13,694 $144 
75,000 $9,368 $156 $9,887 $152 $11,753 $143 $13,105 $138 

100,000 $9,071 $151 $9,580 $147 $11,398 $139 $12,724 $134 
125,000 $8,857 $148 $9,359 $144 $11,141 $136 $12,447 $131 
150,000 $8,691 $145 $9,187 $141 $10,941 $133 $12,223 $129 
175,000 $8,556 $143 $9,048 $139 $10,779 $131 $12,058 $127 
200,000 $8,444 $141 $8,932 $137 $10,644 $130 $11,913 $125 

When comparing the total cost of a battery pack manufactured at a plant with a cell yield of 95 percent to a cell yield of 90 percent, 
there is on average an increase in cost by 3.4 percent.  Similarly, when comparing the total cost of a battery pack produced in a plant 
with a cell yield of 90 percent to a pack produced in a plant with a cell yield of 85 percent, there is an average 3.6 percent increase in 
cost.  This demonstrates that for every 5 percent decrease in cell yield, there is approximately a 3.5 percent increase in battery pack 
cost.   

Table 3-82 summarizes the individual effects of selected factors that affect the cost of battery packs: (a) production volume, (b) 
battery cell chemistry and (c) cell yield.  The individual values determined provide an indication of the possible range a composite 
learning curve should fall within.  

Table 3-82 – Summary List of Factors Affecting Battery Pack Cost Considered for Developing Learning Curve 

Factors which Influence the Battery Cost Learning Curve 
Average cost reduction from increasing production volume -3.26% 
Average cost reduction due to change in battery chemistry -5.15% 

Average cost reduction due improved plant efficiency (cell yield) -3.5% 
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Table 3-83 shows the factor values used to estimate an average battery pack composite cost reduction, over time.  The table includes 
cost reductions due to changes in cell chemistry and an increase in production volume over time.  We believe that during the 
rulemaking time frame, the industry will continue to use NMC622-G as the predominant battery cell chemistry but will transition to 
more advanced cell chemistries like NMC811-G.  Actual cell yield in the industry may be lower, but we have assumed a cell yield of 
95 percent regardless of cell chemistry.  Table 3-84 shows the progressive percent battery pack cost reduction for the costs shown in 
Table 3-83 as the simulated factors change across model years.  Averaging the percent cost reduction across the simulated model years 
and vehicle technology classes results in a 4.49 percent year over year cost reduction.   

Table 3-83 – Values Used to Estimate Battery Cost Reduction Over Time 

BEV200 (Non-Performance) 

Model Year Battery 
Chemistry 

Cell 
Yield 

Production 
Volume 

Compact Car 
60 kWh Battery 

Medium Car 
65 kWh Battery 

Medium SUV 
82 kWh Battery 

Pickup 
95 kWh Battery 

Total 
Cost $/kWh Total Cost $/kWh Total 

Cost $/kWh Total 
Cost $/kWh 

Base Year NMC622 95% 25,000 $10,060 $168 $10,581 $163 $12,509 $153 $13,862 $146 
Base Year + 1 NMC622 95% 75,000 $8,756 $146 $9,237 $142 $10,959 $134 $12,207 $128 
Base Year + 2 NMC622 95% 100,000 $8,478 $141 $8,949 $138 $10,626 $130 $11,850 $125 
Base Year + 3 NMC811 95% 100,000 $8,060 $139 $8,480 $135 $10,074 $127 $11,220 $122 
Base Year + 4 NMC811 95% 125,000 $7,865 $131 $8,279 $127 $9,841 $120 $10,970 $115 
Base Year + 5 NMC811 95% 150,000 $7,714 $129 $8,123 $125 $9,661 $118 $10,777 $113 
Base Year + 6 NMC811 95% 175,000 $7,571 $126 $7,975 $123 $9,488 $116 $10,592 $111 
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Table 3-84 – Percentage Reduction in Battery Costs from Composite Values Used to Estimate Battery Cost Reduction Over Time 

BEV200 (Non-Performance) 

Model Year Battery 
Chemistry 

Cell 
Yield Production Volume 

Compact Car 
60 kWh 
Battery 

Medium Car 
65 kWh 
Battery 

Medium SUV 
82 kWh 
Battery 

Pickup 
95 kWh 
Battery 

Base Year NMC622-G 95% 25000 - - - - 
Base Year + 1 NMC622-G 95% 75000 -12.96% -12.70% -12.39% -11.94% 
Base Year + 2 NMC622-G 95% 100000 -3.17% -3.12% -3.04% -2.92% 
Base Year + 3 NMC811-G 95% 100000 -4.93% -5.24% -5.19% -5.32% 
Base Year + 4 NMC811-G 95% 125000 -2.42% -2.37% -2.31% -2.23% 
Base Year + 5 NMC811-G 95% 150000 -1.92% -1.88% -1.83% -1.76% 
Base Year + 6 NMC811-G 95% 175,000 -2.89% -1.82% -1.79% -1.72% 

Average -4.72% -4.52% -4.43% -4.31% 
Average across all vehicle classes -4.49% 
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Using the calculated 4.49 percent average annual cost reduction, we constructed a linearized 
battery pack cost reduction curve, shown in Figure 3-22, showing the cost reduction year over 
year.  The costs shown in Figure 3-22 are a $/kWh direct manufacturing cost estimate for a 
compact vehicle with a 60 kWh battery pack with no road load technology applied (i.e., MR0, 
ROLL0, and AERO0).  

 

 

Figure 3-22 – Battery Learning Curve 

Table 3-85 below shows a comparison of battery cost estimates from this analysis and other 
sources.  Note that the costs presented in this table represent the cost to manufacture the battery 
pack, i.e., the direct manufacturing cost, and not the cost of the pack to the OEM.  The sources 
used to create this table did not uniformly distinguish a DMC source year, so some values vary 
slightly based on inflation.  
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Table 3-85 – Battery Cost Estimates from Other Sources ($/kWh) 

 2018-2020403 2025 2030 2045 

UBS404 $188 $136   

BCG405  $137 $117  

ICCT406 $175-177 $104 $64-73  

BNEF EV Outlook 2019 407,408 $176409 $87 $62  

Massachusetts Institute of Technology 
(MIT)410 $193 $146 $127411  

DOE VTO412 – based on usable energy  $170 $125 $98 $80 
2021 NAS Report413  $115 $80  

NHTSA Estimate  
from BatPaC version 4.0 (Oct 2020) $167414 $132 $106 $77 

Each individual report uses a certain set of assumptions to arrive at a rate of cost reduction.  
Among all the different cost estimates, Bloomberg New Energy Finance (BNEF) has the most 
aggressive year-over-year cost reductions, based on the historical battery cost learning rate of 18 

 
403 Sources generally provided estimates for 2018 or 2020. 
404 Hummel et al., UBS Evidence Lab Electric Car Teardown – Disruption Ahead?, UBS (May 18, 2017), 
https://neo.ubs.com/shared/d1ZTxnvF2k.  (Accessed: February 15, 2022). 
405 Mosquet et al., The Electric Car Tipping Point, BCG (Jan. 11, 2018), 
https://www.bcg.com/publications/2018/electric-car-tipping-point.aspx.  (Accessed: February 15, 2022).  This study 
provided cell cost estimates that the agencies converted to pack cost estimates using a multiplier of 1.3, as outlined 
in the Draft TAR at pp. 5–124. 
406 Nic Lutsey and Michael Nicholas, Update on electric vehicle costs in the United States through 2030, ICCT 
(April 2, 2019), available at https://theicct.org/publications/update-US-2030-electric-vehicle-cost.  (Accessed: 
February 15, 2022).  The presented values are $/kWh pack costs for mid-range electric cars/crossovers and SUVs. 
407 BNEF’s projected cost for 2021 is $132/kWh and they expect battery packs to cost less than $100/kWh in 2024.  
See Bloomberg NEF, Battery Pack Prices Fall to an Average of $132/kWh, But Rising Commodity Prices Start to 
Bite (Nov. 30, 2021), https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-
commodity-prices-start-to-bite/.  (Accessed: February 15, 2022).  
408 McKerracher et al., Electric Vehicle Outlook 2019 – Free Interactive Report, Bloomberg New Energy Finance 
(May 2019), https://about.bnef.com/electric-vehicle-outlook.  (Accessed: February 15, 2022). 
409 Logan Goldie-Scot, A Behind the Scenes Take on Lithium-ion Battery Prices, Bloomberg New Energy Finance 
(March 5, 2019), https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices.  (Accessed: February 
15, 2022).  BNEF projected the pack costs in 2018$ for 2018 as $176, and used the same value in the Electric 
Vehicle Outlook 2019 to describe pack cost levels “today.”   
410 MIT Energy Initiative.  2019.  Insights into Future Mobility.  Cambridge, MA: MIT Energy Initiative.  Available 
at http://energy.mit.edu/insightsintofuturemobility.  (Accessed: February 15, 2022). 
411 Id, at p. 78.  MIT estimates $124/kWh in 2030 in 2019$. Converting $124/kWh results in $127/kWh in 2030 in 
2018$. 
412 Islam, E., Kim, N., Moawad, A., Rousseau, A., “A Large-Scale Vehicle Simulation Study To Quantify Benefits 
& Analysis of U.S. Department of Energy VTO & FCTO R&D Goals.”  Report to U.S. Department of Energy.  
Contract ANL/ESD-19/10 (forthcoming). 
413 2021 NAS report, at pp. 5–142. 
414 The $/kWh direct manufacturing cost estimate presented here is for a compact vehicle with a 60kWh battery pack 
with no road load technology applied (MR0, ROLLl0, AERO0). 
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percent and their battery demand forecast.415  Similar to other sources of cost estimates, BNEF 
assumes improved battery chemistry and battery density increasing greater than 200Wh/kg by 
2030.  In order for the battery manufacturer to achieve economies of scale, BNEF assumes a 
global battery manufacturing facility capable of producing battery packs for both stationary 
energy storage and vehicle applications.  

In the MIT report, the authors use a two-stage method to develop composite battery learning 
curves, (1) production of active materials by mining companies and materials producers, and (2) 
fabrication of the battery packs by integrated battery-automotive corporations.416  The authors 
state that, according to two-stage learning curve model, the rate of price reductions slows 
significantly between 2025-2030 as a consequence of higher contribution of active materials 
(NMC) costs, which are modeled to decline at a lower rate of about 3.5 percent. 

This study also assumes NMC811 will be available by 2030.  The National Academy of Sciences 
(NAS) in its 2021 report assumes a battery learning rate of 5 percent per year but does not 
disclose the methodology for determining this assumed learning rate.417  The learning rate we 
assume for MYs through 2032 is slightly more optimistic than the MIT report learning rate, and 
slightly less optimistic than the 2021 NAS committee’s learning rate.  

The MIT report has the most conservative estimate among all the cost sources referenced in 
Table 3-85.  The cost estimates from other sources referenced above also include assumptions 
about higher levels of battery pack production and higher density battery cells.  Most cost 
estimates assume improved battery chemistry over time, such as NMC811.  As discussed earlier, 
we determined that assuming NMC622 as the predominant battery chemistry in MY 2020, the 
DMC source year, was a reasonable assumption; however, the composite learning curve 
generated for this analysis shows that a potential shift to NMC811 in the latter half of this decade 
makes our direct manufacturing costs fall squarely in the middle of the range of future battery 
cost estimates.   

Out of the reports that we surveyed,418 the BNEF and MIT assumptions represent a range of 
potential future costs in later years of the studies surveyed.  Using the same approach as the rest 
of our analysis, that our costs should represent an average achievable performance across the 
industry, we believe that the battery DMCs with the learning curve applied provide a reasonable 
representation of potential costs across the industry.  Figure 3-23 shows how the linearized 
battery pack composite learning cost reduction compares to the other battery pack cost estimates 
from sources listed in Table 3-85, with our projected costs falling fairly well in the middle of the 
range of potential costs in future years.  

 
415 Logan Goldie-Scot, A Behind the Scenes Take on Lithium-ion Battery Prices, Bloomberg New Energy Finance 
(March 5, 2019), https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices.  (Accessed: February 
15, 2022). 
416 Insights into Future Mobility, at pp. 78. 
417 2021 NAS report, at pp. 4–67. 
418 Many studies have projected future battery pack costs; however, we only selected a few commonly cited studies 
for additional reference in this analysis.   
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Figure 3-23 – Comparing Battery Pack Cost Estimates from Multiple Sources 
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As discussed above, there are inherent uncertainties in projecting future battery pack cost due to 
several factors.  One way to bound the uncertainty in projecting battery pack cost is to perform a 
sensitivity analysis.  We performed a sensitivity analysis for both the battery learning rate and 
battery DMC by varying the learning rate by plus and minus 20 percent from the reference case, 
and by varying the battery DMC by plus and minus 20 percent from the reference case.  These 
results are discussed in the FRIA.   

3.3.5.2 Non-Battery Electrification Component Costs 

Battery components are the biggest driver of the cost of electrification; however, non-battery 
electrification components also add to the total cost required to electrify a vehicle.  Different 
vehicle types have different non-battery electrification components and configurations, for 
instance some BEVs may have one electric motor and some BEVs may have two electric motors.  
In addition, some electrified vehicle types also include conventional powertrain components, like 
an internal combustion engine and transmission.  Chapter 3.3.5.3 discusses how the battery costs, 
non-battery electrification component costs, and other conventional powertrain technology costs 
come together to create a total vehicle cost for electrified vehicles.   

Beginning with the least complex electrification systems, the SS12V micro hybrid system cost in 
this analysis is based on one small motor and battery, and the motor is a fixed cost regardless of 
the engine type the system is paired with (e.g., turbocharged or naturally aspirated), however the 
cost varies by vehicle class.  We use motor costs from the 2016 Draft TAR and update the cost to 
2018$.419  The DMC for the SS12V motor for the small car, medium car, and small SUV classes 
is $159.  The DMC for the SS12V motor for the medium SUV and pickup truck classes is $213.  

Similar to the SS12V system, the 48V mild hybrid non-battery electrification component costs 
are fixed for all technology classes.  We use the A2Mac1 database to develop a bill of materials 
for the BISG system, and cost the components using two sources, as explained further below.  
Table 3-86 lists the components that comprise the mild hybrid system, including the battery 
pack, and the cost of those components in the analysis.   

Table 3-86 – Cost Estimate of BISG Components in 2018$ 

Components DMC in 
2017 RPE 

Motor, Inverter & Cooling system (10kW) $184 $276 
DC to DC converter (2kW) $184 $276 

Water Pump $43 $65 
Wiring harness $29 $44 

Connecters $10 $15 
Belt pulley modifications to AC compressor $10 $15 
Auxiliary electric oil pump to transmission $46 $69 

Modifications to auxiliary brake pump $43 $65 
Brackets for motor and battery attachment $15 $23 

 
419 Draft TAR, at 5–453. 
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Components DMC in 
2017 RPE 

Total non-battery component cost $564 $848 
Battery Pack Cost (0.43kWh)420 $405 $608 
Total system cost with battery $969 $1,456 

We use a dollar per kilowatt hour metric derived from the 2017 Electrical and Electronics 
Technical Team Roadmap report, discussed further below, for the motor, inverter, and cooling 
system, and DC-DC converter costs.421  We use BatPaC version 4.0 (October 2020) to determine 
the cost of a battery pack for the 48V system.422,423  For all other BISG component costs shown 
in Table 3-86, we rely on an EPA-sponsored FEV teardown of a 2013 Chevrolet Malibu ECO 
with eAssist.424  FEV estimates the direct manufacturing cost of the BISG system (without 
batteries) to be $1,045 in 2013 dollars.  This includes a cost adjustment for reduced voltage 
insulation.  Even though the 2013 Chevrolet Malibu considered in the study used a 115V system, 
we determined that structural components like the motor and battery attachment brackets would 
translate fairly across BISG systems, regardless of voltage. 

To validate these costs, we consider the 2019 Dodge Ram eTorque system retail price.  Using the 
publicly available retail price,425 we estimate the normalized cost of the system at $1,195 for the 
water-cooled system and $1,450 for the air-cooled system in 2018 dollars after the removal of an 
estimated RPE and learning factor.  In addition, the 2015 NAS report estimates the cost range of 
BISG technology at $888 to $1,164 in 2010 dollars in 2025.426  This is equivalent to a range of 
$1,020 to $1,337.27 in 2018 dollars in 2025.  Broadly, our total BISG system cost including the 
battery fairly matches these estimates.   

For all other electrified vehicle powertrain types, we group non-battery electrification 
components into four major categories: electric motors (or e-motors), power electronics 
(generally including the DC/DC converter, bi-directional DC/DC converter, inverter, and power 
distribution module), charging components (charger, charging cable, and high voltage cables), 
and thermal management system(s). 

We further group the components into those comprising the electric traction drive system 
(ETDS) , and all other components.  Although each manufacturer’s ETDS and power electronics 

 
420 See battery_costs.csv in the docket for this action. 
421 U.S. DRIVE, Electrical and Electronics Technical Team Roadmap (October 2017), 
https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Roadmap%2010-27-17.pdf.  (Accessed: February 
15, 2022). 
422  Autonomie model documentation, Chapter 5.9.4. 
423 Nelson. P. A., Ahmed. S., Gallagher. K. G., Dees. D. W. EESD. CSED, ANL. Modeling the performance and 
Cost of Lithium-Ion Batteries for Electric-Drive Vehicles. Third Edition. ANL/CSE-19/2. https://doi.org BatPac 
Model Documentation Third Edition150624.pdf; Argonne. Summary of Updates/Changes in Batpac 4.0. Summary 
of Updates and Changes in BatPaC 4 (Oct 2020).pdf. 
424 Light Duty Vehicle Technology Cost Analysis 2013 Chevrolet Malibu ECO with eAssist BAS Technology 
Study, FEV P311264 (Contract no. EP-C-12-014, WA 1-9). 
425 “2019 Ram 1500 eTorque Pairs Pickup with Hybrid”. Car and Driver (March 14, 2019), 
https://www.caranddriver.com/reviews/a22815325/2019-ram-1500-etorque-hybrid-pickup-drive.  (Accessed: 
February 15, 2022). 
426 2015 NAS report, at p. 305. 
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vary between the same electrified vehicle types and between different electrified vehicle types, 
we consider the ETDS for this analysis to be comprised of the e-motor and inverter, power 
electronics, and thermal system.  Table 3-87 shows our assignments for each of the non-battery 
electrification components to HEVs, PHEVs, BEVs, and FCEVs in the analysis.   

Table 3-87 – Non-Battery Electrification Component and Vehicle Assignment 

Major Non-Battery 
Electrification 
Components 

HEV PHEV BEV FCEV 

Electric Motor X X X X 
*Electric Generator X X   

Power Electronics X X X X 
DC/DC Converter X X X X 

Charging Port & High 
Voltage cable N/A X X N/A 

On-board Charger N/A X X N/A 
Thermal System X X X X 
Fuel Cell Stack N/A N/A N/A X 

*only for PS strong hybrids and PS PHEVs 

When researching costs for different non-battery electrification components, we found that 
different reports vary in components considered and cost breakdown.  This is not surprising, as 
vehicle manufacturers use different non-battery electrification components in different vehicle’s 
systems, or even in the same vehicle type, depending on the application.427,428  As detailed 
below, we apply costs for the major non-battery electrification components on a dollar per 
kilowatt hour basis.  We use a $/kW cost metric for non-battery components to align with the 
normalized costs for a system’s peak power rating as presented in U.S. DRIVE’s Electrical and 
Electronics Technical Team Roadmap report,429 one of the sources we use for non-battery 
electrification component costs.  This approach captures components in some manufacturer’s 
systems, but not all systems; however, we believe this is a reasonable metric and approach to use 
for this analysis given the differences in non-battery electrification component systems. 

As discussed above, to estimate the cost of the ETDS, we use U.S. DRIVE’s report, Electrical 
and Electronics Technical Team (EETT) Roadmap.  The EETT Roadmap report reflects 
considerable work by the DOE VTO collaboratively with U.S. DRIVE, a government-industry 
partnership.  The EETT Roadmap report estimates the 2017 manufacturing cost of a commercial 
on-road 100kW ETDS consisting of a single electric traction motor and inverter.  The reported 
costs are approximately $1,800, with the cost of the electric motor accounting for $800, and 

 
427 For example, the MY 2020 Nissan Leaf does not have an active cooling system whereas Chevy Bolt uses an 
active cooling system. 
428 Argonne AMTL D3. Electric Vehicle Testing. 2021. https://www.anl.gov/es/electric-vehicle-testing.  (Accessed: 
February 15, 2022). 
429 U.S. DRIVE, Electrical and Electronics Technical Team Roadmap (Oct. 2017), available at 
https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Roadmap%2010-27-17.pdf.  (Accessed: February 
15, 2022). 
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approximately $1,000 for the inverter, equaling $18/kW for the ETDS.  We compare these costs 
with the UBS MY 2016 Chevy Bolt teardown.430  In the UBS report, the cost of the electrical 
components in the ETDS summed to $2,619 for a 150 kW (2016 Chevy Bolt nominal power) 
ETDS.  Normalizing this cost resulted in $17.76/kW, which is in good agreement with the cost 
calculated from U.S. DRIVE’s EETT Roadmap report.431  

The EETT Roadmap report did not explicitly estimate the cost of other electrical equipment 
present in electrified powertrains, such as on-board chargers, DC to DC converters, high voltage 
cables, and charging cables.  We rely on the UBS MY 2016 Chevy Bolt teardown report to 
estimate those individual costs for some categories of strong hybrid components, and all other 
PHEV and BEV components.  

As part of our reexamination of strong hybrid costs for this analysis, discussed further in 
preamble Section III.D.3.e), the strong hybrid high voltage cable costs now align with the costs 
for high voltage cables presented in the EPA-sponsored 2011 Ford Fusion HEV teardown 
study.432  We adjust the costs for high voltage cables from the 2011 Ford Fusion HEV teardown 
study to 2018$ and apply that to both PS and P2 strong hybrid cables. 

Table 3-88 shows our cost estimates for the ETDS from the EETT Roadmap report and from the 
UBS MY 2016 Chevy Bolt teardown report, and the cost estimate for other electrical equipment 
from the same UBS report and EPA-sponsored FEV report.  

Table 3-88 – Cost Estimates from the EETT Roadmap Report, UBS MY 2016 Chevy Bolt Teardown and FEV 
2011 Ford Fusion HEV Teardown 

Non-Battery Electrical 
Components 

EETT 
Roadmap 

Report 
(2017$ in 

DMC Year 
2017) 

UBS MY 2016 
Chevy Bolt 
Teardown 
(2017$ in 

DMC Year 
2017) 

Assumptions 
Updated 
2018$ for 
Analysis 

ETDS $18/kW $17.76/kW Based on e-motor 
peak power $18.41/kW 

On-Board Charger - $85/kW 

Based on vehicle 
requirement 

(7kW for BEV, 2 
kW for PHEV) 

$86.96/kW 

DC to DC Converter - $90/kW 
Based on 

converter rated 
power (2kW) 

$93.84/kW 

 
430 Hummel et al., UBS Evidence Lab Electric Car Teardown – Disruption Ahead?, UBS (May 18, 2017), 
https://neo.ubs.com/shared/d1wkuDlEbYPjF.  (Accessed: February 15, 2022). 
431 We normalize the cost of the ETDS for the 2016 Chevy Bolt by summing the ETDS components costs and 
dividing by e-motor power rating (150 kW).  
432 Light Duty Technology Cost Analysis, Power-Split and P2 HEV Case Studies, EPA-420-R-11-015 (November 
2011). 
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High Voltage Cables and 
Charging Cords for BEVs 

and PHEVs 
- $450 Fixed cost rated 

for 360V $460.39 

High Voltage Cables for 
Strong Hybrids   Fixed cost $167.75 

We convert the costs in Table 3-88 to 2018$ to align the dollar year with other costs in this 
analysis.  Accordingly, the overall cost for non-battery electrification components in this analysis 
is an aggregate of the line items in Table 3-88, based on the specific electrified powertrain type. 

As an example, we calculate the cost for a BEV with a 150kW motor, 7kW on-board charger, 
2kW DC to DC converter, and high voltage cables as:  

Total Non-Battery Electrification Component DMC = 150 kW*18.41 $/kW + 7kW*86.96 $/kW 
+ 2kW*93.84 $/kW + $460.39 = $4018.29 

Another example is a PHEV50 with 94 kW motor, 35 kW generator, 2kW on board charger, 
2kW DC to DC Converter, and high voltage cables configuration: 

Total Non-Battery Component DMC = 94 kW*18.41 $/kW + 35kw *18.41 $/kW + 2kW*86.96 
$/kW + 2kW*93.84 $/kW + $460.39 = $3196.88 

As discussed in Chapter 2.6, we adjust costs in the Technologies file to account for three 
variables: RPE, which is 1.5 times the direct manufacturing cost (DMC), the technology learning 
curve, and the adjustment of the dollar value to 2018$ for this analysis.   

For the non-battery electrification component learning curves, we use cost information from 
Argonne’s 2016 Assessment of Vehicle Sizing, Energy Consumption, and Cost through Large-
Scale Simulation of Advanced Vehicle Technologies report.433  The report provides estimated 
cost projections from the 2010 lab year to the 2045 lab year for individual vehicle 
components.434,435  We consider the component costs used in electrified vehicles, and determine 
the learning curve by evaluating the year over year cost change for those components.  Argonne 
recently published a 2020 version of the same report that included high and low cost estimates 
for many of the same components, that also included a learning rate.436  Our learning estimates 

 
433 Moawad, Ayman, Kim, Namdoo, Shidore, Neeraj, and Rousseau, Aymeric.  Assessment of Vehicle Sizing, 
Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies (ANL/ESD-
15/28). United States (2016).  Available at https://www.autonomie.net/pdfs/Report%20ANL%20ESD-1528%20-
%20Assessment%20of%20Vehicle%20Sizing,%20Energy%20Consumption%20and%20Cost%20through%20Large
%20Scale%20Simulation%20of%20Advanced%20Vehicle%20Technologies%20-%201603.pdf.  (Accessed: 
February 15, 2022). 
434 ANL/ESD-15/28 at p. 116. 
435 DOE’s lab year equates to five years after a model year, e.g., DOE’s 2010 lab year equates to MY 2015.  
436 Islam, E., Kim, N., Moawad, A., Rousseau, A. “Energy Consumption and Cost Reduction of Future Light-Duty 
Vehicles through Advanced Vehicle Technologies: A Modeling Simulation Study Through 2050,” Report to the US 
Department of Energy, Contract ANL/ESD-19/10, June 2020 https://www.autonomie.net/pdfs/ANL%20-
%20Islam%20-%202020%20-
%20Energy%20Consumption%20and%20Cost%20Reduction%20of%20Future%20Light-
Duty%20Vehicles%20through%20Advanced%20Vehicle%20Technologies%20A%20Modeling%20Simulation%20
Study%20Through%202050.pdf.  (Accessed: February 15, 2022). 
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generated using the 2016 report fall fairly well in the middle of these two ranges, and therefore 
we continue to apply the learning curve estimates based on the 2016 report.  There are many 
sources that we could have picked to develop learning curves for non-battery electrification 
component costs, however given the uncertainty surrounding extrapolating costs out to MY 
2050, we believe these learning curves provide a reasonable estimate.  

Figure 3-24, Table 3-89 and Table 3-90 show the learning rate factors for non-battery 
electrification components for different electrified powertrains.   

 

Figure 3-24 – Learning Rate Factor Used for Non-Battery Electrification Components for Electrified 
Powertrains 
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Table 3-89 – Learning Rate Factor Used for Non-Battery Electrification Components for Electrified Powertrains (MYs 2015-2032) 
 

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 

BEV 1.00 0.93 0.87 0.83 0.77 0.72 0.69 0.64 0.61 0.59 0.56 0.55 0.53 0.52 0.52 0.51 0.49 

SS12V 1.12 1.07 1.03 1.00 0.97 0.94 0.91 0.89 0.87 0.85 0.83 0.82 0.81 0.79 0.79 0.79 0.77 

BISG 1.00 0.94 0.87 0.78 0.73 0.69 0.66 0.63 0.61 0.59 0.58 0.56 0.55 0.54 0.54 0.53 0.53 

SHEVPS 1.00 0.96 0.92 0.89 0.87 0.84 0.82 0.78 0.76 0.74 0.73 0.72 0.71 0.70 0.69 0.69 0.68 

SHEVP2 1.00 0.96 0.93 0.90 0.87 0.85 0.82 0.79 0.76 0.75 0.74 0.73 0.71 0.70 0.69 0.69 0.69 

PHEV20 1.00 0.96 0.92 0.88 0.85 0.81 0.78 0.76 0.73 0.70 0.69 0.67 0.66 0.66 0.65 0.64 0.60 

PHEV50 1.00 0.96 0.92 0.88 0.84 0.81 0.78 0.74 0.71 0.69 0.68 0.66 0.64 0.63 0.63 0.62 0.59 

FCV 1.71 1.64 1.57 1.50 1.43 1.37 1.31 1.25 1.19 1.14 1.09 1.04 0.99 0.95 0.90 0.86 0.83 

 

Table 3-90 – Learning Rate Factor Used for Non-Battery Electrification Components for Electrified Powertrains (MYs 2034-2050) 

 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
BEV 0.48 0.47 0.46 0.46 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 

SS12V 1.14 1.09 1.05 1.00 0.95 0.91 0.87 0.83 0.79 0.76 0.73 0.69 0.66 0.63 0.60 0.57 1.14 
BISG 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.5 0.5 

SHEVPS 0.68 0.68 0.67 0.67 0.67 0.66 0.66 0.66 0.65 0.65 0.65 0.64 0.64 0.64 0.63 0.63 0.63 
SHEVP2 0.68 0.67 0.67 0.66 0.66 0.65 0.65 0.64 0.64 0.63 0.63 0.62 0.62 0.61 0.6 0.6 0.59 
PHEV20 0.57 0.54 0.53 0.51 0.5 0.48 0.47 0.47 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.43 
PHEV50 0.57 0.54 0.53 0.51 0.5 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.46 0.45 0.45 0.45 0.45 

FCV 0.80 0.76 0.75 0.73 0.72 0.70 0.69 0.68 0.67 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.64 
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3.3.5.3 Total Electrified Powertrain Costs 

For this analysis, we calculate total electrified powertrain costs by summing individual 
component costs, which ensures that all technologies in an electrified powertrain appropriately 
contribute to the total system cost.  We combine the costs associated with the internal 
combustion (IC) engine, transmission, electric machine(s), non-battery electrification 
components, and battery pack to create a full-system cost.  The following sections describe how 
we calculate the aggregated cost of each electrified powertrain based on the detailed component 
costs presented in the earlier sections. 

The application of the electrification costs to an existing platform follows the same basic process 
for each technology on the electrification path.  The costs for each technology depend on the 
model year that the CAFE Model applies the technology.  First, the model must remove costs 
associated with reference powertrain technologies.  Next, the model applies the costs associated 
with the electrification technology.  The costs include the cost of the engine, if applicable, 
transmission, electric machine(s), non-battery electrification components, and the battery pack.   

The incremental costs for these electrification technologies can be found in three places: the 
“Engines” tab and “Vehicles” tab of the Technologies file, and the “battery_costs.csv” file, 
which is the database of battery costs (DMC) created using the BatPaC model.  Table 3-91 
shows a summary of the general components considered for each electrification technology, and 
where the costs of those components can be found in the CAFE Model input and model file 
folders. 

Table 3-91 – Breakdown of the Component Costs Considered in the CAFE Analysis 

Electrification 
Technology Type 

Technologies File 
Vehicle Tabs 

Technologies 
File 

Engine Tabs 

Battery Cost 
File437 

Micro Hybrid Motor/generator -N/A Battery Pack438 

Mild Hybrid Motor/generator, DC/DC converter, other 
components -N/A Battery Pack 

Strong Hybrid – P2 
DC/DC converter, on-board charger, high 

voltage cables, e-motor, AT8L2 
transmission, and power electronics 

IC engine* Battery Pack 

Strong Hybrid – PS 
DC/DC converter, on-board charger, high 

voltage cables, e-motor, eCVT 
transmission, and power electronics 

IC engine Battery Pack 

Plug-in Hybrid 
(PHEV 20T/50T) 

DC/DC converter, on-board charger, high 
voltage cables, e-motor, AT8L2 

transmission, and power electronics 
IC engine Battery Pack 

Plug-in Hybrid 
(PHEV 20/50 and 
20H/50H) 

DC/DC converter, on-board charger, high 
voltage cables, e-motor, CVTL2 

transmission, and power electronics 
IC engine Battery Pack 

 
437 The battery_costs.csv file is installed as part of the CAFE Model installation and is viewable in the model 
program file. 
438 As discussed further in this chapter, we no longer use the BatPaC SS12V battery cost and use a cheaper AGM 
battery instead, and the updated cost is reflected in the battery_costs.csv file. 
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Electrification 
Technology Type 

Technologies File 
Vehicle Tabs 

Technologies 
File 

Engine Tabs 

Battery Cost 
File437 

BEVs DC/DC converter, on-board charger, high 
voltage cables, e-motor 

ETDS, see 
Table 3-98 
for detail 

Battery Pack 

FCEVs Fuel cell system, e-motor, H2 Tank, 
transmission, and power electronics -N/A N/A 

*The engine cost for a P2 Hybrid is based on engine technology used in the conventional 
powertrain. 

The following sections discuss how the costs of each component are aggregated to create a total 
electrified powertrain cost. 

3.3.5.3.1 Micro Hybrid Cost 

As we discuss earlier in Chapter 3.3.4, SS12V technology does not provide any propulsion 
assistance to the vehicle, thus there is no cost associated with the SS12V system under the engine 
tabs of the Technologies file.  In the vehicle class tabs in the Technologies file, there is a fixed 
cost listed for SS12V that covers the battery and non-battery components in the system.   

The NPRM SS12V fixed battery pack direct manufacturing cost was $237 across all vehicle 
classes; however, for this analysis, as we discuss in preamble Section III.D.3.e), the SS12V 
battery cost now reflects the cost of a more commonly used battery chemistry.  Specifically, 
AGM batteries are more common in SS12V systems than the Li-ion-based chemistry that we had 
assumed in the NPRM analysis.439, 440, 441  The battery pack direct manufacturing costs for 
SS12V systems is now $113, across all vehicle classes, as shown in Table 3-92 below.  This cost 
also more closely algins with the cost of the SS12V system presented in the 2015 NAS report.442 

Unlike the rest of the electrification technologies, the micro hybrid system uses a shallower 
learning curve, as shown in Chapter 3.3.5.2.  This shallow curve reflects the maturity of the 
technology; as we discuss in Chapter 3.3.2, 50 percent of the MY 2020 fleet utilizes a SS12V 
micro hybrid system.   

Table 3-92 lists the cost of the SS12V system and battery for different vehicle classes.  For the 
SS12V electrified powertrain, the Technologies file contains the cost of the non-battery 
components with RPE and learning, as well as learning factor for the battery for each vehicle 
class.  The SS12V battery pack cost in the Battery Costs file now reflects the lower cost.   

 
439 EPA-HQ-OAR-2021-0208-0144, page 5-73. 
440 USABC, “United States Advanced Battery Consortium Battery Test Manual For 12 Volt Start/Stop Vehicles.” 
January 2018. Revision 2. Contract DE-AC07-05ID14517.  
441 H. Tataria; O. Gross; C. Bae; B. Cunningham; J. A. Barnes; J. Deppe; J. Neubauer. "USABC Development of 12 
Volt Battery for Start-Stop Application: Preprint.": 10 pp. 2015. https://www.nrel.gov/docs/fy15osti/62680.pdf.  
(Accessed: February 15, 2022). 
442 2015 NAS report, at p.158. 
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Table 3-92 – Final Rule SS12V Total Cost for All Vehicle Classes in 2018$ 

 Small 
Car 

Medium 
Car 

Small 
SUV 

Medium 
SUV Pickup 

Non-battery Component DMC in 
2017 $159 $159 $159 $213 $213 

Non-battery Component Cost in 
2020 with RPE and Learning $213 $213 $213 $285 $285 

Battery Pack DMC in 2020 $113 $113 $113 $113 $113 
Battery Pack Cost in 2020 with 
RPE and Learning $170 $170 $170 $170 $170 

Total System Cost in 2020 $383 $383 $383 $455 $455 

3.3.5.3.2 Mild Hybrid Cost 

For this analysis, we use a fixed cost for a BISG system to represent mild hybrid technology.  
The total cost for the BISG system is the sum of non-battery component costs from the 
Technologies file and the batteries from the Battery Cost file.  The vehicle class tabs in the 
Technologies file provide a non-battery component cost that includes the DMC, RPE, and a 
learning factor, and a battery cost with a learning factor applied.  Note that the Technologies file 
includes the battery cost with the learning rate applied, while the Battery Costs file provides only 
the battery DMC in 2020.  To determine the total cost of the system for a vehicle, the vehicle 
technology class’s technology key must align between the two files.   

Table 3-93 below shows how costs are added to create the total BISG system cost.  As an 
example, the medium car cost of $665 is from the ‘MedCar’ tab in 2020 in the Technologies file 
and includes a learning rate specific to the non-battery components, as well as RPE.  The $342 is 
from the Battery Cost file for the same vehicle class technology key.  This $342 is a DMC and is 
multiplied by 1.50 from the Battery Cost Learning Rates Table (columns ‘AW’ and onward on 
the ‘MedCar’ tab), which is the product of 1.5 RPE and a learning factor of 1 (because the base 
learning rate year for batteries is 2020), and that results in the total of $513.  These two costs, 
which are both for 2020, sum to $1,178.   

Table 3-93 – Example of Mild Hybrid Total Cost for Different Vehicle Classes in 2018$ 

 Small 
Car 

Medium 
Car 

Small 
SUV 

Medium 
SUV Pickup 

Non-battery Component DMC 
in 2017 $565 $565 $565 $565 $565 

Cost in 2020 with RPE and 
Learning $665 $665 $665 $665 $665 

Battery Pack DMC in 2020 $342 $342 $342 $342 $342 
Battery Pack Cost in 2020 
with RPE and Learning $513 $513 $513 $513 $513 

Total System Cost in 2020 $1,178 $1,178 $1,178 $1,178 $1,178 
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3.3.5.3.3 Strong Hybrid and Plug-in Hybrid Electric Vehicle Costs 

In this analysis, the total cost for strong hybrids includes the electric machine, battery pack, IC 
engine, and transmission.  Autonomie optimizes each strong hybrid powertrain for the given 
vehicle class by appropriately sizing each of those components. 

SHEVP2 and SHEVPS have different architectures and characteristics, and in turn have different 
costs.  We base the cost of SHEVP2 engines and transmissions on estimates discussed further in 
Chapter 3.1 and Chapter 3.2, respectively.  The cost for SHEVP2 electric machines and battery 
packs are based on their sizes, and are optimized by the Autonomie sizing algorithm discussed 
broadly in Chapter 3.3.4 and in detail in the Autonomie model documentation.443  SHEVPS total 
powertrain costs include the optimized battery pack, electric machine, a HCR1 engine, and 
eCVT.  Like SHEVP2, electric machine and battery pack costs are dependent on their optimized 
size from Autonomie for different vehicle classes. 

As described in Chapter 3.3.5.2, the cost of non-battery hybrid system components also includes 
the cost of the traction motor, motor/generators, high voltage cables and connectors, charging 
cord (for PHEVs), and on-board chargers.  We use the cost of the AT8L2 transmission as a cost 
proxy for the hybrid transmission architecture in P2 hybrid systems.  The costs shown here do 
not include the cost of the IC engine coupled to the hybrid system. 

Since motor sizing varies based on road load levels, the average motor sizes act as a mid-range 
representation for motor ratings across all road load combinations.  We use Autonomie 
simulations to compute the average rating for traction and generator motors across all road load 
combinations for SHEVPS and SHEVP2 vehicles.  After calculating the average motor size, we 
multiply the motor size by the unit cost ($/kW) to get the overall DMC for both traction motors 
and generator motors as explained in Chapter 3.3.5.2.  The costs shown in the following tables 
are 2018$ dollars.   

We calculate the cost of the plug-in hybrid vehicles similar to strong hybrids.  We use 
Autonomie to optimize plug-in-hybrid system components as explained in Chapter 3.3.4.  We 
use these modeling results to determine costs as described in Chapters 3.3.5.1 and 3.3.5.2.  As 
described in Chapter 3.3.4, we use one engine technology and one transmission technology per 
plug-in hybrid architecture type.   

For PHEVs that follow SHEVP2 on the hybrid/electric architecture path as shown in Chapter 
3.3.1, we base the total costs on a PHEV system paired with a TURBO1 engine.  We calculate 
the total cost for the powertrain by summing the costs of the TURBO1 engine, an AT8L2 
transmission, and the battery and non-battery electrification technology components.  We 
calculate the total cost for PHEVs that follow SHEVPS in the hybrid/electric architecture path by 
summing the costs of the HCR1 engine, the CVTL2 transmission, and the sized battery pack and 
non-battery electrification technology components.   

Table 3-94 and Table 3-95 show the overall cost of electrified powertrains for strong hybrids and 
PHEVs.  Note that the battery cost is not broken out in a separate column in this table; however, 
the total electrification cost includes the cost of the battery.  The total DMC of non-battery 

 
443 Autonomie model documentation, Chapter 8.3.3. 
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electrification components includes the costs of motor and motor/generator (when applicable), 
DC/DC converter, cables, and on-board charger (for PHEV only).  For more details of these 
costs refer to Chapter 3.3.5.2. 
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Table 3-94 – Cost Estimation for Hybrid and Plug-in Hybrid Electric Drivetrain for all Non-Performance Vehicle Technology Classes in 2020 (in 
2018$)444 
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Small Car– Non-Performance 
Par HEV (SHEVP2) 23.45 0 $432 $184 $0 $168 $784 $1,058 $1,655 $2,473 $2,439 $3,511 
Par PHEV20 (PHEV20T) 33.89 0 $624 $184 $174 $460 $1,442 $1,904 $1,655 $2,473 $3,097 $4,334 
Par PHEV50 (PHEV50T) 84.89 0 $1,563 $184 $174 $460 $2,382 $3,144 $1,655 $2,473 $4,037 $5,567 
Split HEV (SHEVPS) 57.18 30.13 $1,608 $184 $0 $168 $1,960 $2616 $1,084 $1619 $3,043 $4,247 
Split PHEV20 (PHEV20) 58.87 31.21 $1,659 $184 $174 $460 $2,477 $3,2670 $1,686 $2,518 $4,163 $5,775 

Medium Car– Non-Performance 
Par HEV (SHEVP2) 28.01 0 $516 $184 $0 $168 $868 $1,171 $1,655 $2,473 $2,523 $3,625 
Par PHEV20 (PHEV20T) 38.95 0 $717 $184 $174 $460 $1,536 $2,027 $1,655 $2,473 $3,191 $4,457 
Par PHEV50 (PHEV50T) 95.21 0 $1,753 $184 $174 $460 $2,572 $3,395 $1,655 $2,473 $4,227 $5,817 
Split HEV (SHEVPS) 72.62 37.61 $2,030 $184 $0 $168 $2,382 $3,180 $1,084 $1,619 $3,465 $4,812 
Split PHEV20 (PHEV20) 74.66 38.92 $2,091 $184 $174 $460 $2,910 $3,841 $1,686 $2,518 $4,596 $6,345 

Small SUV– Non-Performance 
Par HEV (SHEVP2) 27.34 0 $503 $184 $0 $168 $855 $1,155 $1,655 $2,473 $2,510 $3,608 
Par PHEV20 (PHEV20T) 40.25 0 $741 $184 $174 $460 $1,560 $2,059 $1,655 $2,473 $3,215 $4,488 
Par PHEV50 (PHEV50T) 102.41 0 $1,886 $184 $174 $460 $2,704 $3,570 $1,655 $2,473 $4,359 $5,992 
Split HEV (SHEVPS) 80.07 40.68 $2,224 $184 $0 $168 $2,575 $3,438 $1,084 $1,619 $3,659 $5,071 

 
444 Numbers in this table are rounded. 
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Split PHEV20 (PHEV20) 83.15 42.15 $2,307 $184 $174 $460 $3,126 $4,126 $1,686 $2,518 $4,811 $6,630 
Medium SUV– Non-Performance 

Par HEV (SHEVP2) 29.14 0 $537 $184 $0 $168 $888 $1,199 $1,655 $2,473 $2,543 $3,653 
Par PHEV20 (PHEV20T) 43.32 0 $798 $184 $174 $460 $1,616 $2,133 $1,655 $2,473 $3,271 $4,563 
Par PHEV50 (PHEV50T) 110.72 0 $2,039 $184 $174 $460 $2,857 $3,772 $1,655 $2,473 $4,512 $6,194 
Split HEV (SHEVPS) 79.32 41.74 $2,229 $184 $0 $168 $2,581 $3,446 $1,084 $1,619 $3,665 $5,078 
Split PHEV20 (PHEV20) 81.81 43.01 $2,298 $184 $174 $460 $3,117 $4,114 $1,686 $2,518 $4,803 $6,618 

Pickup – Non-Performance 
Par HEV (SHEVP2) 32.59 0 $600 $184 $0 $168 $952 $1,285 $1,655 $2,473 $2,607 $3,739 
Par PHEV20 (PHEV20T) 51.68 0 $952 $184 $174 $460 $1,770 $2,336 $1,655 $2,473 $3,425 $4,766 
Par PHEV50 (PHEV50T) 127.92 0 $2,356 $184 $174 $460 $3,174 $4,190 $1,655 $2,473 $4,829 $6,611 
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Table 3-95 – Cost Estimation for Hybrid and Plug-in Hybrid Electric Drivetrain for all Performance Vehicle Technology Class in 2020 (in 2018$)445 
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Small Car– Performance 
Par HEV (SHEVP2) 25.03 0 $461 $184 $0 $168 $813 $1,097 $1,655 $2,473 $2,468 $3,550 
Par PHEV20 (PHEV20T) 36 0 $663 $184 $174 $460 $1,481 $1,955 $1,655 $2,473 $3,136 $4,385 
Par PHEV50 (PHEV50T) 89.03 0 $1,639 $184 $174 $460 $2,458 $3,244 $1,655 $2,473 $4,113 $5,668 
Split HEV (SHEVPS) 74.95 38.75 $2,094 $184 $0 $168 $2,446 $3,265 $1,084 $1,619 $3,529 $4,897 
Split PHEV20 (PHEV20) 76.51 40.15 $2,148 $184 $174 $460 $2,967 $3,916 $1,686 $2,518 $4,652 $6,420 

Medium Car– Performance 
Par HEV (SHEVP2) 29.2 0 $538 $184 $0 $168 $890 $1,201 $1,655 $2,473 $2,545 $3,654 
Par PHEV20 (PHEV20T) 41.5 0 $764 $184 $174 $460 $1,583 $2,089 $1,655 $2,473 $3,238 $4,519 
Par PHEV50 (PHEV50T) 100.23 0 $1,846 $184 $174 $460 $2,664 $3,517 $1,655 $2,473 $4,319 $5,939 
Split HEV (SHEVPS) 112.45 58.4 $3,146 $184 $0 $168 $3,498 $4,670 $1,084 $1,619 $4,581 $6,305 
Split PHEV20 (PHEV20) 122.77 60.41 $3,373 $184 $174 $460 $4,192 $5,533 $1,686 $2,518 $5,877 $8,035 

Small SUV– Performance 
Par HEV (SHEVP2) 29.54 0 $544 $184 $0 $168 $896 $1, 209 $1,655 $2,473 $2,551 $3,663 
Par PHEV20 (PHEV20T) 43.25 0 $796 $184 $174 $460 $1,615 $2,132 $1,655 $2,473 $3,270 $4,561 
Par PHEV50 (PHEV50T) 108.23 0 $1,993 $184 $174 $460 $2,811 $3,711 $1,655 $2,473 $4,466 $6,133 
Split HEV (SHEVPS) 108.91 54.25 $3,004 $184 $0 $168 $3,356 $4,481 $1,084 $1,619 $4,440 $6,116 
Split PHEV20 (PHEV20) 118.09 56.21 $3,210 $184 $174 $460 $4,028 $5,317 $1,686 $2,518 $5,714 $7,820 

Medium SUV– Performance 
Par HEV (SHEVP2) 33.22 0 $612 $184 $0 $168 $964 $1,301 $1,655 $2,473 $2,619 $3,755 
Par PHEV20 (PHEV20T) 48.92 0 $901 $184 $174 $460 $1,719 $2,269 $1,655 $2,473 $3,374 $4,699 
Par PHEV50 (PHEV50T) 121.62 0 $2,240 $184 $174 $460 $3,058 $4,036 $1,655 $2,473 $4,713 $6,458 

 
445 Numbers in this table are rounded. 
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Split HEV (SHEVPS) 124.62 61.59 $3,429 $184 $0 $168 $3,781 $5,047 $1,084 $1,619 $4,864 $6,684 
Split PHEV20 (PHEV20) 134.67 63.71 $3,653 $184 $174 $460 $4,471 $5,902 $1,686 $2,518 $6,157 $8,404 

Pickup – Performance 
Par HEV (SHEVP2) 36.96 0 $681 $184 $0 $168 $1,032 $1,394 $1,655 $2,473 $2,687 $3,848 
Par PHEV20 (PHEV20T) 58.26 0 $1,073 $184 $174 $460 $1,891 $2,496 $1,655 $2,473 $3,546 $4,925 
Par PHEV50 (PHEV50T) 140.04 0 $2,579 $184 $174 $460 $3,397 $4,484 $1,655 $2,473 $5,052 $6,904 
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As part of the NPRM analysis, in response to comments from the National Academies of 
Sciences, Engineering, and Medicine (NASEM) that the strong hybrid costs in our 2020 final 
rule were significantly higher than what NAS estimated in their 2021 report, we compared the 
estimated costs between the 2021 NAS report and our costs for converting a conventional vehicle 
powertrain to a strong hybrid powertrain  

To compare the strong hybrid costs in this analysis to the 2021 NAS report, we compare the 
costs of a Ford Fusion with a conventional powertrain to a Ford Fusion PS powertrain in the 
CAFE Model in MY 2025 to the 2021 NAS study that converts a naturally aspirated medium car 
to PS hybrid technology.446  As expected, the components considered, component sizes, and 
component costs are not identical between the NAS analysis and this analysis.  Table 3-96 shows 
the components we consider and those in the 2021 NAS analysis. 

Table 3-96 – Components Considered in Upgrading from Conventional Powertrain to SHEVPS in MY 2025 
in the CAFE Model and NAS 2021 Analysis 

Part Removed Parts added CAFE Analysis NAS 

IC Engine  (Naturally Aspirated 
DOHC+VVT+SGDI) not changed447 

Transmission  AT6 AT8 

 IC engine for SHEV SHEVPS not changed 

 Motor+ inverter 73 kW Size not mentioned 
(approx. 74 kW448) 

 Generator+ Regen brake 37 kW Size not mentioned 
(approx. 28 kW449) 

 Transmission eCVT eCVT 

 
Battery + battery 
management unit 

(BMU)450 
1.7 kWh451 1 kWh 

 High voltage cable Yes Yes 

 DC/DC converter 1.1 kW 2 kW 

 Power electronics or 
ECU452 Considered Considered 

 
446 2021 NAS report, Table 4.6 Projected Costs and Effectiveness of Representative PS Hybrid Technology 
Packages, 2025-2035. 
447 NAS’s vehicle of choice (a Toyota Camry 2021) has no engine upgrade when advancing from a conventional 
powertrain to PS hybrid powertrain. 
448 Based on NAS assumption of 10 percent decrease on cost of motor + inverter from 2010 cost of $15/kW, the cost 
for 2025 will be $10.935/kW.  The overall cost of motor+inverter reported $810 ($320+$490) which results in 74 
kW. 
449 With the same analysis of motor+inverter. 
450 Includes battery + battery management unit + battery thermal management. 
451 The selected vehicle to present the transformation from ICE to PS Hybrid is with no mass upgrade (MR0) thus 
heavier. In the battery sizing algorithm, the heavier the vehicle gets, the higher battery energy is required. 
452 Assumed NAS referred to power electronics as ECU. 
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Part Removed Parts added CAFE Analysis NAS 

 AC modification Assumed as part of the 
thermal management system Considered 

 Water pump Assumed as part of the 
thermal management system Considered 

 Thermal management 
system Considered AC modification and 

water pump upgrades 

As mentioned in Chapter 3.3.5.2, we use the UBS study to estimate the cost of the ETDS, which 
includes the motor, inverter, power electronics and thermal management system.  For the sake of 
this comparison, we separate the motor and inverter cost to be more consistent with how NAS 
presents costs.  Based on the UBS report, about 72 percent of the ETDS’ cost comes from the e-
motor and inverter, which means for year 2025 and based on 2018$, the cost of the e-motor and 
inverter is $10.08/kW.  This leaves $3.92/kW for the power electronics and thermal management 
system, summing up the whole ETDS to $14/kW. 

One of the biggest differences in components between the two studies is the internal combustion 
engine; the 2021 NAS study does not consider the IC engine upgrade costs whereas the CAFE 
analysis does.  Other differences between the studies include the component sizes, even though 
we endeavor to compare an equivalent vehicle class, a midsize passenger car.  Other small 
differences include the minor components considered in each study.   

Based on comments and further analysis of component costs, we updated some hybrid system 
costs from the NPRM.  Our updated costs are shown in the last column of Table 3-97. 

Table 3-97 – Comparison of Components Included in this CAFE Model Analysis and 2021 NAS Study 

Component CAFE Analysis 
CAFE Net 

Cost 
(NPRM) 

NAS Analysis NAS Net 
Cost 

CAFE 
Net Cost  

(Final 
Rule) 

IC engine 
Naturally Aspirated 

DOHC+VVT+SGDI to 
SHEVPS 

$178  0 $178 

Transmission AT6 to eCVT $292 AT8 to eCVT ($435) ($362)453 

Motor+ inverter 73 kW $732 
Size not 

mentioned 
(approx. 74 kW) 

$810 $732 

Generator+ Regen brake 37 kW $379 
Size not 

mentioned 
(approx. 28 kW) 

$310 $379 

 
453 To be consistent with NAS analysis this price reflects AT8 to eCVT, although the specific example used for this 
comparison had an AT6 transmission. 
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Component CAFE Analysis 
CAFE Net 

Cost 
(NPRM) 

NAS Analysis NAS Net 
Cost 

CAFE 
Net Cost  

(Final 
Rule) 

Battery + BMU 1.7 kWh454 $1,013 1 kWh $880 $1,013 
High voltage cable Yes $350 Yes $130 $168 
DC/DC converter 2 kW $140 1.1 kW $90 $140 

ECU    $45  
AC modification    $170  

Water pump    $55  
Power electronics and 

thermal management system  $432   $432 

Total  $3,516  $2,055 $2,680 

There are a few important observations in this cost comparison.  First, in the NPRM analysis we 
had considered the cost of a CVTL2 as a proxy for the eCVT.  Considering comments on the 
NPRM and the NAS study, we updated the cost of the transmission for PS hybrids to reflect the 
lower eCVT cost.  The eCVT cost comes from data in the 2021 NAS Report and the 2011 EPA-
sponsored 2011 Ford Fusion strong hybrid teardown study.455, 456  Both the 2021 NAS study and 
the Ford Fusion teardown study use incremental costs, which we cannot use as a direct input into 
the CAFE Model, so we calculate an absolute value for use in the CAFE Model.  Second, as 
discussed in Chapter 3.3.5.2, the strong hybrid high voltage cable costs now reflect high voltage 
cable costs presented in the Ford Fusion teardown study, in 2018$.  Third, there are costs 
associated with some component assumptions as well as component sizing, which play an 
additional role in the cost difference between CAFE analysis and NAS study.  While the costs 
presented in this analysis still differ from those in the 2021 NAS report, we believe that the 
estimated costs in this rulemaking analysis appropriately consider all of the component costs that 
must be subtracted and added to implement a strong hybrid powertrain system. 

3.3.5.3.4 BEV Cost 

For this analysis, the total costs of BEVs includes the optimized battery pack and electric 
machine costs.  Like the other electrified powertrains, Autonomie optimizes both the size of the 
battery pack and electric machine to fulfill the performance neutrality requirements for each 
vehicle.  Further discussion of electrification technology component sizing and optimization is 
provided in Chapter 3.3.4.  Electrification component costing is discussed in Chapter 3.3.5.1 and 
3.3.5.2. 

The model calculates the total cost of a BEV by first removing the cost of the IC engine and 
transmission associated with the conventional or hybridized powertrain and replacing that cost 

 
454 The specific example picked for this comparison has a MR0 weight thus battery selection algorithm associated a 
bigger battery energy capacity to that. 
455 2021 NAS report, at 4-68-4-69. 
456 EPA. “Light Duty Technology Cost Analysis, Power-Split and P2 HEV Case Studies.’ November 2011. EPA-
420-R-11-015. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EG1R.PDF?Dockey=P100EG1R.PDF.  (Accessed: 
February 15, 2022).  
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with the cost of an ETDS (i.e., the motor and inverter).  It is important to accurately estimate the 
motor size (rating) because the cost of the ETDS accounts for a significant portion of the total 
cost of electrifying a vehicle.  We use the MY 2017 Market Data file (originally used for the 
2020 final rule) to compute the average engine power for each technology class.  Table 3-98 
shows the steps taken to calculate the equivalent electric motor power required to replace each 
engine technology, derived from the MY 2017 Market Data file.  These power ratings can be 
found under appropriate engine tabs in the Technologies file.  The cost of the rest of the non-
battery electrification components can be found under vehicle tabs of the Technologies file.  
Summing these two cost leads to the total BEV electrified powertrain cost shown in the final 
column of Table 3-98.  The values in this table are for DMC year 2017 in 2018$.   
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Table 3-98 – Cost of ETDS for BEVs in 2020 (in 2018$) 

Technology 
Class 

HP 
Estimate 

Power 
in kW 

ETDS 
DMC 

ETDS with 
RPE 

Cost of Other 
Electric 

Components457  

Cost of Other 
Electrical Components 

with RPE 

Total BEV 
Electrification 
Cost with RPE 

2C1B_SOHC 38.00 28.33 $521.72 $782.58 $1,244.99 $1,867.49 $2,650.07 
2C1B 38.00 28.33 $521.72 $782.58 $1,244.99 $1,867.49 $2,650.07 
3C1B_SOHC 122.06 91.01 $1,675.77 $2,513.65 $1,244.99 $1,867.49 $4,381.14 
3C1B 122.06 91.01 $1,675.77 $2,513.65 $1,244.99 $1,867.49 $4,381.14 
4C1B_SOHC 175.05 130.51 $2,403.30 $3,604.95 $1,244.99 $1,867.49 $5,472.44 
4C1B 197.81 147.49 $2,715.87 $4,073.81 $1,244.99 $1,867.49 $5,941.30 
4C2B_SOHC 180.51 134.59 $2,478.34 $3,717.51 $1,244.99 $1,867.49 $5,585.00 
4C2B 180.51 134.59 $2,478.34 $3,717.51 $1,244.99 $1,867.49 $5,585.00 
5C1B_SOHC 226.86 169.14 $3,114.61 $4,671.92 $1,244.99 $1,867.49 $6,539.41 
5C1B 226.86 169.14 $3,114.61 $4,671.92 $1,244.99 $1,867.49 $6,539.41 
6C1B_SOHC 255.00 190.13 $3,501.02 $5,251.52 $1,244.99 $1,867.49 $7,119.01 
6C1B 255.00 190.13 $3,501.02 $5,251.52 $1,244.99 $1,867.49 $7,119.01 
6C1B_OHV 255.00 190.13 $3,501.02 $5,251.52 $1,244.99 $1,867.49 $7,119.01 
6C2B_SOHC 285.48 212.86 $3,919.52 $5,879.28 $1,244.99 $1,867.49 $7,746.77 
6C2B 285.48 212.86 $3,919.52 $5,879.28 $1,244.99 $1,867.49 $7,746.77 
6C2B_OHV 285.48 212.86 $3,919.52 $5,879.28 $1,244.99 $1,867.49 $7,746.77 
8C2B_SOHC 328.70 245.08 $4,512.85 $6,769.28 $1,244.99 $1,867.49 $8,636.77 
8C2B 369.40 275.43 $5,071.70 $7,607.55 $1,244.99 $1,867.49 $9,475.04 
8C2B_OHV 401.34 299.24 $5,510.15 $8,265.23 $1,244.99 $1,867.49 $10,132.72 
10C2B 497.94 371.26 $6,836.41 $10,254.62 $1,244.99 $1,867.49 $12,122.11 
10C2B_OHV 665.67 496.32 $9,139.25 $13,708.88 $1,244.99 $1,867.49 $15,576.37 
12C2B_SOHC 558.86 416.68 $7,672.82 $11,509.22 $1,244.99 $1,867.49 $13,376.71 
12C2B 558.86 416.68 $7,672.82 $11,509.22 $1,244.99 $1,867.49 $13,376.71 
12C4B_SOHC 558.86 416.68 $7,672.82 $11,509.22 $1,244.99 $1,867.49 $13,376.71 
12C4B 558.86 416.68 $7,672.82 $11,509.22 $1,244.99 $1,867.49 $13,376.71 
16C4B_SOHC 621.00 463.02 $8,526.00 $12,789.01 $1,244.99 $1,867.49 $14,656.50 
16C4B 601.31 448.33 $8,255.64 $12,383.46 $1,244.99 $1,867.49 $14,250.95 

 
457 Other electric components in BEVs are charger, DC/DC converter, and electrical cables.  



  335 

3.3.5.3.5 FCEV Cost 

For this analysis, we consider technology advancements in fuel cell systems, hydrogen storage 
tanks and hydrogen delivery systems, sensors and control systems, and market penetration.  The 
cost of hydrogen storage tanks and fuel cells come from a Department of Energy (DOE), Office 
of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office cost 
analysis.  In these studies, DOE estimates the cost for 10,000 units per year production of a 
compressed gas storage system at around $26/kWh (2016$, equivalent to $27.11 in $2018$), and 
the cost of the fuel cell system at about $85/kW (2017$, equivalent to $86.96 in $2018$).458,459  
The DMC for FCEVs in this analysis is $12,082.67 in 2020 in 2018$.  After RPE, the cost is 
$13,804.13 in 2020 in 2018$.  

The total cost of a FCEV includes the fuel cell, control systems, motors, inverters, hydrogen 
storage tanks, wiring harness, hydrogen fuel delivery lines, sensors, and hardware.  The cost of 
the battery pack and battery management system is not included in the cost of the fuel cell 
vehicle.  See the Vehicle tabs in the Technologies file for the total cost of the FCEV in this 
analysis across model years.  

3.3.5.3.6 Example Electrification Cost Technology Walk 

This section shows how the costs are computed for a vehicle that progresses from a lower level 
to a higher level of electrified powertrain.  We use a GMC Acadia AWD (vehicle code 1101008) 
as an example to walk through costs incurred during the progress from a vehicle with a mild 
hybrid SS12V system to a full BEV300 powertrain.  The same methodology could be used for 
any other technology advancement in the electric technology tree path.  

We use platform data from the reference run CAFE Model standard setting vehicle_report.csv 
results file.  As seen in the vehicle_report.csv file, the MY 2024 GMC Acadia AWD SLT with a 
SS12V system adopts a BEV300 powertrain in MY 2025.  The change in technology and 
associated incremental technology cost from MY 2024 to MY 2025 are shown in Table 3-99. 

Table 3-99 – Cost and Technology Difference Between MY 2024 and MY 2025 for GMC Acadia AWD 
Simulated Platform 

MY Tech Key Tech Cost 
(2018$) 

2024 DOHC; VVT; SGDI; DEAC; AT9L2; EPS; SS12V; LDB; SAX; ROLL20; 
AERO0; MR3 $321.04 

2025 IACC; BEV300; LDB; SAX; ROLL20; AERO20; MR3 $13,696.96 
Cost Difference $13,375.92 

 
458 James et al., Final Report: Hydrogen Storage System Cost Analysis (September 2016), available at 
https://www.osti.gov/servlets/purl/1343975.  (Accessed: February 15, 2022).  Page 20 -Table 6. 
459 James et al., Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing 
description, validation, and outlook, https://www.osti.gov/pages/biblio/1489250.  (Accessed: February 15, 2022).  
Page 8 – Fig. 6. 
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As seen in Table 3-99, the MY 2024 GMC Acadia AWD begins with the following technology 
key: DOHC; VVT; SGDI; DEAC; AT9L2; EPS; SS12V; LDB; SAX; ROLL20; AERO0; MR3.  
To progress to the BEV300 configuration, the following technologies need to be removed: 
DOHC, VVT, SGDI, DEAC, AT9L2, EPS, SS12V, and AERO0; and the following technologies 
need to be added: IACC, BEV300, and LDB, and AERO20.   

Table 3-100 shows the costs associated with the drivetrain and other components that the model 
removes from MY 2024 GMC Acadia AWD, and where to find them.  To properly cost the 
engine, it is important to note the engine is designated as a 6C2B engine (6 cylinders, 2 banks).  
For more information about engine geometry designation in the Technologies file please see 
Chapter 2.2 and Chapter 3.1.2. 

Table 3-100 – Costs Removed during Electrification Cost Integration for GMC Acadia Example 

Technology Location of Data in Technologies Input File and 
Battery Input File 

MY 2025 Value 
(2018$) 

DOHC Engine ‘6C2B’ Tab and ‘DOHC’ row $5,830.76 
AT9L2 Transmission ‘MedSUVPerf’ Tab and ‘AT9L2’ row $2,498.29 

VVT ‘6C2B’ Tab and ‘VVT’ row $221.54 
SGDI ‘6C2B’ Tab and ‘SGDI’ row $501.67 
DEAC ‘6C2B’ Tab and ‘DEAC’ row $203.35 
EPS ‘MedSUVPerf’ Tab, and ‘EPS’ row $117.28 

SS12V ‘MedSUVPerf’ Tab, ‘SS12V’ Row $247.43 

SS12V Battery CAFE Model Battery Cost Input File and 
‘MedSUVPerf’ Tab, ‘SS12V’ Row $146.9 

AERO0 ‘MedSUVPerf’ Tab, ‘AERO0’ Row 0 

We determine the SS12V battery pack cost by multiplying the baseline battery pack cost (now 
$113, as discussed above) by the RPE and learning curve factor.  The learning factor is taken 
from the Technologies file.  Table 3-103 shows the calculation of the battery pack cost. 

Table 3-101 – Battery Pack Cost for GMC Acadia Example 

Base Cost (2018) 
Battery_Costs.csv File 

Learning for MY 2025 
Technologies Input File 

‘MedSUVPerf’ Tab, ‘SS12V’ Row 

MY 2025 Battery 
Cost (2018$) 

$113 1.3 $146.9 

After removing the conventional powertrain component costs, we must add the costs for the new 
electrification technology.  In this example the simulated vehicle platform is converted to a 
BEV300 powertrain.  For all electrification path technologies, we must add two major 
component groups: the battery pack and the non-battery electrification components.  Hybrid 
electric technologies will also include the cost for an engine and in some cases a change in cost 
for the transmission.  Table 3-102 shows the added cost for the non-battery pack electrification 
technology components for the MY 2025 GMC Acadia AWD, and where those data can be 
found.  
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Table 3-102 – Costs Added for the Non-Battery Pack Electrification Technology Components for GMC 
Acadia Example 

Technology Location of Data in Technologies Input File and 
Battery Input File 

MY 2025 Value 
(2018$) 

BEV300 Engine ‘6C2B Tab’, ‘BEV300’ row $3,581.65 
IACC ‘MedSUVPerf’ Tab, ‘IACC’ row $146.68 

BEV300 non-battery 
components ‘MedSUVPerf’ Tab, ‘BEV300’ row $1,137.67 

BEV300 battery cost CAFE Model Battery Cost Input File460 $17,955.29 
AERO20 ‘MedSUVPerf’ Tab, ‘AERO20’ row $248.9 

The battery pack is cost is determined by multiplying the baseline battery pack cost by the 
learning curve factor.  The baseline battery costs are determined per discussions in Chapter 
3.3.5.1, and are found in the battery_cost.csv file.  The learning factor is found in the 
Technologies file.  Table 3-103 shows the calculation of battery pack costs. 

Table 3-103 – Battery Pack Cost for GMC Acadia Example 

Base Cost (2020 DMC in 2018$) 
Battery_Costs.csv file 

Learning for MY 2025 
Technologies Input File 

‘MedSUVPerf’ Tab, ‘BEV300’ 
Row 

MY 2025 Battery Cost 
(2018$) 

$15,069 1.1915 $17,955.29 

Summing these costs will result in a net added cost for the progression of a MY 2024 GMC 
Acadia mild hybrid to a MY 2025 Acadia BEV300.  Table 3-104 shows a summary of the total 
cost application for this technology transition.   

Table 3-104 – Summary of Technology Cost Change for GMC Acadia Example 

 Technology 
Removed 

Technology 
Added 

MY 2025 Cost 
of Technology 

(2018$) 

MY 2025 Overall 
Technology Cost 

(2018$) 

MY 2024    888.7 

Removed 
Technologies 

Engine (DOHC)  (5830.76) (5482.2) 
VVT  (221.54) (5703.74) 
SGDI  (501.67) (6205.41) 
DEAC  (203.35) (6408.76) 

Transmission 
(AT9L2)  (2498.29) (8907.05) 

 
460 Note that this is only DMC.  RPE and a learning rate needs to apply to align with MY 2025 values in 2018$.  So, 
in this case the battery DMC is $15,069 multiplied by 1.5 RPE multiplied by the 0.79 learning rate.  
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 Technology 
Removed 

Technology 
Added 

MY 2025 Cost 
of Technology 

(2018$) 

MY 2025 Overall 
Technology Cost 

(2018$) 

EPS  (117.28) (9024.33) 
SS12V  (247.43) (9271.76) 

SS12V battery  (146.90) (9418.66) 
AERO0  (0) 9418.66) 

Added 
Technologies 

 BEV300 - ETDS 3581.65 (5837.01) 
 IACC 146.68 (5690.33) 

 Non-battery 
components 1137.67 (4552.66) 

 Battery Pack 
Cost 17955.29 13402.63 

 AERO20 248.9 13651.53 

  Total AC/OC 
Adjustments 45.43 13696.96 

MY 2025    13696.96 

Please note that in this calculation the CAFE Model accounts for the AC and off-cycle 
technologies (grams per mile or g/mi) applied to each vehicle model.  The cost for the AC/OC 
adjustments are in the CAFE Model Scenarios File.  The AC and off-cycle cost values are 
discussed further in Chapter 3.8. 

The methodology shown above can be used to walk through other electrification advancements 
in any other vehicle models. 

3.4 Mass Reduction 

Mass reduction is a relatively cost-effective means of improving fuel economy, and vehicle 
manufacturers are expected to apply various mass reduction technologies to meet fuel economy 
standards.  Vehicle manufacturers can reduce vehicle mass through several different techniques, 
such as modifying and optimizing vehicle component and system designs, part consolidation, 
and adopting lighter weight materials (advanced high strength steel (AHSS), aluminum, 
magnesium, and plastics including carbon fiber reinforced plastics).   

The cost for mass reduction depends on the type and amount of materials used, the 
manufacturing and assembly processes required, and the degree to which manufacturers need to 
make changes to plants and new manufacturing and assembly equipment.  In addition, 
manufacturers may develop expertise and invest in certain mass reduction strategies that may 
affect the approaches for mass reduction they consider and the associated costs.  Manufacturers 
may also consider vehicle attributes like noise-vibration-harshness (NVH), ride quality, 
handling, crash safety and various acceleration metrics when considering how to implement any 
mass reduction strategy.  These are considered to be aspects of performance, and for this analysis 
any identified pathways to compliance are intended to maintain performance neutrality.  
Therefore, we do not consider mass reduction via elimination of, for example, luxury items such 
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as climate control, or interior vanity mirrors, leather padding, etc., in the mass reduction 
pathways for this analysis. 

The automotive industry uses different metrics to measure vehicle weight.  Some commonly 
used measurements are vehicle curb weight,461 gross vehicle weight (GVW),462 gross vehicle 
weight rating (GVWR),463 gross combined weight (GCVW),464 and equivalent test weight 
(ETW),465 among others.  The vehicle curb weight is the most commonly used measurement 
when comparing vehicles.  A vehicle’s curb weight is the weight of the vehicle including fluids, 
but without a driver, passengers, and cargo.  A vehicle’s glider weight, which is vehicle curb 
weight minus the powertrain weight, is used to track the potential opportunities for weight 
reduction not including the powertrain.  A glider’s subsystems may consist of the vehicle body, 
chassis, interior, steering, electrical accessory, brake, and wheels systems.  The percentage of 
weight assigned to the glider will remain constant for any given final rule, but that percentage 
will most likely change in subsequent final rules.  For example, as electric powertrains including 
motors, batteries, inverters, etc. become a greater percent of the fleet, glider weight percentage 
will change compared to earlier fleets which had higher dominance of ICE powertrains.  
Therefore, in going from fleets dominated by ICEs to subsequent fleets dominated by battery 
electric powertrains, the glider percent share will decrease because BEV powertrains weigh more 
than ICE powertrains.  

For this analysis, we consider six levels of mass reduction technology that include increasing 
amounts of advanced materials and mass reduction techniques applied to the glider.  We account 
for mass changes associated with powertrain changes separately.  Glider mass reduction can 
sometimes enable a smaller engine while maintaining performance neutrality.  Smaller engines 
typically weight less than bigger ones.  We capture any changes in the resultant fuel savings 
associated with powertrain mass reduction and downsizing via the Autonomie simulation.  
Autonomie calculates a hypothetical vehicle’s theoretical fuel mileage using a mass reduction to 
the vehicle curb weight equal to the sum of mass savings to the glider plus the mass savings 
associated with the downsized powertrain. 

Costs for the first four levels of mass reduction are the same as those used in the 2020 final rule.  
The costs for each of the top two of the six levels of mass reduction technology are based on 
vehicle mass reduction design concept studies, teardown studies, and the NAS 2021 report.  The 
incremental increase in price is not linear going from MR1 to MR6.  Rather, the costs increase in 
a quasi-exponential fashion.  This is because as more mass is removed, there is a necessity to 
employ more and more expensive materials and processes.  These costs consider both primary 
and secondary mass reduction opportunities and mass reduction of primary versus secondary 
structure, all of which are discussed further later in this Chapter.  In addition, the following 

 
461 This is the weight of the vehicle with all fluids and components but without the drivers, passengers, and cargo. 
462 This weight includes all cargo, extra added equipment, and passengers aboard. 
463 This is the maximum total weight of the vehicle, passengers, and cargo to avoid damaging the vehicle or 
compromising safety. 
464 This weight includes the vehicle and a trailer attached to the vehicle, if used.  
465 For the EPA two-cycle regulatory test on a dynamometer, an additional weight of 300 lbs. is added to the vehicle 
curb weight.  This additional 300 lbs. represents the weight of the driver, passenger, and luggage.  Depending on the 
final test weight of the vehicle (vehicle curb weight plus 300 lbs.), a test weight category is identified using the table 
published by EPA according to 40 CFR 1066.805.  This test weight category is called “Equivalent Test Weight” 
(ETW). 
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sections discuss the assumptions for the six mass reduction technology levels, the process used to 
assign initial analysis fleet mass reduction assignments, the effectiveness for applying mass 
reduction technology, and mass reduction costs. 

3.4.1 Mass Reduction in the CAFE Model 

The CAFE Model considers six levels of mass reduction technologies that manufacturers could 
use to comply with CAFE standards.  The magnitude of mass reduction in percent for each of 
these levels is shown in Table 3-105 as a percentage of vehicle glider weight, and curb weight 
for both passenger cars and light trucks. 

Table 3-105 – Mass Reduction Technology Level and Associated Glider and Curb Mass Reduction 

MR 
Level 

Percent Glider 
Weight 

Percent Vehicle Curb 
Weight (Passenger Cars) 

Percent Vehicle Curb 
Weight (Light Trucks) 

MR0 0% 0.00% 0.00% 
MR1 5% 3.55% 3.55% 
MR2 7.5% 5.33% 5.33% 
MR3 10% 7.10% 7.10% 
MR4 15% 10.65% 10.65% 
MR5 20% 14.20% 14.20% 
MR6 28% 20.00% 20.00% 

For this analysis, we consider mass reduction opportunities from the glider subsystems of a 
vehicle first, and then consider associated opportunities to downsize the powertrain, which we 
account for separately.466  As explained below, in the Autonomie simulations, the glider includes 
the body, chassis, interior, electrical accessories, steering, brakes and wheels, which encompass 
both primary and secondary systems that the model can light-weight.  In this analysis, we assume 
the glider share is 71 percent of vehicle curb weight.  Autonomie sizes the powertrain based on 
the glider weight and the mass of some of the powertrain components in an iterative process.  
The mass of the powertrain depends on the powertrain size.  Therefore, the weight of the glider 
impacts the weight of the powertrain.467   

We use glider weight to apply non-powertrain mass reduction technology in the CAFE Model 
and use Autonomie simulations to determine the size of the powertrain and corresponding 
powertrain weight for the respective glider weight.  The combination of glider weight (after mass 
reduction) and re-sized powertrain weight equal the vehicle curb weight.  See Chapter 3.4.4 for 
more detail on glider mass and glider mass reduction.  The cost and fuel savings effectiveness 
calculation for curb weight mass reduction (described in a subsequent section) occurs within 

 
466 When the mass of the vehicle is reduced by an appropriate amount, the engine may be downsized to maintain 
performance.  See Chapter 2.4.5 for more details.   
467 Since powertrains are sized based on the glider weight for the analysis, glider weight reduction beyond a 
threshold amount during a redesign will lead to re-sizing of the powertrain.  For the analysis, the glider was used as 
a base for the application of any type of powertrain.  A conventional powertrain consists of an engine, transmission, 
exhaust system, fuel tank, radiator, and associated components.  A hybrid powertrain also includes a battery pack, 
electric motor(s), generator, high voltage wiring harness, high voltage connectors, inverter, battery management 
system(s), battery pack thermal system, and electric motor thermal system.  
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Autonomie.  The Autonomie simulation takes into account both glider mass reduction and 
powertrain mass reduction in its calculations of a vehicle’s fuel mileage. 

3.4.1.1 Assumptions Behind the Mass Reduction Levels  

While there are a range of mass reduction technologies that manufacturers can apply to vehicles 
to achieve each of the six mass reduction levels, there are some general trends that are helpful to 
illustrate the more widely used approaches.  Typically, MR0 reflects vehicles with widespread 
use of mild steel structures and body panels, and very little or no use of high strength steel or 
aluminum.  MR0 reflects materials in use for average vehicles in the MY 2008 timeframe.  MR1-
MR3 can be achieved with a steel body structure.  In going from MR1 to MR3, expect that mild 
steel to be replaced by high strength and then AHSS.  In going from MR3 to MR4 light metals 
like aluminum and magnesium are required.  This will start at using aluminum closure panels 
and then to get to MR4 the vehicle’s primary structure will need to be mostly made from 
aluminum.  In the majority of cases, carbon fiber technology is necessary to reach MR5, perhaps 
with a mix of some aluminum and/or magnesium.  MR6 can only be attained in anything 
resembling a passenger car by making nearly every structural component from carbon fiber.  
This means the body structure and closure panels like hoods and door skins are wholly made 
from carbon fiber.  There may be some use of aluminum in the suspension.   

As discussed further in Chapter 3.4.5, the cost studies that we use to generate cost curves assume 
mass can be reduced in levels that require different materials and different components to be 
utilized, in a specific order.  Our mass reduction levels are loosely based on those studies’ 
conclusions about what materials and components are required for each percent of mass 
reduction. 

3.4.1.1.1 Traditional Mass Reduction Materials Used to Achieve MR1 
through MR4 

AHSS and aluminum (AL) have played a major role in recent years as materials used to reduce 
vehicle mass.  The penetration rate of AHSS or AL depends on a number of factors such as 
vehicle redesign cycle timing, material availability, accompanying changes in manufacturing 
equipment, and changes in joining methods, among other things.  A study conducted for the 
American Iron and Steel Institute shows the application of AHSS in vehicles increased from 81 
lbs. on average in 2006 to 254 lbs. in 2015.468 

 
468 Abey Abraham, Metallic Material Trends in the North American Light Vehicle (May 2015), available online at - 
http://www.steelsustainability.org/~/media/Files/Autosteel/Great%20Designs%20in%20Steel/GDIS%202015/Track
%202%20-%20Abraham.pdf.  (Accessed: February 15, 2022). 
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Figure 3-25 – Penetration of AL in Hoods and Sub-Frames/Cradles from 2009 to 2015 

According to a study conducted for the Aluminum Association, aluminum content in vehicles 
increased from nearly 300 lbs. in 2005, to 394 lbs. in 2015, up from roughly 80 lbs. in 1975, and 
a little more than 150 lbs. in 1990.469  Since the 1980s, many castings have migrated from steel 
to aluminum.470  Figure 3-25 shows AL replacing steel in greater percentages in vehicle hoods, 
and AL beginning to penetrate sub-frames/engine cradles in small percentages.471 

A 2017 report published by American Chemistry Council shows that while the overall share of 
plastics and polymer composites in vehicles have decreased by 0.1 percent in the last 10 years,472 
the share of AL has increased by 2.3 percent.473  The report also published data on material 
content in vehicles as shown in Table 3-106 and Table 3-107.   

 
469 Available online at - http://www.autonews.com/assets/PDF/CA95065611.PDF.  (Accessed: February 15, 2022).  
470 For instance, engine blocks and transmission cases are nearly universally aluminum in the MY 2016 fleet, but 
aluminum was rarely used in these applications prior to the 1990’s. 
471 Id. 
472 After rapidly increasing in the 1960’s through the 1990’s. 
473 American Chemistry Council Economics & Statistics Department, “Plastics and Polymer Composites in Light 
Vehicles” p. 5 (November 2017).  This article is available in the rulemaking docket at NHTSA-2021-0053-0011. 
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Table 3-106 – Average Materials Content of U.S./Canada Light Vehicles (lbs./vehicle) 
 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Average Weight 4,081 4,103 4,046 3,953 3,960 4,007 3,896 3,900 3,928 3,991 4,026 

Regular Steel 1,622 1,644 1,627 1,501 1,458 1,439 1,368 1,354 1,342 1,330 1,335 
High- & 
Medium- 

Strength474 
502 518 523 524 555 608 619 627 649 701 742 

Stainless Steel 73 75 75 69 72 73 68 74 73 75 74 
Other Steels 34 34 33 31 32 32 30 32 32 32 32 
Iron Castings 331 322 253 206 242 261 270 271 278 268 249 

Aluminum 323 319 316 324 338 344 349 355 368 395 410 
Magnesium 10 10 11 11 11 12 10 10 10 10 11 
Copper and 

Brass 67 66 71 71 74 73 71 70 68 67 66 

Lead 39 41 44 42 41 39 35 35 36 35 35 
Zinc Castings 10 9 9 9 9 9 8 8 8 8 8 
Powder Metal 42 43 43 41 41 42 44 45 46 45 44 

Other Metals475 5 5 5 5 5 5 5 5 4 5 5 
Plastics/Polymer 

Composites 342 339 348 384 359 353 332 328 329 334 332 

Rubber 198 192 204 245 228 223 205 198 196 198 199 
Coatings 30 30 31 36 36 33 28 28 28 28 28 
Textiles 47 46 48 58 56 50 49 50 49 45 44 

Fluids and 
Lubricants 211 215 214 217 219 221 219 222 224 225 226 

Glass 105 103 99 88 92 98 95 96 96 95 93 
Other 89 92 91 90 92 93 91 92 93 95 92 

 
474 Despite long lead times for material qualification of new metal alloys, medium and high strength steels have been 
and continue to be widely adopted in the automotive industry at a rapid pace.  Advanced steel materials typically 
replace regular steel, and often compete with aluminum and composites in body systems. 
475 “Other Metals” are typically used sparingly in specialty applications in the auto industry, and these metals make 
up a small portion of total vehicle weight. 
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Table 3-107 – Average Materials Content of U.S./Canada Light Vehicles (Percentage of Total Weight per 
Vehicle) 

 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Regular Steel 39.7% 40.1% 40.2% 38.0% 36.8% 35.9% 35.1% 34.7% 34.2% 33.3% 33.2% 
High- & 
Medium-
Strength 

12.3% 12.6% 12.9% 13.3% 14.0% 15.2% 15.9% 16.1% 16.5% 17.6% 18.4% 

Stainless Steel 1.8% 1.8% 1.9% 1.7% 1.8% 1.8% 1.7% 1.9% 1.9% 1.9% 1.8% 

Other Steels 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 

Iron Castings 8.1% 7.8% 6.3% 5.2% 6.1% 6.5% 6.9% 6.9% 7.1% 6.7% 6.2% 

Aluminum 7.9% 7.8% 7.8% 8.2% 8.5% 8.6% 9.0% 9.1% 9.4% 9.9% 10.2% 

Magnesium 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.3% 
Copper and 

Brass 1.6% 1.6% 1.7% 1.8% 1.9% 1.8% 1.8% 1.8% 1.7% 1.7% 1.6% 

Lead 1.0% 1.0% 1.1% 1.1% 1.0% 1.0% 0.9% 0.9% 0.9% 0.9% 0.9% 

Zinc Castings 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 

Powder Metal 1.0% 1.0% 1.1% 1.0% 1.0% 1.0% 1.1% 1.2% 1.2% 1.1% 1.1% 

Other Metals 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 
Plastics/Polymer 

Composites 8.4% 8.3% 8.6% 9.7% 9.1% 8.8% 8.5% 8.4% 8.4% 8.4% 8.3% 

Rubber 4.8% 4.7% 5.1% 6.2% 5.8% 5.6% 5.3% 5.1% 5.0% 5.0% 4.9% 

Coatings 0.7% 0.7% 0.8% 0.9% 0.9% 0.8% 0.7% 0.7% 0.7% 0.7% 0.7% 

Textiles 1.2% 1.1% 1.2% 1.5% 1.4% 1.3% 1.3% 1.3% 1.2% 1.1% 1.1% 
Fluids and 
Lubricants 5.2% 5.2% 5.3% 5.5% 5.5% 5.5% 5.6% 5.7% 5.7% 5.6% 5.6% 

Glass 2.6% 2.5% 2.4% 2.2% 2.3% 2.4% 2.4% 2.5% 2.4% 2.4% 2.3% 

Other 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.4% 2.4% 2.4% 2.3% 

Adding aluminum to a vehicle’s primary and/or secondary structure is useful in reaching higher 
levels of mass reduction.  To reach MR5 or MR6, extensive application of carbon fiber 
technology is typically needed.  

3.4.1.1.2 Requirements for Achieving MR5 and MR6 

Manufacturers have begun to experiment with advanced composites, such as carbon fiber, to 
achieve mass reduction.  Carbon fiber reinforced plastic (CFRP) composite materials offer many 
opportunities for meaningful mass reduction in automotive applications.  Components made 
from CFRP can typically be engineered to be 30 to 50 percent lighter than components made 
from conventional materials.  An individual carbon fiber can have up to nearly three times the 
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stiffness of steel.  Some aerospace grade individual carbon fibers can be up to seven times 
stronger than even advanced high-strength steels used in passenger cars.476   

When automotive grade carbon fibers are incorporated with a plastic resin, such as epoxy, the 
density normalized strength (i.e., specific strength) of the composite can be well over seven 
times that of automotive AHSS.  The density normalized stiffness (i.e., specific stiffness) of the 
composite can be nearly two and half times that of steel.  These properties, for a highly-idealized 
carbon fiber composite structural member, can translate to anywhere between a 50 to 70 percent 
mass savings depending on the mode of loading (tensile, compression, bending torsion, etc.) to 
which the structural member is subject.477  Manufacturers have used carbon fiber technology not 
only to reduce mass, but also to change the vehicle’s center of gravity and improve the vehicle’s 
weight distribution. 

However, mass production and vehicle packaging related design limitations preclude achieving 
these levels of mass reduction on real automotive structures.  Challenges to using CFRP include 
high cost of materials, failure mode unpredictability in crashes, cycle time to manufacture, and 
special tools required to assemble, join components with other metallic components, and 
stranded capital for manufacturing equipment.  

When estimating the mass savings potential of carbon fiber technology applied to passenger 
automobiles, it is important to note that carbon fibers come in a broad spectrum of grades.  The 
highest grades, with the highest strength and stiffness, can be hundreds of dollars per pound.  
They are consequently not realistic for use in high volume road vehicles.  The only grades that 
may be practicably affordable for mainstream automotive applications are the lowest ones.  They 
also offer the least potential for meaningful mass savings.  Therefore, it should not be assumed 
that mass savings achieved in aerospace applications should translate to road vehicle 
applications.  It should also not be assumed that carbon fiber technology affords the same mass 
saving potential to automotive structures that it does to upper echelon sporting goods.  For 
example, professional racing bicycles are often made from aerospace grade fiber, as are 
Wimbledon-level tennis rackets.  

Regardless, the auto industry has used carbon fiber successfully for light-weighting automotive 
primary and secondary structure for nearly five decades.  Formula One Grand Prix teams used 
the material for small components like wing supports starting in the mid-1970s.  In 1981, British 
Grand Prix team McLaren built the MP4/1 which was the first racing car, and also the first 
automobile, with a primary structure made wholly from carbon fiber.  Today, carbon fiber 
primary structure is the standard construction method from which F1 Grand Prix, Indy Car and 
Le Mans series racing cars are built.  There are few other lower racing series that can justify the 
extreme cost of a full carbon fiber composite primary structure.  

 

476 Toray Torayca Technical Manual, 2020. 

477 D.M. Baskin, S. Dinda, and T.S. Moore, “A Simple Approach to Selecting Automotive Body-in-White Primary 
Structural Materials,” SAE Paper # 2002-01-2050, 2002. 
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Note that primary and secondary structure is different than primary and secondary mass 
reduction.  A car’s or truck’s primary structure reacts the main loads fed into the vehicle from its 
suspension.  It also reacts impact loads and protects passengers from injury.  Examples include 
unit bodies, suspension sub-frames, bumper beams, side intrusion beams, etc.  However, for 
most passenger cars, the term primary structure refers to the unit body.  This is different to 
secondary structure, which only reacts lower magnitude inputs such as aero loads or loads from 
ancillary equipment like interior trim, radio antennae, lighting components, etc.  Examples of 
secondary structure includes items like bolt-on fenders, side mirrors, deck lids, front and rear 
fascia, etc.  The loads reacted by primary structure are nearly always higher in magnitude than 
that of those reacted by secondary structure.  As a further clarification, a vehicle with all 
secondary structure removed would be functional and safe, but may look unfinished or be 
uncomfortable to driver and passengers.   

Application of carbon fiber technology to road vehicles has been sparse and intermittent.  Most 
applications have been to secondary structure that offer limited mass reduction.  Today, General 
Motors offers pick-up trucks with pick-up boxes made from carbon fiber composite material.  
But the material used in that application does not have sufficient mechanical properties to carry a 
safe and stiff primary structure.  BMW offers a few high-end vehicles with carbon fiber roof 
panels, side view mirrors, rear wings, and other hang-on components.  Nissan offers a select few 
aero-surface components on their GTR Model.  None of these vehicles are considered below 
average in mass. 

Far fewer road cars possess primary structure wholly made from carbon fiber.  Some examples in 
recent U.S. fleets include the Alfa Romeo 4C, Bugatti Chiron, and the Lamborghini Aventador.  
In every one of these vehicles, the primary structure looks much like that of at least a Le Mans 
racing car with a central carbon fiber passenger cell and fore and aft structures supporting the 
powertrain and suspension.  In most every way, these vehicles are more racecars for the road 
than affordable car for the everyman.  They are far too expensive for high volume cars sales.  
Although the Alfa 4C may approach affordability at $75,000, the other vehicles mentioned are 
all above $300,000 and go into the millions of dollars for the Bugatti. 

The exception is the BMW i3.  It is the first and only mass-volume vehicle to have the majority 
of its primary structure made from carbon fiber composites.  Its primary structure is split into 
two main modules.  The base of the vehicle, which contains the battery pack, motor and all the 
suspension mounting points is made from aluminum castings, extrusions, and sheet materials.  
This structure is sometimes referred to as a “skateboard” architecture.478  The upper section of 
the i3’s primary structure, including body-side assemblies, roof assembly, floor pan assemblies 
and front and rear clip are made from carbon fiber reinforced polymer materials.  The 
manufacturing methods used to make these carbon fiber reinforced plastic structures took 
decades to develop and represent intellectual property, closely held trade secrets, and tacit secrets 
held tightly by assembly line-workers.  A teardown study by Munro & Associates showed the 
BMW i3 cab structure plus the aluminum skateboard is 68 kg lighter than a comparable steel 

 
478 W.J. Mitchell, C.E. Borroni-Bird and L.D. Burns, “Reinventing the Automobile; Personal Urban Mobility for the 
21st Century,” MIT Press, Cambridge, MA, 2010. 
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structure.479  This study also estimated the upfront investment and resulting part cost to 
manufacture CFRP components. 

In addition to solving the many technical challenges associated with mass-volume carbon fiber 
component manufacture, BMW also addressed the many challenging supply chain issues with 
carbon fiber component production.  BMW went as far as setting up purpose-built carbon fiber 
processing plants using hydro-electric energy in Washington state.  BMW also set up their own 
facility in Wackersdorf, Germany to weave the dry fiber into useable matte materials.  At this 
same facility, the matte material is pressed into a fiber pre-form using a light press and then 
made into useable panels using a liquid resin infiltration process (i.e., RIM).  

Any automaker or automotive supplier considering carbon fiber technologies would most likely 
require a decade or two of time and extensive financial resources to develop a carbon-fiber 
program for high volume vehicle application.  

The high cost of carbon fiber composite light-weighting technology is a result of many factors.  
First, most carbon fiber is made from a polymer fiber known as polyacrylonitrile (PAN).  
Because this fiber is made from petroleum products, it is an expensive pre-cursor.  The 
conversion of the PAN to carbon fiber is also quite expensive.  This is because it involves 
stretching strands of PAN fibers under intense heat to burn-off any non-carbon elements in their 
composition and to straighten carbon chain structures in the fiber.  This requires a lot of energy 
which is typically supplied from burning fossil fuels.  In addition, the process takes hours 
because the fiber material must traverse literally miles of serpentine distance within a 
pyrolization furnace.  It therefore takes a formidable amount of time and energy to convert the 
PAN fiber to carbon fiber yarn, or “tows.”  

Second, incorporating these tows into a polymer matrix material (such as epoxy) with sufficient 
fiber content and lack of voids is no trivial matter.  A reasonable description of the various 
methods of manufacturing carbon fiber reinforced plastic composites is out of the scope of this 
document.  None of them approach the ultra-low costs of the stamped sheet metal paradigm in 
which the mainstream automotive industry lives today.  For example, the composite industry has 
struggled to reduce the cycle time to produce a carbon body panel down to one minute.  A 
similar steel body panel can go from raw sheet to a finished panel in seconds.  From a 
manufacturing perspective, the source of the added cost belongs to the extra time required to 
incorporate the carbon fibers into finished components.  

Another impediment to deployment of carbon fiber technology into the mainstream automotive 
industry is limited global supply of the raw carbon fibers.  It is reported by composite materials 
industry publications480 that in 2019, the sum total of worldwide carbon pyrolization facilities 
produced 161,200 metric tons of dry carbon fiber (just the fiber).  Most of this dry fiber material 
is made by Toray of Japan.  The next largest producer is Hexcel in the United States.  Of the 
material that is produced, little is currently allocated to the automotive industry.  About half of 

 
479 Singh, Harry, FSV Body Structure Comparison with 2014 BMW i3, Munro and Associates for World Auto Steel 
(June 3, 2015). 

480 J. Sloan, “Carbon Fiber Suppliers Gear up for Next Generation Growth,” compositesworld.com, February 11, 
2020. 
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this carbon fiber dry tow material goes to industrial applications.  About 15 percent goes to 
aerospace applications and about 10 percent goes to sporting goods manufacturers.  Finally, 
another 10 percent goes to the automotive industry.  

Light-weighting studies completed by the engineering consultancy EDAG481 estimate that 
effective weight reduction results when approximately 400 kg of carbon fiber composite material 
is used per vehicle on average.  Assuming a fiber volume fraction of 60 percent and accounting 
for the density differences between dry carbon fiber and epoxy, about 232 kg of the 400 kg is dry 
fiber material.  This means that in 2019, there would have been enough carbon fiber available to 
make almost 70,000 vehicles.  Although global dry carbon fiber output is projected to increase 
by 10.2 percent compound annual growth rate out until 2029,482 this still will not be enough to 
supply the full number of vehicles sold in the United States each year, which is approximately 17 
million vehicles.   

As a final point for this section, a recent National Academies study assessing technologies for 
improving the fuel economy of light-duty vehicles included a section on the potential to reduce 
vehicle mass using carbon fiber technology.  The NAS study mentioned that the current state of 
the art methods for producing structural carbon fiber automotive components including resin 
transfer molding (RTM), are prone to generating a lot of scrap fiber material.  This of course 
adds to the cost of the vehicle and deducts from the limited amount of fiber material available to 
the auto industry.  The study also notes that alternate methods of constructing carbon fiber 
structural members, such as pultrusion methods, are much more efficient from a materials 
scrappage perspective.  Indeed, pultrusions made from carbon fibers are under continuing 
development for application in primary automotive structures.  They have potential to improve 
the affordability of applying carbon fiber technology to high volume automotive manufacture.   

Carbon fiber is particularly relevant to this analysis as higher levels of stringency require higher 
levels of mass reduction technology be applied to vehicles.  As discussed above, the highest 
levels of mass reduction technology considered in this analysis (MR5 and MR6) include an 
assumption that a significant amount of carbon fiber will be required for the vehicle’s body 
structure.  If made mostly from carbon fiber, vehicles sold in high volumes (hundreds of 
thousands of cars) might demand so much material that it would outstrip global carbon fiber 
supply.  Accordingly, as discussed in Chapter 3.4.3, we have limited the amount of MR5 and 
MR6 that can be applied to vehicles in the analysis.  We will continue to monitor this 
technology.  Any additional feedback on developing carbon fiber manufacturing technologies 
that have potential to increase the affordability of this technology for mass application is 
encouraged. 

3.4.1.1.3 Primary and Secondary Mass Reduction  

Each of the subsystems in a vehicle presents an opportunity for weight reduction; however, some 
weight reduction is dependent on the weight reduction of other subsystems.  Mass reduction is 
often characterized as either primary mass reduction or secondary mass reduction.  Primary mass 
reduction involves reducing mass of components that can occur independent from the mass of 

 
481 DOT HS 812 487, “Mass Reduction for Light-Duty Vehicles for Model Years 2017-2025”. 
482 J. Sloan, “For Carbon Fiber, the Future Certainly Looks Bright,” compositesworld.com, Dec 12, 2015.  
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other components.  For example, reducing the mass of a hood (e.g., replacing a steel hood with 
an aluminum hood) or reducing the mass of a seat, are examples of primary mass reduction 
because each can be implemented independently.  Other components and systems that may 
contribute to primary mass reduction include the vehicle body, chassis, and interior components. 

When significant primary mass reduction occurs, other components designed based on the mass 
of primary components may be redesigned as well.  An example of a subsystem where secondary 
mass reduction can be applied is the brake system.  If the mass of primary components is reduced 
sufficiently, the resulting lighter weight vehicle could safely maintain braking performance and 
attributes with a lighter weight brake system.  Other examples of components where secondary 
mass reduction can be applied are wheels and tires. 

Our mass reduction levels implicitly assume primary and secondary mass reduction happens in a 
specific order, to apply technologies in the order of cost effectiveness while ensuring that 
secondary mass reduction is applied after sufficient primary mass reduction has been applied to 
enable the secondary mass reduction.   

Some mass reduction is more valuable to fuel savings than other mass reduction.  All mass on a 
vehicle contributes to the translating (vehicle reference frames move relative to its surroundings) 
mass of the vehicle.  However, some mass on a vehicle is simultaneously translating and rotating 
(rotates relative to the reference frame of the vehicle.)  For example, wheels, brake rotors, and 
hub flanges fall into this category.  This is in contrast to components like fuel tanks, windshields, 
rear seats, etc. that only translate with the vehicle.  Weight reduction of components that are 
rotating and translating offer greater fuel savings.  This is because when a vehicle accelerates not 
only the translational inertia must be overcome, but additionally the rotational moment of inertia 
must be overcome for these components as well.  This requires more energy than if they were 
just translating.  Therefore, reducing the mass of these components provides an increased benefit. 

As discussed further in Chapter 3.4.5, we developed the cost curves used in this analysis by 
sequencing the light-weighted components from the MY 2011 Honda Accord and MY 2014 
Chevrolet Silverado studies based on cost effectiveness.  They assumed the vehicle body, 
chassis, interior, and other primary components were light-weighted first, followed then by light-
weighting powertrain components and other secondary systems after there is sufficient primary 
mass reduction.  Following the publication of these light-weighting studies, peer reviewers and 
manufacturers commented that many common components that are shared across all of the 
powertrains and vehicle models, such as drive axles, engine cradles, and radiator engine support 
that are considered to be non-powertrain secondary mass reduction opportunities cannot be 
downsized.  This is because the same components are used across many vehicles with different 
powertrain options.  Even though some of these components may provide opportunities for 
additional mass reduction, we agree with peer reviewers and manufacturers that retaining a 
common design for all powertrain options avoids the proliferation of complexity to maintain 
economies of scale. 

The cost curves based on our light-weighting studies reflect that, returning to this example, 
secondary mass reduction for the brake system is only applied after there has been sufficient 
primary mass reduction to allow the smaller brake system to provide safe braking performance 
and to maintain mechanical functionality.  This allows us to estimate the cost of mass reduction 
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independently of the cost associated with downsized advanced engines and advanced 
transmissions, as the cost of downsized advanced engines and transmissions are accounted for 
separately in the CAFE Model.  Therefore, the six mass reduction levels included in this analysis 
appropriately reflect both primary and secondary mass reduction opportunities.   

3.4.2 Mass Reduction Analysis Fleet Assignments 

To assign baseline mass reduction levels (MR0 through MR6) for vehicles in the analysis fleet, 
we use previously-developed regression models that were used for the 2015 rulemaking analysis 
to estimate curb weight for each vehicle based on observable vehicle attributes.  We originally 
developed the mass reduction regression models using MY 2015 fleet data; for this analysis, we 
used MY 2016 and 2017 analysis fleet data to update the models.   

To develop the original curb weight regressions, we grouped vehicles into three separate body 
design categories: 3-box, 2-box, and pickup, as seen in Table 3-108.  A 3-box can be explained 
as having a box in the middle for the passenger compartment, a box in the front for the engine 
and a box in the rear for the luggage compartment.  A 2-box has a box in front for the engine and 
then the passenger and luggage box are combined into a single box.   

Table 3-108 – Mass Reduction Body Style Sets 

3-Box 2-Box Pick-
up 

Coupe 
Sedan 

Convertible 

Hatchback 
Wagon 
Sport 
Utility 

Minivan 
Van 

Pick-
up 

For 2020 rulemaking and this analysis, we retain the MY 2015 regressions for 3-Box and 2-Box 
vehicles.  While many of the vehicles share the same powertrain for passenger cars and SUVs or 
for cars and pickup trucks, the utility and functionality of the vehicle in SUVs and pickup trucks 
(2-box) is different than passenger cars (3-box).  The presence of additional structure for towing 
or higher capacity towing, rear cross member, higher capacity suspension, and other differences, 
enable SUVs and pickup trucks to have towing and heavier payload capability.  For example, 
Ford uses the nearly similar displacement and horsepower engines in Mustang Ecoboost Coupe 
and in F150 2WD XL, Regular Cab, Long Box.  However, the curb weight for the pickup truck 
is higher than the Mustang.  Directionally, this suggests that the 2-box weight per horsepower 
coefficient should be greater than the 3-box coefficient, just as it is in the regression.  The 
coefficient for passenger cars and SUVs has not changed since the MY 2015 vehicle fleet 
analysis.   

For 2020 rulemaking and this analysis, we upgraded the pickup category regression in response 
to comments on the 2016 Draft TAR.  We estimated a new regression with EPA MY 2014 CAFE 
compliance data and add pick-up bed length as an independent variable.  As a result of stepping 
back to MY 2014 data for the pick-up regression, the dataset did not include the all-aluminum 
body Ford F-150 in the calculation of the baseline.  The advanced F-150 in the MY 2015 pick-up 
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regression meaningfully affected Draft TAR regression statistics because the F-150 accounted 
for a large portion of observations in the analysis fleet, and the F-150 included advanced weight 
savings technology. 

We leverage many documented variables in the analysis fleet as independent variables in the 
regressions.  Continuous independent variables include footprint (wheelbase x track width) and 
powertrain peak power.  Binary independent variables include strong HEV (yes or no), PHEV 
(yes or no), BEV or FCV (yes or no), AWD (yes or no), rear-wheel drive (yes or no), pick-up 
bed length (for the pick-up truck regression only) and convertible (yes or no).  In addition, for 
PHEV and BEV/FCV vehicles, the capacity of the battery pack is included in the regression as a 
continuous independent variable.  In some body design categories, the analysis fleet does not 
cover the full spectrum of independent variables.  For instance, in the pickup body style 
regression, there is no front-wheel drive vehicles in the analysis fleet, so the regression defaulted 
to AWD and left an independent variable for rear-wheel drive. 

Previously, we evaluated alternative regression variables, including overall dimensions of 
vehicles, such as height, width, and length, instead of and in addition to just wheelbase and track 
width.  The experimental regression variables only marginally changed predicted curb weight 
residuals as a percentage of predicted curb weight, at an industry level and for most 
manufacturers.  The results were not significantly different, and therefore we opted not to add 
these variables to regressions or replace independent variables presented in this analysis. 

The regression results for 3-Box, 2-Box and Pickup trucks are shown in Table 3-109, Table 
3-110, and Table 3-111.  

Table 3-109 – Regression Statistics for Curb Weight (lbs.) for 3-Box Vehicles 

Observations 822 
Adjusted R Square 0.87 

Standard Error 228.70 

Regression Statistics Coefficients Standard 
Error t Stat P-value Lower 

95% 
Upper 
95% 

Intercept -1581.63 98.50 -16.06 0.00 -1775.00 -1388.30 
Footprint (s.f.) 100.5 2.2 44.79 0 69.1 104.9 
Power (hp) 1.22 0.1 14.85 0 1.1 1.4 
Bed length (inches) - - - - - - 
Strong HEV (1,0) 200.36 46.3 4.33 0 109.5 291.2 
PHEV (1,0) 259.28 96.8 2.68 0.0075 69.3 449.2 
BEV or FCV (1,0) 602.33 215 2.8 0.0052 180.3 1024.3 
Battery pack size 
(kWh) -2.48 4.1 -0.6 0.5461 -10.6 5.6 

AWD (1,0) 294.51 24.5 12.03 0 246.4 342.6 
RWD (1,0) 117.2 23.7 4.94 0 70.6 163.8 
Convertible (1,0) 273.65 25.3 10.84 0 224.1 323.2 
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Table 3-110 – Regression Statistics for Curb Weight (lbs.) for Pick-up Vehicles 

Observations 312 
Adjusted R Square 0.84 

Standard Error 206.80 

Regression Statistics Coefficients Standard 
Error t Stat P-value Lower 

95% 
Upper 
95% 

Intercept 1062.21 130.23 8.16 0.00 805.95 1318.48 
Footprint (s.f.) 58.31 2.37 24.96 0 53.72 62.91 
Power (hp) 2.5 0.21 11.79 0 2.08 2.92 
Bed length (inches) -9.57 1.14 -8.4 0 -11.81 -7.32 
Strong HEV (1,0) - - - - - - 
PHEV (1,0) - - - - - - 
BEV or FCV (1,0) - - - - - - 
Battery pack size 
(kWh) - - - - - - 

AWD (1,0) 260.91 23.62 11.05 0 214.43 307.38 
RWD (1,0) - - - - - - 
Convertible (1,0) - - - - - - 

 

Table 3-111 – Regression Statistics for Curb Weight (lbs.) for 2-Box Vehicles 

Observations 584 
Adjusted R Square 0.88 

Standard Error 332.80 
Regression 
Statistics Coefficients Standard 

Error t Stat P-value Lower 
95% 

Upper 
95% 

Intercept -1930.09 142.50 -13.54 0.00 -2210.00 -1650.20 
Footprint (s.f.) 104.72 3.6 28.69 0 97.5 111.9 
Power (hp) 3.09 0.2 13.42 0 2.6 3.5 
Bed length (inches) - - - - - - 
Strong HEV (1,0) 358.97 80.3 4.47 0 201.3 516.6 
PHEV (1,0) 462.9 169.7 2.73 0.01 129.5 796.3 
BEV or FCV (1,0) 374.24 152.1 2.46 0.01 75.5 673 

Battery pack size 
(kWh) -1.32 3.7 -0.36 0.72 -8.5 5.9 

AWD (1,0) 353.91 33.4 10.59 0 288.3 419.5 
RWD (1,0) 208.02 54.1 3.84 0 101.7 314.3 
Convertible (1,0) - - - - - - 
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Each of the three regressions produces outputs effective for identifying vehicles with a 
significant amount of mass reduction technology in the analysis fleet.  Many coefficients for 
independent variables provide clear insight into the average weight penalty for the utility feature.  
In some cases, like battery size, the relatively small sub-sample size and high collinearity with 
other variables confound coefficient estimates. 

By design, no independent variable directly accounts for the degree of weight savings technology 
applied to the vehicle.  Residuals of the regression capture weight reduction efforts and noise 
from other sources. 

As a practical matter, we cannot conduct a tear down study and detailed cost assessment for 
every vehicle in every model year.  However, upon review of many vehicles and their 
subsystems, review of fleet assignments in the 2020 final rule identifies a few vehicles with MR0 
or MR1 assignments where the vehicles contain some advanced weight savings technologies, yet 
they and their platforms still produce small residuals.  Engineers from industry confirm that 
important factors other than glider weight savings and the independent variables considered in 
the regressions might factor into the use of light-weight technologies.  Such factors include the 
desire to lower the center of gravity of a vehicle, improve the vehicle weight distribution for 
handling, optimize noise-vibration-and-harshness, increase torsional rigidity of the platform, 
offset increased vehicle content, and many other factors.  In addition, engineers highlight the 
importance of sizing shared components for the most demanding applications on the vehicle 
platform; optimum weight savings for one platform application may not be suitable for all 
platform applications.  For future analysis, we will continue to look for practical ways to 
improve the assessment of mass reduction content and the forecast of incremental mass reduction 
costs for each vehicle. 

Figure 3-26 shows results from the pickup truck regression on predicted curb weight versus 
actual curb weight.  Points above the solid regression line represent vehicles heavier than 
predicted (with lower mass reduction technology levels); points below the solid regression line 
represent vehicles lighter than predicted (with higher mass reduction technology levels).  The 
dashed lines in Figure 3-26 show the thresholds (5, 7.5, 10, 15, 20 and 28 percent of glider 
weight).  Again, this analysis assumes the glider weight is 71 percent of vehicle curb weight. 
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Figure 3-26 – Predicted Curb Weight vs. Actual Curb Weight for the MY 2020 Analysis Fleet for 71 Percent 
Glider Share 

For points with actual curb weight below the predicted curb weight, we use the residual as a 
percent of predicted weight to get a sense for the level of current mass reduction technology used 
in the vehicle.  Notably, vehicles approaching -20 percent curb weight widely use advanced 
composites throughout major vehicle systems, and few examples exist in the MY 2020 fleet.483 

Generally, residuals of regressions as a percent of predicted weight appropriately stratify 
vehicles by mass reduction level.  Most vehicles show near zero residuals or had actual curb 
weights close to the predicted curb weight.  Few vehicles in the analysis fleet achieve the highest 

 

483 This evidence suggests that achieving a 20 percent curb weight reduction for a production vehicle with a baseline 
defined with this methodology is extremely challenging and requires advanced materials and disciplined design.  
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levels of mass reduction.  Most vehicles with the largest negative residuals demonstrably adopt 
advanced weight savings technologies at the most expensive end of the cost curve. 

To validate the residuals, we estimate the mass reduction technology level for several vehicle 
models in the analysis fleet and compare those estimates to the numerical results from the 
regression analysis.  To estimate the mass reduction technology level for the selected vehicles, 
we conduct an in-depth review of available information on the materials, design, and last 
redesign year for those vehicle models.  We then compare that information with the designs and 
materials used in the mass reduction feasibility and cost studies summarized in Chapter 3.4.5.  
That comparison showed consistent agreement with the technology levels derived from the 
regression analysis.  We therefore believe the regression methodology is a technically sound 
approach for estimating mass reduction levels in the analysis fleet.  

Manufacturers generally apply mass reduction technology at a vehicle platform level (i.e., using 
the same components across multiple vehicle models that share a common platform) to leverage 
economies of scale and to manage component and manufacturing complexity, so conducting the 
regression analysis at the platform level leads to more accurate estimates for the real-world 
vehicle platform mass reduction levels.  The platform approach also addresses the impact of 
potential weight variations that might exist for specific vehicle models, as all the individual 
vehicle models are aggregated into the platform group, and are effectively averaged using sales 
weighting, which minimizes the impact of any outlier vehicle configurations. 

Table 3-112 shows the results of the regression for a few select vehicles. 

Table 3-112 – Mass Reduction Technology Levels for the MY 2020 Analysis Fleet for 71% Glider Share of 
Curb Weight 

CAFE Model Platform 
Code Example Code Mass Reduction 

Residual (%) 

Mass Reduction 
Level for 71% 
Glider Weight 

Lamborghini-A Aventador -28.2% MR6 
Alfa Alfa Romeo 4C -23.0% MR6 
Li8 BMW i8 -21.7% MR6 
Lamborghini-H Huracan -17.5% MR5 
MB.SmallVan Mercedes Metris -15.1% MR5 
Li8 BMW i3 94 R19 -14.9% MR5 
44.D7a Jaguar XF -14.1% MR4 
MB.Gtsegment Mercedes AMG GT Roadster -13.8% MR4 
12M2 Chrysler Pacifica -13.5% MR4 
MAZDA.ND Mazda Miata MX5 -12.9% MR4 
T3 Ford F-150 -12.0% MR4 
RamVan Ram ProMaster -11.6% MR4 
Y-CAR/Y1XX Chevrolet Corvette -11.5% MR4 
HK.DE.Ecocar Kia Niro -10.7% MR4 
NBC(2) Toyota Prius C -10.2% MR3 
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CAFE Model Platform 
Code Example Code Mass Reduction 

Residual (%) 

Mass Reduction 
Level for 71% 
Glider Weight 

Global Epsilon/E2XX Chevrolet Malibu -9.6 MR3 
II Honda Civic -8.8 MR3 
MODEL 3 Tesla Model 3 -7.3% MR3 
MAZDA.BPDM Mazda 3 -7.3% MR3 
V Nissan Versa -7.2% MR3 
Excellence Lotus Evora -7.0% MR2 
MODEL S Tesla Model S -6.4% MR2 
44-D6a Jaguar F-Type -5.7% MR2 

 

3.4.3 Mass Reduction Adoption Features 

Given the degree of commonality among the vehicle models built on a single platform, 
manufacturers do not have complete freedom to apply unique technologies to each vehicle that 
shares the platform.  While some technologies (e.g., low rolling resistance tires) are very nearly 
“bolt-on” technologies, others involve substantial changes to the structure and design of the 
vehicle, and therefore often necessarily affect all vehicle models that share that platform.  In 
most cases, mass reduction technologies are applied to platform level components and therefore 
the same design and components are used on all vehicle models that share the platform. 

Each vehicle in the analysis fleet is associated with a specific platform.  Similar to the 
application of engine and transmission technologies, the CAFE Model defines a platform 
“leader” as the vehicle variant of a given platform that has the highest level of observed mass 
reduction present in the analysis fleet.  If there is a tie, the CAFE Model begins mass reduction 
technology on the vehicle with the highest sales in model year 2020.  If there remains a tie, the 
model begins by choosing the vehicle with the highest manufacturer suggested retail price 
(MSRP) in MY 2020.  As the model applies technologies, it effectively levels up all variants on a 
platform to the highest level of mass reduction technology on the platform.  So, if the platform 
leader is already at MR3 in MY 2020, and a “follower” starts at MR0 in MY 2020, the follower 
will get MR3 at its next redesign (unless the leader is redesigned again before that time, and 
further increases the mass reduction level associated with that platform, then the follower would 
receive the new mass reduction level). 

Important for analysis fleet mass reduction assignments, and for understanding adoption features 
as well, is our handling of vehicles that traditionally operated on the same platform but had a mix 
of old and new platforms in production at the time we created the analysis fleet.  For example, 
the Honda Civic and Honda CR-V traditionally share the same platform.  In MY 2016, Honda 
redesigned the Civic and updated the platform to include many mass reduction technologies.  
Also in MY 2016, Honda continued to build the CR-V on the previous generation platform that 
did not include many of the mass reduction technologies on the all new MY 2016 Civic.  In MY 
2017, Honda launched the new CR-V that incorporated changes to the Civic platform, and the 
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Civic and CR-V again shared the same platform with common mass reduction technologies.  
This analysis treats the old and new platforms separately to assign technology levels in the 
baseline, and the CAFE Model brings vehicles on the old platform up to the level of mass 
reduction technology on the new shared platform at the first available redesign year. 

In addition to the platform-sharing logic employed in the model, we apply phase-in caps for 
MR5 and MR6 (15 percent and 20 percent reduction of a vehicle’s curb weight, respectively), 
based on the current state of mass reduction technology.  As discussed above, for nearly every 
type of vehicle, with the exception of the smallest sports cars, an auto manufacturer’s strategy to 
achieve mass reduction consistent with MR5 and MR6 will require extensive use of carbon fiber 
technologies in the vehicles’ primary structures.  For example, one way of using carbon fiber 
technology to achieve MR6 is to develop a carbon fiber monocoque structure.  A monocoque 
structure is one where the outer most skins support the primary loads of the vehicle.  For 
example, they do not have separate non-load bearing aero surfaces.  All of the vehicle’s primary 
loads are supported by the monocoque.  In the most structurally efficient automotive versions, 
the monocoque is made from multiple well-consolidated plies of carbon fiber infused with resin.  
Such structures can require low hundreds of pounds of carbon fiber for most passenger vehicles.  
Add to this another roughly equivalent mass of petroleum-derived resins and even at aspirational 
prices for dry carbon fiber of $10-20 per pound it is easy to see how direct materials alone can 
easily climb into the five-figure dollar range per vehicle.   

High CAFE stringency levels will push the CAFE Model to select compliance pathways that 
include these higher levels of mass reduction for vehicles produced in the mid and high hundreds 
of thousands of vehicles per year.  We assume, based on material costs and availability, that 
achieving MR6 levels of mass reduction will cost more than ten thousand dollars per car.  
Therefore, application of such technology to high volume vehicles is unrealistic today and will, 
with certainty, remain so for the next several years.   

The CAFE Model applies technologies to vehicles that provide a cost-effective pathway to 
compliance.  In some cases, the direct manufacturing cost, indirect costs, and applied learning 
factor do not capture all the considerations that make a technology more or less costly for 
manufacturers to apply in the real world.  For example, there are direct labor, R&D overhead, 
manufacturing overhead, and amortized tooling costs that will likely be higher for carbon fiber 
production than current automotive steel production, due to fiber handling complexities.  In 
addition, R&D overhead will also increase because of the knowledge base for composite 
materials in automotive applications is simply not as deep as it is for steel and aluminum.  
Indeed, the intrinsic anisotropic mechanical properties of composite materials compared to the 
isotropic properties of metals complicates the design process.  Added testing of these novel 
anisotropic structures and their associated costs will be necessary for decades.  

In addition, the CAFE Model does not currently enable direct accounting for the stranded capital 
associated with a transition away from stamped sheet metal construction to molded composite 
materials construction.  For decades, or in some cases half-centuries, car manufacturers have 
invested billions of dollars in capital for equipment that supports the industry’s sheet metal 
forming paradigm.  A paradigm change to tooling and equipment developed to support molding 
carbon fiber panels and monocoque chassis structures would leave that capital stranded in 
equipment that would be rendered obsolete.  Doing this is possible, but the financial 
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ramifications are not currently reflected in the CAFE Model for MR5 and MR6 compliance 
pathways.  

Financial matters aside, carbon fiber technology and how it is best used to produce light-weight 
primary automotive structures is far from mature.  In fact, no car company knows for sure the 
best way to use carbon fiber to make a passenger car’s primary structure.  Using this technology 
in passenger cars is far more complex than using it in racing cars where passenger egress, 
longevity, corrosion protection, crash protection, etc., are lower on the list of priorities for the 
design team.  BMW may be the manufacturer most able to accurately opine on the viability of 
carbon fiber technology for primary structure on high-volume passenger cars, and even it 
decided to use a mixed materials solution for their next generation of EVs (the iX and i4) after 
the i3, thus eschewing a wholly carbon fiber monocoque structure.  

Another factor limiting the application of carbon fiber technology to mass volume passenger 
vehicles is indeed the availability of dry carbon fibers.  There is high global demand from a 
variety of industries for a limited supply of carbon fibers.  Aerospace, military/defense, and 
industrial applications demand most of the carbon fiber currently produced.  Today, only roughly 
10 percent of the global dry fiber supply goes to the automotive industry, which translates to the 
global supply base only being able to support approximately 70,000 cars.484 

To account for these cost and production considerations, including the limited global supply of 
dry carbon fiber, we apply phase-in caps that limit the number of vehicles that can achieve MR5 
and M6 levels of mass reduction in the CAFE Model.  We apply a phase-in cap for MR5 level 
technology so that 75 percent of the vehicle fleet starting in 2020 could employ the technology, 
and the technology could be applied to 100 percent of the fleet by MY 2025.  We also apply a 
phase-in cap for MR6 technology so that five percent of the vehicle fleet starting in MY 2020 
could employ the technology, and the technology could be applied to 10 percent of the fleet by 
MY 2025.   

To develop these phase-in caps, we select a 40,000 unit thresholds for both MR5 and MR6 
technology (80,000 units total), because it roughly reflects the number of BMW i3 cars produced 
per year worldwide.485  As discussed above, the BMW i3 is the only high-volume vehicle 
currently produced with a primary structure mostly made from carbon fiber (except the 
skateboard, which is aluminum).  Because mass reduction is applied at the platform level 
(meaning that every car of a given platform would receive the technology, not just special low 
volume versions of that platform), only platforms representing 40,000 vehicles or less are 
eligible to apply MR5 and MR6 toward CAFE compliance.  Platforms representing high volume 
sales, like a Chevrolet Traverse, for example, where hundreds of thousands are sold per year, are 

 
484 J. Sloan, “Carbon Fiber Suppliers Gear up for Next Generation Growth,” compositesworld.com, February 11, 
2020. 

485 However, even this number is optimistic because only a small fraction of i3 cars is sold in the U.S. market, and 
combining MR5 and MR6 allocations equates to 80k vehicles, not 40k.  Regardless, if the auto industry ever 
seriously committed to using carbon fiber in mainstream high-volume vehicles, competition with the other industries 
would rapidly result in a dramatic increase in price for dry fiber.  This would further stymie the deployment of this 
technology in the automotive industry. 
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therefore blocked from access to MR5 and MR6 technology.  There are no phase-in caps for 
mass reduction levels MR1, MR2, MR3 or MR4. 

In addition to determining that the caps were reasonable based on current global carbon fiber 
production, we determine that the MR5 phase-in cap is consistent with the NHTSA light-
weighting study that found that a 15 percent curb weight reduction for the fleet is possible within 
the rulemaking timeframe.486   

These phase-in caps appropriately function as a proxy for the cost and complexity currently 
required (and that likely will continue to be required until manufacturing processes evolve) to 
produce carbon fiber components.  Again, MR6 technology in this analysis reflects the use of a 
significant share of carbon fiber content, as seen through the BMW i3 and Alfa Romeo 4c as 
discussed above. 

3.4.4 Mass Reduction Effectiveness  

As discussed in Chapter 2.4, Argonne develops databases of vehicle attributes and characteristics 
for each vehicle technology class that includes over 100 different attributes.  Some examples 
from these 100 attributes include frontal area, drag coefficient, fuel tank weight, transmission 
housing weight, transmission clutch weight, hybrid vehicle components, and weights for 
components that comprise engines and electric machines, tire rolling resistance, transmission 
gear ratios, and final drive ratio.  Argonne uses these attributes to “build” each vehicle that it 
uses for the effectiveness modeling and simulation.  Important for precisely estimating the 
effectiveness of different levels of mass reduction is an accurate list of initial component weights 
that make up each vehicle subsystem, from which Autonomie considers potential mass reduction 
opportunities. 

As stated above, glider weight, or the vehicle curb weight minus the powertrain weight, is used 
to determine the potential opportunities for weight reduction irrespective of the type of 
powertrain.487  This is because weight reduction can vary depending on the type of powertrain.  
For example, an 8-speed transmission may weigh more than a 6-speed transmission, and a basic 
engine without VVT may weigh more than an advanced engine with VVT.  Autonomie 
simulations account for the weight of the powertrain system inherently as part of the analysis, 
and the powertrain mass accounting is separate from the application and accounting for mass 
reduction technology levels (MR0-MR6) that are applied to the glider in the simulations.  
Similarly, Autonomie also accounts for battery and motor mass used in hybrid and electric 
vehicles separately.  This secondary mass reduction is discussed further below. 

Accordingly, in the Autonomie simulations, mass reduction technology is simulated as a 
percentage of mass removed from the specific subsystems that make up the glider, as defined for 
that set of simulations (including the non-powertrain secondary mass systems such as the brake 
system). 

 
486 DOT HS 811 666: Mass Reduction for Light Duty Vehicles for Model Years 2017-2025: Figure 397 at page 356. 
487 Depending on the powertrain combination, the total curb weight of the vehicle includes glider, engine, 
transmission and/or battery pack and motor(s). 
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3.4.4.1 Glider Mass and Mass Reduction  

Autonomie accounts for the mass of each subsystem that comprises the glider.  For the purposes 
of determining a reasonable percentage for the glider, We consulted with Argonne to examine 
glider weight data available in the A2Mac1 database.488  The A2Mac1 database tool is widely 
used by industry and academia to determine the bill of materials and mass of each component in 
the vehicle system.489  We analyzed a total of 147 MY 2014 to 2016 vehicles, covering 35 
vehicle brands with different powertrain options representing a wide array of vehicle classes to 
determine the percentage of the vehicle comprised by the glider.490   

We also consider that the NHTSA passenger car and light truck light-weighting studies examine 
mass reduction in the body, chassis, interior, brakes, steering, electrical accessory, and wheels 
subsystems and has developed costs for light-weighted components in those subsystems.  As a 
result, we believe that it is appropriate to include all of those subsystems as available for mass 
reduction as part of the glider.  Therefore, all of these systems are included for the analysis of 
glider weight using the A2Mac1 database.  Table 3-113 shows the average mass for each 
subsystem and the glider share for each of the vehicle classes for all powertrain combinations.  

Table 3-113 – Glider Mass Share Assessment using A2Mac1 Data 

 1 2 3 4 5 6 7 8 9 10 

Vehicle 
Class 

Avg. 
Body 
Mass 
[kg] 

Avg. 
Chassis 
Mass 
[kg] 

Avg. 
Interior 

Mass 
[kg] 

Avg. 
Brakes 
Mass 
[kg] 

Avg. 
Steering 

Mass 
[kg] 

Avg. 
Electrical 
Accessory 

Mass 
[kg] 

Avg. 
Wheels 
Mass 
[kg] 

Avg. 
Glider 
Mass 

(Sum of 
1 to 7) 
[kg] 

Avg. 
Curb 

Weight 
[kg] 

% 
Glider 
Share 

Compact 
Non-
Performance 

525.00 160.00 150.00 50.13 20.00 30.26 42.00 977.40 1338.71 73.01% 

Compact 
Performance 525.00 160.00 200.00 55.12 22.00 35.25 45.00 1042.37 1455.85 71.60% 

Midsize 
Non-
Performance 

650.00 200.00 175.00 60.13 25.00 30.26 54.00 1194.40 1611.24 74.13% 

Midsize 
Performance 650.00 200.00 200.00 65.12 28.00 40.25 57.00 1240.37 1734.89 71.50% 

Small SUV 
Non-
Performance 

650.00 200.00 180.00 60.13 25.00 30.26 60.00 1205.40 1651.09 73.01% 

Small SUV 
Performance 650.00 200.00 220.00 75.12 28.00 40.25 66.00 1279.37 1792.46 71.38% 

 
488 A2Mac1: Automotive Benchmarking.  (n.d.).  Retrieved from https://portal.a2mac1.com/.  (Accessed: February 
15, 2022).  
489 Bill of material (BOM) is a list of the raw materials, sub-assemblies, parts, and quantities needed to manufacture 
an end-product. 
490 Docket No. NHTSA-2018-0067-1490. 
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 1 2 3 4 5 6 7 8 9 10 

Vehicle 
Class 

Avg. 
Body 
Mass 
[kg] 

Avg. 
Chassis 
Mass 
[kg] 

Avg. 
Interior 

Mass 
[kg] 

Avg. 
Brakes 
Mass 
[kg] 

Avg. 
Steering 

Mass 
[kg] 

Avg. 
Electrical 
Accessory 

Mass 
[kg] 

Avg. 
Wheels 
Mass 
[kg] 

Avg. 
Glider 
Mass 

(Sum of 
1 to 7) 
[kg] 

Avg. 
Curb 

Weight 
[kg] 

% 
Glider 
Share 

Midsize 
SUV Non-
Performance 

650.00 200.00 200.00 70.13 30.00 30.26 66.00 1246.40 1754.57 71.04% 

Midsize 
SUV 
Performance 

750.00 225.00 240.00 75.12 30.00 50.25 78.00 1448.37 2045.42 70.81% 

Pickup Non-
Performance 650.00 300.00 160.00 90.12 30.00 80.47 78.00 1388.58 2020.13 68.74% 

Pickup 
Performance 800.00 350.00 200.00 95.11 30.00 100.44 90.00 1665.55 2345.18 71.02% 

Average 71.62% 

These data are also compared with the glider weight measured in the NHTSA MY 2014 
Chevrolet Silverado light-weighting study491 (discussed further below), and the glider weight 
data range is similar to the analysis results.  Accordingly, we assumed that the glider weight 
comprised 71 percent of the vehicle curb weight. 

3.4.4.2 Powertrain Mass Reduction 

We account for all mass reduction due to powertrain improvements separately from glider mass 
reduction.  Autonomie considers several components for powertrain mass reduction, including 
engine downsizing, and transmission, fuel tank, exhaust systems, and cooling system light-
weighting. 

The 2015 NAS report suggested an engine downsizing opportunity exists when the glider mass is 
light-weighted by at least 10 percent.  The 2015 NAS report also suggested that 10 percent light-
weighting of the glider mass alone would boost fuel economy by 3 percent and any engine 
downsizing following the 10 percent glider mass reduction would provide an additional 3 percent 
increase in fuel economy.492  The NHTSA light-weighting studies applied engine downsizing 
(for some vehicle types but not all) when the glider weight was reduced by 10 percent.  
Accordingly, the analysis limits engine resizing to several specific incremental technology steps; 
important for this discussion, engines in the analysis are only resized when mass reduction of 10 
percent or greater is applied to the glider mass, or when one powertrain architecture replaces 
another architecture. 

 
491 DOT HS 812 487: Mass Reduction for Light-Duty Vehicles for Model Years 2017-2025. 
492 National Research Council.  2015.  Cost, Effectiveness, and Deployment of Fuel Economy Technologies for 
Light-Duty Vehicles.  Washington, D.C. - The National Academies Press.  https://doi.org/10.17226/21744.  
(Accessed: February 15, 2022). 
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Argonne performed a regression analysis of engine peak power versus weight for a previous 
analysis based on attribute data taken from the A2Mac1 benchmarking database, to account for 
the difference in weight for different engine types.  For example, to account for weight of 
different engine sizes like 4-cylinder versus 8-cylinder, Argonne developed a relationship curve 
between peak power and engine weight based on the A2Mac1 benchmarking data.  For this 
analysis, we use this relationship to estimate mass for all engine types regardless of technology 
type (e.g., VVL and direct injection).  We apply weight associated with changes in engine 
technology by using this linear relationship between engine power and engine weight from the 
A2Mac1 benchmarking database.  When a vehicle in the analysis fleet with an 8-cylinder engine 
adopts a more fuel-efficient 6-cylinder engine, the total vehicle weight reflects the updated 
engine weight with two less cylinders based on the peak power versus engine weight 
relationship. 

When Autonomie selects a powertrain combination for a light-weighted glider, the engine and 
transmission are selected such that there is no degradation in the performance of the vehicle 
relative to the baseline vehicle.  The resulting curb weight is a combination of the light-weighted 
glider with the resized and potentially new engine and transmission.  This methodology also 
helps in accurately accounting for the cost of the glider and cost of the engine and transmission 
in the CAFE Model.   

Secondary mass reduction is possible from some of the components in the glider after mass 
reduction has been incorporated in primary subsystems (body, chassis, and interior).  Similarly, 
engine downsizing and powertrain secondary mass reduction is possible after certain level of 
mass reduction is incorporated in the glider.  For the analysis, we include both primary mass 
reduction, and when there is sufficient primary mass reduction, additional secondary mass 
reduction.  The Autonomie simulations account for the aggregate of both primary and secondary 
glider mass reduction, and separately for powertrain mass.  

Note that secondary mass reduction is integrated into the mass reduction cost curves.  
Specifically, the NHTSA studies, upon which the cost curves depend, first generated costs for 
light-weighting the vehicle body, chassis, interior, and other primary components, and then 
calculated costs for light-weighting secondary components.  Accordingly, the cost curves reflect 
that, for example, secondary mass reduction for the brake system is only applied after there has 
been sufficient primary mass reduction to allow the smaller brake system to provide safe braking 
performance and to maintain mechanical functionality. 

We enhanced the accuracy of estimated engine weights by creating two curves to represent 
separately naturally aspirated engine designs and turbocharged engine designs.493  This achieves 
two benefits.  First, small naturally aspirated 4-cylinder engines that adopt turbocharging 
technology reflect the increased weight of associated components like ducting, clamps, the 
turbocharger itself, a charged air cooler, wiring, fasteners, and a modified exhaust manifold.  
Second, larger cylinder count engines like naturally aspirated 8-cylinder and 6-cylinder engines 
that adopt turbocharging and downsized technologies would have lower weight due to having 
fewer engine cylinders.  For this analysis, a naturally aspirated 8-cylinder engine that adopts 
turbocharging technology and is downsized to a 6-cylinder turbocharged engine appropriately 

 
493 Autonomie model documentation, Chapter 5.2.9. 
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reflects the added weight of the turbocharging components, and the lower weight of fewer 
cylinders.   

We believe it is reasonable to allow engine resizing upon adoption of 7.1, 10.7, 14.2, and 20 
percent curb weight reduction, but not at 3.6 and 5.3 percent.494  Resizing is also allowed upon 
changes in powertrain type or the inheritance of a powertrain from another vehicle in the same 
platform.  The increments of these higher levels of mass reduction, or complete powertrain 
changes, more appropriately match the typical engine displacement increments that are available 
in a manufacturer’s engine portfolio. 

3.4.4.3 The Summary of Mass Reduction Technology Effectiveness  

The range of effectiveness values for the mass reduction technologies, for all ten vehicle 
technology classes are shown in Figure 3-27.  In the graph, the box shows the inner quartile 
range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.495  The blue dots 
show a few values outside these ranges.  As discussed earlier, Autonomie simulates all possible 
combinations of technologies for fuel consumption improvements.  For a few technology 
combinations mass reduction has minimal impact on effectiveness on the regulatory 2-cycle test.  
For example, if an engine is operating in an efficient region of the fuel map on the 2-cycle test 
further reduction of mass may have smaller improvement on the regulatory cycles.  And so, the 
Figure 3-27 shows the range improvements based on the full range of other technology 
combinations.  

 
494 These curb weight reductions equate to the following levels of mass reduction as defined in the analysis: MR3, 
MR4, MR5 and MR6, but not MR1 and MR2; additional discussion of engine resizing for mass reduction can be 
found in Chapter 2.4. 
495 The IQR is the interquartile range – the difference between the upper quartile and the lower quartile.  Each 
whisker shows the data points between that range. 
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Figure 3-27 – Mass Reduction Technologies Effectiveness Values for all the Vehicle Technology Classes 
 

3.4.5 Mass Reduction Costs  

The CAFE Model uses cost information collected from various studies and industry data to 
determine which pathways to compliance are most financially efficient.  This cost information 
does not come in the form of a single cost point for a given piece of technology.  Rather, it 
comes in the form of a cost curve that shows how the cost of a technology is estimated to change 
with time.  This approach better reflects reality because technology tends to become less 
expensive with time as people and companies learn how to produce it more efficiently.  
Including the estimated cost over time of a technology also allows the CAFE Model to determine 
cost effective pathways to compliance that may shift based on the changes in cost effectiveness 
over time.  

Several mass reduction studies have used either a mid-size passenger car or a full-size pickup 
truck as an exemplar vehicle to demonstrate the technical and cost feasibility of mass reduction.  
While the findings of these studies may not apply directly to different vehicle classes, the cost 
estimates derived for the mass reduction technologies identified in these studies can be useful for 
formulating general estimates of costs.  As discussed further below, the mass reduction cost 
curves developed for this analysis are based on two previous NHTSA light-weighting studies, 
and were updated based on more recent studies to better account for the cost of carbon fiber 
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needed for the highest levels of mass reduction technology.  The two NHTSA-sponsored studies 
used for MR1 through MR4 costs include the teardown of a MY 2011 Honda Accord and a MY 
2014 Chevrolet Silverado pickup truck, and the carbon fiber costs for MR5 and MR6 were 
updated based on the 2021 NAS report.496     

Both NHTSA-sponsored teardown studies are structured to derive the estimated cost for each of 
the mass reduction technology levels.  We rely on the results of those studies because they 
consider an extensive range of material types, material gauge, and component redesign while 
taking into account real world constraints such as manufacturing and assembly methods and 
complexity, platform-sharing, and maintaining vehicle utility, functionality and attributes, 
including safety, performance, payload capacity, towing capacity, handling, NVH, and other 
characteristics.  In addition, we believe that the baseline vehicles and mass reduction 
technologies assessed in the NHTSA-sponsored studies are still reasonably representative of the 
technologies that may be applied to vehicles in the MY 2020 analysis fleet to achieve up to MR4 
level mass reduction in the rulemaking timeframe.  We adjust the cost estimates derived from the 
two NHTSA light-weighting studies to reflect the assumption that a vehicle’s glider weight 
consists of 71 percent of the vehicle’s curb weight, and mass reduction as it pertains to achieving 
MR0-MR6 levels would only come from the glider.   

After reviewing other agency, CARB, ICCT and industry studies,497 we believe that the NHTSA-
sponsored studies account for significant factors that are important to include on our analysis.  
The other studies often do not prioritize factors in an order that we agree with, make assumptions 
about key vehicle systems that we believe to be inaccurate, and/or apply secondary mass 
reduction before adequate primary mass reduction is applied to enable the secondary mass 
reduction, resulting in unrealistically low costs.  In regard to safety, we use studies that consider 
small overlap impact tests conducted by the Insurance Institute for Highway Safety (IIHS) and 
not all studies take that test into account.  In addition to considering platform-sharing constraints, 
the NHTSA pickup truck study accounts for vehicle functional performance for attributes 
including towing, noise and vibration, and gradeability.  This is consistent with the objective to 
maintain vehicle functionality throughout technology application in the analysis.   

Note that the mass reduction studies provide mass reduction costs for the glider, and this enables 
more direct use of cost curve data from the studies in the CAFE Model.  This change also allows 
Autonomie to account for powertrain mass, which enables the CAFE Model to account more 
accurately for the unique mass of each of the powertrains that are available in each vehicle 
model.  The cost of the engine, transmission, and electrification are accounted for separately 
from the glider in the CAFE Model. 

We calculate the costs of mass reduction as an average cost per pound over the baseline (MR0) 
for the vehicle’s glider weight.  While the definitions of glider may vary from study to study, we 
reference the same dollar per pound of curb weight to develop costs for different glider 

 
496 This analysis applied the cost estimates per pound derived from passenger cars to all passenger car segments, and 
the cost estimates per pound derived from full-size pickup trucks to all light-duty truck and SUV segments.  The 
cost estimates per pound for carbon fiber (MR5 and MR6) were the same for all segments. 
497 As for past rulemaking analyses, studies by EPA, CARB, Transport Canada, the American Iron and Steel 
Institute (AISI), the Aluminum Association, and the American Chemistry Council were all reviewed for potential 
incorporation into the analysis. 
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definitions.  In translating these values, we take care to track units ($/kg vs. $/lb.) and the 
reference for percentage improvements (glider vs. curb weight). 

We calculate the cost of mass reduction on a glider weight basis so that the weight of each 
powertrain configuration can be directly and separately accounted for.  This approach provides 
the true cost of mass reduction without conflating the mass change and costs associated with 
downsizing a powertrain or adding additional advanced powertrain technologies.  Hence, the 
mass reduction costs in this rule reflect the cost of mass reduction in the glider and do not 
include the mass reduction associated with engine downsizing.  We account for mass reduction 
and costs associated with engine downsizing separately. 

A second reason for using glider share instead of curb weight is that it affects the absolute 
amount of curb weight reduction applied, and therefore cost per pound for the mass reduction 
changes with the change in the glider share.  The cost for removing 20 percent of the glider 
weight when the glider represents 75 percent of a vehicle’s curb weight is not the same as the 
cost for removing 20 percent of the glider weight when the glider represents 50 percent of the 
vehicle’s curb weight.  For example, the glider share of 79 percent of a 3,000-pound curb weight 
vehicle is 2,370 lbs., while the glider share of 50 percent of a 3,000-pound curb weight vehicle is 
1,500 lbs., and the glider share of 71 percent of a 3,000-pound curb weight vehicle is 2,130 lbs.  
The mass change associated with 20 percent mass reduction is 474 lbs. for 79 percent glider 
share (= [3,000 lbs. x 79% x 20%]), 300 lbs. for 50 percent glider share (= [3,000 lbs. x 50% x 
20%]), and 426 lbs. for 71 percent glider share (= [3,000 lbs. x 71% x 20%]).  The mass 
reduction cost studies that we rely on to develop mass reduction costs for this analysis show that 
the cost for mass reduction varies with the amount of mass reduction.  Therefore, for a fixed 
glider mass reduction percentage, different glider share assumptions will have different costs. 

The following sections discuss the light-weighting studies we use to create the passenger car and 
light truck cost curves, including new studies referenced to update the cost curves to better 
reflect the cost of carbon fiber required for the highest levels of mass reduction technology. 

3.4.5.1 MY 2011 Honda Accord Teardown Study 

We used on a MY 2011 Honda Accord light-weighting study to develop the passenger cost curve 
used for MR1-MR4 in this analysis.  The NHTSA-funded study, performed by Electricore, Inc., 
George Washington University, and EDAG, Inc, was completed in 2012 and the final report peer 
reviewed by industry experts and Honda Motor Company.  EDAG and Electricore conducted 
further work to consider and make changes to the light-weighted model based on the feedback 
from Honda and continued to make additional changes to the design concept to address the IIHS 
small overlap impact test.  The investigators listed previously completed the study in February 
2016.498 

The curb weight of MY 2011 Honda Accord used in the light-weighting study is approximately 
1480kg.  The glider weight of the MY 2011 Honda Accord is approximately 1165 kg.  In this 

 
498 Singh, H., Kan, C-D., Marzougui, D., & Quong, S. (2016, February). Update to future midsize lightweight 
vehicle findings in response to manufacturer review and IIHS small-overlap testing (Report No. DOT HS 812 237). 
Washington, DC: National Highway Traffic Safety Administration. 
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case, the glider represents 79 percent of curb weight.499,500  As shown in Table 3-114, 
approximately 4.67 percent of the glider mass is light-weighted by substituting mild steel with 
AHSS in body-in-white structure.  3.39 percent of the glider mass is light-weighted by 
substituting mild steel with AL in closures (closures include hood, front door, rear door, and 
deck lid).  Between body-in-white and closures, approximately 8.06 percent of glider mass is 
light-weighted by substituting mild steel with AL.  The additional light-weighting was achieved 
by using advanced plastics for door trims, switching copper wiring harness to aluminum wiring 
harness, using AHSS for seat frames, using AHSS and optimizing design for parking brakes, 
among other substitutions.  As shown in Table 3-114, a total of 13.65 percent of glider mass was 
light-weighted.  This translates to 10.74 percent mass reduction at the curb weight level.  The 
report noted that follow-on mass reduction can be achieved by downsizing the engine and 
optimizing the powertrain components, while maintaining the same level of performance.  The 
report shows powertrain downsizing translates to some cost savings as well (the cost savings 
comes from manufacturers selecting downsized engines from the inventory of engines used in 
other product lines through economies of scale and common parts). 

Table 3-114 shows the list of components identified in the MY 2011 Honda Accord light-
weighting study and the corresponding direct manufacturing cost (DMC) estimated to light-
weight those components.  Cost estimates include consideration of advanced materials, redesign, 
tooling changes, and manufacturing setup changes.  Figure 3-28 shows the cost curve derived 
from the list of components in Table 3-114.  Figure 3-29 shows the direct manufacturing cost 
(DMC) at different levels of mass reduction for the passenger car.  The DMC shown in Figure 
3-29 is the average DMC and not the marginal cost for each additional mass reduction level.  As 
the average cost per pound over baseline increases, the marginal cost per pound may increase 
dramatically.

 
499 Glider weight is typically all components of the vehicle except the powertrain components such as engines, 
transmissions, radiator, fuel tank and exhaust systems.  
500 Not all subsystems considered in the light-weighting study were considered in the Autonomie simulations and 
CAFE Model. 
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Table 3-114 – List of Components Light-weighted in the Light-weighted Concept Study based on the MY 2011 Honda Accord ($/kg) 

# Vehicle 
Component/System 

Baseline 
Mass Substitution 

Material 

Light-
weighted 

Mass 

Mass 
Saving Δ Cost Δ Cost Cumulative 

Mass Saving 
Cumulative 

MR 
Cumulative 

Cost 
Cumulative 

Cost 

(kg) (kg) (kg) ($) ($/kg) (kg) (%) ($) ($/kg) 
1 Front Bumper 7.96 AHSS 4.37 3.59 -0.88 -0.25 3.59 0.31% -0.88 -0.25 
2 Front Door Trim 5.38 MuCell 4.04 1.34 0.00 0 4.93 0.42% -0.88 -0.18 

3 Front Door Wiring 
Harness 0.87 Al 0.57 0.3 0.00 0 5.23 0.45% -0.88 -0.17 

4 Head Lamps 6.86 MuCell 5.15 1.71 0.00 0 6.94 0.60% -0.88 -0.13 
5 HVAC 10.3 MuCell 7.7 2.6 0.00 0 9.54 0.82% -0.88 -0.09 

6 Insulation 9.35 Thinsulate & 
Quietblend 6.15 3.2 0.00 0 12.74 1.09% -0.88 -0.07 

7 Interior Trim 26.26 MuCell 23.23 3.03 0.00 0 15.77 1.35% -0.88 -0.06 
8 Parking Brake 3.31 Electronic 2.32 0.99 0.00 0 16.76 1.44% -0.88 -0.05 
9 Rear Door Trim 4.53 MuCell 3.4 1.13 0.00 0 17.89 1.54% -0.88 -0.05 
10 Rear Door Wiring Harness 0.33 Al 0.22 0.11 0.00 0 18 1.55% -0.88 -0.05 
11 Tail Lamps 2.54 MuCell 1.91 0.63 0.00 0 18.63 1.60% -0.88 -0.05 
12 Tires 37.1 Goodyear 32.65 4.45 0.00 0 23.08 1.98% -0.88 -0.04 
13 Wiring and Harness 21.7 Al 17.4 4.3 0.00 0 27.38 2.35% -0.88 -0.03 
14 Wheels 40.1 AHSS 38.66 1.44 0.00 0 28.82 2.47% -0.88 -0.03 
15 Rear Bumper 7.84 AHSS 4.33 3.51 2.10 0.6 32.33 2.78% 1.22 0.04 
16 Instrument Panel 31.9 Mg 22.45 9.45 15.43 1.63 41.78 3.59% 16.65 0.40 
17 Body Structure 328 AHSS 273.6 54.4 160.47 2.95 96.18 8.26% 177.12 1.84 
18 Decklid 9.95 Al 4.74 5.21 17.04 3.27 101.39 8.70% 194.16 1.91 
19 Hood 15.2 Al 7.73 7.47 24.61 3.29 108.86 9.34% 218.77 2.01 
20 Front Door Frames 32.78 Al 17.38 15.4 56.30 3.66 124.26 10.67% 275.07 2.21 
21 Fenders 7.35 Al 4.08 3.27 12.60 3.85 127.53 10.95% 287.67 2.26 

22 Seats 66.77 Composite + Al + 
GFRP 46.74 20.03 96.84 4.83 147.56 12.67% 384.51 2.61 

23 Rear Door Frames 26.8 Al 15.34 11.46 59.90 5.23 159.02 13.65% 444.41 2.79 
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Figure 3-28 – Passenger Car Glider Cost Curve based on MY 2011 Honda Accord Light-Weight Vehicle (79 
Percent of the Curb Weight) 

 

 

Figure 3-29 – Cumulative Direct Manufacturing Cost for Passenger Car Glider Mass Reduction (Glider - 79 
Percent of Curb Weight) 

Table 3-115 shows the cost per kilogram ($/kg) and estimated costs at discrete levels of mass 
reduction for a passenger car derived from light-weighting the MY 2011 Honda Accord.  We 
used these costs to develop the mass reduction costs for mass reduction levels 1-4 in this 
analysis. 

 



  370 

Table 3-115 – Cost Numbers Derived from Passenger Car Light-weighting Study 

CURB WEIGHT 1480 KG 
PC Glider (79% of 

Curb Weight) 1165 kg 

MR% (of glider in PC 
light-weighting study) MR (kg) $/kg 

Estimated DMC 
on MY 2011 

Honda Accord 

New Curb 
Weight after 
Glider Mass 

Reduction (kg) 

Percentage Mass 
Reduction at 
Curb Weight 

Level 
5.0% 58.25 $0.84 $48.93 1,421 4.0% 
7.5% 87.38 $1.61 $140.67 1,392 5.9% 

10.0% 116.50 $2.12 $246.98 1,363 7.9% 
15.0% 174.75 $3.37 $535.90 1,320 10.8% 
20.0% 233.00 $5.50 $3,611.50 1,247 15.7% 

3.4.5.2 MY 2014 Chevrolet Silverado Teardown Study 

Our original cost curve for light trucks was developed through a NHTSA-funded light-weighting 
study on a MY 2014 Chevrolet Silverado 1500 full-size pickup truck.  This study considered 
lessons learned during the MY 2011 Honda Accord light-weighting study and included 
requirements that the vehicle meet the IIHS small overlap performance test.  EDAG completed 
this project in 2016 and the final report is available on NHTSA’s website.501 

Table 3-116 shows the list of components light-weighted in the MY 2014 Chevrolet Silverado 
1500 full-size pickup truck.  Figure 3-30 shows the cost curve generated from the list of the 
light-weighted components, and Figure 3-31 shows the DMC at different levels of mass 
reduction.

 
501 Singh, H., Davies, J., Kramer, D., Fisher, A., Paramasuwom, M., Mogal, V., ... and Ganesan, V. (2018, January). 
Mass reduction for light-duty vehicles for model years 2017-2025 (Report No. DOT HS 812 487). Washington, DC: 
National Highway Traffic Safety Administration. 
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Table 3-116– List of Components Light-weighted in the MY 2014 Chevrolet Silverado 1500 

# 
Vehicle 

Component/ 
System 

Baseline 
Mass Substitution Material 

Light-
weighted 

Mass 

Mass 
Saving Δ Cost Δ Cost Cumulative 

Mass Saving 
Cumulative 

MR 
Cumulative 

Cost 
Cumulative 

Cost 

(kg) (kg) (kg) ($) ($/kg) (kg) (%) ($) ($/kg) 

1 
Interior 

Electrical 
Wiring 

6.9 Copper Clad 
Aluminum (CCA) 5.52 1.38 -28.07 -20.34 1.38 0.08% -28.07 -20.34 

2 Headliner 3.63 Cellmould 3.45 0.18 -0.93 -5.17 1.56 0.09% -29 -18.59 
3 Trim - Plastic 20.68 Cellmould 19.65 1.03 -5.3 -5.15 2.59 0.14% -34.3 -13.24 
4 Trim - misc. 34.67 Cellmould 32.94 1.73 -8.89 -5.14 4.32 0.24% -43.19 -10.00 
5 Floor Covering 9.75 Cellmould 9.26 0.49 -2.5 -5.10 4.81 0.27% -45.69 -9.50 
6 Headlamps 7.68 Mucell Housings 6.14 1.54 0 0.00 6.35 0.35% -45.69 -7.20 
7 HVAC System 25.88 MuCell & Cellmould 24.17 1.71 0 0.00 8.06 0.45% -45.69 -5.67 
8 Tail Lamps 2 Mucell Housings 1.6 0.4 0 0.00 8.46 0.47% -45.69 -5.40 
9 Chassis Frame 243.97 AHSS 197.61 46.36 48.26 1.04 54.82 3.06% 2.57 0.05 

10 Front Bumper 25.55 AHSS 20.44 5.11 5.32 1.04 59.93 3.35% 7.89 0.13 
11 Rear Bumper 15.14 AHSS 12.11 3.03 3.15 1.04 62.96 3.52% 11.04 0.18 
12 Towing Hitch 16.56 AHSS 13.59 2.97 3.09 1.04 65.93 3.68% 14.13 0.21 
13 Rear Doors 38.1 AHSS + Al 27.03 11.07 13.96 1.26 77 4.30% 28.09 0.36 
14 Wheels 158.96 eVOLVE 133.71 25.25 40.8 1.62 102.25 5.71% 68.89 0.67 
15 Front Doors 45.46 AHSS + Al 31.05 14.41 23.64 1.64 116.66 6.52% 92.53 0.79 
16 Fenders 25.91 Al 14.25 11.66 42.34 3.63 128.32 7.17% 134.87 1.05 

17 Front/Rear Seat 
& Console 97.45 Composite + Al + 

GFRP 68.21 29.24 137.7 4.71 157.56 8.80% 272.57 1.73 

18 Steering Column 
Assy 9.21 Mg 5.99 3.22 15.33 4.76 160.78 8.98% 287.9 1.79 

19 Pickup Box 109.9 Al 65.94 43.96 210.45 4.79 204.74 11.44% 498.35 2.43 
20 Tailgate 20.99 Al 12.59 8.4 40.2 4.79 213.14 11.91% 538.55 2.53 
21 Instrument Panel 12.27 Mg 6.75 5.52 26.51 4.80 218.66 12.22% 565.06 2.58 

22 
Instrument Panel 

Skin, Cover, 
Plastic 

17.36 Low Density Foam + 
MuCell + Cellmould 14.45 2.91 15.43 5.30 221.57 12.38% 580.49 2.62 
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# 
Vehicle 

Component/ 
System 

Baseline 
Mass Substitution Material 

Light-
weighted 

Mass 

Mass 
Saving Δ Cost Δ Cost Cumulative 

Mass Saving 
Cumulative 

MR 
Cumulative 

Cost 
Cumulative 

Cost 

(kg) (kg) (kg) ($) ($/kg) (kg) (%) ($) ($/kg) 

23 Cab 
(+Insulation) 259.92 Al 176.52 83.4 466.86 5.60 304.97 17.04% 1047.35 3.43 

24 Radiator 
Support 20 Al + Mg 14.1 5.9 47.99 8.13 310.87 17.37% 1095.34 3.52 
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Figure 3-30 – Cost Curve for Glider Mass Reduction on Light-weighted Truck Based on MY 2014 Chevrolet 
Silverado 1500 Full Size Pickup (Glider Representing 73.6 Percent of Curb Weight) 

 

 

Figure 3-31 – DMC for Light Truck Glider Mass Reduction on MY 2014 Chevrolet Silverado Light-weighted 
Pickup (Glider - 73.6 Pecent of Curb Weight) 

Table 3-117 shows the $/kg and cost associated at discrete mass reduction levels applicable to a 
light-weighted truck, per the MY 2014 Chevrolet Silverado study.  These cost values were 
partially carried through to the cost values used in this analysis, i.e., for mass reduction levels 1-
4. 
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Table 3-117 – Cost Numbers Derived from Light Truck Light-weighting Study 

CURB WEIGHT 2432 KG 

Glider (73.60% of Curb Weight) 1790 kg 
MR% (of 

glider in LT 
light-

weighting 
study) 

MR 
(kg) $/kg 

Estimated 
DMC on MY 

2014 Chevrolet 
Silverado 

New Curb 
Weight after 
Glider Mass 
Reduction 

(kg) 

Percentage Mass 
Reduction at 
Curb Weight 

Level 

5.0% 89.50 $0.50 $44.93 2,343 3.7% 

7.5% 134.25 $1.20 $161.10 2,298 5.5% 

10.0% 179.00 $2.09 $374.11 2,253 7.4% 

15.0% 268.50 $3.09 $829.67 2,164 11.0% 

3.4.5.3 Updates to MR5 and MR6 Costs based on Updated Carbon Fiber Studies  

As discussed above, achieving the highest levels of mass reduction often necessitates extensive 
use of advanced materials like higher grades of aluminum, magnesium, or carbon fiber.  Both 
NHTSA-funded light-weighting studies, summarized above, estimated a cost for carbon fiber.  In 
the MY 2011 Honda Accord light-weighting study, the estimated cost of carbon fiber was 
$5.37/kg and the cost of carbon fiber used in the MY 2014 Chevy Silverado light-weighting 
study was $15.50/kg.  The $15.50 estimate closely matched the cost estimates from a BMW i3 
teardown analysis,502 the cost figures provided by Oak Ridge National Laboratory for a study 
from the Institute for Advanced Composites Manufacturing Innovation (IACMI),503 and from a 
Ducker Worldwide presentation at the Center for Automotive Research Management Briefing 
Seminar.504   

For this analysis, we rely on the cost estimates for carbon fiber construction that the National 
Academies detailed in the 2021 Assessment of Technologies for Improving Fuel Economy of 
Light-Duty Vehicles – Phase 3.505  The study indicates that the sum of direct materials costs plus 
manufacturing costs for carbon fiber composite automotive components is $25.97 per pound in 
high volume production.  In order to use this cost in the CAFE Model it must be put in terms of 
dollars per pound saved.  Using an average vehicle curb weight of 4000 lbs., a 71 percent glider 
share, and the percent mass savings associated with MR5 and MR6, it is possible to calculate the 
number of pounds to be removed to attain MR5 and MR6.  Also taken from the NAS study is the 
assertion that carbon fiber substitution for steel in an automotive component results in a 50 
percent mass reduction.  Combining all this together, carbon fiber technology offers weight 

 
502 Singh, Harry, FSV Body Structure Comparison with 2014 BMW i3, Munro and Associates for World Auto Steel 
(June 3, 2015). 
503 IACMI Baseline Cost and Energy Metrics (March 2017), available at https://iacmi.org/wp-
content/uploads/2017/12/IACMI-Baseline-Cost-and-Energy-Metrics-March-2017.pdf.  (Accessed: February 15, 
2022). 
504 Ducker Worldwide, The Road Ahead – Automotive Materials (2016), 
https://societyofautomotiveanalysts.wildapricot.org/resources/Pictures/SAA%20Sumit%20slides%20for%20Abey%
20Abraham%20of%20Ducker.pdf.  (Accessed: February 15, 2022). 
505 2021 NAS report, at 7-242-3. 
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savings at $24.60 per pound saved.  This dollar per pound savings figure must also be converted 
to a RPE to account for various commercial costs associated with all automotive components.  
This is accomplished by multiplying $24.60 by the factor 1.5.  This brings the cost per pound 
saved for using carbon fiber to $36.90 per pound saved.506  The analysis uses this cost for 
achieving MR5 and MR6.   

Table 3-118 and Table 3-119 show the cost values used in the CAFE Model with MR1-4 costs 
based on the cost curves developed from the MY 2011 Honda Accord and MY 2014 Chevrolet 
Silverado studies, and the updated MR5 and MR6 values that account for the updated carbon 
fiber costs from the 2021 NAS report.  Both tables assume a 71 percent glider share. 

Table 3-118 – Mass Reduction Costs for MY 2020 in CAFE Model for Small Car, Small Car Performance, 
Medium Car, Medium Car Performance, Small SUV, Small SUV Performance 

 
Percentage 

Reduction in 
Glider Weight 

Percentage 
Reduction in 
Curb Weight 

Cost of Mass 
Reduction 

($/lbs.) 
MR0 0.00% 0.00% 0.00 
MR1 5.00% 3.55% 0.46 
MR2 7.50% 5.33% 0.86 
MR3 10.00% 7.10% 1.22 
MR4 15.00% 10.65% 1.59 
MR5 20.00% 14.20% 36.90 
MR6 28.00% 20% 36.90 

Table 3-119 – Mass Reduction Costs for MY 2020 in CAFE Model for Medium SUV, Medium SUV 
Performance, Pickup, Pickup HT 

 
Percentage 

Reduction in 
Glider Weight 

Percentage 
Reduction in 
Curb Weight 

Cost of Mass 
Reduction 

($/lbs.) 
MR0 0 0.00% 0.00 
MR1 5.00% 3.55% 0.30 
MR2 7.50% 5.33% 0.70 
MR3 10.00% 7.10% 1.25 
MR4 15.00% 10.65% 1.70 
MR5 20.00% 14.20% 36.90 
MR6 27.25% 19.35% 36.90 

There is a dramatic increase in cost going from MR4 to MR5 and MR6 for all classes of 
vehicles.  However, while the increase in cost going from MR4 to MR5 and MR6 is dramatic, 
the MY 2011 Honda Accord study, the MY 2014 Chevrolet Silverado study, and the 2021 NAS 
report all included a steep increase to achieve the highest levels of mass reduction technology, as 
seen in Figure 3-31.  Figure 3-32 shows the cost per pound for various materials used for light-
weighting from 2021 NAS, the NHTSA Accord study, and the NHTSA Silverado study.  Again, 
based on studies such as the NHTSA Accord and Silverado studies, enough mass reduction to 

 
506 See MR5 and MR6 CFRP Cost Increase Calculator.xlsx in the docket for this action. 
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reach MR5 will require a majority of secondary structure and some primary structure be made 
from carbon fiber.  Reaching MR6 will require a primary structure made almost entirely from 
carbon fiber.  This is true for nearly every vehicle except for the smallest sports cars with 
minimal interior luxury, like the Lotus Elise.  The increase in cost in going from MR5 to MR6 
can be justified by considering the dollar amount to purchase a pound of fully laminated and 
manufactured carbon fiber reinforced plastic compared to the dollar amount to purchase a pound 
of aluminum, magnesium, or steel as shown in Figure 3-32.   

 

Figure 3-32 – Cost per Kilogram Including Manufacturing for Various Materials Used for Light-weighting 
from NAS, 507 the NHTSA Accord Study, 508 and the NHTSA Silverado Study509 

3.5 Aerodynamics 

The energy required to overcome aerodynamic drag accounts for a significant portion of a 
vehicle’s energy consumption and can become the dominant factor for a vehicle’s energy 
consumption at high speeds.  The power needed to propel a vehicle increases as the cube of the 
velocity.  For example, doubling of velocity with a given amount of power to overcome 
aerodynamic drag would require eight times that power to overcome drag at the higher velocity.  
Reducing aerodynamic drag can, therefore, be an effective way to reduce fuel consumption and 
emissions. 

 
507 2021 NAS report, at 7-242-3. 
508 DOT HS 811 666, at p. 145, Figure 138. 
509 DOT HS 812 487, at p. 102, Figure 113. 
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Aerodynamic drag is proportional to the frontal area (A) of the vehicle and coefficient of drag 
(Cd), such that aerodynamic performance is often expressed as the product of the two values, 
CdA, which is also known as the drag area of a vehicle.  The coefficient of drag (Cd) is a 
dimensionless value that essentially represents the aerodynamic efficiency of the vehicle shape.  
The frontal area (A) is the cross-sectional area of the vehicle as viewed from the front.  It acts 
with the coefficient of drag as a sort of scaling factor, representing the relative size of the vehicle 
shape that the coefficient of drag describes.  The force imposed by aerodynamic drag increases 
with the square of vehicle velocity, accounting for the largest contribution to road loads at higher 
speeds. 

Manufacturers can reduce aerodynamic drag via two approaches, either by reducing the drag 
coefficient or reducing vehicle frontal area, with two different categories of technologies, passive 
and active aerodynamic technologies.  Passive aerodynamics refers to aerodynamic attributes 
that are inherent to the shape and size of the vehicle, including any components of a fixed nature.  
Active aerodynamics refers to technologies that variably deploy in response to driving 
conditions.  These include technologies such as active grille shutters, active air dams, and active 
ride height adjustment.  It is important to note that manufacturers may employ both passive and 
active aerodynamic technologies to improve aerodynamic drag values. 

The greatest opportunity for improving aerodynamic performance is during a vehicle redesign 
cycle when the manufacturer can make significant changes to the shape and size of the vehicle.  
Manufacturers may also make incremental improvements during a mid-cycle vehicle refresh 
using restyled exterior components and add-on devices, including, for example, restyled front 
and rear fascia, modified front air dams and rear valances, addition of rear deck lips and 
underbody panels, and low-drag exterior mirrors.  While manufacturers may nudge the frontal 
area of the vehicle during redesigns, large changes in frontal area are typically not possible 
without impacting the utility and interior space of the vehicle.  Similarly, manufacturers may 
improve Cd by changing the frontal shape of the vehicle or lowering the height of the vehicle, 
among other approaches, but the form drag of certain body styles and airflow needs for engine 
cooling often limit Cd improvements. 

The following sections discuss the CAFE Model’s four levels of aerodynamic improvements, 
how we assign baseline aerodynamic technology levels to vehicles in the fleet (i.e., on a relative 
basis based on Cd reduction), the Autonomie simulations’ estimates of effectiveness 
improvements from aerodynamic technologies, and the costs for adding that aerodynamic 
technology. 

3.5.1 Aerodynamics in the CAFE Model 

We bin aerodynamic improvements into four levels – 5, 10, 15, and 20 percent aerodynamic drag 
improvement values over a baseline computed for each vehicle body style – which correspond to 
aero drag reduction, level 1 (AERO5), aero drag reduction, level 2 (AERO10), AERO15, and 
AERO20, respectively.   

Technology pathway logic for levels of aerodynamic improvement consists of a linear 
progression, with each level superseding all previous levels.  Technology paths for AERO are 
illustrated in Figure 3-33. 
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Figure 3-33 – Technology Pathway for Levels of Aerodynamic Drag Reduction 

While the four levels of aerodynamic improvements are technology-agnostic, we provide a 
pathway to compliance for each level based on aerodynamic data from a National Research 
Council (NRC) of Canada-sponsored wind tunnel testing program.  The program included an 
extensive review of production vehicles utilizing these technologies, and industry 
comments.510,511  Again, we intend to show a potential way that manufacturers could achieve 
each aerodynamic improvement level; however, in the real world, manufacturers may implement 
different combinations of aerodynamic technologies to achieve a percentage improvement over 
their baseline vehicles.  Table 3-120 and Table 3-121 show the aerodynamic technologies that a 
manufacturer could use to achieve 5, 10, 15, and 20 percent improvements in passenger cars and 
SUVs, and 5, 10, and 15 percent improvements in pickup trucks. 

As discussed further in Chapter 3.5.3, we do not allow the model to apply AERO20 to pickup 
trucks, which is why there is no pathway to AERO20 shown in Table 3-121.  While a 
manufacturer could apply some aerodynamic improvement technologies across vehicle classes, 
like active grille shutters (used in the 2015 Chevrolet Colorado),512 we believe that there are 
limitations that make it infeasible for vehicles with some body styles to achieve a 20 percent 
reduction in the coefficient of drag from their baseline.  This technology path is an example of 

 
510 Larose, G., Belluz, L., Whittal, I., Belzile, M. et al., "Evaluation of the Aerodynamics of Drag Reduction 
Technologies for Light-duty Vehicles - a Comprehensive Wind Tunnel Study," SAE Int. J. Passeng. Cars - Mech. 
Syst. 9(2):772-784, 2016, https://doi.org/10.4271/2016-01-1613.  (Accessed: February 15, 2022). 
511 Larose, Guy & Belluz, Leanna & Whittal, Ian & Belzile, Marc & Klomp, Ryan & Schmitt, Andreas.  (2016).  
Evaluation of the Aerodynamics of Drag Reduction Technologies for Light-duty Vehicles - a Comprehensive Wind 
Tunnel Study.  SAE International Journal of Passenger Cars - Mechanical Systems.  9. 10.4271/2016-01-1613. 
512 Chevrolet Product Information, available at 
https://media.chevrolet.com/content/media/us/en/chevrolet/vehicles/colorado/2015/_jcr_content/iconrow/textfile/file
.res/15-PG-Chevrolet-Colorado-082218.pdf.  (Accessed: February 15, 2022). 
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how a manufacturer could reach each AERO level, but they would not necessarily be required to 
use the technologies.   

Table 3-120 – Combinations of Technologies That Could Achieve Aerodynamic Improvements Used in the 
Current Analyses for Passenger Cars and SUVs 

Aero Improvement 
Level Components Effectiveness (%) 

AERO5 

Front Styling 2.0% 
Roof Line raised at forward of B-pillar 0.5% 

Faster A pillar rake angle 0.5% 
Shorter C pillar 1.0% 

Low drag wheels 1.0% 

AERO10 

Rear Spoiler 1.0% 
Wheel Deflector / Air outlet inside wheel housing 1.0% 

Bumper Lip 1.0% 
Rear Diffuser 2.0% 

AERO15 Underbody Cover Incl. Rear axle cladding) 3.0% 
Lowering ride height by 10mm 2.0% 

AERO20 Active Grill Shutters 3.0% 
Extend Air dam 2.0% 

 

Table 3-121 – Combinations of Technologies That Could Achieve Aerodynamic Improvements Used in the 
Current Analyses for Pickup Trucks 

Aero Improvements Components Effectiveness (%) 

AERO5 

Whole Body Styling (Shape Optimization) 1.5% 
Faster A pillar rake angle 0.5% 

Rear Spoiler 1.0% 
Wheel Deflector / Air outlet inside wheel housing 1.0% 

Bumper Lip 1.0% 

AERO10 
Rear Diffuser 2.0% 

Underbody Cover Incl. Rear axle cladding) 3.0% 

AERO15 
Active Grill Shutters 3.0% 

Extend Air dam 2.0% 

As discussed further in Chapter 3.8, we assume manufacturers apply off-cycle technology at 
defined rates in the Market Data file.  While the AERO levels in the analysis are technology-
agnostic, achieving AERO20 improvements does assume the use of active grille shutters, which 
are an off-cycle technology. 
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3.5.2 Aerodynamics Analysis Fleet Assignments 

We use a relative performance approach to assign an initial level of aerodynamic drag reduction 
(AERO) technology to each vehicle.  Each AERO level represents a percent reduction in a 
vehicle’s aerodynamic drag coefficient (Cd) from a baseline value for its body style.  AERO 
technologies and their definitions, as well as their prevalence in the 2020 fleet, are given in Table 
3-122.  For a vehicle to achieve AERO5, the Cd must be at least 5 percent below the baseline for 
the body style; for AERO10, 10 percent below the baseline, and so on.   

Table 3-122 – Penetration Rates of Aerodynamic Drag Reduction Levels in the 2020 Fleet 

Technology Technology Description Sales 
Volume 

Penetration 
Rate 

AERO0 Baseline aero 3,199,634 24% 

AERO5 Aero drag reduction, level 1 (5% reduction) 4,839,840 36% 

AERO10 Aero drag reduction, level 2 (10% reduction) 3,866,017 28% 

AERO15 Aero drag reduction, level 3 (15% reduction) 1,233,140 9% 

AERO20 Aero drag reduction, level 4 (20% reduction) 453,920 3% 

We assign every vehicle in the fleet a body style; available body styles include convertible, 
coupe, sedan, hatchback, wagon, SUV, pickup, minivan, and van.  These assignments do not 
necessarily match the body styles that manufacturers use for marketing purposes.  Instead, we 
make these assignments based on engineering judgement, taking into account how we might 
affect a vehicle’s AERO and vehicle technology class assignments.  Different body styles offer 
different utility and have varying levels of baseline form drag.  In addition, frontal area is a 
major factor in aerodynamic forces, and the frontal area varies by vehicle.  This analysis 
considers both frontal area and body style as utility factors affecting aerodynamic forces; 
therefore, the analysis assumes all reduction in aerodynamic drag forces come from 
improvement in the drag coefficient. 

We compute average drag coefficients for each body style using manufacturers’ published MY 
2015 drag coefficients, which we use as the baseline values in the analysis.  Table 3-123 lists the 
baseline drag coefficients by body style for all levels of AERO that we use in the analysis for 
fleet assignments.  We harmonize the Autonomie simulation baselines with the analysis fleet 
assignment baselines to the fullest extent possible.513   

We source drag coefficients for each vehicle in the analysis fleet from manufacturer specification 
sheets, when possible.  However, manufacturers did not consistently publicly report drag 
coefficients for MY 2020 vehicles.  We use engineering judgment to assign an AERO level 
where we could not find a publicly available drag coefficient.  If we cannot manually assign an 
AERO level, we use the drag coefficient obtained from manufacturers to build the MY 2016 

 
513 See Table 2-19 in Chapter 2.4.2 for the table of vehicle attributes used to build the Autonomie baseline vehicle 
models.  That table includes a drag coefficient for each vehicle class. 
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fleet,514 if available.  The MY 2016 drag coefficient values may not accurately reflect the current 
technology content of newer vehicles but are, in many cases, the most recent data available.  The 
AERO technology penetration values for the analysis fleet are detailed in Table 3-124 and likely 
include higher levels of AERO0 that we are unable to account for due to lack of drag 
coefficients, resulting in some understatement of the actual aerodynamic technology applied in 
the MY 2020 fleet. 

Table 3-123 – Baseline AERO Technologies and Technology Steps by Body Style 

Body Style 
Aero Level & MY 2020 Volume Distribution 

Labels AERO0 AERO5 AERO10 AERO15 AERO20 

Convertible 
Volume Share 75.4% 14.9% 9.6% 0.0% 0.0% 

Cd 0.334 0.317 0.301 0.284 0.267 

Coupe 
Volume Share 50.9% 44.8% 3.4% 1.0% 0.0% 

Cd 0.319 0.303 0.287 0.271 0.255 

Hatchback 
Volume Share 49.1% 17.9% 15.6% 4.5% 13.0% 

Cd 0.333 0.316 0.3 0.283 0.266 

Minivan 
Volume Share 14.4% 60.1% 25.5% 0.0% 0.0% 

Cd 0.326 0.31 0.293 0.277 0.261 

Pickup 
Volume Share 10.3% 46.5% 5.6% 37.5% 0.0% 

Cd 0.42 0.399 0.378 0.357 0.336 

Sedan 
Volume Share 25.2% 35.9% 28.4% 5.7% 4.8% 

Cd 0.302 0.287 0.272 0.257 0.242 

Sport 
Utility 

Volume Share 24.0% 33.7% 36.7% 3.4% 2.2% 
Cd 0.363 0.345 0.327 0.309 0.29 

Van 
Volume Share 9.5% 0.0% 16.3% 52.0% 22.2% 

Cd 0.389 0.37 0.35 0.331 0.311 

Wagon 
Volume Share 7.2% 1.8% 0.4% 10.8% 79.8% 

Cd 0.342 0.325 0.308 0.291 0.274 

Baseline drag coefficients are also utilized in the final assignment of aerodynamic improvement 
levels.  The drag coefficient of each vehicle is compared to the baseline average drag coefficient 
value for the vehicle’s body style to perform the assignment.  Note that the highest AERO levels, 
AERO15 and AERO20, are not considered for certain body styles; see Chapter 3.5.3 for more 
detail. 

Table 3-124 – Aerodynamic Application by Manufacturer as a Percent of MY 2020 Sales 

Manufacturer AERO0 AERO5 AERO10 AERO15 AERO20 
BMW 50% 15% 35% 0% 0% 

Daimler 38% 4% 29% 0% 29% 

 
514 See 83 Fed. Reg. 42986 (Aug. 24, 2018).  The MY 2016 fleet was built to support the 2018 NPRM. 



  382 

Fiat-Chrysler 61% 20% 1% 18% 0% 
Ford 8% 7% 34% 52% 0% 

General Motors 16% 46% 38% 0% 0% 
Honda 8% 52% 35% 2% 2% 

Hyundai 2% 52% 42% 0% 3% 
Kia 25% 50% 24% 1% 0% 

Jaguar Land Rover 53% 44% 2% 0% 1% 
Mazda 16% 63% 7% 13% 0% 

Mitsubishi 35% 0% 65% 0% 0% 
Nissan 13% 38% 46% 1% 2% 
Subaru 31% 43% 26% 0% 0% 
Tesla 0% 0% 0% 0% 100% 

Toyota 27% 50% 20% 0% 3% 
Volvo 2% 20% 40% 7% 32% 

Volkswagen 50% 20% 28% 1% 1% 

3.5.3 Aerodynamics Adoption Features 

We use a relative performance approach to assign current aerodynamic technology (AERO) level 
to a vehicle.  For some body styles with different utility, such as pickup trucks, SUVs and 
minivans, frontal area can vary, and this can affect the overall aerodynamic drag forces.  To 
maintain vehicle utility and functionality related to passenger space and cargo space, we assume 
all technologies that improve aerodynamic drag forces do so by reducing Cd while maintaining 
frontal area. 

Technology pathway logic for levels of aerodynamic improvement consists of a linear 
progression, with each level superseding all previous ones.  Technology paths for AERO are 
illustrated in Figure 3-33. 

The highest levels of AERO are not considered for certain body styles.  In these cases, this 
means that we do not apply AERO20 and AERO15 in the baseline fleet, and the model cannot 
adopt AERO20, and sometimes AERO15.  For these body styles, there are no commercial 
examples of drag coefficients that demonstrate the required AERO15 or AERO20 improvement 
over baseline levels.  We also deem the most advanced levels of aerodynamic drag simulated as 
not technically practicable given the form drag of the body style and costed technology, 
especially given the need to maintain vehicle functionality and utility, such as interior volume, 
cargo area, and ground clearance.  As seen in Table 3-120, example technologies that may be 
used to achieve high AERO levels include lowered ride height, active grill shutters, and extended 
air dams.  Therefore, the analysis does not consider the highest levels of drag improvement for 
convertibles, minivans, pickups, and wagons as a potential pathway to compliance in response to 
regulatory alternatives.  The SKIP logic used to implement these restrictions is given in Table 
3-125. 
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Table 3-125 – SKIP Logic Based on Body Style 

Body Style AERO15 AERO20 

Convertible  SKIP 

Coupe    

Hatchback    

Minivan SKIP SKIP 

Pickup  SKIP 

Sedan    

Sport Utility    

Van    

Wagon  SKIP 

We also do not allow application of AERO15 and AERO20 technology to vehicles with more 
than 780 horsepower.  There are two main types of vehicles that inform this threshold: 
performance internal combustion engine (ICE) vehicles and high-power battery electric vehicles 
(BEVs).  In the case of the former, we recognize that manufacturers tune aerodynamic features 
on these vehicles to provide desirable downforce at high speeds and to provide sufficient cooling 
for the powertrain, rather than reducing drag, resulting in middling drag coefficients despite 
advanced aerodynamic features.  Therefore, manufacturers may have limited ability to improve 
aerodynamic drag coefficients for high performance vehicles with internal combustion engines 
without reducing horsepower.  1,655 units of sales volume in the baseline fleet include limited 
application of aerodynamic technologies because of ICE vehicle performance.515 

In the case of high-power battery electric vehicles, the 780-horsepower threshold is set above the 
highest peak system horsepower present on a BEV in the 2020 fleet.  BEVs have different 
aerodynamic behavior and considerations than ICE vehicles, allowing for features such as flat 
underbodies that significantly reduce drag.516  BEVs are therefore more likely to achieve higher 
AERO levels, so the horsepower threshold is set high enough that it does not restrict AERO15 
and AERO20 application.  Note that the CAFE Model does not force high levels of AERO 
adoption; rather, higher AERO levels are usually adopted organically by BEVs because 

 
515 See the Market Data file. 
516 2020 EPA Automotive Trends Report, at p. 227. 
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significant drag reduction allows for smaller batteries and, by extension, cost savings.  BEVs 
represent 252,023 units of sales volume in the baseline fleet.517 

Note that while many aerodynamic features that contribute to drag reduction (e.g., active grill 
shutters) are considered off-cycle technologies, AERO levels and the off-cycle program are 
modeled separately for the analysis.  For further discussion of off-cycle technologies, see 
Chapter 3.8. 

3.5.4 Aerodynamics Effectiveness  

To determine aerodynamic effectiveness, the CAFE Model and Autonomie use individually 
assigned road load technologies for each vehicle to appropriately assign initial road load levels 
and appropriately capture benefits of subsequent individual road load improving technologies. 

The analysis includes four levels of aerodynamic improvements, AERO5, AERO10, AERO15, 
and AERO20, representing 5, 10, 15, and 20 percent reduction in drag coefficient (Cd), 
respectively.  See Chapter 3.5.1 for a list of aerodynamic improving features and components 
that manufacturers could apply to achieve these levels.  The analysis assumes that aerodynamic 
drag reduction can only come from reduction in Cd and not from reduction of frontal area, to 
maintain vehicle functionality and utility, such as passenger space, ingress/egress ergonomics, 
and cargo space. 

The effectiveness values for the aerodynamic improvement levels relative to AERO0, for all ten 
vehicle technology classes, are shown in Figure 3-34.  Each of the effectiveness values shown is 
representative of the improvements seen for upgrading only the listed aerodynamic technology 
level for a given combination of other technologies.  In other words, the range of effectiveness 
values seen for each specific technology (e.g., AERO 15) represents the addition of AERO15 
technology (relative to AERO0 level) for every technology combination that could select the 
addition of AERO15.  Here, we use the change in fuel consumption values between entire 
technology keys,518 and not the individual technology effectiveness values.  Using the change 
between whole technology keys captures the complementary or non-complementary interactions 
among technologies. 

 
517 See the Market Data file. 
518 Technology key is the unique collection of technologies that constitutes a specific vehicle (see Chapter 2.4). 
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Figure 3-34 – AERO Technology Effectiveness519 

3.5.5 Aerodynamics Costs 

This analysis uses the AERO technology costs established in the 2020 CAFE final rule.520  The 
cost estimates are based on confidential business information submitted by the automotive 
industry in advance of the 2018 CAFE NPRM, and on our assessment of manufacturing costs for 
specific aerodynamic technologies.  See the 2018 PRIA for discussion of the cost estimates.521  
We received no additional comments from stakeholders regarding the costs established in the 
2018 PRIA and continue to use the established costs for this analysis, as shown in Table 3-126 
and Table 3-127.   

The cost to achieve AERO5 is relatively low, as manufacturers can make most of the 
improvements through body styling changes.  The cost to achieve AERO10 is higher than 
AERO5, due to the addition of several passive aerodynamic technologies, and the cost to achieve 
AERO15 and AERO20 is higher than AERO10 due to use of both passive and active 
aerodynamic technologies. 

 
519 The box shows the inner quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x IQR.  The 
blue dots show effectiveness values outside those thresholds.  The data used to create this figure can be found in the 
FE_1 Improvements file. 
520 See the FRIA accompanying the 2020 final rule, Chapter VI.C.5.e.  
521 See the PRIA accompanying the 2018 NPRM, Chapter 6.3.10.1.2.1.2 for a discussion of these cost estimates. 
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Table 3-126 and Table 3-127 show the initial DMC values for aerodynamic improvement 
technologies in MY 2017 and reported in 2018$.  The tables also show the total costs for the 
technologies across multiple model years, also in 2018$.  The total cost includes the application 
of RPE and learning factors.  See the Technologies file for all costs across all model years. 

Table 3-126 – DMC and Total Costs of Aerodynamic Improvement Technology for Passenger Cars and SUVs 
(in 2018$) - Includes RPE and Learning Effects 

Aero Improvements 
for Passenger Cars 

and SUV 

DMC 
(2018$) 

Total Cost: Including RPE and Learning Factors 
(2018$) 

MY 2017 MY 2020 MY 2022 MY 2024 MY 2030 
0% $0.00 $0.00 $0.00 $0.00 $0.00 
5% $39.38 $53.96 $51.41 $49.50 $45.73 

10% $80.51 $110.32 $105.11 $101.19 $93.49 
15% $113.76 $155.88 $148.53 $142.99 $132.10 
20% $201.27 $275.80 $262.78 $245.24 $233.72 

Table 3-127 – DMC and Total Costs of Aerodynamic Improvement Technology for Pickup Trucks (in 2018$) 
- Includes RPE and Learning Effects 

Aero Improvements 
for Pickups 

DMC 
(2018$) 

Total Cost: Including RPE and Learning Factors 
(2018$) 

MY 2017 MY 2020 MY 2022 MY 2024 MY 2030 
0% $0.00 $0.00 $0.00 $0.00 $0.00 
5% $39.38 $53.96 $51.41 $49.50 $45.73 

10% $80.51 $110.32 $105.11 $101.19 $93.49 
15% $201.27 $275.80 $262.78 $252.98 $233.72 

3.6 Tire Rolling Resistance 

Tire rolling resistance is a road load force that arises primarily from the energy dissipated by 
elastic deformation of the tires as they roll.  Tire design characteristics (for example, materials, 
construction, and tread design) have a strong influence on the amount and type of deformation 
and the energy it dissipates.  Designers can select these characteristics to minimize rolling 
resistance.  However, these characteristics may also influence other performance attributes, such 
as durability, wet and dry traction, handling, and ride comfort. 

Lower-rolling-resistance tires have characteristics that reduce frictional losses associated with 
the energy dissipated mainly in the deformation of the tires under load, thereby improving fuel 
economy.  OEMs increasingly specify low rolling resistance tires for new vehicles and low 
rolling resistance tires are also increasingly available from aftermarket tire vendors.  They 
commonly include attributes such as higher inflation pressure, material changes, tire construction 
optimized for lower hysteresis, geometry changes (e.g., reduced aspect ratios), and reduced 
sidewall and tread deflection.  Manufacturers also apply additional changes to vehicle suspension 
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tuning and/or suspension design to mitigate any potential impact on other performance attributes 
of the vehicle. 

We continue to assess the potential impact of tire rolling resistance changes on vehicle safety.  
We have been following the industry developments and trends in application of rolling resistance 
technologies to light duty vehicles.  As stated in the NAS special report on Tires and Passenger 
Vehicle Fuel Economy,522 national crash data does not provide data about tire structural failures 
specifically related to tire rolling resistance, because the rolling resistance of a tire at a crash 
scene cannot be determined.  However, other metrics like brake performance compliance test 
data are helpful to show trends like that stopping distance has not changed in the last ten years,523 
during which time many manufacturers have installed low rolling resistance tires in their fleet—
meaning that manufacturers were successful in improving rolling resistance while maintaining 
stopping distances through tire design, tire materials, and/or braking system improvements.  In 
addition, NHTSA has addressed other tire-related issues through rulemaking,524 and continues to 
research tire problems such as blowouts, flat tires, tire or wheel deficiency, tire or wheel failure, 
and tire degradation.525  However, there are currently no data connecting low rolling resistance 
tires to accident or fatality rates. 

Based on tire rolling resistance tests and wet grip index tests on original equipment tires installed 
on new vehicles,526 we can observe that there is no degradation in wet grip index values (no 
degradation in traction) for tires with improved rolling resistance technology.  With better tire 
design, tire compound formulations and improved tread design, tire manufacturers have tools to 
balance stopping distance and reduced rolling resistance.  Tire manufacturers can use “higher 
performance materials in the tread compound, more silica as reinforcing fillers and advanced 
tread design features” to mitigate issues related to stopping distance.527 

The following sections discuss levels of tire rolling resistance technology that we apply in the 
CAFE Model, how the technology is assigned in the analysis fleet, adoption features specified to 
maintain performance, effectiveness, and cost. 

3.6.1 Tire Rolling Resistance in the CAFE Model 

We continue to consider two levels of improvement for low rolling resistance tires in the 
analysis: the first level of low rolling resistance tires reduce rolling resistance 10 percent from an 

 
522 Tires and Passenger Vehicle Fuel Economy: Informing Consumers, Improving Performance - - Special Report 
286 (2006), available at https://www.nap.edu/read/11620/chapter/6.  (Accessed: February 15, 2022). 
523 See, e.g., NHTSA Office of Vehicle Safety Compliance, Compliance Database, 
https://one.nhtsa.gov/cars/problems/comply/index.cfm.  (Accessed: February 15, 2022). 
524 49 CFR 571.138, Tire pressure monitoring systems. 
525 Tire-Related Factors in the Pre-Crash Phase, DOT HS 811 617 (April 2012), available at 
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811617.  (Accessed: February 15, 2022). 
526 The results of these tests are presented in Docket No. NHTSA-2021-0053-0010, Memo to Docket - Rolling 
Resistance Phase One and Two.   
527 Jesse Snyder, A big fuel saver: Easy-rolling tires (but watch braking) (July 21, 2008), 
https://www.autonews.com/article/20080721/OEM01/307219960/a-big-fuel-saver-easy-rolling-tires-but-watch-
braking.  (Accessed: February 15, 2022). 
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industry-average baseline rolling resistance coefficient (RRC) value, while the second level 
reduce rolling resistance 20 percent from the baseline.528   

We use an industry average RRC baseline of 0.009 based on a CONTROLTEC study prepared 
for the California Air Resources Board,529 in addition to confidential business information 
submitted by manufacturers prior to the 2018 NPRM analysis.  The average RRC from the 
CONTROLTEC study, which surveyed 1,358 vehicle models,530 is 0.009.  CONTROLTEC also 
compared the findings of their survey with values provided by Rubber Manufacturers 
Association (renamed as USTMA-U.S. Tire Manufacturers Association) for original equipment 
tires.  The average RRC from the data provided by RMA is 0.0092,531 compared to average of 
0.009 from CONTROLTEC. 

In past agency actions, commenters have argued that based on available data on current vehicle 
models and the likely possibility that there would be additional tire improvements over the next 
decade, we should consider ROLL30 technology, or a 30 percent reduction of tire rolling 
resistance over the baseline.532 

As stated in Joint TSD for the 2017-2025 final rule and 2020 final rule, tire technologies that 
enable rolling resistance improvements of 10 and 20 percent have been in existence for many 
years.533  Achieving improvements of up to 20 percent involves optimizing and integrating 
multiple technologies, with a primary contributor being the adoption of a silica tread technology.  
Tire suppliers have indicated that additional innovations are necessary to achieve the next level 
of low rolling resistance technology on a commercial basis, such as improvements in material to 
retain tire pressure, tread design to manage both stopping distance and wet traction, and 
development of carbon black material for low rolling resistance without the use of silica to 
reduce cost and weight.534   

We believe that the tire industry is in the process of moving automotive manufacturers towards 
higher levels of rolling resistance technology in the vehicle fleet.  Importantly, as shown below, 
the MY 2020 fleet does include a higher percentage of vehicles with ROLL20 technology than 
the MY 2017 fleet.  However, we believe that at this time, the emerging tire technologies that 
would achieve 30 percent improvement in rolling resistance, like changing tire profile, stiffening 
tire walls, or adopting improved tires along with active chassis control,535  among other 
technologies, will not be available for widespread commercial adoption in the fleet during the 

 
528 To achieve ROLL10, the tire rolling resistance must be at least 10 percent better than baseline (.0081 or better).  
To achieve ROLL20, the tire rolling resistance must be at least 20 percent better than baseline (.0072 or better). 
529 Technical Analysis of Vehicle Load Reduction by CONTROLTEC for California Air Resources Board (April 29, 
2015). 
530 The RRC values used in this study were a combination of manufacturer information, estimates from coast down 
tests for some vehicles, and application of tire RRC values across other vehicles on the same platform. 
531 Technical Analysis of Vehicle Load Reduction by CONTROLTEC for California Air Resources Board (April 29, 
2015), at 40. 
532 NHTSA-2018-0067-11985. 
533 EPA-420-R-12-901, at pp. 3–210. 
534 2011 NAS report, at p. 103. 
535 Mohammad Mehdi Davari, Rolling resistance and energy loss in tyres (May 20, 2015), available at 
https://www.sveafordon.com/media/42060/SVEA-Presentation_Davari_public.pdf. (December 30, 2019). 
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rulemaking timeframe.  As a result, we continue to not to incorporate a 30 percent reduction in 
rolling resistance technology. 

3.6.2 Tire Rolling Resistance Analysis Fleet Assignments 

Tire rolling resistance is not a part of tire manufacturers’ publicly released specifications and 
thus it is difficult to assign this technology to the analysis fleet.  Manufacturers also often offer 
multiple wheel and tire packages for the same nameplates, further increasing the complexity of 
this assignment.  We employ an approach consistent with previous rulemaking in assigning this 
technology.  We rely on previously submitted rolling resistance values supplied by 
manufacturers in the process of building older fleets and bolstered it with an agency-sponsored 
tire rolling resistance study by Smithers.536   

We carry over rolling resistance assignments for nameplates where manufacturers had submitted 
data on the vehicles’ rolling resistance values, even if the vehicle was redesigned.  If Smithers 
data were available, we use that data in place any older or missing values.  We assign ROLL0 to 
vehicles for which no information is available from either previous manufacturer submissions or 
Smithers data.  All vehicles under the same nameplate are assigned the same rolling resistance 
technology level even if manufacturers do outfit different trim levels with different wheels and 
tires. 

Table 3-128 shows the distribution of ROLL technology for the 2017 and 2020 fleets.  This table 
illustrates that the majority of the fleet has now adopted some form of improved rolling 
resistance technology.  The majority of the change has been in implementing ROLL20 
technology.  There is likely more proliferation of rolling resistance technology, but we would 
need further information from manufacturers to account for it.   

Table 3-128 – Distribution of Tire Rolling Resistance Technology for the MY 2017 and MY 2020 Fleets 

Technology MY 2017 Fleet MY 2020 Fleet 

ROLL0 59% 44% 
ROLL10 21% 20% 
ROLL20 20% 36% 

3.6.3 Tire Rolling Resistance Adoption Features 

The model can apply rolling resistance technology with either vehicle refresh or redesign.  In 
some cases, low rolling resistance tires can affect traction, which may adversely impact 
acceleration, braking, and handling characteristics for some high-performance vehicles.  Similar 
to past rulemakings, we recognize that to maintain performance, braking, and handling 
functionality, some high-performance vehicles would not adopt low rolling resistance tire 
technology.  For cars and SUVs with more than 405 horsepower (hp), we restrict the application 
of ROLL20.  For cars and SUVs with more than 500 hp, we restrict the application of any 
additional rolling resistance technology (ROLL10 or ROLL20).  We apply these cutoffs based on 

 
536 “Evaluation of Rolling Resistance and Wet Grip Performance of OEM Stock Tires Obtained from NCAP Crash 
Tested Vehicles Phase One and Two” (NHTSA-2021-0053). 
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a review of confidential business information and the distribution of rolling resistance values in 
the fleet. 

3.6.4 Tire Rolling Resistance Effectiveness  

As discussed above, based on a thorough review of confidential business information submitted 
by industry, and a review of other literature, we use a baseline rolling resistance of 0.009.  To 
achieve ROLL10, the tire rolling resistance must be at least 10 percent better than baseline 
(.0081 or better).  To achieve ROLL20, the tire rolling resistance must be at least 20 percent 
better than baseline (.0072 or better). 

We determine effectiveness values for rolling resistance technology adoption using Autonomie 
modeling.  Figure 3-35 below shows the range of effectiveness values used for adding tire rolling 
resistance technology to a vehicle in this analysis.  The graph shows the change in fuel 
consumption values between entire technology keys,537 and not the individual technology 
effectiveness values.  Using the change between whole technology keys captures the 
complementary or non-complementary interactions among technologies.  In the graph, the box 
shows the inter quartile range (IQR) of the effectiveness values and whiskers extend out 1.5 x 
IQR.  The blue dots show values for effectiveness that are outside these bounds.   

The data points with the highest effectiveness values are almost all exclusively BEV and FCV 
technology combinations for medium sized non-performance cars.  The effectiveness for these 
vehicles, when the low rolling resistance technology is applied, is amplified by a complementary 
effect where the lower rolling resistance reduces road load and the vehicle can use a smaller 
battery pack (and still meet range requirements).  The smaller battery pack reduces the overall 
weight of the vehicle, further reducing road load, and improving fuel efficiency.  All vehicle 
technology classes experience this complementary effect, but the strongest effect is on the 
midsized vehicle non-performance classes.  By using full vehicle simulations, we can capture 
these effects that demonstrate the full interactions of the technologies. 

 
537 Technology key is the unique collection of technologies that constitutes a specific vehicle (see Chapter 2.4.7). 
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Figure 3-35 – Final Rule Analysis ROLL Technology Effectiveness 

3.6.5 Tire Rolling Resistance Costs 

We use the same DMC values for ROLL technology that were used for the 2020 CAFE final 
rule.  The costs are in 2018$ dollars.  Table 3-129 shows the different levels of tire rolling 
resistance technology cost. 

Table 3-129 – Cost for Tire Rolling Resistance Technologies Relative to ROLL0 

Technology Tire Rolling Resistance Technology Costs for MY 2020 (2018$) 

 Direct Manufacturing Cost Total Cost (includes RPE and 
Learning) 

ROLL0 $0.00 $0.00 
ROLL10 $5.186 $7.78 
ROLL20 $40.54 $60.81 
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3.7 Other Vehicle Technologies 

We include four other vehicle technologies in the analysis—electric power steering (EPS), 
improved accessories (IACC), low drag brakes (LDB), and SAX (which may only be applied to 
vehicles with all-wheel-drive or four-wheel-drive).  The CAFE Model directly applies these 
technologies’ effectiveness, with unique effectiveness values for each technology and for each 
technology class.  We use this methodology in these four cases because the effectiveness of these 
technologies varies little with combinations of other technologies.  Also, applying these 
technologies directly in the CAFE Model significantly reduces the required number of 
Autonomie simulations. 

3.7.1 Electric Power Steering 

Electric power steering reduces fuel consumption by reducing load on the engine.  Specifically, it 
reduces or eliminates the parasitic losses associated with engine-driven power steering pumps, 
which pump hydraulic fluid continuously through the steering actuation system even when no 
steering input is present.  By selectively powering the electric assist only when steering input is 
applied, the power consumption of the system is reduced in comparison to the traditional 
“always-on” hydraulic steering system.  Power steering may be electrified on light duty vehicles 
with standard 12V electrical systems and is also an enabler for vehicle electrification because it 
provides power steering when the engine is off (or when no combustion engine is present). 

Power steering systems can be electrified in two ways.  Manufacturers may choose to eliminate 
the hydraulic portion of the steering system and provide electric-only power steering (EPS) 
driven by an independent electric motor, or they may choose to move the hydraulic pump from a 
belt-driven configuration to a stand-alone electrically driven hydraulic pump.  The latter system 
is commonly referred to as electro-hydraulic power steering (EHPS).  As discussed in the past 
rulemakings, manufacturers have informed us that full EPS systems are being developed for all 
types of light-duty vehicles, including large trucks. 

3.7.1.1 Electric Power Steering Technology Fleet Assignments 

Like low drag brakes, EPS can be difficult to observe and assign to the analysis fleet, however, it 
is found more frequently in publicly available information than low drag brakes.  Based on 
comments received during the 2020 rulemaking, we increased EPS application rate to nearly 90 
percent for the 2020 final rule.  We are maintaining this level of EPS fleet penetration for this 
analysis, recognizing that some specialized, unique vehicle types or configurations still 
implement hydraulically actuated power steering systems. 

3.7.1.2 Electric Power Steering Technology Adoption Features 

When not already applied, we believe that manufacturers would primarily apply EPS during a 
redesign when implementing extensive architecture revisions.  In addition, we believe there are 
much longer implementation lead times that involve extensive validation efforts based on the 
close relationship of steering to vehicle control and safety.  However, the OEMs may still be 
able, and choose, to apply EPS at a vehicle refresh as its implementation may be tied to strategic 
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powertrain-related upgrades that include the elimination of the engine driven power steering 
pump.  

3.7.1.3 Electric Power Steering Technology Effectiveness Values 

The effectiveness of both EPS and EHPS is derived from the decoupling of the pump from the 
crankshaft and is practically the same for both.  Thus, we use a single effectiveness value for 
both EPS and EHPS.  As indicated in the following table, the effectiveness of EPS and EHPS 
varies based vehicle technology class.  This variance is a direct result of vehicle size and the 
amount of energy the vehicle requires to turn the two front wheels about their vertical axis.  
More simply put, vehicles that weigh more require more energy and typically have larger tire 
contact patches.   

Table 3-130 – Fuel Consumption Improvement Values for Electric Power Steering 

Tech Class EPS 
SmallCar 

1.50% 
SmallCarPerf 

MedCar 
1.30% 

MedCarPerf 
SmallSUV 

1.20% 
SmallSUVPerf 

MedSUV 
1.00% 

MedSUVPerf 
Pickup 

0.80% 
PickupHT 

3.7.1.4 Electric Power Steering Technology Costs 

The cost estimates for EPS relies on previous work published as part of the rulemaking 
processes, for the 2012 rule and the Draft TAR.  The cost values are the same values that were 
used for the Draft TAR and 2020 final rule, updated to 2018 dollars.  Learning rates for these 
technologies are shown in Chapter 2.6.4. 

Table 3-131 below shows the absolute costs for EPS for select model years.  The Technologies 
file shows the costs for all model years. 

Table 3-131 – Absolute Costs for Electric Power Steering, Including Learning Effects and Retail Price 
Equivalent (2018$) 

Technology 2017 2021 2025 2029 
EPS $133.23 $124.42 $117.28 $111.97 
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3.7.2 Improved Accessories (IACC) 

Engine accessories typically include the alternator, coolant pump, cooling fan, and oil pump, and 
are traditionally driven mechanically via belts, gears, or directly by other rotating engine 
components such as camshafts or the crankshaft.  These can be replaced with improved 
accessories (IACC), which may include high efficiency alternators, electrically driven (i.e., on-
demand) coolant pumps, electric cooling fans, variable geometry oil pumps, and a mild 
regeneration strategy.538  Replacing lower-efficiency and/or mechanically-driven components 
with these improved accessories results in a reduction in fuel consumption, as the improved 
accessories can conserve energy by being turned on/off “on demand” in some cases, driven at 
partial load as needed, or by operating more efficiently. 

For example, electric coolant pumps and electric powertrain cooling fans provide better control 
of engine cooling.  Flow from an electric coolant pump can be varied, and the cooling fan can be 
shut off during engine warm-up or cold ambient temperature conditions, reducing warm-up time, 
fuel enrichment requirements, and, ultimately, reducing parasitic losses. 

3.7.2.1 Improved Accessories Technology Fleet Assignments 

IACC technology is difficult to observe and therefore there is uncertainty in assigning it to the 
analysis fleet.  As in the past, we rely on industry-provided information and comments to assess 
the level of IACC technology applied in the fleet.  We believe there continues to be opportunity 
for further implementation of IACC.  The MY 2020 analysis fleet has an IACC fleet penetration 
of approximately eight percent compared to the six percent value in the MY 2017 analysis fleet 
used for the 2020 final rule analysis. 

3.7.2.2 Improved Accessories Technology Adoption Features 

We believe that improved accessories may be incorporated in coordination with powertrain 
related changes occurring at either a vehicle refresh or vehicle redesign.  This coordination with 
powertrain changes enables related design and tooling changes to be implemented and systems 
development, functionality, and durability testing to be conducted in a single product change 
program to efficiently manage resources and costs.   

3.7.2.3 Improved Accessories Technology Effectiveness Values 

This analysis carries forward work on the effectiveness of IACC systems conducted in the Draft 
TAR and EPA Proposed Determination.  This work involved gathering information by 
monitoring press reports, holding meetings with suppliers and OEMs, and attending industry 
technical conferences.  The resulting effectiveness estimates used in this analysis are shown 
below.  As indicated in the table, the effectiveness of IACC is simulated with differing values 
based on the vehicle technology class it is being applied to.  This variance, like EPS, is a direct 
result of vehicle size and the amount of energy required perform the work necessary for the 
vehicle to operate as expected.  This variance is related to the amount energy generated by the 

 
538 IACC in this analysis excludes other electrical accessories such as electric oil pumps and electrically driven air 
conditioner compressors. 
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alternator, the size of the coolant pump to the cool the necessary systems, the size of the cooling 
fan required, among other characteristics and it directed related to a vehicle size and mass. 

Table 3-132 – Fuel Consumption Improvement Values for Improved Accessories 

Tech Class IACC 
SmallCar 

1.85% 
SmallCarPerf 

MedCar 
2.36% 

MedCarPerf 
SmallSUV 

1.74% 
SmallSUVPerf 

MedSUV 
2.34% 

MedSUVPerf 
Pickup 

2.15% 
PickupHT 

3.7.2.4 Improved Accessories Technology Costs 

The cost estimates for IACC rely on previous work published as part of the rulemaking 
processes, for the 2012 rule and the 2016 Draft TAR.  The cost estimates for IACC for this 
analysis are the same values that were used for the 2016 Draft TAR and 2020 final rule, updated 
to 2018 dollars.  Learning rates for these technologies can be seen in Chapter 2.6.4. 

Table 3-133 shows the absolute costs for IACC for select model years.  The Technologies file 
shows costs for all model years. 

Table 3-133 – Absolute Costs for Improved Accessories, Including Learning Effects and Retail Price 
Equivalent (2018$) 

Technology 2017 2021 2025 2029 
IACC $196.39 $163.40 $146.67 $136.96 

3.7.3 Low Drag Brakes (LDB) 

Since 2009, for the MY 2011 CAFE rule, we have defined low drag brakes (LDB) as brakes that 
reduce the sliding friction of disc brake pads on rotors when the brakes are not engaged because 
the brake pads are pulled away from the rotating disc either by mechanical or electric 
methods.539  We estimated the effectiveness of LDB technology to be a range from 0.5-1.0 
percent, based on CBI data.  We applied a learning curve to the estimated cost for LDB, but 
noted that the technology was considered high volume, mature, and stable.  We explained that 

 
539 Final Regulatory Impact Analysis, Corporate Average Fuel Economy for MY 2011 Passenger Cars and Light 
Trucks (March 2009), at p. V-135.  
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confidential manufacturer comments in response to the NPRM for MY 2011 indicated that most 
passenger cars have already adopted LDB technology, but ladder frame trucks have not.   

We and EPA continued to use the same definition for LDB in the MY 2012-2016 rule, with an 
estimated effectiveness of up to 1 percent based on CBI data.540  We only allowed LDB 
technology to be applied to large car, minivan, medium and large truck, and SUV classes 
because the agency determined the technology was already largely utilized in most other 
subclasses.  The 2011 NAS committee also utilized the agencies’ definition for LDB and added 
that most new vehicles have low-drag brakes.541  The committee confirmed that the impact over 
conventional brakes may be about a 1 percent reduction of fuel consumption. 

For the MY 2017-2025 rule, however, the agencies updated the effectiveness estimate for LDB 
to 0.8 percent based on a 2011 Ricardo study and updated lumped-parameter model.542  The 
agencies considered LDB technology to be off the learning curve (i.e., the DMC does not change 
year-over-year).  The 2015 NAS report continued to use the agencies’ definition for LDB and 
commented that the 0.8 percent effectiveness estimate is a reasonable estimate.543  The 2015 
NAS committee did not opine on the application of LDB technology in the fleet.  The agencies 
used the same definition, cost, and effectiveness estimates for LDB in the Draft TAR, but also 
noted the existence of zero drag brake systems which use electrical actuators that allow brake 
pads to move farther away from the rotor.544  However, the agencies did not include zero drag 
brake technology in either compliance simulation.  EPA continued with this approach in its first 
2017 Proposed Determination that the standards through 2025 were appropriate.545 

In the 2020 final rule, the agencies applied LDB sparingly in the MY 2017 analysis fleet using 
the same cost and effectiveness estimates from the 2011 Ricardo study, with approximately less 
than 15 percent of vehicles being assigned the technology.  In addition, we noted the existence of 
zero drag brakes in production for some BEVs, similar to the summary in the Draft TAR, but did 
not opine on the existence of zero drag brakes in the fleet.  Some stakeholders commented to the 
2020 rule that other vehicle technologies, including LDB, were actually overapplied in the 
analysis fleet. 

For this action, we considered the conflicting statements that LDB were both universally applied 
in new vehicles and that the new vehicle fleet still had space to improve LDB technology.  We 
determined that LDB technology as previously defined going back to the MY 2011 rule was 
universally applied in the MY 2020 fleet.  However, we determined that zero drag brakes, the 
next level of brake technology, was sparingly applied in the MY 2020 analysis fleet.  Currently, 
we do not believe that zero drag brake systems will be available for wide scale application in the 
rulemaking timeframe and did not include it as a technology for this analysis.  We will consider 

 
540 Final Regulatory Impact Analysis, Corporate Average Fuel Economy for MY 2012 - MY 2016 Passenger Cars 
and Light Trucks (March 2010), at p. 249. 
541 2011 NAS report, at p. 104. 
542 Joint Technical Support Document: Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas 
Emission Standards and Corporate Average Fuel Economy Standards (August 2012), at 3-211. 
543 2015 NAS report, at p. 231. 
544 Draft TAR at pp. 5-207.   
545 EPA Proposed Determination TSD, at pp. 2–422. 
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how to define a new level of low drag brake technology that either encompasses the definition of 
zero drag brakes or similar technology in future rulemakings. 

3.7.4 Secondary Axle Disconnect (SAX) 

All-wheel drive (AWD) and four-wheel drive (4WD) vehicles provide improved traction by 
delivering torque to the front and rear axles, rather than just one axle.  When a second axle is 
rotating, it tends to consume more energy because of additional losses related to lubricant 
churning, seal friction, bearing friction, and gear train inefficiencies.546  Some of these losses 
may be reduced by providing a SAX function that disconnects one of the axles when driving 
conditions do not call for torque to be delivered to both. 

The terms AWD and 4WD are often used interchangeably, although they have also developed a 
colloquial distinction, and are two separate systems.  The term AWD has come to be associated 
with light-duty passenger vehicles providing variable operation of one or both axles on ordinary 
roads.  The term 4WD is often associated with larger truck-based vehicle platforms providing a 
locked driveline configuration and/or a low range gearing meant primarily for off-road use. 

Many 4WD vehicles provide for a single-axle (or two-wheel) drive mode that may be manually 
selected by the user.  In this mode, a primary axle (usually the rear axle) will be powered, while 
the other axle (known as the secondary axle) is not.  However, even though the secondary axle 
and associated driveline components are not receiving engine power, they are still connected to 
the non-driven wheels and will rotate when the vehicle is in motion.  This unnecessary rotation 
consumes energy,547 and leads to increased fuel consumption that could be avoided if the 
secondary axle components were completely disconnected and not rotating. 

Light-duty AWD systems are often designed to divide variably torque between the front and rear 
axles in normal driving to optimize traction and handling in response to driving conditions.  
However, even when the secondary axle is not necessary for enhanced traction or handling, in 
traditional AWD systems it typically remains engaged with the driveline and continues to 
generate losses that could be avoided if the axle was instead disconnected.  The SAX technology 
observed in the marketplace disengages one axle (typically the rear axle) for 2WD operation but 
detects changes in driving conditions and automatically engages AWD mode when it is 
necessary.  The operation in 2WD can result in reduced fuel consumption.  For example, 
Chrysler has estimated the SAX feature in the Jeep Cherokee reduces friction and drag 
attributable to the secondary axle by 80 percent when in disconnect mode.548 

3.7.4.1 Secondary Axle Disconnect Technology Fleet Assignments 

Observing SAX technology on actual vehicles is very difficult.  Manufacturers do not typically 
identify the technology on technical specifications or other widely available information.  We 
use an approach consistent with previous rulemaking in assigning this technology.  Specifically, 
we assign SAX technology based on a combination of publicly available information and 

 
546 Pilot Systems, “AWD Component Analysis,” Project Report, performed for Transport Canada, Contract T8080- 
150132, May 31, 2016. 
547 Any time a drivetrain component spins it consumes some energy, primarily to overcome frictional forces. 
548 Brooke, L. “Systems Engineering a new 4x4 benchmark,” SAE Automotive Engineering, June 2, 2014. 
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previously submitted confidential information.  In the analysis fleet, we determine that 38 
percent of the vehicles with AWD or 4WD have SAX technology.  We skipped out SAX for all 
vehicles in the analysis fleet with front-wheel-drive (FWD) or rear-wheel-drive (RWD), since 
SAX technology is a way to emulate FWD or RWD in AWD and 4WD vehicles, respectively.  
The model cannot apply SAX technology to FWD or RWD vehicles because they do not have a 
secondary driven axle to disconnect. 

3.7.4.2 Secondary Axle Disconnect Technology Adoption Features 

The model can apply SAX technology to any vehicle in the analysis fleet, including those with a 
HEV or BEV powertrain that have AWD or 4WD.  It does not supersede any technology or 
result in any other technology being excluded for future implementation for that vehicle.  SAX 
technology can be applied during any refresh or redesign.   

3.7.4.3 Secondary Axle Disconnect Technology Effectiveness Values 

This analysis carries forward work on the effectiveness of SAX systems conducted in the Draft 
TAR and EPA Proposed Determination.549  This work involved gathering information by 
monitoring press reports, holding meetings with suppliers and OEMs, and attending industry 
technical conferences.  We do not simulate SAX effectiveness in the Autonomie modeling 
because, similar to LDB, IACC, and EFR, the fuel economy benefits from the technology are not 
fully captured on the two-cycle test.  The SAX effectiveness values, for the most part, have been 
accepted as plausible based on the rulemaking record and absence of contrary comments.  As 
such, we have prioritized its extensive Autonomie vehicle simulation work toward other 
technologies that are emerging or considered more critical for total system effectiveness.  The 
resulting effectiveness estimates used in this analysis are shown below. 

Table 3-134 – Fuel Consumption Improvement Values for Secondary Axle Disconnect 

Tech Class SAX 
SmallCar 

1.40% 
SmallCarPerf 

MedCar 
1.40% 

MedCarPerf 
SmallSUV 

1.40% 
SmallSUVPerf 

MedSUV 
1.30% 

MedSUVPerf 
Pickup 

1.60% 
PickupHT 

 
549 Draft TAR, at pp, 5–412; Proposed Determination TSD, at pp. 2–422. 
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3.7.4.4 Secondary Axle Disconnect Technology Costs 

The cost estimates for SAX rely on previous work published as part of the rulemaking process, 
going back to the 2002 NAS report,550 and carried through to the Draft TAR 208 NPRM, and 
2020 final rule.  The cost values were updated to 2018 dollars for this analysis.  The learning 
rates for these technologies can be seen in Chapter 2.6.4. 

Table 3-135 shows the absolute costs for SAX for select model years.   

Table 3-135 – Absolute Costs for Secondary Axle Disconnect, including Learning Effects and Retail Price 
Equivalent (2018$) 

Technology 2017 2021 2025 2029 
SAX $97.41 $86.69 $80.34 $75.98 

3.8 Simulating Off-Cycle and AC Efficiency Technologies  

Off-cycle and AC efficiency technologies can provide fuel economy benefits in real-world 
vehicle operation, but the traditional 2-cycle test procedures used to measure fuel economy 
cannot fully capture those benefits.551  Off-cycle technologies include technologies like high 
efficiency alternators and high efficiency exterior lighting.552  AC efficiency technologies are 
technologies that reduce the operation of or the loads on the compressor, which pressurizes AC 
refrigerant.  The less the compressor operates or the more efficiently it operates, the less load the 
compressor places on the engine, resulting in better fuel efficiency. 

Vehicle manufacturers have the option to generate credits for off-cycle technologies and 
improved AC systems under the EPA’s CO2 program and receive a fuel consumption 
improvement value (FCIV) equal to the value of the benefit not captured on the 2-cycle test 
under NHTSA’s CAFE program.  The FCIV is not a “credit” in the NHTSA CAFE program,553 
but the FCIVs increase the reported fuel economy of a manufacturer’s fleet, which is used to 
determine compliance.  EPA applies FCIVs during determination of a fleet’s final average fuel 
economy reported to NHTSA.554  We only calculate and apply FCIVs at a fleet level for a 
manufacturer, and the improvement is based on the volume of the manufacturer’s fleet that 
contain qualifying technologies.555 

 
550 National Research Council 2002. Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) 
Standards. Washington, DC: The National Academies Press. https://doi.org/10.17226/10172.  (Accessed: February 
15, 2022). 
551 See 49 U.S.C 32904(c) (“The Administrator shall measure fuel economy for each model and calculate average 
fuel economy for a manufacturer under testing and calculation procedures prescribed by the Administrator.  the 
Administrator shall use the same procedures for passenger automobiles the Administrator used for model year 1975 
(weighted 55 percent urban cycle and 45 percent highway cycle), or procedures that give comparable results.”). 
552 40 CFR 86.1869-12(b) - Credit available for certain off-cycle technologies. 
553 Unlike, for example, the statutory overcompliance credits prescribed in 49 U.S.C. 32903. 
554 49 U.S.C. 32904(c)-(e).  EPCA granted EPA authority to establish fuel economy testing and calculation 
procedures.  See preamble Section VII for more information. 
555 40 CFR 600.510-12(c). 
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There are three pathways that manufacturers can use to determine the value of AC efficiency and 
off-cycle adjustments.  First, manufacturers can use a predetermined list or “menu” of g/mi 
values that EPA established for specific off-cycle technologies.556  Second, manufacturers can 
use 5-cycle testing to demonstrate off-cycle CO2 benefit;557 the additional tests allow emissions 
benefits to be demonstrated over some elements of real-world driving not captured by the 2-cycle 
compliance tests, including high speeds, rapid accelerations, hot temperatures, and cold 
temperatures.  Third, manufacturers can seek EPA approval, through a notice and comment 
process, to use an alternative methodology other than the menu or 5-cycle methodology for 
determining the off-cycle technology improvement values.558  For further discussion of the AC 
and off-cycle compliance and application process, see Section VII of the preamble. 

We and EPA have been collecting data on the application of these technologies since 
implementing the AC and off-cycle programs.559,560  Most manufacturers are applying AC 
efficiency and off-cycle technologies; in MY 2020, 17 manufacturers employed AC efficiency 
technologies and 20 manufacturers employed off-cycle technologies, though the level of 
deployment varies by manufacturer.561 

Manufacturers have only recently begun including detailed information on off-cycle and AC 
efficiency technologies equipped on vehicles in compliance reporting data.  For today’s analysis, 
though, such information was not sufficiently complete to support a detailed representation of the 
application of off-cycle technology to specific vehicle model/configurations in the MY 2020 
fleet.  To account for the AC and off-cycle technologies equipped on vehicles and the potential 
that manufacturers will apply additional AC and off-cycle technologies in the rulemaking 
timeframe, we specify model inputs for AC efficiency and off-cycle fuel consumption 
improvement values in grams/mile for each manufacturer’s fleet in each model year.  We 
estimate future values based on an expectation that manufacturers already relying heavily on 
these adjustments would continue do so, and that other manufacturers would, over time, also 
approach the limits on adjustments allowed for such improvements. 

The next sections discuss how the CAFE Model simulates the effectiveness and cost for AC 
efficiency and off-cycle technology adjustments.  

 
556 See 40 CFR 86.1869-12(b).  The TSD for the 2012 final rule for MYs 2017 and beyond provides technology 
examples and guidance with respect to the potential pathways to achieve the desired physical impact of a specific 
off-cycle technology from the menu and provides the foundation for the analysis justifying the credits provided by 
the menu.  The expectation is that manufacturers will use the information in the TSD to design and implement off-
cycle technologies that meet or exceed those expectations in order to achieve the real-world benefits of off-cycle 
technologies from the menu. 
557 See 40 CFR 86.1869-12(c).  EPA proposed a correction for the 5-cycle pathway in a separate technical 
amendment rulemaking.  See 83 Fed. Reg. 49344 (Oct. 1, 2019).  EPA is not approving credits based on the 5-cycle 
pathway pending the finalization of the technical amendments rule. 
558 See 40 CFR 86.1869-12(d). 
559 See 77 Fed. Reg. 62832, 62839 (Oct. 15, 2012).  EPA introduced AC and off-cycle technology credits for the 
CO2 program in the MYs 2012-2016 rule and revised the program in the MY 2017-2025 rule and NHTSA adopted 
equivalent provisions for MYs 2017 and later in the MY 2017-2025 rule. 
560 Vehicle and Engine Certification. Compliance Information for Light-Duty Gas (GHG) Standards, 
https://www.epa.gov/ve-certification/compliance-information-light-duty-greenhouse-gas-ghg-standards.  (Accessed: 
February 15, 2022).  
561 2021 Automotive Trends Report., at pp. 90 and 92.  
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3.8.1 AC and Off-Cycle Effectiveness Modeling in the CAFE Model 

In this analysis, the CAFE Model applies AC and off-cycle flexibilities to manufactures’ CAFE 
regulatory fleet performance in a similar way to the regulation.562  In the analysis and after the 
first MY, AC efficiency and off-cycle FCIVs apply to each manufacturer’s regulatory fleet after 
the CAFE Model applies conventional technologies for a given standard.  That is, conventional 
technologies are applied to each manufacturers’ vehicles in each MY to assess the 2-cycle sales 
weighted harmonic average CAFE rating.  Then, the CAFE Model assesses the CAFE rating to 
use for a manufacturer’s compliance value after applying the AC efficiency and off-cycle FCIVs 
designated in the Market Data file.  This assessment of adoption of conventional technology and 
the AC efficiency and off-cycle technology occurs on a year-by-year basis in the CAFE Model.  
The CAFE Model attempts to apply technologies and flexibilities in a way that both minimizes 
cost and allows the manufacturer to meet their standards without over or under complying.   

To determine how manufacturers might adopt AC efficiency and off-cycle technologies in the 
rulemaking timeframe, we use data from EPA’s 2021 Trends Report and CBI compliance 
material from manufacturers.563,564  We use manufacturer’s MY 2020 AC efficiency and off-
cycle FCIVs as a starting point, and then extrapolate values in to each MY until MY 2026, for 
light trucks to the regulatory cap, for each manufacturer’s fleets by regulatory class.  For this 
analysis, we cap off-cycle values to 10 g/mi from MY2020 to MY2022 to align with EPA’s 
program.  Starting in MY2023, we allow manufacturers to reach the 15 g/mi cap. 

To determine the rate at which to extrapolate the addition of AC and off-cycle technology 
adoption for each manufacturer, we use historical AC and off-cycle technology applications, 
each manufacturer’s fleet composition (i.e., breakdown between passenger cars (PCs) and light 
trucks (LTs)), availability of AC and off-cycle technologies that manufacturers could still use, 
and CBI compliance data.  Different manufacturers show different levels of historical AC 
efficiency and off-cycle technology adoption; therefore, different manufacturers hit the 
regulatory caps for AC efficiency technology for both their PC and LT fleets, and different 
manufacturers hit caps for off-cycle technologies in the LT regulatory class.  We did not 
extrapolate off-cycle technology adoption for PCs to the regulatory cap for a few reasons.  First, 
past EPA Trends Reports show that many manufacturers did not adopt off-cycle technology to 
their passenger car fleets.  Next, manufacturers limited PC offerings in MY 2020 as compared to 
historical trends.  Last, CBI compliance data available to us indicate a lower adoption of menu 
item off-cycle technologies to PCs compared to LTs.  We accordingly limit the application of 
off-cycle FCIVs to 10 g/mi for PCs but allowed LTs to apply 15 g/mi of off-cycle FCIVs starting 
in MY 2023.  The inputs for AC efficiency technologies are set to 5 g/mi and 7.2 g/mi for PCs 
and LTs, respectively.  We allow AC efficiency technologies to reach the regulatory caps by MY 
2024, which is the first year of standards assessed in this analysis.  

 
562 49 CFR 531.6 and 49 CFR 533.6 Measurement and Calculation procedures.  
563 Vehicle and Engine Certification. Compliance Information for Light-Duty Gas (GHG) Standards, 
https://www.epa.gov/ve-certification/compliance-information-light-duty-greenhouse-gas-ghg-standards.  (Accessed: 
February 15, 2022). 
564 49 U.S.C. 32907. 
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We apply FCIVs in this way because the AC and off-cycle technologies are generally more cost-
effective than other technologies.  The details of this assessment (and the calculation) are further 
discussed in the CAFE Model Documentation.565 

Table 3-136 and Table 3-137 below shows the summary of adjustments for AC efficiency and 
off-cycle FCIVs used for this analysis.   

Table 3-136 – AC Efficiency and Off-Cycle Adjustments Used for Passenger Car Regulatory Class (g/mi) 

Manufacturer Adjustment 
Type 

Passenger Car MY 
2020 2021 2022 2023 2024 2025 2026 

BMW 

AC 
Efficiency 4.9 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 13.6 13.8 13.8 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 7.6 7.6 8.3 9.0 10.0 10.0 10.0 

Daimler 

AC 
Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 6.2 7.2 8.3 9.4 10.5 11.6 12.7 
Off-Cycle 

Credits 1.7 1.2 2.0 2.5 3.0 4.0 5.0 

FCA 

AC 
Efficiency 4.6 4.7 4.9 5.0 5.0 5.0 5.0 

AC Leakage 13.9 13.4 13.6 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 5.7 5.7 6.0 6.5 7.0 7.5 7.5 

Ford 

AC 
Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 13.2 13.2 13.4 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 7.6 8.0 9.0 10.0 10.0 10.0 10.0 

GM 

AC 
Efficiency 4.0 4.3 4.8 5.0 5.0 5.0 5.0 

AC Leakage 12.1 12.7 13.0 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 7.2 7.9 8.5 9.0 9.5 10.0 10.0 

Honda 

AC 
Efficiency 3.8 3.8 4.0 4.5 5.0 5.0 5.0 

AC Leakage 13.1 13.5 13.8 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 4.8 5.7 6.0 6.5 7.0 10.0 10.0 

Hyundai Kia-
H 

AC 
Efficiency 3.3 3.3 4.0 4.5 5.0 5.0 5.0 

AC Leakage 10.0 11.0 12.0 12.5 13.0 13.8 13.8 
Off-Cycle 

Credits 4.6 4.6 4.8 5.0 5.0 5.5 6.0 

 
565 CAFE Model Documentation, S5. 
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Manufacturer Adjustment 
Type 

Passenger Car MY 
2020 2021 2022 2023 2024 2025 2026 

Hyundai Kia-
K 

AC 
Efficiency 3.7 3.7 4.0 4.5 5.0 5.0 5.0 

AC Leakage 13.3 13.5 13.8 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 4.6 4.6 4.8 5.0 5.0 4.5 5.0 

JLR 

AC 
Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 13.8 13.8 13.8 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 6.9 6.9 7.0 7.0 8.0 8.0 8.0 

Mazda 

AC 
Efficiency 1.2 2.0 3.0 4.0 5.0 5.0 5.0 

AC Leakage 1.8 3.8 5.0 7.0 9.0 11.0 12.0 
Off-Cycle 

Credits 2.9 3.0 4.0 4.5 5.0 5.5 6.0 

Mitsubishi 

AC 
Efficiency 4.4 4.4 4.7 5.0 5.0 5.0 5.0 

AC Leakage 13.8 13.8 13.8 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 2.5 2.5 2.5 2.5 2.7 3.0 3.2 

Nissan 

AC 
Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 9.7 9.7 9.8 11.1 12.4 13.8 13.8 
Off-Cycle 

Credits 2.9 3.2 3.5 4.0 4.5 5.5 6.0 

Subaru 

AC 
Efficiency 4.0 4.2 4.6 5.0 5.0 5.0 5.0 

AC Leakage 7.6 8.4 9.0 11.0 13.0 13.8 13.8 
Off-Cycle 

Credits 2.6 3.3 3.6 4.1 4.4 5.6 6.2 

Tesla 

AC 
Efficiency 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 13.6 12.0 13.5 13.5 13.5 13.8 13.8 
Off-Cycle 

Credits 4.7 5.0 5.0 5.0 5.0 5.0 5.0 

Toyota 

AC 
Efficiency 4.4 5.0 5.0 5.0 5.0 5.0 5.0 

AC Leakage 9.6 10.3 12.0 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 5.1 5.6 6.0 7.0 8.5 9.0 10.0 

Volvo 

AC 
Efficiency 4.2 4.2 4.2 4.5 5.0 5.0 5.0 

AC Leakage 13.8 13.8 13.8 13.8 13.5 13.8 13.8 
Off-Cycle 

Credits 4.8 4.6 4.6 5.0 6.0 6.5 7.0 
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Manufacturer Adjustment 
Type 

Passenger Car MY 
2020 2021 2022 2023 2024 2025 2026 

VWA 

AC 
Efficiency 3.9 3.9 4.5 5.0 5.0 5.0 5.0 

AC Leakage 13.6 13.6 13.8 13.8 13.8 13.8 13.8 
Off-Cycle 

Credits 5.8 5.8 6.0 6.5 7.0 7.5 8.0 

Table 3-137 – AC Efficiency and Off-Cycle Adjustments Used for Light Truck Regulatory Class (g/mi) 

Manufacturer Adjustment Type 
Light Truck MY 

2020 2021 2022 2023 2024 2025 2026 
BMW AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

 AC Leakage 17.0 17.2 17.2 17.2 17.2 17.2 17.2 
Off-Cycle Credits 10.0 10.0 10.0 13.5 14.0 15.0 15.0 

Daimler 
AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 
AC Leakage 8.0 8.5 10.0 11.5 13.0 14.5 16.0 

Off-Cycle Credits 3.0 3.0 3.0 3.5 4.0 5.5 6.5 

FCA 
AC Efficiency 6.5 6.5 7.0 7.2 7.2 7.2 7.2 
AC Leakage 17.0 17.0 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.0 10.0 10.0 15.0 15.0 15.0 15.0 

Ford 
AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 
AC Leakage 16.9 16.9 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.0 10.0 10.0 14.0 15.0 15.0 15.0 

GM 
AC Efficiency 6.7 7.0 7.1 7.2 7.2 7.2 7.2 
AC Leakage 16.7 16.8 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.0 10.0 10.0 13.0 14.0 15.0 15.0 

Honda 
AC Efficiency 6.2 6.5 7.2 7.2 7.2 7.2 7.2 
AC Leakage 16.9 17.2 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.0 10.0 10.0 14.0 15.0 15.0 15.0 

Hyundai Kia-H 
AC Efficiency 5.0 5.0 5.0 5.0 5.5 6.0 7.0 
AC Leakage 3.3 3.9 5.0 6.0 7.0 8.0 10.0 

Off-Cycle Credits 8.9 8.9 9.0 9.0 9.0 10.0 11.0 

Hyundai Kia-K 
AC Efficiency 4.3 5.4 6.0 6.5 7.0 7.2 7.2 
AC Leakage 15.2 16.0 17.0 17.2 17.2 17.2 17.2 

Off-Cycle Credits 8.8 8.8 9.0 9.9 9.0 9.0 10.0 

JLR 
AC Efficiency 7.2 7.2 7.2 7.2 7.2 7.2 7.2 
AC Leakage 17.2 17.2 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.0 10.0 10.0 12.0 13.0 14.0 15.0 

Mazda 
AC Efficiency - 2.0 3.0 4.0 5.0 6.0 7.0 
AC Leakage 5.9 6.0 7.2 8.4 9.6 10.8 11.0 

Off-Cycle Credits 6.8 6.8 7.0 8.0 9.0 10.0 11.0 
Mitsubishi AC Efficiency 7.0 7.0 7.0 7.2 7.2 7.2 7.2 
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Manufacturer Adjustment Type 
Light Truck MY 

2020 2021 2022 2023 2024 2025 2026 
AC Leakage 15.0 15.0 15.0 15.2 16.5 17.2 17.2 

Off-Cycle Credits 5.2 5.2 5.2 5.2 5.2 5.2 5.2 

Nissan 
AC Efficiency 4.9 5.8 6.5 7.2 7.2 7.2 7.2 
AC Leakage 6.0 6.1 7.1 9.1 11.1 13.1 15.1 

Off-Cycle Credits 6.1 7.1 8.0 8.5 9.0 10.0 11.0 

Subaru 
AC Efficiency 6.4 6.4 6.8 7.2 7.2 7.2 7.2 
AC Leakage 13.6 13.6 13.6 13.6 14.7 16.1 17.2 

Off-Cycle Credits 8.5 8.5 8.5 9.0 10.0 11.0 12.0 

Tesla 
AC Efficiency 5.0 5.0 5.0 7.2 7.2 7.2 7.2 
AC Leakage 13.7 14.0 15.0 16.0 17.0 17.2 17.2 

Off-Cycle Credits 4.8 5.0 6.0 7.0 8.0 9.0 9.0 

Toyota 
AC Efficiency 6.1 7.1 7.2 7.2 7.2 7.2 7.2 
AC Leakage 10.1 10.1 11.2 12.4 13.6 14.8 16.0 

Off-Cycle Credits 8.4 9.5 10.0 10.0 12.0 13.0 15.0 

Volvo 
AC Efficiency 6.1 6.4 7.0 7.2 7.2 7.2 7.2 
AC Leakage 17.2 17.2 17.2 17.2 17.2 17.2 17.2 

Off-Cycle Credits 8.3 9.0 9.3 10.0 11.0 12.0 13.0 

VWA 
AC Efficiency 6.2 6.2 6.6 7.2 7.2 7.2 7.2 
AC Leakage 17.6 16.0 16.5 17.2 17.2 17.2 17.2 

Off-Cycle Credits 10.0 10.0 10.0 13.5 14.0 14.5 15.0 

3.8.2 AC Efficiency and Off-Cycle Costs 

For this analysis, the model applies AC and off-cycle technologies independent of the decision 
trees using the extrapolated values shown above, so it is necessary to account for the costs of 
those technologies independently.  Table 3-138 shows the costs used for AC and off-cycle 
FCIVs in this analysis.  The costs are shown in dollars per gram of CO2 per mile ($ per g/mi).  
The AC efficiency and off-cycle technology costs are the same costs used in the EPA Proposed 
Determination and described in the EPA Proposed Determination TSD.566  

To develop these costs, we use the 2nd generic 3 gram/mile package estimated to cost $170 (in 
2015$) to apply in this analysis in $ per gram/mile.  We update the costs used in the Proposed 
Determination TSD from 2015$ to 2018$, adjust the costs for RPE, and apply a relatively flat 
learning rate. 

Similar to off-cycle technology costs, we use the cost estimates from EPA Proposed 
Determination TSD for AC efficiency technologies.567  We update these costs to 2018$ and 
adjust for RPE, and apply the same mature learning rate as off-cycle technologies.  

 
566 EPA PD TSD.  EPA-420-R-16-021.  November 2016. At 2-423 – 2-245.  
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100Q3L4.pdf.  (Accessed: February 15, 2022).  
567 Joint NHTSA and EPA 2012 TSD, Chapter 5.1.  These costs were first used in the 2012 rulemaking TSD. 
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For the purpose of cost accounting, when manufacturers adopt these off-cycle and AC efficiency 
technologies in given year, the added costs are not the direct product of the FCIV value 
multiplied by the cost.  Instead, the CAFE Model only adds the cost of the difference between 
the MY 2020 baseline FCIVs and the analysis year that runs from MY 2021 to MY 2050. 

Table 3-138 – AC and Off-Cycle FCIV Costs for this Analysis in Dollars per Gram of CO2 per Mile (2018$) 

Reg Class Cost Type 2020 2021 2022 2023 2024 2025 2026 

Passenger Car 
AC Efficiency Costs 4.30 4.22 4.13 4.05 3.97 3.89 3.81 
AC Leakage Costs 10.76 10.54 10.33 10.12 9.92 9.72 9.53 
Off-Cycle Costs 83.79 82.21 81.16 79.58 78.52 77.47 76.31 

Light Truck 
AC Efficiency Costs 4.30 4.22 4.13 4.05 3.97 3.89 3.81 
AC Leakage Costs 10.76 10.54 10.33 10.12 9.92 9.72 9.53 
Off-Cycle Costs 83.79 82.21 81.16 79.58 78.52 77.47 76.31 

4 Consumer Response to Manufacturer Compliance Strategies 

4.1 Macroeconomic Assumptions that Affect and Describe Consumer Behavior 

The comprehensive economic analysis of CAFE standards included in this rule requires a 
detailed and explicit explanation of the macroeconomic context in which regulatory alternatives 
are evaluated.  NHTSA continues to rely on projections of future fuel prices to evaluate 
manufacturers’ use of fuel-saving technologies, the resulting changes in fuel consumption, and 
various other benefits.  Furthermore, the analysis includes modules projecting future aggregate 
travel demand (for light-duty vehicles), sales of new cars and light trucks, and the retirement of 
used vehicles under each regulatory alternative.  Constructing these forecasts requires explicit 
projections of macroeconomic variables, including real U.S. GDP, consumer confidence, U.S. 
population, and real disposable personal income. 

4.1.1 Gross Domestic Product and Other Macroeconomic Assumptions 

The analysis employs forecasts of future fuel prices developed by NHTSA using the U.S. Energy 
Information Administration’s (EIA’s) National Energy Model System (NEMS).  An agency 
within the U.S. Department of Energy (DOE), EIA collects, analyzes, and disseminates 
independent and impartial energy information to promote sound policymaking, efficient markets, 
and public understanding of energy and its interaction with the economy and the environment.  
EIA uses NEMS to produce its AEO, which presents forecasts of future fuel prices, among many 
other energy-related variables.  AEO projections of energy prices and other variables are not 
intended as predictions of what will happen; rather, they are projections of the likely course of 
these variables that reflect their past relationships, specific assumptions about future 
developments in global energy markets, and the forecasting methodologies incorporated in 
NEMS.  Each AEO includes a “Reference Case” as well as a range of alternative scenarios that 
each incorporate somewhat different assumptions from those underlying the Reference Case. 

In addition to forecasts of future fuel prices, NHTSA’s CAFE Model relies on forecasts of U.S. 
population, GDP, and disposable personal income to project both new vehicle sales in future 
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model years and retirement rates for used vehicles.  The CAFE Model also uses projections of 
consumer sentiment, as measured by the University of Michigan Index of Consumer Sentiment 
(http://www.sca.isr.umich.edu/) to forecast both new vehicle sales and aggregate demand for 
light-duty VMT.  Forecasts of future values of all of these variables are developed by IHS Global 
Insight and published in March and October of each year.   

In the course of updating its VMT forecasts to reflect the evolving pandemic and forecast 
recovery, the agency determined that macroeconomic projections from the more recent IHS 
Global Insight October 2021 Macroeconomic Outlook are likely to better reflect the most recent 
expectations for near-term performance of the U.S. economy than those from IHS’ March 2021 
Outlook, which the analysis presented in the proposed rule relied upon.  Accordingly, we have 
updated the projections of U.S. population, GDP, consumer sentiment, and personal disposable 
income used in the CAFE Model to align with the more recent October 2021 forecast.   

The U.S. Energy Information Administration also relies on the IHS Global Insight forecasts of 
these and other macroeconomic variables to develop the energy demand forecasts in NEMS, so 
the fuel price forecasts NHTSA obtains from EIA are also consistent with the IHS Global Insight 
economic forecasts (with the minor difference that the fuel price forecasts reported in AEO 2021 
reflect the earlier March 2021 IHS Global Insight macroeconomic outlook).  Table 4-1 presents 
the projections to 2050 for each of these macroeconomic inputs used for this rulemaking’s 
central analysis. 
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Table 4-1 – Macroeconomic Assumptions 

Year 
GDP 

(Billion 
$2018) 

Consumer 
Sentiment 

U.S. Population 
(Millions) 

Real Disposable 
Personal Income 
(Billion $2012) 

2019 20,998  96.0 330.4 14,756 
2020 20,283  81.5 331.5 15,676 
2021 21,510  83.7 332.0 16,009 
2022 22,448  88.7 333.1 15,606 
2023 22,950  94.4 334.7 15,998 
2024 23,496  96.0 336.4 16,447 
2025 24,033  96.5 338.1 16,926 
2026 24,586  97.2 340.0 17,426 
2027 25,154  96.0 341.8 17,941 
2028 25,721  94.4 343.6 18,464 
2029 26,297  93.1 345.5 18,980 
2030 26,879  93.0 347.3 19,482 
2031 27,433  93.9 349.1 19,963 
2032 28,009  94.2 350.9 20,447 
2033 28,598  94.3 352.6 20,935 
2034 29,180  94.2 354.3 21,421 
2035 29,775  94.2 355.9 21,915 
2036 30,360  94.5 357.5 22,418 
2037 30,960  94.5 359.0 22,922 
2038 31,571  94.7 360.5 23,426 
2039 32,192  94.9 361.9 23,942 
2040 32,834  95.0 363.3 24,478 
2041 33,458  94.9 364.6 25,001 
2042 34,098  94.8 366.0 25,542 
2043 34,744  94.7 367.3 26,086 
2044 35,403  94.8 368.5 26,636 
2045 36,088  95.0 369.8 27,204 
2046 36,786  95.1 371.0 27,782 
2047 37,484  95.2 372.2 28,366 
2048 38,197  95.2 373.4 28,960 
2049 38,925  95.2 374.6 29,561 
2050 39,671  95.0 375.8 30,179 

 
As can be seen from an inspection of the forecasts in Table 4-1, 2020 was an unusual year.  The 
table shows significant decreases in both real GDP and consumer confidence between 2019 and 
2020, but an increase in real disposable personal income (RDPI).  While the former reflects the 
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reduction in employment and economic output during the early stages of the COVID-19 
pandemic and the response of consumer sentiment to those developments, the increase in 
disposable income is a consequence of large-scale economic assistance from the U.S. 
government to households in an effort to aid them in coping with the consequences of the 
pandemic.  Both real GDP and consumer confidence begin to climb again in 2021 and are 
projected to increase further during 2022 and grow steadily thereafter.  In contrast, disposable 
income is anticipated to grow again in 2021 before declining to approximately its 2020 level 
during 2022—in response to the cessation of programs designed to boost household spending 
and support unemployed workers during the pandemic—and then to increase slowly starting in 
2023.   

Thus, the economic context of 2022 reflects a nation where GDP and consumer confidence are 
struggling to return to their 2019 levels, while disposable income is falling relative to the 
previous year.  The first year simulated in this analysis is 2020, though the agency relies on 
observational data (rather than forecasts) for 2020 to the greatest extent possible.  The elements 
of the analysis that rely most heavily on the macroeconomic inputs – aggregate demand for 
VMT, new vehicle sales, and used vehicle retirement rates – all reflect the economy’s relatively 
rapid return to pre-pandemic growth rates. 

4.1.2 Fuel Prices 

Fuel prices influence a number of critical elements of the analysis.  In particular, fuel prices 
determine the degree to which consumers demand additional fuel economy in the absence of 
regulatory pressure, influence the relative attractiveness of competing technologies available to 
manufacturers to improve fuel economy (which considers the value of fuel savings to buyers of 
new cars and trucks), the amount of travel in light-duty vehicles, and the value of each gallon 
saved from higher CAFE standards.  In this analysis, NHTSA relies on the Reference Case fuel 
price forecast in AEO 2021, for all fuel types except hydrogen.568  While fuel prices are one of 
the most critical inputs to the analysis, they are also one of the least certain – particularly over 
the extended lifetimes of the vehicles affected by this rulemaking.   

NHTSA has actively engaged in CAFE rulemakings over the last decade, and in each of these 
actions, the forecasted fuel prices have borne little resemblance to observed fuel prices during 
the ensuing years.  As Figure 4-1 illustrates, fuel price forecasts have generally declined in each 
successive rulemaking analysis but have still consistently overestimated the trajectory of real 
prices over the observed period.  This is not a prediction that the current forecast will 
overestimate prices; instead, it is merely an indication that the results of CAFE analyses are 
vulnerable to uncertainty where future fuel prices are concerned.   

EIA regularly produces a retrospective analysis that evaluates the performance of fuel price 
projections over time, measuring the degree of both under and over prediction and absolute 
prediction error.569  The Congressional Budget Office recently compared the performance of 

 
568 NHTSA staff projected future prices for hydrogen based on discussions with hydrogen suppliers; the agency’s 
current modeling shows fuel cell vehicles accounting for a negligible share of the on-road fleet through 2050, so this 
input does not critically affect the analysis. 
569 The most recent EIA retrospective analysis is available at 
https://www.eia.gov/outlooks/aeo/retrospective/pdf/retrospective.pdf.  (Accessed: February 15, 2022). 
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various oil price forecasts and found, unsurprisingly, that most forecasts performed better over 
shorter periods of time.570  In addition, NHTSA determined that assuming a fixed real price 
performed as well as EIA’s reference case projections.  However, this analysis requires fuel price 
projections that cover several decades, and EIA is generally recognized as an authoritative source 
for regulatory analysis.  While we continue to use EIA’s projections in this analysis, we 
recognize that future fuel prices may differ from those assumed here and address this possibility 
through sensitivity analysis. 

 

 

 

Figure 4-1 – Real Gasoline Price Forecasts in CAFE Rulemakings and Observed Prices 

Figure 4-2 displays the High, Low, and Reference fuel price projections from AEO 2021 
alongside historical, real gasoline prices dating back to the inception of the CAFE program.  The 
supporting analysis uses the AEO 2021 Reference Case fuel price projections (for all fuel types 
except hydrogen), but we consider the AEO Low and High Oil price cases as bounding cases for 
sensitivity analyses.  The purpose of the sensitivity analyses, discussed in greater detail in FRIA 
Chapter 7, is not to posit a more credible future state of the world than the central case assumes – 
we assume the central case is the most likely future state of the world – but rather to measure the 
degree to which important outcomes change under different assumptions about fuel prices. 

 
570 Gecan, Ron, “CBO’s Oil Price Forecasting Record,” May 2020, Working Paper 2020-03, 
www.cbo.gov/publication/56356.  (Accessed: March 26, 2022). 
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Figure 4-2  – Real Fuel Price Assumptions in Historical Context 

4.2 Fleet Composition 

The on-road fleet is a critical element of the analysis.  It is dynamically simulated within the 
CAFE Model, and responds to regulatory alternatives, fuel prices, and macroeconomic 
conditions that determine its size, composition, and usage.   

Until recently, all CAFE rulemaking analyses used static fleet forecasts that were based on a 
combination of manufacturer compliance data, public data sources, and proprietary forecasts (or 
product plans submitted by manufacturers).  When simulating compliance with regulatory 
alternatives, those analyses assumed identical sales projections across the alternatives, for each 
manufacturer down to the make/model level—where the exact same number of each model 
variant was assumed to be sold in a given model year under both the least stringent alternative 
(typically the baseline) and the most stringent alternative considered (intended to represent 
“maximum technology application” scenarios in some cases), and that the rate of vehicle 
retirements, otherwise referred to as scrappage, would continue unabated.   

To the extent that an alternative matched the assumptions made in the production of the 
proprietary forecast, using a static fleet based upon those assumptions may have been warranted.  
However, a fleet forecast is unlikely to be representative of a broad set of regulatory alternatives 
that produces significant variation in the cost and fuel economy of new vehicles.  A number of 
commenters on previous regulatory actions encouraged consideration of the potential impact of 
fuel efficiency standards on new vehicle prices and sales, changes to compliance strategies that 
those shifts could necessitate, and the downstream impacts on vehicle retirement.  In particular, 
the continued growth of the utility vehicle segment creates compliance challenges within some 
manufacturers’ fleets: sometimes this growth shows up as higher sales of smaller- or larger-
footprint vehicles, and sometimes it shows up as vehicles shifting from the passenger car to the 
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light truck fleet but at the same footprint.  These shifts, to the extent manufacturers have not 
anticipated them, create compliance uncertainties.   

With higher fuel prices, moreover, the new vehicle market trends toward cars (and away from 
trucks), which has implications for aggregate VMT and the longevity of specific body-styles and 
model-year cohorts within the registered vehicle population.  Logically, however, the stringency 
of fuel economy standards (and other regulations, such as CO2 standards and ZEV mandates) 
could affect new sales and, consequentially, the retirement of older vehicles.  In the peer review 
of the 2018 release of the CAFE Model, all reviewers encouraged the inclusion of a sales 
response to fuel economy regulations (albeit not necessarily the version of the response model 
that appeared in the CAFE Model at that time). 

The following sections discuss how new vehicle sales – the annual addition of new vehicles to 
the fleet of registered population – of cars and light trucks are likely to evolve under the No-
Action Alternative, and differ in response to the specific regulatory alternative that is adopted.  
They also discuss the influence of increasing durability of new cars and light trucks and of 
changing economic conditions on the rate at which used vehicles of different vintages and ages 
are retired from service under the No-Action Alternative, as well as the potential influence of the 
individual regulatory alternatives the agency considers on retirement rates and the population and 
use of older vehicles.  Finally, the following sections address usage of the nation’s fleet of new 
and used vehicles to satisfy households’ and businesses’ travel demands, and how the 
contributions of cars and light trucks of different ages and vintages are likely to differ among the 
baseline and regulatory alternatives. 

The CAFE Model currently models sales and scrappage independently.  As discussed in more 
detail in preamble Section III.E.2, some commenters have suggested that we need to account for 
interactions between the new and used vehicle markets.  While we agree with the benefits that 
jointly modeling sales and scrappage would have, we are not implementing such an approach for 
the final rule because a functional model for our purposes is still hypothetical.  While noting the 
benefits of modeling these two effects jointly, we believe our approach captures the independent 
sources of the change in fleet composition that is attributable to CAFE standards and allows 
policymakers to make informed opinions about CAFE stringency levels. 

4.2.1 Changes in New Vehicle Sales 

The CAFE Model currently operates as if all costs incurred by the manufacturer as a 
consequence of meeting regulatory requirements, whether those are the cost of additional 
technology applied to vehicles in order to improve fleetwide fuel economy or civil penalties paid 
when fleets fail to achieve their standard, are “passed through” to buyers of new vehicles in the 
form of price increases.  The question of cost pass-through is one that academic and industry 
researchers have considered for decades—and two of the agencies’ most recent peer reviewers 
addressed this issue in their comments.  One of those recent peer reviewers argued that the 
assumption of complete cost pass through is defensible, and more likely in the short run than the 
long run.571  Another reviewer suggested that costs would pass through to new vehicle buyers to 

 
571 CAFE Model Peer Review, DOT HS 812 590, Revised (July 2019), pp. B31-B33, available at 
http://downloads.regulations.gov/NHTSA-2018-0067-0055/attachment_2.pdf.  (Accessed: March 3, 2022). 
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different degrees, depending upon the stringency of the standards.572  It is possible that more 
stringent standards, which result in larger increases to the cost of production, would elicit greater 
efforts by manufacturers to pass those cost increases through to buyers in order to protect their 
profitability than would less stringent standards.  In contrast, as some commenters have 
suggested in the past, manufacturers may be more able to absorb the smaller cost increases 
required to comply with less stringent standards in the form of lost profit.  If the degree of cost 
pass-through varies with the stringency of the alternative in this way, the current version of the 
CAFE Model will systematically overestimate the increases in price under more stringent 
alternatives, —which would also lead it to overestimate the magnitude of sales changes for 
alternatives that require more stringent CAFE standards.  This would have corresponding effects 
on the estimates of both costs and benefits.   

Over the course of the last several rulemakings, some commenters have argued that 
manufacturers are able to compensate fully for the costs of fuel economy standards by increasing 
the prices of luxury vehicles—which would increase the average new vehicle price but leave 
large sections of the market unaffected by the increased cost of producing fleets that comply with 
the standards.  While it seems likely that manufacturers employ pricing strategies that push 
regulatory costs (as well as increases in costs like pension obligations and health care costs for 
employees) into the prices of models and segments with less elastic demand, the extent to which 
any OEM can succeed at this is unknown by NHTSA.  At some point, however, price increases 
on even luxury models will merely price more and more purchasers out of the new vehicle 
market (or shift them to down market models) and make competition with other manufacturers 
and market segments that much more difficult.  The more that lower ends of the vehicle market 
are subsidized by luxury vehicles, the more either prices for luxury models would need to be 
increased, or (if moderately increasing prices) more of those luxury models would need to be 
sold to maintain historical profit levels.  It is worth noting that luxury vehicles have tended to be 
more powerful and content-rich, and often have fuel economy levels below their targets on the 
curves (though the extent to which luxury vehicles adopt hybrid or electric technologies may 
shift this effect)—so that selling more of them to compensate for lost profit elsewhere further 
erodes the compliance levels of the fleets in which they reside. 

While manufacturers could conceivably push some small cost increases into the prices of their 
vehicle segments that have less elastic demand to cover accordingly small increases in 
stringency, larger stringency increases would likely exhaust the ability of such segments to 
absorb additional costs.  In addition, the analysis does not attempt to adjust the mix of vehicle 
models or footprints based on their own price elasticity of demand; doing so would require a 
pricing model that takes the compliance cost for each manufacturer (estimated in the CAFE 
Model) and apportions that cost to the prices of individual nameplates and trim levels.  NHTSA 
has experimented with pricing models (when integrating vehicle choice models, pricing models 
are a necessity), but each manufacturer almost certainly has a unique pricing strategy that is 
unknown to NHTSA and involves both strategic decisions about competitive position within a 
segment and the volumes needed to fully amortize fixed costs associated with production.  To the 
extent that we assume all regulatory costs are passed through and affect the average regulatory 
cost of each vehicle (which we believe is a more conservative approach) instead of being priced 

 
572 CAFE Model Peer Review, DOT HS 812 590, Revised (July 2019), pp. B54-B56, available at 
http://downloads.regulations.gov/NHTSA-2018-0067-0055/attachment_2.pdf.  (Accessed: March 3, 2022). 
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in a fashion to minimize the impact on aggregate sales (which we are concerned would be 
speculative without more information about manufacturers’ private business models), we note 
that more stringent alternatives are provided an artificial analytical advantage because 
manufacturers are better positioned to incorporate smaller price adjustments into their current 
strategic pricing models. 

Finally, some commenters have argued that, even if regulations do increase the cost of producing 
vehicles and those costs are passed on to new vehicle buyers, it does not matter because sales 
have increased subsequent to the Great Recession – in a period characterized by both rising 
prices and rising standards.  However, that argument assumes correlation means causation and 
ignores the counterfactual case.  NHTSA contends that sales increased over that period, in large 
part, as a result of economic expansion following the great recession.573  The counterfactual case 
that is relevant for regulatory analysis would attempt to answer the question, “would sales have 
been even higher if average prices had been lower?”  The extent to which higher prices as a 
result of greater CAFE stringency suppresses sales that otherwise would have occurred is not 
settled in the literature, as described below.  While higher prices in general would lead to fewer 
sales in theory, purchasers of new vehicles receive the benefit of greater fuel savings and lower 
total cost of ownership.  For the purposes of today’s analysis of sales effects, we conservatively 
assume that purchasers value only the first 30 months of fuel savings.  For purposes of 
calculating benefits of standards, we assume that lifetime fuel savings are fully valued by 
society. 

In order to isolate the impact of the standards, the CAFE Model breaks the sales response 
module into three discrete components.  The first captures the effects of broader economic forces 
such as GDP growth.  The second measures how changes in vehicle prices (and fuel economies) 
influence sales across regulatory alternatives.  By modeling sales in the first step as a function of 
macroeconomic conditions, and then applying an independent own-price elasticity to estimate 
the change in sales across alternatives, the model is able to more clearly distinguish between 
absolute sales (in any given year) and incremental sales changes between alternatives.  The third 
step determines how the change of vehicle sales influences the proportional market share of light 
trucks and passenger cars. 

4.2.1.1 How do Fuel Economy Standards Impact Vehicle Sales? 

How potential buyers value improvements in the fuel economy of new cars and light trucks is an 
important issue in assessing the benefits and costs of government regulation.  If buyers fully 
value the savings in fuel costs that result from higher fuel economy, in a perfect market, 
manufacturers will presumably supply any improvements that buyers demand, and vehicle prices 
will fully reflect future fuel cost savings consumers would realize from owning—and potentially 
re-selling—more fuel-efficient models.  Traditional economic theory implies that if consumers 
internalize fuel savings, more stringent fuel economy standards will impose net costs on vehicle 
owners and can only result in social benefits through correcting externalities, because consumers 
would already fully incorporate private savings into their purchase decisions, as discussed further 
below.  If instead, consumers systematically undervalue future fuel savings because some market 
failure, such as an information asymmetry, or other differences between actual consumer 

 
573 Table 4-3 shows a large and statistically significant effect of GDP on sales.  
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decision making and theoretically rational decision-making leads to an underinvestment in fuel-
saving technology, more stringent fuel economy standards will also lead manufacturers to adopt 
improvements in fuel economy that buyers might not choose despite the cost savings they offer 
and improve consumer welfare.  

The potential for car buyers voluntarily to forego improvements in fuel economy that offer 
savings exceeding their initial costs is one example of what is often termed the “energy-
efficiency gap.”  This appearance of such a gap, between the level of energy efficiency that 
would minimize consumers’ overall expenses and what they actually purchase, is frequently 
based on engineering calculations that compare the initial cost for providing higher energy 
efficiency to the discounted present value of the resulting savings in future energy costs.  
However, the econometric literature is divided between support for full internalization of energy 
savings and substantial undervaluing, and manufacturers have consistently told NHTSA as well 
as National Academies committees that their customers severely undervalue expected fuel 
savings. 

There has long been an active debate about why such a gap might arise and whether it actually 
exists.  Economic theory predicts that, in a perfect market, individuals will purchase more 
energy-efficient products only if the savings in future energy costs they offer promise to offset 
their higher initial costs.  However, the additional up-front cost of a more energy-efficient 
product includes more than just the cost of the technology necessary to improve its efficiency; 
because consumers have a scarcity of resources, it also includes the opportunity cost of any other 
desirable features that consumers give up when they choose the more efficient alternative.  In the 
context of vehicles, whether the expected fuel savings outweigh any opportunity cost of 
purchasing a model offering higher fuel economy will depend, among other things, on how much 
its buyer expects to drive; his or her expectations about future fuel prices; financing options 
available (as studies suggest that consumers consider increases in monthly payments rather than 
total car price – which will be quite small for added fuel economy technology, and offset by 
lower fuel costs;) the discount rate he or she uses to value future expenses; the expected effect on 
resale value; and whether more efficient models offer equivalent attributes such as performance, 
carrying capacity, reliability, quality, or other characteristics.  Importantly, consumer 
information through window stickers, education by dealers or other sources of information may 
cause a consumer to place greater value on the benefit of fuel savings at the time of purchase.  
Likewise, advertising, financing options and incentives will also impact vehicle choice and a 
consumer’s willingness to purchase. 

Published literature has offered little consensus about consumers’ willingness-to-pay for greater 
fuel economy, and whether it implies over-, under- or full-valuation of the expected discounted 
fuel savings from purchasing a model with higher fuel economy.  Most studies have relied on car 
buyers’ purchasing behavior to estimate their willingness-to-pay for future fuel savings; a typical 
approach has been to use “discrete choice” models that relate individual buyers’ choices among 
competing vehicles to their purchase prices, fuel economy, and other attributes (such as 
performance, carrying capacity, and reliability), and to infer buyers’ valuation of higher fuel 
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economy from the relative importance of purchase prices and fuel economy.574  Empirical 
estimates using this approach span a wide range, extending from substantial undervaluation of 
fuel savings to significant overvaluation, thus making it difficult to draw solid conclusions about 
the influence of fuel economy on vehicle buyers’ choices.575  Because a vehicle’s price is often 
correlated with its other attributes (both measured and unobserved), analysts have often used 
instrumental variables or other approaches to address endogeneity and other resulting 
concerns.576   

Despite these efforts, more recent research has criticized these cross-sectional studies; some have 
questioned the effectiveness of the instruments they use,577 while others have observed that 
coefficients estimated using non-linear statistical methods can be sensitive to the optimization 
algorithm and starting values.578  Collinearity (i.e., high correlations) among vehicle attributes—
most notably among fuel economy, performance or power, and vehicle size—and between 
vehicles’ measured and unobserved features also raises questions about the reliability and 
interpretation of coefficients that may conflate the value of fuel economy with other attributes 
(Sallee, et al., 2016; Busse, et al., 2013; Allcott & Wozny, 2014; Allcott & Greenstone, 2012; 
Helfand & Wolverton, 2011).  

In an effort to overcome shortcomings of past analyses, three studies published fairly recently 
rely on panel data from sales of individual vehicle models to improve their reliability in 
identifying the association between vehicles’ prices and their fuel economy (Sallee, et al. 2016; 
Allcott & Wozny, 2014; Busse, et al., 2013).  Although they differ in certain details, each of 
these analyses relates changes over time in individual models’ selling prices to fluctuations in 
fuel prices, differences in their fuel economy, and increases in their age and accumulated use, 
which affects their expected remaining life, and thus their market value.  Because a vehicle’s 
future fuel costs are a function of both its fuel economy and expected gasoline prices, changes in 
fuel prices have different effects on the market values of vehicles with different fuel economy; 
comparing these effects over time and among vehicle models reveals the fraction of changes in 
fuel costs that is reflected in changes in their selling prices (Allcott & Wozny, 2014).  Using very 
large samples of sales enables these studies to define vehicle models at an extremely 
disaggregated level, which enables their authors to isolate differences in their fuel economy from 
the many other attributes, including those that are difficult to observe or measure, that affect their 
sale prices.579  

 
574 In a typical vehicle choice model, the ratio of estimated coefficients on fuel economy — or more commonly, fuel 
cost per mile driven — and purchase price is used to infer the dollar value buyers attach to slightly higher fuel 
economy.  
575 See Greene et al. (2018), Helfand & Wolverton (2011) and Greene (2010) for detailed reviews of these cross-
sectional studies. 
576 See, e.g., Barry, et al. (1995). 
577 See Allcott & Greenstone (2012). 
578 See Knittel & Metaxoglou (2014).  
579 These studies rely on individual vehicle transaction data from dealer sales and wholesale auctions, which 
includes actual sale prices and allows their authors to define vehicle models at a highly disaggregated level.  For 
instance, Allcott & Wozny (2014) differentiate vehicles by manufacturer, model or nameplate, trim level, body type, 
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These studies point to a somewhat narrower range of estimates than suggested by previous cross-
sectional studies; more importantly, they consistently suggest that buyers value a large 
proportion—and perhaps even all—of the future savings that models with higher fuel economy 
offer.580  Because they rely on estimates of fuel costs over vehicles’ expected remaining 
lifetimes, these studies’ estimates of how buyers value fuel economy are sensitive to the 
strategies they use to isolate differences among individual models’ fuel economy, as well as to 
their assumptions about buyers’ discount rates and gasoline price expectations, among others.  
Since Anderson et al. (2013) found evidence that consumers expect future gasoline prices to 
resemble current prices, the agency uses this assumption to compare the findings of the three 
studies and examine how their findings vary with the discount rates buyers apply to future fuel 
savings.581  

As Table 4-2 indicates, Allcott & Wozny (2014) found that consumers incorporate 55 percent of 
future fuel costs into vehicle purchase decisions at a six percent discount rate, when their 
expectations for future gasoline prices are assumed to reflect prevailing prices at the time of their 
purchases.  With the same expectation about future fuel prices, the authors report that consumers 
would fully value fuel costs only if they apply discount rates of 24 percent or higher.  However, 
these authors’ estimates are closer to full valuation when using gasoline price forecasts that 
mirror oil futures markets, because the petroleum market expected prices to fall during this 
period (this outlook reduces the discounted value of a vehicle’s expected remaining lifetime fuel 
costs).  With this expectation, Allcott & Wozny (2014) find that buyers value 76 percent of 
future cost savings (discounted at six percent) from choosing a model that offers higher fuel 
economy, and that a discount rate of 15 percent would imply that they fully value future cost 
savings.  Sallee et al. (2016) begin with the perspective that buyers fully internalize future fuel 
costs into vehicles’ purchase prices and cannot reliably reject that hypothesis; their base 
specification suggests that changes in vehicle prices incorporate slightly more than 100 percent 

 
fuel economy, engine displacement, number of cylinders, and “generation” (a group of successive model years 
during which a model’s design remains largely unchanged).  All three studies include transactions only through mid-
2008 to limit the effect of the recession on vehicle prices.  To ensure that the vehicle choice set consists of true 
substitutes, Allcott & Wozny (2014) define the choice set as all gasoline-fueled light-duty cars, trucks, SUVs, and 
minivans that are less than 25 years old (i.e., they exclude vehicles where the substitution elasticity is expected to be 
small).  Sallee et al. (2016) exclude diesels, hybrids, and used vehicles with less than 10,000 or more than 100,000 
miles. 
580 Killian & Sims (2006) and Sawhill (2008) rely on similar longitudinal approaches to examine consumer valuation 
of fuel economy except that they use average values or list prices instead of actual transaction prices.  Since these 
studies remain unpublished, their empirical results are subject to change, and they are excluded from this discussion. 
581 Each of the studies makes slightly different assumptions about appropriate discount rates.  Sallee et al. (2016) use 
five percent in their base specification, while Allcott & Wozny (2014) rely on six percent.  As some authors note, a 
five to six percent discount rate is consistent with current interest rates on car loans, but they also acknowledge that 
borrowing rates could be higher in some cases, which could be used to justify higher discount rates.  Rather than 
assuming a specific discount rate, Busse et al. (2013) directly estimate implicit discount rates at which future fuel 
costs would be fully internalized; they find discount rates of six to 21 percent for used cars and one to 13 percent for 
new cars at assumed demand elasticities ranging from -2 to -3.  Their estimates can be translated into the percent of 
fuel costs internalized by consumers, assuming a particular discount rate.  To make these results more directly 
comparable to the other two studies, we assume a range of discount rates and uses the authors’ spreadsheet tool to 
translate their results into the percent of fuel costs internalized into the purchase price at each rate.  Because Busse et 
al. (2013) estimate the effects of future fuel costs on vehicle prices separately by fuel economy quartile, these results 
depend on which quartiles of the fuel economy distribution are compared; our summary shows results using the full 
range of quartile comparisons.  
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of changes in future fuel costs.  For discount rates of five to six percent, the Busse et al. (2013) 
results imply that vehicle prices reflect 60 to 100 percent of future fuel costs.  As Table 4-2 
suggests, higher private discount rates move all of the estimates closer to full valuation or to 
over-valuation, while lower discount rates imply less complete valuation in all three studies. 

Table 4-2 – Percent of Future Fuels Costs Internalized in Used Vehicle Purchase Price using Current 
Gasoline Prices to Reflect Expectations (for Base Case Assumptions) 

Authors (Pub. Date) Discount rate 
3% 5% 6% 10% 

Busse, et al. (2013)* 54%-87% 60%-96% 62%-100% 73%-117% 
Allcott & Wozny (2014) 48%  55% 65% 

Sallee, et al. (2016)  101%  142% 

*Note: The ranges in the estimates from Busse et al. (2013) depend on which quartiles of the fuel 
economy distribution are compared.  With no prior on which quartile comparison to use, this 
table presents the full quartile comparison range. 

The studies also explore the sensitivity of the results to other parameters that could influence 
their results.  Busse et al. (2013) and Allcott & Wozny (2014) find that relying on data that 
suggest lower annual vehicle use or survival probabilities, which imply that vehicles will not last 
as long, moves their estimates closer to full valuation, an unsurprising result because both reduce 
the changes in expected future fuel costs caused by fuel price fluctuations.  Allcott & Wozny’s 
(2014) base results rely on an instrumental variables estimator that groups miles-per-gallon 
(MPG) into two quantiles to mitigate potential attenuation bias due to measurement error in fuel 
economy, but they find that greater disaggregation of the MPG groups implies greater 
undervaluation (for example, it reduces the 55 percent estimated reported in Table 4-2 to 49 
percent).  Busse et al. (2013) allow gasoline prices to vary across local markets in their main 
specification; using national average gasoline prices, an approach more directly comparable to 
the other studies, results in estimates that are closer to or above full valuation.  Sallee et al. 
(2016) find modest undervaluation by vehicle fleet operators or manufacturers making large-
scale purchases, compared to retail dealer sales (i.e., 70 to 86 percent). 

Since they rely predominantly on changes in vehicles’ prices between repeat sales, most of the 
valuation estimates reported in these studies apply most directly to buyers of used vehicles.  Only 
Busse et al. (2013) examine new vehicle sales; they find that consumers value between 75 to 133 
percent of future fuel costs for new vehicles, a higher range than they estimate for used vehicles.  
Allcott & Wozny (2014) examine how their estimates vary by vehicle age and find that 
fluctuations in purchase prices of younger vehicles imply that buyers whose fuel price 
expectations mirror the petroleum futures market value a higher fraction of future fuel costs: 93 
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percent for one- to three-year-old vehicles, compared to their estimate of 76 percent for all used 
vehicles assuming the same price expectation.582   

Accounting for differences in their data and estimation procedures, the three studies described 
here suggest that car buyers who use discount rates of five to six percent value at least half—and 
perhaps all—of the savings in future fuel costs they expect from choosing models that offer 
higher fuel economy.  Perhaps more important, one study (Busse et al., 2013) suggests that 
buyers of new cars and light trucks value three-quarters or more of the savings in future fuel 
costs they anticipate from purchasing higher-MPG models, although this result is based on more 
limited information.   

Based on a meta-analysis of the literature from 1995-2015, including the papers discussed above, 
Greene et al. (2018) concluded that the economic literature over that period did not support a 
consensus estimate of consumers’ willingness to pay for fuel economy.  The National Academies 
(NASEM, 2021) fuel economy committee agreed, observing that, “Many papers found 
undervaluation, and many have found full or even overvaluation.  Both earlier studies and more 
recent ones have found undervaluation.  Studies using both methodologies (discrete choice or 
otherwise) have found undervaluation.” (NASEM, 2021, p. 11-351).  More recently, Gillingham 
et al. (2021) analyzed the effects of changes in fuel economy ratings of 1.6 million vehicles and 
concluded that consumers were willing to pay only 16-39 cents per dollar of fuel savings, 
assuming an annual discount rate of 4 percent.583  Analyzing a data set of more than half a 
million vehicles purchased by households between 2009 and 2014, Leard et al. (2021) found a 
willingness to pay for $1 of discounted expected fuel savings of $0.54.584   

What analysts assume about consumers’ vehicle purchasing behavior, particularly about 
potential buyers’ perspectives on the value of increased fuel economy, clearly matters a great 
deal in the context of benefit-cost analysis for fuel economy regulation.  One possible approach 
would be to use a baseline scenario where fuel economy levels of new cars and light trucks 
reflected full (or nearly so) valuation of fuel savings by potential buyers in order to reveal 
whether setting fuel economy standards above market-determined levels could produce net social 
benefits.  Another might be to assume that, unlike previous analyses where buyers were assumed 
to greatly undervalue higher fuel economy under the baseline but to value it fully under the 
standards, buyers value improved fuel economy identically under both the baseline scenario and 
with stricter CAFE standards in place.   

Behavioral economics offers yet another possible explanation, namely that consumers’ decision 
making about fuel economy is affected by the context of the choice.  Choices framed in terms of 
paying more or not paying more for uncertain future fuel savings may be viewed as a risky bet 

 
582 Allcott & Wozny (2014) and Sallee, et al. (2016) also find that future fuel costs for older vehicles are 
substantially undervalued (26-30 percent).  The pattern of Allcott and Wozny’s results for different vehicle ages is 
similar when they use retail transaction prices (adjusted for customer cash rebates and trade-in values) instead of 
wholesale auction prices, although the degree of valuation falls substantially in all age cohorts with the smaller, 
retail price based sample.  
583Gillingham, K., S. Houde, and A. van Benthem. 2021. “Consumer Myopia in Vehicle Purchases: Evidence from a 
Natural Experiment.” American Economic Journal: Economic Policy 13(3): 207–38.  
584 Leard, B., J. Linn, and Y. Zhou,. 2021. “How Much Do Consumers Value Fuel Economy and Performance? 
Evidence from Technology Adoption.” The Review of Economics and Statistics: 1–45. 
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and induce a response that severely undervalues future fuel savings (e.g., Greene, 2019).  On the 
other hand, when the fuel economy of all new vehicles is increasing as a consequence of fuel 
economy standards, consumers might approximately fully value expected fuel savings (see, e.g., 
NASEM, 2021, Ch. 11.3.4).  Of course, given that CAFE standards apply to manufacturers’ 
overall new vehicle fleets rather than to specific vehicle models, nothing guarantees that 
manufacturers will distribute fuel economy improvements evenly across their respective product 
lines.  One thing is clear—the analysis must include some estimate of consumers’ valuation of 
fuel economy, in part because fuel prices are uncertain, and buyers and manufacturers would 
certainly make different decisions if they expected future fuel prices to be very low than if they 
anticipated much higher future fuel prices.  While we acknowledge the uncertainty around the 
estimates in the literature, a consumer willingness to pay of zero is not supported by the literature 
and we believe that assuming a value between zero and full valuation is better than omitting 
consumers’ willingness to pay for fuel economy from our analysis. 

The analysis supporting this final rule accounts for the value of fuel economy in several places, 
though it uses a more conservative value than is suggested by the majority of the literature 
summarized above.  Manufacturers have consistently told the agencies that new vehicle buyers 
will pay for about 2 or 3 years’ worth of anticipated fuel savings before the price increase 
associated with providing those improvements begins to affect sales.  It is, of course, possible 
that manufacturers are incorrect in their assumptions; the same manufacturers, for example, long 
assumed that consumers would not pay extra for safety features.  And manufacturers play a role 
in shaping consumer preferences.  Otherwise, they would not spend large sums on advertising.  

Nevertheless, in this rulemaking NHTSA assumes the same valuation, 2.5 years (i.e., 30 months) 
of undiscounted fuel savings, in all components of the analysis that reflect consumer decisions 
regarding vehicle purchases and retirements.585  This analysis explicitly assumes that: 1) 
consumers are willing to pay for fuel economy improvements that pay back within the first 2.5 
years of vehicle ownership (at average usage rates); 2) manufacturers know this and will provide 
these improvements even in the absence of regulatory pressure; 3) the amount of technology for 
which buyers will pay rises (or falls) with rising (or falling) fuel prices; 4) consumer willingness 
to pay is the same with or without higher fuel economy standards; and 5) these fuel savings are 
considered when evaluating the impact of new vehicle prices on vehicle retirement decisions.   

The agency’s analysis assumes that potential car and light truck buyers value only the savings in 
fuel costs from purchasing a higher-MPG model they expect to realize over the first 30 months 
they own it.  Depending on the discount rate buyers are assumed to apply, this amounts to 25-30 
percent of the expected savings in fuel costs over its entire lifetime.  These savings would offset 
only a fraction of the expected increase in new car and light truck prices that the agency 
estimates will be required for manufacturers to recover their increased costs for making required 
improvements to fuel economy.  If this is the case, sales of new cars and light trucks will decline, 
prices for used vehicles are likely to increase, and the retirement of older cars and light trucks 
and their replacement by newer models will slow.   

 
585 When accounting for social benefits and costs associated with an alternative, the full lifetime value of 
(discounted) fuel savings is included. 
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Because we assume, 1) that consumers are willing to pay for only 30 months of expected fuel 
savings and 2) that in all regulatory alternatives manufacturers will voluntarily adopt fuel 
economy technologies that pay for themselves in 30 months, our model will necessarily predict 
that fuel economy standards will decrease vehicle sales somewhat and slow down stock turnover.  
As discussed above, there is a high degree of both empirical and theoretical uncertainty about 
how consumers value fuel economy in their car buying decisions.  We are aware that the future 
magnitude of such sales and scrappage effects is highly uncertain, and we are seeking ways to 
improve the state of knowledge and more fully represent the uncertainties in our assessments.  
We are also aware that assuming full valuation of future fuel savings could lead to the conclusion 
that fuel economy regulations would increase sales and accelerate stock turnover in cases where 
the fuel value of fuel savings exceeded the increased vehicle cost.586 

One explanation for such “undervaluation” of the savings from purchasing higher-MPG models 
is that potential buyers view the prospect of the future savings those models appear to offer as 
uncertain, in contrast to the more immediate and certain increase in the prices buyers face for 
purchasing them.  This situation could arise because they are unsure of the fuel economy the 
vehicle will achieve on the road under their driving conditions, how long they will own a new 
vehicle, whether they will drive it enough to realize the promised savings or have difficulty 
predicting the future course of fuel prices.  As a consequence, they may view choosing a more 
fuel-efficient model as a risky purchase; widespread aversion to the prospect of financial losses 
may lead many to view the already uncertain future savings even more skeptically, and thus to 
choose more modest levels of fuel economy.  For these same reasons, car and light truck 
producers may be unwilling to improve their models’ fuel economy, because they believe few 
consumers will be likely to purchase them.  We note that an individual’s purchase decision, that 
is whether they purchase a marginally more expensive vehicle with lifetime fuel savings that 
exceeds the cost, is different than collective consumer purchases of a fleet of more efficient 
vehicles.  It is the latter that drives analysis of regulatory impacts.   

From this perspective, it is possible that requiring manufacturers to improve the fuel economy of 
most or all of their models by raising CAFE standards will change the way potential buyers 
assess future savings from choosing models with higher fuel economy.  It is also possible that 
when all models are required to provide higher fuel economy as a result of regulation, consumer 
choice is affected differently.  It would effectively require producers to offer higher-MPG cars 
and light trucks and consumers to experience first-hand the benefits from owning them.  This 
would change the context of consumers’ fuel economy choices from buy or do not buy a fuel 
economy technology to one in which the fuel economy of virtually all new vehicles increased.  
Over time, this might reduce buyers’ uncertainty about the prospect of future savings and soften 
(or even eliminate) their usual aversion to potential losses from investing in higher fuel 
economy.587   

By doing so, raising standards could thus increase potential buyers’ valuation of improved fuel 
economy to the point where it offsets the accompanying increases in new car and light truck 

 
586 There is the additional question of whether consumers’ willingness to pay for other vehicles attributes that could 
have been produced by technologies used to increase fuel economy might be greater than the full present value of 
fuel savings.   
587 If buyers primarily learn about the benefits of improved fuel economy through vehicle ownership, it does raise 
the question of the utility of the fuel economy label, but such questions are beyond the scope of this rulemaking. 
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prices, thus raising their sales and hastening the retirement of older cars and light trucks as newer 
models gradually replaced them.  Of course, CAFE standards apply to manufacturers’ overall 
fleets, such that it is not obvious how NHTSA could actually require that manufacturers apply 
fuel economy improvements evenly throughout their respective product lines.  Nevertheless, 
NHTSA has been steadily increasing CAFE standards for passenger cars for the last decade, and 
light trucks for almost 15 years, so data are accumulating that will help us evaluate this 
perspective.  We will continue to monitor the market and assess the evolving nature of consumer 
demand for fuel economy in the new vehicle market. 

4.2.1.2 Modeling the Sales Response 

For the purposes of regulatory evaluation, the relevant sales metric is the difference between 
alternatives rather than the absolute number of sales in any of the alternatives.  As such, the sales 
response model currently contains three parts: a nominal forecast that provides the level of sales 
in the baseline (based upon macroeconomic inputs, exclusively), a price elasticity that creates 
sales differences relative to that baseline in each year, and a fleet share model that produces 
differences in the passenger car and light truck market share in each alternative.  The nominal 
forecast does not include price and is merely a (continuous) function of several macroeconomic 
variables that are provided to the model as inputs.  The price elasticity is also specified as an 
input, but this analysis assumes a response of -0.4—meaning that a ten percent increase in the 
average price of a new vehicle produces a four percent decrease in total sales.588  Unlike a 
conventional price elasticity, the price change on which the elasticity acts is calculated net of 
some portion of the future fuel savings that accrue to new vehicle buyers (2.5 years’ worth, in 
this analysis, as discussed in the previous section).  

The current sales module reflects the idea that total new vehicle sales are primarily driven by 
conditions in the economy that are exogenous to the automobile industry.  Over time, new 
vehicle sales have been cyclical – rising when prevailing economic conditions are positive 
(periods of growth) and falling during periods of economic contraction.  While the kinds of 
changes to vehicle offerings that occur as a result of manufacturers’ compliance actions exert 
some influence on the total volume of new vehicle sales, they are not determinative.  Instead, 
they drive the kinds of marginal differences between regulatory alternatives that the current sales 
module is designed to simulate – more expensive vehicles, generally, reduce total sales but only 
marginally.  Greater availability of fuel-efficient light truck body styles increases their share of 
the new vehicle market, but only on the margin – and does so in the context of the current market 
shares prior to that model year’s changes. 

The first component of the sales response model is the nominal forecast, which is a function 
(with a small set of inputs) that determines the size of the new vehicle market in each calendar 
year in the analysis for the baseline.  It is of some relevance that this statistical model is intended 
only as a means to project a baseline sales series.  Past peer reviewers expressed concerns about 
the possibility of econometrically estimating an industry average price elasticity in a way that 
isolates the causal effect of new vehicle prices on new vehicle sales (and properly addresses the 
issue of endogeneity between sales and price).  The nominal forecast model does not include 

 
588 The “price increase” in this case represents the new vehicle price net of a portion of fuel savings, described 
further in this section. 
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prices and is not intended for statistical inference around the question of price response in the 
new vehicle market.  

The forecast is derived from a statistical model (described in Equation 4-1) that accounts for a set 
of exogenous factors related to new light-duty vehicle sales.  In particular, the model accounts 
for the number of households in the United States, recent number of new vehicles sold, GDP, 
and consumer confidence.  The structure of the forecast model is a time series autoregressive 
distributed lag specification.  To reflect the fact that households are the primary unit of demand 
for new vehicles, the dependent variable is defined as new vehicles sold per household.589  While 
this variable still exhibits the cyclical behavior that new vehicle sales exhibit over time, the trend 
shows the number of new vehicles sold per household declining since the 1970s, as shown in 
Figure 4-32, where the dotted line is the trend over time.  As this time series is non-stationary,590 
a lagged variable (the value in the previous year) is included on the right-hand side of the 
regression equation.  In addition, the model includes a lagged variable that represents the three-
year running sum of new vehicle sales, divided by the number of households in the previous 
year.  This variable attempts to capture the potential that some households may “overshoot” their 
desired vehicle ownership levels by purchasing additional cars or light trucks during periods of 
robust income growth, and then avoid making additional purchases for some period.  As 
vehicles’ durability and prices have increased over time, and the average length of initial 
ownership has increased similarly, this variable puts downward pressure on sales after successive 
years of high sales (particularly during extrapolation).  

 

Figure 4-3 – New Light-Duty Vehicle Sales per Household in the United States, 1970 – 2016 

The forecast model includes the natural logarithm of real U.S. GDP and consumer sentiment, as 
measured by the University of Michigan survey of consumers.591  As both of these series are 
non-stationary (determined by applying augmented Dickey-Fuller unit root tests to the time 

 
589 Number of U.S. households is taken from Federal Reserve Economic data, 
https://fred.stlouisfed.org/series/TTLHH.  (Accessed: February 15, 2022). 
590 The series contains a unit root (i.e., it is integrated of order one), based on the augmented Dickey-Fuller test. 
591 http://www.sca.isr.umich.edu/tables.html.  (Accessed: February 15, 2022). 
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series), lagged versions of the variables are included to ensure stationarity in the residuals.  The 
functional form appears below in Equation 4-1.  

𝑁𝑁𝑁𝑁𝑁𝑁_𝑉𝑉𝑉𝑉ℎ_𝑝𝑝𝑝𝑝𝑝𝑝_𝐻𝐻𝐻𝐻𝑡𝑡
=   𝐶𝐶 +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁_𝑉𝑉𝑉𝑉ℎ_𝑝𝑝𝑝𝑝𝑝𝑝_𝐻𝐻𝐻𝐻𝑡𝑡−1 + 𝛽𝛽23𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡−1  + 𝛽𝛽3𝐿𝐿𝐿𝐿(𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡)
+ 𝛽𝛽4𝐿𝐿𝐿𝐿(𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−1) +  𝛽𝛽5 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡
+  𝛽𝛽6𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1 

Equation 4-1 – Statistical Model Used to Generate Nominal Forecast 

The model fit is described in Table 4-3.  The included lag term of the dependent variable and 
both GDP variables are statistically significant at nearly zero, while both the lagged three-year 
sum term and consumer sentiment are both marginally significant.  Being a time series model, 
the Breusch-Godfrey test for serial correlation is (0.65) at order 1.  The signs of the coefficients 
are all consistent with expectations. 

Table 4-3 – Summary of Forecast Regression Function 

Predictors Estimates CI p 

(Intercept) 0.21 0.10 – 0.32 <0.001 
lag(new.veh.per.HH) 0.70 0.45 – 0.95 <0.001 
lag(3yrSum.per.HH) -0.08 -0.16 – 0.01 0.070 

LN.Real.GDP 0.44 0.25 – 0.62 <0.001 
lag(LN.Real.GDP) -0.45 -0.63 – -0.28 <0.001 

Cons.sentiment 0.0003 -0.00 – 0.00 0.136 
lag(Cons.sentiment) 0.00001 -0.00 – 0.00 0.948 

Observations 47 
R2 / R2 adjusted 0.919 / 0.907 

 
Because the dependent variable is the number of new vehicles sold per household, it is necessary 
to multiply by the number of households to produce an estimate of new vehicle sales.  This 
model is used to produce a forecast of new vehicle sales out to 2050, so it is also necessary to 
have projections of each variable used in Equation 4-1 through calendar year 2050.    As 
indicated previously, NHTSA relies on forecasts of U.S. GDP from the recent IHS Global 
Insight October 2021 Macroeconomic Outlook, and projections of future growth in the number 
of U.S. households are also obtained from this source. 

While the analysis could have relied on a forecast of new vehicle sales taken from a published 
source (AEO 2021, for example), using a function is an attractive option because it allows the 
CAFE Model to dynamically adjust the forecast in response to input changes.  If a sensitivity 
case requires a forecast that is consistent with a set of specific, possibly unlikely, assumptions, a 
forecast of new vehicle sales that is consistent with those assumptions may not exist in the public 
domain.  Using a functional form also allows the user to vary some of the assumptions to the 
analysis without creating inconsistencies with other elements of the analysis.  However, it is 
incumbent upon the user to ensure that any set of assumptions is logically consistent.   
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This function and the set of assumptions contained in the central analysis produces a projection 
that is comparable in magnitude to the forecast in AEO 2021’s Reference case, although there 
are some important differences.  The two forecasts, as well as the AEO 2020 Reference case 
forecast, which is included for context, project new light vehicle sales to be relatively flat over 
the coming decades.  However, the baseline forecast in this analysis projects a temporary 
increase in new sales occurring as the economy recovers from the COVID-19 pandemic.  Prior to 
the pandemic, some recent model years had new light vehicle sales in excess of 17 million units.  
The baseline forecast shows a brief return to that level before returning to the long-run average, 
which is closer to 15 million units per year.   

As the AEO 2020 forecast illustrates, the pandemic has had a significant influence on sales 
projections through the 2020s.  The baseline forecast, which uses manufacturer compliance data 
to measure MY 2020 production (and, thus, sales in this analysis) introduces a discrepancy with 
the projection in AEO 2021.  However, we treat the compliance data as an authoritative source.  
After the effects of the pandemic recede toward the end of the 2020s, differences between all 
three forecasts shrink to about 5 percent (or less) in most years.  Obviously, the economic 
response to the pandemic has created considerable near-term uncertainty about the pace at which 
the market for new automobiles will recover – and the scale and timing of the recovery’s peak – 
before returning to its long-term trend.   

 

Figure 4-4 – Comparison of Projected New Vehicle Sales with Annual Energy Outlook 

Although the forecast produces the total number of new vehicle sales in the baseline, an elasticity 
is imposed on price differences to produce sales changes between alternatives.   

In previous rules, while the agency produced analyses that qualitatively considered sales and 
employment impacts, the agency acknowledged that fuel economy standards were likely to 
increase vehicle prices, while simultaneously reducing operating costs, and that estimating how 
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consumers would choose to balance those two factors in the new vehicle market was 
challenging.592  For the final rule, the agency revisited the price elasticity assumption and 
selected a central case price elasticity of vehicle demand equal to -0.4.  An extended discussion 
of this choice is contained in preamble Section III.E.  

Because the elasticity assumes no perceived change in the quality of the product, and the 
vehicles produced under different regulatory scenarios have inherently different operating costs, 
the price metric must account for this difference.  The price to which the unit elasticity is applied 
in this analysis represents the residual price change between scenarios after accounting for 2.5 
years’ worth of fuel savings to the new vehicle buyer.  Like that applied in the 2020 FRIA, this 
approach is consistent with the 2012 FRIA analysis of sales impacts, which considered several 
payback periods over which the value of fuel savings was subtracted from the change in average 
new vehicle price.   

The price elasticity is applied to the percentage change in average price (in each year).  As 
discussed below the price change does not represent an increase/decrease over the last observed 
year, but rather the percentage change relative to the baseline.  In the baseline, the average price 
is defined as the observed new vehicle price in 2019 (the last historical year before the 
simulation begins) plus the average regulatory cost associated with the baseline.  The central 
analysis for the final rulemaking analysis simulates multiple programs simultaneously (CAFE 
final standards, EPA final greenhouse gas standards, ZEV, and the California Framework 
Agreements), and the regulatory cost includes both technology costs and civil penalties paid for 
non-compliance (with CAFE standards) in a model year.593  So the change in sales for alternative 
a in year y is: 

∆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦,𝑎𝑎 =
(∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦,𝑎𝑎−0 −  ∆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡,𝑎𝑎−0)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2019 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦,0
 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑦𝑦 

Equation 4-2 – Calculation of Change in Sales 

ΔRegCost is the difference in average regulatory cost between alternative a and the baseline 
scenario in year y to make a vehicle compliant with the standards, MRSP2019 is the average 
transaction price of a new vehicle in 2019, NominalSales is the forecasted sales (in the baseline) 
in year y, ΔFuelCosts is the change in average fuel costs over 2.5 years relative to the baseline in 
year y and PriceElasticity is -0.4 

∆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡,𝑎𝑎−0 =  �
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹i𝑐𝑐𝑐𝑐𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐹𝐹𝐹𝐹𝑡𝑡,𝑎𝑎

−  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝐹𝐹𝐹𝐹𝑡𝑡,0

� ∗ 35000 

Equation 4-3 – Change in Fuel Costs Used to Compute Sales Differences 

 
592 Final Regulatory Impact Analysis, Corporate Average Fuel Economy for MY 2017-MY 2025 Passenger Cars and 
Light Trucks, August 2012, at p. 821. 
593 The baseline regulatory costs include all of the costs associated with fuel economy technology assumed to be 
applied to vehicles in the baseline scenario.  If a technology is estimated to have a payback period within 30 months, 
the model will apply it within the baseline and that cost would be incorporated into the baseline’s regulatory cost. 
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Where 35,000 miles is assumed to be equivalent to 2.5 years of vehicle usage.594   

NHTSA assumes that consumers behave as if the fuel price faced at the time of purchase is the 
fuel price that they will face over the first 2.5 years of ownership and usage.  Essentially, 
consumers behave as if fuel prices follow a random walk, where the best prediction of (near) 
future prices is the price today.  Scrappage rates in the first few years of ownership are close to 
zero, so buyers can reasonably expect to travel the full annual mileage in each of the first three 
years of ownership.  Total sales in each alternative (that is not the baseline) will equal 
NominalSalesy + ΔSalesa,y for alternative a in year y.  This implementation produces total sales 
estimates that vary among alternatives and over time.  Sales effects are discussed in detail in the 
accompanying FRIA Section 6.3.3. 

4.2.1.3 Dynamically Modeling Changes in Fleet Mix 

The first two modules described above (the forecast function and applied elasticity) determine 
the total industry sales in each model year from 2021 (in this analysis, 2020 is based on certified 
compliance data) to 2050.  A third module, the dynamic fleet share, acts to distribute the total 
industry sales across two different body-types: “cars” and “light trucks.”  While there are 
specific definitions of “passenger cars” and “light trucks” that determine a vehicle’s regulatory 
class, the distinction used in this phase of the analysis is more simplistic.  All body-styles that are 
obviously cars—sedans, coupes, convertibles, hatchbacks, and station wagons—are defined as 
“cars” for the purpose of determining fleet share.  Everything else—SUVs, smaller SUVs 
(crossovers), vans, and pickup trucks—are defined as “light trucks”—even though they may not 
be treated as such for compliance purposes.  In the case of SUVs, in particular, many models 
may have sales volumes that reside in both the passenger car and light fleets for regulatory 
purposes, but the dynamic fleet share does not make this distinction.  All crossovers are 
considered light trucks for the purposes of fleet share, even though they may be 2WD crossovers 
treated as passenger cars for compliance purposes.  So, while the number may increase overall 
for a given scenario, the proportion of crossovers sold as 4WD, rather than 2WD, does not.  This 
means that the number of vehicles regulated as passenger cars is less affected by changes in fleet 
share because many SUVs are regulated as cars – and the portion of a given SUV nameplate that 
is regulated as a passenger car in the MY 2020 fleet is carried forward into future years. 

Even if the fleet share model (described in greater detail below) increases the share of light 
trucks (for example), the inherent price difference between passenger cars and light trucks does 
not pass through to the average price—only the relative difference in compliance costs 
associated with the vehicle types.  Despite the fact that light trucks have generally higher 
transaction prices than passenger cars, there is no guarantee that regulatory costs will be higher 
for light-trucks than for cars (which depend upon the mix of footprints, their distance from the 
relevant curve, and the technology cost needed to bring each fleet into compliance).  Thus, the 
average price differences used in the sales calculations are relatively unaffected by the fleet share 
model. 

 
594 Based on odometer data, 35,000 miles is a good representation of typical new vehicle usage in the first 2.5 years 
of ownership and use—though the distribution of usage is large. 
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The dynamic fleet share (DFS) represents two different equations that independently estimate the 
share of passenger cars and light trucks, respectively, given average new market attributes (fuel 
economy, horsepower, and curb weight) for each group and current fuel prices, as well as the 
prior year’s market share and prior year’s attributes.595  The two independently estimated shares 
are then normalized to ensure that they sum to one.  As with the Sales Response model, the DFS 
utilizes values from one and two years preceding the analysis year when estimating the share of 
the fleet during the model year being evaluated.  For the horsepower, curb weight, and fuel 
economy values occurring in the model years before the start of analysis, the DFS model uses the 
observed values from prior model years.  After the first model year is evaluated, the DFS model 
relies on values calculated during analysis by the CAFE Model.  The DFS model begins by 
calculating the natural log of the new shares during each model year, independently for each 
vehicle class, as specified by Equation 4-4. 

ln�𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀� =

⎝

⎜
⎜
⎜
⎜
⎛

𝛽𝛽𝐶𝐶 × (1 − 𝛽𝛽𝑅𝑅ℎ𝑜𝑜) + 𝛽𝛽𝑅𝑅ℎ𝑜𝑜 × ln�𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀−1�
+𝛽𝛽𝐹𝐹𝐹𝐹 × �ln�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺,𝑀𝑀𝑀𝑀� − 𝛽𝛽𝑅𝑅ℎ𝑜𝑜 × ln�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺,𝑀𝑀𝑀𝑀−1��
+𝛽𝛽𝐻𝐻𝐻𝐻 × �ln�𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀−1� − 𝛽𝛽𝑅𝑅ℎ𝑜𝑜 × ln�𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀−2��
+𝛽𝛽𝐶𝐶𝐶𝐶 × �ln�𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀−1� − 𝛽𝛽𝑅𝑅ℎ𝑜𝑜 × ln�𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀−2��
+𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 × �ln�𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀−1� − 𝛽𝛽𝑅𝑅ℎ𝑜𝑜 × ln�𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀−2��
+𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × (ln(0.423453) − 𝛽𝛽𝑅𝑅ℎ𝑜𝑜 × ln(0.423453)) ⎠

⎟
⎟
⎟
⎟
⎞

 

Equation 4-4 – Dynamic Fleet Share 

Where: 

βC – βDummy : set of coefficients, as defined by Table 4-4 below, used for tuning 
the Dynamic Fleet Share model, 

ShareVC,MY-1 : the share of the total industry new sales classified as vehicle class 
VC, in the year immediately preceding model year MY, 

PriceGas,MY : the fuel price of gasoline fuel, in cents per gallon, in model year 
MY,596 

PriceGas,MY-1 : the fuel price of gasoline fuel, in cents per gallon, in the year 
immediately preceding model year MY, 

HPVC,MY-1 : the average horsepower of all vehicle models belonging to vehicle 
class VC, in the year immediately preceding model year MY, 

 
595 NHTSA explored alternatives to this DFS model.  Preliminary results of this exploration are discussed in 
Exploration of alternate fleet share module" in Docket No. NHTSA-2021-0053 and primary output measures are 
presented in Chapter 7 of the accompanying FRIA. 
596 Model year and calendar year are assumed to be equivalent in the simulation—as they always have been in all 
prior rulemaking analyses. 
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HPVC,MY-2 : the average horsepower of all vehicle models belonging to vehicle 
class VC, in the year preceding model year MY by two years, 

CWVC,MY-1 : the average curb weight of all vehicle models belonging to vehicle 
class VC, in the year immediately preceding model year MY, 

CWVC,MY-2 : the average curb weight of all vehicle models belonging to vehicle 
class VC, in the year preceding model year MY by two years, 

FEVC,MY-1 : the average on-road fuel economy rating of all vehicle models 
(excluding credits, adjustments, and petroleum equivalency factors) belonging to vehicle 
class VC, in the year immediately preceding model year MY, 

FEVC,MY-2 : the average on-road fuel economy rating of all vehicle models 
(excluding credits, adjustments, and petroleum equivalency factors) belonging to vehicle 
class VC, in the year preceding model year MY by two years, 

0.423453 : a dummy coefficient, and 

ln(ShareVC,MY) : the natural log of the calculated share of the total industry fleet 
classified as vehicle class VC, in model year MY. 

In the equation above, the coefficients, βC through βDummy, are provided in the following table.  
The coefficients differ depending on the vehicle class for which the fleet share is being 
calculated. 

Table 4-4 – DFS Coefficients for Cars and Light Trucks 

Coefficient Car Value Light Truck Value 
βC 3.4468 7.8932 

βRho 0.8903 0.3482 
βFP 0.1441 0.4690 
βHP -0.4436 1.3607 
βCW -0.0994 1.5664 
βMPG -0.5452 0.0813 

βDummy -0.1174 0.6192 
 
Once the initial car and light truck fleet shares are calculated (as a natural log), obtaining the 
final shares for a specific vehicle class is simply a matter of taking the exponent of the initial 
value, and normalizing the result at one (or 100 percent).  This calculation is demonstrated by the 
following: 

𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀 =
𝑒𝑒ln�𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉,𝑀𝑀𝑀𝑀�

𝑒𝑒ln�𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿,𝑀𝑀𝑀𝑀� + 𝑒𝑒ln�𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿1/2𝑎𝑎,𝑀𝑀𝑀𝑀�
 

Equation 4-5 – Normalizing Individual Fleet Shares 
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Where: 

ln(ShareVC,MY)  : the natural log of the calculated share of the total industry 
fleet classified as vehicle class VC, in model year MY, 

ln(ShareLDV,MY) : the natural log of the calculated share of the total industry 
fleet classified as light duty passenger vehicles (LDV), in model year MY, 

ln(ShareLDT1/2a,MY) : the natural log of the calculated share of the total industry 
fleet classified as class 1/2a light duty truck (LDT1/2a), in model year MY, and 

ShareVC,MY  : the calculated share of the total industry fleet classified as 
vehicle class VC, in model year MY. 

These shares are applied to the total industry sales derived in the first stage of the sales response.  
This produces total industry volumes of car and light truck body styles.  Individual model sales 
are then determined from there based on the following sequence: 1) individual manufacturer 
shares of each body style (either car or light truck) times the total industry sales of that body 
style, then 2) each vehicle within a manufacturer’s volume of that body-style is given the same 
percentage of sales as appear in the 2020 fleet.  This implicitly assumes that consumer 
preferences for particular styles of vehicles are determined in the aggregate (at the industry 
level), but that manufacturers’ sales shares of those body styles are consistent with MY 2020 
sales.  Within a given body style, a manufacturer’s sales shares of individual models are also 
assumed to be constant over time.  This approach implicitly assumes that manufacturers are 
currently pricing individual vehicle models within market segments in a way that maximizes 
their profit.  Without more information about each OEM’s true cost of production and operation, 
fixed and variables costs, and both desired and achievable profit margins on individual vehicle 
models, there is no basis to assume that strategic shifts within a manufacturer’s portfolio will 
occur in response to standards.   

Some commenters to the current rule as well as previous rules have noted that the market share 
of SUVs continues to grow, while conventional passenger car body-styles continue to lose 
market share.  The CAFE Model includes the DFS model in an attempt to address these market 
realities.  In the 2012 final rule, the agencies projected fleet shares based on the continuation of 
the baseline standards (MY 2012-2016) and a fuel price forecast that was much higher than the 
realized prices since that time.  As a result, that analysis assumed passenger car body-styles 
comprising about 70 percent of the new vehicle market by 2025, which was internally consistent.  
The reality, however, has been quite different.   

NHTSA reviewed the DFS model and explored alternative specifications.  As discussed in detail 
in preamble Section III.E.2, the agency determined that use of the preliminary, alternative DFS 
model in the central analysis should be deferred to future rulemakings.  This exploration is 
documented in “Exploration of alternate fleet share module" in Docket No. NHTSA-2021-0053.  
Results using this DFS model candidate are presented as part of the sensitivity analysis in 
preamble Section V.E and discussed in detail in the accompanying FRIA, Chapter 7.  

The coefficients of the DFS model as implemented in the central analysis show passenger car 
styles gaining share with higher fuel prices and losing them when prices decline.  Similarly, as 
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fuel economy increases in light truck models, which offer consumers other desirable attributes 
beyond fuel economy (ride height or interior volume, for example) their relative share increases.  
However, this approach does not suggest that consumers dislike fuel economy in passenger cars, 
but merely recognizes the fact that fuel economy has diminishing returns to consumers.  As the 
fuel economy of light trucks increases, the tradeoff between passenger car and light truck 
purchases increasingly involves a consideration of other attributes.  The coefficients also show a 
relatively stronger preference for power improvements in cars than light trucks because that is an 
attribute where trucks have typically outperformed cars, like cars have outperformed trucks for 
fuel economy. 

Rather than estimate new functions to determine relative market shares of cars and light trucks, 
the CAFE Model applied existing functions from the transportation module of the National 
Energy Modeling System (NEMS) that was used to produce the 2017 AEO.597  The functions 
above appear in the “tran.f” input file to that version of NEMS, and were embedded (in their 
entirety) in the CAFE Model.  NEMS uses the functions to estimate the percent of total light 
vehicles less 8,500 GVW that are cars/trucks.  In addition to better reflecting market shifts over 
time, this approach also enables consistent sensitivity cases—where higher fuel prices produce 
fleets with more traditional passenger car body styles, for example—and ensures that the starting 
point (MY 2020) evolves in response to both fuel economy improvements and fuel prices in a 
way that is internally consistent. 

While NEMS intended the fleet shares to be defined by regulatory classes, vehicles are defined 
much more coarsely in NEMS than in the CAFE Model, and manufacturers are not differentiated 
at all.  In order to produce well-behaved fleet share projections with this model, the CAFE Model 
applies the share functions to body-styles rather than regulatory classes.  For many years, there 
was little overlap between nameplates in a manufacturer’s passenger car regulatory class and its 
light truck regulatory class.  However, with the recent emergence of smaller FWD SUVs and 
crossovers, it is increasingly common to have nameplates with model variants in both the 
passenger car and light truck regulatory classes, and it is also common for there to be only minor 
differences (like the presence of 4WD or AWD) between versions regulated as cars and versions 
regulated as light trucks.  The CAFE Model applies the fleet share equations to focus on body-
style, rather than regulatory class, in recognition of the increased ambiguity between the 
regulatory class distinction for popular models like the Honda CR-V and Toyota RAV4, that sell 
more than 100K units in each regulatory class (typically using the same powertrain 
configuration).  This trend has only continued in recent years under favorable fuel prices and 
improving fuel economy among light truck offerings.  Applying the fleet share at the body-style 
level preserves the existing regulatory class splits for nameplates that straddle the class 
definitions.  It also serves to minimize the deviation from the observed MY 2020 regulatory class 
shares over time.  Our implementation allows the passenger car regulatory class to continue 
evolving toward crossover-type cars, if that is what economic and policy conditions favor. 

 
597 The share equation is described in the 2016 NEMS model documentation (see Equation 82), available at:  
https://www.eia.gov/outlooks/aeo/nems/documentation/archive/pdf/m070(2016).pdf.  (Accessed: February 15, 
2022). 
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4.2.1.4 Using Vehicle Choice Models in Rulemaking Analysis  

For years, some commenters encouraged DOT to consider vehicle attributes beyond price and 
fuel economy when estimating a sales response to fuel economy standards and suggested that a 
more detailed representation of the new vehicle market would allow the agency to simulate 
strategic mix shifting responses from manufacturers and diverse attribute preferences among 
consumers.  Doing so would require a discrete choice model. 

There are a number of practical challenges to using estimates of consumer attribute preferences 
to simulate market responses.  Discrete choice models typically rely on fixed effects (or 
alternative-specific constant terms) to account for the unobserved characteristics of a given 
model that influence purchasing decisions, such as styling,598 but are not captured by 
independent variables that represent specific vehicle attributes (horsepower, interior volume, or 
safety rating, for example).  Ideally, these constant terms would contribute relatively little to the 
fit and performance of the model, assuming that the most salient characteristics are accounted for 
explicitly.  In practice, this is seldom the case.  While the fixed effects at the model level are 
statistically sound estimates of consumer preferences for the unobserved vehicle characteristics 
of the individual models, the estimates are inherently historical—based on observed versions of 
the specific vehicle models to which they belong.  However, once the simulation starts, and new 
technologies are added to each manufacturer’s product portfolio over successive generations, it is 
no longer obvious that those constant terms would still be valid in the context of those changes.   

Another complication is that discrete choice models are highly dependent on their inputs and are 
unable to account for future market changes.  For example, the Draft TAR relied on a MY 2014 
market (for EPA’s analysis) and a MY 2015 market (for NHTSA’s analysis), while the 2020 
final rule used a MY 2017 fleet, and this rulemaking uses a characterization of the MY 2020 
fleet.  A discrete choice model estimated on any of those model years would probably produce 
different fixed effects estimates for each model variant in the fleet.  Even assuming that no new 
variants of a given model are offered over time, new nameplates emerge as others are retired—
and for those new nameplates and all of their model variants, no constant terms would exist.  
They would have to be imputed (either from comparable vehicles in the market, some 
combination of their attributes, or both).  Some studies have attempted to estimate fixed effects 
for a single new entrant to the market,599 but none have attempted to do so at the scale required 
to migrate a discrete choice model operating at the vehicle level that was fit on an earlier model 
year to a newer model year for simulation.   

Figure 4-5 shows the cumulative percentage of nameplates in the 2017 new vehicle market by 
year of introduction.  About ten percent of nameplates in 2017 have been around since the 1970s, 
but another ten percent have only existed since about 2010.  This fact illustrates the likely 
necessity of constructing vehicle model fixed effects for the inevitable new entrants between the 
estimating fleet and the rulemaking fleet.  But it also suggests another challenge.  New model 
entrants are driven by the dynamics of the market, where some vehicle models succeed and 
others fail, but a simulated market with a discrete choice model can only simulate failure—where 

 
598 Aesthetics such as styling are difficult, if it not impossible, to define in a manner that allows meaningful 
comparison between choices.  
599 Berry, Steven, James Levinsohn, and Ariel Pakes (2004).  Differentiated products demand systems from a 
combination of micro and macro data: The new car market.  Journal of Political Economy 112(1): 68-105. 
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consumer demand for specific nameplates erode to the point that the nameplate volumes trend 
toward zero.  It has no mechanism to generate new nameplates to replace those nameplates 
whose sales it estimates will erode beyond some minimal practical level of production.  Even if 
the CAFE Model can generate sufficiently different technology content that modified variants 
could be thought of as “new” market entrants, there would be no way to associate valid fixed 
effects with these vehicles in the discrete choice model. 

Consumer choice models are typically fit on a single year of data (a cross-section of vehicles and 
buyers), but this approach misses relevant trends that build over time, such as rising GDP or 
shifting consumer sentiment toward emerging technologies.  If such a model is used to estimate 
total sales, but lacks trends in GDP growth or employment, etc., it will have the wrong set (likely 
a smaller set) of new vehicle buyers and exaggerate price responses and attribute preferences.  
Consumer preferences change over time in response to any number of factors—given 
manufacturers’ recent investments in electric powertrains, they are counting on this fact.  But a 
choice model estimated on observed consumer preferences for EVs—or other vehicle attributes 
with comparatively little experience in the market—would necessarily disadvantage a technology 
that is currently (or only recently) unpopular, but gaining popularity.  While these are problems 
that may not matter in the estimation process, where a researcher is attempting to measure 
revealed consumer preference for given attributes at a single point in time, they become material 
once that model is integrated into the simulation and dynamically carried forward for three 
decades.  We note that models that examine aggregate trends, such as the one utilized in this 
analysis, are able to side-step this issue by not placing a value on unique vehicle attributes. 

 

Figure 4-5 – Nameplate Introduction and Attrition; Cumulative Portion of MY 2017 Nameplate Count and 
Sales by Year of Introduction to the U.S. Market 

DOT’s compliance simulation model estimates the additional cost of technology required to 
achieve compliance, or to satisfy market demand for additional fuel economy.  While it 
necessarily calculates these costs on a per-vehicle basis, estimating the cost of additional 
technologies as they are applied to each specific model in order to bring an entire fleet into 
compliance, it is agnostic about how these costs are distributed to buyers.  Manufacturers have 
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strategic, complex pricing models that rely on extensive market research and reflect each 
company’s strategic interests in each market segment.  Automobile companies attempt to 
maximize profit from the sale of their vehicles, rather than solely focusing on minimizing the 
cost of compliance, as the CAFE Model simulates.  Lacking reliable data for each manufacturer 
on production costs and profit margins for each vehicle model in their portfolios, the most 
reasonable course of action is to simulate compliance as if OEMs are attempting to minimize 
costs, and, worth noting, this approach is also the one NHTSA takes in its rulemakings related to 
the Federal Motor Vehicle Safety Standards (FMVSS).   

However, it is obvious that some market segments and individual models are much less elastic 
than others.600  As reflected in the prices of those models, consumers are able to bear a greater 
share of the total cost of compliance before negatively affecting sales and manufacturer profits.   

Several recent commenters on CAFE rules have suggested that the agency should employ a 
pricing model that allows manufacturers to vary prices in response to heterogeneous consumer 
preferences and different levels of willingness to pay for fuel economy, and other attributes, in 
the new vehicle market.  Fundamentally, this would require the agency to model strategic pricing 
for each manufacturer individually—no single pricing model would be appropriate for every 
manufacturer.  There is no reasonable expectation that the agency could embed and utilize each 
manufacturer’s pricing strategy, as this is an essential feature of competitive corporate behavior 
and automakers closely hold pricing strategy information.  Furthermore, models in the academic 
literature that commenters to past rules have suggested are superior because they allow prices to 
adjust, merely demonstrate that the mechanics of those adjustments work; they do not imply that 
the resulting prices are reasonable or realistic.  Given the burden to estimate each manufacturer’s 
standard under the attribute-based system, where the mix of vehicles sold defines not only the 
achieved fuel economy of each fleet but also the standard to which it is compared, NHTSA is 
understandably reluctant to implement models that might drastically shift a manufacturer’s mix 
of vehicles sold within a market segment. 

Some past commenters have also suggested that the agency should use a joint model of 
household vehicle holdings and sales that encompasses decisions to purchase new vehicles, 
retain existing ones, or reduce or augment current holdings of vehicles of all types and vintages 
in each period.  Manufacturers would modify either new vehicle content, prices, or both to 
produce a supply of new vehicles that allowed them each to comply with standards.  And, 
subsequently, households and manufacturers would iteratively interact until the market reached 
equilibrium.  Such a model would face many of the same issues outlined above.  There are 
significant econometric challenges associated with estimating a household’s decision to buy a 
new vehicle instead of a used vehicle (of some vintage), or to maintain its current set.  And 
integrating such a model would require the agency to simulate the dynamics of the used vehicle 
market—hundreds of unique nameplates for each of dozens of vintages—in order to provide the 
correct choice set in each simulated year.  Such a model is beyond the scope of the current 
analysis. 

 
600 See, for example, Kleit, A.N. (2004), Impacts of Long‐Range Increases in the Fuel Economy (CAFE) Standard.  
Economic Inquiry, 42: 279-294.  doi:10.1093/ei/cbh060. 
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While the agency believes that these challenges provide a reasonable basis for not employing a 
discrete choice model in the current CAFE Model, the agency also believes these challenges are 
not insurmountable, and that some suitable variant of such models may yet be developed for use 
in future fuel economy rulemakings.  The agency has not abandoned the idea and plans to 
continue experimenting with econometric specifications that address heterogeneous consumer 
preferences in the new vehicle market as they further refine the analytical tools used for 
regulatory analysis.   

Operating at the level of individual auto and light truck model variants—the same level at which 
compliance is, necessarily, simulated—may not be tractable for rulemaking analyses.  However, 
market shares for brands and manufacturers within market segments are more stable over time—
even if the volumes of segments across the industry fluctuate.  In the 2012 final rule, the analysis 
showed a new vehicle market where the share of passenger car body styles—sedans, coupes, 
hatchbacks—reached about 70 percent of the new vehicle market by 2025, while light trucks, 
including many crossovers, accounted for the remaining 30 percent.  Those results were 
consistent with the assumptions made in 2012, but the combination of low fuel prices and 
decreasing differences in fuel consumption between body styles has instead reduced the market 
share of those body styles significantly and thus eroded the value of the 2012 analysis to inform 
current decisions.  Including a choice model that operated on existing market shares, albeit at a 
higher level of aggregation than specific nameplates, such as brand/segment/powertrain, may 
improve internal consistency with the interaction of assumptions about fuel prices and regulatory 
alternatives.  DOT will continue to engage with the academic community and other stakeholders 
to ensure that future work on this question improves our analysis of regulatory alternatives. 

4.2.2 Modeling Changes in Vehicle Retirement Rates 

The effects of this rulemaking on the fuel economy, prices, and other features of new cars and 
light trucks will affect not only their sales, but also the demand for used vehicles.  This is 
because used cars and light trucks—especially those produced more recently—are a close 
substitute for new models, so changes in prices and other attributes of new cars and light trucks 
will affect demand for used models.  In turn, this will affect their market value as well as the 
number of used vehicles remaining in service.   

Changes in the number of used vehicles in service, and by extension how much they are driven, 
have important consequences for fuel consumption, emissions of CO2 and criteria air pollutants, 
and safety.  The average age of a registered light-duty vehicle in the United States has already 
risen by more than 40 percent since 1995, and topped 12 years old for the first time in 2021 (see 
Figure 4-5, from IHS Markit).601  In light of this trend, it is important to capture the changes to 
vehicle usage and retirement in the used market that may be caused by regulation of the new 
vehicle market. 

 
601 https://ihsmarkit.com/research-analysis/average-age-of-cars-and-light-trucks-in-the-us-rises.html.  (Accessed: 
February 15, 2022). 
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Figure 4-6 – Average Age of a Registered Light-Duty Vehicle in United States 

This section discusses the basis for the scrappage effect of higher CAFE standards, traces each of 
these effects in detail, and explains how the magnitude of this effect is estimated for this action.  
Like many of the effects estimated in this analysis, the magnitude of the simulated standards’ 
effect on scrappage rates is subject to uncertainty.  As a consequence of our assumptions about 
how consumers value fuel economy and when manufacturers will voluntarily adopt fuel 
economy technology, the direction of the scrappage effect is unambiguous. 

4.2.2.1 Foundation of the Scrappage Effect 

Fuel economy standards increase the cost of acquiring new vehicles, but also improve the quality 
of those vehicles by increasing their fuel economy.  The CAFE analysis assumes that consumers 
value the first 30 months of fuel savings at the time of purchase, so that the quality-adjusted 
change in new vehicle prices is the increase in regulatory costs less 30 months of fuel savings.  
Because the CAFE analysis also assumes that in the No-Action Alternative manufacturers will 
adopt fuel economy technologies with a payback period of 30 months or less, it follows that 
there will be net price increases in any regulatory scenario.  Higher CAFE standards make it 
costlier for manufacturers to produce vehicles and, as a result, prices of new vehicles increase.  
As long as the quality-adjusted price increases,602 sales of new vehicles are likely to decline, on 
the margin.  Through the lens of supply and demand curve interactions, the quality-adjusted price 
increase equates to a shift inward of the supply curve for new vehicles.  All else equal, this 
movement corresponds to an increase in the equilibrium price, and decrease in equilibrium 
quantity, of new vehicles purchased. 

 
602 The quality adjusted price is considered higher when regulatory compliance costs exceed 30 months of fuel 
savings.  
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New and used vehicles are substitutes.  When the price of a good’s substitute increases, the 
demand curve for that good shifts outward and the equilibrium price and quantity supplied both 
increase.  Thus, increasing the quality-adjusted price of new vehicles will result in an increase in 
equilibrium price and quantity of used vehicles.  Since, by definition, used vehicles are not being 
“produced” but rather “supplied” from the existing fleet, the increase in quantity must come via a 
reduction in their retirement rates.  Practically, when new vehicles become more expensive, 
demand for used vehicles increases (and these used vehicles become more expensive).  Because 
used vehicles are more valuable in such circumstances, they are scrapped at a lower rate, and just 
as rising new vehicle prices push marginal prospective buyers into the used vehicle market, 
rising used vehicle prices force marginal prospective buyers of used vehicles to acquire older 
vehicles or vehicles with fewer desired attributes.   

See FRIA Chapter 4.5 for a more detailed theoretical discussion of the effects of higher CAFE 
standards on the used car market. 

4.2.2.2 Model Development 

The unintended consequence of emissions standards on scrappage rates was first observed by 
Gruenspecht shortly after the inaugural CAFE standards were promulgated in 1978.603  
Gruenspecht identified criteria pollutant standards as a form of differentiated regulation; a 
regulation that affected some vehicles but not others – in this case, new vehicles but not used 
vehicles.  CAFE standards are another form of differentiated regulation, regulating the fuel 
economy of new, but not used, vehicles and so may produce the same kind of scrappage effect in 
the used vehicle population.  Since then, the relationship between fuel economy standards and 
scrappage has been a growing topic of academic literature.  In preparation of the previous rule—
which marked the first CAFE rulemaking to dynamically model scrappage—the agency 
performed a detailed review of the literature on this topic.604  The principal conclusion from the 
literature review was that, among the studies that have attempted to estimate this effect directly, 
there is consensus about both its existence and direction (i.e., higher used vehicle prices lead to 
slower retirement rates) but estimates of the magnitude of the effect vary.  The agency used the 
literature and other regulatory scrappage models—mainly CARB’s 2004 CARBITS vehicle 
transaction choice model605—as a springboard to create a scrappage model that would be 
internally consistent with the broader CAFE Model.606  

While the agency did not use any particular model from the literature, the agency retained the 
framework outlined by Greenspan and Cohen to construct the CAFE Model’s scrappage model.  
Greenspan and Cohen identified two types of scrappage - engineering scrappage and cyclical 
scrappage.607  Engineering scrappage represents the physical wear on vehicles which results in 
their being scrapped.  Cyclical scrappage represents the effects of macroeconomic conditions on 

 
603 Gruenspecht, H. “Differentiated Regulation: The Case of Auto Emissions Standards.” American Economic 
Review, Vol. 72(2), pp. 328–31 (1982). 
604 See 83 Fed. Reg. 43093-94 (Aug. 24, 2018). 
605 Id.  
606 There were four elements identified as being necessary.  The agency noted that none of the existing scrappage 
models in literature met all four criteria.   
607 Greenspan, A. & Cohen, D. “Motor Vehicle Stocks, Scrappage, and Sales.” Review of Economics and Statistics, 
vol. 81, no. 3, 1999, pp. 369–83., doi:10.1162/003465399558300. 
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the relative value of new and used vehicles—under economic growth the demand for new 
vehicles increases and the value of used vehicles declines, resulting in increased scrappage and 
more rapid fleet turnover.  In addition to allowing new vehicle prices to affect cyclical vehicle 
scrappage à la the Gruenspecht effect, Greenspan and Cohen also note that engineering 
scrappage seemed to increase where EPA vehicular-criteria pollutant emissions standards also 
increased; as more costs went towards compliance technologies, scrappage increased.  In this 
way, Greenspan and Cohen identify two ways that fuel economy standards could affect vehicle 
scrappage: 1) through increasing new vehicle prices, thereby increasing used vehicle prices, and 
finally, reducing on-road vehicle scrappage, and 2) by shifting resources towards fuel-saving 
technologies—potentially reducing the durability of new vehicles.  Under this framework, CAFE 
standards influence only engineering scrappage, but do so in the context of macroeconomic 
conditions that influence cyclical scrappage.  The current implementation of the scrappage model 
is relatively unchanged from the scrappage model used in the 2020 final rule, which had made a 
variety of improvements as compared to the model used for the prior NPRM and addressed other 
substantive comments.  

4.2.2.2.1 Variables and Data Used to Estimate Scrappage  

Many competing factors influence the decision to scrap a vehicle, including the cost to maintain 
and operate it, the household’s demand for VMT, the cost of alternative means of transportation, 
and the value that be attained through reselling or scrapping the vehicle for parts.  A car owner 
will decide to scrap a vehicle when the value of the vehicle is less than the value of the vehicle as 
scrap metal, plus the cost to maintain or repair the vehicle.  In other words, the owner gets more 
value from scrapping the vehicle than continuing to drive it, or from selling it.  Typically, the 
owner that scraps the vehicle is not the first owner.  For the purposes of this exercise, any vehicle 
that disappears from the U.S. population is considered to be retired or “scrapped,” despite the 
fact that many of them are neither dismantled nor actually retired from service.  Many vehicles, 
whose value has declined to a point where continuing to operate and maintain them in the United 
States no longer makes economic sense, are merely exported to other countries (typically sold at 
auction) where they continue their lives for some number of years.  Others disappear as a result 
of collisions or irreparable mechanical failures, but present the same way for our purposes here – 
they fail to appear in the registration roles and, for our purposes, are assumed to be scrapped.   

While scrappage decisions are made at the household level, the agency is unaware of sufficient 
household data to capture scrappage at that level.  Instead, NHTSA uses aggregate data measures 
which capture broader market behavior.   

The agency is interested in how changes in new vehicle prices and fuel economy impact the 
retirement rate of the on-road fleet over time.  In order to isolate this effect, NHTSA needed 
multi-period data on the scrappage rates of used vehicles and prices of new vehicles.  Scrappage, 
itself, is a phenomenon inherently defined over multiple time periods; it represents a change in a 
vehicle (or model year cohort’s) registration status between one period and the next.  As such, 
the potential scrappage effect can only be measured through time series data.  The data contain 
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information about national vehicle registrations in each calendar year from 1975 to 2017.608  
1975 was the earliest year where all data were available.   

4.2.2.2.1.1 Age and Durability 

The most predictive element of vehicle’s scrappage in a given year is the influence of 
‘engineering scrappage.’  This source of scrappage is largely determined by the age of a vehicle 
and the durability of a specific model year vintage.  For a model year cohort, vehicle scrappage 
typically follows a roughly logistic function with age — that is, instantaneous scrappage 
increases to some peak, and then declines, with vehicle age until all (or nearly all) of the vehicles 
produced in a given year have been retired (which is illustrated in Figure 4-6). 

 

 

Figure 4-7 – Cumulative Scrappage for a Model Year Cohort 

NHTSA uses proprietary vehicle registration data from IHS-Polk, the National Vehicle 
Population Profile (NVPP), to collect vehicle age and estimate durability.  While the agency 
gives preference to publicly accessible data whenever possible, the NVPP represents the most 
comprehensive and complete source of vehicle registration information the agency has identified 
to date.   

The data cover the following regulatory classes as defined by NHTSA - passenger cars, light 
trucks (classes 1 and 2a), and medium and heavy-duty trucks (classes 2b and 3).  Polk separates 
these vehicles into finer market segments based on body style and gross vehicle weight rating.  
In order to build scrappage models to support this action, it was important to aggregate these 
vehicle types in a way that is compatible with the existing CAFE Model.   

Since for the purposes of this analysis, vans/SUVs are sometimes classified as passenger cars 
and sometimes as light trucks for regulatory purposes, survival schedules were developed to vary 
by body style.  Separate models were developed for cars, vans/SUVs, and pickup trucks.  This 

 
608 The analysis begins in 1975 as this is the earliest year all required input data were available. 
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approach is preferable to alternative methods—such as dividing vehicles by regulatory class—
because VMT schedules are calculated based on body style in the analysis.  Furthermore, these 
vehicle body styles are assumed to serve different purposes and, as a consequence, likely result 
in different lifetime scrappage patterns.   

Once stratified into body style buckets, the data are aggregated into population counts by vintage 
(model year) and age.  These counts represent the population of vehicles of a given body style 
and vintage in a given calendar year.  How many vehicles remaining in the fleet can be viewed 
as the durability of a particular model and the difference between the counts of a given vintage 
and body style from one calendar year to the next is assumed to represent the number of vehicles 
of that vintage and style scrapped in a given year.   

One issue with using snapshots of registration databases as the basis for computing scrappage 
rates is that vehicles are not removed from registration databases until the last valid registration 
expires.  For example, if registrations are valid for a year, vehicles will still appear to be 
registered in the calendar year in which they are scrapped.  To correct for the scrappage that 
occurs during a calendar year, a similar correction as that in Greenspan and Cohen (1996) is 
applied to the Polk registration data.  We assume that the real on-road count of vehicles of a 
given model year registered in a given calendar year (CY) is best represented by the Polk count 
of the vehicles of that model year in the succeeding calendar year (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶+1).  For example, the 
vehicles scrapped between CY 2000 and CY 2001 will still remain in the Polk snapshot from CY 
2000 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2000), as they will have been registered at some point in that calendar year, and 
therefore exist in the database.  Using a simplifying assumption that all States have annual 
registration requirements,609 vehicles scrapped between July 1st, 1999 and July 1st, 2000 will not 
have renewed registration between July 1st, 2000 and July 1st, 2001, and will not show up in 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2001.  The vehicles scrapped during CY2000 are therefore represented by the difference in 
count from the CY 2000 and CY 2001 Polk datasets: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2001 - 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2000.   

For new vehicles (vehicles where model year is greater than or equal to calendar year), the count 
of vehicles will be smaller than the count in the following year—not all of the model year cohort 
will have been sold and registered.  For these new model years, Greenspan and Cohen assume 
that the Polk counts will capture all vehicles which were present in the given calendar year and 
that approximately one percent of those vehicles will be scrapped during the year.  Importantly, 
this analysis begins modeling the scrappage of a given model year cohort in: 𝐶𝐶𝐶𝐶 = 𝑀𝑀𝑀𝑀 + 2,610 
so that the adjustment to new vehicles is not relevant in the modeling because it only considers 
scrappage after the point where the on-road count of a given MY vintage has reached its 
maximum.   

 
609 In future analysis, it may be possible to work with State-level information and incorporate State-specific 
registration requirements in the calculation of scrappage, but this correction is beyond the initial scope of this 
rulemaking analysis.  Such an approach would be extraordinarily complicated as States can have very different 
registration schemes, and, further, the approach would also require estimates of the interstate and international 
migration of registered vehicles. 
610 Calculating scrappage could begin at CY=MY+1, as for most model year the vast majority of the fleet will have 
been sold by July 1st of the succeeding CY, but for some exceptional model years, the maximum count of vehicles 
for a vintage in the Polk data set occurs at age 2. 
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Figure 4-8 – Visualization of Greenspan-Cohen Adjustment and Polk Data Collection Change 

There is a discontinuity between 2001 and 2002 data due a change in data collection.611  
Scrappage computed for calendar year 2001 represents the difference between the vehicle count 
reported in 𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝐶𝐶𝐶𝐶2002 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2001.  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2001 represents all vehicles on the road as of July 
1st, 2000, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2002 represents all vehicles on the road as of December 31, 2001.  For this 
one timespan, the scrappage will represent vehicles scrapped over a 17-month time period, rather 
than a year.  For this reason, the CY 2001 scrappage data point is dropped, and because of the 
difference in the time period of vehicles scrapped under the old and new collection schemes, an 
indicator for scrappage measured before and after CY 2001 was considered; however, this 
indicator is not statistically significant, and is dropped from the preferred model.  Variations in 
the resolution of state registration data over time have caused some calendar years to contain a 
larger number of vintages than others – the trend being that the oldest calendar years contain the 
fewest ages.  The number of observations for each range of vehicle ages (across the set of 
calendar year snapshots) is summarized in Table 4-5. 

 
611 Prior to calendar year 2002, Polk vehicle registration data were collected as a single snapshot on July 1st of every 
calendar year.  For calendar years 2002 and later, Polk changed the timing of the data collection process to a rolling 
collection ending on December 31.  That is, they consider information from other data sources to remove vehicles 
from the database that have been totaled in crashes before December 31st, but may still be active in State 
registration records.  The switch to a partially rolling dataset means that some of the vehicles scrapped in a calendar 
year will not appear in the dataset and their scrappage will wrongly be attributed to the year prior to when the 
vehicle is scrapped.  While this is less than ideal, these records represent only some of the vehicles scrapped during 
crashes and scrappage rates due to crashes should be relatively constant over the 2001 to 2002-time period.  For 
these reasons, NHTSA expects the potential bias from the switch to a partially rolling dataset to be limited.  Thus, 
the Greenspan and Cohen adjustment applied does not change for the dataset complied from Polk’s new collection 
procedures.   
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Table 4-5 – Summary Vehicle Age and Vintage 

Ages Calendar 
Years Count 

0-15 1975-2017 43 
16 1994-2017 24 
17 1995-2017 23 
18 1996-2017 22 
19 1997-2017 21 
20 1998-2017 20 
21 1999-2017 19 
22 2000-2017 18 
23 2001-2017 17 
24 2001-2017 17 
25 2001-2017 17 
26 2001-2017 17 

27-39 2001-2017 17 

4.2.2.2.1.2 New Vehicle Prices  

As discussed earlier, new and used vehicles are substitutes.  Therefore, the price of new vehicles 
will have a strong effect on the value of used vehicles and, thus, their scrappage rates.  This is the 
primary mechanism by which higher CAFE standards affect retirement rates of used vehicles.  
For historical data on new vehicle transaction prices, NHTSA uses data from the National 
Automobile Dealers Association (NADA).612  The data consist of the average transaction price 
of all light-duty vehicles; since the transaction prices are not broken-down by body style, the 
model may miss unique trends within a particular vehicle body style.  The transaction prices are 
the amount consumers paid for new vehicles and exclude any trade-in value credited towards the 
purchase.  This may be particularly relevant for pickup trucks, which have experienced 
considerable changes in average price as luxury and high-end options entered the market over the 
past decade.  Future models will further consider incorporating price series that consider the 
price trends for cars, SUVs and vans, and pickups separately. 

NHTSA considered using the Bureau of Labor Statistics (BLS) New Vehicle Consumer Price 
Index (CPI).  The purpose of BLS data is to show how prices of similar goods and services 
change over time.  As such, the BLS New Vehicle CPI adjusts prices based on vehicle features—
such as safety and fuel economy improvements.  While this is good for some purposes, it 
incorporates into the price assumptions that are controlled for elsewhere in today’s analysis. 

As further justification, Park (1977) cites a discontinuity found in the amount of quality 
adjustments made to the series so that more adjustments are made over time.613  This could 
further limit the ability for the BLS New Vehicle CPI to predict changes in vehicle scrappage. 

 
612 The data can be obtained from NADA.  For reference, the data for MY 2020 may be found at 
https://www.nada.org/nadadata/.  (Accessed: February 15, 2022). 
613 Parks, R. W. “Determinants of Scrapping Rates for Postwar Vintage Automobiles.” Econometrica, vol. 45, no. 5, 
1977, at p. 1099. 
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However, in order to ensure consistency with the sales response mechanism in the CAFE Model, 
the observed transaction prices have been modified for estimation (and subsequent simulation 
inside the CAFE Model).  In the tables that follow, New Price - FS represents the average price 
of new vehicles minus 30 months of fuel savings for all body styles.  The final specification 
treats the coefficient on the age interactions for this term as zero for all body styles, but 
alternative specifications were tested that allow the elasticity of scrappage to vary with age. 

4.2.2.2.1.3 Fuel Prices, Fuel Economy, and Cost Per Mile 

Instantaneous vehicle scrappage rates are also influenced by fuel economy and fuel prices.  
Historical data on the fuel economy by vehicle style from model years 1979-2016 were obtained 
from the 2016 EPA Fuel Economy Trends Report.614  The van/SUV fuel economy values 
represent a sales-weighted harmonic average of the individual body styles.  Fuel prices were 
obtained from Department of Energy (DOE) historical values, and future fuel prices within the 
CAFE Model use the AEO 2021 Reference Case fuel price projections.615  Fuel price 
assumptions in this analysis are described further in Chapter 4.1.2.  From these values the 
average cost per 100 miles of travel for the cohort of new vehicles in a given calendar year and 
the average cost per 100 miles of travel for each used model year cohort in that same calendar 
year are computed.616  The agency expects that as the new vehicle fleet becomes more efficient 
(holding all other attributes constant), it will be more desirable, and the demand for used vehicles 
should decrease (increasing their scrappage).  As a given model year cohort becomes more 
expensive to operate due to increases in fuel prices, it is expected the scrappage rate of vehicles 
from that model year will increase.  It is perhaps worth noting that more efficient model year 
vintages will be less susceptible to changes in fuel prices, as absolute changes in their cost per 
mile will be smaller.  The functional forms of the cost per mile measures are further discussed in 
the model specification section below. 

4.2.2.2.1.4 Macroeconomic Data  

To capture the cyclical effects of scrappage, the model must include a variable accounting for 
economic conditions.  The agency uses the growth rate of real GDP for the analysis.  GDP 
growth rates are sourced from AEO 2021 through 2050, and extrapolated at the final (stable) 
growth rate through 2090.  Because the purpose of building this scrappage model is to project 
vehicle survival rates under different fuel economy alternatives, and the current fuel economy 

 
614 Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel 
Economy Trends - 1975 through 2016, EPA-420-R-16-010, November 2016.  
615 Note - The central analysis uses the AEO reference fuel price case, but sensitivity analysis also considers the 
possibility of AEO’s low and high fuel price cases.  
616 Work by Jacobsen & van Bentham suggests that these initial average fuel economy values may not represent the 
average fuel economy of a model year cohort as it ages — mainly, they find that the most fuel-efficient vehicles 
scrap earlier than the least fuel-efficient models in a given cohort.  This may be an important consideration in future 
endeavors that work to link fuel economy, VMT, and scrappage.  Studies on “the rebound effect” suggest that 
lowering the fuel cost per driven mile increases the demand for VMT.  With more miles, a vehicle will be worth less 
as its perceived remaining life will be shorter; this will result in the vehicle being more likely to be scrapped.  A 
rebound effect is included in this analysis, but expected lifetime VMT is not included within the current dynamic 
scrappage model. 
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projections go as far forward as calendar year 2050, using a data set that encompasses 
projections at least through 2050 is essential. 

NHTSA considered using U.S. unemployment rate and per capita personal disposable income as 
alternatives to GDP growth rate to capture the cyclical component of the macro-economy.  Since 
these three variables are highly correlated, the model may only contain one of these indicators.  
The agency tested the scrappage model with unemployment and per capita personal disposable 
income data, gathered from BEA.  The results showed evidence of autocorrelation in the error 
terms that is absent when GDP is used instead.  

4.2.2.2.1.5 Cash for Clunkers  

On June 14, 2009, the Car Allowance Rebate System (CARS) became law, with the intent to 
stimulate the economy through automobile sales and accelerate the retirement of older, less fuel 
efficient and less safe vehicles.  The program offered a $3,500 to $4,500 rebate for vehicles 
traded-in for the purchase of a new vehicle.  Vehicles were subject to several program eligibility 
criteria: first, the vehicle had to be drivable and continuously registered and insured by the same 
owner for at least one year; second, the vehicle had to be less than 25 years old; third, the MSRP 
had to be less than $45,000; and finally, the new vehicle purchased had to be more efficient than 
the trade-in vehicle by a specified margin.  The fuel economy improvement requirements by 
body style for specific rebates are presented in Table 4-6. 

Table 4-6 – CARS Fuel Economy Improvement Required for Rebates by Regulatory Class 

 $3,500 Rebate 
Eligibility 

$4,500 Rebate 
Eligibility 

Passenger Car 4-9 MPG 
Improvement 

10+ MPG 
Improvement 

Light Truck 2-5 MPG 
Improvement 

5+ MPG 
Improvement 

 
By August 25, 2009, the program spent its $2.85 billion budget on 678,359 eligible transactions.  
As a condition of the program, the vehicles were scrapped at the point of trade-in by destroying 
the engine.  The CARS program arguably had two transitory effects on scrappage.  First, some 
vehicles may have been prematurely scrapped in exchange for the trade-in credit.  Second, the 
trade-in incentive likely increased demand for new vehicles, which in-turn increased new vehicle 
prices.  Both of these effects would accelerate scrappage for the duration of the program.  The 
Polk data support this hypothesis as vehicle scrappage rates spiked in 2009.  Figure 4-8 shows 
the impact of the program from another perspective.  It shows the observed instantaneous 
scrappage rate of MYs 1977-2015 by age for CYs 1980-2015.  The black stars represent 
observed scrappage rates for calendar years where the CARS program was not in effect, the red 
stars represent CY 2009 when the CARS program was in effect, and the blue dots represent the 
mean value of the scrappage when CARS was not in effect. 
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Figure 4-9 – Impacts of the 2009 CARS by Body Style 

Li, Linn, and Spiller (2010) used Canada as a counterfactual example to identify the portion of 
CARS trade-ins attributable to the policy, i.e., trade-ins that would not have happened anywhere 
if the program were not in place.617  They argued that the Canadian market is largely similar to 
the U.S. market, in part based upon the fact that 13 to 14 percent of households purchased new 
vehicles one year pre-recession in both countries.  They also argued that the economic crisis 
affected the Canadian economy in a similar manner as it affected the U.S. economy.  They noted 
that when Canada offered a small rebate of $300 to vehicles traded in during January 2009, only 
60,000 vehicles were traded in under that program.  Using those assumptions, Li, et al., applied a 
difference-in-difference methodology to isolate the effect of the CARS program on the scrappage 
of eligible vehicles.  Li, et al., found a significant increase in the scrappage only for eligible U.S. 
vehicles, suggesting they isolated the effect of the policy.  They conclude that of the 678,359 
trade-ins made under the program, 370,000 of those would not have happened during July and 
August 2009.   

The agency finds the evidence from Li, et al., persuasive toward the inclusion of a control for the 
CARS program during calendar year 2009.  Notable from Figure 4-8 is that the effect of CARS 
on instantaneous scrappage is largest around the point that the average scrappage peaks for all 
other calendar years for each body style.  For cars the effect of the program increases until 
around age 20 and then decreases, for vans/SUVs the effect increases until just after age 15 and 
then decreases at a much slower rate, and finally, for trucks the effect increases steadily until 
around age 17 and then nearly levels off for all observed ages.  For this reason, a dummy 
variable for CY 2009 was interacted with linear and non-linear age variables to represent the 
effect of the CARS program.  The analysis confirmed that modeling as a constant dummy 
variable is sufficient to capture the nonlinear effect and accurately predict the spikes in scrappage 
under the CARS program. 

 
617 Li, S. et al. “Evaluating Cash-for-Clunkers - Program Effects on Auto Sales and the Environment.” Journal of 
Environmental Economics and Management, vol. 65, no. 2, 2013, pp. 175–93., doi:10.1016/j.jeem.2012.07.004. 
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4.2.2.3 Model Specification 

4.2.2.3.1 Stationary Testing  

As discussed earlier, the scrappage model utilizes panel data.  Panel data observe multiple 
individuals or cohorts over time.  The data employed by the scrappage model observes the 
scrappage rates of individual model year cohorts between successive calendar years.  The model 
allows for the isolation of trends over time and across individuals.618  Since the scrappage model 
uses aggregate model year cohorts to estimate scrappage rates by age and time-dependent 
variables (new vehicle prices, fuel prices, GDP growth rate, etc.), panel data are necessary to 
estimate the model.  A major challenge to using panel data is that the data structure requires 
consideration of potential violations of econometric assumptions necessary for consistent and 
unbiased estimates of coefficients both across the cross-section and along the time dimension.  
The cross-section of the scrappage data introduces potential heterogeneity bias—where model 
year cohorts may have cohort-specific scrappage patterns.619  Stated differently, each model year 
may have its own inherent durability.  The time dimension of a panel introduces a set of potential 
econometric concerns present in time series analysis.   

Before devising the scrappage model, the agency needs to determine which, if any, of the 
variables are non-stationary.  The agency uses the Augmented Dickey-Fuller test to test the 
variables.620  The logistic form of the instantaneous scrappage rate is stationary in levels.  As 
such, there are no long-term trends within the scrappage rates that need to be captured and the 
scrappage model does not require lagged dependent variables to produce stationary residuals.  
However, to estimate unbiased estimators, the independent variables must also be stationary.  
The following table summarizes the order of integration of each of the considered regressions; 
the regression forms represent the form of the variable that is included in the considered models.  
All the variables considered are either I(0) or I(1), meaning that they should be run in either 
levels or first differences, respectively.  This significantly simplifies the regressions.   

 
618 Cambridge University Press. (1989). Analysis of Panel Data. New York, NY. 
619 Cambridge University Press. (1989). Analysis of Panel Data. New York, NY. 
620 Lupi, Claudio (2019, September 7). Package ‘CAFtest.’ Retrieved from https://cran.r-
project.org/web/packages/CADFtest/CADFtest.pdf.  (Accessed: February 15, 2022). 
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Table 4-7 – Summary of Order of Integration of Considered Scrappage Variables 

Scrappage Factor Considered Measure Source Integration 
Order 

Regression 
Form 

Expected 
Sign 

Scrappage Rate 

Logistic of inter-
annual scrappage rate 
for a model year/body 

style cohort 

NVPP 
(IHS/Polk) I(0) Levels N/A 

Age 
Age defined by the 

Greenspan and Cohen 
adjustment 

NVPP 
(IHS/Polk) N/A Levels Polynomial621 

Model year Model year as defined 
from dataset 

NVPP 
(IHS/Polk) N/A Levels See MY 

Projections622 

Business cycle 
indicator 

Growth in GDP from 
previous year 
(annual, %) 

BEA I(0) Levels (+) 

Prices of purchase 
Average used vehicle 

prices by age in 
current year 

No source; 
endogenous N/A N/A (-) 

Maintenance/repair 
costs 

Maintenance/repair 
CPI  

(fixed to 2016) 
BLS I(1) Difference (+) 

Prices supply of 
substitutes 

Average new vehicle 
prices less 30 months 
fuel savings in current 

year ($2018) 

NADA, 
EIA, EPA 

trends 
I(1) Difference (-) 

Prices of usage 

Cost-per-mile of 
model year/body style 
cohort in current year 

($2018/100 mile) 

EIA, EPA 
trends I(1) Difference (+) 

Prices of usage 

Fuel share weighted 
fuel prices for model 

year/body style cohort 
in current year 

($2018) 

EIA, EPA 
trends I(1) Difference (-)623 

4.2.2.3.2 Modeling Durability of Model Year Cohorts Over Time 

As explained in Chapter 4.2.2.2.1.1, engineering scrappage is largely determined by the age of a 
vehicle and the durability of a specific model year vintage.  Because vehicle scrappage typically 
follows a roughly logistic function with age, the analysis uses a logistic function to capture the 
trend of vehicle scrappage with age, but allows non-linear terms to capture any skew to the 

 
621 The effect of age on scrappage is an ‘inverted-U’ shape; the scrappage rate increases with age up to some age, 
after which the scrappage rate declines with age. 
622 See the section on modeling durability trends over time.  Generally, scrappage rates will decrease with successive 
model years. 
623 Since we include the cost-per-mile, we would expect that the change in fuel prices should capture only a capital 
constraint where increasing fuel prices will result in less capital to scrap a used vehicle and replace it. 
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logistic relationship.  The durability of successive model years generally increases over time.  
However, this trend is not constant with vehicle age—the instantaneous scrappage rate of 
vehicles is generally lower for later vintages up to a certain age, but increases thereafter so that 
the final share of vehicles remaining converges to a similar share remaining for historically 
observed vintages.  Figure 4-9 to Figure 4-11 shows the survival and scrappage patterns of 
different vintages with vehicle age for cars, SUVs/vans and pickups, respectively.  Cars have the 
most pronounced durability pattern.  Figure 4-9 shows that newer vintages scrap slower at first, 
but then scrap more heavily so that the final share remaining of cars is relatively constant by age 
25 for all vintages.  

 

Figure 4-10 – Survival and Scrappage Patterns of Cars by Greenspan Age 

SUVs/vans have a less pronounced durability pattern.  Model year 1980 actually lives longer 
than model years 1985 and 1990.  This is likely due to a switch of SUVs/vans to be based on car 
chassis rather than pickup chasses over time.  However, through the later model years, the 
durability trend is more like that of cars.  The lack of a continuous trend in durability of 
SUVs/vans makes the way this trend is captured particularly important.   
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Figure 4-11 – Survival of Scrappage Patterns of SUVs/Vans by Greenspan Age 

There is no clear trend in durability for pickups.  Like SUVs/vans, this makes parameterizing by 
using a form of vintage as a continuous variable problematic.  Such a parametric form does not 
allow for each model year to have its own durability pattern. 

 

Figure 4-12 – Survival and Scrappage Patterns of Pickups by Greenspan Age 

NHTSA attempted to model the natural log of model year as a continuous variable interacted 
with age to capture an increasing but diminishing trend of vehicle durability for the younger 
ages.  However, enforcing a parametric form on a continuous model year excluded the possibility 
of including model year specific fixed effects and required that durability to have a parametric 
trend with successive vintages.  As seen above, SUVs/vans and pickups certainly do not follow 
such a trend, so that this constraint was too restrictive, at least for these body styles.   

Instead of regressing the natural log of the vintage share in the remaining models, the agency 
tried several forms of the share remaining from the previous period as an independent variable, 
as seen in Table 4-8 through Table 4-10, below.  Since the logistic instantaneous scrappage rate 
is stationary (it is independent of the previous periods’ logistic instantaneous scrappage rate), the 
share remaining should not be endogenous.  The specifications that include variables for the 
share remaining also include model year specific fixed effects, as well as the additional variables 
that were selected to capture the effect of economic cycles, changes in average new vehicle 
prices, and other non-engineering considerations on instantaneous scrappage rates.  

4.2.2.3.3 Estimating the Scrappage Models 

Below is the logistic scrappage equation used in the analysis supporting this final rule.  

ln�
𝑆𝑆𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶

1 − 𝑆𝑆𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶
� = 𝛽𝛽0 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 + 𝛽𝛽1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴2𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 + 𝛽𝛽2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴3𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 + 

𝛽𝛽3 ∗ 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 + 𝛽𝛽4 ∗ (𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶  ∗  𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶) + 𝛽𝛽5 ∗
(𝐴𝐴𝐴𝐴𝑒𝑒2𝑀𝑀𝑀𝑀.𝐶𝐶𝐶𝐶  ∗  𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶) + 𝛽𝛽6 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐹𝐹𝐹𝐹)𝐶𝐶𝐶𝐶+ 
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𝛽𝛽7 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)𝐶𝐶𝐶𝐶+ 𝛽𝛽8 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀)𝐶𝐶𝐶𝐶+ 𝛽𝛽9 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝐶𝐶𝐶𝐶 + 

 ∗ 𝐼𝐼[ ]  + 𝛽𝛽11 ∗ (𝐼𝐼[𝐶𝐶𝐶𝐶2009] ∗  𝐼𝐼[𝐴𝐴𝐴𝐴𝐴𝐴 ≥ 25]) + (𝛽𝛽12 ∗ 𝐼𝐼[𝐶𝐶𝐶𝐶2010] + 𝛽𝛽13 ∗ (𝐼𝐼[𝐶𝐶𝐶𝐶2020] ∗ 
∗ 𝐼𝐼[𝐴𝐴𝐴𝐴𝐴𝐴 ≥ 25]) + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 

Equation 4-6 – Scrappage Logistic Form 

S represents the instantaneous scrappage rate in a period, so that the dependent variable is the 
logit form of the scrappage rates.  Throughout the equation, Diff refers to the first difference of a 
given variable.  As discussed in Chapter 4.2.2.3.1, above, it is important to ensure that the 
statistical properties of a variable do not change with time or else the variable will introduce 
statistical bias into the analysis.  Because several of the variables considered in Table 4-7 were 
integrated of order 1, it is necessary to use the first difference (the calculated difference in its 
observed value from time t to time t + 1) in order to ensure stationarity.  

Age represents the age of the model year cohort in a specific calendar year.  The coefficient on 
the cubic age term is assumed to be zero for the van/SUV and pickup specifications as this term 
is not necessary to capture the general scrappage trend for these body styles.  Share Remaining 
represents the share of the original cohort remaining in that calendar year.  These two 
components represent the engineering portion of scrappage—the inherent durability of a model 
year and the natural life cycle of how vehicles scrap out of a model year cohort as the cohort 
increases in age.   

New Price—FS represents the average price of new vehicles minus 30 months of undiscounted 
fuel savings for all body styles.  The central analysis assumes the coefficient on the age 
interactions for this term are zero for all body styles, but NHTSA considered alternative 
specifications that allow the elasticity of scrappage to vary with age.  Fuel Price is the real fuel 
prices, weighted by fuel share (across all fuel types, but is overwhelming skewed toward 
gasoline in the historical data) of the model year cohort being scrapped.  CPM represents the cost 
per 100 miles of travel for the specific body style of the model year cohort being scrapped under 
the current period fuel prices and using fuel shares for that model year cohort.  These measures 
capture the response of scrappage rates to new vehicle prices, fuel savings, and to changes in fuel 
prices that make the used model year cohort more or less expensive to operate.  Because these 
measures are all I(1), as discussed above in Table 4-7, the first difference of all of these variables 
is used in modelling.   

GDP Growth represents the (real) GDP growth rate for the period.  This captures the cyclical 
components of the macro-economy.  Chapter 4.2.2.2.1.4, above, discusses how this specific 
measure was chosen, and what other measures were considered as alternative or additional 
independent variables.   

I[CY2009] and I[CY2010] represent calendar year dummies for 2009 and 2010 when the CARS 
program was in effect; this controls for the impact of the program.   

I[Age ≥ 25] represents an indicator for vehicles 25 years and older.  The interaction of the 
calendar year dummies with this indicator allows for the effect of the CARS program to be 
different for vehicles under 25 versus vehicles 25 and older.  Since only vehicles under 25 were 
eligible for the program, this flexibility is important to correctly control for the program.  
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FixedEffects represents a set of model year fixed effects used to control for heterogeneity across 
different model years.  This is related to the durability and engineering scrappage. 

Solving for instantaneous scrappage yields the following: 

𝑆𝑆 =
𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖

1 + 𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖
 

Equation 4-7 – Instantaneous Scrappage  

In the equation above, ∑𝛽𝛽𝑖𝑖 𝑋𝑋𝑖𝑖 represents the right-hand side of the above model specification.   
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Table 4-8 – Car Specifications with Alternative Durability Constructions 

Variable 
Share 

Remaining, 
Quadratic 

Preferred Share 
Remaining, 

Linear 

Share 
Remaining, 

Constant 

Age 0.0578317*** 
(0.0070468) 

0.0951732*** 
(0.0058835) 

0.4360045*** 
(0.0021804) 

Age2 -0.0019635*** 
(0.0003689) 

-0.0063290*** 
(0.0002880) 

-0.0205609*** 
(0.0001130) 

Age3 -0.0000414*** 
(0.0000061) 

0.0000472*** 
(0.0000047) 

0.0002313*** 
(0.0000025) 

Share Remaining -3.1435300*** 
(0.0414626) 

-3.4186938*** 
(0.0343009) 

-1.4338395*** 
(0.0256165) 

Age *Share Remaining 0.3120942*** 
(0.0072003) 

0.1806424*** 
(0.0026794)  

Age2 *Share Remaining -0.0121010*** 
(0.0005793)   

Diff(New Price - Fuel 
Savings) 

-0.0000951*** 
(0.0000013) 

-0.0001009*** 
(0.0000014) 

-0.0000912*** 
(0.0000020) 

Diff(Real Gas Price) -0.4458118*** 
(0.0200234) 

-0.5176484*** 
(0.0166983) 

-0.6428521*** 
(0.0220153) 

Diff(Used Cost Per 100 
miles) 

0.0524257*** 
(0.0038726) 

0.0620020*** 
(0.0034245) 

0.0714549*** 
(0.0045965) 

GDP Growth Rate 0.0456642*** 
(0.0008774) 

0.0469495*** 
(0.0010729) 

0.0563901*** 
(0.0010643) 

CY2009 0.0732048*** 
(0.0190192) 

0.2075985*** 
(0.0094498) 

0.0839103*** 
(0.0121392) 

CY2009, Ages 25+ 0.4512855*** 
(0.0314314) 

0.4920502*** 
(0.0218911) 

0.4029622*** 
(0.0252641) 

CY2010 0.2273621*** 
(0.0135031) 

0.3150729*** 
(0.0089111) 

0.4052745*** 
(0.0169191) 

CY2010, Ages 25+ 0.2995697*** 
(0.0238203) 

0.2372077*** 
(0.0122188) 

0.1398496*** 
(0.0233336) 

Adj-R2 0.8989188 0.9001046 0.8957709 
AIC 213 201 231 

Woodridge AC P-Value624 0.0026154 0.0145811 0.0010401 

*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 

 
624 Note: Wooldridge Test For AR(1) Errors In FE Panel Models implemented as ‘pwartest’ from the R Package 
‘plm’.  The null hypothesis is that there is serial correlation in the errors, so that a p-value<0.05 suggests that the 
errors are not serially correlated. 
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Table 4-9 – SUVs/Vans Specifications with Alternative Durability Constructions 

Variable 
Share 

Remaining, 
Quadratic 

Preferred Share 
Remaining, 

Linear 

Share 
Remaining, 

Constant 

Age 0.2466527*** 
(0.0063507) 

0.0460123*** 
(0.0055806) 

0.4015673*** 
(0.0015458) 

Age2 -0.0065623*** 
(0.0001252) 

-0.0029204*** 
(0.0001212) 

-0.0095063*** 
(0.0000358) 

Share Remaining 0.0297029 
(0.0901657) 

-3.3452757*** 
(0.0554430) 

0.7119660*** 
(0.0222985) 

Age *Share Remaining -0.0621384*** 
(0.0073936) 

0.1825513*** 
(0.0030923)  

Age2 *Share Remaining 0.0112131*** 
(0.0003223)   

Diff(New Price - Fuel 
Savings) 

-0.0000228*** 
(0.0000013) 

-0.0000356*** 
(0.0000013) 

-0.0000299*** 
(0.0000011) 

Diff(Real Gas Price) -0.2764171*** 
(0.0257452) 

-0.4362834*** 
(0.0278925) 

-0.2895806*** 
(0.0231274) 

Diff(Used Cost per 100 
Miles) 

0.0524134*** 
(0.0043595) 

0.0717750*** 
(0.0043034) 

0.0531272*** 
(0.0034518) 

GDP Growth Rate 0.0695386*** 
(0.0012301) 

0.0657111*** 
(0.0009900) 

0.0795823*** 
(0.0010000) 

CY2009 0.4353784*** 
(0.0155607) 

0.1828926*** 
(0.0129064) 

0.6678445*** 
(0.0236451) 

CY2009, Ages 25+ 0.3581448*** 
(0.0206753) 

0.6247703*** 
(0.0191476) 

0.3282078*** 
(0.0248535) 

CY2010 0.0924318*** 
(0.0167183) 

0.2424634*** 
(0.0126816) 

0.3936159*** 
(0.0158770) 

CY2010, Ages 25+ 0.3022435*** 
(0.0215352) 

0.1385811*** 
(0.0298242) 

-0.0734390** 
(0.0223489) 

R2 0.9033051 0.9049046 0.8845334 
AIC 173 160 288 

Woodridge AC P-Value625 0.0035220 0.0486846 0.0000051 

*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 

 
625 Note: Wooldridge Test For AR(1) Errors In FE Panel Models implemented as ‘pwartest’ from the R Package 
‘plm’.  The null hypothesis is that there is serial correlation in the errors, so that a p-value<0.05 suggests that the 
errors are not serially correlated. 
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Table 4-10 – Pickup Specifications with Alternative Durability Constructions 

Variable 
Share 

Remaining, 
Quadratic 

Preferred 
Share 

Remaining, 
Linear 

Share 
Remaining, 

Constant 

Age 0.0776425*** 
(0.0064930) 

0.0528728*** 
(0.0055778) 

0.2629608*** 
(0.0015738) 

Age2 -0.0023773*** 
(0.0001126) 

-0.0018482*** 
(0.0000995) 

-0.0057176*** 
(0.0000225) 

Share Remaining -1.5573629*** 
(0.1003296) 

-1.9174078*** 
(0.0731793) 

0.5012308*** 
(0.0306657) 

Age *Share Remaining 0.1049521*** 
(0.0054214) 

0.1310775*** 
(0.0034927)  

Age2 *Share Remaining 0.0012152*** 
(0.0002025)   

Diff(New Price - Fuel Savings) -0.0000674*** 
(0.0000019) 

-0.0000816*** 
(0.0000018) 

-0.0000581*** 
(0.0000017) 

Diff(Real Gas Price) -0.2864880*** 
(0.0334947) 

-0.5001835*** 
(0.0334884) 

0.0798291** 
(0.0299877) 

Diff(Used Cost per 100 Miles) 0.0441250*** 
(0.0056864) 

0.0646677*** 
(0.0057105) 

-0.0097471 
(0.0052524) 

GDP Growth Rate 0.0736057*** 
(0.0011368) 

0.0582337*** 
(0.0012998) 

0.0602333*** 
(0.0009533) 

CY2009 0.5757490*** 
(0.0170277) 

0.5752367*** 
(0.0170742) 

0.5852774*** 
(0.0205956) 

CY2009, Ages 25+ 0.0705278* 
(0.0354674) 

-0.0770359* 
(0.0343983) 

0.1636518*** 
(0.0337895) 

CY2010 0.1908829*** 
(0.0074929) 

0.2808360*** 
(0.0070026) 

0.2236518*** 
(0.0129120) 

CY2010, Ages 25+ 0.3659284*** 
(0.0136404) 

0.4057619*** 
(0.0129972) 

0.2123575*** 
(0.0153148) 

R2 0.9228605 0.9193500 0.9170718 
AIC -45 -48 -32 

Woodridge AC P-Value626 0.6073232 0.6683055 0.0516705 

*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 

As Table 4-8 shows, the linear form of the interaction of age and share remaining does not show 
evidence of autocorrelation and also has the lowest Akaike Information Criterion (AIC – an 
estimator of prediction error and measure of model quality) and highest adjusted R-squared.  For 
these reasons, this is the preferred specification of the durability effect.  Since the share 
remaining coefficient is negative and larger than the positive coefficient on the share remaining 

 
626 Note: Wooldridge Test For AR(1) Errors In FE Panel Models implemented as ‘pwartest’ from the R Package 
‘plm’.  The null hypothesis is that there is serial correlation in the errors, so that a p-value<0.05 suggests that the 
errors are not serially correlated. 
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interacted with age, a cohort that has a higher share remaining at an early age will have a lower 
instantaneous scrappage rate in this period until a certain age and then a higher scrappage rate 
after that age.  To find the age where the sign of the share remaining coefficient will switch from 
predicting a lower instantaneous scrappage rate to a higher one, one must take the ratio of the 
coefficient on the share remaining variable to the share remaining interacted with age—this 
suggests that at age 19, the sign of the share remaining variable flips.  That is, the instantaneous 
scrappage rate of cars is predicted to be lower if the share remaining is higher until age 18, after 
which a higher share remaining predicts a higher instantaneous scrappage rate. 

Table 4-9 shows, the linear interaction of age and share remaining is the only specification of the 
durability effect for SUVs/vans that do not show autocorrelation in the error structure.  The 
linear interaction of age and share remaining has the lowest AIC and highest R-squared; for this 
reason, this is the preferred specification of the durability effect for SUVs/vans.  The signs for 
share remaining and share remaining interacted with age show a similar trend as that to cars.  
Taking the ratio again of the share remaining to the share remaining interacted with age, for ages 
0 to 18 a higher share remaining predicts lower instantaneous scrappage, and for ages beyond 18 
it predicts a higher instantaneous scrappage rate. 

Table 4-10 shows, all specifications of the durability effect for pickups do not show 
autocorrelation in the error structures.  However, similar to cars and SUVs/vans, the linear 
interaction of age and share remaining has the lowest AIC and highest adjusted R-squared.  For 
this reason, this is the preferred specification for all body styles.  Taking the ratio of the 
coefficient on share remaining to share remaining interacted with age shows that a higher share 
remaining will predict a lower instantaneous scrappage rate in the next period for ages 0 through 
14, but a higher instantaneous scrappage rate for ages 15 and older. 

4.2.2.3.3.1 Projecting Durability in the CAFE Model 

The left graphs in Figure 4-12 through Figure 4-14 show the fixed effects for the preferred 
scrappage specifications for cars, vans/SUVs, and pickups, respectively.  For all body styles 
there is a general downward trend in the fixed effects.  This suggests an increase in the durability 
over successive model years.  However, since the panel datasets are unbalanced, there is likely 
potential bias for the fixed effects that include only certain ages.  This makes projecting the 
durability increase from the fixed effects a little more complicated than merely fitting to all fixed 
effects.  First, NHTSA determined what part of this trend is likely due to increases in vehicle 
durability (and should be projected forward) and which part of the trend may conflate other 
factors. 

The right graphs in Figure 4-12 through Figure 4-14 show the average observed logistic 
scrappage rates by model year for all ages where data exist.  As can be seen, the average 
observed scrappage rates decline dramatically for model years after 1996 for all body styles.  
There are two reasons this trend exists.  First, as the figures show, the instantaneous scrappage 
rate generally follows an inverted u-shape with respect to vehicle age.  The instantaneous 
scrappage rates generally peak between ages 15 and 20 for all body styles.  Model year 1996 is 
the first model year which will be at least age 20 at the most recent year of data used to estimate 
the scrappage models (calendar year 2016).  This means that all model years newer than 1996 
have likely not yet reached the age where the instantaneous scrappage rate will be the highest for 



  456 

the cohort.  Accordingly, the fixed effects could be biased downwards (consistent with the 
sharper downward slope in the fixed effects for most body styles for model years beyond 1996) 
because of the unbalanced nature of the panel, and not because of an actual increase in inherent 
vehicle durability for those model years.  

The second reason the average logistic scrappage rates for model years before 1996 is more 
stable is because each data point in the average has increasingly less effect on the average as 
more data exist.  For model years 1996 and older there are at least 18 data points (we start the 
scrappage at age 2, by which point effectively all of a model year has been sold), and each will 
have a smaller effect on the average than for newer model years with fewer observations.  For 
these reasons, the average observed logistic scrappage rate is more constant for model years 
before 1996.  As a result, we do not consider the trend in fixed effects after model year 1996 to 
rely on enough historical data to represent a trend in vehicle durability, as opposed to a trend in 
the scrappage rate with vehicle age.  

In considering which model year fixed effects should be considered in projecting durability 
trends forward, another important factor is whether there are discrete shifts in the types of 
vehicles that are in the market or category of each body style over time.  For cars, an increasing 
market share of Japanese automakers which tend to be more durable over time might result in 
fixed effects for earlier model years being higher.  This trend is shown in the fixed effects in  
Figure 4-12, which follow a steeper trend before model year 1980. 

 

Figure 4-13 – Trends in Fixed Effects for Preferred Car Specification 

For vans/SUVs, earlier model years are more likely to be built on truck chassis (body-on-frame 
construction) instead of car chassis (unibody construction).  Since pickups tend to be more 
durable, the earlier fixed effects are likely to be lower for vans/SUVs for earlier model years.  
The 1984 Jeep Cherokee was the first unibody construction SUV.627  As Figure 4-13 shows, the 
fixed effects before 1986 show inconsistent trends; these are likely due to changes in what was 

 
627 https://www.autoguide.com/auto-news/2018/01/10-interesting-facts-from-the-history-of-the-jeep-cherokee.html.  
(Accessed: February 15, 2022). 

https://www.autoguide.com/auto-news/2018/01/10-interesting-facts-from-the-history-of-the-jeep-cherokee.html
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considered a van/SUV over time.  For this reason, NHTSA builds the trend of fixed effects from 
model years 1986 to 1996. 

 

Figure 4-14 – Trends in Fixed Effects for Preferred Van/SUV Specification 

 

Figure 4-15 – Trends in Fixed Effects for Preferred Pickup Specification 

While the trend for pickups and cars could be extrapolated before 1986, NHTSA opted to keep 
the fixed effects included constant for all body styles.  Thus, the projections are built from model 
year 1986 to model year 1996 fixed effects.  Table 4-11 below shows the linear regressions 
shown as the line on the left side of Figure 4-12 through Figure 4-14.  The durability cap 
represents the last model year where the durability trend is assumed to persist.  The agency caps 
the durability impacts at model year 2005, as data beyond this point do not exist for enough ages 
to determine if durability has continued to increase since this point.  This cap implies that model 
years after 2005 are assumed to have the same initial durability as model year 2005 vehicles.  
Since there is a limit to the potential durability of vehicles, this acts as a bound on this portion of 
the scrappage model (which, in turn impacts simulated fleet size and average age). 
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Table 4-11 – Durability Inputs in the CAFE Model 

Coefficients Inputs Cars Vans/SUVs Pickups 

𝛽𝛽12 Intercept 21.13195 25.488 54.52891 

𝛽𝛽13 MY -0.01141 -0.01364 -0.02879 

𝛽𝛽14 MY Durability 
Cap 2005 2005 2005 

 
The durability projections enter the scrappage equation in the CAFE Model simulations in 
accordance with the following equation: 

ln�
𝑆𝑆𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶

1 − 𝑆𝑆𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶
� = 𝛽𝛽0 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 + 𝛽𝛽1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴2𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 + 𝛽𝛽2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴3𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 + 

𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 ∗ (𝛽𝛽3 + 𝛽𝛽4 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶)+ 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐹𝐹𝐹𝐹)𝐶𝐶𝐶𝐶 ∗ (𝛽𝛽5 + 𝛽𝛽6 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀.𝐶𝐶𝐶𝐶 + 𝛽𝛽7 ∗ 𝐴𝐴𝐴𝐴𝑒𝑒2𝑀𝑀𝑀𝑀.𝐶𝐶𝐶𝐶 + 𝛽𝛽8 ∗ 𝐴𝐴𝐴𝐴𝑒𝑒3𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶)+ 

𝛽𝛽9 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)𝐶𝐶𝐶𝐶+ 𝛽𝛽10 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶𝐶𝐶100𝑀𝑀𝑀𝑀𝑀𝑀)𝐶𝐶𝐶𝐶+  

𝛽𝛽11 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝐶𝐶𝐶𝐶 + 𝛽𝛽12+𝛽𝛽13 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 - ifelse(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀>𝛽𝛽14, 𝛽𝛽13 ∗ (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝛽𝛽14), 0) 

Equation 4-8 – Durability Projections and Scrappage Equation 

The intercept enters as a constant added to the predicted logistic of the instantaneous scrappage 
rate.  The model year slope enters as the model year for all model years older than 2005 and 
enters as 2005 for all model years 2005 and newer. 

Once the predicted logistic scrappage rate is calculated in the CAFE Model (including the 
projections of the fixed effect portion of the equation), the future population of model year 
cohorts can be predicted.  The instantaneous scrappage can be calculated directly from S.  It 
identifies the share of remaining vehicles in each calendar year that are scrapped in the next year.  
The population of vehicles in the next calendar year can be calculated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶+1 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 ∗ (1 − 𝑠𝑠𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶) 

Equation 4-9 – Calculation of Population of Vehicles in the Next Calendar Year 

This process iterates at the end of the CAFE Model simulation to determine the projected 
population of each model year in each future calendar year.  This allows the calculation of VMT, 
fuel usage, pollutant and CO2 emissions, and associated costs and benefits.  The CAFE Model 
documentation released with this final rule further details how the scrappage model is projected 
within the simulations. 
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4.2.2.3.3.2 Decay Function for Oldest Ages 

Nearly six percent of the MY 2015 van/SUV fleet and eight percent of the pickup fleet is 
projected to persist until age 40.  This is unrealistic, and likely due to the fact that the agency 
does not observe enough model years for those ages and over-predicts the impact of durability 
increases for those ages.  For this reason, the agency uses a scrappage curve with an accelerated 
decay function to predict instantaneous scrappage beyond age 30 for all classes.  Table 4-12 
below, shows the inputs used for this analysis. 

Table 4-12 – Decay Function Inputs 

Coefficients Inputs Cars Vans/SUVs Pickups 
𝛽𝛽15 Decay Age 30 30 30 
𝛽𝛽16 Final Survival Rate 0.01 0.025 0.025 

 
The agency selected to have the decay function begin operating at age 30 as the observed 
historical trends run through age 30.   

The decay function is implemented in the model using the following conditions for the 
coefficients in Table 4-12: 

If (age<𝛽𝛽15), 𝑆𝑆 = 𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)

1+𝑒𝑒∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)
 

And: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶+1 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 ∗ (1 − 𝑆𝑆𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶). 

If (age>=𝛽𝛽15), 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶+1 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶=𝛽𝛽15 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∗𝑡𝑡 

Where:𝑡𝑡 = (𝑎𝑎𝑎𝑎𝑎𝑎 + 1 − 𝛽𝛽15) 

And: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑙𝑙𝑙𝑙� (𝛽𝛽16)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶=𝛽𝛽15
�

40−𝛽𝛽15
 

Here, the population for ages beyond the start age of the decay function depends on the 
population of the cohort at that start age and the final share expected for that body style at age 
40.  Then the model calculates and applies the rate of decay necessary to make the final 
population count equal that observed in the historical data. 

4.2.2.3.4 Other Variables Considered  

In addition to the variables included in the scrappage model, the agency considered several other 
variables that likely—either directly or indirectly—influence scrappage in the real world.  As 
explained in more detail in the forthcoming paragraphs, these variables were excluded from the 
model either because of a lack of underlying data or due to modeling constraints.  Their 
exclusion from the model is not intended to diminish their importance, but rather highlights the 
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practical constraints of modeling decisions like complex behavior like vehicle scrappage in both 
an econometric and (subsequently) simulation context.  

As noted earlier, households will retire used vehicles when their market value drops below the 
cost of maintenance necessary to keep them in service longer.  As such, maintenance costs play a 
critical role in determining when vehicles are scrapped.  The agency encountered several issues 
when attempting to incorporate maintenance into the analysis.  First, there is a lack of 
comprehensive data sources for used vehicle maintenance.  By far the most comprehensive and 
complete data set is the BLS maintenance and repair data.  However, the BLS data do not 
measure the cost of maintenance for individual model year cohorts, but instead measures average 
maintenance cost per calendar year, which limits the usefulness of the data in a panel model.  
Despite this inherent shortcoming, the agency tried including maintenance as a calendar year 
effect, but this resulted in poorer model fit.  For these reasons, the agency excluded maintenance 
from the model.  If model year specific repair costs become available, the agency will reconsider 
including maintenance in future model specifications.   

The market value of a vehicle at the time of scrappage is equal to a combination of the price of 
the parts that can be salvaged and the value of the recoverable scrapped metal.  The agency 
considered including the value of steel and iron to capture the scrappage value of vehicles.  
However, the material composition and mass of vehicles has changed over time meaning that the 
absolute amount of recoverable scrap steel is not constant.  To appropriately estimate the value to 
scrap a vehicle, the agency would need to know the average weight of recoverable steel by 
vintage and the quantity and value of other recoverable materials.  The agency is unaware of any 
data granular enough to provide estimates of these values.  Further, projecting the future value of 
the recoverable scrap metal would involve computing the amount of recoverable steel under all 
scenarios of fuel economy standards, where mass and material composition are assumed to vary 
across all alternatives.  The agency attempted to use a coarse approximation of scrappage value 
by using the BLS scrap steel CPI; similar to maintenance, including the variable diminished the 
fit of the model.  It is also a consideration that, over time, vehicles leave U.S. registration rolls 
for reasons other than true scrappage (typically export to less wealthy nations where the vehicle 
still represents a positive value proposition to potential buyers), which would not be as strongly 
affected by the price of scrap steel. 

The scrappage model controls for vehicle characteristics across model years through fixed 
effects.  As an alternative, the agency considered a more granular approach of estimating the 
impact of discrete vehicle traits, such as horsepower to weight, zero to sixty acceleration time, 
and average curb weight.  However, including these individual traits produced a poorer fit than 
the model with fixed effects, and showed evidence of autocorrelation in the errors.  Similarly, the 
agency considered using terms that would more directly capture the value of improved fuel 
economy in newer vehicles, such as the CPM of new vintages, than subtracting the first 30 
months of undiscounted fuel prices from the price of new vehicles.628  These variables did not 

 
628 The scrappage model cannot include both independent variables on the fuel economy and cost-per-mile of new 
vehicles, and adjust the new vehicle prices by the value of fuel savings considered at the time of purchase, which 
would account for the improvement of the fuel economy of new vehicles twice.  
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improve the fit of the model and would be inconsistent with how the agency approaches 
consumer valuation of fuel economy throughout the rest of the analysis.  

The quantity of new vehicles purchased and scrappage rates seem intuitively interconnected; 
when new vehicle sales increase, demand for older vehicles decreases, leading to higher 
scrappage rates.  When the agency tested new vehicle sales in the model, the model’s fit 
decreased and the direction of the coefficient was counterintuitive.  It also introduced evidence 
of autocorrelation in the error structure for cars and reduced the effect of the change in fuel 
prices by two orders of magnitude for vans/SUVs.  It seems quite unlikely that fuel price 
sensitivities would differ so vastly between model types.  For these reasons, the scrappage model 
excludes the change in new vehicles sales.  The agencies also considered including changes in 
vehicle stock, but this similarly did not improve the fit of the scrappage models—and doing so 
limited the ability to link the sales and scrappage models in future versions of the model. 

Higher interest rates increase the cost to purchase new vehicles, which should increase the 
incentive for households to hold onto existing vehicles.  For some households, higher interest 
rates could act as a barrier to entry; however, the households excluded from the new vehicle 
market because of a modest change in interest rates are much more likely to be in the market for 
a used vehicle and their purchasing decision is unlikely to be heavily influenced by interest rates.  
The agency tested interest rates in the model using the average real interest rate on social security 
trust public-debt obligations.  While this is not a perfect measure of auto loan interest rates, the 
two are correlated so that that most of the effect of auto loan rates should be captured by using 
the interest rate facing the federal government.  For vans/SUVs the model with interest rates had 
a poorer fit and showed evidence of autocorrelation in the error structures.  For pickups, 
including interest rates changed the sign on CPM.  Interest rates do not affect CPM as CPM 
measures only the post-sale operating cost.   

4.3 Estimating Total Vehicle Miles Traveled  

4.3.1 Overview of the Process 

The likely future course of car and light truck use directly influences many of the various effects 
of fuel economy standards that decision-makers consider in determining what levels of standards 
to set.  For example, the value of fuel savings is a function of vehicle’s ’fuel efficiency, the 
number of miles they are driven, and future fuel prices.  Similarly, factors like criteria pollutant 
emissions, congestion, and fatalities are direct functions of vehicle use (usually measured by 
average or total vehicle-miles traveled, or “VMT.”)  In the CAFE Model, total VMT is the 
product of average usage per vehicle in the fleet and the composition of the entire light-duty 
vehicle fleet, itself a function of new vehicle sales and vehicle retirement (or “scrappage”) 
decisions.  In conjunction with the composition of the vehicle fleet by type (cars, SUVs/vans, 
and pickups) and age at the outset of the analysis period, these three components—average 
annual use, of vehicles of different ages and body styles sales of new vehicle sales, and 
scrappage of older vehicles—jointly determine total VMT projections for future years under each 
alternative. 

CAFE Model simulations provide aggregate estimates of light-duty VMT comparable to other 
well-regarded VMT estimates.  However, because decisions about alternative stringencies look 
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at the incremental costs and benefits across alternatives, it is more important that the analysis 
capture the variation of VMT across the baseline and regulatory alternatives than to accurately 
predict total VMT for a specific scenario.  To accomplish this, the CAFE Model incorporates a 
model of aggregate VMT developed by the U.S. Department of Transportation’s Volpe Center to 
produce the Federal Highway Administration’s (FHWA) official annual VMT forecasts.   and 
constrains the CAFE Model’s internally constructed forecasts of total VMT under different 
regulatory alternatives in each future year to be identical to those produced by the FHWA 
model629 

The CAFE Model first uses the FHWA model to develop a forecast of total light-duty VMT for 
each future calendar year spanned by the analysis (currently 2020 through 2050) that reflects 
forecasts of the U.S. population, future economic conditions, fuel prices and fleet average fuel 
economy, and consumer confidence levels.  As described in more detail below, this forecast of 
total VMT is interpreted as “non-rebound” VMT travel and is constrained to be identical for all 
regulatory alternatives being considered.  This produces the desired effect of making the only 
differences in VMT among regulatory alternatives during any future calendar year a consequence 
of the rebound effect associated with the specific improvements in fuel economy required by 
each regulatory alternative.  

NHTSA’s CAFE Model uses a combination of each year’s “top-down” forecast of total light-
duty VMT generated by the FHWA model and “bottom-up” forecasting to represent the 
composition of total VMT.  In the latter approach, the composition of the fleet among cars and 
light truck cohorts of different vintages and ages the average utilization of each cohort 
determines a base distribution and level of VMT in each calendar year.  This “bottom up” 
forecast is then adjusted to match the “top down” forecast of total VMT for that same calendar 
year while preserving its distribution of total vehicle use among the car and light truck model 
year cohorts comprising that year’s fleet. 

While NHTSA believes that a joint household consumer choice model—if one could be 
developed adequately and reliably to capture the myriad circumstances under which families and 
individuals make decisions relating to vehicle purchase, use, and disposal—would better reflect 
vehicle ownership and use decisions that are made at the household level, it is not necessarily 
appropriate, to model the national program at that level of disaggregation in order to produce 
meaningful results that can usefully inform policy decisions.  The most useful information for 
policymakers relates to national-scale impacts of potential policy choices.  No other element of 
the rulemaking analysis is represented or modeled at the household level, and the error 
associated with allocating specific vehicles to specific households over the course of three 
decades would easily dwarf any error associated with the estimation of these effects in aggregate.   

NHTSA has attempted to incorporate estimates of changes to the new and used vehicle markets 
at the highest practical levels of aggregation and worked to ensure that these effects produce 
fleetwide VMT estimates that are consistent with the best, current projections reflecting our 
economic assumptions.  While future work will always continue to explore approaches to 

 
629 There is a minor and consistent discrepancy between the forecasts of light-duty VMT issued by FHWA and those 
generated using the CAFE Model, because the former include class 2b and 3 light-duty vehicles while the CAFE 
Model and analysis exclude them.  
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improve the realism of CAFE policy simulation, there are important differences in the objectives 
and design of small-scale econometric research and the kind of flexibility that is required to 
assess the impacts of a broad range of regulatory alternatives over multiple decades. 

4.3.2 Developing the Mileage Accumulation Schedules 

To account properly for the values of consumer and societal costs and benefits associated with 
vehicle usage under various CAFE alternatives, it is necessary to estimate the portion of these 
costs and benefits occurring during each calendar year that are attributable to the ownership and 
use of vehicles from each model year cohort.  Doing so requires some estimate of how many 
miles the average vehicle of each body type is expected to be driven during each year (i.e., at 
each age) throughout its life.  We refer to these as “mileage accumulation schedules.”  As 
described in greater detail below, these mileage accumulation schedules represent an initial 
estimate of average annual vehicle use at each age during some base year, and are subsequently 
adjusted in each future calendar year based on forecasted fuel prices and the aggregate travel 
demand determined by a separate forecasting model.  For this analysis, NHTSA is relying on a 
set of mileage accumulation schedules that were constructed from a statistical analysis of 
millions of unique vehicles followed over their lives, during which odometer readings were 
recorded at uneven intervals.  

4.3.2.1 Data Used to Develop the Schedules 

Unlike cross-sectional data, which provide a “snapshot” of the usage of vehicles of different ages 
at a single point in time, panel data track the use of vehicles over time as they reach different 
ages and accumulate mileage.  Including this temporal dimension resolves many of the 
limitations imposed by cross-sectional data., which restricted some of the agency’s earlier 
rulemakings.  The data source used to construct the current mileage accumulation schedules 
contains sequential odometer readings for a very large sample of individual vehicles tracked at 
the Vehicle Identification number (VIN) level over time.  The data vendor, IHS Markit – Polk, 
accumulates odometer readings for individual vehicles from state inspection programs, title 
changes, and maintenance events, among other sources.  The IHS-Polk dataset includes 
observations of a specific vehicle’s odometer readings over the course of many years, capturing 
its accumulated lifetime mileage at multiple ages.   

 

By using the observation date and accumulated miles (represented by the odometer reading), 
NHTSA computed the rate of driving (miles per year, or month) between observations for each 
vehicle.  This method provides more reliable estimates of variation in vehicle use with increasing 
age than assuming that the rate of mileage accumulation, over all ages, is simply the ratio of 
odometer reading to age, as schedules built from cross-sectional data implicitly assume.630  In 
particular, calculating the rates of mileage accumulation using successive observations of the 
same vehicle explicitly resolves the attrition bias (where some vehicles disappear from a cross-
sectional data sample because of the intensity with which they were used) and matches the 
approach to estimating driving rates with panel data in other studies.  

 
630 Lu, S., “Vehicle Survivability and Travel Mileage Schedules”, DOT HS 809 952, January 2006. 
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The panel dataset has another advantage over other sources: because it tracks individual vehicles 
over time, the agencies have more precise and reliable information about each vehicle’s age.  In 
previous analyses, we were forced to assume that a vehicle’s “age” was equal to the calendar 
year minus the model year in which the vehicle was produced (for example, all MY 2010 
vehicles were assumed to be five years old in calendar year 2015.)  It is common for vehicles 
produced in a given model year to be sold and registered over the course of multiple calendar 
years.  Thus, a MY 2010 vehicle assumed to be five years old in 2015, could have been 
purchased and registered for the first time in CY 2012 any calendar year from 2009 through (or 
in rare cases, even later), so its “effective” age could range from 3 to 6 years.  The IHS-Polk data 
allows us to identify the first registration date of each vehicle in the sample and to compute its 
“true” driving age at each point in time.  This not only improves the precision of the mileage 
accumulation rate in the first year, but in subsequent years and thus at later ages as well.   

The agency also considered using the 2017 National Household Travel Survey to develop 
mileage accumulation schedules.  However, it suffers from the same flaws as data sources used 
to develop previous schedules.  It represents a cross section of odometer readings at a single 
point in time, requiring the assumption that the rate of usage is simply the reported odometer 
divided by the vehicle’s age, or an extrapolation of respondents’ daily travel behavior into 
representative annual schedules, both of which are likely to be poor assumptions. 

In contrast, the IHS-Polk dataset contains at least two readings (and frequently several) for over 
70 percent of the registered light duty vehicle population in 2016.  Additionally, all the 
odometers reading in the newest National Household Transportation Survey (NHTS) are owner-
reported, leading to questionable reliability of the individual data points (and conspicuously 
“round” numbers in many cases).  Finally, the NHTS is intended to be a representative sample of 
households, but not a representative sample of vehicles.  Research has found that creating a 
representative sample of households can represent a significant challenge, as past iterations of 
the NHTS have systematically oversampled high-income households.631  The nature of the 
sample also explicitly excludes vehicles used for commercial purposes, which nonetheless 
represent meaningful shares of new vehicle sales, total vehicle use, and fuel consumption.    

4.3.2.2 Methodology for Constructing the Schedules 

The data used to construct the schedules initially included between two and fifty odometer 
readings from each of over 251 million unique vehicles within the dataset.  While most of the 
readings had plausible reading dates, odometer counts, and implied usage rates, some of the 
readings appeared unrealistic and received additional scrutiny.  We developed and applied 
criteria to identify and remove readings that were likely to reflect recording errors.  For example, 
odometer readings predating the commercial release of the vehicle, showing negative VMT 
accumulation over time, or taken too closely together to provide meaningful insight into annual 
vehicle usage were removed from the analysis.  Such “cleaning” of real datasets is typically 
necessary, and each step in the process was recorded and documented clearly.  Table 4-13 shows 
the number of VINs, reading pairs, and average readings per VIN by body style. 

 
631 Lave, C. (1994).  State and National VMT Estimates: It Ain't Necessarily So. UC Berkeley: University of 
California Transportation Center.  Retrieved from https://escholarship.org/uc/item/5527j8dj.  (Accessed: February 
15, 2022). 
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Table 4-13 – Summary of IHS Polk VMT VIN and Reading Data by Body Style 

Body Style Number of VINs 
Included 

Number of Reading 
Pairs 

Mean Readings per 
VIN 

Car 92,016,334 287,512,165 4.1 
SUVs/vans 66,857,117 212,656,710 4.2 

Pickups 29,926,984 83,208,986 3.8 

MDHD pickups/vans* 10,515,168 27,418,353 3.6 

Chassis* 486,471 1,186,653 3.4 
Total 199,802,074 611,982,867 4.1 

 
Once the dataset was cleaned, we created a random sample of one million reading pairs, where 
each pair represented an initial odometer/date reading and a subsequent odometer/date reading 
from the same vehicle.  Analysis of the entire dataset was judged to be overly demanding 
computationally and unnecessary to provide the desired level of statistical precision in estimates 
of average vehicle use.  Two conditions were created for sampling.  The first controlled for IHS-
Polk’s censoring in the odometer readings recorded in the dataset (described below), while the 
second ensured the usage data were not biased by survival and represented usage rates over a 
relatively short period of time.  Further analysis suggests that shorter periods between readings is 
correlated with higher usage rates, so further filtering of the data sample was considered in the 
regression analysis.  Once these filters were applied, we considered several polynomial fits to the 
average odometer readings by age and body style, and used our preferred models to construct the 
mileage accumulation schedules used in this analysis.  The details of this process are described 
below. 

The reported odometer readings are limited to a maximum value of 250,000 miles.  For this 
reason, we excluded readings recorded exactly as 250,000 miles.  The censoring could bias 
estimates of usage rates if odometer readings and future usage rates are correlated, as seems 
likely to be the case.  Vehicles with reported odometer readings of exactly 250,000 miles in the 
dataset almost certainly have higher true odometer readings.  While we intend to reconcile this 
limitation of the dataset in future work, the benefits of observing actual usage through 30 years 
of a vehicle’s life more than compensate for the limitation.   

The IHS-Polk dataset is conditional on survival, so it represents the usage of vehicles remaining 
in use at the time of the sample (the end of the first quarter of 2017).  In this way, it captures the 
actual observed usage rates of vehicles surviving to their current age son that date.  This raises an 
important concern: if usage rates from earlier ages and survival are correlated, which they are 
likely to be, then including the readings for a 30-year-old vehicle when it was 10 years old will 
bias the estimated usage rates of 10-year-old vehicles downward because vehicles that survive to 
advanced ages tend to have been used less heavily than vehicles of the same vintage that were 
retired at earlier ages.  To mitigate this issue, we applied a second filter when sampling the data 
set: we only included readings where the date of the second reading in the pair is January 2015 or 
later.  This reduces any potential bias introduced by the joint probability distribution of usage 
and survival to only those vehicles scrapped between January 2015 and the first quarter of 2017.  
This decision balances the drawbacks of losing information on vehicles of older ages that are not 
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well-represented in the sample by excluding too many of these vehicles against the potential for 
biasing the estimates of usage by age. 

The distribution of vehicle use at a given age can initially be wide, but tends to narrow over time, 
as even the best-preserved old vehicles can only be driven so much.  Figure 4-15 illustrates the 
distribution of observed VMT, by age, for SUVs (figures constructed for cars and pickup trucks 
showed similar patterns) across a 10 million-record random sample of the IHS-Polk odometer 
data.  As the figure shows, the distribution of observed annual usage can be wide – particularly at 
early ages – but both the mean annual VMT and the range of observations decreases gradually 
with increasing age. 

 
Figure 4-16 – Distribution of SUV Usage Rates by Age 

Figure 4-15 also shows that average annual VMT occasionally fluctuates at certain ages, which 
is likely attributable to changes in ownership.  For example, average annual use declines slightly 
at age 3 and then increases at age 4 before resuming its gradual decline, which is probably a 
consequence of vehicles coming off 3-year leases), with maximum permissible mileage and 
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entering the resale market.  The data are likely picking up the transfer of vehicles from their 
original owners to new households with higher demand for vehicles. 

The agency tested several relationships to summarize the pattern of vehicle use with age.  
Because the CAFE Model carries no disaggregated representation of vehicle ownership or usage 
that would capture the variation in usage shown in Figure 4-15, using the average use at each age 
in the regression allows the CAFE Model to capture the total VMT attributable to a model year 
cohort, and to benchmark against other annual estimates of light-duty VMT.  Figure 4-16 shows 
the average usage rates for cars by age (as black triangles) as well as linear, quadratic, and cubic 
polynomial fits of age on these points.632  The average usage rates follow a relatively smooth 
pattern but appear to decline at an accelerating rate for the oldest ages.  The linear equation 
captures this trend for older vehicles but underestimates average use at early ages.  The quadratic 
fit shows a diminishing decrease in the usage of older vehicles and may overestimate their use.  
In contrast, the cubic model accurately captures both the usage patterns at early ages and the 
accelerating decrease in the usage of older ages.  For this reason, NHTSA selected the cubic 
curve as the basis for the car VMT schedules by age.  While the cubic fit performed the best for 
cars, SUVs were best fit by a quadratic polynomial, and pickup trucks by a cubic polynomial.  
The resulting annual VMT schedules based on these functions are shown in Table 4-14. 

 
Figure 4-17 – Polynomial Fits for Average Car VMT 

 
632 In general, the objective of a polynomial regression is to capture the nonlinear relationship between two 
variables.  While the fit produces a nonlinear curve, it is linear in the coefficients.  Choosing the lowest degree of the 
polynomial function that captures the inflection points in the data preserves the degrees of freedom and ensures that 
applying the polynomial function to observations outside the range of data (as done here for ages beyond 30) is well 
behaved. 



  468 

As Table 4-14 illustrates, passenger cars are driven on average slightly less than either SUVs or 
pickup trucks.633  Importantly, these annual driving rates represent the estimated annual mileage 
accumulation of a vehicle, of a given body style, that survives to reach that age.  While vehicle 
retirement rates are generally low across all body styles in the early years of ownership, rates 
accelerate with age and most of the vehicles originally produced during a model year cohort will 
have been retired by the time it reaches age 20.  Using the average construction effectively shifts 
some accumulated miles within the cohort – vehicle owners who drive more than the average 
will benefit more than we estimate from improved fuel economy, while drivers who use their 
vehicles less intensively will benefit less.   

However, because the benefit-cost analysis does not distinguish among individual vehicles or 
owners, it is sufficient to capture total benefits, and this can be accomplished by representing 
each model year cohort and age by its annual VMT.  It is also generally true that the vehicles that 
survive to advanced ages are not the same vehicles that were used most intensively early in their 
lives.  Future iterations of this work will continue to improve the CAFE Model’s representation 
of the joint relationship between utilization and retirement beyond the cohort-specific 
representation in this analysis. 

4.3.2.3 Mileage Accumulation Schedules for Base Year 2016 

Table 4-14 presents the mileage accumulation schedules developed following the process 
described here.  These show the relationship of average annual miles driven to age for vehicles 
of each body style during calendar year 2016, together with the model year corresponding to 
each average age during 2016. 

Table 4-14 – VMT Schedule by Body Style and Age 

Vehicle 
Age 

 Mileage Accumulation 

Model Year Corresponding 
to Age During Calendar 

Year 2016 
Cars Vans/ 

SUVs Pickups 

0 2016 15,922 16,234 18,964 
1 2014 15,379 15,805 17,986 
2 2013 14,864 15,383 17,076 
3 2012 14,378 14,966 16,231 
4 2011 13,917 14,557 15,449 
5 2010 13,481 14,153 14,726 
6 2009 13,068 13,756 14,060 
7 2008 12,677 13,366 13,448 
8 2007 12,305 12,982 12,886 
9 2006 11,952 12,605 12,372 
10 2005 11,615 12,234 11,903 

 
633 These same mileage accumulation schedules can also be found in the CAFE Model input file “parameters,” on 
the “Vehicle Age Data” tab. 
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Vehicle 
Age 

 Mileage Accumulation 

Model Year Corresponding 
to Age During Calendar 

Year 2016 
Cars Vans/ 

SUVs Pickups 

11 2004 11,294 11,870 11,476 
12 2003 10,986 11,512 11,088 
13 2002 10,690 11,161 10,737 
14 2001 10,405 10,816 10,418 
15 2000 10,129 10,477 10,131 
16 1999 9,860 10,146 9,871 
17 1998 9,597 9,820 9,635 
18 1997 9,338 9,501 9,421 
19 1996 9,081 9,189 9,226 
20 1995 8,826 8,883 9,047 
21 1994 8,570 8,583 8,882 
22 1993 8,313 8,290 8,726 
23 1992 8,051 8,004 8,577 
24 1991 7,785 7,724 8,433 
25 1990 7,511 7,450 8,290 
26 1989 7,229 7,183 8,146 
27 1988 6,938 6,923 7,998 
28 1987 6,635 6,669 7,842 
29 1986 6,319 6,421 7,676 
30 1985 5,988 6,180 7,497 
31 1984 5,641 5,946 7,302 
32 1983 5,277 5,718 7,089 
33 1982 4,893 5,496 6,853 
34 1981 4,488 5,281 6,593 
35 1980 4,061 5,072 6,305 
36 1979 3,610 4,870 5,987 
37 1978 3,133 4,674 5,635 
38 1977 2,629 4,485 5,248 
39 1976 2,096 4,303 4,821 

4.3.3 Using the Mileage Accumulation Schedules to Estimate Total VMT 

There are several reasons that vehicles’ use at different ages, or mileage accumulation rates, 
could differ from our most recent measurements of these rates based on odometer data for 2016.  
Fuel prices could change and affect the cost of operating cars and light trucks of all ages, 
economic growth could spur additional demand for travel and increase use of vehicles of various 
ages, or the fuel efficiency of cars and light trucks of each age can change over time as new 
model years featuring higher fuel economy are incorporated into the fleet and older models that 
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originally met less stringent fuel economy standards are retired.  To reflect these possibilities, the 
agency’s CAFE Model adjusts the schedules of average annual vehicle use by age during 2016 
described in the previous section it uses to calculate total VMT in future calendar years to reflect 
each of these potential developments.   

It does so by calculating changes in the average cost of fuel per mile driven for cars and light 
trucks of each model year – and thus age – from the base year when the schedules of vehicle use 
were developed (2016) to each future calendar year.  The CAFE Model then applies an elasticity 
of average annual vehicle use with respect to fuel cost per mile to these changes (expressed as 
percent changes) in per-mile fuel costs to estimate the percent change in the average use of 
vehicles of each age between the base year and each future year.  Finally, these estimated percent 
changes are applied to the base year values of average annual driving by cars and light trucks of 
each age to produce revised estimates of their average use for future calendar years.   

The change in the average cost of fuel per mile driven between the base year of 2016 when the 
mileage schedules were developed and a future calendar year CY for cars and light trucks 
produced during the current or an earlier model year MY (which are then of age = CY – MY) has 
two sources.  The first is the difference in fuel prices between 2016 and the future year CY, 
which affects the per-mile cost for vehicles of all ages; they will be driven less in year CY than 
they were in 2016 if fuel prices have risen since 2016, and more if fuel process have declined.  
Its second component is the difference in the average on-road fuel economy of vehicles produced 
during the model year that has reached age = CY – MY during 2016 and that of the model year 
that was of that same age during 2016.  Thus, the percent change in average fuel cost per mile 
driven (CPM) for vehicles of each age between the base year of 2016 and a future calendar year 
CY is: 

%∆𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆,𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 =  
� 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶
𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆,𝑀𝑀𝑀𝑀

−  𝐹𝐹𝐹𝐹2016𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅
�

𝐹𝐹𝐹𝐹2016
𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅

 

Equation 4-10 – Full Change in Cost-Per-Mile of Travel 

In Equation 4-10, FP2016 represents fuel price in dollars per gallon during 2016, FPCY is fuel 
price during a future calendar CY, FESN,MY is the average fuel economy of cars or light trucks 
produced during model year MY under the regulatory alternative or scenario SN, which will 
have reached age = CY – MY during CY.  Finally, FEREF is the fuel economy of the cars or light 
trucks that were of that same age during 2016.   

Vehicle use responds to changes in fuel prices because as Equation 4-10 above suggests, these 
directly affect the cost of driving each mile, which in turn is a key determinant of vehicle use.  
Annual use of cars and light trucks of each model year or “vintage” (and thus age) that make up 
a future calendar year’s light-duty vehicle fleet will decline from their base year averages if fuel 
prices and the cost of driving each mile are higher than they were during 2016, the base year 
when the original mileage accumulation schedules were developed.  Conversely, if fuel prices 
are lower in a future calendar year than they were in 2016, per-mile driving costs will decline 
and the average annual use of cars and light trucks of each vintage and age comprising that 
year’s fleet will increase from its original value tabulated during 2016.  The magnitude of 
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responses of average vehicle use to changes in fuel cost per mile driven is determined by the 
elasticity of annual vehicle use with respect to fuel price, which measures the percent change in 
average annual VMT resulting from a one percent change in the fuel cost of driving each mile.   

Previous versions of NHTSA’s CAFE Model, which did not incorporate the effect of overall 
economic conditions on future vehicle use, set the elasticity of average vehicle use with respect 
to fuel cost per mile equal to the value assumed for the fuel economy rebound effect that was 
used to estimate changes in the use of new vehicles as their fuel economy improved.  As 
discussed in more detail below, the current version of the CAFE Model estimates total car and 
light truck during each future calendar year independently using a model developed to produce 
FHWA’s official forecasts of vehicle travel, and this model includes fuel cost per mile as an 
explanatory variable.  Thus, the coefficient attached to that variable, which is estimated 
econometrically using historical data on vehicle use, fuel prices, and fuel economy (as well as 
other variables), corresponds to the elasticity of total light-duty vehicle travel with respect to fuel 
cost per mile.  Its estimated value implies an elasticity of -0.14 (which corresponds to a fuel 
economy rebound effect of about 14 percent), and the CAFE Model relies on this value to adjust 
the base year mileage accumulation schedules to account for changes in fuel prices from their 
level in 2016.634   

As Equation 4-10 shows, changes in driving costs – and thus in vehicle use – since the base year 
when the original mileage accumulation schedules were developed (2016) are also affected by 
differences in the fuel economy of cars and trucks of different ages during future years and 
during the 2016 base year.  Thus, the CAFE Model also accounts for future changes in the 
average use of cars and light trucks of different ages in response to their progressively higher 
fuel economy compared to those of corresponding ages during the 2016 base year.  It seems 
intuitively clear that as the fuel economy of each new model year improves over time, vehicles 
of each age will be driven slightly more than their counterparts were during 2016 as long as fuel 
prices remain constant, since as Equation 4-10 illustrates, their higher fuel economy translates 
into lower operating costs.635   

As an extreme example, even if there were no further improvements in fuel economy for new 
model years after 2020, the initial year of the agency’s analysis, the fuel economy of cars and 
light trucks of all ages making up the future fleet would continue to increase throughout much or 
all of the analysis period.  This is because the average fuel economy of new cars and light trucks 
has already increased consistently for many model years, so that for example, vehicles that were 
10 years old at the beginning of the analysis period (cars and light trucks produced during model 

 
634 Although users of the CAFE Model can still define a different value for the fuel economy rebound effect used to 
estimate the increase in annual use of new cars and light trucks resulting from higher CAFE standards, doing so will 
not affect the VMT forecast generated internally by the CAFE Model or the forecast produced by FHWA’s.  Doing 
so creates an asymmetry between responses to fuel price and changes in fuel economy, the size of which depends on 
how much the user-specified rebound effect differs from 14 percent.  This issue is present to some extent in 
NHTSA’s analysis supporting this final rule, since as discussed in detail in FRIA Chapter 4, that analysis employs a 
fuel economy rebound effect of 10 percent.   
635 For estimates of the magnitude of this elasticity, see e.g.,Goodwin, P., J. Dargay, and M. Hanly.  Elasticities of 
road traffic and fuel consumption with respect to price and income: a review.  Transport Reviews, 24:275-292, 2004. 
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year 2011 are defined as being 10 years old during 2020) will have lower fuel economy than 
those produced in model year 2021, which will have reached age 10 in 2030.636   

This gradual transition toward higher fuel economy levels for cars and light trucks of all ages 
occurs will proceed at exactly the same pace for cars and light trucks produced through model 
year 2020 in each regulatory alternative the agency analyzes, since these have already been 
manufactured by the time the analysis period begins in that year.  The rate at which these 
historical or “legacy” model years will be retired and replaced by new, higher-MPG models will 
differ slightly among the alternatives considered; it will occur most rapidly under the No-Action 
Alternative and progressively more slowly under alternatives that require more rapid 
improvements in fuel economy, although these differences are likely to be very modest.  At the 
same time, of course, more stringent regulatory alternatives will cause the fuel economy of the 
new cars and light trucks produced during future model years to increase more rapidly, so that on 
balance those alternatives will raise the overall average fuel economy of the car and light truck 
fleet faster.637   

The agency’s analysis ascribes the effects on vehicle use resulting from required improvements 
in the fuel economy of model years after 2020 entirely to the regulatory alternatives it considers, 
and attempts to isolate these from changes in vehicle use that occur in response to fluctuations in 
fuel prices and other economic conditions that are outside the realm of fuel economy regulations 
(i.e., “exogenous”).  To do so the CAFE Model constructs a hypothetical measure of “non-
rebound” VMT for future years that incorporates the response of driving costs and vehicle use to 
forecast changes in future fuel prices, and for improvements in the fuel economy of new cars and 
light trucks from the base year of 2016 only through model year 2020.  Increases in vehicle use 
from this “non-rebound” level of VMT that are attributable to improvements in fuel economy 
required by each regulatory alternative the agency evaluates are then ascribed uniquely and fully 
to that alternative.  This includes the No-Action Alternative, since even it reflects some minor 
improvements in fuel economy after 2020 in response to previously adopted standards and other 
factors.  

The CAFE Model estimates non-rebound VMT by adjusting the 2016 base year mileage 
accumulation schedules using a slightly different measure of future changes in per-mile driving 
costs from that specified in Equation 4-10 above.  Like that shown above, it includes the effects 
of changes in fuel prices since the base year of 2016, but it differs from Equation 4-10 by 
omitting the effects of fuel economy changes after from the changes in fuel cost per mile it 
calculates for future years.  Equation 4-11 shows this revised measure of the change in fuel cost 
per mile for cars and light trucks of different ages during calendar year CY: 

 
636 In practice, light-duty vehicles of the same regulatory class (cars and light trucks) or body style (cars, SUVs, 
vans, and pickups) produced during the same model year will be retired at different rates over time, and this process 
can change the average fuel economy of those remaining in use.  Some specific vehicle models and manufacturers 
have reputations for longevity and individual vehicle models with different fuel economies may seem like better 
candidates for repairs under particular fuel price scenarios.  In light of this, the fuel economy for a given body-style 
will likely differ from the sales-weighted average fuel economy when the cohort was new, even without accounting 
for degradation and changes to the on-road gap over time.   
637 Moreover, because newer vehicles are driven more each year than older ones, the fleet’s usage-weighted average 
fuel economy will rise more rapidly than the average MPG of the vehicles making up the evolving fleet. 
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Equation 4-11 – Fuel Price and Secular Improvement Component of Elasticity 

In Equation 4-11, FP2016 again refers to fuel price per gallon during 2016, and FPCY to fuel price 
per gallon during a future calendar year CY.  As in the previous equation, FEREF refers to the 
average FE of the model year cohort that was of age = 2016 – MY during calendar year 2016.  In 
Equation 4-11, FEMIN(2016,MY) refers to the average fuel economy of cars or light trucks produced 
during any post-2016 model year MY, but this value differs from the corresponding factor in the 
previous equation.  As its subscript MIN(2016,MY) indicates, it is the lower of the actual fuel 
economy of cars or light trucks that have reached age = CY – MY during CY and the fuel 
economy of those that were of the same age during 2016.   

Thus, Equation 4-11 differs from the previous equation only in the respect that in Equation 4-10 
the fuel economy in the denominator of the first term is the actual fuel economy of each (post-
2016) model year being evaluated, while in Equation 4-11 it is the minimum of that value and 
the fuel economy cars or light trucks achieved during model year 2016.  In effect, Equation 4-11 
assumes that no improvements in fuel economy would have occurred after model year 2016, but 
that at the same time the fuel economy of cars and light trucks from newer model years would 
not be allowed to fall below their levels of model year 2016.  This assumption implies that fuel 
economy improvements through model year 2016 will be accounted for when calculating non-
rebound VMT for any later calendar year, but that further increases in fuel economy after model 
year 2016 will not be.  Thus, increases in average annual non-rebound VMT per car or light truck 
during any post-2016 calendar year would reflect only changes in (inflation-adjusted) fuel prices 
occurring after 2016.   

 

Conversely, changes in average annual VMT per car or light truck in response to the fuel 
economy rebound effect would reflect increases in the fuel economy of future model year cars 
and light trucks from the levels they achieved during model year 2016.638  The agency’s analysis 
ascribes the effects of post-model year 2016 improvements in fuel economy on fuel costs and 
vehicle use – and thus on fuel consumption, emissions, safety, and other consequences of vehicle 
use – to each of the regulatory alternatives it considers.  Following this approach means that 
there will be some additional VMT attributable to the fuel economy rebound effect in future 
years even under the No-Action Alternative used in the analysis.  This occurs because the actual 
fuel economy of new cars and light trucks will increase after MY 2016 under the No-Action 
Alternative due to previously-adopted increases in CAFE standards, efforts by manufacturers 
who under-complied with prevailing standards during earlier model years to “catch up” with 
standards for later years, and any voluntary overcompliance by manufacturers with standards 
prevailing after MY 2016.  

 
638 NHTSA intends to update this reference year the next time the agency acquires an update to the database of 
odometer readings. 
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Combining the adjustments to average annual VMT during the reference year of 2016 for 
different light-duty vehicle body styles (cars, SUVs/vans, and pickups) of each age from 
Equation 4-11 with the estimated populations of vehicles of different ages in use during a future 
calendar year produces an initial estimate of non-rebound VMT as described in 
NonReboundVMT 𝐶𝐶𝐶𝐶=  ∑ VMTA,S ∙ (1 + %ΔNonRbdCPMMY,CY ∙ ε) ∙ PopulationCY.A,S

Styles
S  

Equation 4-12 below: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 =  � 𝑉𝑉𝑉𝑉𝑉𝑉𝐴𝐴,𝑆𝑆 ∙ (1 + %Δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 ∙ 𝜀𝜀) ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶.𝐴𝐴,𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆

 

Equation 4-12 – Unadjusted Total Non-Rebound VMT in a Future Calendar Year 

In NonReboundVMT 𝐶𝐶𝐶𝐶=  ∑ VMTA,S ∙ (1 + %ΔNonRbdCPMMY,CY ∙ ε) ∙ PopulationCY.A,S
Styles
S  

Equation 4-12, VMTA,S represents average annual mileage for light-duty vehicles of age A and 
body style S, PopulationCY,A,S is the number of vehicles of that age and body type estimated to 
remain in service during calendar year CY, and ε is the elasticity of annual vehicle use with 
respect to fuel cost per mile driven (derived from FHWA’s VMT forecasting model, and equal to 
-0.14). 

However, factors other than fuel costs can also affect households’ and businesses’ demands for 
travel using light-duty vehicles, even if fuel prices remain constant throughout the analysis 
period and fleetwide fuel economy improves only minimally as a consequence of continuing 
fleet turnover – as it does in the “non-rebound” case – total car and light truck VMT could still 
vary in response to changes in these other factors.  Not only could the forecast of non-rebound 
VMT continue to grow under appropriate conditions, but it might actually do so at a faster rate 
than Equation 4-12 predicts, since that includes only the effect of fleet turnover on fuel economy, 
fuel costs, and vehicle use.  Conversely, events such as recessions could depress actual VMT 
below levels estimated using Equation 4-12, as occurred for example during the Great Recession 
in 2008-2009. 

To ensure that the CAFE Model’s estimates of light-duty VMT for future years are also broadly 
consistent with demographic growth and economic conditions other than fuel prices, the agency 
constrains non-rebound VMT under each regulatory alternative – including the No-Action 
Alternative used to analyze future CAFE standards – to match an independent forecast based on 
demographic trends and aggregate economic growth.  As described in more detail below, it uses 
a travel forecasting model developed and used by FHWA to produce a forecast of growth in car 
and light truck use that is consistent with the same forecasts of population growth, increases in 
household formation, growth in aggregate economic output and personal income, and consumer 
confidence used elsewhere throughout its analysis.   

4.3.4 Constraining VMT in the CAFE Model 

It is NHTSA’s perspective that the total demand for VMT should not vary excessively among 
regulatory alternatives, because the basic travel demands and vehicle use patterns of a typical 
household are unlikely to be influenced by the stringency of CAFE standards.  However, the 
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method the CAFE Model uses to calculate total VMT (described previously and in more detail 
below) can cause the sales and scrappage responses it estimates for alternatives that require 
different levels of fuel economy can create modest differences in total VMT across the range of 
regulatory alternatives.  Even these minor differences can have significant impacts on the 
analysis of incremental costs and benefits of different regulatory alternatives when those are 
measured against the baseline. 

However, NHTSA prefers that the benefits and costs reported for the regulatory alternatives it 
analyzes reflect only differences in total vehicle use that are specifically attributable to each 
alternative’s effects on fuel economy, and do not incorporate the slight differences in the number 
of cars and light trucks estimated to be sold and remain in use under each alternative.  In 
addition, the agency believes it is useful to ensure that the estimates of total VMT the CAFE 
Model constructs using the schedules of average annual mileage by vehicle age and the numbers 
of vehicles of different ages making up the future light-duty fleet are consistent with levels of 
aggregate travel demand implied by the forecasts of overall economic activity it uses to project 
new vehicle sales and retirement rates for used vehicles, since these determine the size and 
composition of the future fleet. 

To accomplish these two objectives, the CAFE Model constrains “pre-rebound” vehicle use 
(defined more explicitly below) under the baseline and each regulatory alternative during future 
years to match values projected using the Federal Highway Administration’s VMT forecasting 
model, regardless of differences in the size or age distribution of the light-duty fleet among those 
alternatives.  Thus, in future years where total VMT calculated internally by the CAFE Model 
differs from the FHWA forecast, each model year cohort’s average VMT is adjusted up or down 
so that the two estimates match.  This process ensures that any differences in total VMT among 
regulatory alternatives reflect only the different levels of fuel economy they require and their 
consequences for car and light truck use via the fuel economy rebound effect. 

More specifically, the CAFE Model first uses the FHWA VMT forecasting model to produce 
independent estimates of total light-duty VMT for each year spanned by the analysis period, to 
which it constrains total VMT under each regulatory alternative before applying the fuel 
economy rebound effect, regardless of differences among alternatives in the overall size of each 
future year’s light-duty fleet or the age distribution of vehicles making up the fleet.  In calendar 
years where the CAFE Model’s estimate of total VMT constructed from the schedules of average 
mileage by vehicle age and the numbers of vehicles of different ages making up the fleet is 
below the forecast of light-duty VMT produced by the FHWA model, the CAFE Model’s 
estimates of annual VMT for cars and trucks of each age are each adjusted upward by the 
proportion necessary for its forecast to match that produced by the FHWA model.  Conversely, if 
the initial estimate of total VMT for a calendar year the CAFE Model develops using the fleet 
size and age distribution in conjunction with the mileage accumulation schedules for cars and 
light trucks exceeds that forecast by the FHWA model, average use of vehicles of each age is 
scaled down proportionally until the two estimates match. 

FHWA’s VMT forecasting model uses a set of equations based on underlying theories of the 
determinants of travel demand, with their parameters estimated econometrically from annual 
time-series data on vehicle use, demographic variables, and measures of aggregate economic 
output and income.  It employs an auto-regressive distributed lag specification including error 
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correction terms in an effort to capture the long-run behavioral relationships between vehicle use 
and economic and demographic growth, as well as the year-to-year adjustments of vehicle use to 
short-term fluctuations in economic activity.  Full documentation of its development, calibration, 
and use is available from FHWA, and the model is described only briefly here .639  As FHWA 
has revised the model to improve its forecasting performance, updated versions have been fully 
integrated into NHTSA’s CAFE Model.  Table 4-15 reports the variables currently included in 
the light-duty VMT forecasting equation that forms part of FHWA’s model and the most recently 
estimated values of their coefficients. 

Table 4-15 – FHWA VMT Forecasting Model 

Adjustment Variable 
LD VMT PC (-1) -0.211 (0.048) *** 

Long-Run Variables 
Personal Disposable Income PC 3.437 (1.124)** 
Personal Disposable Income PC Sq. -0.454 (0.168)** 
Fuel Cost per Mile -0.146 (0.041)*** 

Short-Run Variables (First Differenced) 
Personal Disposable Income PC 2.472 (1.025)* 
Personal Disposable Income PC (-1) -0.325 (0.094)*** 
Personal Disposable Income PC (-2) -0.180 (0.086)* 
Personal Disposable Income PC Sq. -0.363 (0.157)* 
Consumer Confidence 0.074 (0.017)*** 
Constant 0.163 (0.329) 
Observations 47 
Adj. R2 0.82 
RMSE 0.01 
Cumby-Huizinga Test for Autocorrelation (P-Value (One Lag)) 0.455 
Bounds F-Stat. 9.73*** 
Bounds T-Stat. -4.43*** 
In-Sample MAPE (1970-2016) 0.67% 
Out-of-Sample MAPE (2006-2016) 3.64% 
Bounds T-Stat. -4.43*** 
In-Sample MAPE (1970-2016) 0.67% 
Out-of-Sample MAPE (2006-2016) 3.64% 
Out-of-Sample MAPE (2011-2016) 0.79% 
Out-of-Sample MAPE (2011-2016) 0.79% 
Notes: Suffixes on the variable names indicate the values of a variable from the 
previous year (-1) period two years previous (-2).  Critical values for the bounds test 
are taken from Pesaran et al. (2001) for case 3.  Model lag lengths were based on best 
Bayesian Information Criterion statistic. 

 
639 See “FHWA Travel Analysis Framework: Development of VMT Forecasting Models for Use by the Federal 
Highway Administration,” Volpe, available at 
https://www.fhwa.dot.gov/policyinformation/tables/vmt/vmt_model_dev.pdf.  (Accessed: February 15, 2022). 

https://www.fhwa.dot.gov/policyinformation/tables/vmt/vmt_model_dev.pdf
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Adjustment Variable 

Standard errors in parentheses: † p<0.1 * p<0.05 ** p<0.01 *** p<0.001 

 

As indicated above, the CAFE Model uses the FHWA model to calculate total “non-rebound” 
VMT for each future calendar year and employs the result as a constraint on the level of VMT 
for all regulatory alternatives being analyzed.  It does so by adding or subtracting VMT from the 
provisional forecast for each future year that was previously generated using Equation 4-13.  The 
increment of VMT added or subtracted, denoted ΔMilesCY,S in Equation 4-13 below, is simply 
the difference between each year’s forecast of total VMT derived from the FHWA model and the 
estimate of total VMT obtained previously from Equation 4-12.  That is:  

Δ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 −  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 

Equation 4-13 – Difference between VMT Constraint and Unadjusted Non-Rebound VMT 

Over time, each regulatory alternative results in a different size and composition of the on-road 
car and light truck fleet (the number of vehicles, their age distribution, and the average fuel 
economy of vehicles of each model year and age), and as a consequence the total unadjusted 
VMT in each calendar year given by Equation 4-12 will also differ among by regulatory 
scenarios.  Because the constrained value of total VMT form the FHWA model will be identical 
among alternatives, Equation 4-13 shows that ΔMilescy will necessarily differ for each regulatory 
scenario as a result.  By distributing ΔMilescy across the vehicle fleet in each calendar year, the 
CAFE Model scales unadjusted non-rebound VMT to equal the same level in each calendar year 
and under all each regulatory alternative.   

While several different methods can be used to reallocate ΔMilescy across the on-road fleet in 
order to preserve the non-rebound VMT constraint, the CAFE Model applies one of the simplest.  
Lacking empirical evidence about how these additional miles should be distributed across the 
registered vehicle population (which would require data showing how the distribution of VMT 
has shifted among body styles and vehicles of different ages over time), a simple approach 
seemed most sensible.  Under reasonable assumptions about model inputs, the magnitude of 
∆Miles is relatively small for most vehicle types and ages – at most a few hundred miles per year 
for vehicles typically traveling 10,000 miles or more per year.640   

The primary goal of reallocation is to adjust total non-rebound VMT so that it reflects the model-
based forecast of total VMT in every calendar year and for each regulatory alternative.  At the 
same time, it is important that any reallocation preserve the general pattern of declining average 
mileage with age apparent in the reference mileage accumulation schedule from 2016, since that 
represents the agency’s best estimate of observed usage at the outset of the analysis.  In 
particular, the reallocation approach preserves the basic ideas that annual mileage declines with 
vehicle age because newer (and more fuel-efficient) vehicles are used more intensively than their 

 
640 A notable exception to this is the impact of the Covid pandemic on total light-duty VMT, which dropped 
precipitously during 2020 in response to both economic distress and mandated travel restrictions. 
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older counterparts, and that annual mileage accumulation rates vary among vehicles of different 
body styles.   

To perform this reallocation, the CAFE Model computes a simple ratio that varies by calendar 
year and regulatory alternative.  The resulting ratio is then used to scale the unadjusted miles 
from Equation 4-12, so that the new sum of annual (non-rebound) VMT across all vehicles 
comprising the on-road fleet equals the total forecast for that year using the FHWA model and 
the forecasts of economic variables used elsewhere in the analysis.  For a future calendar year CY 
and body style S, the scaling ratio R is computed as: 

𝑅𝑅𝐶𝐶𝐶𝐶 =
∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶  

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶
 

Equation 4-14 – Scaling factor to reallocate non-rebound VMT 

In Equation 4-14 ∆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 is calculated using Equation 4-13, while NonReboundVMTCY is 
obtained from Equation 4-12.  Then total adjusted non-rebound VMT is calculated as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 = � � 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶.𝐴𝐴,𝑆𝑆 ∗ (  1 + 𝑅𝑅𝐶𝐶𝐶𝐶)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴

 

Equation 4-15 – Total Adjusted Non-Rebound VMT  

While other schemes could be used to reallocate VMT across the on-road population (for 
example, a uniform approach that either adds or removes the same number of miles from each 
age cohort), the scaling approach described here has several advantages.  Aside from its relative 
simplicity, the approach produces stable results.  The newest model years (lowest ages) are 
affected the most by the constraint – mileage for all ages is scaled in proportion to unadjusted 
VMT, and the CAFE Model can neither add nor remove large amounts of VMT in age cohorts 
having either small numbers of vehicles or small quantities of VMT.  Thus, by employing the 
scaling ratio as indicated here, we ensure that the model is robust to the widest possible array of 
input assumptions.   

To make each alternative match the overall VMT constraint, Equation 4-15 first calculates the 
product of average mileage during the reference year for each body style and age, the value of 
%ΔNonRbdCPM calculated from Equation 4-11, and the elasticity of annual vehicle use with 
respect to fuel cost derived from the FHWA forecasting model.  It then applies the appropriate 
scaling ratio from Equation 4-14.  Unlike much of the CAFE Model’s accounting, which focuses 
on the fuel consumption, emissions, and other impacts generated by a model year cohort over its 
entire lifetime, the rebound constraint and any mileage reallocation are inherently calendar year 
concepts.  Conceptually, the constraint represents demand for motor vehicle travel in each future 
calendar year absent the contribution of increases in VMT resulting from fuel economy 
improvements beyond MY 2016.  This reallocation occurs in every calendar year, so vehicles of 
each model year cohort are likely to experience many such reallocation events – most positive, 
but some potentially negative – over the course of their lifetime in the fleet. 

As other elements of this analysis show, there are two primary reasons why raising CAFE 
standards cause travel demand to be redistributed across the on-road fleet.  The first is that 
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different alternatives create differently composed on-road fleets, while the constraint ensures that 
changing fleet size does not influence aggregate demand for travel, and this combination requires 
some redistribution of travel among vehicles of different ages.  Each alternative also produces a 
fleet of a slightly different total size (number of vehicles), a specific age distribution, and a 
unique pattern of variation in fuel economy (and thus fuel costs) with the age and body-style of 
vehicles comprising it.  All of these factors are a direct consequence of differences in CAFE 
stringency that influence the number of new vehicles sold each year, the fraction of them that are 
sold as different body styles, the likelihood that used vehicles of various ages will be retired in a 
given year, and the fuel efficiency of each model year cohort making up the on-road fleet.  
However, these factors do not influence aggregate demand for VMT in the model, except for the 
relatively minor differences caused by the response of driving to the fuel economy rebound 
effect. 

To derive the average fuel economy under the constraint, we conduct a run that simply turns over 
the fleet, holding the fuel economy of new model years entering the fleet constant at the levels 
achieved during model year 2016.  As the fleet turns over, its overall average fuel economy 
slowly improves, gradually approaching the fuel economy new vehicles achieved in MY 2016.  
In this way, fuel economy improvements in the new vehicle market that occur after MY 2016 are 
excluded from the projection of non-rebound VMT.  This isolates the effects of fleet turnover 
and changes in fuel price on projected travel demand from those of requiring higher fuel 
economy, while assigning increases in vehicle use and its consequences resulting from 
improvements in fuel economy after model year 2016 to each regulatory alternative (again 
including the baseline, since it includes minor increases in fuel economy after model year 2016).   

Although this distinction implies that some rebound-related increase in vehicle use occurs even 
in the No-Action Alternative – partly as a consequence of more stringent standards across 
multiple programs – those programs affect each of the action alternatives as well, so any 
rebound-effect travel attributable to fuel economy gains required under those other programs net 
out when comparing across alternatives.  Aggregate travel demand is constant across scenarios 
until we account explicitly for the fuel economy rebound effect, and that demand must be met by 
the on-road fleet.   

However, the CAFE Model simulates slightly different on-road fleets under each regulatory 
alternative, and these differences accumulate over time.  Different alternatives’ fleets may differ 
in both their total size and in the age distribution of vehicles comprising them, each of which has 
important consequences for the intensity with which vehicles of different ages are used to satisfy 
overall demand for travel.  Vehicles of different ages making up each future year’s on-road fleet 
are only imperfect substitutes for one another and thus the services they provide are not 
completely interchangeable.  Thus, while in theory a modestly larger number of relatively new 
vehicles could compensate for a significantly reduces number of older vehicles (because those 
new vehicles would be driven more intensively than older ones), a fleet that is both older and 
smaller is likely to likely require higher annual driving rates for all age or model year cohorts to 
meet the same demand for travel. 

The second reason why the model redistributes VMT across the on-road fleet is a discrepancy 
between unadjusted VMT (the product of average annual vehicle use and the on-road vehicle 
population) and forecasted non-rebound VMT.  In most cases, this redistribution is small in scale 
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and fluctuates between adding and removing miles in any given year.  However, in this analysis, 
the constrained annual VMT is strongly affected by the COVID pandemic, especially in the early 
years of the simulation.  Consequently, this redistribution more often removes miles from the 
unadjusted annual VMT than it adds to them to preserve the non-rebound VMT constraint, and 
this downward adjustment is particularly pronounced in the early years of the agency’s analysis.   

As Figure 4-18 shows, the unadjusted VMT – based on the simple product of the VMT schedule 
(by body style and age) and the on-road vehicle population – is consistently above the model 
forecast of aggregate VMT to which total travel is constrained through CY 2029.641  Had growth 
continued normally from CY 2019 forward, it seems likely that the redistribution process would 
be adding rather than removing VMT throughout that period to preserve the constraint.  

 

 
Figure 4-18 – Comparison of Unadjusted and Constrained VMT in the CAFE Model 

 
641 The figure has not been revised from that shown in the Draft TSD accompanying the agency’s NPRM and 
includes a slightly different set of alternatives than considered for this final rule; it is included only to illustrate the 
effect of constraining VMT.  Note that the scale on the y-axis has been truncated to exaggerate the magnitude of the 
discrepancies between the curves. 
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However, as a consequence of the calculated discrepancy between the VMT constraint and 
unadjusted VMT in the early years of the analysis, the redistribution process must aggressively 
remove miles from the unadjusted VMT estimate during the early years of the analysis period.  
While the earliest years (especially 2020) reflect the depth and recovery related to the pandemic, 
the two estimates converge by 2030, after which the adjustments to individual age cohorts’ 
average use become insignificant.  Figure 4-19 illustrates the adjustments that are necessary to 
enforce the VMT constraint in 2022 and 2029 for Alternative 0 and Alternative 3; adjustments 
for the other alternatives look similar, but those shown in the figure represent the bounding 
cases.642 

The CAFE Model distinguishes between car body-styles, SUVs, and pickup trucks for the 
purposes of simulating usage, and the VMT adjustments occur at that level as well.  As the top 
panel of Figure 4-19 shows, VMT adjustments are identical for both alternatives in 2022 but 
represent significant per-vehicle reductions in VMT; for each body style the reduction represents 
about 10 percent of VMT estimated in the schedule.  However, this still represents an 
improvement from 2020 levels, where the per-vehicle reductions were closer to 15 percent.  
Consistent with the objective of the reallocation process, the largest absolute adjustments (in 
miles per year) are concentrated in age cohorts represented by larger numbers of vehicles and 
characterized by higher average usage, which thus make larger contributions to total VMT.  

As the bottom panel of Figure 4-19 illustrates, by 2029 the unadjusted and constrained estimates 
of VMT have nearly converged.  By the time they do, however, there are also large enough 
differences in the sizes and composition of the on-road fleets between Alternative 0 and 
Alternative 3 to create observable differences between the alternatives in the VMT adjustments 
required to preserve the VMT constraint.  The model still reduces VMT under both alternatives, 
but by only about 1 percent of expected average VMT in Alternative 3, in contrast with almost 2 
percent under Alternative 0.  As Figure 4-18 suggested previously, there are also some years 
where the CAFE Model is forced to add miles to the unadjusted VMT in Alternative 3 to 
preserve the VMT constraint, although those additions are similarly small.  As indicated 
previously, the model repeats this process in each calendar year to ensure identical “non-
rebound” VMT across the alternatives. 

 
642 As with the previous figure, Figure 4-19 has not been revised from the corresponding figure shown in the Draft 
TSD and is included here only to illustrate the magnitude of the adjustments to vehicle use made using the process 
described above.  Thus, it does not fully represent the alternatives considered in this analysis. 



  482 

 
Figure 4-19 – Enforcing the VMT Constraint by Adjusting VMT 

4.3.5 Accounting for the Fuel Economy Rebound Effect 

The last step in the process of estimating the number of miles driven by cars and light trucks of 
different ages during each year spanned by the analysis period is to account for the effect of 
higher fuel economy on vehicle use.  As indicated previously, the agency’s evaluation views all 
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impacts of requiring higher fuel economy as consequences of the regulatory alternatives that do 
so, including those on vehicle sales, retirement of used vehicles, and the lifetime use of vehicles 
produced during the model years subject to each alternative.  The processes for constraining and 
reallocating mileage described above are intended to assign the consequences of resulting 
changes in the size and composition of the car and light truck fleets to the various regulatory 
alternatives, while the consequences of improved fuel economy for vehicle use – the rebound 
effect – are estimated directly.  

The fuel economy rebound effect, one example of the well-documented energy efficiency 
rebound effect for energy-consuming capital goods, refers to the tendency of motor vehicles’ use 
to increase when their fuel economy is improved and the cost per mile of driving declines as a 
result.  Establishing more stringent CAFE standards than the baseline level will lead to higher 
fuel economy for new cars and light trucks, thus reducing the amount of fuel consumed in 
driving each mile.  The resulting decline in the cost to drive each mile will prompt an increase in 
the number of miles new cars and light trucks are driven, and this increase in vehicle use 
represents the fuel economy rebound effect.   

Because it governs the magnitude of this response, NHTSA recognizes that the value of the 
rebound effect influences the costs and benefits associated with establishing higher CAFE 
standards, and also the estimates of fatalities and injuries projected to occur under various 
regulatory alternatives.  A larger rebound effect also reduces many of the environmental benefits 
associated with increased fuel efficiency.  For these reasons, the estimated magnitude of the 
rebound effect must be considered carefully.  

For the current analysis, NHTSA conducted an extensive review of recent estimates of the fuel 
economy rebound effect, covering the past two decades of research and spanning different 
geographic regions.  In contrast to the agency’s previous extensive reviews, which mainly 
compiled different authors’ single “best” or most likely estimates of its magnitude, this most 
recent survey included all estimates of the rebound effect reported in each published study it 
reviewed, and also incorporated the often- wide uncertainty surrounding these estimates.  The 
agency also reviewed previous surveys of published estimates of the rebound effect in order to 
compare their findings to its own most recent analysis.  

Formally, the fuel economy rebound effect is defined as the elasticity of vehicle use with respect 
to vehicle fuel economy (distance traveled per unit of fuel consumed, such as miles per gallon) 
or fuel efficiency (fuel consumed per unit of distance traveled, such as liters per kilometer).  
Some research attempts to estimate this parameter directly by analyzing the relationship of 
vehicle use to variation in vehicles’ fuel economy or fuel efficiency, while controlling separately 
for fuel prices.  Because sources of exogenous or independent variation in fuel economy or 
efficiency are rare and their average values for an entire vehicle fleet change very slowly over 
time, however, many analysts instead estimate the elasticity of vehicle use with respect to fuel 
cost per unit of distance driven (dollars per mile, for example) and assume that this parameter is 
identical to the fuel economy rebound effect.  

The agency’s survey included examples of published studies that rely on each of these strategies.  
Within each category, the survey identified studies that estimate the rebound effect using 
national aggregate time-series data on vehicle use and fuel economy or fuel cost per unit of 
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distance traveled, average values of these variables for geographic units (nations, provinces, or 
states) measured repeatedly over successive years, and estimated use and fuel economy or fuel 
cost for samples of vehicle-owning households or of individual vehicles themselves.  Each of 
these data sources and measurement methods involves significant empirical and statistical 
challenges, but each also offers important advantages for obtaining reliable estimates of the 
rebound effect.  

Table 4-16 – Summary of Recent Studies of the Rebound Effect for Light-Duty Vehicles 

 

Table 4-16 summarizes the details of studies of the rebound effect NHTSA included in its 
updated survey, and Table 4-17 identifies the individual studies and reports their locations, time 
periods they span, and type of data they utilize.  As indicated previously, the agency’s survey 
included all estimates of the rebound effect reported in each published study rather than a single 
best or most representative estimate.  We weighted each published study equally, however, so 
that each individual value reported in a study that included a large number of alternative 
estimates received less weight than those from a study reporting a smaller number of differing 
estimates.  Thus, for example, each value from a study that reported ten separate estimates was 
weighted only half as heavily as each value reported in a study that produced only five different 
estimates.  To recognize the statistical uncertainty surrounding each study’s findings, the agency 
combined econometric estimates of the magnitude of the rebound effect with the standard errors 
accompanying each estimate to simulate a probability distribution for each published estimate.643  
It then compiled these into summary probability distributions representing different definitions 
of the rebound effect and the various data sources and analytic approaches used toot estimate it.   

Table 4-17 – Details of Recent Studies 

Authors (Date) Nation Time 
Period Data Range of 

Estimates 
 

643 Some estimates of the rebound effect are mathematical combinations of two or more different parameters that are 
estimated econometrically; for example, the rebound effect calculated from time-series models that include a lagged 
value of vehicle use as an explanatory variable depends on the estimated coefficients of both fuel economy (or fuel 
cost per distance traveled) and the lagged value of vehicle use.  In some of these cases, the standard error of the 
calculated rebound effect can be calculated directly using the reported standard errors of its separate parameters.  In 
those where it could not be, the distribution of rebound effect values was simulated using repeated draws (1,000) 
from the probability distributions of its separate parameters, and its standard error was approximated using the 
standard deviation calculated from that resulting distribution.  

U.S. Other National Time 
Series

Panel of 
Geographic 
Sub-Units

Household 
Sample

Vehicle 
Sample

Fuel Economy or Efficiency 7 6 1 0 3 9
Fuel Cost per Mile or km 14 5 4 5 2 8
Fuel Economy or Efficiency 27 35 2 0 31 29
Fuel Cost per Mile or km 115 28 26 52 14 51
Fuel Economy or Efficiency 16% 22% -15% -- 15% 26%
Fuel Cost per Mile or km 18% 8% 19% 22% 15% 16%

Number of 
Estimates

Mean 
Estimates

Number of 
Studies

Study 
Details Explanatory Variable

Nation Vehicle Use Data:
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Greene (2010) U.S. 1966-
2007 National aggregate VMT 0-13% 

Wang et al. (2012) Hong Kong 1993-
2009 

Year-to-year changes in 
nationwide driving 45% 

Stapleton et al. 
(2016, 2017) U.K. 1970-

2012 National aggregate VMT 11-30% 

FHWA (2018) U.S. 1966-
2016 National aggregate VMT 14% 

Small and Van 
Dender (2007) U.S. 

1967-
2004 
2001-
2004 

Annual VMT for 
individual U.S. states 

22-34% 
11-32% 

Barla (2009) Canada 1990-
2004 

10 Canadian provinces 
over 15 years 17-19% 

Hymel et al. (2010) U.S. 1966-
2009 

Annual VMT for 
individual U.S. states 13-25% 

Anjovic and Haas 
(2012) 6 EU nations 1970-

2007 6 EU nations over 38 years 44% 

Hymel and Small 
(2015) U.S. 

1966-
2009 
2000-
2009 

Annual VMT for 
individual U.S. states 

16-25% 
4-18% 

Feng et al. (2013) U.S. 1996-
2000 U.S. households 2-12% 

Liu (2014) U.S. 2009 1,420 Washington, D.C. 
area households 39-40% 

Wang and Chen 
(2014) U.S. 2009 105,000 households -20 to 70% 

Dillon et al. (2017) California 2009 3,500 households 1-18% 

DeBorger (2016) Denmark 2001-
2011 23,000 households 5-12% 

Andersson et al. 
(2019) Sweden 2006-

2012 29,000 households 2-34% 

Waddud (2009) U.S. 1984-
2003 U.S income quintiles 1-25% 

Su (2011) U.S. 2009 45,000 household vehicles 3-20% 
Su (2012) U.S. 2009 45,000 household vehicles 11-19% 

Frondel et al. 
(2012) Germany 1997-

2009 2,165 households 42-59% 

Linn (2013) U.S. 2001, 
2009 

230,000 household 
vehicles 23-66% 

Weber and Farsi 
(2014) Switzerland 2010 8,000 household vehicles 19-81% 

Gillingham (2014) California 2001-
2009 5 million vehicles 22-23% 
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Su (2015) U.S. 2009 45,000 household vehicles 9-17% 
Gillingham et al. 

(2015) Pennsylvania 2000-
2010 7 million vehicles 8-15% 

West et al. (2015) U.S. 2009 166,000 new vehicles 0% 

Langer et al. (2017) Ohio 2009-
2013 229,000 driver-months 11-15% 

Wenzel and Fujita 
(2018) Texas 2005-

2020 32 million vehicles 0-40% 

Knittel and Sandler 
(2018) California 1996-

2010 76 million vehicles 10-25% 

Roth (2019) Switzerland 1998-
2010 72,000 vehicles 0-5% 

 
Figure 4-19 displays the resulting probability distribution of estimates of the rebound effect 
derived from the elasticity of vehicle use with respect to fuel economy or fuel efficiency; it 
incorporates results from 12 separate published studies that report a total of 70 estimates.  The 
figure shows the distribution of all estimates over the range from 0-30 percent, together with 
separate distributions for studies from the United States and other nations, as well as for those 
relying on households’ combined use of the vehicles they own and on the use of individual 
vehicles.  Multiple “peaks” in most of these distributions are evident, often reflecting the 
clustering of a single study’s estimates, but also indicating the limited number of estimates they 
summarize.  As it illustrates, the most likely estimate for the United States falls in the 15-20 
percent range, while values from approximately 6-12 percent are most likely in studies from 
outside the United States.  The most probable estimates from both household- and vehicle-based 
studies also appear to fall into the 6-12 percent range.  
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Figure 4-20 – Probability Distribution of Rebound Effect Estimates Based on Fuel Economy or Fuel 
Efficiency 

Figure 4-21 displays the probability distribution of estimates of the rebound effect derived from 
the elasticity of vehicle use with respect to fuel cost per unit of distance traveled, which 
incorporates results from 19 published studies reporting a total of 143 estimates, more than twice 
the number included in the previous figure.  As it shows, the two studies relying on household 
vehicle use suggest most likely values for the rebound effect of less than 5 percent, while studies 
using other types of data and measurement approaches consistently indicate most likely values in 
the 10-15 percent range.  Estimates for the United States show a most likely value in this latter 
range as well, while the distribution of non-U.S. estimates suggests a central tendency of 15-20 
percent but is so “flat” by comparison that values outside this range are only slightly less likely.  

 

Figure 4-21 – Probability Distribution of Rebound Effect Estimates Based on Fuel Cost per Distance 
Traveled 

NHTSA believes it is also important to benchmark the findings from its analysis against previous 
large-scale surveys of published research on the rebound effect, and Table 4-18 summarizes the 
findings from four such surveys.  In the earliest, Greening, Greene, and Difiglio (2000) reviewed 
7 studies that estimated the rebound effect for light-duty vehicles in the United States using the 
elasticity of vehicle use with respect to fuel cost per mile to measure it, and concluded that the 
U.S. rebound effect was likely to fall in the range of 10-30 percent.644  Sorrell (2007) later 
reviewed 9 primarily European analyses and found considerably higher values; the studies based 
on fuel efficiency he reviewed suggested a figure of 40 percent, while the few based on fuel cost 

 
644 Greening, L.A., Greene, D.L. and Difiglio, C., “Energy efficiency and consumption—the rebound effect—a 
survey.” Energy Policy, Vol. 28 (2000), at pp. 389-401. 
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per km indicated a range of 5-30 percent.  Sorrell et al. (2009) later expanded that earlier survey 
to include 16 – again mostly European – studies and arrived at similar results, reporting a mean 
estimate of 44 percent for studies that measured the rebound effect as a response to variation in 
fuel efficiency but a mean value less than half that (21 percent) for those based on fuel cost per 
km traveled.645  For various reasons, those authors speculated that the lower end of the range 
they identified might be most appropriate.  

Table 4-18 – Findings from Previous Surveys of the Fuel Economy Rebound Effect 

 

Most recently, a meta-analysis of 74 published studies of the rebound effect conducted by 
Dimitropoulos et al. (2018) found extremely wide variation in reported values, estimating that 
the long-run rebound effect averaged 27 percent when measured by the response of vehicle use 
to variation in fuel efficiency (the authors’ preferred measure), and 20 percent when it is 
measured using variation in fuel cost per unit of distance traveled.646  The authors concluded that 
“the magnitude of the rebound effect in road transport can be considered to be, on average, in the 
area of 20 [percent],” but noted that their most likely long-run estimate was about 32 percent.647  
A subsequent study by these same authors concluded that the most likely estimate of the long-
run rebound effect is in the range of 26-29 percent.648  Thus the finding from these surveys that 
the rebound effect offsets only a minor share of total potential fuel savings has remained 
surprisingly consistent over time, despite a rapidly expanding universe of empirical evidence 
drawn from increasingly diverse settings, continuing improvements in the data available to 
measure it, an expanding range of strategies for identifying the rebound effect and distinguishing 
it from other factors influencing vehicle use, and advances in the econometric procedures 
analysts use to estimate its magnitude.  

On the basis of the evidence reviewed here, NHTSA has elected to use a rebound effect of 10 
percent to analyze the effects of adopting higher CAFE standards.  NHTSA’s analysis of the 
probability distribution functions presented here suggest that the median value is between 10 and 
15 percent.  In weighing the available evidence, NHTSA considered factors similar to those cited 
by the EPA in its final rule and found by Dimitropoulos et al. (2018) to account for much of the 
wide variation among estimates reported in international studies.  Thus the agency focused 
particularly on  (1) estimates for the U.S. versus those for countries with differing transportation 

 
645 Sorrell, Steve, John Dimitropoulos, and Matt Sommerville, “Empirical Estimates of the Direct Rebound Effect: A 
Review,” Energy Policy 37(2009), at pp. 1356–71.  
646 Dimitropoulos, Alexandros, Walid Oueslati, and Christina Sintek, “The rebound effect in road transport: a 
meta-analysis of empirical studies,” Paris, OECD Environment Working Papers, No. 113; see esat Table 5, at p. 25 
(and accompanying discussion).   
647 Id. at p. 28. 
648 Dimitropoulos, Alexandros, Walid Oueslati, and Christina Sintek, “The Rebound Effect in Road Transport: A 
Meta-Analysis of Empirical Studies,” Energy Economics 75 (2018), at pp. 163–79; see esat Table 4, at p. 170, Table 
5, at p. 172 (and accompanying discussion), and Appendix B, Table B.V., at p. 177.  

Number Mean Low High Number Mean Low High U.S. Global
Greening et al. 2000 7 -- -- -- -- 13 20% 5% 31% 10-30% --
Sorrel 2007 9 4 40% 0% 87% 5 -- 5% 30% -- 10-30%
Sorrell et al. 2009 16 5 44% 0% 87% 12 21% 6% 32% -- 10-30%
Dimitropoulos 2018 69 203 27% -64% 133% 445 20% -28% 145% ~20% 26-29%

Author(s) Publication 
Date

Number of 
Studies 

Reviewed

Estimates Based on Fuel 
Economy or Efficiency

EstimatesBased on Fuel Cost 
per Mile or KM

Recommended 
Values
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systems, fuel prices, population densities and income levels, (2) those derived using more recent 
data or taking into account the potential for the rebound effect to change over time in response to 
factors such as rising income and increasing fuel economy (for example, Hymel and Small 
(2015) and Greene (2010)), (3) estimates based on multiple years of data versus those derived 
from a single year of survey data (which tend to produce the highest and most variable 
estimates), (4) values that are based on fuel efficiency or fuel cost per mile rather than the price 
of gasoline itself, and (5) estimates derived from more reliable data sources such as the U.S. 
Department of Transportation’s historical statistics on aggregate vehicle use or odometer 
readings for individual vehicles (e.g., Gillingham et al. (2015), Knittel and Sandler (2018), 
Wenzel and Fujita (2018) and West et al. (2015)), rather than owners’ self-reported estimates of 
driving.  When these characteristics are taken into account, the totality of the evidence appears to 
support the use of a smaller rebound elasticity than that used in previous rules.  Because there is 
a plausible range of  values, we include a sensitivity analysis of 5 percent and 15 percent. As 
previously, the agency will continue to review new evidence on the magnitude of the fuel 
economy rebound effect and will update its summaries of that evidence and to adjust the value it 
employs in regulatory future analysis as appropriate.  

4.3.6 VMT Resulting from Simulation 

Lifetime mileage accumulation is now a function of new vehicle sales, annual rates of retirement 
for used vehicles, the base year mileage accumulation schedules (described in Table 4-14), the 
redistribution of VMT across the age distribution of registered vehicles in each calendar year to 
preserve the non-rebound VMT constraint, and any additional mile attributable to the rebound 
effect.  As discussed in detail above, the definition of “non-rebound” VMT in this analysis 
determines the additional miles associated with secular fleet turnover and fuel price changes.  
Conversely, rebound miles measure the VMT difference due to fuel economy improvements 
relative to MY 2016 (independent of changes in fuel price, or secular fleetwide fuel economy 
improvement resulting from the continued retirement of older vehicles and their replacement 
with newer ones).   

To calculate total VMT including the increase resulting from the rebound effect that occurs in 
response to required increases in fuel economy under the regulatory alternatives, the CAFE 
Model applies the price elasticity of VMT derived from the FHWA forecasting model to the full 
change in CPM and the initial VMT schedule.  At the same time, however, it applies the (user 
defined) value of the rebound effect to the incremental percentage change in CPM between the 
non-rebound and full CPM calculations to the miles applied to each vehicle during the 
reallocation step that ensured adjusted non-rebound VMT matched the non-rebound VMT 
constraint.  Equation 4-16 presents this calculation:  

� � (𝑉𝑉𝑉𝑉𝑉𝑉𝐴𝐴,𝑆𝑆 ∙
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

S

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴

�1 + %Δ𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 ∙ 𝜀𝜀𝑅𝑅𝑅𝑅𝑅𝑅� + Δ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴,𝑆𝑆,𝐶𝐶𝐶𝐶 ∙ (1 + (%Δ𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 ∙ 𝜀𝜀𝑅𝑅𝑅𝑅𝑅𝑅

− %Δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶 ∙ 𝜀𝜀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)) ∙  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶,𝐴𝐴,𝑆𝑆 

Equation 4-16 – Total Calendar Year VMT with Rebound Miles 

In the equation, VMTA,S is the initial VMT schedule by age and body-style, %ΔNonReboundCPM 
and %ΔCPM are defined in Equation 4-11 and Equation 4-10, respectively, and ΔMilesA,S,CY is 
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the per-vehicle miles added by the reallocation described in Equation 4-15.  However, the 
additional miles that are added to each vehicle in the reallocation step (ΔMilesA,S,CY) are 
multiplied by only the difference between the percentage changes in full CPM and non-rebound 
CPM, respectively.  This is because the %ΔNonRbdCPM was used to derive the allocated miles, 
so using the full CPM change to scale the allocated miles would account for that change twice.   

Taking this difference avoids overestimating the total mileage in the presence of the rebound 
effect.  And the presence of both the elasticity from the FHWA model that was applied to the 
non-rebound VMT constraint, 𝜺𝜺𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭, and the user-defined elasticity of travel,  𝜺𝜺𝑹𝑹𝑹𝑹𝑹𝑹, ensure 
consistency with the constraint even if the user defines a value of rebound that does not equal the 
value in the FHWA model.  The “rebound miles” will be the difference between Equation 4-16 
and Equation 4-15 for each alternative.  To the extent that regulatory scenarios produce 
comparable numbers of rebound miles in early calendar years, the impacts associated with those 
miles net out across the alternatives in the benefit cost analysis. 

5 Simulating Emissions Impacts of Regulatory Alternatives 

This analysis includes the adoption of electric vehicles and other fuel-saving technologies, which 
produce additional co-benefits.  These co-benefits include reduced vehicle tailpipe emissions 
during operation as well as reduced upstream emissions during petroleum extraction, 
transportation, refining, and finally fuel transportation, storage, and distribution (TS&D).  This 
chapter has a detailed discussion on the development and evolution of input parameters for 
criteria pollutants, greenhouse gases, and air toxics emitted, in particular for the reference case. 

The rule implements an emissions inventory methodology for estimating impacts.  Vehicle 
emissions inventories are often described as three-legged stools, comprised of activity (i.e., miles 
traveled, hours operated, or gallons of fuel burned), population (or number of vehicles), and 
emission factors.  An emissions factor is a representative rate that attempts to relate the quantity 
of a pollutant released to the atmosphere per unit of activity.649   

In this rulemaking, upstream emission factors are on a fuel volume basis and tailpipe emission 
factors are on a distance basis.  Simply stated, the rule’s upstream emission inventory is the 
product of the per-gallon emission factor and the corresponding number of gallons of gasoline or 
diesel consumed.  Similarly, the tailpipe emission inventory is the product of the per-mile 
emission factor and the appropriate miles traveled estimate.  The only exceptions are that tailpipe 
sulfur oxides (SOX) and carbon dioxide (CO2) also use a per-gallon emission factor in the CAFE 
Model.  The activity levels—both miles traveled and fuel consumption—are generated by the 
CAFE Model while the emission factors have been incorporated from other federal models. 

For this rule, vehicle tailpipe (downstream) and upstream emission factors and subsequent 
inventories were developed independently from separate data sources.  Upstream emission 
factors are estimated from a lifecycle emissions model developed by the U.S. Department of 
Energy’s (DOE) Argonne National Laboratory.  Tailpipe emission factors are estimated from the 

 
649 U.S. Environmental Protection Agency, Basics Information of Air Emissions Factors and Quantification, 
https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-
quantification.  (Accessed: February 15, 2022). 
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regulatory highway emissions inventory model developed by the U.S. Environmental Protection 
Agency’s (EPA) National Vehicle and Fuel Emissions Laboratory.  Data from the latest EPA and 
DOE models have been utilized to update the CAFE Model for this rulemaking. 

This chapter also details how these emissions will adversely affect human health, particularly 
from criteria pollutants known to cause poor air quality and damage human health, particularly 
when inhaled.  Further description on how the health impacts of upstream and tailpipe criteria 
pollutant emissions can vary and how these emission damages have been monetized and 
incorporated into the rule can be found in Chapter 6.2.2 and the Final SEIS accompanying this 
analysis. 

5.1 Activity Levels Used to Calculate Emissions Impacts  

Emission inventories in this rule vary by several key activity parameters, especially relating to 
the vehicle’s model year and relative age.  Most importantly, the CAFE Model accounts for 
vehicle sales, turnover, and scrappage as well as travel demands over its lifetime.  Like other 
models, the CAFE Model includes procedures to estimate annual rates at which new vehicles are 
purchased, driven, and subsequently scrapped.  Together, these procedures result in, for each 
vehicle model in each model year, estimates of the number remaining in service in each calendar 
year, as well as the annual mileage accumulation (i.e., VMT) at each age.  Inventories by model 
year are derived from the annual mileage accumulation rates and corresponding emission factors.   

As discussed in Chapter 2.1, for each vehicle model/configuration in each model year from 2020 
to 2050 for upstream estimates and 2060 for tailpipe estimates, the CAFE Model estimates and 
records the fuel type (e.g., gasoline, diesel, electricity), fuel economy, and number of units sold 
in the United States.  The model also makes use of an aggregated representation of vehicles sold 
in the United States during 1975-2019.  The model estimates the numbers of each cohort of 
vehicles remaining in service in each calendar year, and the amount of driving accumulated by 
each such cohort in each calendar year.   

The CAFE Model estimates annual vehicle-miles of travel (VMT) for each individual car and 
light truck model produced in each model year at each age of their lifetimes, which extend for a 
maximum of 40 years.650  Since a vehicle’s age is equal to the current calendar year minus the 
model year in which it was originally produced, the age span of each vehicle model’s lifetime 
corresponds to a sequence of 40 calendar years beginning in the calendar year corresponding to 
the model year it was produced.651  These estimates reflect the gradual decline in the fraction of 
each car and light truck model’s original model year production volume that is expected to 
remain in service during each year of its lifetime, as well as the well-documented decline in their 

 
650 Registration data indicate that survival rates for 39-year-old vehicles have tended to fall between 1 and 2.5 
percent, and odometer reading data indicate that 39-year-old vehicles have tended to be driven far less intensively 
than newer vehicles.  Uncertainties tend to increase for the oldest vehicles, and accounting for vehicle survival and 
mileage accumulation over a 40-year span has also proven analytically practicable. 
651 In practice, many vehicle models bearing a given model year designation become available for sale in the 
preceding calendar year, and their sales can extend through the following calendar year as well.  However, the 
CAFE Model does not attempt to distinguish between model years and calendar years; vehicles bearing a model year 
designation are assumed to be produced and sold in that same calendar year.  
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typical use as they age.  Using this relationship, the CAFE Model calculates fleet-wide VMT for 
cars and light trucks in service during each calendar year spanned by this analysis. 

Based on these estimates, the model also calculates quantities of each type of fuel or energy, 
including gasoline, diesel, and electricity, consumed in each calendar year.  By combining these 
with estimates of each model’s fuel or energy efficiency, the model also estimates the quantity 
and energy content of each type of fuel consumed by cars and light trucks at each age, or viewed 
another way, during each calendar year of their lifetimes.  As with the accounting of VMT, these 
estimates of annual fuel or energy consumption for each vehicle model and model year 
combination are combined to calculate the total volume of each type of fuel or energy consumed 
during each calendar year, as well as its aggregate energy content. 

The procedures the CAFE Model uses to estimate annual VMT for individual car and light truck 
models produced during each model year over their lifetimes and to combine these into estimates 
of annual fleet-wide travel during each future calendar year, together with the sources of its 
estimates of their survival rates and average use at each age, are described in detail in Chapters 
4.2 and 4.1.  The data and procedures it employs to convert these estimates of VMT to fuel and 
energy consumption by individual model, and to aggregate the results to calculate total 
consumption and energy content of each fuel type during future calendar years, are also 
described in detail in that same section.   

The model documentation accompanying today’s notice describes these procedures in detail.652  
The quantities of travel and fuel consumption estimated for the cross section of model years and 
calendar years constitutes a set of “activity levels” based on which the model calculates 
emissions.  The model does so by multiplying activity levels by emission factors.  As indicated 
in the previous section, the resulting estimates of vehicle use (VMT), fuel consumption, and fuel 
energy content are combined with emission factors drawn from various sources to estimate 
emissions of GHGs, criteria air pollutants, and airborne toxic compounds that occur throughout 
the fuel supply and distribution process, as well as during vehicle operation, storage, and 
refueling.  Emission factors measure the mass of each GHG or criteria pollutant emitted per 
vehicle-mile of travel, gallon of fuel consumed, or unit of fuel energy content.  The following 
sections identifies the sources of these emission factors and explains in detail how the CAFE 
Model applies them to its estimates of vehicle travel, fuel use, and fuel energy consumption to 
estimate total annual emissions of each GHG, criteria pollutant, and airborne toxic. 

5.2 Simulating Upstream Emissions Impacts 

The effect of reductions in U.S. fuel consumption that result from adopting more stringent CAFE 
standards on upstream emissions of criteria air pollutants, GHGs, and air toxics depends partly 
on the responses of domestic petroleum production and refining, together with changes in U.S. 
imports of crude petroleum and refined fuel.  To illustrate why, there are three major supply 
“pathways” for fuel consumed by the U.S. light-duty vehicle fleet: 

 
652 CAFE Model documentation is available at https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-
and-effects-modeling-system.  (Accessed: February 15, 2022). 
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1. Refining fuel in the United States from crude petroleum produced within the United 
States.   

2. Refining fuel in the United States from crude petroleum produced overseas and imported 
into the United States. 

3. Importing fuel that has been refined overseas into the United States.653  

Each of these supply pathways produces emissions at different facilities and locations – oil 
fields, pipelines, refineries, and fuel storage facilities.  Thus, while total upstream emissions from 
supplying fuel are identical regardless of how it is supplied, domestic emissions will differ 
depending on its source of supply.  For example, pathway 1 involves domestic emissions that 
occur during crude petroleum extraction, transportation of crude oil from production or 
temporary storage facilities to domestic refineries, refining of crude petroleum to produce 
transportation fuels, and storage and distribution of refined fuels.654  In contrast, pathway 2 
generates domestic emissions during transportation of crude petroleum from U.S. coastal ports to 
domestic refineries, as well as from fuel refining, storage, and distribution, while pathway 3 
produces domestic emissions only from fuel storage and distribution.  

Thus, reductions in the volume of fuel supplied via each of these pathways will have different 
consequences for domestic emissions occurring throughout the fuel supply and distribution 
process.  In addition, because the United States is now a net exporter of refined gasoline (and is 
likely to remain so for at least the next two decades), some of the anticipated reduction in 
domestic gasoline consumption may result in refiners simply redirecting fuel that is currently 
supplied for domestic consumption via pathways 1 and 2 to the export market, resulting in no 
change in upstream emissions.  NHTSA considers only the consequences of changes in upstream 
emissions of criteria air pollutants and air toxics within the United States that result from reduced 
fuel consumption.  The agency’s analysis estimates these by applying emission factors for each 
stage of the fuel supply chain (petroleum extraction, petroleum transportation to refineries, fuel 
refining, and fuel storage and distribution) to the estimated changes in the total energy content of 
fuel assumed to be supplied via each of the pathways identified above.  In contrast, the agency’s 
analysis considers changes in global emissions of GHGs, and estimates these by including the 
effects of lower domestic fuel consumption on emissions that occur during all stages of the fuel 
supply chain, regardless of whether those activities take place within the United States or outside 
its borders.  

The agency considers both the physical quantities and societal cost of both tailpipe and upstream 
emissions when setting CAFE standards.  Early CAFE rulemakings utilized upstream emission 
factors from the U.S. Department of Energy’s previous releases of the Greenhouse gases, 
Regulated Emissions, and Energy use in Transportation (GREET) Model.655  This rule includes 

 
653 We assume that all fuel refined outside the United States and then imported into the United States is refined from 
petroleum that was also produced outside the United States.  Although some of it could be refined from crude 
petroleum produced in the United States and exported, we assume the fraction supplied via this pathway is 
negligible.  
654 By longstanding EPA convention, emissions that occur when vehicles are being refueled at retail stations or 
vehicle storage depots (such as buses) are ascribed to vehicle use, rather than to fuel supply.  
655 U.S. Department of Energy, Argonne National Laboratory, Greenhouse gases, Regulated Emissions, and Energy 
use in Transportation (GREET) Model, Last Update: 11 Oct. 2021, https://greet.es.anl.gov/.  (Accessed: February 
15, 2022). 



  494 

data from GREET 2021 and additionally uses a Python script to manipulate data formats, 
allowing for quicker, easier replication.  Rulemaking updates to upstream emissions were made 
for certain fuel types: 

• Gasoline,  
• Diesel, and 
• Electricity. 

This chapter provides the calculation methodology of these updated upstream emission factors 
(in g/mmBTU) for the following regulated criteria pollutants as well as greenhouse gases derived 
from GREET 2021: 

• Regulated criteria pollutants 
o carbon monoxide (CO), 
o volatile organic compounds (VOCs), 
o nitrogen oxides (NOX), 
o sulfur oxides (SOX), and 
o particulate matter with 2.5-micron (µm) diameters or less (PM2.5); 

•  Greenhouse gases 
o carbon dioxide (CO2), 
o methane (CH4), and 
o nitrous oxide (N2O). 

Emission factors for air toxics and diesel particulate matter of 10 µm or less (PM10) were 
unchanged from the 2018 NPRM and 2020 final rule.   

Each analysis year has emission factors of the four upstream emission processes for gasoline and 
diesel:  

• Petroleum Extraction, 
• Petroleum Transportation, 
• Petroleum Refining, and 
• Fuel Transportation, Storage, and Distribution (TS&D). 

By contrast, electricity only has a single value per analysis year.  In the sections below, the 
specific emission calculations for each upstream process are described.  For this rulemaking, 
analysis years of 2015 and earlier were removed.  The upstream CAFE parameters for this rule 
include 2020 through 2050 in five-year intervals: 

• 2020, 2025, 2030, 2035, 2040, 2045, 2050 

5.2.1 Petroleum Extraction 

The first step in the process for calculating upstream emissions includes any emissions related to 
the extraction, recovery, and production of petroleum-based feedstocks, namely conventional 
crude oil, oil sands, and shale oils.  This methodology was initially implemented by Volpe with 
example guidance from the Department of Energy’s Argonne National Laboratory.  The 
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Petroleum Extraction calculation began by summing all of the emission factors by extraction 
subprocess from the GREET 2021 Petroleum tab.  For example, the emission factor 𝐸𝐸𝐹𝐹 of oil 
sands surface mining for diluted bitumen (dilbit) production is the sum of each extraction 
subprocess 𝐸𝐸𝐸𝐸: bitumen extraction and separation, on-site H2 production, co-produced electricity 
credit, flaring emissions, and bitumen extraction and separation non-combustion emissions.   

Each extraction 𝐸𝐸𝐸𝐸 is then multiplied by the associated loss factors—or process inefficiencies—
and energy share for the following combinations of feedstock and primary extraction process: 

• Crude Oil 
o Recovery 

• Oil Sands 
o Surface Mining + Dilbit 

 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

o Surface Mining + Synthetic Crude Oil (SCO) 
 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

o In-Situ Production + Dilbit 
 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

o In-Situ Production + SCO 
 Bitumen Extraction and Separation, 
 On-site H2 Production, 
 Co-produced Electricity Credit, 
 Flaring Emissions, and 
 Bitumen Extraction and Separation Non-Combustion Emissions; 

• Shale Oil (Bakken) 
o Recovery 

• Shale Oil (Eagle Ford) 
o Recovery 

These seven upstream feedstock/extraction process combinations produce identical estimates for 
both gasoline and diesel; differences by fuel type only occur during and after the refining 
process.  The extraction calculation includes the two associated loss factors, which are constant 
across all analysis years and both fuel types, and energy share (rather than the volumetric share) 
for each combination above: 
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• Loss Factors 
o Transportation to U.S. Refineries 
o Storage 

• Energy Share of Crude Feedstocks to U.S. Refinery 

In mathematical terms, the Petroleum Extraction calculation for the emission factor 𝐸𝐸𝐸𝐸 
dependent on the energy share 𝑒𝑒𝑒𝑒 (from the GREET Petroleum tab), fuel type 𝑓𝑓 (either gasoline 
or diesel), analysis year 𝑦𝑦, and pollutant 𝑝𝑝 can be expressed as shown in Equation 5-1. 

𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓,𝑦𝑦,𝑝𝑝
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Equation 5-1 – Yearly Gasoline Petroleum Extraction Emission Factor 

For every year in the series of analysis years 𝑦𝑦 ∈ 𝑌𝑌 (note that the year evaluated must be changed 
in the GREET Inputs tab) and every pollutant in the full set of pollutants 𝑝𝑝 ∈ 𝑃𝑃 mentioned 
above, the final gasoline Petroleum Extraction 𝐸𝐸𝐸𝐸 is multiplied by the percent non-ethanol 
remainder of the standard E10 blend currently distributed at fuel pumps across the United States 
(also found in the GREET Petroleum tab), simply 1 – pure ethanol energy content (𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %) 
while the final diesel 𝐸𝐸𝐸𝐸 is assumed to have no ethanol content, such that: 

𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %)  
and 

𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃. 

Equation 5-2 – Total Gasoline Petroleum Extraction Emission Factor 

There are a few notable pollutant exceptions that have been originally separated out in GREET 
by their sources and were later combined in the extraction calculation: 

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐻𝐻4 =  𝐶𝐶𝐻𝐻4: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝐶𝐶𝐻𝐻4:𝑛𝑛𝑛𝑛𝑛𝑛-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Many extraction processes do not include VOC from bulk terminal and CH4: non-combustion 
but are added to primary VOC and CH4 estimates respectively for crude oil and shale oil 
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recovery.  The Petroleum Transportation and Fuel TS&D processes also consider combined 
VOC and CH4 emission factors.  

5.2.2 Petroleum Transportation 

The Petroleum Transportation process is quite similar to the Petroleum Extraction process 
described above, but instead only includes the transport processes of crude feedstocks sent for 
domestic refining: 

•  Crude Oil 
o Transportation to U.S. Refineries 

• Oil Sands 
o Surface Mining + Dilbit: Transportation to U.S. Refineries, 
o Surface Mining + Synthetic Crude Oil (SCO): Transportation to U.S. Refineries, 
o In-Situ Production + Dilbit: Transportation to U.S. Refineries, and 
o In-Situ Production + SCO: Transportation to U.S. Refineries; 

• Shale Oil (Bakken) 
o Transportation to U.S. Refineries 

• Shale Oil (Eagle Ford) 
o Transportation to U.S. Refineries 

While the Petroleum Transportation calculation does still use energy share 𝑒𝑒𝑒𝑒 by crude 
feedstock, it omits the loss factors.  As with Petroleum Extraction, the Petroleum Transportation 
emission factor 𝐸𝐸𝐸𝐸, shown in Equation 5-3, is aggregated by feedstock/process combinations 
also located in the GREET 2021 Petroleum tab. 

𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓,𝑦𝑦,𝑝𝑝

= �𝐸𝐸𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑙𝑙𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑙𝑙𝑦𝑦�

+ �𝐸𝐸𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦
�

+ �𝐸𝐸𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑆𝑆𝑆𝑆𝑂𝑂𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑆𝑆𝑆𝑆𝑂𝑂𝑦𝑦�

+ �𝐸𝐸𝐹𝐹𝑖𝑖𝑖𝑖-𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖-𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦� + �𝐸𝐸𝐹𝐹𝑖𝑖𝑖𝑖-𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑆𝑆𝑆𝑆𝑂𝑂𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝑠𝑠𝑖𝑖𝑛𝑛-𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑆𝑆𝑆𝑆𝑂𝑂𝑦𝑦�

+ �𝐸𝐸𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦�

+ �𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓,𝑦𝑦,𝑝𝑝 ∙ 𝑒𝑒𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦
� 

Equation 5-3 – Yearly Gasoline Petroleum Transportation Emission Factor 

As in the extraction process calculation, the crude feedstock transportation 𝐸𝐸𝐸𝐸𝐸𝐸 are generated for 
each fuel type 𝑓𝑓, year in the series of analysis years 𝑦𝑦 ∈ 𝑌𝑌, and each pollutant is the full set of 
pollutants 𝑝𝑝 ∈ 𝑃𝑃.  The final Petroleum Transportation 𝐸𝐸𝐸𝐸 for gasoline is multiplied by the 
national default non-ethanol remainder (1 − 𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %), whereas the final transport 𝐸𝐸𝐸𝐸 for 
diesel will not contain any ethanol, shown in Equation 5-4. 
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𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %)  
and 

𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃. 

Equation 5-4 – Total Gasoline Petroleum Transportation Emission Factor 

Lastly, the total VOC for Petroleum Transportation is the sum of the primary VOC and the VOC 
from bulk terminal as shown above for Petroleum Extraction while the total CH4 is comprised of 
the combustion component alone. 

5.2.3 Petroleum Refining 

Unlike the Petroleum Extraction and Petroleum Transportation calculations, the Petroleum 
Refining calculation is based on the aggregation of fuel blendstock processes rather than the 
crude feedstock processes.  In GREET 2021, the refining processes are found in the finished 
gasoline and low-sulfur diesel sections of the Petroleum tab, as listed below: 

• Gasoline 
o Gasoline Blendstock Refining: Feed Inputs 
o Gasoline Blendstock Refining: Intermediate Product Combustion 
o Gasoline Blendstock Refining: Non-Combustion Emissions 

• Low-Sulfur Diesel 
o LS Diesel Refining: Feed Inputs 
o LS Diesel Refining: Intermediate Product Combustion 
o LS Diesel Refining: Non-Combustion Emissions 

Since the distribution of crude feedstocks is not considered directly in the refining process, the 
finished fuel transportation loss adjustment (Gasoline Blendstock Transportation and LS Diesel 
Transportation Distribution respectively) is factored into the refining emission factor 𝐸𝐸𝐸𝐸 
calculation while the energy share 𝑒𝑒𝑒𝑒 is not.  This leads to Equation 5-5 for the Petroleum 
Refining process. 

𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓,𝑦𝑦,𝑝𝑝

= �𝐸𝐸𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑓𝑓,𝑦𝑦,𝑝𝑝 + 𝐸𝐸𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓,𝑦𝑦,𝑝𝑝 + 𝐸𝐸𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓,𝑦𝑦,𝑝𝑝�
∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑦𝑦

 

Equation 5-5 – Yearly Gasoline Petroleum Refinery Emission Factor 

In a similar fashion to the extraction and transportation processes of crude feedstocks, the final 
Petroleum Refining 𝐸𝐸𝐸𝐸 for gasoline applies the non-ethanol energy content adjustment (1 −
𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %) for E10.  The final Petroleum Refining 𝐸𝐸𝐸𝐸 for diesel does not apply any such non-
ethanol adjustment because the fuel is purely based on petroleum.  The final refining 𝐸𝐸𝐸𝐸𝐸𝐸 can be 
written as shown in Equation 5-6. 
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𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %)  
and 

𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃. 

Equation 5-6 – Total Gasoline Petroleum Refinery Emission Factor 

In the refining calculations, there are no exceptions for VOC or CH4.  Both primary VOC and 
CH4 combustion account for the total VOC and total CH4, respectively. 

5.2.4 Fuel TS&D 

The final upstream process after refining is the TS&D of the finished fuel product.  For gasoline, 
the blendstock transportation and distribution subprocesses were previously combined in a single 
GREET value on the Petroleum tab, but now these emission factors (𝐸𝐸𝐸𝐸𝐸𝐸) are reported 
separately to avoid double-counting of pre-blended E0 transportation in the Fuel TS&D process.  
This issue does not exist for low-sulfur diesel, which does not require blending like E10.  The 
Fuel TS&D subprocesses for gasoline and diesel in GREET 2021 are summarized: 

• Gasoline 
o Gasoline Blendstock Transportation  
o Gasoline Blendstock Distribution 
o Gasoline Distribution 
o Gasoline Storage 

• Low-Sulfur Diesel 
o LS Diesel Transportation Distribution 
o LS Diesel Storage 

In the default settings, GREET does not report any emissions associated with fuel storage.  
Given that all storage 𝐸𝐸𝐸𝐸𝐸𝐸 are zero, the initial Fuel TS&D calculation with GREET 2021 is just 
the reported 𝐸𝐸𝐸𝐸𝐸𝐸 for E0 blendstock transportation and distribution. 

𝐸𝐸𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇𝑇𝑇&𝐷𝐷𝑓𝑓,𝑦𝑦,𝑝𝑝 = 𝐸𝐸𝐹𝐹𝐸𝐸0 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓,𝑦𝑦,𝑝𝑝 + 𝐸𝐸𝐹𝐹𝐸𝐸0 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓,𝑦𝑦,𝑝𝑝 

Equation 5-7 – Yearly E0 Blendstock Transportation and Distribution Emission Factor 

The final Fuel TS&D 𝐸𝐸𝐸𝐸 for gasoline accounts for emissions before and after E10 blending.  
This final gasoline 𝐸𝐸𝐸𝐸 utilizes the percent energy content of the non-ethanol remainder—the 
same as earlier petroleum processes.  It also incorporates ethanol energy content with upstream 
ethanol for gasoline blending 𝐸𝐸𝐸𝐸𝐸𝐸 on the GREET EtOH tab, where the total ethanol 𝐸𝐸𝐸𝐸 is the 
sum of its fuel and feedstock subprocesses. 

𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 →𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑦𝑦,𝑝𝑝 = 𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 →𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑦𝑦,𝑝𝑝 + 𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 →𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑦𝑦,𝑝𝑝 

Equation 5-8 – Fuel Transportation and Distribution Emission Factor with E10 Blending 

The final Fuel TS&D 𝐸𝐸𝐸𝐸𝐸𝐸 for gasoline and for diesel can be broken into three terms, E0 
distribution, ethanol TS&D, and E10 distribution, such that in GREET 2021: 
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𝐸𝐸𝐹𝐹′𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇𝑇𝑇&𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = �𝐸𝐸𝐹𝐹𝐸𝐸0 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 ∙ (1 − 𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %)� +

�𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 →𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 ∙ 𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 %� + 𝐸𝐸𝐹𝐹𝐸𝐸10 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃   
and 

𝐸𝐸𝐹𝐹′𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢 𝑇𝑇𝑇𝑇&𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝑇𝑇&𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 

Equation 5-9 – Total Fuel Transportation and Distribution Emission Factor 

These Fuel TS&D equations have omitted the non-existent storage terms for simplicity.  The E0 
distribution cannot be directly pulled from GREET 2021 and must be inferred from reported E0 
𝐸𝐸𝐸𝐸𝐸𝐸 for T&D and transportation alone. 

𝐸𝐸𝐹𝐹𝐸𝐸0 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹𝐸𝐸0 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑇𝑇&𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 − 𝐸𝐸𝐹𝐹𝐸𝐸0 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 

Equation 5-10 – E0 Blend Distribution Emission Factor 

Total CH4 for Fuel TS&D is based solely on the CH4: combustion component and total VOC is 
the sum of the primary VOC and other components from the T&D process. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟.  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

Equation 5-11 – Total Volatile Organic Compounds from the Transportation and Distribution Process 

However, for the gasoline TS&D calculation in GREET 2021 the primary VOC comes from the 
blendstock distribution while the other VOC components come from the blendstock 
transportation. 

5.2.5 Aggregated Gasoline and Diesel Emission Factors 

The upstream gasoline and diesel emission factors 𝐸𝐸𝐸𝐸𝐸𝐸 for this analysis continue to be 
aggregated using the same method as previous CAFE analyses.  While the particular gasoline 
and diesel 𝐸𝐸𝐸𝐸𝐸𝐸 vary by analysis year and pollutant, the aggregation of the four upstream 
processes—Petroleum Extraction, Petroleum Transportation, Petroleum Refining, and Fuel 
TS&D—follows the same calculation for both fuel types.  The CAFE aggregation method differs 
from the GREET method and considers the following two upstream adjustments for CAFE: 

• Share of Fuel Savings Leading to Reduced Domestic Fuel Refining, and 
• Share of Reduced Domestic Refining from Domestic Crude. 

In this case, the final CAFE aggregation applies a fuel savings adjustment to the Petroleum 
Refining process and a combined fuel savings and reduced domestic refining adjustment to the 
pair of Petroleum Extraction and Petroleum Transportation processes for each fuel type in the 
gasoline-diesel pair 𝑓𝑓 ∈ 𝐹𝐹, each year in the series of analysis years 𝑦𝑦 ∈ 𝑌𝑌, and each pollutant in 
the full set of pollutants 𝑝𝑝 ∈ 𝑃𝑃. 
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𝐸𝐸𝐹𝐹′′𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 = 𝐸𝐸𝐹𝐹′𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇𝑇𝑇&𝐷𝐷𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 + �𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 ∙ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

+ ��𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 + 𝐸𝐸𝐹𝐹′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓∈𝐹𝐹,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃� ∙ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∙ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� 

Equation 5-12 – Aggregated Fuel Emissions Factor 

For consistency, these aggregated gasoline and diesel 𝐸𝐸𝐸𝐸 calculations occur in the CAFE Model 
rather than the Python script or elsewhere.  Note that the upstream adjustments in the CAFE 
Model are constant across fuel types, analysis years, and pollutants and are unchanged since the 
2020 final rule. 

5.2.6 Electricity Emission Factors 

As part of this rulemaking upstream emissions updates, the electricity emission factors 𝐸𝐸𝐸𝐸𝐸𝐸 were 
also transitioned to GREET 2021.  The electricity 𝐸𝐸𝐸𝐸 calculations were similar to the 
calculations for ethanol.  They project a national default electricity generation mix for 
transportation use from the latest AEO data available, in this case from 2021  The final 
electricity 𝐸𝐸𝐸𝐸 simply sums the feedstock and fuel subprocesses for every unique analysis year 
and pollutant. 

𝐸𝐸𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑒𝑒𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃

= 𝐸𝐸𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 + 𝐸𝐸𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑦𝑦∈𝑌𝑌,𝑝𝑝∈𝑃𝑃 

Equation 5-13 – Electricity Transportation Emissions Factor 

Unlike for the upstream gasoline and diesel 𝐸𝐸𝐹𝐹𝑠𝑠, the CAFE Model utilizes the single upstream 
electricity 𝐸𝐸𝐸𝐸 for transportation use highlighted above and does not differentiate by process.   

5.3 Simulating Tailpipe Emissions Impacts   

Tailpipe emission factors are generated using the latest regulatory model for on-road emission 
inventories from the U.S. Environmental Protection Agency, the Motor Vehicle Emission 
Simulator (MOVES3).  This section has two primary components of discussion: 1) preparing 
model runs to estimate tailpipe emission inventories and vehicle activity, referred to below as 
pre-processing, and 2) calculating tailpipe emission factors on a per-mile basis, referred to below 
as post-processing.  In addition, this section discusses the separate process for generating tailpipe 
CO2 emissions levels in the CAFE Model. 

5.3.1 Pre-Processing of MOVES Data 

For this rulemaking, the CAFE Model’s tailpipe input parameters for criteria pollutants, non-CO2 
greenhouse gases, and mobile-source air toxics have been updated with the latest available 
emission factors.  The most recent version of the Motor Vehicle Emission Simulator (MOVES3), 
first released in November 2020, is a state-of-the-science, mobile-source emissions inventory 
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model for regulatory applications.656  New MOVES3 tailpipe emission factors have been 
incorporated into the CAFE parameters, and these updates supersede tailpipe data previously 
provided by EPA from MOVES2014 for past CAFE analyses. 

5.3.1.1 Overview of MOVES Modeling 

To maintain continuity in the historical inventories, only emission factors for model years 2020 
and after were updated; all emission factors prior to MY 2020 were unchanged from previous 
CAFE rulemakings.  In addition, this updated tailpipe data in the current CAFE reference case no 
longer accounts for any fuel economy improvements or changes in VMT from the 2020 rule.  In 
order to avoid double-counting effects from the previous rulemaking in the current rulemaking, 
the new tailpipe baseline backs out: 

1) 1.5 percent year-over-year stringency increases in fuel economy, and 
2) 0.3 percent VMT increases assumed each year (20 percent rebound on the 1.5 percent 

improvements in stringency).  

The baseline was reverted in the MOVES3 default database prior to executing the new runs for 
the tailpipe data updates.  Detailed MOVES3 run specifications have been listed in Table 5-1.  
Tailpipe parameters in the CAFE Model have otherwise maintained their format, besides now 
extending to MY 2060.  The most relevant factors from these tailpipe parameters have been 
summarized as follows: 

• MOVES Release: 3.0.1 (March 2021)657 
• MOVES Default Database: 20210209 
• Fuel Types:  

o gasoline 
o diesel 

• Vehicle Classes:  
o light-duty vehicles (MOVES regulatory class 21) 
o light-duty trucks, Classes 1 and 2a (MOVES regulatory class 30) 
o light-duty trucks, Classes 2b and 3 (MOVES regulatory class 41) 

• Model Years: 2020 – 2060 
• Vehicle Ages: 0 – 39 years old 
• Criteria Pollutants: 

o carbon monoxide (CO) 
o volatile organic compounds (VOCs) 
o nitrogen oxides (NOX) 
o particulate matter with 2.5-micron (µm) diameters or less (PM2.5)658 

• Greenhouse gases 
 

656 U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Motor Vehicle Emission 
Simulator (MOVES), Last Updated: September 2021, https://www.epa.gov/moves/latest-version-motor-vehicle-
emission-simulator-moves.  (Accessed: February 15, 2022).  
657 As of the date of this document, the latest version of MOVES is 3.0.2.  Because the difference between MOVES 
3.0.1 and 3.0.2 are very minor for light duty vehicle emissions, the decision was made not to update the emission 
factors for tailpipe emissions. 
658 For CAFE modeling, PM2.5 emission factors include exhaust processes and excludes brake and tire wear. 
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o methane (CH4) 
o nitrous oxide (N2O) 

• Air Toxics 
o acetaldehyde 
o acrolein 
o benzene 
o butadiene 
o formaldehyde 
o diesel particulate matter with 10-micron (µm) diameters or less (PM10) 

Table 5-1 – National-Scale Run Specifications 

Categories Variable Input 
Description ----- <blank> 

Scale 
Model Onroad 

Domain/Scale National 
Calculation Type Inventory 

Time Spans 

Time Aggregation Level Year 

Years 2020, 2021, 2022, 2023… 2057, 2058, 2059, 2060 
[each year was run separately] 

Months All Selected 
Days All Selected 
Hours All Selected 

Geographic 
Bounds ----- Nation 

Vehicles/ 
Equipment 

On-Road Vehicle 
Equipment All Fuel/Type Combinations Selected 

Road Type Road Type All Road Types 

Pollutants and 
Processes 

Total Gaseous 
Hydrocarbons 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

Non-methane 
Hydrocarbons 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

Volatile Organic 
Compounds 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

Methane (CH4) 
Running Exhaust, Start Exhaust, Crankcase Running 

Exhaust, Crankcase Start Exhaust 

Carbon Monoxide (CO) Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Oxides of Nitrogen (NOX) Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Nitrous Oxide (N2O) Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 
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Categories Variable Input 
Primary Exhaust PM2.5 – 

Total 
Running Exhaust, Start Exhaust, Crankcase Running 

Exhaust, Crankcase Start Exhaust 
Primary Exhaust PM2.5 – 

Species 
Running Exhaust, Start Exhaust, Crankcase Running 

Exhaust, Crankcase Start Exhaust 
Primary PM2.5 – Brakewear 

Particulate Brakewear659 

Primary PM2.5 – Tirewear 
Particulate Tirewear 

Primary Exhaust PM10 – 
Total 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Pollutants and 
Processes 

Primary Exhaust PM10 – 
Species 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Primary PM10 – Brakewear 
Particulate Brakewear 

Primary PM10 – Tirewear 
Particulate Tirewear 

Sulfur Dioxide (SO2) 
Running Exhaust, Start Exhaust, Crankcase Running 

Exhaust, Crankcase Start Exhaust 
Carbon Dioxide Equivalent 

(CO2e) Running Exhaust, Start Exhaust 

Total Energy Consumption 
(TEC) Running Exhaust, Start Exhaust 

Benzene 

Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust, Evap Permeation, 

Evap Fuel Vapor Venting, Evap Fuel Leaks, Refueling 
Displacement Vapor Loss, Refueling Spillage Loss 

1,3-Butadiene Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Formaldehyde Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Acetaldehyde Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Acrolein Running Exhaust, Start Exhaust, Crankcase Running 
Exhaust, Crankcase Start Exhaust 

Manage Input 
Data Series ----- <blank> 

Strategies Rate of Progress <blank> 
General 
Output 

Units Mass: kilograms, Energy: million BTU, Distance: miles 
Activity Distance Traveled, Population 

Output 
Emissions 
Detail 

Always Year, Nation 
On Road/Off Road Road Type, Source Use Type, Regulatory Class 

For All Vehicle/Equipment 
Combinations Model Year, Fuel Type, Emission Process 

 
659 For CAFE modeling, the post-processing of emission factors for PM2.5 included exhaust processes (running, start, 
crankcase running, and crankcase start) and excluded brake and tire wear. 
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Categories Variable Input 
Advanced 
Performance 
Features 

----- <blank> 

5.3.1.2 Implementation of MOVES Runs 

To begin, a MOVES3 run specification (runspec) for calendar year 2020 was built as a template 
and then replicated for all other years out to 2060, creating a total of 41 runs.  The 2020 template 
run uses the national-scale specifications denoted in Table 5-1.  In addition, the MOVES3 default 
database has been updated with the light-duty vehicle changes noted earlier, namely higher 
energy consumption rates and lower annual VMT estimates compared to the 2020 final rule.  
Beyond designating one year per run, all runs were executed with the same runspecs and 
modified default database.  The 41 runs were then batched together and executed continuously.  
Performance ranged from roughly 5-8 hours of time to complete each run depending on the 
machine on which it was executed and its available resources.   

Post-processing the MOVES3 data into an appropriate format for the CAFE Model is described 
below.  This post-processing discussion details how the tailpipe emission factors were calculated 
from the MOVES3 output databases and then translated into the CAFE input parameters file. 

5.3.2 Post-Processing of MOVES Data 

The Motor Vehicle Emission Simulator (MOVES3) data were post-processed into input 
parameters for the CAFE Model using a Python script.  Tailpipe emission parameters for this 
rulemaking were updated for gasoline and diesel light-duty vehicles and trucks, including the 
criteria pollutants, greenhouse gases, and air toxics across model years 2020 to 2060, as 
mentioned in the run specifications in the MOVES pre-processing discussion above. 

5.3.2.1 Overview of Tailpipe Data Development from MOVES 

As noted earlier, each MOVES3 run created an output database for a single evaluation year, 
meaning there were 41 total runs and subsequent output databases.  Output databases contain a 
number of tables with model emissions inventories and vehicle activities, such as VMT. 

The next section describes the specific steps taken to alter the output database from MOVES3.  
The data for years before 2020 were removed and previous data were used.  This should not 
affect the outcome of the model because emission rates for previous models cannot be changed. 

5.3.2.2 Description of MOVES Output Tables 

The MOVES output database contains many tables; however, the post-processing script pulls 
from only two of these tables.  The post-processing script uses the following tables: 

• movesoutput 
• movesactivityoutput 
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Each table contains many columns, including calendar year, vehicle model year, regulatory class 
based on vehicle weight and build, fuel type, specific pollutant, and emission inventory, and the 
vehicle activity.  The following columns from each table were used in the post-processing script: 

• movesoutput: yearID, modelYearID, regClassID, fuelTypeID, pollutantID, 
emissionQuant 

• movesactivityoutput: yearID, modelYearID, regClassID, fuelTypeID, activity 

5.3.2.3 Connecting to and Querying the MOVES Database 

After establishing a MariaDB connection, the code queries the database and returns a dataframe 
with the following columns: 

• yearID, modelYearID, age, regClassID, fuelTypeID, pollutantID, VMT, emissionRate 

The age, VMT, and emissionRate columns are calculated from the other columns, which are 
generated in the default outputs.  Age is simply calculated by subtracting the modelYearID from 
the yearID, while the VMT is taken as the sum of the distance traveled activity and then grouped 
by yearID, modelYearID, pollutantID, and regClassID for gasoline and diesel separately.  Lastly, 
emissionRate was calculated as the aggregated emissions inventories divided by the aggregated 
VMT at a corresponding level of resolution.660 

5.3.2.4 MOVES Data Manipulation 

After querying and calculating the columns in the correct units, the next step is simply arranging 
the data into the appropriate format and copying them to the appropriate parameters file.  To do 
so, we first separated the data into two dataframes by fuel type.  We then sorted the data by 
ascending model year, meaning the data began with model year 1990.  Within the model year, 
the data were again sorted by descending age, ascending pollutant, and ascending regulatory 
class.  The resulting dataframe had the structure shown in Table 5-2. 

Table 5-2 – Example of General MOVES Output 

Model 
Year Age Pollutant Regulatory 

Class 
2020 0   
2020 1   
2020 2   
2020 3   
2020 4   

… … … … 
2060 34   
2060 35   
2060 36   
2060 37   
2060 38   

 
660 Note, although the emissions rate is distance based (VMT), the emissions include both on-network and off-
network emissions.  Therefore, the resulting emissions include all emissions from the vehicle. 
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2060 39   

Next, the script pivots this dataframe such that the pollutant and regulatory class values become 
column headers in the format shown in Table 5-3. 

Table 5-3 – Example of MOVES Output Prepared in CAFE Parameters Format 

 Pollutant 
 
 

2 2 2 3 3 3 … 

Model Year 

Regulatory 
Class 
 
Age 

20 30 41 20 30 41 … 

2020 0        
2020 1        
2020 2        
2020 3        
2020 4        
…. … … … … … … … … 
2060 34        
2060 35        
2060 36        
2060 37        
2060 38        
2060 39        

The MOVES3 output does not cover all the model years and ages required by the CAFE Model, 
MOVES only generates emissions data for vehicles made in the last 30 model years for each 
calendar year being run.  This means emissions data for some calendar year and vehicle age 
combinations are missing.  To remedy this, the script takes the last vehicle age that has emissions 
data and forward fills those data for the following vehicle ages.  Due to incomplete available data 
for years prior to MY 2020, tailpipe emission factors for MY 2019 and earlier have not been 
modified and continue to utilize MOVES2014 data. 

5.3.2.5 Exporting MOVES Data to Excel 

The Python code connects to an Excel spreadsheet and requires a reference Excel spreadsheet 
that contains the CAFE parameters.  This file is copied, and the new data are added to the copied 
file.  Copying the reference file builds in redundancy and ensures that all original data remains 
intact. 

5.3.2.6 Validation Testing of MOVES Updates 

To ensure the parameters file was modified correctly, we conducted quality assurance tests.  
These consisted of checking the data from previous parameters files with the new file.  The data 
are the same in model years before 2020 and have changed in MY 2020 and later.  As an 
example, Figure 5-1 shows light-duty gasoline CO emission factors over time, and illustrates 
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how the updated MOVES3 data (“2021 update” indicates current CAFE analysis) diverge from 
the previous MOVES2014 data (”Ref” indicates previous CAFE analyses) in MY 2020. 

 

Figure 5-1 – Illustration of Newly Updated CO Emission Rate Projections for Gasoline Cars and Light 
Trucks Over the Next 40 Years 

5.3.3 Simulating Tailpipe CO2 Emissions   

Much like the impacts from criteria pollutant emissions, the CAFE input parameters for 
greenhouse gases are generally taken from other models.  As discussed at length above, upstream 
GHG emission factors come from GREET 2021 and tailpipe non-CO2 GHG emission factors 
come from MOVES3.  This section briefly describes the methodology for the development and 
use of the tailpipe CO2 emission factors. 

For tailpipe CO2 emissions, these factors are defined based on the fraction of each fuel type’s 
mass that represents carbon (the carbon content) along with the mass density per unit of the 
specific type of fuel.  To obtain the emission factors associated with each fuel, the carbon content 
is then multiplied by the mass density of a particular fuel as well as by the ratio of the molecular 
weight of carbon dioxide to that of elemental carbon.  This ratio, a constant value of 44/12, 
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measures the mass of carbon dioxide that is produced by complete combustion of mass of carbon 
contained in each unit of fuel.  The resulting value defines the emission factor attributed to CO2 
as the amount of grams of CO2 emitted during vehicle operation from each type of fuel.  This 
calculation is repeated for gasoline, E85, diesel, and compressed natural gas (CNG) fuel types.  
In the case of CNG, the mass density and the calculated CO2 emission factor are denoted as 
grams per standard cubic feet (scf), while for the remainder of fuels, these are defined as grams 
per gallon of the given fuel source.  Since electricity and hydrogen fuel types do not cause CO2 
emissions to be emitted during vehicle operation, the carbon content and the CO2 emission 
factors for these two fuel types are assumed to be zero.  For the other fuel types, the table below 
summarizes the mass density, carbon content, and CO2 emission factors for each. 

Table 5-4 – CO2 Emission Factors by Fuel Type 

Fuel Type Mass Density 
(grams/unit) 

Carbon Content 
(% by weight) 

CO2 Emission Factor 
(grams/unit) 

Gasoline (gallons) 2,823 85.9% 8,887 
Ethanol-85 (gallons) 2,963 57.3% 6,226 
Low Sulfur Diesel (gallons) 3,206 86.6% 10,180 
CNG (scf) 19.09 76% 53.20 

The CAFE Model calculates CO2 tailpipe emissions associated with vehicle operation of the 
surviving on-road fleet by multiplying the number of gallons (or scf for CNG) of a specific fuel 
consumed by the CO2 emissions factor for the associated fuel type.  More specifically, the 
amount of gallons or scf of a particular fuel are multiplied by the carbon content and the mass 
density per unit of that fuel type, and then applying the ratio of carbon dioxide emissions 
generated per unit of carbon consumed during the combustion process.661 

The next section describes and helps to quantify the adverse human health impacts from both 
upstream and vehicle tailpipe emissions.  

5.4 Estimating Health Impacts from Changes in Criteria Pollutant Emissions  

The CAFE Model computes select health impacts resulting from three criteria pollutants: NOX, 
SOX,662 and PM2.5.  Out of the six criteria pollutants currently regulated, NOX, SOX, and PM2.5 

are known to be emitted regularly from mobile sources and have the most adverse effects to 
human health.  These health impacts include several different morbidity measures, as well as a 
mortality estimate, and are measured by the number of instances predicted to occur per ton of 
emitted pollutant.663  The model reports total health impacts by multiplying the estimated tons of 
each criteria pollutant by the corresponding health incidence per ton value.  The inputs that 
inform the calculation of the total tons of emissions resulting from criteria pollutants are 

 
661 Chapter 3, Section 4 of the CAFE Model Documentation provides additional description for calculation of CO2 
tailpipe emissions with the model. 
662 Any reference to SOX in this section refers to the sum of sulfur dioxide (SO2) and sulfate particulate matter 
(pSO4) emissions, following the methodology of the EPA papers cited. 
663 The complete list of morbidity impacts estimated in the CAFE Model is as follows: acute bronchitis, asthma 
exacerbation, cardiovascular hospital admissions, lower respiratory symptoms, minor restricted activity days, non-
fatal heart attacks, respiratory emergency hospital admissions, respiratory emergency room visits, upper respiratory 
symptoms, and work loss days.  
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described in Chapter 5.2.  See Chapter 6.2.4.3 for discussion of domestic petroleum production 
and fuel import share assumptions.  This section discusses how the health incidence per ton 
values were obtained.  See Chapter 6.2.2 for information regarding the monetized damages 
arising from these health impacts.  For a discussion of public comments received regarding the 
modeling of health impacts of criteria pollutants in the NPRM, see Section III.F of the preamble. 

NHTSA’s Final SEIS for MYs 2024-2026 that accompanies this analysis includes a detailed 
discussion of the criteria pollutants and air toxics analyzed in the effects analysis.  Both the Final 
SEIS and the preamble also contain information regarding environmental justice impacts that 
arise from the CO2 and criteria pollutants emitted from motor vehicles and the associated 
upstream sectors.  See Chapter 6 of the FRIA for discussion of overall changes in health impacts 
associated with criteria pollutant changes across the different rulemaking scenarios.  In addition, 
consistent with past analyses, NHTSA has performed full-scale photochemical air quality 
modeling and presented those results in the Final SEIS.  That analysis provides additional 
assessment of the human health impacts from changes in ambient PM2.5 and ozone associated 
with this rule.  

5.4.1 Health Impacts per Ton from Upstream Emissions 

This chapter describes the health incidence per ton values that are used to calculate the total 
health impacts from upstream criteria pollutant emissions.  The health incidence per ton values in 
this analysis reflect the differences in health impacts arising from five upstream emission source 
sectors (Petroleum Extraction, Petroleum Transportation, Refineries, Fuel Transportation, 
Storage and Distribution, and Electricity Generation), based on publicly available EPA reports 
that appropriately correspond to these sectors.664    As the health incidences for the different 
source sectors are all based on the emission of one ton of the same pollutants, NOX, SOX, and 
PM2.5, the differences in the incidence per ton values arise from differences in the geographic 
distribution of the pollutants, a factor which affects the number of people impacted by the 
pollutants.665   

The CAFE Model health impacts inputs are based partially on the structure of EPA’s 2018 
technical support document, Estimating the Benefit per Ton of Reducing PM2.5 Precursors from 
17 Sectors (referred to here as the 2018 EPA source apportionment TSD).666  The 2018 EPA 
source apportionment TSD describes a reduced-form benefit-per-ton (BPT) approach to inform 
the assessment of health impacts.  In this approach, the PM2.5-related BPT values are the total 
monetized human health benefits (the sum of the economic value of the reduced risk of 
premature death and illness) that are expected from reducing one ton of directly-emitted PM2.5 or 
PM2.5 precursor such as NOX or SO2.  We note, however, that the complex, non-linear 
photochemical processes that govern ozone formation prevent us from developing reduced-form 

 
664 For further discussion of the EPA reports used for each upstream emissions source sector, see preamble Section 
III.F. 
665 See Environmental Protection Agency (EPA).  2018. Estimating the Benefit per Ton of Reducing PM2.5 
Precursors from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
666 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
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ozone, ambient NOX, or other air toxic BPT values.  This is an important limitation to recognize 
when using the BPT approach.  We include additional discussion of uncertainties in the BPT 
approach in Chapter 5.4.3.   

The 2018 EPA source apportionment TSD reports benefit per ton values for the years 2016, 
2020, 2025, and 2030.  As the year 2016 is not included in this analysis, the 2016 values are not 
used.  For the years in between the source years used in the input structure, the CAFE Model 
applies values from the closest source year.  For instance, 2020 values are applied for 2020-2022, 
and 2025 values are applied for 2023-2027.  For further details, see the CAFE Model 
documentation, which contains a description of the model’s computation of monetized health 
impacts.    

The following subsections detail the calculations involved in mapping each CAFE Model 
upstream component to the appropriate sector or combination of sectors from EPA reports.  
Despite efforts to be as consistent as possible with the EPA sources already used in the mapping, 
the need to use up-to-date sources based on newer air quality modeling updates led to the use of 
multiple papers.  Table 5-3 provides specific details of the EPA to CAFE Model upstream sector 
mapping.   

The CAFE Model divides upstream emissions into the five varying components based on the 
GREET Model from Argonne National Laboratory.667  DOT staff examined how each 
component was defined in GREET 2021 in order to appropriately map EPA source sectors to the 
ones used in the CAFE Model. 

Table 5-5 – CAFE/GREET Source Sectors to EPA Source Mapping 

CAFE Model Upstream 
Component (per GREET) Corresponding EPA Source Categories 

Petroleum Extraction 
Assigned to the “Oil and natural gas” sector from a 2018 EPA paper (Fann 

et al.).668  Health incidents per ton were calculated using BenMAP files 
received from EPA staff. 

 
667 U.S. Department of Energy, Argonne National Laboratory, Greenhouse gases, Regulated Emissions, and Energy 
use in Transportation (GREET) Model, Last Update: 11 Oct. 2021, https://greet.es.anl.gov/.  (Accessed: February 
15, 2022). 
668 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951/.  (Accessed: February 15, 2022). 
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CAFE Model Upstream 
Component (per GREET) Corresponding EPA Source Categories 

Petroleum Transportation 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe 
et al.)669 and one source sector from the 2018 EPA source apportionment 

TSD.670  The specific mode mappings are as follows: 
 

From Wolfe et al.: 
Rail sector (for GREET’s rail mode) 

C1&C2 marine vessels sector (for GREET’s barge mode) 
C3 marine vessels sector (for GREET’s ocean tanker mode) 
On-road heavy-duty diesel sector (for GREET’s truck mode) 

From the 2018 EPA source apportionment TSD: 
Electricity generating units (for GREET’s pipeline mode) 

A weighted average of these different sectors was used to determine the 
overall health impact values for the sector as a whole.  

Refineries Assigned to the refineries sector in the 2018 EPA source apportionment 
TSD. 

Fuel TS&D 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe 
et al.)669 and one source sector from the 2018 EPA source apportionment 

TSD.671  The specific mode mappings are as follows: 
 

From Wolfe et al: 
Rail sector (for GREET’s rail mode) 

C1&C2 marine vessels sector (for GREET’s barge mode) 
C3 marine vessels sector (for GREET’s ocean tanker mode) 
On-road heavy-duty diesel sector (for GREET’s truck mode) 

From the 2018 EPA source apportionment TSD: 
Electricity generating units (for GREET’s pipeline mode) 

A weighted average of these different sectors was used to determine the 
overall health impact values for the sector as a whole.  

Electricity Generation 
 

Assigned to the electricity-generating units sector from the 2018 EPA 
source apportionment TSD.672 

 
669 Wolfe, P., Davidson, K., Fulcher, C., Fann, N., Zawacki, M., & Baker, K. R. (2019). Monetized health benefits 
attributable to mobile source emission reductions across the United States in 2025.  The Science of the total 
environment, 650(Pt 2), 2490–2498 (hereinafter Wolfe et al.).  Health incidence per ton values corresponding to this 
paper were sent by EPA staff.  
670 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
671 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
672 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
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5.4.1.1 Health Incidence per Ton Values Associated with the Petroleum 
Extraction Sector 

The basis for the health impacts from the petroleum extraction sector was a 2018 oil and natural 
gas sector paper written by EPA staff (Fann et al.), which estimates health impacts for this sector 
in the year 2025.673  This paper defines the oil and gas sector’s emissions not only as arising 
from petroleum extraction but also from transportation to refineries, while the CAFE/GREET 
component is composed of only petroleum extraction.  After consultation with the authors, it was 
determined that these were the best available estimates for the petroleum extraction sector, 
notwithstanding this difference. 

Specific health incidences per pollutant were not reported in the paper, so EPA staff sent 
BenMAP health incidence files for the oil and natural gas sector upon request.  DOT staff then 
calculated per ton values based on these files and the tons reported in the Fann et al. paper.674 

The only available health impacts corresponded to the year 2025.  Rather than trying to 
extrapolate, these 2025 values were used for all the years in the CAFE Model structure: 2020, 
2025, and 2030.675  This simplification implies an overestimate of damages in 2020 and an 
underestimate in 2030.676 

We understand that uncertainty exists around the contribution of VOCs to PM2.5 formation in the 
modeled health impacts from the petroleum extraction sector; however, based on feedback to the 
2020 final rule, we believe that the updated health incidence values specific to petroleum 
extraction sector emissions may provide a more appropriate estimate of potential health impacts 
from that sector’s emissions than the previous approach of applying refinery sector emissions 
impacts to the petroleum extraction sector.   

5.4.1.2 Health Incidence per Ton Values Associated with the Petroleum 
Transportation Sector  

The petroleum transportation sector did not correspond to any one EPA source sector, so a 
weighted average of multiple different EPA sectors was used to determine the health impact per 
ton values for the petroleum transportation sector as a whole.  In calculating the weighted 
average, DOT staff mapped the petroleum transportation sector as described in GREET to a 

 
673 Fann, N., Baker, K. R., Chan, E., Eyth, A., Macpherson, A., Miller, E., & Snyder, J. (2018). Assessing Human 
Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025.  Environmental science 
& technology, 52(15), 8095–8103 (hereinafter Fann et al.).  
674 Nitrate-related health incidents were divided by the total tons of NOX projected to be emitted in 2025, sulfate-
related health incidents were divided by the total tons of projected SOX, and EC/OC (elemental carbon and organic 
carbon) related health incidents were divided by the total tons of projected EC/OC.  Both Fann et al. and the 2018 
EPA source apportionment TSD define primary PM2.5 as being composed of elemental carbon, organic carbon, and 
small amounts of crustal material.  Thus, the EC/OC BenMAP file was used for the calculation of the incidents per 
ton attributable to PM2.5. 
675 These three years are used in the CAFE Model structure because it was originally based on the estimate provided 
in the 2018 EPA source apportionment TSD.  
676 See EPA. 2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors from 17 Sectors.  
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf p.9.  
(Accessed: February 15, 2022). 
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combination of different EPA mobile source sectors from two different papers, the 2018 EPA 
source apportionment TSD,677 and a 2019 mobile source sectors paper (Wolfe et al.).678  

Wolfe et al. include more sectors than the 2018 EPA source apportionment TSD; for instance, 
where ‘Aircraft, Locomotive, and Marine Vessels’ is a single category in the 2018 source 
apportionment TSD, Wolfe et al. specify four: ‘Aircraft’, ‘Rail’, ‘C1&C2 Marine Vessels’, and 
‘C3 Marine Vessels’.  Therefore, sectors from Wolfe et al. are used wherever possible, and the 
2018 EPA source apportionment TSD is used for the transportation mode mapping only when 
there are no appropriate sectors reported in the 2019 Wolfe et al. paper.  Wolfe et al. only report 
impacts for the year 2025, but DOT staff determined that these values could be applied to the 
other years in the input structure, after communication with one of the authors at EPA.  
Therefore, this implies a slight overestimation of health incidence per ton in 2020 and a slight 
underestimation of health incidence per ton in 2030.   

A weighted average of these different sectors was used to calculate the total health incidences 
per ton by pollutant, based on the percent of upstream emissions attributable to each 
transportation mode. 

In GREET, the model that informs the CAFE upstream component categories, there are five 
types of petroleum products relevant to upstream emissions for gasoline:  

• Conventional crude oil 
• Synthetic crude oil (SCO) 
• Dilbit 
• Shale oil (Bakken) 
• Shale oil (Eagle Ford) 

Table 5-6 – Petroleum Transportation Mode Shares in 2020679 

Fuel Type680 Ocean Tanker Barge Pipeline Rail Truck 

Conventional Crude Oil 10.3%  23.2%  79.9%  2.9%  0 
Synthetic Crude Oil (SCO)  0 0 100% 0 0 
Dilbit  0 0 100% 0 0 
Shale Oil (Bakken) 0 0 50.0% 50.0% 100% 
Shale Oil (Eagle Ford) 0 20.0% 65.0% 15.0% 100% 

 
677 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
678 Wolfe et al. 2019.  Monetized health benefits attributable to mobile source emissions reductions across the 
United States in 2025.  https://pubmed.ncbi.nlm.nih.gov/30296769/.  (Accessed: February 15, 2022). 
679 These values are from the GREET 2021 model, using baseline year 2020.  In the Excel version, this information 
can be found in the T&D Flowcharts worksheet.  See https://greet.es.anl.gov/ to download the model. 
680 Conventional crude oil is both extracted domestically and imported.  SCO and Dilbit are oil sand products and 
are imported exclusively from Canada.  Shale oil is exclusively domestic.  See the ‘T&D Flowcharts’ worksheet in 
the GREET model.  
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GREET provides the percentage of these five petroleum products transported by each mode, as 
shown in Table 5-4.  Transportation both within the United States and outside of U.S. borders is 
included, provided that the destination of the transported products is the continental United 
States.  The percentages add up to more than 100 percent because there are multiple stages of the 
transportation journey.  For example, 50 percent of shale oil (Bakken) is transported by pipeline 
and the other 50 percent by rail during the first part of the journey to the refinery, but 100 percent 
of it is transported by truck on the second part of the journey. 

GREET also provides emissions in grams/mmBTU of fuel transported attributable to each 
transportation mode.  These emissions values are multiplied by the percentage of petroleum 
product transported by each mode, as seen in Table 5-4, to obtain a weighted value.  Total 
emissions from each mode are used for all modes except ocean tanker.  Health effects from 
ocean transport are concentrated in populated areas, rather than while the tankers are at sea.  To 
address this, the ocean tanker mode includes only urban emissions.  Additionally, using urban 
emissions for ocean tankers ensures that the emissions attributable to this mode are not 
underestimated, because the percentage of related health impacts decreases when using the high 
total emissions figure. 

This process of multiplying emissions by transportation mode share is done five times, once for 
each of the five petroleum types.  Since the transportation mode shares are projected to change 
over time, different weights are used for years 2020, 2025, and 2030, based on the mode 
percentages GREET reports for those years.681 

Table 5-7 – Energy Share by Petroleum Type682 

Conventional 
Crude Oil SCO Dilbit Shale 

(Bakken) 
Shale (Eagle 

Ford) 
76.8% 3.4% 4.6% 8.2% 7.0% 

The energy share of each petroleum type is multiplied by its corresponding emissions value to 
reflect how much of each emissions value should go into the weighted average.  For example, 
using the energy share information in  

Table 5-5, the conventional crude emissions are multiplied by 76.8 percent, SCO emissions are 
multiplied by 3.4 percent, Dilbit emissions are multiplied by 4.6 percent, shale (Bakken) 
emissions are multiplied by 8.2 percent, and shale (Eagle Ford) emissions are multiplied by 7 
percent.   

Next, the resulting weighted emissions values are summed by pollutant to represent the total 
upstream emissions in grams/mmBTU of petroleum product transported.  With that information, 
the percentages of each pollutant attributable to each mode for petroleum transportation overall 

 
681 These are the three years used in the CAFE Model inputs for health impacts, based on the structure of the 2018 
EPA source apportionment TSD that originally informed the analysis.  Baseline years may be changed in the 
‘Inputs’ worksheet in the GREET model. 
682 Taken from the Petroleum tab of the GREET Excel model, using 2020 as a base year. 
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can be calculated.  These calculations are completed three times, for each different base year 
(2020, 2025, 2030).  Table 5-6 shows these percentages, using base year 2020 as an example.   

Table 5-8 – Percent of Emissions Attributable to each Mode for the Petroleum Transportation Category683 

Mode EPA source category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 5.04% 13.87% 9.10% 

Barge C1 & C2 marine vessels 56.47% 1.70% 39.83% 
Pipeline Electricity-generating units 24.82% 83.62% 45.79% 

Rail Rail 12.31% 0.59% 4.79% 
Truck On-road heavy duty diesel 1.36% 0.22% 0.48% 

Finally, a weighted average of health incidence is created when the percentages of emissions by 
mode are multiplied by the health incidence per ton from the relevant EPA sector that matches 
each mode.  Equation 5-14 illustrates this process.  The variables beginning with “%” represent 
the percent of SOX emissions attributable to each specified mode.  The other variables indicate 
the incidents per ton resulting from SOX emissions coming from each sector: C3marine 
corresponds to C3 marine vessels, C1&C2 marine to C1&C2 marine vessels, EGU corresponds 
to electricity-generating units, Rail to railroad, and Truck corresponds to on-road heavy duty 
diesel. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 

                                (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐶𝐶3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)    + (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐶𝐶1&𝐶𝐶2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
+ (%𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 ) + (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)   

Equation 5-14 – Weighted Average of Health Incidences from the Petroleum Transportation Sector 

Following guidance from the 2018 EPA source apportionment TSD, the incidence per ton are 
rounded to two significant digits.684 

5.4.1.3 Health Incidence per Ton Values Associated with the Fuel TS&D Sector 

The Fuel TS&D sector, similarly to the Petroleum Transportation sector, corresponded to several 
different EPA source sectors, so DOT staff used the same weighted average approach as 
described in Chapter 5.3.1.2.  Gasoline blendstocks and finished gasoline are the two 
components of the Fuel TS&D category described in GREET.  DOT staff mapped these 
components to five different transportation source sectors from two EPA papers, the 2018 EPA 
source apportionment TSD and the 2019 mobile sources paper.685 

 
683 These percentages are calculated using the 2020 base year in GREET. 
684 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
685 Environmental Protection Agency (EPA).  2018.  Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors.  https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf (Accessed: March 26, 2022); Wolfe et al. 2019. Monetized 
health benefits attributable to mobile source emissions reductions across the United States in 2025.  
https://pubmed.ncbi.nlm.nih.gov/30296769/.  (Accessed: February 15, 2022). 

https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
https://www.epa.gov/sites/production/files/2018-02/documents/sourceapportionmentbpttsd_2018.pdf
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GREET provides the percentage of each fuel type transported by each mode, and as in the case 
of the petroleum transportation calculations, the percentages change based on the year.  In the 
case of the gasoline blendstocks fuel type, the mode shares add up to more than 100 percent 
because there are distinct parts of the trip and multiple modes are taken.  As an example, Table 
5-7 shows the estimated mode shares in 2020. 

Table 5-9 – Transportation Mode Shares for the Fuel TS&D Sector686 

Mode Share Gasoline 
Blendstocks 

Finished 
Gasoline 

Ocean Tanker 3.0% 0 
Barge 31.2% 0 

Pipeline 67.6% 0 
Rail 2.2% 0 

Truck 100% 100% 

The emissions by pollutant attributed to each mode, measured in grams/mmBTU, are multiplied 
by these mode share percentages to create weighted emissions values. 

Next, the weighted emissions from trucks transporting gasoline blendstocks are added to the 
emissions arising from finished gasoline transportation.  Using that information, the total 
emissions per pollutant may be calculated in order to find the percentage of emissions 
attributable to each mode for Fuel TS&D overall.  Table 5-8 provides an example of these 
percentages. 

Table 5-10 – Percent of Emissions Attributable to each Mode for the Fuel TS&D Sector687 

Mode EPA category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 2.83% 22.07% 6.90% 
Barge C1 & C2 marine vessels 68.33% 5.81% 65.75% 
Pipeline Electricity-generating units 6.56% 62.33% 16.50% 
Rail Rail 0.81% 0.11% 0.43% 
Truck On-road heavy duty diesel 21.47% 9.67% 10.42% 

The fuel TS&D calculations follow the same process as the petroleum transportation category, 
matching the modes to EPA sectors and using the calculated percentages to create a weighted 
average of health incidence associated with emissions of each pollutant.  DOT staff completed 
these calculations three times, for years 2020, 2025, and 2030.  As stated previously, the sectors 
in the 2019 mobile sources paper only showed health incidence per ton estimated for the year 
2025, but analysts determined that this information was the most up-to-date available, after 
communications with EPA staff.  The use of 2025 health incidence for all three years implies a 
slight overestimation of incidences in 2020 and a slight underestimation in 2030. 

 
686 Using baseline year 2020 in GREET.  These values can be found in the ‘T&D Flowcharts’ tab of the GREET 
model.  
687 Calculated using baseline year 2020 in GREET.  
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5.4.1.4 Health Incidence per Ton Values Associated with the Refineries Sector 

DOT staff matched the health incidence per ton values associated with the refineries sector in the 
2018 EPA source apportionment TSD to the petroleum refining emission category in the CAFE 
Model.  Table 5-9 shows the various types of health effects per ton corresponding to each 
pollutant emitted from the refineries sector. 

Table 5-11 – Health Incidences per Ton from the Refineries Sector 

Health Effects 
2020 2025 2030 

NOX SOX PM2.5 NOX SOX PM2.5 NOX SOX PM2.5 
Premature Deaths - 
(Krewski) 0.00082 0.0082 0.039 0.00087 0.0088 0.041 0.00094 0.0095 0.044 

Respiratory 
emergency room 
visits 

0.00044 0.0045 0.022 0.00045 0.0047 0.023 0.00047 0.0049 0.024 

Acute bronchitis 0.0012 0.012 0.059 0.0013 0.013 0.061 0.0014 0.014 0.066 
Lower respiratory 
symptoms 0.016 0.16 0.75 0.016 0.16 0.78 0.018 0.18 0.84 

Upper respiratory 
symptoms 0.023 0.22 1.1 0.023 0.23 1.1 0.025 0.25 1.2 

Minor Restricted 
Activity Days 0.66 6.7 31 0.67 6.8 32 0.68 7.0 33 

Work loss days 0.11 1.1 5.3 0.11 1.2 5.4 0.12 1.2 5.6 
Asthma 
exacerbation 0.026 0.26 1.2 0.027 0.28 1.3 0.029 0.29 1.4 

Cardiovascular 
hospital 
admissions 

0.00019 0.0021 0.0095 0.00022 0.0023 0.010 0.00024 0.0026 0.012 

Respiratory 
hospital 
admissions 

0.00019 0.0020 0.0089 0.00021 0.0022 0.010 0.00024 0.0025 0.011 

Non-fatal heart 
attacks (Peters) 0.00080 0.0082 0.038 0.00088 0.0091 0.041 0.00097 0.010 0.045 

Non-fatal heart 
attacks (All others) 0.000087 0.00089 0.0041 0.000095 0.00099 0.0045 0.00010 0.0011 0.0049 

5.4.1.5 Health Incidence per Ton Values Associated with the Electricity 
Generation Sector  

The 2018 EPA source apportionment TSD contains health incidence per ton values associated 
with emissions of NOX, SOX, and PM2.5 arising from electricity-generating units.  DOT staff 
mapped these to the electricity generation sector in the CAFE Model.  The health effects per ton 
associated with the emissions of criteria pollutants from this sector are shown in Table 5-10. 
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Table 5-12 – Health Effects per Ton from the Electricity Generation Sector 

Health Effects 
2020 2025 2030 

NOX SOX PM2.5 NOX SOX PM2.5 NOX SOX PM2.5 
Premature 
Deaths - 
(Krewski) 

0.00066 0.0045 0.016 0.00070 0.0048 0.017 0.00074 0.0051 0.018 

Respiratory 
emergency 
room visits 

0.00032 0.0022 0.0091 0.00033 0.0023 0.0094 0.00034 0.0024 0.0098 

Acute 
bronchitis 0.00085 0.0055 0.021 0.00089 0.0057 0.022 0.00096 0.0062 0.024 

Lower 
respiratory 
symptoms 

0.011 0.070 0.27 0.011 0.073 0.29 0.012 0.079 0.31 

Upper 
respiratory 
symptoms 

0.016 0.10 0.39 0.016 0.10 0.41 0.017 0.11 0.44 

Minor 
Restricted 
Activity Days 

0.46 3.0 12 0.46 3.0 12 0.46 3.1 12 

Work loss days 0.077 0.51 2.0 0.077 0.52 2.0 0.078 0.53 2.1 
Asthma 
exacerbation 0.018 0.12 0.46 0.019 0.12 0.48 0.020 0.13 0.51 

Cardiovascular 
hospital 
admissions 

0.00016 0.0011 0.0040 0.00017 0.0012 0.0044 0.00018 0.0014 0.0048 

Respiratory 
hospital 
admissions 

0.00015 0.0011 0.0038 0.00017 0.0012 0.0043 0.00018 0.0013 0.0047 

Non-fatal heart 
attacks (Peters) 0.00063 0.0045 0.016 0.00068 0.0049 0.018 0.00074 0.0053 0.019 

Non-fatal heart 
attacks (All 
others) 

0.000068 0.00049 0.0017 0.000074 0.00054 0.0019 0.000079 0.00058 0.0021 

5.4.2 Health Impacts per Ton from Tailpipe Emissions  

The CAFE Model follows a similar process for computing health impacts resulting from tailpipe 
emissions as it does for calculating health impacts from upstream emissions.  The analysis relies 
on a 2019 paper from EPA (Wolfe et al.) that computes monetized per ton damage costs for 
mobile sources in several categories, based on vehicle type and fuel type.  Wolfe et al. did not 
report incidences per ton, but that information was obtained through communications with EPA 
staff.   

Three source categories from the Wolfe et al. paper were matched to the CAFE Model tailpipe 
emissions inventory: “on-road light duty gas cars and motorcycles,” “on-road light duty gas 
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trucks,” and “on-road light duty diesel.”688  Table 5-11 shows the health incidence per ton 
associated with these sectors in 2025. 

Table 5-13 – Health Incidents per Ton from On-Road Source Sectors in 2025 

Health 
Effects 

On-road Light Duty Gas 
Cars & Motorcycles 

Sector 

On-road Light Duty Gas 
Trucks 

On-road Light Duty 
Diesel 

2025 NOX SOX PM2.5 NOX SOX PM2.5 NOX SOX PM2.5 
Premature 
Deaths - 
(Krewski) 

0.00075 0.013 0.073 0.00068 0.011 0.061 0.00060 0.031 0.050 

Respiratory 
emergency 
room visits 

0.00039 0.0076 0.041 0.00035 0.0061 0.035 0.00032 0.019 0.029 

Acute 
bronchitis 0.0010 0.020 0.11 0.00096 0.016 0.091 0.00085 0.047 0.075 

Lower 
respiratory 
symptoms 

0.013 0.25 1.4 0.012 0.20 1.2 0.011 0.59 0.95 

Upper 
respiratory 
symptoms 

0.018 0.35 2.0 0.017 0.28 1.7 0.015 0.84 1.35 

Minor 
Restricted 
Activity Days 

0.53 11 60 0.49 8.5 49 0.44 25 40 

Work loss 
days 0.090 1.8 10 0.084 1.4 8.4 0.075 4.3 6.9 

Asthma 
exacerbation 0.022 0.42 2.3 0.020 0.33 1.9 0.018 1.0 1.6 

Cardiovascular 
hospital 
admissions 

0.00019 0.0036 0.020 0.00017 0.0028 0.016 0.00015 0.0085 0.013 

Respiratory 
hospital 
admissions 

0.00018 0.0034 0.018 0.00016 0.0027 0.015 0.00015 0.0081 0.013 

Non-fatal 
heart attacks 
(Peters) 

0.00075 0.014 0.076 0.00068 0.011 0.064 0.00060 0.033 0.053 

Non-fatal 
heart attacks 
(All others) 

0.000080 0.0015 0.0082 0.000073 0.0012 0.0069 0.000065 0.0035 0.0057 

 
688Wolfe et al. 2019.  Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025.  https://pubmed.ncbi.nlm.nih.gov/30296769/.  (Accessed: February 15, 2022). 
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5.4.3 Uncertainty  

Uncertainties and limitations exist at each stage of the emissions-to-health benefit analysis 
pathway (e.g., projected emissions inventories, air quality modeling, health impact assessment, 
economic valuation).  As discussed above, we used a BPT approach to estimate health impacts 
from changes in criteria pollutant emissions and the resulting monetized benefits, which are 
discussed further in Chapter 6.2.2, Monetized Health Impacts from Changes in Criteria Pollutant 
Emissions.  The following discussion applies to that section as well. 

The BPT approach to monetizing benefits relies on many assumptions; when uncertainties 
associated with these assumptions are compounded, even small uncertainties can greatly 
influence the size of the total quantified benefits.  Some key assumptions associated with PM2.5-
related health benefits and uncertainties associated with the BPT approach are described below.  

We assume that all fine particles, regardless of their chemical composition, are equally potent in 
causing premature mortality.  Support for this assumption comes from the 2019 PM ISA, which 
concluded that “many PM2.5 components and sources are associated with many health effects and 
that the evidence does not indicate that any one source or component is consistently more 
strongly related with health effects than PM2.5 mass.”689 

We assume that the health impact function for fine particles is log-linear without a threshold.  
Thus, the estimates include health benefits from reducing fine particles in areas with different 
concentrations of PM2.5, including both areas with projected annual mean concentrations that are 
above the level of the fine particle standard and areas with projected concentrations below the 
level of the standard. 

We also assume that there is a “cessation” lag between the change in PM exposures and the total 
realization of changes in mortality effects.  Specifically, we assume that some of the incidences 
of premature mortality related to PM2.5 exposures occur in a distributed fashion over the 20 years 
following exposure based on the advice of the Science Advisory Board Health Effect 
Subcommittee,690 which affects the valuation of mortality benefits at different discount rates.  
The above assumptions are subject to uncertainty.  

In general, we are more confident in the magnitude of the risks we estimate from simulated 
PM2.5 concentrations that coincide with the bulk of the observed PM concentrations in the 
epidemiological studies that are used to estimate the benefits.  Likewise, we are less confident in 
the risk we estimate from simulated PM2.5 concentrations that fall below the bulk of the observed 
data in these studies.  There are uncertainties inherent in identifying any particular point at which 
our confidence in reported associations decreases appreciably, and the scientific evidence 
provides no clear dividing line.  Applying BPT values to estimates of changes in policy-related 

 
689 U.S. Environmental Protection Agency (U.S. EPA). 2019. Integrated Science Assessment (ISA) for Particulate 
Matter (Final Report, 2019). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-19/188, 2019. 
690 U.S. Environmental Protection Agency—Science Advisory Board (U.S. EPA-SAB). 2004. Advisory Council on 
Clean Air Compliance Analysis Response to Agency Request on Cessation Lag. EPA-COUNCIL-LTR-05-001. 
December.  Located in Docket ID NHTSA-2021-0053. 
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emissions precludes us from assessing the distribution of risk as it relates to the associated 
distribution of baseline concentrations of PM2.5. 

Another limitation of using the BPT approach is an inability to provide estimates of the health 
benefits associated with exposure to ozone, ambient NOX, and air toxics.  Furthermore, the air 
quality modeling that underlies the PM2.5 BPT value did not provide estimates of the PM2.5-
related benefits associated with reducing VOC emissions, but these unquantified benefits are 
generally small compared to benefits associated with other PM2.5 precursors.691 

National-average BPT values reflect the geographic distribution of the underlying modeled 
emissions used in their calculation, which may not exactly match the geographic distribution of 
the emission reductions that would occur due to a specific rulemaking.  Similarly, BPT estimates 
may not reflect local variability in population density, meteorology, exposure, baseline health 
incidence rates, or other local factors for any specific location.  For instance, even though we 
assume that all fine particles have equivalent health effects, the BPT estimates vary across 
precursors depending on the location and magnitude of their impact on PM2.5 levels, which 
drives population exposure.  The emissions and photochemically-modeled PM2.5 concentrations 
used to derive the BPT values may not match the changes in air quality that would result from 
this rule. 

6 Simulating Economic Effects of Regulatory Alternatives 

6.1 Costs and Benefits Accrued to Consumers 

Many, if not most, of the benefits and costs resulting from changes to CAFE standards are 
private benefits that accrue to the buyers of new cars and trucks, produced in the model years 
under consideration.  These benefits and costs largely flow from the changes to vehicle 
ownership and operating costs that result from improved fuel economy, and the cost of the 
technology required to achieve those improvements.  In general, increasing CAFE standards 
cause manufacturers to apply additional technology to new vehicles offered for sale.  These 
technologies increase the cost of vehicle production, and manufacturers pass along those cost 
increases to consumers in the form of higher purchase prices.  In turn, the higher purchase prices 
that buyers of new cars and light trucks pay also mean that their expenses for sales taxes, vehicle 
registration fees, financing their purchases, and insuring their new vehicles will rise.  At the same 
time, consumers reap substantial benefits from reduced fuel costs over the lifetimes of new 
vehicles, and also save time because they require less frequent refueling.   

6.1.1 Additional Consumer Purchasing Costs 

Some costs of purchasing and owning new vehicles scale with the value of the vehicle.  When 
fuel economy standards increase the price of new vehicles, both taxes and registration fees 
increase, too, because they are calculated as a percentage of vehicle price.  Increasing the price 
of new vehicles also affects the average amount paid on interest for financed vehicles and the 
insurance premiums for similar reasons.  NHTSA computes these additional costs as scalar 

 
691 U.S. EPA. 2012. Regulatory Impact Analysis for the Proposed Revisions to the National Ambient Air Quality 
Standards for Particulate Matter. 
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multipliers on the MSRP of new vehicles.  These costs are included in the consumer per-vehicle 
cost-benefit analysis but, for the reasons described below, are not included in the societal cost-
benefit analysis.  

6.1.1.1 Sales Tax and Vehicle Registration Costs 

In the analysis, sales taxes and registration fees are considered transfer payments between 
consumers and the government and are therefore not considered a cost from the societal 
perspective.  However, these costs do represent an additional cost to consumers and are 
accounted for in the private consumer perspective.  To estimate the sales tax for the analysis, 
NHTSA weighted the auto sales tax of each state by its population—using Census population 
data—to calculate a national weighted-average sales tax of 5.46 percent.692   

We recognize that weighting state sales tax by new vehicle purchases within a state would likely 
produce a better estimate since new vehicle purchasers represent a small subset of the population 
and may differ between states.  NHTSA explored using Polk registration data to approximate 
new vehicle sales by state by examining the change in new vehicle registrations across several 
recent years.  The results derived from this examination resulted in a national weighted-average 
sales tax rate slightly above 5.5 percent, which is almost identical to the rate calculated using 
population instead.  NHTSA opted to utilize the population estimate, rather than the registration-
based proxy of new vehicle sales, because the results were negligibly different, and the analytical 
approach was more straightforward.  

6.1.1.2 Financing Costs 

Between the NPRM and final rule, NHTSA discovered that it had inappropriately accounted for 
costs associated with financing new vehicles that are more expensive due to more stringent fuel 
economy standards.  Specifically, NHTSA treated the discounted stream of increased interest 
payments as a cost to consumers of more stringent fuel economy standards without considering 
the benefits of financing.  When a consumer elects to finance a vehicle, the consumer is 
demonstrating a revealed preference for purchasing a vehicle using smaller and smoother 
payments over time, rather than a large one-time payment at the point of sale, and that they are 
willing to pay the interest payments in exchange for that payment pattern.  In other words, the 
consumer is revealing that their discount rate is higher than the real interest of the loan. 

However, at the NPRM stage, NHTSA’s per-vehicle analysis included the interest payments as a 
cost, without taking account of the benefits of financing by discounting the stream of principal 
and interest payments over time.  Instead, NHTSA treated the financial costs as additive with the 
upfront price increase of the vehicle owing to more stringent fuel economy standards.  As such, 
NHTSA’s NPRM implied that the flexibility offered to consumers by the availability of 

 
692 See Car Tax by State, FactoryWarrantyList.com, http://www.factorywarrantylist.com/car-tax-by-state.html.  
(Accessed: February 15, 2022).  Note: County, city, and other municipality-specific taxes were excluded from 
weighted averages, as the variation in locality taxes within states, lack of accessible documentation of locality rates, 
and lack of availability of weights to apply to locality taxes complicate the ability to reliably analyze the subject at 
this level of detail.  Localities with relatively high automobile sales taxes may have relatively fewer auto 
dealerships, as consumers would endeavor to purchase vehicles in areas with lower locality taxes, therefore reducing 
the effect of the exclusion of municipality-specific taxes from this analysis.  
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financing reduced consumer welfare.  Whereas, if anything, NHTSA expects that the availability 
of financing options should reduce the cost of fuel economy standards to consumers by 
permitting them to spread the costs out over time. 

To address this issue, NHTSA considered two alternative solutions.  The first alternative is to 
assume that the availability of financing does not make consumers worse off than if that 
financing were not available.  With this assumption, we can exclude financing costs as a 
conservative position, given that it is more likely than not that financing availability actually 
reduces the cost of more stringent standards.  The second approach considered was to include the 
discounted stream of principal and interest payments in lieu of the upfront price increase for 
those consumers that elect to finance.  The benefit of the second alternative is that it would 
produce quantifiable estimates and may give a better sense of the true cost of higher fuel 
economy standards.  However, the downside of this approach is that, if NHTSA were to use 
discount rates prescribed by OMB Circular A-4, it is plausible that our estimates would still 
indicate that financing availability harms consumers.  For this reason, NHTSA has elected the 
first alternative of excluding financing costs from the per-vehicle consumer cost and benefit 
accounting. 

6.1.1.3 Insurance Cost 

More expensive vehicles will require more expensive collision and comprehensive (e.g., fire and 
theft) car insurance.  Actuarially fair insurance premiums for these components of value-based 
insurance will be the amount an insurance company will pay out in the case of an incident 
weighted by the risk of that type of incident occurring.  For simplicity, we assume that the 
vehicle has the same exposure to harm throughout its lifetime in this calculation.  However, the 
value of vehicles will decline at some depreciation rate so that the absolute amount paid in value-
related insurance will decline as the vehicle depreciates.  This is represented in the CAFE Model 
as the Equation 6-1 stream of expected collision and comprehensive insurance payments.  In this 
final rule analysis, we are reducing insurance costs by 20 percent to avoid double counting the 
costs associated with replacing totaled and stolen vehicles (more on this below). 

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 & 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ (𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)
(1 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 )𝑎𝑎𝑎𝑎𝑎𝑎

∗  .8 

Equation 6-1 – Estimating Insurance Costs 

To utilize the framework described by Equation 6-1, estimates of the share of MSRP paid on 
collision and comprehensive insurance and of annual vehicle depreciations are needed.  Wards 
Automotive has data on the average annual amount paid by model year for new light trucks and 
passenger cars on collision, comprehensive and damage and liability insurance for model years 
1992-2003; for model years 2004-2016, they only offer the total amount paid for insurance 
premiums.  The share of total insurance premiums paid for collision and comprehensive 
coverage throughout the lifetime of a vehicle was computed for 1979-2003.  For cars, the share 
ranges from 49 to 55 percent, with the share tending to be largest towards the end of the series.  
For trucks, the share ranges from 43 to 61 percent, again, with the share increasing towards the 
end of the series.  We assume that for model years 2004-2016, 60 percent of insurance premiums 
for trucks, and 55 percent for cars, is paid for collision and comprehensive.  Using these shares, 
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we computed the aggregate amount paid for collision and comprehensive coverage for cars and 
trucks.  Then each regulatory class in the fleet is weighted by share to estimate the overall 
average amount paid for collision and comprehensive insurance by model year as shown in Table 
6-1.  The ratio of annual collision and comprehensive costs to average MSRP results in a range 
from 1.74 to 2.03 percent over the series.  The average annual share paid for model years 2010-
2016 is 1.83 percent of the initial MSRP.  This is used as the share of the value of a new vehicle 
paid for collision and comprehensive in the future. 

Table 6-1 – Average Share of MSRP Paid for Collision and Comprehensive Insurance 

Model 
Year 

Collision and 
Comprehensive 

Average 
MSRP 

Percent 
MSRP 

2016 $681 $33,590 2.03% 
2015 $601 $32,750 1.84% 
2014 $567 $31,882 1.78% 
2013 $548 $31,056 1.76% 
2012 $530 $30,062 1.76% 
2011 $517 $29,751 1.74% 
2010 $548 $29,076 1.88% 

To estimate depreciation rates, we used recent data from Black Book and Fitch,693 which showed 
that the average annual depreciation rate of two- to six-year-old vehicles fluctuated over the last 
decade from a high of 17.3 percent to a low of 8.3 percent 694 prior to the pandemic.  The 
pandemic rates are unlikely to be representative of future depreciation rates, so we averaged the 
annual rates from 2016 – 2019 to construct a more representative average depreciation rate (14.9 
percent).  We assume that future depreciation rates will resemble pre-pandemic trends as the 
pandemic continues to recede, and the analysis assumes the same depreciation rate for all future 
years.   

Table 6-2 shows the cumulative share of the initial MSRP of a vehicle estimated to be paid in 
collision and comprehensive insurance in five-year age increments under this depreciation 
assumption, conditional on a vehicle surviving to that age—that is, the expected insurance 
payments at the time of purchase will be weighted by the probability of surviving to that age.  If 
a vehicle lives to 10 years, 10.6 percent of the initial MSRP is expected to be paid in collision 
and comprehensive payments; by 20 years 13.2 percent of the initial MSRP; finally, if a vehicle 
lives to age 40, 14.1 percent of the initial MSRP.  

Table 6-2 – Cumulative Percentage of MSRP Paid in Collision/Comprehensive Premiums by Age 

AGE 
PERCENTAGE 

OF VALUE 
REMAINING 

CUMULATIVE 
PERCENTAGE 
OF MSRP PAID 

 
693 Vehicle Depreciation Report 2021, Black Book and Fitch Ratings, https://2j6hf2q7wf819gchr14pr7l1-
wpengine.netdna-ssl.com/wp-content/uploads/2021/04/FitchFINAL.pdf.  (Accessed: February 15, 2022). 
694 During the pandemic depreciation largely halted, with two- to six-year old vehicles depreciating at only 2 percent 
in 2020 and projected at only 5 percent in 2021.  
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5 64% 7.0% 
10 32% 10.6% 
15 16% 12.4% 
20 8.0% 13.2% 
25 4.0% 13.7% 
30 2.0% 13.9% 
35 1.0% 14.0% 
40 0.5% 14.1% 

The increase in insurance premiums resulting from an increase in the average value of a vehicle 
is a result of an increase in the expected amount insurance companies will have to pay out in the 
case of damage occurring to the driver’s vehicle.  In this way, it is a cost to the private consumer, 
attributable to the CAFE standard, that caused the insurance price increase. 

Between the NPRM and final rule, NHTSA staff identified a mistake in the per-vehicle 
accounting of technology costs and insurance costs.  In the NPRM analysis, NHTSA included 
collision and comprehensive insurance premiums without adjusting these premiums to exclude 
the portion of premiums that cover the costs to replace totaled or stolen vehicles.  When a 
consumer uses insurance payouts to purchase a new vehicle, the consumer will incur all of the 
costs and benefits of the standards at the time of purchase.  Therefore, in this case, including the 
costs of the standards and the insurance costs associated with replacing totaled and stolen 
vehicles is duplicative. 

In the case where a consumer uses insurance payouts to purchase a used vehicle, the consumer 
will likely replace the totaled or stolen vehicle with a used vehicle that was subject to the revised 
fuel economy standards.  For example, consider a consumer that purchases a new vehicle in 
2025.  If that consumer experiences an event that leads to an insurance payout to replace the MY 
2025 vehicle, that event is likely to take place in some year after 2025 when the used vehicle 
fleet is comprised of a greater share of vehicles subject to the updated standards.  In this 
scenario, in order for this consumer to replace the 2025 vehicle with a vehicle not subject to the 
updated standards the consumer would have to use to the insurance payout to purchase a vehicle 
at least two years older than the model they are replacing.  NHTSA believes it is more likely that 
the consumer will replace their totaled or stolen vehicle with newer vehicle than the one they are 
replacing, and in those instances, insurance costs associated replacing vehicles subject to the 
standards with other used vehicles subject to the standards are duplicative. 

For this final rule, NHTSA is taking a conservative approach to reducing insurance costs to avoid 
double counting the costs of the standards by multiplying them by the percentage of insurance 
claims for vehicle repairs, excluding claims for totaled and stolen vehicles.  This approach is 
conservative because the cost to replace a vehicle is higher than the cost to repair a vehicle, so 
the share of insurance outlays that cover replacements will be higher than the percentage of 
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claims for totaled or stolen vehicles.  Based on NHTSA’s research, the percentage of claims for 
replacing totaled or stolen vehicles is 20 percent.695 

6.1.2 Consumer Sales Surplus 

Buyers who would have purchased a new vehicle with the baseline standards in effect but decide 
not to do so in response to the increase in new vehicles’ prices due to more stringent standards 
experience a decrease in welfare.  The collective welfare loss to potential buyers who are 
deterred by higher prices is measured by the foregone consumer surplus they would have 
received from their purchase of a new vehicle in the baseline.  However, because the fuel 
economy of vehicles they would otherwise have purchased also increases, and higher fuel 
economy would have provided some value to them, measuring their loss in consumer surplus is 
more complicated than in the conventional case where the price of a product changes but its 
other attributes do not.696   

 

Figure 6-1 – New Vehicle Consumer Surplus 

The triangle bcd in Figure 6-1 reflects the loss of consumer surplus to new vehicle buyers, 
calculated based on changes to new vehicle sales.  Line P0 reflects the baseline vehicle cost.  
More stringent regulatory alternatives are expected to increase the cost of light duty vehicles, as 
represented by line P1.  Consistent with other sections of the analysis, we assume that consumers 

 
695 Industry reports indicate 19.1 percent of all car insurance claims are for totaled or stolen vehicles, see 
https://www.repairerdrivennews.com/2019/06/18/ccc-q1-data-claim-counts-down-nearly-1-severity-total-loss-value-
up.  (Accessed: February 15, 2022). 
696 Consumer surplus is a fundamental economic concept and represents the net value (or net benefit) a good or 
service provides to consumers.  It is measured as the difference between what a consumer is willing to pay for a 
good or service and the market price.  OMB circular A-4 explicitly identifies consumer surplus as a benefit that 
should be accounted for in cost-benefit analysis.  For instance, OMB Circular A-4 states the “net reduction in total 
surplus (consumer plus producer) is a real cost to society,” and elsewhere elaborates that consumer surplus values be 
monetized “when they are significant.”  OMB Circular A-4, at pp. 37–8. 
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value 30 months of fuel savings at the time of purchase and offset the price increase accordingly, 
thus shifting price from line P1 to line P2.  This shift leads the quantity demanded to move from 
Q0 to Q1, Dotted line D* is a linear representation of the change in quantity of vehicles 
purchased.697  The consumer surplus is equal to the area of triangle bcd.698 

6.1.3 Value of Fuel Savings 

Fuel savings are calculated by multiplying avoided fuel consumption by fuel prices.  Each 
vehicle of a given body style is assumed to be driven the same as all the others of a comparable 
age and body style in each calendar year.  The ratio of that cohort’s VMT to its fuel efficiency 
produces an estimate of fuel consumption.  The difference between fuel consumption in the 
baseline, and in each alternative, represents the gallons (or energy) saved.  Under this 
assumption, our estimates of fuel consumption from increasing the fuel economy of each 
individual model depend only on how much its fuel economy is increased, and do not reflect 
whether its actual use differs from other models of the same body type.  Neither do our estimates 
of fuel consumption account for variation in how much vehicles of the same body type and age 
are driven each year, which appears to be significant (see Chapter 4.3.1).  Consumers save 
money on fuel expenditures at the average retail fuel price (fuel price assumptions are discussed 
in detail in Chapter 4.1.2), which includes all taxes and represents an average across octane 
blends.  For gasoline and diesel, the included taxes reflect both the federal tax and a calculated 
average state fuel tax.  Expenditures on alternative fuels (E85 and electricity, primarily) are also 
included in the calculation of fuel expenditures, on which fuel savings are based.  And while the 
included taxes net out of the social benefit cost analysis (as they are a transfer), consumers value 
each gallon saved at retail fuel prices including any additional fees such as taxes.  

This assumption that each vehicle is driven the average miles for its cohort may cause our 
estimates of fuel consumption under more stringent CAFE standards to be too large.  Because the 
distribution of annual driving is wide, using its mean value to estimate fuel savings for individual 
car or light truck models may overstate the fuel consumption likely to result under tighter 
standards, even when the fuel economy of different models are correctly averaged.699  This will 
be the case even when increases in fuel economy can be estimated reliably for individual models, 
which this analysis does, because the reduction in a specific model’s fuel consumption depends 
on how much it is actually driven as well as on the change in fuel economy under alternative fuel 
economy standards.  

To illustrate, we estimate that new automobiles are driven about 17,000 miles on average during 
their first year.700  If the 17,000 mile figure represents the average of two different models that 
are driven 14,000 and 20,000 miles annually, and the two initially achieve, respectively, 30 and 

 
697 D* is not a demand curve.  It is included in Figure 6-1 to help visualize the change in consumer welfare.  
698 The exact calculation is half the increase in sales multiplied by the reduction in the cost of light duty vehicles net 
of the increased fuel cost.  
699 The correct average fuel economy of vehicles whose individual fuel economy differs is the harmonic average of 
their individual values, weighted by their respective use; for two vehicles with fuel economy levels MPG1 and 
MPG2 that are assumed to be driven identical amounts (as in the agencies’ analysis), their harmonic average fuel 
economy is equal to 2/(1/MPG1 + 1/MPG2). 
700 While the mileage accumulation schedule reflects this estimate, the actual VMT during 2020 (and the next few 
subsequent years) is lower, as U.S. light-duty VMT declined significantly during the pandemic. 
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40 miles per gallon—thus averaging 35 miles per gallon—they will consume a total of 967 
gallons annually.701  Improving the fuel economy of each model by 5 miles per gallon will 
reduce their total fuel use to 844 gallons, thus saving 123 gallons annually.702  In contrast, using 
the 17,000 mile average figure for both two vehicles yields estimated fuel savings of 128 gallons 
per year, about 5 percent above the correct value.703 

The magnitude of this potential overestimation of fuel savings increases with any association 
between annual driving and fuel economy.  Car and light truck buyers who anticipate driving 
more should be more likely to choose models offering higher fuel economy because the number 
of miles driven directly affects their fuel costs, and thus the savings from driving a model that 
features higher fuel economy.704  Conversely, buyers who anticipate driving less are likely to 
purchase models with lower fuel economy.  Such behavior— whereby buyers who expect to 
drive more extensively are likely to select models offering higher fuel economy—cannot be fully 
accounted for in today’s analysis, which is necessarily based on empirical estimates of average 
vehicle use.  To the extent it occurs, we are likely to consistently overstate actual fuel savings 
from requiring higher fuel economy.  Thus, NHTSA’s central analysis is likely to overestimate 
the impact on consumer benefits such as reduced fuel consumption and increased refueling time, 
as well as on the resulting environmental impacts of fuel production and use. 

A similar phenomenon may cause the analysis to overstate the value of fuel savings resulting 
from requiring higher fuel economy as well.  As with miles driven, our analysis assumes all 
vehicle owners pay the national average fuel price at any time.  However, fuel prices vary 
substantially among different regions of the United States, and one would expect buyers in 
regions with consistently higher fuel prices to purchase vehicles with higher fuel economy, on 
average.  To the extent they actually do so, evaluating the savings from requiring higher fuel 
economy identically in all regions using nationwide average fuel prices is likely to overstate their 
actual dollar value. 

As an illustration, suppose gasoline averages $3.00 per gallon nationwide, but a buyer who 
expects to drive a new car 17,000 miles during its first year (the same value used in the example 
above) faces a local price of $4.00 per gallon, and chooses a model that achieves 40 mpg.  That 
driver’s cost of fuel during the vehicle’s first year will total $1,700 (calculated at 17,000 miles / 
40 miles per gallon x $4.00 per gallon).  A buyer who plans to drive the same number of miles 
but faces a lower price of $2.00 per gallon and thus chooses a vehicle that offers only 30 mpg 

 
701 Calculated as 14,000 miles / 30 miles per gallon + 20,000 miles / 40 miles per gallon = 467 gallons + 500 gallons 
= 967 gallons (all figures in this calculation are rounded to whole gallons).  
702 Calculated as 14,000 miles / 35 miles per gallon + 20,000 miles / 45 miles per gallon = 400 gallons + 444 gallons 
= 844 gallons (again, all figures in this calculation are rounded to whole gallons). 
703 Our estimate of their combined initial fuel consumption would be 17,000 miles / 30 miles per gallon + 17,000 
miles / 40 miles per gallon, or 567 gallons + 425 gallons = 992 gallons.  After the 5 mile per gallon improvement in 
fuel economy for each vehicle, our estimate would decline to 17,000 miles / 35 miles per gallon + 17,000 miles / 45 
miles per gallon = 486 + 378 = 863 gallons, yielding an estimated fuel savings of 992 gallons - 863 gallons = 128 
gallons (as previously, all figures in this calculation are rounded to whole gallons).  
704 For example, some businesses, rental car firms, taxi operators, and ride sharing drivers are likely to anticipate 
using their vehicles significantly more than the average new car or light truck buyer.  Furthermore, their choices 
among competing models are likely to be more heavily influenced by economics than by the preferences for other 
attributes that motivate many other buyers, making them more likely to select vehicles with higher fuel economy in 
order to improve their economic returns. 
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will have first-year fuel costs of $1,133 (calculated as 17,000 miles / 30 miles per gallon x $2.00 
per gallon), so total annual fuel costs for these two vehicles will be $1,700 + $1,133 = $2,633.  If 
the fuel economy of both vehicles increases by 5 mpg, their actual fuel savings will be $189 and 
$162, or a total savings of $351.  However, evaluating total fuel savings using a price of $3.00 
per gallon yields savings of $382, thus overstating actual savings by about 10 percent.   

6.1.4 Benefits of Less Frequent Refueling  

Increasing CAFE standards, all else being equal, affects the amount of time drivers spend 
refueling their vehicles in several ways.  First, they increase the fuel economy of ICE vehicles 
produced in the future, which increases vehicle range and decreases the number of refueling 
events for those vehicles.  Second, to the extent that more stringent standards increase the 
purchase price of new vehicles, they may reduce sales of new vehicles and scrappage of existing 
ones, causing more VMT to be driven by older and less efficient vehicles which require more 
refueling events for the same amount of VMT driven.  Finally, sufficiently stringent standards 
may also change the number of electric vehicles that are produced, and shift refueling to occur at 
a charging station, rather than at the pump—changing per-vehicle lifetime expected refueling 
costs.  The basic calculation for all three effects is the same: we multiply the additional amount 
of time spent refueling by the value of time of passengers, which is assumed to be the same for 
all three effects.   

6.1.4.1 Value of Travel Time Savings 

The calculation of the value of time follows the guidance from DOT’s 2016 Value of Travel 
Time Savings memorandum (“VTTS Memo”).705  The economic value of refueling time savings 
is calculated by applying valuations for travel time savings from the VTTS Memo to estimates of 
how much time is saved across alternatives.706  The value of travel time depends on average 
hourly valuations of personal and business time, which are functions of annual household income 
and total hourly compensation costs to employers, respectively.  As designated by the 2016 
VTTS Memo, the nationwide median annual household income, $56,516 in 2015, is divided by 
2,080 hours to yield an income of $27.20 per hour.  Total hourly compensation cost to 
employers, inclusive of benefits, in 2015$ was $25.40.707  Table 6-3 demonstrates NHTSA’s 
approach to estimating the value of travel time ($/hour) for urban and rural driving; we make the 
simplifying assumption that urban travel consists entirely of local trips, while travel in rural areas 
is exclusively longer-distance intercity travel.  This approach relies on the use of DOT-
recommended weights that assign a lesser valuation to personal travel time than to business 
travel time, as well as weights that adjust for the distribution between personal and business 
travel.708  In accordance with DOT guidance, wage valuations are estimated with base year 2015 
dollars and end results are adjusted to 2018 dollars. 

 
705 U.S. Department of Transportation, The Value of Travel Time Savings: Departmental Guidance for Conducting 
Economic Evaluations, (2016), available at https://www7.transportation.gov/office-policy/transportation-
policy/revised-departmental-guidance-valuation-travel-time-economic.  (Accessed: February 15, 2022). 
706  VTTS Memo Tables 1, 3, and 4.  
707 Ibid at p. 11. 
708 Business travel is higher than personal travel because an employer has additional expenses, e.g. taxes and 
benefits costs, above and beyond an employee’s hourly wage. 
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Table 6-3 – Estimating the Value of Travel Time for Urban and Rural (Intercity) Travel ($/hour, 2015 
Dollars) 

 Personal Travel Business Travel Total 

Urban Travel 

Wage Rate ($/hour) $27.20 $25.40 - 

DOT - Recommended Value of Travel Time Savings, as % 
of Wage Rate 50% 100% - 

Hourly Valuation (=Wage Rate * DOT-Recommended 
Value) $13.60 $25.40 - 

% of Total Urban Travel 95.4% 4.6% 100% 

Hourly Valuation (Adjusted for % of Total Urban Travel) $12.97 $1.17 $14.14 

Rural (Intercity) Travel 

Wage Rate ($/hour) $27.20 $25.40  

DOT - Recommended Value of Travel Time Savings, as % 
of Wage Rate 70% 100%  

Hourly Valuation (=Wage Rate * DOT-Recommended 
Value) $19.04 $25.40  

% of Total Rural Travel 78.6% 21.4% 100% 

Hourly Valuation (Adjusted for % of Total Rural Travel) $14.97 $5.44 $20.40 

Estimates of the hourly value of urban and rural travel time ($14.14 and $20.40, respectively), 
shown in Table 6-4, must be adjusted to account for the nationwide ratio of urban to rural 
driving.709  This adjustment, which gives an overall estimate of the hourly value of travel time—
independent of urban or rural status—is shown in Table 6-5. 

Table 6-4 – Estimating Weighted Urban/Rural Value of Travel Time ($/hour, 2015 Dollars) 

  Unweighted Value of 
Travel Time ($/hour) 

Weight (% of Total 
Miles Driven) 

Weighted Value of Travel 
Time ($/hour) 

Urban Travel $14.14 71.6% $10.12 
Rural Travel $20.40 28.4% $5.80 
Total - 100.0% $15.92 

 
709 Estimate of Urban vs. Rural travel weights from FHWA Highway Statistics 2019, Table VM-1 (light-duty 
vehicles only), https://www.fhwa.dot.gov/policyinformation/statistics/2019/pdf/vm1.pdf.  (Accessed: February 15, 
2022). 
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Table 6-5 – Estimating the Value of Travel Time for Light-Duty Vehicles ($/hour, 2015 Dollars) 

  Passenger Cars Light Trucks 

Average Vehicle Occupancy During Refueling Trips (persons) 1.52 1.83 

Weighted Value of Travel Time ($/hour) $15.92 $15.92 

Occupancy-Adjusted Value of Vehicle Travel Time During 
Refueling Trips ($/hour) $24.23 $29.16 

Note that the calculations in Table 6-5 represent the hourly value of travel time for each 
individual vehicle occupant, and many vehicles have multiple occupants.  To estimate the 
average value of travel time per vehicle-hour, Table 6-6 accounts for all passengers in vehicles 
making refueling stops.  We estimated average vehicle occupancy using data from the 2017 
National Household Travel Survey, and our estimate of average vehicle occupancy includes the 
driver and all passengers who are age five and above.710  The average occupancy assumption 
used in the refueling benefit is consistent with occupancy assumptions used to estimate the social 
cost of additional traffic congestion.  Lastly, the occupancy-adjusted value of travel time per 
vehicle-hour is converted to 2018 dollars using the GDP deflator as shown in Table 6-6.711 

Table 6-6 – Value of Vehicle Travel Time in 2018 Dollars ($/hour, 2018 Dollars) 

  Passenger Cars Light Trucks 

Occupancy-Adjusted Value of Vehicle Travel Time During 
Refueling Trips ($/hour) $25.55 $30.75 

6.1.4.2 Accounting for Improved Fuel Economy of ICE Vehicles 

The CAFE Model calculates the number of refueling events for each ICE vehicle in a calendar 
year.  This is calculated as the number of miles driven by each vehicle in that calendar year 
divided by the product of that vehicle’s on-road fuel economy (rather than fuel economy as 
measured for compliance), tank size, and an assumption about the average share of the tank 
refueled at each event, as shown in Equation 6-2. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑢𝑢𝑒𝑒𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ

𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉ℎ ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉ℎ ∗ 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉ℎ
 

Equation 6-2 – Calculating the Number of Refueling Events 

The model then computes the cost of refueling as the product of the number of refueling events, 
total time of each event and the value of the time spent on each event (computed as average 
salary), as shown in Equation 6-3. 

 
710 The National Household Travel Survey excludes trips by children under age five.  
711 Bureau of Economic Analysis, NIPA Table 1.1.9 Implicit Price Deflators for Gross Domestic Product, available 
at https://apps.bea.gov/iTable/index_nipa.cfm.  (Accessed: February 15, 2022).  
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉ℎ) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 

Equation 6-3 – Calculating the Cost of Refueling Events 

The refueling event time of each vehicle is calculated by summing a fixed and variable 
component.  The fixed component is the number of minutes required for each refueling event, 
regardless of the tank size or share refueled at each event (i.e., the time it takes to get to and from 
the pump).  The variable component is the ratio of the average number of gallons refueled for 
each event (the product of the tank size and share refueled) and the rate at which gallons flow 
from the pump.  This is shown in Equation 6-4. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉ℎ = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉ℎ +
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉ℎ ∗ 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉ℎ

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 

 

Equation 6-4 – Calculating the Time of Refueling Events 

The value of time is taken from DOT guidance on travel time savings, as described in Chapter 
6.1.4.1.  The fixed time component, share refueled, and rate of flow are calculated from survey 
data gathered as part of our 2010-2011 National Automotive Sampling System’s Tire Pressure 
Monitoring System (TPMS) study.712  Finally, the vehicle fuel tank sizes are taken from 
manufacturer specs for the reference fleet and historical averages are calculated from popular 
models for the existing vehicle fleet, as described later in this section and in Table 6-8 through 
Table 6-10. 

We estimated the amount of saved refueling time using survey data gathered as part of the 
aforementioned TPMS study.  In this nationwide study, researchers gathered information on the 
total amount of time spent pumping and paying for fuel.  From a separate sample (also part of the 
TPMS study), researchers conducted interviews at the pump to gauge the distances that drivers 
travel in transit to and from fueling stations, how long that transit takes, and how many gallons 
of fuel are purchased. 

We focused on the interview-based responses in which respondents indicated the primary reason 
for the refueling trip was due to a low reading on the gas gauge.  Such drivers experience a cost 
due to added mileage driven to detour to a filling station, as well as added time to refuel and 
complete the transaction at the filling station.  Drivers who refuel on a regular schedule or 
incidental to stops they make primarily for other reasons (e.g., using restrooms or buying snacks) 
do not experience the cost associated with detouring in order to locate a station or paying for the 
transaction, because the frequency of refueling for these reasons is unlikely to be affected by fuel 
economy improvements.  This restriction was imposed to exclude distortionary effects of those 
who refuel on a fixed (e.g., weekly) schedule and may be unlikely to alter refueling patterns as a 
result of increased driving range.  The relevant TPMS survey data on average refueling trip 
characteristics are presented below in Table 6-7. 

 
712 Docket for Peer Review of NHTSA/NASS Tire Pressure Monitoring System, available at 
https://www.regulations.gov/docket?D=NHTSA-2012-0001.  (Accessed: February 15, 2022).  
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Table 6-7 – Average Refueling Trip Characteristics for Passenger Cars and Light Trucks 

  
Gallons of 

Fuel 
Purchased 

Round-Trip 
Distance 

to/from Fueling 
Station (miles) 

Round-Trip 
Time to/from 

Fueling Station 
(minutes) 

Time to Fill 
and Pay 

(minutes) 

Total Time 
(minutes) 

Passenger Cars 10 0.97 2.28 4.1 6.38 
Light Trucks 13 1.08 2.53 4.3 6.83 

From the data, we assume that all of the round-trip time necessary to travel to and from the 
fueling station is a part of the fixed time component of each refueling event.  Some portion of the 
time to fill and pay is also a part of the fixed time component.  Given the information in Table 
6-7, we assume that each refueling event has a fixed time component of 3.5 minutes.  For 
example, the sum for passenger cars of 2.28 minutes round trip time to/from fueling station and 
roughly 1.2 minutes to select and pay for fuel, remove/recap fuel tank, remove/replace fuel 
nozzle, etc.  The time to fill the fuel tank is the variable time component; about 2.9 minutes for 
passenger cars (2.28 + 1.2 + 2.9 = 6.38 total minutes).   

To calculate the variable time component, the agency estimates how much time is spent during a 
refueling event just pumping gas.  Cars have an average tank size of about 15 gallons, 
SUVs/vans of about 18 gallons, and pickups of about 27 gallons (see Table 6-8 through Table 
6-10).  For simplicity of this calculation, the agency assumes that the average passenger car has a 
tank of 15 gallons and the average light truck—which includes SUVs for this calculation—has a 
tank of 20 gallons (there are more SUVs/vans than pickups in the light truck fleet).  From these 
assumptions, we calculate that the average refueling event fills approximately 65 percent of the 
fuel tank—as derived from the TPMS study— for both passenger cars and light trucks.  This 
value is used as an input in the CAFE Model for both styles (cars and SUVs/vans/pickups).  
Finally, the rate of the pump flow can be calculated either as the total gallons pumped over the 
assumed variable time component (approximately 3 minutes) or as the difference in the average 
number of gallons filled between light trucks and passenger cars over the difference in the time 
to fill and pay between the two classes.  The first methodology implies a rate between 3 and 4 
gallons per minute.  Although the second methodology implies a rate of 15 gallons per minute, 
there is a legal restriction on the flow of gasoline from pumps of 10 gallons per minute.713  Thus, 
we assume the rate of gasoline pumps range between 4 and 10 gallons per minute, and use 7.5 
gallons per minute—a value slightly above the midpoint of that range—as the average flow rate 
in the CAFE Model. 

The calculations described above are repeated for each future calendar year in the analysis.  As a 
vehicle ages, the refueling benefit attributable to it decreases—as older vehicles are typically 
driven less which means less fuel consumption and fewer refueling events714—until the vehicle 
is scrapped.   

 
713 40 CFR 80.22 (j), Regulation of Fuels and Fuel Additives - subpart B. Controls and Prohibitions, available at  
https://www.law.cornell.edu/cfr/text/40/80.22.  (Accessed: February 15, 2022). 
714 See 4.3.1.2. 
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As described in Chapter 4.2, more stringent regulatory alternatives cause fleet turnover to slow, 
and as a result older and less efficient vehicles are relied upon to drive additional miles.  This 
shift of VMT from newer to older vehicles diminishes a portion of the refueling benefit accrued 
under stricter standards.  The CAFE Model calculates the aggregate refueling costs for all 
vehicles—new and the existing fleet—and calculates the refueling benefit associated with more 
stringent standards as the difference in fleet-wide absolute refueling costs relative to the baseline. 

The CAFE Model tracks the legacy fleet of light-duty vehicles by body style and vintage, using 
average measures for fuel economy.  Estimating refueling costs for these vehicles requires 
measures of average fuel tank sizes by body style and vintage.  We used publicly available data 
on fuel tank sizes of 17 high-volume nameplates to derive estimates of average fuel tank size 
over time.  The tank sizes are averaged by body style, and these historical values are used as 
estimates of the average by body style and vintage.  The vehicles included, their fuel tank sizes, 
and the averages are reported in Table 6-8 through Table 6-10 for cars, vans/SUVs, and pickups, 
respectively.  The averages are used to represent the fuel tank sizes by vintage and vehicle body 
style.  We used the fuel tank sizes from Table 6-8 to Table 6-10 to determine the number of 
refueling events and time spent refueling to compute refueling costs using the methodology 
described above. 

Table 6-8 – Fuel Tank Size of High-Volume Car Models and Averages by Vintage 

Model 
Year 

Honda 
Civic 

Honda 
Accord 

Toyota 
Corolla 

Toyota 
Camry 

Ford 
Mustang 

Chevy 
Corvette 

Car 
Average 

1975 10  13.2  12.4 17 13.2 
1976 10 13.2 13.2  12.4 17 13.2 
1977 10 13.2 13.2  12.4 17 13.2 
1978 10.6 13.2 13.2  12.4 24 14.7 
1979 10.6 13.2 13.2  12.5 24 14.7 
1980 10.8 13.2 13.2 16.1 12.5 24 15.0 
1981 10.8 13.2 13.2 16.1 12.5 24 15.0 
1982 12.2 15.9 13.2 16.1 15.4 24 16.1 
1983 12.2 15.9 13.2 14.5 15.4 24 15.9 
1984 12.2 15.9 13.2 14.5 15.4 20 15.2 
1985 12.2 15.9 13.2 14.5 15.4 20 15.2 
1986 12.2 15.9 13.2 14.5 15.4 20 15.2 
1987 12.2 15.9 13.2 15.9 15.4 20 15.4 
1988 11.9 15.9 13.2 15.9 15.4 20 15.4 
1989 11.9 15.9 13.2 15.9 15.4 20 15.4 
1990 11.9 16.9 13.2 15.9 15.4 20 15.6 
1991 11.9 16.9 13.2 15.9 15.4 20 15.6 
1992 11.9 16.9 13.2 18.5 15.4 20 16.0 
1993 11.9 16.9 13.2 18.5 15.4 20 16.0 
1994 11.9 16.9 13.2 18.5 15.4 20 16.0 
1995 11.9 16.9 13.2 18.5 15.4 20 16.0 
1996 11.9 16.9 13.2 18.5 15.4 20 16.0 
1997 11.9 16.9 13.2 18.5 15.4 19.1 15.8 
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Model 
Year 

Honda 
Civic 

Honda 
Accord 

Toyota 
Corolla 

Toyota 
Camry 

Ford 
Mustang 

Chevy 
Corvette 

Car 
Average 

1998 11.9 17.2 13.2 18.5 15.7 19.1 15.9 
1999 11.9 17.2 13.2 18.5 15.7 19.1 15.9 
2000 11.9 17.2 13.2 18.5 15.7 18.5 15.8 
2001 13.2 17.2 13.2 18.5 15.7 18.5 16.1 
2002 13.2 17.2 13.2 18.5 15.7 18.5 16.1 
2003 13.2 17.2 13.2 18.5 15.7 18.5 16.1 
2004 13.2 17.2 13.2 18.5 15.7 18 16.0 
2005 13.2 17.2 13.2 18.5 16.6 18 16.1 
2006 13.2 17.2 13.2 18.5 16.6 18 16.1 
2007 13.2 17.2 13.2 18.5 16.6 18 16.1 
2008 13.2 18.5 13.2 18.5 16.6 18 16.3 
2009 13.2 18.5 13.2 18.5 16.6 18 16.3 
2010 13.2 18.5 13.2 18.5 16 18 16.2 
2011 13.2 18.5 13.2 18.5 16 18 16.2 
2012 13.2 18.5 13.2 17 16 18 16.0 
2013 13.2 17.2 13.2 17 16 18 15.8 
2014 13.2 17.2 13.2 17 16 18.5 15.9 
2015 13.2 17.2 13.2 17 16 18.5 15.9 
2016 12.4 17.2 13.2 17 16 18.5 15.7 

Table 6-9 – Fuel Tank Size of High-Volume Van/SUV Models and Averages by Vintage 

Model 
Year 

Jeep 
Wrangler 

Ford 
Explorer 

Jeep Grand 
Cherokee 

Chevy 
Blazer 

Ford 
Escape 

Honda 
CR-V 

Toyota 
Rav4 

SUVs 
Average 

1975    31    31.0 
1976    31    31.0 
1977    31    31.0 
1978    31    31.0 
1979    31    31.0 
1980    31    31.0 
1981    31    31.0 
1982    31    31.0 
1983    31    31.0 
1984    31    31.0 
1985    31    31.0 
1986    31    31.0 
1987 20   31    25.5 
1988 20   31    25.5 
1989 20   31    25.5 
1990 20   31    25.5 
1991 20 19.3  30    23.1 
1992 20 19.3  30    23.1 
1993 20 19.3 23 30    23.1 
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Model 
Year 

Jeep 
Wrangler 

Ford 
Explorer 

Jeep Grand 
Cherokee 

Chevy 
Blazer 

Ford 
Escape 

Honda 
CR-V 

Toyota 
Rav4 

SUVs 
Average 

1994 20 19.3 23 30   15.3 21.5 
1995 20 19.3 23 20   15.3 19.5 
1996 20 21 23 19   15.3 19.7 
1997 19 21 23 19  15.3 15.3 18.8 
1998 19 21 23 19  15.3 15.3 18.8 
1999 19 21 20.5 19  15.3 15.3 18.4 
2000 19 21 20.5 19  15.3 15.3 18.4 
2001 19 21 20.5 19 16 15.3 14.7 17.9 
2002 19 22.5 20.5 19 16 15.3 14.7 18.1 
2003 19 22.5 20.5 19 16 15.3 14.7 18.1 
2004 19 22.5 20.5 19 16 15.3 14.8 18.2 
2005 19 22.5 20.5 19 16.5 15.3 14.8 18.2 
2006 19 22.5 20.5 22 16.5 15.3 15.9 18.8 
2007 19 22.5 21.1 22 16.5 15.3 15.9 18.9 
2008 22.5 22.5 21.1 22 16.5 15.3 15.9 19.4 
2009 22.5 22.5 21.1 22 16.5 15.3 15.9 19.4 
2010 22.5 22.5 21.1  16.5 15.3 15.9 19.0 
2011 22.5 18.6 24.6  17.5 15.3 15.9 19.1 
2012 22.5 18.6 24.6  17.5 15.3 15.9 19.1 
2013 22.5 18.6 24.6  15.1 15.3 15.9 18.7 
2014 22.5 18.6 24.6  15.1 15.3 15.9 18.7 
2015 22.5 18.6 24.6  15.1 15.3 15.9 18.7 
2016 22.5 18.6 24.6  15.1 15.3 15.9 18.7 

Table 6-10 – Fuel Tank Size of High-Volume Pickup Models and Averages by Vintage 

Model 
Year 

Ford 
F150 

Dodge 
Ram 

Chevy 
Silverado 

Ford 
Ranger 

Pickups 
Average 

1975 39.2    39.2 
1976 39.2    39.2 
1977 39.2    39.2 
1978 39.2    39.2 
1979 39.2    39.2 
1980 37.5    37.5 
1981 37.5 26   31.8 
1982 37.5 26   31.8 
1983 37.5 26  19 27.5 
1984 37.5 26  19 27.5 
1985 37.5 26  19 27.5 
1986 37.5 26  19 27.5 
1987 37.5 26  19 27.5 
1988 37.5 26  19 27.5 
1989 37.5 26  19 27.5 
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Model 
Year 

Ford 
F150 

Dodge 
Ram 

Chevy 
Silverado 

Ford 
Ranger 

Pickups 
Average 

1990 37.5 26  19 27.5 
1991 37.5 26  19 27.5 
1992 37.5 26  19 27.5 
1993 37.5 30.5  18.8 28.9 
1994 37.5 30.5  18.8 28.9 
1995 37.5 30.5  18.8 28.9 
1996 37.5 30.5  18.8 28.9 
1997 30 30.5  18.8 26.4 
1998 30 30.5  18.5 26.3 
1999 30 30.5 30 18.5 27.3 
2000 30 30.5 30 18.5 27.3 
2001 30 30.5 30 18.5 27.3 
2002 30 30.5 30 18.5 27.3 
2003 30 30.5 30 18.5 27.3 
2004 30 30.5 30 18.5 27.3 
2005 30 30.5 30 18.5 27.3 
2006 30 30.5 30 18.5 27.3 
2007 30 30.5 30 18.5 27.3 
2008 30 30.5 30 18.5 27.3 
2009 26 29 30 18.5 25.9 
2010 26 29 30 18.3 25.8 
2011 26 29 30 18.3 25.8 
2012 26 29 30  28.3 
2013 26 29 30  28.3 
2014 26 29 30  28.3 
2015 23 29 30  27.3 
2016 23 29 30  27.3 

After calculating the aggregate value for each regulatory alternative using the methodology and 
inputs described above for both the new and legacy fleets, the model calculates the incremental 
value relative to the baseline as the refueling cost or benefit for that regulatory alternative.  More 
efficient vehicles have to be refueled less often and refueling costs per vehicle decline.   

6.1.4.3 Including Electric Vehicle Recharging 

In addition to including the refueling costs associated with the “legacy fleet,” the CAFE Model 
also adds the cost to recharge electric vehicles to the total refueling costs.  As electric vehicles 
become a larger share of the on-road fleet, accounting for the cost of their refueling becomes 
increasingly relevant.  In order to do so, it is important to first understand how many electric 
vehicle charging events will require the driver to wait and for how long.  The answer to this 
question depends on the range of the electric vehicle and the length of the trip.715  For trips 

 
715 While the range of EVs is dependent on a number of factors, such as driver habits, geography, and weather, 
NHTSA took a conservative approach and assumed a best-case scenario.  
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shorter than the range, the driver can recharge the vehicle at times that will not require them to 
be actively waiting and there would be no cost related to recharging.  Only for trips where the 
vehicle is driven more miles than the range will the driver have to stop mid-trip, a time that is 
assumed to be inconvenient, to recharge the vehicle at least enough to reach the intended 
destination.   

NHTSA used trip data from the National Household Transportation Survey (NHTS) to estimate 
the frequency and expected length of trips that exceed the range of the electric vehicle 
technologies in the simulation (200 and 300 mile ranges – which were extrapolated for longer 
battery ranges).  The NHTS collects data on individual trips by mode of transportation from a 
representative random sample of U.S. households.  A trip is defined by the starting and ending 
point for any personal travel, so that vehicle trips will capture any time a car is driven.  The 
survey includes identification numbers for households, individuals, and vehicles, and mode of 
transportation (including the body style of the vehicle for vehicle trips), and the date of the trip.  
Although some trips made in the same day may allow for convenient charging in between trips, 
we assume that travel in the same day exceeding the range will involve the driver waiting for the 
vehicle to charge.  Thus, the total number of miles driven by the same vehicle in a single day is 
summed, and we assume that charging stations are not conveniently available to the driver in 
between.  

From the final body style datasets (which excludes taxis and rental cars), we calculated two 
measures that allow for the construction of the value of recharging time.  First, the expected 
distance between trips that exceed the range of 200-mile and 300-mile BEVs (BEV200 and 
BEV300, respectively) was calculated.  This is calculated as the quotient of the sum of total 
miles driven by each individual body style and the total number of trips exceeding the range, as 
shown in Equation 6-5.716 

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

∑ [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ > 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 

Equation 6-5 – Calculation of En Route Charge Frequency 

This calculates the expected frequency of en route recharging events, or the amount of miles 
traveled per inconvenient recharging event.  It is used later to calculate the total expected time to 
recharge a vehicle. 

The second measure needed to calculate the total expected recharging time is the expected share 
of miles driven that will be charged in the middle of a trip (causing the driver to wait and lose the 
value of time).  In order to calculate this measure, we sum the difference of the trip length and 
range, conditional on the trip length exceeding the range for each body style.  This figure is then 
divided by the sum of the length of all trips for that body style, as in Equation 6-6. 

 
716 The denominator counts the number of necessary recharging events by body style.  It is not a measurement of 
VMT. 
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𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=
∑ ([𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ > 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅))

∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 

Equation 6-6 – Share of Battery Electric Range Charged 

The calculated frequency of inconvenient charging events and share of miles driven that require 
the driver to wait for BEVs with 200 and 300-mile ranges are presented in Table 6-11, below.  
As the table shows, cars are expected to require less frequent inconvenient charges and a smaller 
share of miles driven will require the driver to charge the vehicle in the middle of a trip.  Pickups 
and vans/SUVs have fairly similar measures, with vans and SUVs requiring slightly more 
inconvenient charging than pickups.   

Table 6-11 – Electric Vehicle Recharging Thresholds by Body Style and Range 

Body Style Cars Vans/SUVs Pickups 

Miles until mid-trip charging event, BEV200 2,000 1,500 1,600 

Miles until mid-trip charging event, BEV300 5,200 3,500 3,800 

Share of miles charged mid-trip, BEV200 6% 9% 8% 

Share of miles charged mid-trip, BEV300 3% 4% 4% 

The measures presented in Table 6-11, above, can be used to calculate the expected time drivers 
of electric vehicles of a given body style and range will spend recharging at a time that will 
require them to wait.  First the agencies calculate the expected number of refueling events for a 
vehicle of a given style and range in a given calendar year.  This is shown in Equation 6-7 as the 
expected miles driven by a vehicle in a given calendar year divided by the charge frequency of a 
vehicle of that style and range (from Table 6-11).717 

𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ 𝜖𝜖 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
 

Equation 6-7 – Calculation of Recharge Events 

We next calculate the number of miles charged for a vehicle of a given style and range in a 
specific calendar year.  This is the product of the number of miles driven by the vehicle and the 
share of miles driven that require an inconvenient charge for a vehicle of that style and range 
(from Table 6-11), as presented in Equation 6-8. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ 𝜖𝜖 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ ∗ 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 
717 Note that ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ are different values.  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ is the estimated amount of 
VMT predicted by VMT while ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is the sum of trips observed by the NHTS study. 
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Equation 6-8 – Calculation of Miles Charged 

Finally, we calculate the expected time that a driver of an electric vehicle (of a given style and 
range) will spend waiting for the vehicle to charge.  This is the product of the fixed amount of 
time it takes to get to the charging station and the number of recharging events plus the quotient 
of the expected miles that will require inconvenient charging over an input assumption of the rate 
of which a vehicle of that style and range can be charged in a given calendar year (expressed in 
units of miles charged per hour).  The fixed amount of time it takes to get to a charging station is 
set equal to the average time it takes for an ICE vehicle to get to a gas station for a refueling 
event, as discussed above.718  This is shown in Equation 6-9. 

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ 𝜖𝜖 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)

= (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉ℎ ∗ 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ ) +
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶,𝑉𝑉𝑉𝑉ℎ
 

Equation 6-9 – Calculation of Charging Time 

The expected time that a driver will wait for their vehicle to charge can then be multiplied by the 
value of time estimate, as is done with gasoline, diesel, and E85 vehicles (see description above 
of the current approach to accounting for refueling time costs).  

Plug-in hybrids are treated somewhat differently in the modelling.  Presumably, plug-in hybrids 
that are taken on a trip that exceeds their electric range will be driven on gasoline and the driver 
will recharge the battery at a time that is convenient.  For this reason, the electric portion of 
travel should be excluded from the refueling time calculation.  The gasoline portion of travel is 
treated the same as other gasoline vehicles so that when the tank reaches some threshold, the 
vehicles is assumed to be refueled with the same fixed event time and the same rate of refueling 
flow.  

6.1.5 Benefits of Additional Mobility 

Increased travel provides benefits that reflect the value to drivers and their passengers of the 
added—or more desirable—social and economic opportunities to which it provides access.  
Under the regulatory alternatives considered in this analysis, the fuel cost per mile of driving 
would decrease as a consequence of the higher fuel economy levels they require, thus increasing 
the number of miles that buyers of new cars and light trucks would drive as a consequence of the 
well-documented fuel economy rebound effect.   

The fact that drivers and their passengers elect to make more frequent or longer trips to gain 
access to these opportunities when the cost of driving declines demonstrates that the benefits 
they gain by doing so exceed the costs they incur.  At a minimum, the benefits must be large 
enough to offset the cost of the fuel consumed to travel the additional miles (or they would not 
have occurred).  Because the cost of fuel consumed by additional rebound-effect driving is has 
already been accounted for in the simulated fuel expenditures for each regulatory alternative, it is 

 
718 Given the current state charging infrastructure, this is likely a conservative estimate.  Gas stations vastly 
outnumber publicly available recharging stations and are often in more convenient locations.  
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necessary to account separately for the benefits associated with the additional miles traveled.719  
The amount by which the benefits of this additional travel exceed its economic costs measures 
the net benefits drivers and their passengers experience, usually referred to as increased 
consumer surplus. 

The structure of these additional benefits is described by Figure 6-2, below.  In the figure, the 
triangle abc is the consumer surplus associated with the additional travel, and the area of the 
rectangle immediately below triangle abc represents the cost of the fuel consumed in the course 
of traveling the additional miles.720  The rectangle immediately below that one represents the 
internalized benefit of increased exposure to vehicular crashes.  While we assume that drivers 
consider the added safety risks they assume when they undertake additional trips, we assume that 
they do not completely internalize any risks they impose on other drivers when they travel more.  
So, unlike the corresponding benefit associated with the additional fuel cost of rebound travel, 
which fully offsets the cost, the offsetting benefit of safety risk only offsets 90 percent of the 
(social) cost of increasing safety risk.  

While Figure 6-2 also shows travel costs related to maintenance, non-fuel operating costs, and 
the value of occupants’ travel time, these other elements that accrue due to the rebound effect are 
not accounted for in the analysis.  Because we do not estimate these additional costs of increased 
driving, there is no need to separately account for an offsetting benefit (as we do with other 
components of the mobility costs related to rebound travel).  

 

Figure 6-2 – The Benefit of Additional Mobility 

 
719 The benefits from additional travel must also offset the economic value of their (and their passengers’) travel 
time, other vehicle operating costs, and the economic cost of safety risks due to the increase in exposure that occurs 
with additional travel.   
720 The CAFE Model tracks mileage accrual for new vehicles atomically, at the row level, and is thus able to 
separate the fuel cost of rebound travel on a per-vehicle basis.  It then aggregates all of those individual benefits to 
construct the aggregate estimate of increased mobility. 
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In contrast to the societal cost-benefit analysis, calculation of average costs and benefits to 
consumers is done on a per-vehicle basis and is intended to describe how alternative standards 
affect the costs and benefits of owning vehicles from the consumers’ perspective.  The analysis 
for this rule adds an adjustment to the calculation of the value of additional mobility per vehicle 
that was missing in the NPRM.  The adjustment is specific to the calculation of the per vehicle 
value of mobility and does not apply to the overall cost-benefit analysis. 

In general, CAFE standards change the quantities of new vehicles sold in future years.  When 
future vehicle sales differ from the baseline, the CAFE Model adjusts miles traveled per vehicle 
by vehicle type, model year and age to ensure that total miles traveled, prior to adjustments for 
the rebound effect, are the same across alternatives (see Chapter 4.3.2).  When new vehicle sales 
decrease relative to the baseline, miles per vehicle increase because the same number of miles 
per year is driven by fewer vehicles.  In the NPRM, the increase in fuel cost per vehicle due to 
these reallocated miles was included in the per vehicle costs, but no offsetting benefit was 
recognized.  However, the reallocation of VMT to existing vehicles implies that consumers are 
willing to pay for the additional travel, which implies a corresponding per vehicle travel benefit 
at least as great as the fuel cost.  That per vehicle benefit was not accounted for in the NPRM 
consumer welfare analysis but is included in the calculations for this rule. 

Figure 6-2 illustrates the consumer benefit in question.  D0 is the per-vehicle travel demand curve 
in the baseline.  Reallocating miles equal to MDelta,Alt - MBase to the vehicle shifts the demand 
curve outward to D*.  This increases fuel expenditures by an amount equal to the reallocated 
miles times the fuel cost per mile for the vehicle in the alternative, i.e., the rectangle (MDelta,Alt - 
MBase)CPMAlt.  The increase in vehicle miles due to the rebound effect of lower fuel cost per mile 
(CPMAlt < CPMBase) also increases fuel costs by (MReb,Alt – MDelta,Alt)CPMAlt.  Both increases in 
fuel costs are included when the total fuel costs by vehicle type, model year and age are divided 
by the corresponding number of vehicles.  The benefit to the consumer of the miles induced by 
the rebound effect is accounted for by the method described above.  However, in the NPRM the 
per vehicle benefit of the reallocated miles was not included in the consumer welfare analysis, 
although the fuel costs were.  
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Figure 6-3 – Per Vehicle Change in Vehicle Travel as a Function of Cost-per-Mile 

Because total non-rebound VMT does not change from the baseline to the alternatives, there is 
no change in consumers’ surplus due to the reallocation of miles in the alternative cases.  For this 
reason, we calculate only the portion of the value of reallocated miles that is equivalent to the 
fuel cost per vehicle associated with those miles in order to offset the increase in fuel costs per 
vehicle caused by the reallocated miles.721  The mobility value of reallocated miles is calculated 
as, (Reallocated VMT Alternative - Reallocated VMT Baseline)(Alternative Cost per Mile), or in 
Figure 6-3, (MDelta,Alt - MBase)CPMAlt.722  A detailed explanation of the method of calculation is 
available in the CAFE Model Documentation, Section S8.8.2. 

6.2  External Benefits and Costs 

In addition to the benefits and costs that establishing higher CAFE standards creates for 
manufacturers and buyers of new cars and light trucks, NHTSA’s analysis evaluates a number of 
impacts its action is likely to have on the general public, the U.S. economy, and even global 
economic activity.  The agency refers to these indirect impacts as “external” costs and benefits 

 
721 By reallocating every mile that would have been traveled by the vehicles not sold (in the case of a reduction in 
new vehicle sales), we implicitly assume that consumers are indifferent between travel in the new vehicles versus 
the existing vehicles to which the travel is reallocated.  In general, some change in total travel would be expected 
due to the differences in the attributes of new and existing vehicles.  However, by reallocating every mile we 
implicitly assume there is no change in consumers’ welfare due to the reallocation.  For this reason, we do not 
estimate a per-vehicle change in consumers’ surplus associated with the reallocated miles beyond the value that 
effectively cancels the increase in fuel cost per vehicle. 
722 The VMT reallocated in the baseline ensures that baseline VMT is consistent with the forecasts of the FHWA 
VMT model by adjusting the VMT per vehicle type and age of the reference year fleet (see Chapters 4.3.1 and 4.3.2 
above). 
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from establishing more stringent standards, because they extend well beyond the private 
businesses and households that experience the more direct effects of raising CAFE standards.  

The most significant external benefit from reducing fuel consumption is lower GHG emissions 
and the consequent reduction in the expected economic damages caused by resulting changes in 
the future global climate.  Chapter 5.2 and Chapter 5.3 explain how the agency estimates the 
reductions in emissions of GHGs that are likely to result from establishing stricter CAFE 
standards, and Chapter 6.2.1 explains how the agency values the associated reduction in future 
climate-related economic damages, which is likely to extend to nations and regions well outside 
U.S. borders.  

As Chapter 5 discussed, changes in emissions of criteria air pollutants and the health damages 
they cause for the U.S. population are likely to result from raising CAFE standards.  Chapter 
6.2.2 below explains how NHTSA estimates the economic value of changes in health outcomes.  
Finally, Chapter 6.2.3 discusses how U.S. consumption and imports of petroleum can generate 
economic externalities that impose potential costs beyond those to consumers of petroleum 
products and describes how reducing gasoline consumption can limit the costs of these 
externalities, thus generating additional external benefits.  

At the same time, raising CAFE standards is likely to impose some costs that extend beyond its 
private impacts on producers and buyers of new cars and light trucks, and beyond related 
economic transfers (such as sales taxes on new vehicle purchases) discussed above.  As Chapter 
4.3.3 describes, improving fuel economy is likely to increase the number of miles that new cars 
and light trucks are driven via the well-documented fuel economy rebound effect.  This 
additional driving will contribute to increased traffic congestion and road noise, the impacts of 
which will extend to road users other than those traveling in new cars and light trucks, as well as 
to residents of areas surrounding streets and highways.  Chapter 6.2.4 explains how NHTSA 
estimates of the costs of these congestion and noise externalities.   

Some fraction of the safety risks that buyers of new cars and light trucks impose when they drive 
additional miles is likely to be borne by occupants of other vehicles using the same roads, as well 
as perhaps by pedestrians and bystanders.  Chapter 7.4 describes how the agency estimates this 
“external” component of safety risks from additional rebound-effect driving, and how NHTSA 
calculates the fraction of costs from fatalities, injuries, and property damage to vehicles that are 
borne by road users other than drivers and passengers of new cars and light trucks.   

Finally, reducing fuel consumption by raising CAFE standards will lower revenue to government 
agencies from fuel taxes.  Taxes are considered a transfer in the analysis, so while we include the 
lost tax revenue as a societal cost in our accounting, consumers experience an exactly offsetting 
savings in fuel tax payments, which is included in our estimates of fuel cost savings.   

6.2.1 Social Costs of Greenhouse Gas Emissions 

The combustion of petroleum-based fuels to power cars and light trucks generates emissions of 
various greenhouse gases (GHGs), which contribute to changes in the global climate and the 
resulting economic damages.  The processes of extracting and transporting crude petroleum, 
refining it to produce transportation fuels, and distributing fuel for retail sale each generate 



  546 

additional GHG emissions (“upstream” emissions), as does generating electricity that is used to 
power by plug-in hybrid (PHEVs) and battery-electric vehicles (BEVs).  By reducing the volume 
of petroleum-based fuel produced and consumed by cars and light trucks, the final standards will 
reduce both direct GHG emissions from fuel consumption and upstream emissions from 
supplying petroleum-based fuels.  By increasing sales and use of PHEVs and BEVs, however, 
raising CAFE standards will increase upstream emissions from generating the additional 
electricity they consume.  

NHTSA’s regulatory analysis supporting the final CAFE standards quantifies resulting changes 
in emissions of three important GHGs: carbon dioxide (CO2), methane (CH4), and nitrous oxide 
(N2O).  For an extensive discussion of the definitions, sources, and impacts of these GHGs, see 
Chapter 5 of the Environmental Impact statement accompanying the final rule.  Chapter 5 of this 
TSD details how NHTSA estimates changes in GHG emissions expected to result from the 
different rulemaking alternatives.  The agency calculates the economic benefits and costs 
resulting from anticipated changes in emissions of each of these three GHGs using estimates of 
the social costs of greenhouse gases (SC-GHG) values reported by the federal Interagency 
Working Group on the Social Cost of Greenhouse Gases (hereinafter referred to as the IWG).  
Chapter 6.2.1.1 offers a brief overview of the IWG and the methods it uses to estimate the social 
costs of greenhouse gas emissions, while Chapter 6.2.1.2 explains the process NHTSA uses to 
integrate the IWG’s SC-GHG values into the agency’s CAFE Model, and the assumptions it 
makes regarding discounting of future economic benefits from reducing emissions of GHGs. 

6.2.1.1 Estimating the Social Costs of GHG Emissions 

In principle, SC-GHG includes the value of all climate change impacts, including (but not 
limited to) changes in net agricultural productivity, human health effects, property damage from 
increased flood risk and natural disasters, disruption of energy systems, risk of conflict, 
environmental migration, and the value of ecosystem services.  The SC-GHG therefore, reflects 
the societal value of reducing emissions of the gas in question by one metric ton.  The SC-GHG 
is the theoretically appropriate value to use in conducting benefit-cost analyses of policies that 
affect CO2, CH4, and N2O emissions. 

We estimate the global social benefits of CO2, CH4, and N2O emission reductions expected from 
the final rule using the SC-GHG estimates presented in this TSD: Social Cost of Carbon, 
Methane, and Nitrous Oxide Interim Estimates under E.O. 13990.  These SC-GHG estimates are 
interim values developed under E.O. 13990 for use in benefit-cost analyses until updated 
estimates of the impacts of climate change can be developed based on the best available science 
and economics. 

The SC-GHG estimates presented here were developed over many years, using a transparent 
process, peer-reviewed methodologies, the best science available at the time of that process, and 
with input from the public.  Specifically, in 2009, an interagency working group (IWG) that 
included the DOT and other executive branch agencies and offices was established to ensure that 
agencies were using the best available science and to promote consistency in the SC-GHG values 
used across agencies.  The IWG published SC-GHG estimates in 2010 that were developed from 
an ensemble of three widely cited integrated assessment models (IAMs) that estimate global 
climate damages using highly aggregated representations of climate processes and the global 
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economy combined into a single modeling framework.  The three IAMs were run using a 
common set of input assumptions in each model for future population, economic, and CO2 
emissions growth, as well as equilibrium climate sensitivity (ECS) – a measure of the response to 
increased atmospheric CO2 concentrations.  These estimates were updated in 2013 based on new 
versions of each IAM.  In August 2016 the IWG published estimates of the social cost of 
methane (SC-CH4) and nitrous oxide (SC-N2O) using methodologies that are consistent with the 
methodology underlying the SCGHG estimates.  

E.O. 13990 (issued on January 20, 2021) re-established an IWG and directed it to publish 
updated interim SC-GHG values for CO2, CH4, and N2O within thirty days.  The E.O. also 
tasked the IWG with devising long-term recommendations to update the methodology used to 
estimate these SC-GHG values, based on “the best available economics and science,” while 
incorporating principles of “climate risk, environmental justice, and intergenerational equity”.  
The E.O. also instructed the IWG to take into account the recommendations from the National 
Academy of Sciences (NAS) committee that had been previously convened to address this topic, 
which were contained in the committee’s 2017 report. 

The February 2021 TSD provides a complete discussion of the IWG’s initial review conducted 
under E.O. 13990.  First, the IWG concluded that a global analysis is essential for SC-GHG 
estimates because climate impacts can directly and indirectly affect the welfare of U.S. citizens 
and residents through complex pathways that do not respect national borders.  Examples of 
affected interests include direct effects on U.S. citizens and assets, investments located abroad, 
international trade, and tourism, and spillover pathways such as economic and political 
destabilization and global migration.  In addition, assessing the benefits of U.S. GHG mitigation 
activities requires consideration of how those actions may affect mitigation activities by other 
countries, as those international mitigation actions will provide a benefit to U.S. citizens and 
residents by mitigating climate impacts that affect U.S. citizens and residents.  Additionally, we 
note that NHTSA assumes the technology costs of the rule are passed through to consumers, 
reducing their consumption of other goods and services; and that the IWG SC-GHG estimated 
are reported as consumption-equivalent values.  As a member of the IWG involved in the 
development of the February 2021 TSD, DOT agrees with the IWG and the NAS that the 
consumption rate of interest is the appropriate discounting approach for reductions in climate-
related damages.  Therefore, in this final rule DOT centers attention on a global measure of SC-
GHG.  This approach is the same as that taken in DOT regulatory analyses over 2009 through 
2016.  As noted in the February 2021 TSD, the IWG will continue to review developments in the 
literature, including more robust methodologies for estimating SC-GHG values, and explore 
ways to better inform the public of the full range of carbon impacts.  As a member of the IWG, 
DOT will continue to follow developments in the literature pertaining to this issue.   

Second, the IWG found that the use of the social rate of return on capital (7 percent under current 
OMB Circular A-4 guidance) to discount the future benefits of reducing GHG emissions 
inappropriately underestimates the impacts of climate change for the purposes of estimating the 
SC-GHG.  Consistent with the findings of the National Academies and the economic literature, 
the IWG continued to conclude that the consumption rate of interest is the theoretically 
appropriate discount rate in an intergenerational context (IWG 2010, 2013, 2016a, 2016b), and 
recommended that discount rate uncertainty and relevant aspects of intergenerational ethical 
considerations be accounted for in selecting future discount rates.  As a member of the IWG 
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involved in the development of the February 2021 TSD, DOT agrees with this assessment and 
will continue to follow developments in the literature pertaining to this issue.   

NHTSA uses the IWG’s recommended interim SC-GHG values, which were published in a 
February 2021 technical support document, for the analysis of increasing CAFE standards it 
conducts in this rulemaking. Table 6-12, Table 6-13, and Table 6-14 below show the IWG’s 
interim SC-CO2, SC-CH4, and SC-N2O values for the period 2020-2050.  The values shown in 
these tables differ slightly from those reported in the IWG’s February 2021 TSD because they 
have been converted to 2018$ to be consistent with the remainder of the agency’s analysis.  For 
this purpose, NHTSA staff used the change in Bureau of Economic Analysis (BEA)’s implicit 
price deflator for U.S. GDP between 2018 and 2020, the year the IWG used to denominate its 
estimated social costs of GHGs. 

Table 6-12 – SCC Interim Values (per ton, 2018$) 

Year 

Social Cost 
of CO2 

Discounted 
at 5% 

Social Cost 
of CO2 

Discounted 
at 3% 

Social Cost 
of CO2 

Discounted 
at 2.50% 

Social Cost 
of CO2 

Discounted 
at 3%, 95th 

Percentile723 
2020 14 50 74 148 
2021 15 50 76 150 
2022 15 51 77 154 
2023 16 52 78 157 
2024 16 53 80 161 
2025 17 54 81 164 
2026 17 55 82 168 
2027 17 57 83 171 
2028 17 58 84 175 
2029 18 59 85 178 
2030 18 60 86 182 
2031 19 61 88 185 
2032 20 62 89 188 
2033 20 63 91 192 
2034 21 64 92 196 
2035 21 65 93 200 
2036 22 67 95 204 
2037 22 68 96 207 
2038 23 69 97 211 
2039 24 70 99 215 
2040 24 71 100 218 
2041 25 72 101 221 
2042 25 73 103 225 
2043 26 75 104 228 
2044 27 76 105 232 
2045 27 77 107 235 
2046 28 78 108 239 

 
723 The IWG constructs these values based on the 95th percentile of estimates, using a 3 percent discount rate. 
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Year 

Social Cost 
of CO2 

Discounted 
at 5% 

Social Cost 
of CO2 

Discounted 
at 3% 

Social Cost 
of CO2 

Discounted 
at 2.50% 

Social Cost 
of CO2 

Discounted 
at 3%, 95th 

Percentile723 
2047 29 79 109 242 
2048 29 80 111 246 
2049 30 82 112 248 
2050 31 83 113 252 

Table 6-13 – SC-CH4 Interim Values (per ton, 2018$) 

Year 

Social Cost 
of CH4 

Discounted 
at 5% 

Social Cost 
of CH4 

Discounted 
at 3% 

Social Cost 
of CH4 

Discounted 
at 2.50% 

Social Cost 
of CH4 

Discounted 
at 3%, 95th 

Percentile724 
2020 650 1,456 1,941 3,786 
2021 670 1,456 1,941 3,883 
2022 699 1,553 2,038 4,077 
2023 728 1,553 2,038 4,174 
2024 747 1,650 2,136 4,271 
2025 777 1,650 2,136 4,368 
2026 806 1,747 2,233 4,562 
2027 835 1,747 2,233 4,659 
2028 854 1,844 2,330 4,756 
2029 883 1,844 2,427 4,951 
2030 912 1,941 2,427 5,048 
2031 942 1,941 2,524 5,145 
2032 971 2,038 2,524 5,339 
2033 971 2,038 2,621 5,533 
2034 1,068 2,136 2,718 5,630 
2035 1,068 2,136 2,718 5,824 
2036 1,068 2,233 2,815 5,921 
2037 1,165 2,233 2,912 6,115 
2038 1,165 2,330 2,912 6,212 
2039 1,165 2,427 3,009 6,407 
2040 1,262 2,427 3,009 6,504 
2041 1,262 2,524 3,106 6,698 
2042 1,359 2,524 3,203 6,795 
2043 1,359 2,621 3,203 6,989 
2044 1,359 2,621 3,300 7,086 
2045 1,456 2,718 3,397 7,280 
2046 1,456 2,718 3,397 7,377 
2047 1,456 2,815 3,494 7,474 
2048 1,553 2,912 3,592 7,668 
2049 1,553 2,912 3,592 7,766 

 
724 The IWG constructs these values based on the 95th percentile of estimates, using a 3 percent discount rate. 
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Year 

Social Cost 
of CH4 

Discounted 
at 5% 

Social Cost 
of CH4 

Discounted 
at 3% 

Social Cost 
of CH4 

Discounted 
at 2.50% 

Social Cost 
of CH4 

Discounted 
at 3%, 95th 

Percentile724 
2050 1,650 3,009 3,689 7,960 

Table 6-14 – SC-N2O Interim Values (per ton, 2018$) 

Year 

Social Cost 
of N2O 

Discounted 
at 5% 

Social Cost 
of N2O 

Discounted 
at 3% 

Social Cost 
of N2O 

Discounted 
at 2.50% 

Social Cost 
of N2O 

Discounted 
at 3%, 95th 

Percentile725 
2020 5,630 17,472 26,209 46,593 
2021 5,824 18,443 27,179 47,564 
2022 6,018 18,443 27,179 49,505 
2023 6,212 19,414 28,150 50,476 
2024 6,407 19,414 28,150 51,447 
2025 6,601 20,384 29,121 52,417 
2026 6,795 20,384 29,121 54,359 
2027 6,989 20,384 30,091 55,329 
2028 7,183 21,355 31,062 56,300 
2029 7,377 21,355 31,062 57,271 
2030 7,571 22,326 32,033 58,241 
2031 7,766 22,326 32,033 60,183 
2032 8,057 23,297 33,003 61,153 
2033 8,251 23,297 33,974 62,124 
2034 8,542 24,267 33,974 64,066 
2035 8,736 24,267 34,945 65,036 
2036 9,027 25,238 34,945 66,007 
2037 9,222 25,238 35,916 67,948 
2038 9,513 26,209 36,886 68,919 
2039 9,707 26,209 36,886 70,860 
2040 9,707 27,179 37,857 71,831 
2041 10,678 27,179 37,857 72,802 
2042 10,678 28,150 38,828 74,743 
2043 10,678 28,150 39,798 75,714 
2044 10,678 29,121 39,798 77,655 
2045 11,648 29,121 40,769 78,626 
2046 11,648 30,091 41,740 79,597 
2047 11,648 30,091 41,740 81,538 
2048 12,619 31,062 42,710 82,509 
2049 12,619 31,062 43,681 84,450 
2050 12,619 32,033 43,681 85,421 

 
725 The IWG constructs these values based on the 95th percentile of estimates, using a 3 percent discount rate. 
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The IWG’s SC-GHG estimates reflect various sources of uncertainty.  One major source is 
uncertainty regarding the effects of accumulating concentrations of GHGs in the earth’s 
atmosphere on the stability of global climate systems, changes in climate-related indicators such 
as surface and ocean temperatures and precipitation levels, and increases in the frequency or 
severity of significant weather events.  A second source is uncertainty about the effects of 
changes in climate indicators and severe weather events on the well-being of the global 
population, the overall level of economic activity and its distribution over the globe, and the 
social and political stability of nations and global regions.  

The extent to which social, political, and economic systems will be able to adapt to changes in 
the global climate in ways that reduce potential disruptions and damage also introduces 
uncertainty into the IWGs’ SC-GHG estimates.  Finally, there is uncertainty about the most 
appropriate discounting approach in assessing climate damages due to the long time horizons 
involved, and because much of the damage caused by current GHG emissions is likely to occur 
in the distant future, choosing a discount rate can have an enormous effect on calculated SC-
GHG values.  Recognizing these many important sources of uncertainty, the IWG recommends 
that agencies consider the wide distribution of possible SC-GHG values rather than simply the 
mean or expected values when conducting regulatory analyses, and also reports estimates of each 
SC-GHG that reflect discount rates of 2.5, 3, and 5 percent, and NHTSA concurs. 

6.2.1.2 How NHTSA Uses the Social Costs of GHG Emissions 

Following the guidance of OMB Circular A-4, NHTSA discounts future costs and benefits of 
adopting higher CAFE standards at alternative rates of 3 and 7 percent; the former reflects 
OMB’s estimate of the rate at which consumers discount future consumption opportunities to 
their present value, while the latter represents the opportunity cost of drawing capital from 
private investment opportunities.  (Both rates are expressed in “real,” or inflation-adjusted 
terms.)  

NHTSA has not selected a primary discount rate for the social cost of greenhouse gases and 
instead presents non-GHG related impacts of the final rule discounted at 3 and 7 percent 
alongside estimates of the social cost of greenhouse gases valued at each of the discount rates 
prescribed by the IWG.  This approach was selected because, as the IWG noted, the range of 
values provides useful information for decision-makers.  The agency’s analysis showing our 
primary non-GHG impacts at 3 and 7 percent alongside climate-related benefits discounted at 
each rate recommended by the IWG may be found in FRIA Chapter 6.5.6.  For the sake of 
simplicity, most tables throughout today’s analysis pair both the 3 percent and the 7 percent 
discount rates with a 3 percent value for the social costs of greenhouse gases. 

6.2.2 Monetized Health Impacts from Changes in Criteria Pollutant Emissions 

The CAFE Model estimates monetized health effects associated with emissions from three 
criteria pollutants: NOX, SOX, and PM2.5.  As discussed in Chapter 5, although other criteria 
pollutants are currently regulated, only impacts from these three pollutants are calculated since 
they are known to be emitted regularly from mobile sources, have the most adverse effects to 
human health, and there exist several papers from the EPA estimating the benefits per ton of 
reducing these pollutants.  Other pollutants, especially those that are precursors to ozone, are 
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more difficult to model due to the complexity of their formation in the atmosphere, and EPA 
does not calculate benefit-per-ton estimates for these.  The CAFE Model computes the 
monetized impacts associated with health damages from each pollutant by multiplying 
monetized health impact per ton values by the total tons of these pollutants, which are emitted 
from both upstream and tailpipe sources.  Chapter 5.2 includes a detailed description of the 
emission factors that inform the CAFE Model’s calculation of the total tons of each pollutant 
associated with upstream and tailpipe emissions. 

These monetized health impacts per ton values are closely related to the health incidence per ton 
values described in Chapter 5.4.  We use the same EPA sources that provided health incidence 
values to determine which monetized health impacts per ton values to use as inputs in the CAFE 
Model.  The EPA uses the value of a statistical life (VSL) to estimate premature mortality 
impacts, and a combination of willingness to pay estimates and costs of treating the health 
impact for estimating the morbidity impacts.726  EPA’s 2018 technical support document, 
“Estimating the Benefit per Ton of Reducing PM2.5 Precursors from 17 Sectors,”727 (referred to 
here as the 2018 EPA source apportionment TSD) contains a more detailed account of how 
health incidences are monetized.  It is important to note that the EPA sources cited frequently 
refer to these monetized health impacts per ton as “benefits per ton” (BPT), since they describe 
these estimates in terms of emissions avoided.  In the CAFE Model input structure, these are 
generally referred to as monetized health impacts or damage costs associated with pollutants 
emitted, not avoided, unless the context states otherwise. 

The CAFE Model includes monetized impacts per ton for multiple pollutant sources, referred to 
here as source sectors or source categories (e.g. refineries, light truck mobile sources, electricity 
generation, etc.).  Certain source sectors may be associated with higher monetized impacts per 
ton than others.  Since the impacts for the different source sectors all are based on the emission 
of one ton of the same pollutants (NOX, SOX, and PM2.5), the differences in the incidence per ton 
values between sectors arise from differences in the geographic distribution of the pollutants, a 
factor that affects the number of people impacted by the pollutants.728 

The various emission source sectors included in the EPA papers cited do not always correspond 
exactly to the emission source categories used in the CAFE Model.729  In those cases, we 
mapped multiple EPA sectors to a single CAFE source category and computed a weighted 
average of the health impact per ton values from those EPA sectors.  The CAFE Model health 
impacts inputs are based partially on the structure of one of the EPA source papers (the 2018 
EPA source apportionment TSD), which reported benefits per ton values for the years 2020, 
2025, and 2030.  For the years in between the source years used in the input structure, the CAFE 

 
726 Although EPA and DOT’s VSL values differ, DOT staff determined that using EPA’s VSL was appropriate here, 
since it was already included in these monetized health impact values, which were best suited for the purposes of the 
CAFE Model.  
727 See Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 
Precursors from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
728 See Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 
Precursors from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
729 The CAFE Model’s emission source sectors follow a similar structure to the inputs from GREET.  See Chapter 
5.2 for further information. 
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Model applies values from the closest source year.  For instance, the model applies 2020 
monetized health impact per ton values for calendar years 2020-2022 and applies 2025 values for 
calendar years 2023-2027.  For more information, see the CAFE Model documentation,730 which 
contains additional details of the model’s computation of monetized health impacts. 

It is important to note that uncertainties and limitations exist at each stage of the emissions-to-
health benefit analysis pathway (e.g., projected emissions inventories, air quality modeling, 
health impact assessment, economic valuation).  The BPT approach to monetizing benefits relies 
on many assumptions; when uncertainties associated with these assumptions are compounded, 
even small uncertainties can greatly influence the size of the total quantified benefits.  Some key 
assumptions associated with PM2.5-related health benefits and uncertainties associated with the 
BPT approach are discussed above in Chapter 5.4.3. 

The following subsections describe the sources that we used to provide the CAFE Model with 
monetized health impacts per ton values, and any calculations made in the process.  Each 
subsection corresponds to one of the five upstream emission source sectors that the CAFE Model 
distinguishes between, and the tailpipe emission sources.  

The emission source categories defined in the CAFE Model are as follows: 

• Upstream emissions sources 
o Petroleum Extraction 
o Petroleum Transportation 
o Refineries 
o Fuel Transportation, Storage, and Distribution (Fuel TS&D) 
o Electricity Generation 

• Tailpipe emissions sources 
o On-road light duty cars and motorcycles 
o On-road light duty trucks 
o On-road light duty diesel 

Table 6-15 details the mapping between CAFE and EPA emission source sectors. 

Table 6-15 – CAFE to EPA Emissions Source Sector Mapping 

CAFE Model Upstream 
Component (per 

GREET) 
Corresponding EPA Source Categories 

Petroleum Extraction Assigned to the “Oil and natural gas” sector from a 2018 EPA paper (Fann et 
al.).731 

 
730 https://www.nhtsa.gov/corporate-average-fuel-economy/compliance-and-effects-modeling-system.  (Accessed: 
February 15, 2022). 
731 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951.  (Accessed: February 15, 2022). 
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CAFE Model Upstream 
Component (per 

GREET) 
Corresponding EPA Source Categories 

Petroleum Transportation 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe et al.)732 
and one source sector from the 2018 EPA source apportionment TSD.733  The 

specific mode mappings are as follows: 
 

From Wolfe et al: 
• Rail sector (for GREET’s rail mode) 

• C1&C2 marine vessels sector (for GREET’s barge mode) 
• C3 marine vessels sector (for GREET’s ocean tanker mode) 
• On-road heavy-duty diesel sector (for GREET’s truck mode) 

 
From the 2018 EPA source apportionment TSD: 

• Electricity generating units (for GREET’s pipeline mode) 
 

A weighted average of these different sectors was used to determine the overall 
health impact values for the sector as a whole. 

Fuel TS&D 

Assigned to several mobile source sectors from a 2019 EPA paper (Wolfe et al.)734 
and one source sector from the 2018 EPA source apportionment TSD.735  The 

specific mode mappings are as follows: 
 

From Wolfe et al.: 
• Rail sector (for GREET’s rail mode) 

• C1&C2 marine vessels sector (for GREET’s barge mode) 
• C3 marine vessels sector (for GREET’s ocean tanker mode) 
• On-road heavy-duty diesel sector (for GREET’s truck mode) 

 
From the 2018 EPA source apportionment TSD: 

• Electricity generating units (for GREET’s pipeline model) 
 

A weighted average of these different sectors was used to determine the overall 
health impact values for the sector as a whole. 

Electricity Generation 
 

Assigned to the electricity-generating units sector from the 2018 EPA source 
apportionment TSD.736 

 
732 Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769.  (Accessed: February 15, 2022). 
Health incidence per ton values corresponding to this paper were sent by EPA staff. 
733 2018 EPA source apportionment TSD. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
734 Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769.  (Accessed: February 15, 2022). 
735 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
736 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
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6.2.2.1 Monetized Health Impacts per Ton Associated with the Petroleum 
Extraction Sector 

We match the monetized health impact per ton values for the petroleum extraction sector to a 
2018 oil and natural gas sector paper written by EPA staff (Fann et al.), which estimates 
monetized health impacts for this sector in the year 2025.737  Fann et al. define emissions from 
the oil and natural gas sector as not only arising from petroleum extraction but also from 
transportation to refineries, while the CAFE /GREET component is composed of only petroleum 
extraction.  We consulted with the authors at EPA and determined that this paper contained the 
best available estimates for the petroleum extraction sector, notwithstanding this difference.  
Therefore, these monetized values may slightly overestimate the cost of health impacts 
associated with emissions from this sector. 

Fann et al. reported monetized health impact per ton values discounted at 3 percent, while the 
CAFE Model reports total health impact costs discounted at both 3 and 7 percent.738  In order to 
match the structure of other health impact costs in the CAFE Model, we developed proxies for 
the 7 percent discounted values, using the ratio between a comparable sector’s 3 and 7 percent 
discounted values.  From the 17 sectors discussed in the 2018 EPA source apportionment TSD, 
the taconite mines sector most closely resembled the petroleum extraction sector in emission 
location characteristics, as both occur largely in rural areas.739 

Fann et al. estimates monetized health impacts per ton values only for calendar year 2025, so 
DOT staff apply these values to all three years in the CAFE Model health impacts input 
structure: 2020, 2025, and 2030.740  This implies an overestimation of damages in earlier years 
and an underestimation in 2030.  

All monetized health impact per ton estimates reported by Fann et al. use 2015 dollars.  We use 
implicit price deflators from the BEA to convert the estimates to 2018 dollars, in order to be 
consistent with the rest of the CAFE Model inputs.741 

6.2.2.2 Monetized Health Impacts per Ton Associated with the Petroleum 
Transportation Sector 

We use the same weighted average calculation used to determine the appropriate health 
incidence per ton values (see Chapter 5.4.1) for the petroleum transportation sector when 
estimating the monetized health impacts per ton values.  All of the same sources and calculations 

 
737 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951.  (Accessed: February 15, 2022). 
738 Fann et al. 2018. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector 
Emissions in 2025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718951.  (Accessed: February 15, 2022). 
739 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
740 These three years are used in the CAFE Model structure for health impact per ton values because it was originally 
based on the estimates provided in the 2018 EPA source apportionment TSD. 
741 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey.  (Accessed: 
February 15, 2022). 
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are used, the only difference being that this section deals strictly with monetized impacts per ton 
as opposed to incidences. 

The petroleum transportation sector does not correspond to any single EPA source sector, so we 
use a weighted average of multiple different EPA sectors to determine the monetized health 
impact per ton values for the petroleum transportation sector as a whole.  In calculating the 
weighted average, we mapped the petroleum transportation sector as described in GREET to a 
combination of different EPA mobile source sectors from two different papers, the 2018 EPA 
source apportionment TSD742 and a 2019 mobile source sectors paper (Wolfe et al.).743  See 
Table 6-15 for the exact mapping. 

Wolfe et al. includes more specific sectors than the 2018 EPA source apportionment TSD; for 
instance, where ‘Aircraft, Locomotive, and Marine Vessels’ is a single category in the 2018 EPA 
source apportionment TSD, Wolfe et al. specify four: Aircraft, Rail, C1&C2 Marine Vessels, and 
C3 Marine Vessels.  Therefore, the mapping uses sectors from Wolfe et al wherever possible and 
uses the 2018 EPA source apportionment TSD for the transportation mode mapping only when 
there are no appropriate sectors in the Wolfe et al. paper.  Wolfe et al. only report impacts for the 
year 2025, but DOT staff determined that these values could be applied to the other years in the 
input structure, after communication with one of the authors at EPA.  Therefore, this implies a 
slight overestimation of monetized health impacts in 2020 and a slight underestimation of 
monetized impacts in 2030.   

We calculate the total monetized health costs per ton by pollutant using a weighted average of 
these different sectors, based on the percent of upstream emissions attributable to each 
transportation mode. 

In GREET, the model that informs the CAFE upstream component categories, there are five 
types of petroleum products relevant to upstream emissions for gasoline:  

• Conventional crude oil 
• Synthetic crude oil (SCO) 
• Dilbit 
• Shale oil (Bakken) 
• Shale oil (Eagle Ford) 

 
742 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf.  (Accessed: February 15, 2022). 
743 Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769.  (Accessed: February 15, 2022). 
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Table 6-16 – Petroleum Transportation Mode Shares in 2020744 

Fuel Type745 Ocean Tanker Barge Pipeline Rail Truck 

Conventional Crude Oil 10.3%  23.2%  79.9%  2.9%  0 
Synthetic Crude Oil (SCO)  0 0 100% 0 0 
Dilbit  0 0 100% 0 0 
Shale Oil (Bakken) 0 0 50.0% 50.0% 100% 
Shale Oil (Eagle Ford) 0 20.0% 65.0% 15.0% 100% 

GREET provides the percentage of these five petroleum products transported by each mode, as 
shown in Table 6-16.  Transportation both within the United States and outside of U.S. borders is 
included, provided that the destination of the transported products is the continental United 
States.  The percentages add up to more than 100 percent because there are multiple stages of the 
transportation journey.  For example, 50 percent of shale oil (Bakken) is transported by pipeline 
and the other 50 percent by rail during the first part of the journey to the refinery, but 100 percent 
of it is transported by truck on the second part of the journey. 

GREET also provides emissions in grams/mmBtu of fuel transported attributable to each 
transportation mode.  DOT staff multiply these emissions values by the percentage of petroleum 
product transported by each mode, as seen in Table 6-16, to obtain a weighted value.  This 
calculation uses total emissions from each mode for all of the modes except ocean tanker.  
Health effects from ocean transport are concentrated in populated areas, rather than while the 
tankers are at sea.  To address this, the ocean tanker mode includes only urban emissions.  
Additionally, using urban emissions for ocean tankers ensures that the emissions attributable to 
this mode are not underestimated, because the percentage of related health impacts decreases 
when using the high total emissions figure. 

We multiply emissions by transportation mode share five times, once for each of the five 
petroleum types.  Since the GREET Model projects that the transportation mode shares will 
change over time, different weights are used for years 2020, 2025, and 2030, based on the mode 
percentages GREET reports for those years.746 

 
744 These values are from the GREET 2021 Model, using baseline year 2020.  In the Excel version, this information 
can be found in the T&D Flowcharts worksheet.  See https://greet.es.anl.gov/ to download the model. 
745 Conventional crude oil is both extracted domestically and imported. SCO and Dilbit are oil sand products and are 
imported exclusively from Canada. Shale oil is exclusively domestic.  See the ‘T&D Flowcharts’ worksheet in the 
GREET Model.  
746 These are the three years used in the CAFE Model inputs for health impacts, based on the structure of the 2018 
EPA source apportionment TSD that originally informed the analysis.  Baseline years may be changed in the 
‘Inputs’ worksheet in the GREET Model. 
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Table 6-17 – Energy Share by Petroleum Type747 

Conventional 
Crude Oil  SCO Dilbit Shale 

(Bakken) 
Shale (Eagle 

Ford) 
76.8% 3.4% 4.6% 8.2% 7.0% 

Then, we multiply the energy share of each petroleum type by its corresponding emissions value 
to reflect how much of each emissions value should go into the weighted average.  For example, 
using the energy share information in Table 6-17, the conventional crude emissions are 
multiplied by 76.8 percent, SCO emissions are multiplied by 3.4 percent, Dilbit emissions are 
multiplied by 4.6 percent, shale (Bakken) emissions are multiplied by 8.2 percent, and shale 
(Eagle Ford) emissions are multiplied by 7.0 percent.  

Next, we sum the resulting weighted emissions values by pollutant to represent the total 
upstream emissions in grams/mmBtu of petroleum product transported.  With that information, 
the percentages of each pollutant attributable to each mode for petroleum transportation overall 
can be calculated.  DOT staff calculate these percentages three times, for each different base year 
(2020, 2025, and 2030).  Table 6-18 shows these percentages, using base year 2020 as an 
example.   

Table 6-18 – Percent of Emissions Attributable to each Mode for the Petroleum Transportation Category748 

Mode EPA source category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 5.04% 13.87% 9.10% 
Barge C1 & C2 marine vessels 56.47% 1.70% 39.83% 
Pipeline Electricity-generating units 24.82% 83.62% 45.79% 
Rail Rail 12.31% 0.59% 4.79% 
Truck On-road heavy duty diesel 1.36% 0.22% 0.48% 

Finally, we calculate the weighted average of monetized health impacts by multiplying the 
percentages of emissions by mode by the monetized health costs per ton from the relevant EPA 
sector that matches each mode.  Equation 6-10 illustrates this process, using incidences of 
asthma exacerbation as an example.  The variables beginning with “%” represent the percent of 
SOX emissions attributable to each specified mode.  The other variables indicate the incidences 
per ton resulting from SOX emissions coming from each sector: C3marine corresponds to C3 
marine vessels, C1&C2 marine to C1&C2 marine vessels, EGU corresponds to electricity-
generating units, Rail to railroad, and Truck corresponds to on-road heavy-duty diesel. 

𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 

                                (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐶𝐶3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)    + (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐶𝐶1&𝐶𝐶2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
+ (%𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 ) + (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + (% 𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)   

Equation 6-10 – Weighted Average of Health Incidences from the Petroleum Transportation Sector 

 
747 Taken from the Petroleum tab of the GREET Excel Model, using 2020 as a base year. 
748 These percentages are calculated using the 2020 base year in GREET. 
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Following guidance from the 2018 EPA source apportionment TSD, DOT staff round the final 
health impact costs per ton to two significant digits.749 

6.2.2.3 Monetized Health Impacts per Ton Associated with the Fuel TS&D Sector 

As in the case of the previous section, this section closely echoes the approach taken in the 
corresponding Fuel TS&D section in Chapter 5.4, since we calculate the monetized health 
impacts per ton described in this section using the same sources and the same weighted 
averaging process.  The Fuel TS&D sector, like the Petroleum Transportation sector, 
corresponds to several different EPA source sectors, so DOT staff use the same weighted 
average approach as described in Chapter 6.2.2.2.  Gasoline blendstocks and finished gasoline 
are the two components of the Fuel TS&D category described in GREET.  DOT staff map these 
components to five different transportation source sectors from two EPA papers, the 2018 EPA 
source apportionment TSD and the 2019 mobile source emission sectors paper, Wolfe et al.750 

GREET provides the percentage of each fuel type transported by each mode, and as in the case 
of the petroleum transportation calculations, the percentages change based on the year.  In the 
case of the “gasoline blendstocks” fuel type, the mode shares add up to more than 100 percent 
because multiple modes are taken during the distinct parts of the trip.  As an example, Table 6-16 
shows the estimated mode shares in 2020. 

Table 6-19 – Transportation Mode Shares for the Fuel TS&D Sector751 

Mode Share Gasoline 
Blendstocks 

Finished 
Gasoline 

Ocean Tanker 3.0% 0% 
Barge 31.2% 0% 
Pipeline 67.6% 0% 
Rail 2.2% 0% 
Truck 100% 100% 

We multiply the emissions by pollutant attributed to each mode (measured in grams/mmBtu), by 
these mode share percentages to create weighted emissions values. 

Next, we add the weighted emissions from trucks transporting gasoline blendstocks to the 
emissions arising from finished gasoline transportation (100 percent truck mode).  Using that 
information, the total emissions per pollutant may be calculated in order to find the percentage of 

 
749 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf; p.14.  (Accessed: February 15, 2022). 
750 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf; p.14.  (Accessed: February 15, 2022) 
Wolfe et al. 2019. Monetized health benefits attributable to mobile source emissions reductions across the United 
States in 2025. https://pubmed.ncbi.nlm.nih.gov/30296769.  (Accessed: February 15, 2022). 
751 Using baseline year 2020 in GREET. These values can be found in the ‘T&D Flowcharts’ tab of the GREET 
Model.  
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emissions attributable to each mode for Fuel TS&D overall.  Table 6-20 provides an example of 
these percentages. 

Table 6-20 – Percent of Emissions Attributable to each Mode for the Petroleum Transportation Category752 

Mode EPA source category NOX SOX PM2.5 
Ocean Tanker C3 marine vessels 5.04% 13.87% 9.10% 
Barge C1 & C2 marine vessels 56.47% 1.70% 39.83% 
Pipeline Electricity-generating units 24.82% 83.62% 45.79% 
Rail Rail 12.31% 0.59% 4.79% 
Truck On-road heavy duty diesel 1.36% 0.22% 0.48% 

The Fuel TS&D calculations follow the same process as the petroleum transportation category, 
matching the modes to EPA sectors and using the calculated percentages to create a weighted 
average of monetized health impacts associated with emissions of each pollutant.  We completed 
these calculations three times, for years 2020, 2025, and 2030.  As stated previously, the sectors 
in the 2019 mobile sources paper only showed monetized health costs per ton estimated for the 
year 2025, but analysts determined that this information should be applied to all years, as it was 
the most up-to-date available, after communicating with EPA staff.  The use of 2025 monetized 
impacts for all three years implies a slight overestimation of monetized health impacts in 2020 
and a slight underestimation in 2030. 

Wolfe et al report all monetized impacts per ton values in 2015$.  We use BEA deflators to 
convert these values to 2018$, in order to ensure consistency with the rest of the CAFE Model 
inputs.753 

6.2.2.4 Monetized Health Impacts per Ton Associated with the Refineries Sector  

We match the monetized health impacts per ton values associated with the refineries sector in the 
2018 EPA source apportionment TSD to the petroleum refining emissions category in the CAFE 
Model.  BEA deflators are used to convert the values to 2018$754 Table 6-21 shows the various 
types of health effects per ton corresponding to each pollutant emitted from the refineries sector.  
These estimates are based on the study cited in the 2018 EPA source apportionment TSD.755 

 
752 These percentages are calculated using the 2020 base year in GREET. 
753 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey.  (Accessed: 
February 15, 2022). 
754 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey.  (Accessed: 
February 15, 2022). 
755 Environmental Protection Agency (EPA). 2018. Estimating the Benefit per Ton of Reducing PM2.5 Precursors 
from 17 Sectors. https://www.epa.gov/sites/production/files/2018-
02/documents/sourceapportionmentbpttsd_2018.pdf;.14.  (Accessed: February 15, 2022). 
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Table 6-21 – Monetized Health Impacts per Ton from Refineries, 3 Percent Discount Rate756 

Calendar 
Year 

Upstream Emissions  
(Refineries Sector) 

NOX SOX PM2.5 
2020 $8,100 $81,000 $380,000 
2025 $8,800 $90,000 $420,000 
2030 $9,600 $98,000 $450,000 

6.2.2.5 Monetized Health Impacts per Ton Associated with the Electricity 
Generation Sector 

The 2018 EPA source apportionment TSD contains monetized health impacts per ton values 
associated with emissions of NOX, SOX, and PM2.5 arising from electricity-generating units 
(EGUs), reported in 2015$.  We mapped these to the electricity generation sector in the CAFE 
Model and converted the values to 2018$ using BEA deflators, to ensure consistency with the 
rest of the CAFE Model inputs757 Table 6-22 shows the health effects per ton associated with the 
emissions of criteria pollutants from this sector. 

Table 6-22 – Monetized Health Impacts per ton from Electricity-Generating Units, 3 Percent Discount Rate758 

Calendar 
Year 

Upstream Emissions (Electricity 
Generation Sector) 

NOX SOX PM2.5 
2020 $6,500 $44,000 $160,000 
2025 $7,100 $48,000 $180,000 
2030 $7,600 $52,000 $190,000 

6.2.2.6 Monetized Health Impacts per Ton Associated with Tailpipe Emissions 

The CAFE Model follows a similar process for computing monetized health impacts resulting 
from tailpipe emissions as it does for calculating monetized health impacts from the upstream 
emissions sectors.  The analysis relies on a 2019 paper from EPA (Wolfe et al.) that computes 
monetized per ton damage costs for mobile sources in several categories, based on vehicle type 
and fuel type.  Wolfe et al. did not report incidences per ton, but that information was obtained 
through communications with EPA staff.  We match three source categories from the 2019 paper 
to the CAFE Model tailpipe emissions inventory: “on-road light duty gas cars and motorcycles,” 
“on-road light duty gas trucks,” and “on-road light duty diesel” Table 6-23 shows the monetized 
impacts by criteria pollutant for these three categories.  As in the case of the other monetized 

 
756 Based on the Krewski et al values in the 2018 EPA TSD.  See Section III.F of the preamble for further discussion 
of the benefit-per-ton reporting. 
757 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey.  (Accessed: 
February 15, 2022). 
758 Based on the Krewski et al values in the 2018 EPA TSD.  See Section III.F of the preamble for further discussion 
of the benefit-per-ton reporting. 
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impacts from Wolfe et al., we used BEA deflators to convert monetized values from 2015$ to 
2018$.759 

Table 6-23 – Monetized Impacts per Ton from Tailpipe Source Categories 

 On-road Light Duty Gas Cars 
& Motorcycles 

On-road Light Duty Gas 
Trucks On-road Light Duty Diesel 

 NOX SOX PM2.5 NOX SOX PM2.5 NOX SOX PM2.5 
 2025 $7,500 $130,000 $740,000 $6,800 $110,000 $620,000 $6,100 $320,000 $510,000 

6.2.3 Social Costs of Congestion and Noise 

If more driving of new cars and light trucks results from the fuel economy rebound effect, it will 
add to the levels of traffic congestion and roadway noise caused by overall motor vehicle use.  
The resulting increases in delays to vehicles traveling in congested traffic, and the noise impacts 
on areas surrounding roadways would impose additional economic costs that are attributable to 
the agency’s action to establish higher fuel economy standards.  Only a small fraction of these 
increases in delay and noise costs is likely to be experienced by the buyers of new cars and light 
trucks whose decisions about how much more to drive – and where and when to do so – cause 
the increases in congestion delays and traffic noise.  Thus, the agency’s analysis treats increases 
in the costs of congestion delays and noise impacts as external costs from requiring higher fuel 
economy, as distinguished from private costs such as the higher prices buyers of new cars and 
light trucks pay.   

To estimate the economic costs associated with increases in congestion delays and roadway 
noise caused by increased rebound-effect driving, the agency uses estimates of incremental (or 
“marginal”) congestion and noise costs from increased automobile and light truck use that were 
originally developed by FHWA as part of its 1997 Highway Cost Allocation Study.760  The 
marginal congestion cost estimates reported in the 1997 FHWA study were intended to measure 
the costs of increased congestion resulting from incremental growth in automobile and light 
truck use and the delays it causes to drivers, passengers, and freight shipments.  

As the 1997 study explained, the distinction between marginal and average congestion costs is 
extremely important: while average congestion costs on a roadway are calculated as total 
congestion costs experienced by all vehicles divided by the total number of miles they travel, 
marginal congestion costs are calculated as the increase in congestion costs resulting from an 
incremental increase in the number of vehicle-miles traveled.  When roads are already crowded, 
marginal congestion costs can be much higher that their average value, because while each 
additional vehicle slows travel speeds only slightly, it does so for a very large number of 
vehicles, so the resulting increase in total delay experienced by all vehicles on the road can be 

 
759 Bureau of Economic Analysis. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. BEA. 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey.  (Accessed: 
February 15, 2022). 
760 Federal Highway Administration, 1997 Highway Cost Allocation Study, Chapter V, Tables V-22 and V-23, 
available at https://www.fhwa.dot.gov/policy/hcas/final/five.cfm.  (Accessed: February 15, 2022).  The agency 
previously employed these same cost estimates to analyze the impacts of its actions establishing new CAFE 
standards in 2010, 2012, 2016, and 2020.   
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extremely large.  As a consequence, increases in total delay and congestion costs associated with 
additional driving are generally more than proportional to the changes in traffic volumes that 
cause them.   

The 1997 FHWA study’s estimates of marginal noise costs reflected the variation in noise levels 
resulting from incremental changes in travel by autos and light trucks and the estimated 
economic value of annoyance and other adverse impacts from noise, including those on 
pedestrians and residents of the surrounding area as well as vehicle occupants. 

Because the action the agency is finalizing will increase the stringency of CAFE standards for 
MYs 2024-2026 and the fuel economy of new cars and light trucks, the number of miles new 
cars and light trucks are driven is likely to increase relative to the No-Action Alternative.  To 
calculate the incremental costs of congestion and noise caused by this added driving, the agency 
multiplies FHWA’s “middle” estimates of marginal congestion and noise costs per mile of auto 
and light truck travel by the increase in new car and light truck travel.  As with the estimates of 
various other parameters used throughout this analysis, the agency updated the original 1997 
FHWA estimates of congestion costs during the proposal to account for changes in travel activity 
and economic conditions since they were originally developed, as well as to express them in 
2018 dollars for consistency with other economic inputs.   

One factor affecting marginal congestion costs from additional travel include traffic volumes and 
their relationship to roadway capacity, since this determines how travel speeds and delays will 
change in response to incremental growth in traffic.  The agency approximated the effect of 
growth in traffic on congestion and resulting delays using the increase in annual vehicle-miles of 
travel per lane-mile on major U.S. highways that occurred between 1997, the date of FHWA’s 
original estimates of marginal congestion costs, and 2017.761  Other important factors include the 
typical number of occupants riding in each vehicle and the economic value of their travel time, 
since these combine to determine the average hourly cost of congestion delays.762  The agency 
estimated growth in the hourly cost of delays from 1997 to 2017 by combining growth in the 
DOT-recommended value of travel time with the change in average occupancy of cars and light 
trucks.763   

 
761 Traffic volumes, as measured by the annual number of vehicle-miles traveled per lane-mile of roads and 
highways nationwide, rose by 53 percent between 1997 and 2017.  Calculated from FHWA, Highway Statistics, 
1998 and 2018, Tables VM-1 and HM-48, available at https://www.fhwa.dot.gov/policyinformation/statistics.cfm.  
(Accessed: February 15, 2022). 
762 Fuel consumption and other operating costs can also increase during travel in congested conditions, but their 
relationship to the frequent changes in speed that typically occur in congested travel is less well understood, and in 
any case, they vary by far smaller amounts than the value of vehicle occupants’ travel time.  
763 Measured in inflation-adjusted terms, the average hourly value of travel time increased by 22 percent between 
1997 and 2017, including light-duty vehicle occupants as well as truck drivers and passengers; see U.S. Department 
of Transportation, “Departmental Guidance for the Valuation of Travel Time in Economic Analysis,” April 9, 1997, 
Table 4, and U.S. Department of Transportation, “Benefit-Cost Analysis Guidance for Discretionary Grant 
Programs,” December 2018, Table A-3.  From 1995 to 2017, the average number of occupants traveling in 
household vehicles increased by 3 percent; values were tabulated from FHWA, Nationwide Personal Transportation 
Survey, 2005 and 2017, using on-line table designer available at https://nhts.ornl.gov/ and 
https://nhts.ornl.gov/index9.shtml.  (Accessed: February 15, 2022). 
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The agency applied these adjustments to FHWA’s 1997 estimates of marginal congestion costs 
to update those original values to reflect current travel and economic conditions.  Expressed in 
2018 dollars for consistency with the other economic values used to analyze this final rule, the 
agency’s updated values of external congestion costs are $0.135 per vehicle-mile of increased 
travel by cars and $0.121 per vehicle-mile for light trucks.  The agency adjusted FHWA’s 1997 
estimate of marginal noise costs only to account for inflation since its original publication since 
little research is available to indicate how noise levels or the economic costs of noise might have 
changed.764  Because marginal noise costs are so small—less than $0.001 per mile of travel for 
both cars and light trucks—the change in noise resulting from the final rule will have a minimal 
impact. 

The agency’s estimates of incremental congestion and noise costs from added car and light truck 
use are assumed to remain constant (in real or inflation-adjusted terms) throughout the analysis 
period. 

6.2.4 Benefits from Increased U.S. Energy Security 

U.S. consumption and imports of petroleum products has three potential effects on the domestic 
economy that are often referred to collectively as “energy security externalities,” and increases in 
their magnitude are sometimes cited as possible social costs of increased U.S. demand for 
petroleum.  First, any increase in global petroleum prices that results from higher U.S. gasoline 
demand will cause a transfer of revenue from consumers of petroleum products to oil producers 
worldwide, because consumers throughout the world are ultimately subject to the higher global 
prices for petroleum and refined products that results.  Although this transfer is simply a shift of 
resources that produces no change in global economic output or welfare, the financial drain it 
produces on the U.S. economy is sometimes cited as an external cost of increased U.S. petroleum 
consumption.   

As the United States has approached self-sufficiency in petroleum production in recent years 
(AEO 2021 projects the nation to be a net exporter of petroleum and other liquids through 2050), 
this transfer is increasingly from U.S. consumers of refined petroleum products to U.S. petroleum 
producers, so any price increase that results from increased domestic petroleum demand not only 
leaves welfare unaffected, but even ceases to be a financial burden on the U.S. economy.765  In 
fact, as the United States has become a net petroleum exporter, the transfer from global 
consumers to petroleum producers created by higher world oil prices are a net financial benefit to 
the U.S. economy.  Nevertheless, uncertainty about the nation’s long-term import-export balance 
makes it difficult to project precisely how these effects might change in response to changes in 
U.S. domestic consumption of petroleum products.  However, the welfare gain experienced by 

 
764 The agency’s revised estimates of congestion and noise costs were adjusted to 2018 dollars using the change in 
the implicit price deflator for U.S. GDP between the year in which they were originally denominated (1994 dollars) 
and 2018; see Bureau of Economic Analysis, NIPA Table 1.1.9 Implicit Price Deflators for Gross Domestic Product, 
available at https://apps.bea.gov/iTable/index_nipa.cfm.  (Accessed: February 15, 2022). 
765 The United States became a net exporter of oil on a weekly basis several times in late 2019, and EIA’s 
subsequent analyses continue to project that it will do so on a sustained, long-term basis after 2020; see EIA, AEO 
2021 Reference Case, Table 11, https://www.eia.gov/outlooks/archive/aeo21/tables_ref.php.  (Accessed: February 
15, 2022).  
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U.S. consumers as a result of fuel economy improvements that lower world oil prices is 
important to acknowledge. 

Increased U.S. consumption of refined products such as gasoline can also expose domestic users 
of other petroleum products – whose consumption would be unrelated to changes in CAFE 
standards – to increased economic risks from sudden changes in their prices or interruptions in 
their supply.  Users of petroleum products are unlikely to consider any effect their consumption 
has on other consumers, and the expected economic cost of that increase in risk is often cited as 
an external cost of increased U.S. petroleum consumption.  Finally, some analysts argue that 
domestic demand for imported petroleum may also influence U.S. military spending; because 
any increase in the cost of military activities necessary to enable additional petroleum imports 
would not be reflected in the price paid at the gas pump.  This is often alleged to represent a third 
category of external costs form increased U.S. petroleum consumption. 

Each of these three costs may decline – although probably only modestly – as a consequence of 
the reduction in U.S. petroleum consumption likely to result from these final standards.  This 
section describes the extent to which each of these three costs may change as a result of this 
action, whether that change would represent a significant net economic benefit for the United 
States as a whole (or simply reduce transfers of resources), and how the agency measures each 
cost and incorporated it into the analysis. 

6.2.4.1 U.S. Petroleum Demand and its Effect on Global Prices   

Figure 6-4 illustrates the effect of a decrease in U.S. fuel and petroleum demand on worldwide 
demand for petroleum and its global market price.  The reduction in domestic demand from 
adopting more stringent CAFE standards is represented by an inward shift in the U.S. demand 
curve for petroleum from its initial position at DUS,0 with the baseline standards in effect, to DUS,1 

with the higher standards replacing them.  Because global demand is simply the sum of what 
each nation would purchase at different prices, the inward shift in U.S. demand causes an 
identical shift in the global demand schedule, as the figure shows.766 

 
766 The figure exaggerates the U.S. share of total global consumption, which currently stands at 20 percent, for 
purposes of illustration.   
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Figure 6-4 – U.S. Petroleum Demand and its Effect on Global Prices 

The global supply curve for petroleum shown in Figure 6-5 slopes upward, reflecting the fact 
that it is progressively costlier for oil-producing nations to explore for, extract, and deliver 
additional supplies of oil to the world market.767  Thus the downward shift in the U.S. and world 
demand schedules leads to a decrease in the global price for oil, from P0 to P1 in the figure.768  
Lower domestic demand reduces U.S. purchases of petroleum from QUS,0 to QUS,1, and global 
consumption from QG,0 to QG,1.  The resulting savings to U.S. consumers consist mainly of what 
they previously spent to purchase the quantity they no longer consume, which is measured by the 
product of the original price P0 and the decline in consumption (QUS,0 – QUS,1).   

At the same time, the decline in the global price of petroleum means that domestic consumers 
also save that amount on each barrel they continue to buy; their resulting savings is the product 
of the decline in price (P0-P1) and the amount they continue to use (QUS,1), or the area 
P0abP1.769,770  This additional savings is sometimes cited as an economic benefit of U.S. 
conservation measures such as raising CAFE standards, but is more properly interpreted as 
reducing the transfer of revenue from U.S. consumers to petroleum producers worldwide.  
Reducing this transfer is thus a purely “pecuniary” externality resulting from lower U.S. demand, 
which has no effect on total economic output or welfare, either within or outside the United 

 
767 The figure depicts the relationship between the global supply of petroleum and its worldwide price during a 
single time period.  The global supply curve for petroleum has been shifting outward over time in response to 
increased investment in exploration, the ability of refineries to utilize feedstocks other than conventional petroleum, 
and technological innovations in petroleum extraction.  The combination of these developments may also have 
reduced its upward slope, meaning that global supply now increases by more in response to increases in the world 
price than it once did. 
768 While U.S. demand influences prices, price is determined by global demand.  
769 Foreign petroleum users also pay the lower global price P1 for each barrel they continue to consume, so in total 
they save (P0-P1) times (QG,1 – QUS,1) or the area acdb in the figure, as a consequence of reducing U.S. demand.   
770 Sometimes this benefit is expressed in terms of per barrel of reduced domestic consumption.  Under this 
approach, the amount is expressed as by the reduction in U.S. consumption divided by the elasticity of oil (the 
change in demand divided by the change in price). 
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States.771  However, as noted above, this analysis focuses on impacts to U.S. consumers, and as 
such, the benefit to U.S. consumers of lower oil prices caused by enhanced fuel economy is 
important to acknowledge. 

Much of the reduction in payments by domestic users of petroleum products would once have 
represented a loss to foreign-owned oil producers and would thus have reduced the financial 
drain on the U.S. economy from using and importing petroleum.  To a growing extent, however, 
lower payments by U.S. consumers that result from downward pressure on the world oil price are 
a transfer entirely within the Nation’s economy, because a growing fraction of domestic 
petroleum consumption is supplied by U.S. producers.  The United States recently became a net 
exporter of petroleum, and as it approached that situation an increasing share of any savings to 
U.S. petroleum consumers resulting from lower global oil prices became a loss to U.S. oil 
producers.772  Once the United States became self-sufficient in petroleum supply (which 
occurred in 2020), the savings to U.S. petroleum users that results from reducing oil prices 
effectively reduced a transfer from domestic petroleum consumers to domestic producers.  Stated 
another way, the financial burden that transfers from U.S. consumers to foreign oil producers 
once placed on the U.S. economy has been eased and ultimately erased by growing U.S. 
petroleum production, so reducing domestic demand no longer reduces that burden.773  

Figure 6-5, which is a more detailed version of the previous figure, illustrates this situation.  As 
in Figure 6-4, raising CAFE standards shifts the U.S. petroleum demand curve shifts inward 
from DUS,0 to DUS,1 causing an inward shift in global demand for petroleum from DG,0 to DG,1 and 
reducing the world oil price from P0 to P1.  Before the decline in U.S. and global demand, 
domestic petroleum consumers purchase the entire output of U.S producers, SUS,0 barrels, and the 
U.S imports QUS,0 - SUS,0 to meet the remainder of domestic demand.  In response to the decline 
in the global petroleum price, U.S. producers reduce their output to SUS,1 barrels and foreign 
producers continue to supply the remainder of domestic demand, or QUS,1 – SUS,1 barrels.  

 
771 The decline is petroleum prices caused by lower U.S. demand does have consequences for economic welfare, 
because it leads to increases in consumer surplus to both domestic and foreign petroleum users.  However, lower 
prices also reduce producer surplus to domestic and overseas suppliers of petroleum, and in total these losses in 
producer surplus exceed gains in consumer surplus to petroleum users.  How domestic economic welfare changes 
depends on the U.S. petroleum import situation, which as discussed below has changed rapidly in recent years.  The 
agency’s analysis of this action does not attempt to estimate the net effect of these changes in domestic consumer 
and producer surplus.   
772 The U.S. Energy Information Administration EIA estimates that the United States exported more total crude oil 
and petroleum products in September and October of 2019, and expects the United States to continue to be a net 
exporter.  See Short Term Energy Outlook November 2019, available at 
https://www.eia.gov/outlooks/steo/archives/nov19.pdf.  (Accessed: February 15, 2022).  
773 In fact, much of that transfer has been reversed, so that reducing global petroleum prices may lower revenue to 
U.S. producers by more than it saves domestic consumers.  
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Figure 6-5 – Effect of Change in United States to Net Exporter of Petroleum 

The decline in the global price of petroleum reduces “monopsony” payments by U.S. consumers 
for the quantity they originally purchased by (P1 - P0)*QUS,0, or area P0ghP1 in Figure 6-5.  Of 
this savings, the part P0jkP1 represents a revenue loss to U.S. producers, and the remaining 
component jghk represents lower revenue to foreign suppliers on their exports to the United 
States.  From a global standpoint, this is simply a reduction in financial transfers that produces 
no change in welfare, although from a domestic perspective it does represent a reduced financial 
drain on the U.S. economy.  

As the U.S. supply curve for petroleum has gradually shifted outward, the fraction of monopsony 
payments by U.S. consumers going to U.S. producers (which was P0jkP1/P1ghP0 before tighter 
CAFE standards reduced U.S. demand) gradually increased, while the fraction received by 
foreign producers (jghk/P0ghP1) gradually fell.  When the U.S. supply curve reached the position 
shown by the dashed line in Figure 6-5 – indicating that all U.S. petroleum consumption could be 
supplied via domestic production, all monopsony payments by U.S. consumers became revenue 
to U.S. producers.  As a consequence, any reduction in their value resulting from declining U.S. 
demand and the resulting fall in global petroleum prices – that is, the “monopsony effect” of 
reducing domestic consumption – became a financial transfer entirely within the U.S. 
economy.774 

 
774 As this occurred, the numerator and denominator of the fraction P0jkP1/P1ghP0 became identical so the value of 
this fraction approached 1.0, while the numerator of jghk/P0ghP1 and the value of that fraction approached zero.  
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Figure 6-6 – Effect of Reducing U.S. Petroleum Demand on Domestic Monopsony Payments 

Over most of the period spanned by the analysis, any decrease in domestic spending for 
petroleum caused by the effect of lower U.S. fuel consumption and petroleum use on world oil 
prices is expected to remain largely or entirely a transfer within the U.S. economy and thus 
produce no net impact on domestic economic resources.  For this reason—and because in any 
case, such transfers do not create real economic costs or benefits—lower U.S. spending on 
petroleum products that results from the effect of raising CAFE standards on U.S. gasoline 
demand and the downward pressure it places on global petroleum prices is not included among 
the economic benefits accounted for in this final rule. 

6.2.4.2 Macroeconomic Costs of U.S. Petroleum Consumption 

In addition to influencing global demand and prices, U.S. petroleum consumption imposes 
further costs that are unlikely to be reflected in the market price for petroleum, or in the prices 
paid by consumers of refined products such as gasoline.775  Petroleum consumption imposes 
external economic costs by exposing the U.S. economy and U.S. consumers to increased risks of 
rapid increases in prices triggered by global events – which may also disrupt the supply of 
imported oil – and U.S. consumers of petroleum products seem unlikely to take these costs into 
account when making their decisions about how much to consume.  

 
775 See, e.g., Bohi, D. R. & W. David Montgomery (1982), Oil Prices, Energy Security, and Import Policy 
Washington, D.C. - Resources for the Future, Johns Hopkins University Press; Bohi, D. R., & M. A. Toman (1993), 
“Energy and Security - Externalities and Policies,” Energy Policy 21:1093-1109; and Toman, M. A. (1993).  “The 
Economics of Energy Security - Theory, Evidence, Policy,” in A. V. Kneese and J. L. Sweeney, eds. (1993), 
Handbook of Natural Resource and Energy Economics, Vol. III, Amsterdam - North-Holland, pp. 1167–218. 
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Interruptions in oil supplies and sudden increases in oil prices can impose significant economic 
costs not only because they raise the costs of commodities whose production and distribution 
relies on petroleum, but also because they temporarily reduce the level of output that the U.S. 
economy can produce (often called “potential GDP”).  The magnitude of the resulting reduction 
in U.S. economic output depends on the extent and duration of increases in prices for petroleum 
products that result from disruptions to global oil supplies.  Of course, it also depends on whether 
and how rapidly prices return to their pre-disruption levels, which in turn depends partly on the 
petroleum industry’s capacity to respond to localized supply disruptions by increasing 
production elsewhere.  Even if prices for oil return completely to their original levels, economic 
output will be at least temporarily reduced from the level that would have been possible with 
uninterrupted oil supplies and stable prices, so the U.S. economy will bear some transient losses 
it cannot subsequently recover.  

Supply disruptions and price increases caused by global political events tend to occur suddenly 
and unexpectedly, so they can also force businesses and households to adjust their use of 
petroleum products more rapidly than if the same price increase occurred gradually.  Rapid 
substitutions between different forms of energy and between energy and other inputs, as well as 
other changes such as adjusting production levels and downstream prices, can be costly for 
businesses to make.  As with businesses, sudden changes in energy prices and use are also 
difficult for households to adapt to quickly or smoothly, and being forced to do so may cause at 
least temporary losses in other consumption.   

Interruptions in oil supplies and sudden increases in petroleum prices are both uncertain 
prospects, so the costs of the disruptions they can cause must be weighted or adjusted by the 
probability that they will occur, as well as for their uncertain duration.  The agency relies on 
estimated costs of such disruptions that reflect the probabilities that price increases of different 
magnitudes and durations will occur, as well as the resulting costs of lower U.S. economic output 
and abrupt adjustments to sharply higher prices.  Any change in the probabilistic “expected 
value” of such costs that can be traced to lower U.S. fuel consumption and petroleum demand 
stemming from increased CAFE standards represents an external benefit of adopting them. 

A variety of mechanisms are available to businesses and households to “insure” against sudden 
increases in petroleum prices and reduce their costs for adjusting to them.  Examples include 
making purchases or sales in oil futures markets, adopting energy conservation measures, 
diversifying the fuel economy levels within the set of vehicles individual households own, 
locating where public transit provides a viable alternative to driving, and installing technologies 
that permit rapid fuel switching.  Growing reliance on such measures, coupled with continued 
improvements in energy efficiency throughout the economy, has reduced the vulnerability of the 
U.S. economy to the costs of oil shocks in recent decades, and there is now considerable debate 
about the potential magnitude and continued relevance of economic damages from sudden 
increases in petroleum prices.  However, as discussed in the preamble, domestic gasoline prices 
are currently linked to globalized oil markets, and as such, increased U.S. oil production does not 
insulate against price spikes and disruptions in the global oil market.  Given that linkage, it is the 
reduction in the oil-intensity of the U.S. economy, delivered by policies like fuel economy 
standards, that reduce the exposure of U.S. consumers to those disruptions. 
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As one indicator of the U.S. economy’s declining vulnerability to such disruptions, the agency 
analyzed how the amount of energy needed to produce the same level of U.S. economic output 
has changed over time.  Figure 6-7 shows that U.S. GDP measured in real or inflation-adjusted 
dollars increased more than 800 percent between 1950 and 2020, while the nation’s total energy 
consumption grew about 150 percent over that same period.  As a consequence, the amount of 
energy required to produce each dollar of U.S. GDP fell by about 70 percent, reflecting both 
continuing improvements in the energy efficiency of production and shifts in the composition of 
GDP toward less energy-intensive products and services.  AEO 2021 forecasts a continuing 
decline in U.S. energy intensity, with the energy/GDP ratio projected to decline a further 38 
percent from 2020 through 2050.  This forecast reflects anticipated energy efficiency 
improvements throughout the U.S. economy, including among passenger cars and light trucks. 

 

Figure 6-7 – U.S. Energy Intensity, 1950 - 2020776 

As with the overall energy intensity of the U.S. economy, the petroleum intensity of U.S 
economic output has also declined significantly over time, while at the same time global oil 
prices have fallen to levels dramatically lower than when analysts first identified and quantified 
the risks they create to the U.S. economy.  As Figure 6-7 illustrates, U.S. GDP and the nation’s 
consumption of petroleum-based energy grew almost exactly the same rate from 1950 through 
1980, after which petroleum consumption leveled off while GDP continued to grow steadily.  As 
a consequence, petroleum energy consumption per dollar of U.S. economic output declined 
steadily from 1980 through 2020.  AEO 2021 projects that the petroleum intensity of U.S. GDP 

 
776 Sources: U.S. GDP: Department of Commerce, Bureau of Economic Analysis, National Income and Product 
Accounts for the U.S., Interactive Data: GDP and Personal Income, Section 1: Domestic Product and Income, Table 
1.1.6, https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey 
(Accessed: March 24, 2022); U.S. Petroleum and Energy Consumption: Energy Information Administration, Annual 
Energy Review, Total Energy, Table 1.3 Energy Consumption by Source, 
https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T01.03#/?f=A&start=1949&end=2020&charted=3.  
(Accessed: March 24, 2022). 

https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey
https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T01.03#/?f=A&start=1949&end=2020&charted=3
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will fall by another 40 percent from its current level over the next three decades.  Further, not 
only has the United States dramatically increased its own petroleum supply, but other new global 
suppliers have emerged as well, and both of these developments reduce the potential impact of 
disruptions in the unstable or vulnerable regions of the globe that have historically represented 
critical sources of supply. 

 

Figure 6-8 – Petroleum Intensity of U.S. GDP, 1950 - 2020777 

As a consequence, the potential macroeconomic costs of sudden increases in oil prices are now 
likely to be considerably smaller than when they were originally identified and estimated.  
Recognizing this situation, the National Research Council (2009) argued that non-environmental 
externalities associated with dependence on foreign oil are now small, and perhaps trivial.778  
Research by Nordhaus and by Blanchard and Gali has also questioned how harmful recent oil 
price shocks have been to the U.S. economy, noting that the U.S. economy actually expanded 
rapidly following the most recent oil price shocks, and that there was little evidence of higher 
energy prices being passed through into higher wages or prices.779  

 
777 Source: GDP data from Federal Reserve Bank, FRED series GDPC1 and petroleum consumption data from EIA, 
by sector, https://www.eia.gov/totalenergy/data/annual.  (Accessed: February 15, 2022). 
778 National Research Council, Hidden Costs of Energy - Unpriced Consequences of Energy Production and Use, 
National Academy of Sciences, Washington, D.C. (2009). 
779 Nordhaus (2010) argues that one reason for limited vulnerability to oil price shocks is that monetary policy has 
become more accommodating to the price impacts, while another is that U.S. consumers and businesses may 
determine that such movements are temporary and abstain from passing them on as inflationary price increases in 
other parts of the economy.  He also notes that changes in productivity in response to recent oil price increases have 
been extremely modest, observing that “energy-price changes have no effect on multifactor productivity and very 
little effect on labor productivity.” at p. 19.  Blanchard and Gali (2010) contend that improvements in monetary 
policy, more flexible labor markets, and the declining energy intensity of the U.S. economy (combined with an 
absence of concurrent shocks to the economy from other sources) lessened the impact of oil price shocks after 1980.  
They find that “the effects of oil price shocks have changed over time, with steadily smaller effects on prices and 
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Since these studies were conducted, the petroleum intensity of the U.S. economy has continued 
to decline, while domestic energy production has increased in ways and to an extent that experts 
failed to predict, so that the United States became the world’s largest producer in 2018.780  The 
U.S. shale oil revolution has both established the potential for energy independence and placed 
downward pressure on prices.  Lower oil prices are also a result of sustained reductions in U.S. 
consumption and global demand resulting from energy efficiency measures, many undertaken in 
response to previously high oil prices and, more recently, the pandemic.   

Reduced petroleum intensity and higher U.S. production have combined to produce a dramatic 
decline in U.S. petroleum imports, permitting U.S. supply to act as a buffer against artificial or 
natural restrictions on global petroleum supplies due to military conflicts or natural disasters.  In 
addition, the speed and relatively low incremental cost with which U.S. oil production has 
increased suggests that both the magnitude and (especially) the duration of future oil price 
shocks may be limited. 

While some risk of price shocks certainly still exists, even the potential for a large and relatively 
rapid U.S. production response may be limiting the extent of price shocks attributable to external 
events.  For example, the large-scale attack on Saudi Arabia’s Abqaiq processing facility—the 
world’s largest crude oil processing plant—on September 14, 2019, caused “the largest single-
day [crude oil] price increase in the past decade” ($7-8 per barrel), according to EIA.781  The 
Abqaiq facility has the capacity to process 7 million barrels per day, or about 7 percent of global 
crude oil production capacity.  By September 17, however – only three days after the incident – 
Saudi Aramco reported that Abqaiq was producing 2 million barrels per day, and they expected 
its entire output capacity to be fully restored by the end of September 2019.  In addition, Saudi 
Aramco stated that crude oil deliveries would continue by drawing on available inventories and 
increasing crude oil production from other fields.  Tanker loading estimates from third-party data 
sources indicate that loadings at two Saudi Arabian export facilities had already been restored to 
the pre-attack levels by September 17 and, likely driven by news of the expected return of the 
lost production capacity, both Brent and West Texas Intermediate crude oil prices fell sharply on 
that same day.782 

Thus, the largest single-day oil price increase in the past decade was largely resolved within a 
week; assuming that average crude oil prices were approximately $70/barrel in September 2019 
(slightly higher than their actual average), an increase of $7/barrel would have represented a 10 
percent increase as a result of the Abqaiq attack.  This contrasts sharply with the 1973 Arab oil 

 
wages, as well as on output and employment...The message…is thus optimistic in that it suggests a transformation in 
U.S. institutions has inoculated the economy against the responses that we saw in the past.” at p. 414; See William 
Nordhaus, “Who’s Afraid of a Big Bad Oil Shock?”  Available at https://www.brookings.edu/wp-
content/uploads/2007/09/2007b_bpea_nordhaus.pdf; and Blanchard, Olivier and Jordi Gali, J., “The Macroeconomic 
Effects of Oil price Shocks - Why are the 2000s so Different from the 1970s?,” in Gali, Jordi and Mark Gertler, M., 
eds., The International Dimensions of Monetary Policy, University of Chicago Press, February (2010), pp. 373–421, 
available at http://www.nber.org/ses/c0517.pdf.  (Accessed: February 15, 2022). 
780 See U.S. Energy Information Administration EIA, Today in Energy August 20, 2019, available at 
https://www.eia.gov/todayinenergy/detail.php?id=40973; Today in Energy September 12, 2018, available at 
https://www.eia.gov/todayinenergy/detail.php?id=37053.  (Accessed: February 15, 2022). 
781 https://www.eia.gov/todayinenergy/detail.php?id=41413.  (Accessed: February 15, 2022). 
782 Id. 
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embargo, which lasted several months and raised prices nearly 350 percent.783  Saudi Arabia 
could have taken advantage of increased revenue resulting from higher prices following the 
Abqaiq attack, but instead moved rapidly to restore production and tap its domestic reserves to 
control the risk of resulting price increases.  In doing so, the Saudis likely recognized that 
sustained, long-term price increases would reduce their ability to control global supply (and thus 
to affect global prices and their own revenues) by relying on their lower cost of production.784   

Some have asserted that U.S. shale oil resources cannot serve as “swing supply” to provide 
stability in the face of a sudden, significant global supply disruption.  Despite its greater 
responsiveness to price changes, some argue that lead time to bring new shale resources to 
market (6-12 months) is inferior to “true spare capacity” (like Saudi Arabia’s large oil fields) 
because it cannot be deployed quickly enough to mitigate the economic consequences resulting 
from rapidly rising oil prices.785  However, shale oil projects’ lead times are still shorter—and 
possibly much shorter—than conventional oil resource development.  So, while new U.S. oil 
resources may take some time to respond to supply disruptions, they are nevertheless likely to 
provide some stabilizing influence on price increases.   

This is likely to be especially true for price increases that occur more slowly.  When Beccue and 
Huntington updated their 2005 estimates of supply disruption probabilities in 2016,786 they found 
that the probability distribution had generally “flattened,” meaning that supply disruptions of 
most potential magnitudes were less likely to occur under today’s market conditions than they 
had estimated previously in 2005.  In particular, Beccue and Huntington found that supply 
disruptions of between two and four million barrels per day were significantly less likely to 
occur in 2016 than their previous estimates for 2005 had suggested.  Although their recent study 
also estimated that larger supply disruptions (nine or more million barrels per day) are now 
slightly more likely to occur than in previous estimates, in their view disruptions of this 
magnitude remain extremely unlikely under either set of estimates.  

DOT thus concludes that while shale resources may not be able to stabilize oil markets 
sufficiently to prevent price increases that originate from rapid, very large supply disruptions 
elsewhere in the world, U.S. resources are likely to be adequate to stabilize most smaller or less 
rapid disruptions. 

6.2.4.3 Potential Effects of Petroleum Imports on U.S. Military Spending 

A third potential effect of decreasing U.S. demand for petroleum is a decrease in U.S. military 
spending to secure the supply of oil imports from potentially unstable regions of the world and 
protect against their interruption.  If a decrease in fuel consumption that results from adopting 

 
783 See Jeanne Whalen, “Saudi Arabia’s oil troubles don’t rattle the U.S. as they used to,” Washington Post, 
September 19, 2019, available at https://www.washingtonpost.com/business/2019/09/19/saudi-arabias-oil-troubles-
dont-rattle-us-like-they-used.  (Accessed: February 15, 2022). 
784 See, e.g., “Dynamic Delivery: America's Evolving Oil and Natural Gas Transportation Infrastructure,” National 
Petroleum Council (2019) at p. 18, available at: https://dynamicdelivery.npc.org/downloads.php.  (Accessed: 
February 15, 2022). 
785 For such a cautionary analysis, see Richard G. Newell and Brian C. Prest, “The Unconventional Oil Supply 
Boom: Aggregate Price Response from Microdata,” NBER Working Paper No. 23973, October 2017. 
786 Beccue, Phillip, Huntington, Hillard, G., 2016.  An Updated Assessment of Oil Market Disruption Risks: Final 
Report.  Energy Modeling Forum, Stanford University.  
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higher CAFE standards enables any military spending that is clearly attributable to protecting 
flows of imported oil to be scaled back, this reduction in outlays would represent an additional 
external benefit of NHTSA’s action.  Such benefits could also include decreased costs to 
maintain the U.S. Strategic Petroleum Reserve (SPR), because it is intended to cushion the U.S. 
economy against disruptions in the supply of imported oil or sudden increases in the global price 
of oil.  

Some have argued that U.S. military expenditures are uniquely attributable to securing U.S. 
supplies of petroleum from unstable regions of the globe – the Middle East, in particular.  
However, such a perspective appears to confuse those costs with the marginal impact of changes 
in oil consumption of the scale likely to result from this final action on U.S. military activity and 
its costs.  Incrementally reducing domestic petroleum consumption does not seem likely to 
significantly decrease military spending to protect those resources and ensure their safe and 
reliable distribution throughout the world.  An analysis by Crane et al. reached exactly this 
conclusion, stating that “our analysis addresses the incremental cost to the defense budget of 
defending the production and transit of oil.  It does not argue that a partial reduction of the U.S. 
dependence on imported oil would yield a proportional reduction in U.S. spending that is focused 
on this mission.  The effect on military cost from such changes in petroleum use would be 
minimal.”787  NHTSA thus does not believe that any incremental reduction in petroleum 
consumption that may result from this final action will influence whatever U.S. defense spending 
might be uniquely ascribed to protecting the global oil network.   

Eliminating petroleum imports (to both the United States and its national security allies) entirely 
might permit the Nation to scale back its military presence in oil-supplying regions of the globe, 
but only to the extent that maintaining this presence is necessitated by narrow concerns for oil 
production and transportation, rather than reflecting broader geopolitical considerations.  There 
is little evidence that U.S. military activity and spending in those regions have varied over 
history in response to fluctuations in the Nation’s oil imports or are likely to do so over the future 
period spanned by this analysis.  Figure 6-9 shows that military spending as a share of total U.S. 
economic activity has gradually declined over the past several decades, and that any temporary—
although occasionally major—reversals of this longer-term decline have been closely associated 
with U.S. foreign policy initiatives or overseas wars. 

 
787 Crane, K., A. Goldthau, M. Toman, T. Light, S. E. Johnson, A. Nader, A. Rabasa, & H. Dogo, Imported Oil and 
U.S. National Security, Santa Monica, CA, The RAND Corporation (2009) available at 
https://www.rand.org/pubs/monographs/MG838.html.  (Accessed: February 15, 2022).  
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Figure 6-9 – Historical Variation in U.S. Military Spending (Percent of U.S. GDP) 

Figure 6-10 superimposes U.S. petroleum consumption and imports on the history of military 
spending shown in the previous figure.  Doing so shows that variation in U.S military spending 
throughout this period has had little association with the historical pattern of domestic petroleum 
purchases, changes in which instead primarily reflected the major increases in global petroleum 
prices that occurred in 1978-79, 2008, and 2012-13.  More important, Figure 6-10 also shows 
that U.S. military spending varied almost completely independently of the nation’s imports of 
petroleum over most or all this period.  This history suggests that U.S. military activities—even 
in regions of the world that have historically represented vital sources of oil imports—serve a far 
broader range of security and foreign policy objectives than simply protecting oil supplies.  Thus, 
reducing the nation’s consumption or imports of petroleum is unlikely by itself to lead to 
reductions in military spending.  
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Figure 6-10 – Historical Variation in U.S. Military Spending in Relation to U.S. Petroleum Consumption and 

Imports (Percent of U.S. GDP) 

Further, the agency was unable to find any record of the U.S. government attempting to calibrate 
U.S. military expenditures, force levels, or deployments to any measure of the Nation’s 
petroleum use and the fraction supplied by imports, or to an assessment of the potential 
economic consequences of hostilities in oil-supplying regions of the world that could disrupt the 
global market.788  Instead, changes in U.S. force levels, deployments, and spending in such 
regions appear to have been governed by purposeful foreign policy initiatives, unforeseen 
political events, and emerging security threats, rather than by shifts in U.S. oil consumption or 
imports.789  The agency thus concludes that U.S. military activity and expenditures are unlikely 

 
788 Crane et al. (2009) analyzed reductions in U.S. forces and associated cost savings that could be achieved if oil 
security were no longer a consideration in military planning and disagree with this assessment.  After reviewing 
recent allocations of budget resources, they concluded that “the United States does include the security of oil 
supplies and global transit of oil as a prominent element in its force planning” at p. 74 (emphasis added).  
Nevertheless, their detailed analysis of individual budget categories estimated that even eliminating the protection of 
foreign oil supplies completely as a military mission would reduce the current U.S. defense budget by approximately 
12-15 percent.  See Crane, K., A. Goldthau, M. Toman, T. Light, S. E. Johnson, A. Nader, A. Rabasa, & H. Dogo, 
Imported Oil and U.S. National Security., Santa Monica, CA, The RAND Corporation (2009) available at 
https://www.rand.org/pubs/monographs/MG838.html.  (Accessed: February 15, 2022).  
789 Crane et al. (2009) also acknowledge the difficulty of reliably allocating U.S. military spending by specific 
mission or objective, such as protecting foreign oil supplies.  Moore et al. (1997) conclude that protecting oil 
supplies cannot be distinguished reliably from other strategic objectives of U.S. military activity, so that no clearly 
separable component of military spending to protect oil flows can be identified, and its value is likely to be near 
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to be affected by even relatively large changes in consumption of petroleum-derived fuels by 
light duty vehicles.  Certainly, the historical record offers no suggestion that U.S. military 
spending is likely to adjust significantly in response to the decrease in domestic petroleum use 
that result from increasing CAFE standards. 

Nevertheless, it is possible that more detailed analysis of military spending might identify some 
relationship to historical variation in U.S. petroleum consumption or imports.  A number of 
studies has attempted to isolate the fraction of total U.S. military spending that is attributable to 
protecting overseas oil supplies.790  These efforts have produced varying estimates of how much 
it might be reduced if the United States no longer had any strategic interest in protecting global 
oil supplies; however, none has identified an estimate of spending that is likely to vary 
incrementally in response to changes in U.S. petroleum consumption or imports.  Nor have any 
of these studies tracked specific changes in spending that can be attributed to protecting U.S. 
interests in foreign oil supplies over a prolonged period, so they have been unable to identify 
whether their estimates of such spending vary in response to fluctuations in domestic petroleum 
consumption or imports.   

NHTSA thus concludes from this review of research that U.S. military commitments in the 
Persian Gulf and other oil-producing regions of the world contribute to worldwide economic and 
political stability, and insofar as the costs of these commitments are attributable to petroleum 
use, they are attributable to oil consumption throughout the world, rather than simply U.S. oil 
consumption or imports.  It is thus unlikely that military spending would decline in response to 
any decrease in U.S. imports, or consumption, that did result from the final standards.  As a 
consequence, the agency’s evaluation of today’s final CAFE standards assumes that there would 
be no reduction in government spending to support U.S. military activities in response to the 
anticipated reduction in gasoline use and U.S. petroleum consumption.   

 
zero.  Similarly, the U.S. Council on Foreign Relations (2015) takes the view that significant foreign policy missions 
will remain over the foreseeable future even without any imperative to secure petroleum imports.  A dissenting view 
is that of Stern (2010), who argues that other policy concerns in the Persian Gulf derive from U.S. interests in 
securing oil supplies, or from other nations’ reactions to U.S. policies that attempt to protect its oil supplies.  See 
Crane, K., A. Goldthau, M. Toman, T. Light, S.E. Johnson, A. Nader, A. Rabasa, and H. Dogo, Imported Oil and 
U.S. National Security., Santa Monica, CA, The RAND Corporation (2009) available at 
https://www.rand.org/pubs/monographs/MG838.html (Accessed: February 15, 2022); Moore, John L., E.J. Carl, C. 
Behrens, and John E. Blodgett, “Oil Imports - An Overview and Update of Economic and Security Effects,” 
Congressional Research Service,  Environment and Natural Resources Policy Division, Report 98, No. 1 (1997), pp. 
1-14; Council on Foreign Relations, “Automobile Fuel Economy Standards in a Lower-Oil-Price World,” November 
2015; and Stern, Roger J. “United States cost of military force projection in the Persian Gulf, 1976–2007,” Energy 
Policy 38, no. 6 (June 2010), pp. 2816-25, 
https://www.sciencedirect.com/science/article/pii/S0301421510000194?via%3Dihub.  (Accessed: February 15, 
2022).  
790 These include Copulos, M R. “America’s Achilles Heel - The Hidden Costs of Imported Oil,” Alexandria VA - 
The National Defense Council Foundation, September 2003 - 1-153, available at 
http://ndcf.dyndns.org/ndcf/energy/NDCFHiddenCostsofImported_Oil.pdf; Copulos, M R. “The Hidden Cost of 
Imported Oil--An Update.” The National Defense Council Foundation (2007) available at 
http://ndcf.dyndns.org/ndcf/energy/NDCF_Hidden_Cost_2006_summary_paper.pdf; Delucchi, Mark A. & James J. 
Murphy.  “US military expenditures to protect the use of Persian Gulf oil for motor vehicles,” Energy Policy 36, no. 
6 (June 2008), pp. 2253-64; and National Research Council Committee on Transitions to Alternative Vehicles and 
Fuels, Transitions to Alternative Vehicles and Fuels (2013). 

http://ndcf.dyndns.org/ndcf/energy/NDCFHiddenCostsofImported_Oil.pdf
http://ndcf.dyndns.org/ndcf/energy/NDCF_Hidden_Cost_2006_summary_paper.pdf
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Similarly, while the ideal size of the SPR from the standpoint of its potential stabilizing influence 
on global oil prices may be related to the level of U.S. petroleum consumption or imports, its 
actual size has not appeared to vary in response to either of those measures.  The budgetary costs 
for maintaining the SPR are thus similar to U.S. military spending in that, while they are not 
reflected in the market price for oil (and thus do not enter consumers’ decisions about how much 
to use), they do not appear to have varied in response to changes in domestic petroleum 
consumption or imports.  Recognizing these findings, NHTSA’s analysis of the final rule does 
not include any reduction in the cost to maintain a (possibly) smaller SPR as an external benefit 
of the expected reduction in gasoline and petroleum consumption.  This view aligns with the 
conclusions of most recent studies of military-related costs to protect U.S. oil imports, which 
generally conclude that savings in military spending are unlikely to result from incremental 
reductions in U.S. consumption of petroleum products on the scale of those that would resulting 
from adopting higher CAFE standards. 

6.2.4.4 Petroleum Imports and U.S. Energy Security 

Although the vulnerability of the U.S. economy to oil price shocks depends on the nation’s 
aggregate consumption of petroleum rather than on the level of its oil imports, variation in U.S. 
imports may have some independent effect on the frequency, size, or duration of sudden oil price 
increases.  Insofar as it does, the expected value of potential economic costs from supply or price 
disruptions would also depend partly on the fraction of U.S. petroleum use that is supplied by 
imports rather than by domestic production.  In addition, the estimates of these costs that 
NHTSA has relied upon in past regulatory analyses—and continues to employ in this analysis—
are expressed per unit (barrel) of petroleum imported into the U.S, rather than total U.S. 
consumption.  After converting them to a per-gallon basis, the agency applies these costs both to 
fuel that is imported in refined form, and that refined domestically from imported crude 
petroleum.  To support these calculations, NHTSA is required to make specific assumptions 
about how imports of refined gasoline and crude petroleum are likely to change in response to 
reductions in gasoline consumption of the magnitude expected to result from the finalized CAFE 
standards.  

There are three supply “pathways” for fuel consumed by the U.S. light-duty vehicle fleet: 

1. Importing fuel that has been refined overseas into the United States. 
2. Refining fuel within the United States from imported crude petroleum. 
3. Refining fuel within the United States from domestically produced crude petroleum.791  

NHTSA assumed that 50 percent of any change in domestic fuel consumption by cars and light 
trucks would be reflected in changes in the volume of fuel supplied by imports of refined fuel 
(pathway 1), while the remaining 50 percent would be reflected in changes in the volume of fuel 
refined domestically (pathways 2 and 3).  In turn, the agency assumed that 90 percent of any 
change in the volume of fuel refined domestically would be reflected in changes in the volume of 
crude petroleum imported into the United States, while the remaining 10 percent would be 

 
791 We assume that all fuel refined outside the United States and then imported into the United States is refined from 
petroleum that was also produced outside the United States.  Although some of it could be refined from crude 
petroleum produced in the United States and exported, we assume the fraction supplied via this pathway is 
negligible.  
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reflected in changes in the volume produced within the United States  This combination of 
assumptions implied that for a change in domestic fuel consumption of 100 gallons, U.S. imports 
of refined fuel (pathway 1) would change by 50 gallons, while the volume of fuel supplied by 
domestic refining of imported crude oil (pathway 2) would change by 45 gallons, and the volume 
supplied by domestic refining of domestically produced crude oil (pathway 3) would change by 5 
gallons.  In the proposal, the agency reviewed its previous assumption that 90 percent of any 
reduction in domestic petroleum refining to produce gasoline that results from the proposal 
would reduce U.S. petroleum imports, with the remaining 10 percent reducing domestic 
production.   

The agency’s assumption was based on forecasts of changes in future U.S. fuel consumption and 
petroleum imports originally published in AEO 2012.  For most of the past half-century, the 
United States has been a large net importer of crude petroleum, importing the volume necessary 
to meet the difference between U.S. demand for refined petroleum products and domestic 
petroleum supply.  Throughout this period, the United States has also been largely self-sufficient 
in refining, meaning that any gap between domestic demand for refined products and the 
volumes refined from U.S. crude petroleum was primarily met by refining imported crude oil, 
supplemented by minor imports of refined gasoline.  The agency’s assumptions about the 
impacts of conserving fuel on U.S. petroleum imports and refining reflected the expected 
continuation of this situation.  

In the past decade, this situation has changed dramatically.  U.S. production of crude petroleum 
has more than doubled since 2008, making the nation one of the world’s largest producers, while 
net imports of crude oil and refined products have declined more than 75-percent.792  Domestic 
gasoline consumption declined by more than 6 percent between 2007 and 2012, recovering to its 
2007 levels only as recently as 2016 and remaining near or slightly below that level since.  As a 
consequence, the United States shifted from being a net importer of refined petroleum products 
to a net exporter in 2011 and has become a net exporter of gasoline and “blending stock” since 
2016.793 

Over the past decade, increased availability of crude petroleum and other refinery feedstocks in 
combination with declining gasoline consumption has presented U.S. refiners with a choice 
between continuing to produce gasoline at or near their capacity while boosting exports or 

 
792 All petroleum statistics are calculated from data at: (EIA, Petroleum and Other Liquids, 2019).  Net U.S. imports 
are the difference between the nation’s total (or gross) imports from elsewhere in the world and the volumes it 
exports to other nations.   
793 Another recent change in petroleum markets has been the increasing production and trade in gasoline blendstock 
in domestic and international petroleum trade.  While in earlier periods refineries normally produced finished 
gasoline and shipped it to local storage terminals for distribution and retailing, in recent years, refineries have 
increasingly shifted to producing standardized gasoline blendstocks, such as Reformulated Blendstock for 
Oxygenate Blending (or “RBOB”), which are then shipped and blended with ethanol or other additives to make 
finished gasoline that meets local regulatory requirements or customer specifications.  Although this process has 
clear cost and operational advantages, particularly with extensive geographic and seasonal variation in gasoline 
formulations, it complicates the tabulation and comparison of petroleum statistics.  In both EIA and most 
international trade statistics, finished gasoline and blendstocks are treated as separate products, and as reported in 
EIA statistics, large volumes of finished gasoline are now produced from blendstocks by local “blenders,” rather 
than by more centralized “refiners.”  In addition, the volume of refinery production of gasoline and blendstock is 
now systematically lower than consumption of finished gasoline, because up to 10 percent of the volume of gasoline 
sold at retail can be made up of ethanol that is blended into gasoline after it leaves the refinery. 
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cutting back on refinery output.  As gasoline consumption declined from 2007 through 2012, 
U.S. refiners elected not to cut back on their production of gasoline; instead, they increased the 
volume they refined and have continued to do so since 2012 as domestic demand recovered.  
Overall, refinery and blender production of gasoline increased by 9 percent between 2007 and 
2018, while, as noted, consumption has only recently recovered to its 2007 level.   

The resulting excess of gasoline production over domestic consumption has partly displaced 
previous gasoline and blendstock imports, with the remainder taking the form of increased U.S. 
exports.  As Figure 6-11 shows, the decline in U.S. gasoline consumption after 2007 has not led 
to a corresponding decline in refinery production, and the nation now has a capacity to produce 
gasoline that considerably exceeds its current domestic consumption.  Further, this surplus of 
gasoline appears likely to increase in the coming years, as EIA’s Annual Energy Outlook 2019 
reference case (EIA, 2019) anticipates that domestic gasoline consumption will continue to 
decline until nearly 2040.  Thus, unless domestic refinery capacity is significantly curtailed, the 
United States seems likely to remain a net exporter of gasoline through the next three decades.   

 

Figure 6-11 – U.S. Gasoline Consumption, Production, and Net Exports: Historical and Forecast 

Although EIA’s AEO does not include separate forecasts of gasoline exports and imports, that 
same agency’s Short Term Energy Outlook projects that U.S. gasoline exports will continue to 
rise through 2020 (EIA, 2019).794  Taken together, the forecasts of declining U.S. gasoline 

 
794 AEO does not forecast gasoline refining, imports, or exports separately, instead reporting them as part of total 
refined petroleum products.  
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consumption and rising net exports of refined petroleum products reported in AEO 2019 suggest 
that that EIA expects the United States to grow as a net exporter of refined petroleum products – 
including gasoline – through nearly 2040.  In turn, this suggests that any decrease in domestic 
gasoline consumption that would result is likely to accelerate growth in U.S. exports slightly, 
rather than decrease domestic refining and associated upstream emissions.   

As Figure 6-12 below shows, gasoline production along the East Coast has increased rapidly in 
recent years, while shipments into the region from the remainder of the United States and 
imports (mainly from Canada) declined as the gap between consumption and local supply within 
Petroleum Administration for Defense District (PADD) 1 has closed.  In June 2019, however, 
press reports suggested that that one of the largest East Coast refineries (Philadelphia Energy 
Solutions, which represents some 28 percent of East Coast refining capacity) would be closed.795  
At the same time, construction of new refineries continues to be hindered by the density of 
population concentrations and commercial development along the nation’s East Coast, casting 
doubt on the potential for continued increases in local gasoline refining and supply within PADD 
1.  

 

Figure 6-12 – U.S. East Coast (EIA PADD 1) Gasoline Production, Consumption, Transfers from Rest of 
U.S., and Net Exports 

As a consequence, it seems likely that any decrease in gasoline consumption along the nation’s 
East Coast in response to the final action would diminish the need to rely upon foreign imports 

 
795 Seba, E. (2019, July 5). Philadelphia refinery closing reverses two years of U.S. capacity gains.  Retrieved 
September 19, 2019, from Reuters: https://www.reuters.com/article/us-usa-refinery-blast-capacity/philadelphia-
refinery-closing-reverses-two-years-of-u-s-capacity-gains-idUSKCN1U0283.  (Accessed: February 15, 2022).  
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or resumption of once-large transfers from the Gulf Coast.  Pipelines available to transport 
refined petroleum products from Gulf Coast refineries to the East Coast may also face capacity 
limitations, in which case most of any decrease in gasoline consumption there would diminish 
the need of imports from abroad.   

The West Coast, which includes Nevada and Arizona (EIA’s PADD 5), currently accounts for 18 
percent of U.S. gasoline consumption.  Almost all of the gasoline consumed in that region is also 
refined within it, although small volumes are shipped into Arizona from neighboring PADDs by 
pipeline, and small volumes are also exported to Latin America by tanker.  Since the West Coast 
is relatively isolated from other U.S. sources of refined gasoline by long transportation distances 
and limited pipeline capacity, while import terminals for crude petroleum are relatively 
numerous, it appears more likely that marginal increases in gasoline consumption from the rule 
will be met from increases in local (i.e., within-PADD) refining.  Figure 6-13 shows that this has 
been the case in recent decades, as growth in gasoline production within PADD 5 throughout that 
period has closely paralleled growth in local consumption, while net exports have remained 
minimal.   

 

Figure 6-13 – U.S. West Coast (EIA PADD 5) Gasoline Production, Consumption, Transfers from Rest of 
United States, and Net Exports 

The central region of the United States (PADDs 2-4) accounts for the remaining 47 percent of 
U.S. gasoline consumption, and almost 80 percent of the nation’s production of gasoline and 
blendstock.  Although as Figure 6-14 shows the central region was a minor net exporter of 
gasoline as recently as 2007, it now exports some 800,000 barrels per day of gasoline and 
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blendstock (primarily to Mexico and other Latin American countries) and has accounted for 
virtually all of the recent growth in U.S. exports of these two categories of refined products.  
Recent press reports indicate that firms are currently making significant new investments to add 
refining capacity on the Gulf Coast to process the growing supply of U.S. shale oil (Douglas, 
2019), and with the projected future decline in U.S. consumption, any additional gasoline refined 
there is likely to increase U.S. exports.  Thus, future decreases in gasoline consumption in the 
central region of the United States of the magnitude reasonably attributable to the final rule 
would easily allow additional gasoline exports, even in the absence of additional refinery 
investments. 

 

Figure 6-14 – U.S. Central Region (EIA PADDs 2-4) Gasoline Production, Consumption, Transfers to Rest of 
United States, and Net Exports 

To summarize, based on changes in the various sources of supply that have accompanied recent 
changes in consumption within different regions of the United States, the agencies anticipate 
that: 

• Most of any reduction in gasoline consumption resulting from the final rule that occurs 
on the East Coast of the United States, which currently accounts for slightly more than 
one-third (35 percent) of total U.S. consumption, will be met in the near term by reduced 
transfers of gasoline refined in other regions of the United States or lower foreign 
imports, and possibly by reduced domestic refining activity over the longer term; 
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• Most of any decline in U.S. gasoline consumption that occurs on the West Coast, which 
now accounts for about one-sixth (18 percent) of U.S. gasoline consumption, will be 
reflected in reduced gasoline refining within that region; and 

• Most or all of any reduction in U.S. gasoline consumption that occurs in the Central 
region, which currently accounts for nearly half (47 percent) of total U.S. consumption, 
will be met by increasing exports to foreign markets.  

With these expectations and acknowledging the uncertainty surrounding them, NHTSA 
concludes that assuming 50 percent of any reduction in U.S. gasoline consumption resulting 
from the final rule will lead to lower domestic refining activity continues to be reasonable.  Thus, 
the agency continues to use this assumption in its central analysis from the proposal, and to 
examine the sensitivity of its results to varying this fraction over the entire possible range, from 
zero to 100 percent.  

As indicated in the proposal, the agency believes that recent changes in the U.S. petroleum 
production situation and in the global petroleum market may justify changing its previous 
assumption that 90 percent of any reduction in domestic refining of crude petroleum to produce 
gasoline would reduce U.S. oil imports to 100 percent, meaning that changes in domestic 
refining activity would leave U.S. petroleum production unaffected.  U.S. oil production is 
primarily a function of development opportunities identified during prior exploration programs, 
innovations in the technology for drilling and extracting crude petroleum, producer’s 
expectations regarding future world petroleum prices, and the U.S. tax and regulatory situations 
surrounding petroleum exploration and production.   

Crude oil is a fungible, non-perishable commodity, and can usually be transported among local 
oil markets around the globe at modest cost; as a consequence the price of oil in a U.S. domestic 
market such as Texas is highly correlated with its price in markets located in Northern Europe, 
the Far East, and the Middle East.  In contrast, U.S. gasoline consumption depends on a broad 
array of factors that overlap only partially with the determinants of U.S. crude petroleum 
production.  These include domestic economic growth and its consequences for transportation 
demand, current and future vehicle fuel economy, gasoline prices, excise and sales taxes levied 
on gasoline, technological and cultural changes, vehicle prices, and the evolution of 
transportation systems and the built environment.   

Recognizing these differences, changes in U.S. consumption and supply of petroleum products 
seem likely to be reflected primarily in changes in the destination of domestically produced 
crude petroleum, rather than in its total volume.  To the extent that lower U.S. gasoline demand 
affects domestic refining activity, this is likely to be reflected in larger U.S. exports of crude oil, 
rather than in a change in U.S. production of crude oil.  Any changes in U.S. crude oil 
production would arise primarily from second-order impacts of increased domestic gasoline 
demand, such as local changes in the relative prices refiners pay for crude petroleum, or minor 
changes in global oil prices, and these second-order impacts are in turn likely to have relatively 
small effects on U.S. petroleum production.  

For example, localized and temporary changes in production might arise in response to capacity 
limitations or transportation bottlenecks associated with particular regions or refineries, 
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temporarily creating a localized market for higher-priced crude oil.  However, these situations 
would normally be localized and prevail for only a limited time.796  At the same time, the effects 
of any change in domestic petroleum consumption on world oil prices would be attenuated, 
because the impact of increased domestic consumption would be felt on prices and volumes 
supplied in the much larger global petroleum market, rather than confined to the much smaller 
U.S. market.  Any resulting changes in global oil prices and petroleum production would 
inevitably be small when viewed on a world scale, and likely to prompt only minimal responses 
in U.S. petroleum supply. 

As one indication of the likely minimal impacts of higher U.S. gasoline consumption on U.S. 
production of crude petroleum, EIA’s Annual Energy Outlook 2018 included a side case called 
“No New Efficiency Requirements,” which included a freeze on U.S. fuel economy standards 
beginning in 2020.  Comparing its results to those from the AEO 2018 reference case illustrates 
the insensitivity of domestic crude oil production to changes in domestic gasoline consumption, 
as represented in EIA’s National Energy Modeling System (NEMS).  Figure 6-15 below presents 
such a comparison, showing historical trends is U.S gasoline consumption and petroleum 
production, and comparing their projected future trends in the AEO 2018 Reference Case and No 
New Efficiency Requirements alternative.  As it illustrates, the large increase in U.S. gasoline 
consumption under the latter scenario relative to the Reference Case is accompanied by an 
almost indiscernible change in U.S. crude petroleum production, for exactly the reasons 
described above. 

 
796 A recent example occurred in May 2021 when a major East Coast oil pipeline owned by Colonial Pipeline was 
subject to a ransomware attack which raised gasoline prices temporarily in response to regional shortages in the 
Southeast.  See https://www.eia.gov/todayinenergy/detail.php?id=47996.  (Accessed: February 15, 2022).   
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Figure 6-15 – Projected U.S. Gasoline Consumption and Crude Oil Production under AEO 2018 Reference 
and no New Efficiency Standards Scenario Cases 

Considering the factors that influence U.S. petroleum supply and comparing EIA’s forecasts of 
future changes in domestic petroleum production under very different levels of domestic gasoline 
consumption, NHTSA believes that in the context of the current global petroleum market, 
reductions in U.S. gasoline demand on the scale likely to result from this final rule are unlikely 
to prompt significant changes in domestic petroleum production, fuel refining, or net U.S. 
petroleum exports.  Instead, they are likely to affect mainly the distribution of crude petroleum 
and gasoline produced within the United States between domestic consumption and U.S. exports 
to serve global markets, reducing the volumes supplied to U.S. markets and increasing exports.  
As a consequence, the agency’s analysis assumes that the anticipated reduction in domestic 
gasoline consumption is unlikely by itself to significantly affect domestic crude oil production, 
gasoline refining, or U.S. exports and imports of crude petroleum.  While we continue to analyze 
these relationships, the analysis continues to assume that 90 percent of any change in the volume 
of fuel refined domestically will be reflected in changes in the volume of crude petroleum 
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imported into the United States, while the remaining 10 percent will be reflected in changes in 
the volume produced within the United States.797   

6.2.4.5 Emerging Energy Security Considerations 

As discussed above, energy security has traditionally referred to the nation’s ability to reliably 
acquire petroleum in sufficient quantities to meet domestic demand, and to do so at an acceptable 
cost.  However, as the number of electric vehicles on the road continues to increase, the concept 
of energy security is likely to expand to encompass the United States’ ability to supply the 
additional electricity necessary to meet demand for the use of these vehicles.  While nearly all 
electricity in the United States is generated through the conversion of domestic energy sources, 
the electric vehicles also require sophisticated batteries to store and deliver that electricity.  
Currently, the most commonly used vehicle battery chemistries include materials that are either 
scarce or expensive, are sourced from overseas sites, and can pose environmental challenges  
during extraction and conversion to usable material. 

Most vehicle electrification is enabled by lithium-ion batteries.  Lithium-ion battery global 
production chains have several phases:  sourcing (mining/extraction); processing/refining; cell 
manufacturing; battery manufacturing; installation of batteries in an EV; and recycling.798  
Because lithium-ion battery materials have a wide global diversity of origin, accessing them can 
pose varying geopolitical challenges.799  The U.S. International Trade Commission (USITC) 
recently summarized 2018 data from the U.S. Geological Survey on the production/sourcing of 
the four key lithium-ion battery materials, as shown in Table 6-24.  

Table 6-24 – Lithium-ion Battery Materials Mining Production, 2018800 

Lithium-ion Battery 
Material Ores and 

Concentrates 

Countries with Largest Mining 
Production (share of global total) 

U.S. Mining 
Production (share of 

global total) 

Lithium Australia (60 percent), Chile (19 percent), 
China (9 percent), Argentina (7 percent) 

USITC staff estimates 
less than 1 percent 

Cobalt 
Democratic Republic of Congo (64 

percent), Cuba (4 percent), Russia (4 
percent), Australia (3 percent) 

Less than 0.5 percent 

Graphite (natural) China (68 percent), Brazil (10 percent), 
India (4 percent) 0 percent 

 
797 The agency conducted a sensitivity analysis to examine how much an impact changing its assumption that the 
agency assumed that 90 percent of any change in the volume of fuel refined domestically would be reflected in 
changes in the volume of crude petroleum imported into the United States to 100 percent.  As explained in FRIA 
Chapter 7, the change produces less than a 0.1 percent change in total and net benefits.  
798 Scott, Sarah, and Robert Ireland, “Lithium-Ion Battery Materials for Electric Vehicles and their Global Value 
Chains,” Office of Industries Working Paper ID-068, U.S. International Trade Commission, June 2020, at p. 7.  
Available at 
https://www.usitc.gov/publications/332/working_papers/gvc_overview_scott_ireland_508_final_061120.pdf  
(Accessed: February 15, 2022) and in the docket for this rulemaking, NHTSA-2021-0053. 
799 Id. at p. 8. 
800 Id., citing U.S. Geological Survey, Mineral Commodity Summaries, Feb. 2019. 
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Lithium-ion Battery 
Material Ores and 

Concentrates 

Countries with Largest Mining 
Production (share of global total) 

U.S. Mining 
Production (share of 

global total) 

Nickel Indonesia (24 percent), Philippines (15 
percent), Russia (9 percent) Less than 1 percent 

Of these sources, the USITC notes that while “lithium has generally not faced political instability 
risks,” “because of the [Democratic Republic of Congo’s] ongoing political instability, as well as 
poor labor conditions, sourcing cobalt faces significant geopolitical challenges.”801  Nickel is 
also used extensively in stainless steel production, and much of what is produced in Indonesia 
and the Philippines is exported to China for stainless steel manufacturing.802  Obtaining graphite 
for batteries does not currently pose geopolitical obstacles, but the USITC notes that Turkey has 
great potential to become a large graphite producer, which would make its political stability a 
larger concern.803  Thus, as the final column of Table 6-24 illustrates, the United States is 
currently at a disadvantage with respect to domestic sources and capacity of some materials 
critical for producing electric vehicle batteries. 

For materials processing and refining, China is the largest importer of unprocessed lithium, 
which it then transforms into processed or refined lithium.804  It is also the leading producer of 
refined cobalt (with Finland a distant second),805 one of the leading producers of primary nickel 
products (along with Indonesia, Japan, Russia, and Canada), and one of the leading refiners of 
nickel into nickel sulfate, the chemical compound used for cathodes in lithium-ion batteries.806  
Finally, China is also one of the leading processors of graphite intended for use in lithium-ion 
batteries as well.807  In all regions, increasing attention is being given to vertical integration in 
the lithium-ion battery industry from material extraction, mining and refining, battery materials, 
cell production, battery systems, reuse, and recycling.  The United States is lagging in upstream 
capacity; although the United States has some domestic lithium deposits, it has very little 
capacity in mining and refining any of the key raw materials.  However, there can be benefits 
and drawbacks in terms of environmental consequences associated with increased domestic 
mining, refining, and battery production. 

President Biden issued an E.O. on “America’s Supply Chains,” aiming to strengthen the 
resilience of America’s supply chains, including those for automotive batteries.808  Reports are to 
be developed within one year of issuance of the E.O., and the agency will monitor these findings 
as they develop.  However, obstacles to increasing domestic capacity for these critical materials 
have already emerged.  The proposed development of the Rhyolite Ridge lithium deposits in 
Nevada, one of the most significant known deposits in the United States, has been complicated 
by the discovery of an indigenous species of buckwheat, Tiehm’s buckwheat flower.  The Center 

 
801 Id. at p. 8, 9. 
802 Id. at p. 9. 
803 Id. 
804 Id. 
805 Id. at p. 10. 
806 Id. 
807 Id. 
808 E.O. 14017, “America’s Supply Chains,” Feb. 24, 2021.  86 Fed. Reg. 11849 (Mar. 1, 2021). 
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for Biological Diversity (CBD) opposed the development of the mine and submitted an 
emergency petition to the U.S. Fish and Wildlife Service to protect Tiehm’s buckwheat under the 
Endangered Species Act and further complicate permitting of the proposed lithium mine.  CBD’s 
Patrick Donnelly was quoted as saying, “The Biden administration is at a crossroads and the 
Tiehm’s buckwheat is a symbol of our times.”  On June 4, 2021, Tiehm’s buckwheat flower was 
designated an endangered species.809    

China and the EU are also major consumers of lithium-ion batteries, along with Japan, Korea, 
and others.  Lithium-ion batteries are used not only in light-duty vehicles, but in many portable 
consumer electronic devices, and are eventually likely to be used in other forms of transportation 
as well.  Thus, securing sufficient batteries to enable large-scale shifts to electrification in the 
U.S. light-duty vehicle fleet may face new challenges as vehicle companies compete with other 
new sectors, and the transition to electric vehicles may increasingly call for the development of 
domestic sources of critical raw materials and production capacity.  The agency will continue to 
monitor these issues going forward and determine whether access to these materials constitutes a 
new form of energy security for which future analyses must account. 

6.2.5 Changes in Labor Utilization 

Changes in vehicle prices and fuel costs resulting from CAFE technologies will affect new 
vehicle sales, which will in turn affect employment associated with those sales.  Conversely, 
production of new technologies used to improve fuel economy will create new demand for 
production.  NHTSA’s analysis includes estimates of automobile industry employment under 
each of the regulatory alternatives. 

The following sections describe the assumptions, data and calculations used to estimate the final 
rule’s impact on labor utilization.  Chapter 6.2.5.1 characterizes the baseline and describes the 
data used to obtain the relevant labor estimates for the CAFE Model inputs.  Chapter 6.2.5.2 
describes how NHTSA estimates labor within the three employment categories included in the 
analysis—dealership labor, assembly labor, and labor associated with additional fuel saving 
technologies.  Chapter 6.2.5.2.4 contains a description of the calculations done to integrate the 
labor estimates into the CAFE Model. 

6.2.5.1 Labor Utilization Assumptions and Data Description 

The analysis considers the direct labor effects that the CAFE standards have across the 
automotive sector.  The facets of the automotive labor market considered include (1) dealership 
labor related to new light-duty vehicle unit sales; (2) assembly labor for vehicles, engines, and 
transmissions related to new vehicle unit sales; and (3) labor related to mandated additional fuel 
savings technologies, accounting for new vehicle unit sales.  The labor utilization analysis is 
intentionally narrow in its focus and does not represent an attempt to quantify the overall labor or 
economic effects of this rulemaking. 

 
809 Department of the Interior, U.S. Fish and Wildlife Service, Notification of Finding on a Petition to List the 
Tiehm's Buckwheat as Threatened or Endangered.  86 Fed. Reg. 29975 (Jun. 4, 2021). 
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All labor effects are estimated and reported at a national level, in person-years, assuming 2,000 
hours of labor per person-year.810  These labor hours are not converted into monetized values 
because we assume that the labor costs are included into a new vehicle’s purchasing price.  The 
analysis estimates labor effects from the forecasted CAFE Model technology costs and from 
review of automotive labor for the MY 2020 fleet.  NHTSA uses information about the locations 
of vehicle assembly, engine assembly, and transmission assembly, and the percent of U.S. 
content of vehicles collected from American Automotive Labeling Act (AALA) submissions for 
each vehicle in the reference fleet.811  The analysis assumes the portion of parts that are made in 
the United States will remain constant for each vehicle as manufacturers add fuel-savings 
technologies.  This should not be misconstrued as a prediction that the percentage of U.S. made 
parts—and by extension U.S. labor— will remain constant in actuality, but rather that the agency 
does not have a clear basis to project where future productions may shift. 

From this foundation, the CAFE Model estimates automotive labor effects after estimating how 
manufacturers could add fuel economy technology and then estimating impacts on future sales of 
passenger and light trucks.  The model estimates sales in response to the different regulatory 
alternatives, by considering changes in new vehicle prices and new vehicle fuel economy 
levels.812  As vehicle prices rise and fuel consumption falls, we expect vehicle sales to be 
affected.  For this analysis, we assume that if manufacturers sell fewer vehicles, the 
manufacturers may need less labor to produce the vehicles and dealers may need less labor to sell 
the vehicles.  However, as manufacturers add equipment to each new vehicle, the industry will 
require labor resources to develop, sell, and produce additional fuel-saving technologies.813  We 
also account for the possibility that new standards could shift the relative shares of passenger 
cars and light trucks in the overall fleet (see Chapter 4.2.1.3).  Since the production of different 
vehicles involves different amounts of labor, this shift impacts the quantity of estimated labor.  
We take into account the anticipated changes in vehicle sales, shifts in the mix of passenger cars 
and light trucks, and the addition of fuel-savings technologies that result from the regulation. 

For this analysis, NHTSA assumes that some observations about the production of MY 2020 
vehicles will carry forward into the future.  We further assume that assembly labor hours per unit 
will remain at estimated MY 2020 levels for vehicles, engines, and transmissions, and that the 
factor between direct assembly labor and parts production labor will remain the same.  NHTSA 
makes these simplifying assumptions for modeling purposes and recognizes that they may not 
reflect actual automotive practices.  When considering shifts from one technology to another, we 
assume that revenue per employee from suppliers and original equipment manufacturers will 
remain in line with MY 2020 levels, even as manufacturers add fuel-saving technologies and 
experience cost reductions from learning. 

NHTSA focuses this analysis on automotive labor because adjacent employment factors and 
consumer spending factors for other goods and services are uncertain and difficult to predict.  
We do not consider how direct labor changes may affect the macro economy and potentially 
change employment in adjacent industries.  For instance, we do not consider possible labor 

 
810 The agencies recognize a few local production facilities may contribute meaningfully to local economies, but the 
analysis reports only on national effects. 
811 49 CFR part 583. 
812 See Chapter 4.2.1.   
813 For the purposes of this analysis, NHTSA assumes a linear relationship between labor and production volumes. 



  592 

changes in vehicle maintenance and repair, nor does it consider changes in labor at retail gas 
stations.  We also do not consider possible labor changes due to raw material production, such as 
production of aluminum, steel, copper, and lithium, nor does NHTSA consider possible labor 
impacts due to changes in production of oil and gas, ethanol, and electricity. 

Finally, NHTSA makes no assumptions regarding part-time-level of employment in the broader 
economy and the availability of human resources to fill positions.  When the economy is at full 
employment, a fuel economy regulation is unlikely to have much impact on net overall U.S. 
employment; instead, labor would primarily be shifted from one sector to another.  These shifts 
in employment impose an opportunity cost on society, as regulation diverts workers from other 
market-based activities in the economy.  In this situation, any effects on net employment are 
likely to be transitory as workers change jobs (e.g., some workers may need to be retrained or 
require time to search for new jobs, while short-term labor shortages in some sectors or regions 
could result in firms bidding up wages to attract workers).  On the other hand, if a regulation 
comes into effect during a period of less-than-full employment, a change in labor demand due to 
regulation would affect net overall U.S. employment because the labor market is not in 
equilibrium.  Schmalensee and Stavins point out that net positive employment effects are 
possible in the near term when the economy is at less than full employment due to the potential 
hiring of idle labor resources by the regulated sector to meet new requirements (e.g., to install 
new equipment) and new economic activity in sectors related to the regulated sector longer 
run.814  However, the net effect on employment in the long run is more difficult to predict and 
will depend on the way in which the related industries respond to regulatory requirements.  For 
that reason, we do not include multiplier effects but instead focus on labor impacts in the most 
directly affected industries, which would face the most concentrated labor impacts. 

The data used for these calculations include the National Automotive Dealers Association 
(NADA) annual report815 and AALA reports, which are available on the NHTSA website.816  
The NADA report includes information regarding dealership employment related to new light 
duty vehicle sales, which serves as the basis for estimating dealership labor hours.  The AALA 
reports list the passenger vehicles labeled with their percent U.S./Canadian parts content, the 
source of their engine and transmission, and the location of final assembly.  These values serve 
as the basis for estimating final assembly and parts production labor.   

6.2.5.2 Estimating Labor for Fuel Economy Technologies, Vehicle Components, 
Final Assembly, and Retailers 

The following sections discuss NHTSA’s approaches to estimating the individual factors related 
to dealership labor, final assembly labor and parts production, and fuel economy technology 
labor. 

 
814 Schmalensee, Richard, and Robert N. Stavins. “A Guide to Economic and Policy Analysis of EPA’s Transport 
Rule.” White paper commissioned by Exelon Corporation, March 2011 (Docket EPA-HQ-OAR-2010-0799-0676). 
815 National Automotive Dealers Association. (2016). NADA Data 2016: Annual Financial Profile of America’s 
Franchised New-Car Dealerships, available at https://www.nada.org/2016NADAdata.  (Accessed: February 14, 
2022). 
816 https://www.nhtsa.gov/part-583-american-automobile-labeling-act-reports.  (Accessed: February 14, 2022). 
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6.2.5.2.1 Dealership Labor 

The labor utilization analysis evaluates dealership labor related to new light-duty vehicle sales 
and estimates the labor hours per new vehicle sold at dealerships.  For the analysis, NHTSA 
considers changes in dealership labor related to sales, finance, insurance, and management.  
NHTSA does not include maintenance, repair, and parts department labor,817 as their effect on 
new car sales is expected to be limited. 

To estimate the labor hours dealerships spend per new vehicle sold, NHTSA uses data from the 
NADA annual report, which provides franchise dealer employment by department and function.   

We calculate the average labor hours per new vehicle sold by using several values provided in 
the NADA annual report, including the total number of employees at dealerships, the 
percentages of employees involved in sales, the percentage of supervisors, new and total sales 
values, and the number of new vehicles sold in dealerships.  We estimate that slightly less than 
20 percent of dealership employees’ work relates to new vehicle sales (the remaining 
approximately 80 percent of work is related to service, parts, and used car sales).  Using these 
values, we estimate the number of employees involved with new vehicle sales, either as 
salespeople or in supervisory positions.  Equation 6-11 shows how the final labor hours per 
vehicle value is calculated. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

Where: 
Annual labor hours = hours of labor assumed per employee (2,000) 
New vehicle sales jobs = number of employees estimated to be involved with new vehicle sales, 
in salesperson or supervisory positions 
New vehicles sold = total number of new vehicles sold in dealerships 

Equation 6-11 – Calculation of Labor Hours per New Vehicle Sold 

We estimate that on average, dealership employees working on new vehicle sales labor for 27.8 
hours per new vehicle sold.  This labor hours per new vehicle value can be found in the Market 
Data file.  For the CAFE Model’s total jobs outputs, dealership labor scales directly with sales.  
See Chapter 6.2.5.2.4 for further discussion of these outputs. 

6.2.5.2.2 Final Assembly Labor and Parts Production 

As new vehicle sales increase or decrease, the amount of labor required to assemble parts and 
vehicles changes accordingly.  NHTSA evaluates how the quantity of assembly labor and parts 
production labor will increase or decrease in the future as new vehicle unit sales increase or 
decrease.  As a result of the analysis, manufacturing and assembly jobs scale directly with new 
vehicle unit sales, adjusted for origin of manufacturer.  As part of this analysis, NHTSA 
identifies specific assembly locations for final vehicle assembly, engine assembly, and 

 
817 These are other labor components reported by the NADA’s reports.  For instance, a dealership might have a 
department dedicated to vehicle parts and body shop services. 
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transmission assembly for each MY 2020 vehicle, to determine the number of assembly labor 
hours relevant to U.S. employment.  In some cases, manufacturers assemble products in more 
than one location, and the analysis identifies such products and considers parallel production in 
the labor analysis.  For context, Figure 6-16 shows the average percent of U.S. (and Canadian) 
content, weighted by sales, of passenger cars and light trucks in MY 2020. 

 

Figure 6-16 – Sales Weighted Percent U.S. Parts Content by Regulatory Class (MY 2020) 

We estimate average direct assembly labor per vehicle (30 hours), per engine (four hours), and 
per transmission (five hours), based on a sample of U.S. assembly plant employment and 
production statistics and other publicly available information.  NHTSA uses the AALA reports 
described in Chapter 6.2.5.1 to determine the assembly location of the final vehicle, engine, and 
transmission.818   

NHTSA uses the assembly locations and the averages for labor per vehicle to estimate U.S. 
assembly labor hours for each vehicle in the Market Data file.  U.S. assembly labor hours per 
vehicle range from as high as 39 hours if the manufacturer assembles the vehicle, engine, and 
transmission at U.S. plants, to as low as zero hours if the manufacturer imports the vehicle, 
engine, and transmission.  Equation 6-12 shows the how NHTSA calculates the U.S. assembly 
employment hours associated with each vehicle in the Market Data file. 

𝑈𝑈. 𝑆𝑆.𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
= (𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 30) + (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜 ∗ 4)
+ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 5) 

Where:  
Vehicle assembly location = Portion of U.S. content, 1 = fully U.S. 
Engine assembly location = Portion of U.S. content, 1 = fully U.S. 
Transmission assembly location = Portion of U.S. content, 1 = fully U.S. 

 
818 https://www.nhtsa.gov/part-583-american-automobile-labeling-act-reports.  (Accessed March 26, 2022). 

https://www.nhtsa.gov/part-583-american-automobile-labeling-act-reports
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Equation 6-12 – Calculation of U.S. Assembly Employment Hours 

The analysis also considers labor for parts production.  We surveyed motor vehicle and 
equipment manufacturing labor statistics from the U.S. Census Bureau, the Bureau of Labor 
Statistics, and other publicly available sources.  We found that the historical average ratio of 
vehicle assembly manufacturing employment to employment for total motor vehicle and 
equipment manufacturing for new vehicles was roughly constant over the period from 2001 
through 2013, at a ratio of 5.26.819  Observations from 2001-2013 included many combinations 
of technologies and technology trends, and many economic conditions, yet the ratio remained 
about the same over time.  Accordingly, we scaled up estimated U.S. assembly labor hours by a 
factor of 5.26 to consider U.S. parts production labor in addition to assembly labor for each 
vehicle.  The estimates for vehicle assembly labor and parts production labor for each vehicle 
scaled up or down as unit sales scaled up or down over time in the CAFE Model. 

6.2.5.2.3 Fuel Economy Technology Labor 

As manufacturers spend additional dollars on fuel-saving technologies, parts suppliers and 
manufacturers require labor to bring those technologies to market.  Manufacturers may add, shift, 
or replace employees in ways that are difficult for the agencies to predict.  However, it is 
expected that the revenue per labor hour at original equipment manufacturers (OEMs) and 
suppliers will remain about the same as in MY 2020 even as manufacturers include additional 
fuel-saving technology.  To estimate the average revenue per labor hour at OEMs and suppliers, 
the analysis looked at financial reports from publicly traded automotive businesses.820  Based on 
recent figures, NHTSA estimates that OEMs will add one labor year per each $633,066 
increment in revenue and that suppliers will add one labor year per $247,648 in revenue.821 

NHTSA applies these global estimates to all revenues, and the share of U.S. content is applied as 
a later adjustment.822  NHTSA assumes that these ratios will remain constant for all technologies 
rather than that the increased labor costs would be shifted toward foreign countries.  However, 
NHTSA acknowledges that this simplifying assumption might not always hold true.  For 
instance, domestic manufacturers may react to increased labor costs by searching for lower-cost 
labor in other countries. 

The additional labor hours associated with fuel-saving technology are calculated by the CAFE 
Model based on the values seen in Equation 6-13 and reported as part of the total labor hour 
outputs (see the Vehicles Report). 

 
819 NAICS Code 3361, 3363. 
820 The analysis considered suppliers that won the Automotive News “PACE Award” from 2013-2017, covering 
more than 40 suppliers, more than 30 of which are publicly traded companies.  Automotive News gives “PACE 
Awards” to innovative manufacturers, with most recent winners earning awards for new fuel-savings technologies. 
821 The analysis assumed incremental OEM revenue as the RPE for technologies, adjusting for changes in sales 
volume.  The analysis assumed incremental supplier revenue as the technology cost for technologies before RPE 
mark-up, adjusting for changes in sales volume.  
822 U.S. content information is found in the AALA reports discussed in Chapter 6.2.5.1. 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= �
𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑂𝑂𝑂𝑂𝑂𝑂 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+

𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑅𝑅 � ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡

∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

  

Where: 
Fuel economy tech labor hours = labor hours spent on additional fuel-saving technologies (for 
both OEMs and suppliers) 
Vehicle tech cost = cost of technology for each vehicle in the analysis, reported in the CAFE 
Model outputs 
OEM revenue = increment in OEM revenue estimated to correspond to the addition of one labor 
year  
Supplier revenue = increment in supplier revenue estimated to correspond to the addition of one 
labor year  
RPE = revenue per employee 
Percent U.S. content = percent of vehicle components built within the United States 
Annual labor hours = number of hours assumed to correspond to one labor year 

Equation 6-13 – Calculation for Fuel Economy Technology Labor Hours 

6.2.5.2.4 Labor Calculations in the CAFE Model 

NHTSA estimates the total labor effect as the sum of the three components described in the 
previous chapters: changes to dealership hours, final assembly and parts production, and labor 
for fuel-economy technologies (at OEMs and suppliers) that are due to the change in CAFE 
standards.  The CAFE Model calculates additional labor hours for each vehicle, based on current 
vehicle manufacturing locations, simulation outputs for additional technologies, and sales 
changes.  While NHTSA does not consider a multiplier effect of all U.S. automotive-related 
labor on non-auto related U.S. jobs, the analysis does incorporate a “global multiplier” that can 
be used to scale up or scale down the total labor hours.  We set the value of this parameter at 
1.00 (see the Parameters file).  Equation 6-14, Equation 6-15, and Equation 6-16 illustrate how 
the CAFE Model calculates base hours (assembly and dealership), innovation hours (associated 
with additional fuel-saving technology), and total hours, respectively.  The labor utilization 
analysis’s final outputs, total U.S. jobs and thousands of labor hours, can be found in the 
compliance report and the Vehicles Report. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑈𝑈. 𝑆𝑆.𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∗ 𝑈𝑈. 𝑆𝑆.𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
+ 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 

Equation 6-14 – Calculation of Base Work Hours per Vehicle 
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=
𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑂𝑂𝑂𝑂𝑂𝑂 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+
𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅
∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 𝑈𝑈𝑈𝑈 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

Equation 6-15 – Calculation of Innovation Hours per Vehicle 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∗ 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

Equation 6-16 – Calculation of Total Labor Hours per Vehicle 

Section S5.9 of the CAFE Model documentation (U.S. Employment) also describes these U.S. 
labor utilization calculations. 

See Chapter 6.3.3 of the FRIA for further discussion of the total labor impacts associated with 
this rulemaking analysis. 

7 Safety Impacts of Regulatory Alternatives  

The primary objective of CAFE standards is to achieve maximum feasible fuel economy, thereby 
reducing fuel consumption.  In setting standards to achieve this intended effect, the potential of 
the standards to affect vehicle safety is also considered.  As a safety agency, NHTSA has long 
considered the potential for adverse safety consequences when establishing CAFE standards.  
Safety consequences include all impacts from motor vehicle crashes, including fatalities, 
nonfatal injuries, and property damage. 

Safety trade-offs associated with increases in fuel economy standards have occurred in the 
past—particularly before CAFE standards became attribute-based—because manufacturers 
chose to comply with stricter standards by building smaller and lighter vehicles.823  Historically, 
in cases where fuel economy improvements were achieved through reductions in vehicle size and 
mass, the smaller, lighter vehicles did not protect their occupants as effectively in crashes as 
larger, heavier vehicles, on average.  Although NHTSA now uses attribute-based standards, in 
part to reduce the incentive to downsize vehicles to comply with CAFE standards, the agency 
continues to be mindful of the possibility of safety-related trade-offs. 

This safety analysis includes the comprehensive measure of safety impacts from three factors:  

1. Changes in Vehicle Mass.  Similar to previous analyses, NHTSA analyzes whether 
there is any safety impact of changes in vehicle mass made to reduce fuel 
consumption and comply with the standards.  Statistical analysis of historical crash 
data indicates reducing mass in heavier vehicles generally improved safety, while 
reducing mass in lighter vehicles generally reduced safety.  NHTSA’s crash 
simulation modeling of vehicle design concepts for reducing mass revealed similar 
effects.  As discussed below in this analysis, NHTSA was not able to estimate an 

 
823 Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (NRC, 2002).   
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effect of changes in mass on safety with sufficient precision to distinguish them from 
zero at standard confidence levels accepted in the scientific literature. 

2. Impacts of Vehicle Prices on Fleet Turnover.  Vehicles have become safer over 
time through a combination of new safety regulations and voluntary safety 
improvements.  The agency expects this trend to continue as emerging technologies, 
such as advanced driver assistance systems (ADAS), are incorporated into new 
vehicles.  Safety improvements will likely continue regardless of changes to CAFE 
standards.   

As discussed in Chapter 4.2, technologies added to comply with fuel economy standards have an 
impact on vehicle prices, therefore slowing the acquisition of newer vehicles and retirement of 
older ones.  A delay in fleet turnover resulting from higher new vehicle prices is assumed to 
affect safety by slowing the penetration of new safety technologies into the fleet. 

The standards also influence the composition of the light-duty fleet.  As the safety provided by 
light trucks, SUVs and passenger cars responds differently to technology that manufacturers 
employ to meet the standards—particularly mass reduction—fleets with different compositions 
of body styles will have varying numbers of fatalities, so changing the share of each type of 
light-duty vehicle in the projected future fleet impacts safety outcomes. 

3. Increased driving because of better fuel economy.  The “rebound effect” predicts 
consumers will drive more when the cost of driving declines.  More stringent 
standards reduce vehicle operating costs, and in response, some consumers may 
choose to drive more.  Additional driving increases exposure to risks associated with 
motor vehicle travel, and this added exposure translates into higher fatalities and 
injuries. 

The contributions of the three factors described above generate the differences in safety 
outcomes among regulatory alternatives.824  The agency’s analysis makes extensive efforts to 
allocate the differences in safety outcomes between the three factors.  Fatalities expected during 
future years under each alternative are projected by deriving a fleet-wide fatality rate (fatalities 
per vehicle mile of travel) that incorporates the effects of differences in each of the three factors 
from baseline conditions and multiplying it by that alternative’s expected VMT.  Fatalities are 
converted into a societal cost by multiplying fatalities with the DOT-recommended VSL 
supplemented by economic impacts that are external to VSL measurements.  Traffic injuries and 
property damage are also modeled directly using the same process and valued using costs that 
are specific to each injury severity level.  

Only two of the factors—changes in vehicle mass and in the composition of the light-duty fleet 
in response to changes in vehicle prices—impose increased risks on drivers and passengers that 
are not compensated for by accompanying benefits.  In contrast, increased driving associated 

 
824The terms safety performance and safety outcome are related but represent different concepts. When we use the 
term safety performance, we are discussing the intrinsic safety of a vehicle based on its design and features, while 
safety outcome is used to describe whether a vehicle has been involved in a crash and the severity of the accident. 
While safety performance influences safety outcomes, other factors such as environmental and behavioral 
characteristics also play a significant role in safety outcomes. 
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with the rebound effect is a consumer choice that reveals the benefit of additional travel.  
Consumers who choose to drive more have apparently concluded that the utility of additional 
driving exceeds the additional costs for doing so—including the crash risk that they perceive 
additional driving involves.  As discussed in Chapter 7.4, the benefits of rebound driving are 
accounted for by offsetting a portion of the added safety costs.  

The agency categorizes safety outcome through three measures of light-duty vehicle safety: 
fatalities to occupants occurring in crashes, serious injuries sustained by occupants, and the 
number of vehicles involved in crashes that cause property damage but no injuries.  Counts of 
fatalities to occupants of automobiles and light trucks are obtained from NHTSA’s Fatal 
Accident Reporting System (FARS).  Estimates of the number of serious injuries to drivers and 
passengers of light-duty vehicles are tabulated from NHTSA’s General Estimates System (GES), 
an annual sampling of motor vehicle crashes occurring throughout the United States.  Weights 
for different types of crashes were used to expand the samples of each type to estimates of the 
total number of crashes occurring during each year.  Finally, estimates of the number of 
automobiles and light trucks involved in property damage-only (PDO) crashes each year were 
also developed using GES. 

7.1 Projecting Future Fatalities and the Safety Baseline 

To estimate the impact of the standards on safety, the agency uses statistical models that 
explicitly incorporate variation in the safety performance of individual vehicle model years.  The 
agency uses separate models for fatalities, non-fatal injuries, and property damage to vehicles, 
each of which tracks vehicles from when they are produced and sold, enter the fleet, gradually 
age and accumulate usage (and for most vehicles, change in ownership as they age), and are 
ultimately retired from service.  We also consider how newer technologies are likely to affect the 
safety of both individual vehicles and the combined fleet.  The overall safety of the light-duty 
vehicle fleet during any future calendar year is determined by the safety performance of the 
individual model year cohorts comprising it at the ages they will have reached during that year, 
the representation of each model year cohort in that (calendar) year’s fleet, and a host of external 
factors that fluctuate over time, such as driver demographics and behavior, economic conditions, 
traffic levels, and emergency response and medical care.  Combining forecasts of future crash 
rates for individual model year cohorts at different ages with the composition of the vehicle fleet 
produces baseline forecasts of fatalities, non-fatal injuries, and vehicles incurring property 
damage.  Regulatory alternatives that establish new CAFE standards for future model years 
change these forecasts by altering the representation of different model year cohorts making up 
the future light-duty fleet.  

7.1.1 Historical Trends 

The relationships among vehicle age, model year, and safety risks to occupants are significant, 
and have persisted over time.  In a 2020 Research Note, NHTSA’s National Center for Statistics 
and Analysis (NCSA) concluded that an occupant of a 7-11 year-old vehicle is 11 percent more 
likely to be severely injured in a crash than the driver of a vehicle 1-6 years old, after accounting 
for the vehicle’s model year and various factors related to the severity of the crash.  The increase 
in risk is even more pronounced for the oldest vehicles in use, with occupants of vehicles 15 
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years or older being 23 percent more likely to be severely injured in crashes than occupants of 
new vehicles (again after controlling for the model years of vehicles involved in crashes).825   

At the same time, new vehicles have become consistently safer over time, most likely because of 
advancements in safety technology, like side-impact airbags, electronic stability control, and 
(more recently) sophisticated crash avoidance systems starting to work their way into the vehicle 
population.  NHTSA’s 2020 study showed that occupants of cars and light trucks produced in 
model years 1995-2011 were 15 percent more likely to sustain serious injuries in crashes than 
were occupants of vehicles from more recent model years (2012-18), and that occupants of pre-
1987 cars and light trucks were 50 percent more likely to be seriously injured in crashes than 
occupants of vehicles from the most recent model years.  These results account for the model 
year when the vehicles involved in crashes were produced and illustrate that the relationship 
between vehicles’ age and the safety risks to their occupants when they are involved in crashes 
has persisted as new vehicles have become safer.   

7.1.2 Model Framework  

The agency’s model uses an “age-period-cohort” framework, where vehicles produced during a 
single model year – sometimes referred to as “vintages” –represent the cohorts making up the 
vehicle fleet (or “population”).  The safety performance of each model year cohort differs from 
its predecessors, as successive model years entering the light-duty vehicle fleet have generally 
become safer over time due to improvements in their design, increased durability resulting from 
changes in materials and manufacturing methods, and the effects of the agency’s safety 
regulations.  In addition, the safety performance of each individual model year cohort evolves as 
it ages, accumulates use, and the vehicles comprising it are acquired by new owners.  The “age-
period-cohort” approach disaggregates the evolution of fleet-wide safety improvements into 
changes over time, the evolution of each model year’s safety performance from the time it is new 
as it ages, and the influence of factors that vary over time (such as seat and shoulder belt use) and 
affect the safety of all model years in the fleet as they change.826   

The safety performance of individual model-year cohorts tends to follow a common pattern as 
they age, accumulate use, and for most vehicles, experience changes in ownership and locations 

 
825 Liu, C., & Subramanian, R. (2020, March). The relationship between passenger vehicle occupant injury outcomes 
and vehicle age or model year in police-reported crashes (Traffic Safety Facts Research Note. Report No. DOT HS 
812 937). National Highway Traffic Safety Administration. 
826 For a detailed explanation of the rationale and methods for age-period-cohort analysis, see for example Columbia 
University Mailman School of Public Health, Population Health Methods: Age Period-Cohort Analysis, available at 
https://www.publichealth.columbia.edu/research/population-health-methods/age-period-cohort-analysis.  (Accessed: 
February 15, 2022); and Kupper, Lawrence L. et al., ‘‘Statistical age-period-cohort analysis: A review and critique,’’ 
Journal of Chronic Diseases 38:10 (1985), at pp. 811–30, available at 
https://www.sciencedirect.com/science/article/abs/pii/0021968185901055.  (Accessed: February 15, 2022).  
Previous applications of the age-period-cohort framework vehicle safety include Anderson, R. W. G., & Searson, D. 
J. (2015).  Use of age-period-cohort models to estimate effects of vehicle age, year of crash and year of vehicle 
manufacture on driver injury and fatality rates in single vehicle crashes in New South Wales, 2003-2010.  Accident 
Analysis and Prevention, 75: 202-210; Eun, Sang Jun (2020), “Trends in mortality from road traffic injuries in South 
Korea, 1983–2017: Joinpoint regression and age-period-cohort analyses,” Accident Analysis and Prevention 134: 1-
7; and Langley, J., Samaranayaka, A., Begg, D.J., (2013), “Age, period and cohort effects on the incidence of 
motorcyclist casualties in traffic crashes,” Injury Prevention 19 (3), 153–57. https://doi.org/10.1136/injuryprev-
2012-040345.  (Accessed: February 14, 2022). 
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where they are driven.  Historically, vehicles’ safety appears to deteriorate gradually through 
approximately age 20, level off for some period, and in some cases improve thereafter.  The 
causes of this pattern are not completely understood, but the agency believes that the major 
influences are the transition of older vehicles to ownership by habitually riskier drivers, or a shift 
in where vehicles are driven to geographic areas where road conditions are less safe and travel 
speeds higher.   

Figure 7-1 illustrates the age-period-cohort framework as applied to the safety of light-duty 
vehicle travel.  New model years introduced into the fleet have generally become progressively 
safer, and these improvements tend to persist throughout their lifetimes in the fleet (a cohort 
effect).  As indicated previously, vehicles tend to gradually be involved in more frequent and 
dangerous accidents as they age and accumulate use, and this effect – which is surprisingly 
consistent across successive model years – represents an aging effect.  Finally, changes in driver 
demographics and driving behavior, as well as external events such as gradual improvements in 
emergency crash response or transient periods of economic stress can affect the safety 
performance of the entire driver population and vehicle fleet.  Such time-varying factors – which 
are the period effects in age-period-cohort analysis – influence fleet-wide safety independently of 
and in addition to the effects of safer new vehicles entering the fleet and the gradual aging of 
vehicles from previous model years.  As the figure suggests, these three effects are conceptually 
independent, but interact in ways that combine to produce observed historical evolution in the 
overall safety of the light-duty vehicle fleet. 

 

Figure 7-1 – Age, Cohort, and Period Effects on Safety of Light-Duty Vehicle Fleet 

7.1.3 The Aging Effect 

Figure 7-2 illustrates changes in the safety performance of selected recent model years of cars 
and light trucks as each model year cohort ages, using fatalities per billion miles driven as a 
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measure of safety.827  It shows a pattern of gradually increasing fatality rates through 
approximately age 20, after which fatality rates level off, and for some model years ultimately 
decline.  Again, the increase in fatality rates is generally thought to result from transferring 
ownership of used vehicles to riskier drivers and driving locations, although structural fatigue 
with increased usage and mechanical failure also plays some small role in explaining the 
increase.828  The decline in fatality rates for some very old vehicles may result because the small 
share of vehicles that remain in use beyond ages 20-25 tend to be owned by their original 
purchasers, carefully maintained, and driven on a limited basis under relatively safe conditions.  

 

Figure 7-2 – Fatality Rates by Age for Selected Model Years 

 
827 Fatalities occurring among occupants of light-duty vehicles of different model years in use during each calendar 
year were tabulated from NHTSA’s Fatal Accident Reporting System (FARS, https://www.nhtsa.gov/research-
data/fatality-analysis-reporting-system-fars.  (Accessed: February 14, 2022).).  Fatality rates for each model year and 
age were estimated by calculating age as equal to (calendar year – model year) and dividing the count of fatalities 
for each model year and age by the number of miles that vehicles produced during that model year and remaining in 
use during that calendar year are estimated to be driven.  The numbers of non-fatal injuries and vehicles involved in 
property damage-only crashes were tabulated from NHTSA’s National Automotive Sampling System General 
Estimates System (NASS GES, https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-
estimates-system (Accessed: February 14, 2022)), and were converted to rates per billion miles driven using the 
same procedure for calculating fatality rates.  Non-fatal injury and property damage only crash rates show patterns 
of variation over historical model years and age that are similar to those for fatalities shown in Figure 7-2.   
828  https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811825.  (Accessed: February 14, 2022). 
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7.1.4 Safer New Cars: The Cohort Effect 

Figure 7-3 isolates the fatality rates for recent model years during the first years after each one is 
initially produced and sold, and enters the fleet.829  It clearly illustrates the gradual decline in 
new vehicles’ fatality rates over successive model years, but it also shows that this decline has 
proceeded in distinct steps rather than continuously.  As the figure suggests, some of the largest 
improvements in new cars and light truck safety have coincided with the implementation of 
NHTSA safety regulations, including those requiring front-seat air bags (2000), side air bags 
(2006-08), and TPMS (2008).  To reflect the historical pattern of safety improvements shown in 
Figure 7-3, we group successive model years that had similar fatality rates when new into a 
smaller number of cohorts, based on visual examination of the figure and the effective dates of 
NHTSA safety regulations.  Grouping model years in this way also enables more reliable 
identification of the effect of vehicle age, since it allows some independent variation in vehicles’ 
ages within model year cohorts during any calendar year, rather than having age be uniquely 
determined by the combination of calendar year and model year.   

 

Figure 7-3 – Fatality Rates for New Light-Duty Vehicles 

7.1.5 Factors that Affect Safety Over Time: Period Effects 

As indicated previously, period effects are factors that vary over time and modify the gradual 
evolution in safety that results from the introduction of new, safer model year cohorts into the 
fleet and the effect of increasing age on their safety.  Period effects can influence the safety of all 
model years making up the fleet during the years when they occur, although they do not 
necessarily have the same effect on each model year’s safety.  One important example is the 

 
829 Vehicles from each successive new model year are produced and sold over a period spanning well over a single 
calendar year, so we use their average fatality rate for the first two years they are represented in the fleet to be sure 
of including most or all vehicles from each model year.   
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changing demographic composition of the driver population to include more older drivers and 
women; this trend improves overall safety because younger male drivers have historically been 
involved in more frequent crashes.  Another period effect on safety is the gradual shift of driving 
from rural to urban and suburban areas, since road conditions in the latter tend to be safer and 
travel speeds lower, thus reducing the frequency and severity of crashes.  

Other important period influences on safety include driver behavior, since factors like the use of 
lap and shoulder belts – which has increased steadily since they were introduced but appears to 
be reaching a plateau – significantly reduce the severity of injuries vehicle occupants suffer in 
crashes.  Other aspects of driver behavior such as driving under the influence of alcohol (which 
continues to decline) and using electronic devices such as smart phones that distract drivers’ 
attention (which is increasing rapidly, particularly among younger drivers) are both linked to 
more frequent involvement in crashes.  Still other period effects include gradual improvements in 
road design that reduce crash rates, such as wider travel lanes, more gradual curves, and fewer 
roadside obstructions.  Faster response to crash situations by emergency vehicles and personnel, 
together with improved effectiveness of emergency medical treatment, also appear to have 
reduced the consequences of injuries to occupants of vehicles involved in crashes.  

7.1.6 Measuring Safety 

The agency developed separate statistical models to project future rates of fatalities, non-fatal 
injuries, and light-duty vehicles’ involvement in property damage-only crashes per billion 
vehicle-miles of travel.  Fatality rates were calculated by dividing fatalities to occupants of 
vehicles from each model year in use during a calendar year by the total number of miles those 
vehicles were estimated to be driven.  As discussed in detail in Chapter 4.3, the number of 
vehicle-miles (VMT) driven was estimated by multiplying the number of vehicles originally 
produced during each model year that remain use in a subsequent calendar year by the average 
number of miles that vehicles of their age are driven annually.830  This produces fatality rates by 
calendar year and model year for each calendar year from 1990-2019; the model years included 
range from 1975 (the earliest for which reliable registration data were available) to 2019 (the 
newest model year in the fleet during calendar year 2019).  A similar process was used to 
calculate non-fatal injuries to light-duty vehicle occupants per billion miles driven, and the 
number of cars and light trucks involved in property damage-only crashes per billion miles 
driven.   

7.1.7 Model Specification and Estimation 

Defining a model year’s age as the number of calendar years since its introduction (age = 
calendar year – model year) transforms the fatality, non-fatal injury, and property damage rates 
from unique combinations of calendar year and model year to combinations of calendar year and 
age.  Viewed from this perspective, each model year’s safety is measured at different ages 
throughout its lifetime.  Combining these data for a succession of model years makes it possible 
to isolate model year and age-specific effects on overall safety.  However, a model year’s fatality 
rate during any subsequent calendar year will also reflect period-specific influences that are 

 
830 A model year’s age during a past calendar year is equal to the difference between that calendar year and that 
model year.  For example, vehicles produced during model year 2000 were age 10 during calendar year 2010, since 
2010-2000 = 10.  
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unique to that calendar year.  Because each model year has a unique age during the calendar year 
when that specific combination of period effects prevailed, however, it is impossible to 
disentangle aging and period effects on any model year’s safety.831  

Common approaches to overcoming this problem include constraining the effects of multiple 
cohorts, ages, or time periods to be identical, specifying the model to be non-linear in age or 
other parameters, and using measures that vary over calendar years (instead of a simple count of 
calendar years elapsed) to capture period effects.  We use a combination of these approaches; as 
noted previously, we first group successive model years with similar fatality rates in their first 
year of use into “safety cohorts.”  This introduces some independent variation between model 
year and age, because during any calendar year each of the model years grouped together in a 
safety cohort have different ages, which facilitates measuring independent cohort and aging 
effects.  Next, we include both age and its squared value as explanatory variables, in order to 
capture the leveling-off of fatality rates as model years approach age 20 as shown in Figure 7-2.  

We attempted to use various measures likely to affect all vehicles’ safety to capture period 
effects, including the fraction of drivers using lap and shoulder belts, the fraction driving under 
the influence of alcohol, the fraction using hand-held electronic devices while driving, the 
proportion of licensed drivers who are male and under the age of 25 (historically the riskiest 
cohort of drivers), and the fraction of light-duty vehicle travel in rural areas.832  A major 
complication with these measures is that they are closely correlated over the period we analyzed, 
which makes it difficult to disentangle their separate effects.  Table 7-1 shows the pairwise 
correlations among these period-effect measures, and as it illustrates, many of these are 
extremely high.  Thus, even after controlling for the effects of model year and age, it is 
extremely difficult to isolate the independent contributions of these individual factors.   

We use model years from 1975 through 2019 as a panel whose members are observed at 
different ages ranging from their first year in use (age=1) to an upper limit of 40 and employ 
fixed effects to represent individual model years.833  Because the estimation period is shorter 
than 40 years, no single model year can be observed throughout its entire lifetime, but multiple 
model years are observed at every age over the entire range, so the effect of age should be 
measured reliably.  As discussed previously, we group successive model years with similar 
fatality rates during their first year in use into “safety regimes,” and constrain the fixed effects 
for the model years making up each regime to be identical.  This provides some variation in the 
age of vehicles making up each regime during any calendar year, which improves the models’ 
ability to measure the independent effects of age and period variables.  We group 30 model years 
used in the models for fatality rates into 9 safety regimes, with some regimes corresponding to 

 
831 Viewed another way, defining age = calendar year – model year means that there can be independent variation in 
only two of the three variables (since they uniquely determine the third), so it is impossible to identify their three 
separate effects on safety.   
832 We were unable to obtain useful measures of roadway design parameters or road conditions that would be 
expected to affect safety.  Such measures tend to be reported for individual road and highway segments or routes, 
making it difficult to combine these data into aggregate measures that describe overall driving conditions likely to 
affect safety and how those conditions vary by calendar year.  Nor could we identify satisfactory measures of 
incident response time or the effectiveness of emergency medical treatment in reducing the consequences of injuries 
occurring in motor vehicle crashes. 
833 For an introduction to this method, see Wooldridge, Jeffrey M. (2009), Introductory Econometrics: A Modern 
Approach, 4th ed., South-Western Cengage Learning. Chapters 13 and 14. 
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only a single model year and others including as many as 8 consecutive model years.  For the 
non-fatal injury and property damage crash models, we group the 26 model years included in the 
sample into 5 safety regimes, each including 2 to 9 consecutive model years.   

Table 7-1 – Correlations Between Time-Varying Measures Affecting Safety 

Variable Unemployment 
Rate 

% of 
Licensed 
Drivers 

Male 16-
24 

% of 
VMT 

in 
Rural 
Areas 

% of 
Occupants 
Wearing 
Lap and 
Shoulder 

Belts 

% of 
Fatal 

Crashes 
Involving 

Drunk 
Driver 

% of Drivers 
Using Hand-
Held Devices 

Unemployment 
Rate 1.00      

% of Licensed 
Drivers Male 

16-24 
0.11 1.00     

% of VMT in 
Rural Areas -0.05 0.89 1.00    

% of 
Occupants 

Wearing Lap 
and Shoulder 

Belts 

0.06 -0.94 -0.91 1.00   

% of Fatal 
Crashes 

Involving 
Drunk Driver 

0.26 0.88 0.65 -0.75 1.00  

% of Drivers 
Using Hand-
Held Devices 

-0.24 0.44 0.59 -0.66 0.32 1.00 

To address the difficulty presented by close correlation of the period effect measures, some 
model specifications substitute a linear time trend – a variable that takes the value of one in the 
first calendar year and increases by one in each successive calendar year – to capture the effect 
of their joint movement on safety.  Measuring the model’s dependent variables as the natural 
logarithm of the relevant rate (fatalities, non-fatal injuries, or involvement in property damage 
crashes) for each model year and age offers the advantage that a linear time trend implies a 
constant percentage decline in fatality rates each year, and this specification provides a close fit 
to the observed historical pattern of safety improvements.  We also experimented with more 
complex specifications to test whether the rate of improvement in fleet-wide safety has been 
constant over time, including using a non-linear function of time and testing for more abrupt 
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changes in the rate of improvement in safety during the analysis period.834  Finally, after noting 
that the linear time trend did not fully capture the effects on fleet-wide safety associated with the 
economic recessions in 1991, 2001-2, and 2008-11, we supplemented the time trend with 
indicator (or “dummy”) variables to capture temporary departures from the longer-term trend 
during those years.  

With minor variations, we used this same model specification to analyze trends in non-fatal 
injuries per billion miles driven by cars and light trucks, and in the number of those vehicles 
involved in property damage only crashes per billion miles.  The data used to estimate these 
models spanned a slightly shorter period (1990-2015), which was limited by the fact that 
NHTSA implemented a new crash sampling system starting in 2016, and the difficulty of using it 
together with the system it replaced to generate a continuous history of non-fatal and property 
damage crash estimates.  As indicated previously, the groupings of model years into safety 
regimes used in these models also differed slightly from that used in the fatality rate model.  
Based on examination of non-fatal injury and property damage rates for new cars and light 
trucks, model years were grouped into 5 regimes, ranging from 2 to 9 consecutive model years, 
in contrast to the 9 regimes used in the fatality model.   

7.1.8 Estimation Results 

The estimation period for the fatality rate model spans 40 calendar years (1990-2019), while that 
for the non-fatal injury and property damage rate models include 36 years (1990-2015).  This 
means that only a single model year (1990) is observed over its entire 40-year service lifetime for 
the fatality model, while no model year is observed throughout its entire service life for the non-
fatal injury and property damage models.  On average, individual model years are observed for 
13-14 years, with older model years observed only during the later years of their service lives, 
while the most recent model years are of course observed only at the very early ages of their 
expected lifetimes.835  We test several different specifications for each model, and evaluate them 
to determine which version is likely to provide the most reliable forecasts of safety for the future 
period spanned by the agency’s evaluation of potential CAFE standards, which extends through 
2050.   

7.1.9 Fatality Rate Model 

Table 7-2 summarizes estimation results for the fatality rate models.  As it indicates, the fixed 
effects for safety regimes show the expected monotonic decline over progressively more recent 
model years, with surprisingly consistent reductions in new car and light truck fatality rates 
occurring with each move from one regime to the next.  The largest reductions appear to occur in 
model years 2003, 2010, and 2018, although only the last of those is significantly larger than the 
reductions associated with the transitions between previous cohorts.  The values of the diagnostic 

 
834 Because the model’s dependent variable is the natural logarithm of model year and age-specific fatality rates, 
using a linear time trend corresponds to assuming a constant percentage decline in fatality rates each year (rather 
than a constant absolute decline each year), and this pattern appeared to provide the best fit to the observed 
historical pattern of safety improvements.   
835 Although the typical observation period is considerably shorter than the maximum number of years that a model 
year remains in the vehicle fleet, it is only slightly shorter than the “expected” lifetime of a model year, or the length 
of time that a typical car or light truck remains in use after it is produced and initially sold. 
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statistic rho reported in the last line of the table, which measures the proportion of the total 
variation in fatality rates that is accounted for by differences in the models’ fixed effects – 
indicate that the largest share represents persistent variation across model years as they age.  
Overall, the models replicate historical variation in fatality rates both among model years (as 
measured by the values of “Within R-squared”) and over time (“Between R-squared”) quite well.   

As the results for Models 1 and 2 show, the combination of model-year fixed effects and age 
explain much of the variation in fatality rates over time and among model years over their 
lifetimes.  Linear, squared, and cubed values of age all show statistically significant effects, but 
the effect of age cubed is empirically small and does not add measurably to the models’ 
explanatory power, so subsequent results rely on the simpler specification that includes only age 
and age squared to capture the patterns shown previously in Figure 7-2.   

Although not shown in the table, we experimented with interactions between model year and age 
to test whether the form of the aging effect on safety has changed significantly for more recent 
model years.  Using this approach, we found statistically significant differences in the effect of 
age on safety across model year cohorts, with the aging effect appearing to become less 
pronounced for more recent model years.  Because we have only observed the safety of the most 
recent model year grouping (which includes cars and light trucks from model years 2010 through 
2019) up-to age 10, we were unable to use the estimated coefficients on the age variables for this 
cohort to develop reliable projections of these vehicles’ safety performance throughout their 
entire lifetimes.  Since these projections are also used to forecast the safety of future model years 
throughout their lifetimes, the dearth of long-term data for this age cohort required us to rely on 
estimates of the aging effect derived from all model years included in the analysis, rather than 
just the most recent ones.  
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Table 7-2 – Estimation Results for Fatality Rate Models 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Constant 2.005*** 2.079*** 2.134*** 2.699*** 1.555*** 2.378*** 0.563 -1.011 2.077*** 2.063*** 2.154*** 2.169*** 
(0.015) (0.020) (0.019) (0.080) (0.171) (0.317) (0.442) (0.710) (0.016) (0.014) (0.025) (0.030) 

Model Years  
1998-2002 

-0.194 
*** 

-0.194 
*** 

-0.194 
*** 

-0.124 
*** 

-0.109 
*** 

-0.0693 
*** 

-0.0405 
*** 

-0.0371 
** 

-0.0563 
*** -0.0595 *** -0.0576 

*** 
-0.0586 

*** 
(0.012) (0.012) (0.011) (0.014) (0.014) (0.015) (0.015) (0.015) (0.018) (0.015) (0.015) (0.015) 

Model Years  
2003-05 

-0.360 
*** 

-0.351 
*** 

-0.356 
*** 

-0.246 
*** 

-0.225 
*** 

-0.154 
*** 

-0.106 
*** 

-0.0992 
*** 

-0.135 
*** -0.139*** -0.141*** -0.143*** 

(0.016) (0.016) (0.015) (0.021) (0.020) (0.022) (0.023) (0.023) (0.028) (0.024) (0.023) (0.023) 

Model Year 2006 
-0.501 

*** 
-0.489 

*** 
-0.493 

*** 
-0.366 

*** 
-0.337 

*** 
-0.249 

*** 
-0.190 

*** 
-0.183 

*** 
-0.233 

*** -0.235*** -0.240*** -0.242*** 

(0.028) (0.027) (0.025) (0.030) (0.028) (0.030) (0.030) (0.030) (0.038) (0.032) (0.032) (0.032) 

Model Year 2007 
-0.632 

*** 
-0.619 

*** 
-0.620 

*** 
-0.485 

*** 
-0.450 

*** 
-0.354 

*** 
-0.290 

*** 
-0.281 

*** 
-0.342 

*** -0.339*** -0.345*** -0.346*** 

(0.029) (0.028) (0.026) (0.031) (0.030) (0.032) (0.032) (0.032) (0.041) (0.034) (0.034) (0.033) 

Model Years  
2008-09 

-0.750 
*** 

-0.736 
*** 

-0.740 
*** 

-0.591 
*** 

-0.549 
*** 

-0.441 
*** 

-0.371 
*** 

-0.362 
*** 

-0.428 
*** -0.432*** -0.438*** -0.440*** 

(0.023) (0.022) (0.020) (0.028) (0.027) (0.031) (0.032) (0.032) (0.040) (0.034) (0.033) (0.033) 

Model Year 2010 
-0.896 

*** 
-0.882 

*** 
-0.897 

*** 
-0.734 

*** 
-0.688 

*** 
-0.570 

*** 
-0.492 

*** 
-0.482 

*** 
-0.541 

*** -0.568*** -0.574*** -0.577*** 

(0.033) (0.032) (0.030) (0.036) (0.035) (0.037) (0.039) (0.038) (0.049) (0.041) (0.040) (0.040) 

Model Years  
2011-17 

-1.018 
*** 

-1.013 
*** 

-1.043 
*** 

-0.846 
*** 

-0.792 
*** 

-0.649 
*** 

-0.555 
*** 

-0.545 
*** 

-0.592 
*** -0.621*** -0.635*** -0.638*** 

(0.019) (0.018) (0.017) (0.032) (0.031) (0.038) (0.040) (0.039) (0.049) (0.041) (0.040) (0.040) 

Model Years  
2018--19 

-1.316 
*** 

-1.355 
*** 

-1.359 
*** 

-1.111 
*** 

-1.038 
*** 

-0.851 
*** 

-0.727 
*** 

-0.721 
*** 

-0.775 
*** -0.804*** -0.829*** -0.832*** 

(0.057) (0.055) (0.052) (0.060) (0.057) (0.060) (0.062) (0.061) (0.078) (0.065) (0.064) (0.064) 

Vehicle Age 
0.0901 

*** 
0.0601 

*** 
0.0924 

*** 0.106*** 0.109*** 0.122*** 0.127*** 0.128*** 0.114*** 0.115*** 0.117*** 0.117*** 

(0.002) (0.006) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Vehicle Age2 
-0.00193 

*** 0.000753 -0.00203 
*** 

-0.00217 
*** 

-0.00219 
*** 

-0.00242 
*** 

-0.00242 
*** 

-0.00243 
*** 

-0.00203 
*** 

-0.00213 
*** 

-0.00222 
*** 

-0.00222 
*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vehicle Age3   -6.42e-05 
*** 

          



  610 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 (0.000)           

Unemployment 
Rate 

  -2.327 
*** 

-2.025 
*** 

-2.936 
*** 

-3.241 
*** 

-3.396 
*** 

-3.568 
*** 

    

  (0.242) (0.232) (0.251) (0.243) (0.235) (0.241)     
% Using 
Lap/Shoulder 
Belts 

   -0.933 
*** 

-0.736 
*** 

-1.801 
*** 

-0.903 
*** 0.0826     

   (0.129) (0.125) (0.242) (0.282) (0.448)     
% Fatalities 
Involving Drunk 
Driver 

    3.240*** 3.065*** 0.16 1.16     

    (0.435) (0.659) (0.815) (0.882)     

% Using Hand-
Held Electronic 
Devices 

     -0.0467 
*** 

-0.0342 
*** 

-0.0294 
*** 

    

     (0.007) (0.007) (0.007)     
% Drivers Male 
<25 Years 

      29.33*** 27.63***     
      (5.171) (5.160)     

% Rural Travel 
       1.642***     
       (0.583)     

Trend 
        -0.0217 

*** -0.0203 *** -0.0337 
*** 

-0.0327 
*** 

        (0.002) (0.002) (0.004) (0.004) 

Trend2 
          0.000373 

*** 
 

          (0.000)  

Trend Shift 
           -0.00176 
           (0.002) 

Trend Shift x 
Trend 

           0.000387 
*** 

           (0.000) 
Calendar Year 
1991 

         0.191*** 0.122** 0.107* 
         (0.053) (0.054) (0.055) 

Calendar Year 
2001 

         0.0667 0.00872 -0.00495 
         (0.044) (0.044) (0.046) 

Calendar Year 
2007 

         0.0469** 0.0673*** 0.0650*** 
         (0.018) (0.018) (0.018) 

Calendar Year 
2008 

         -0.0166 0.00386 0.00198 
         (0.018) (0.018) (0.018) 
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Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Calendar Year 
2009 

         -0.170*** -0.150*** -0.151*** 
         (0.017) (0.018) (0.017) 

Calendar Year 
2010 

         -0.153*** -0.134*** -0.135*** 
         (0.017) (0.017) (0.017) 

              
Observations 448 448 448 448 448 393 393 393 448 448 448 448 
R-squared within 
(1) 0.89 0.90 0.91 0.92 0.93 0.93 0.93 0.93 0.91 0.94 0.94 0.94 

R-squared 
between (2) 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

R-squared overall 
(3) 0.67 0.67 0.66 0.81 0.84 0.92 0.94 0.94 0.91 0.91 0.90 0.90 

Corr (u_i, Xb) (4) 0.43 0.44 0.42 0.56 0.60 0.74 0.75 0.75 0.68 0.67 0.66 0.66 
sigma_u (5) 0.42 0.42 0.43 0.36 0.34 0.28 0.25 0.24 0.26 0.27 0.28 0.28 
sigma_e (6) 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.09 0.07 0.07 0.07 
rho (7) 0.95 0.95 0.96 0.95 0.95 0.94 0.93 0.93 0.90 0.93 0.94 0.94 
(1) Indicates proportion of variance among individual model year cohorts model accounts for.  
(2) Indicates proportion of variance for all model year cohorts over time model accounts for.  
(3) Indicates proportion of total variance among individual model year cohorts and over time model accounts for.  
(4) Correlation between model error term and explanatory variables included in model. 
(5) Standard deviation of residual terms for individual model year cohorts across time periods.  
(6) Standard deviation of overall model error term.  
(7) Proportion of total variance accounted for by differences among model year cohorts. 
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The results for Models 3 through 8 reported in Table 7-2 illustrate the challenge of incorporating 
the various period effect measures caused by their close correlations.  Increases in the 
unemployment rate, which are primarily associated with the recessions occurring in 1991-92, 
2001-02, and 2008-10, have the expected effect of reducing fatality rates, which is well-
documented in previous research.  Not surprisingly, Models 4 through 8 show that increasing use 
of lap and shoulder belts over time has made a major contribution to the decline in fatality rates, 
although growth in their use has slowed in recent years and appears to be approaching a plateau 
(near 90 percent).  Driving under the influence of alcohol is strongly associated with higher 
fatality rates in Models 5 to 8, although the apparent strength of this result may largely reflect the 
fact that it is measured as the fraction of fatalities occurring in crashes where at least one driver 
showed a high alcohol blood level, so some “reverse causality” undoubtedly contributes to this 
result. 

Models 6 to 8 in Table 7-2 appear to show that drivers’ use of hand-held electronic devices 
reduces fatality rates, but this result strongly contradicts the seemingly persuasive argument that 
their use distracts drivers visually, cognitively, and manually, so it must be regarded skeptically.  
The fact that including this measure significantly affects the estimated effect of seat belt use also 
suggests that its counter-intuitive estimated effect may stem from their relatively close 
correlation (-0.66, shown previously in  Table 7-1).  The estimated positive coefficients on 
variables measuring the fraction of licensed drivers who are young (under age 25) males and the 
fraction of car and light truck travel in rural areas shown for Models 7 and 8 in Table 7-2 suggest 
that declines over time in both of these measures have also contributed significantly to the 
observed decline in fatality rates.  Again, however, the close correlation of these measures with 
seat belt use and driving under the influence of alcohol (as well as with each other; see Table 
7-1) and the fact that introducing them into the model causes such pronounced changes in the 
estimated coefficients on those variables makes the strength of their apparent effect on fatalities 
suspect.   

As an alternative to relying on these period effect variables, Models 9 to 12 in Table 7-2 
substitute a linear time trend in an effort to capture their combined effect.  As indicated 
previously, this implies a constant annual percent decline in fatality rates, which means that the 
magnitude of the annual reduction in fatality rates due to the combination of period effects has 
declined over time.  The coefficient estimates on the time trend variable in Models 9 through 12 
imply a 2-3 percent annual decline in fatality rates for occupants of cars and light trucks of all 
model years and ages included in the sample, over and above the effect of sustained 
improvements in the safety of new models entering the fleet each year.  Models 10 to 12 
supplement the time trend with indicator variables for recession years, to account for the fact that 
higher unemployment or other economic stresses during those years may have changed the 
composition of drivers on the road in ways that resulted in safer travel.  As the estimated 
coefficients on these variables show, fatality rates declined more rapidly than the historical 
downward trend would have predicted in 2009 and 2010, although there was little or no evidence 
that this occurred in 1992 or 2008, and the results suggest that declines in fatalities during 1991 
and 2007 were actually slower than would have been predicted by the historical trend alone.   

Finally, Models 11 and 12 include basic tests for whether the downward historical trend in 
fatality rates has slowed over time.  Model 11 tests for gradual slowing in the rate by including 
the squared value of the time trend; the positive coefficient on the squared value suggests a 
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slowing trend, but its value is so small relative to that of the coefficient on the time trend itself 
that this slowing has barely been perceptible.836  Model 12 tests for whether there was a 
perceptible slowing of the downward trend in fatalities beginning in the year 2007, as visual 
examination of the historical trend in the fleet-wide fatality rate suggests.  As with the previous 
test, the positive coefficient on the Trend Shift variable in Model 12 suggests some slowing of 
the historical decline, but it again appears to be so slight as to be almost imperceptible.837  On 
balance, we conclude that after accounting for the gradual improvement in new car safety and the 
association between age and diminished safety, a constant annual percentage decline explains 
historical variation in fatality rates as well as do more complex trends.  

7.1.10 Non-Fatal Injury Rates 

Table 7-3 reports estimation results for a similar set of models to explain the historical decline in 
non-fatal injuries sustained by occupants of automobiles and light-duty trucks.  As with the 
fatality rate model, the dependent variable in all of the model specifications summarized in the 
table is the natural logarithm of non-fatal injuries per billion miles traveled by cars and light 
trucks, and this rate varies across model years in any calendar year as well as over the calendar 
years for which any model year is represented in the data sample.  The non-fatal injury rate 
models use a much coarser grouping of model years into safety regimes than did the fatality rate 
model, with the 26 model years included in the sample grouped into only 5 regimes.  
Nevertheless, Table 7-3 shows that the fixed effects associated with the safety regimes show the 
same monotonic decline over successive model years, again with fairly consistent reductions in 
non-fatal injury rates as the regimes change with model years 1998, 2001, 2007, and 2009.  The 
largest reductions appear to occur in model years 1998 and 2001, with slightly smaller declines 
occurring in 2007 and 2009.   

As with fatality rates, the results for Models 1 and 2 reported in Table 7-3 show that model-year 
fixed effects and age alone explain much of the variation in fatality rates over time and among 
model years, and the effect of age cubed is empirically small and does not increase the models’ 
explanatory power.  The estimated effects of the period variables on non-fatal injury rates also 
parallel those observed for fatality rates, with a few notable exceptions, and once again illustrate 
the difficulty of incorporating multiple period effect measures.  Increases in the unemployment 
rate again have the expected effect of reducing injury rates, while increasing use of lap and 
shoulder restraints again appears to have significantly reduced the rate of non-fatal injuries to car 
and light truck occupants.  In Models 5 and 6, driving under the influence of alcohol appears to 
be significantly associated with lower injury rates, but this effect disappears in subsequent 
models and in any case is again suspect for the reasons discussed previously.  

Table 7-3 shows that drivers’ use of hand-held electronic devices has no apparent effect on non-
fatal injury rates, although this result may again stem partly from its correlation with the measure 
of lap and shoulder belt use.  The estimated negative coefficients on the fraction of licensed 
drivers who are young males – which suggest that their representation in the driver population 
reduces the rate of non-fatal injuries – are implausible, and the magnitude of the coefficient in 

 
836 For example, including this additional variable in Model 11 reduces the estimated annual decline in fatality rates 
from -3.4 to -3.3 percent.  
837 The results for Model 12 suggest that the annual decline in fatality rates slowed from 3.3 to 3.2 percent beginning 
in 2007.  
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Model 8 also makes it extremely suspect.  The estimated effect of the shift in car and light truck 
travel from rural to urban areas has the expected direction (it reduces the rate of non-fatal 
injuries), but its magnitude is suspiciously large and including it removes all of the explanatory 
power from the seat belt use measure; both results seem likely to reflect the extremely close 
correlation between these two measures (-0.91, as shown in Table 7-3), rather than their true 
effects.  
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Table 7-3 – Estimation Results for Non-Fatal Injury Rate Models 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Constant 
6.846*** 6.909 *** 6.902 *** 7.755*** 8.214*** 8.381 *** 8.905*** 6.019*** 6.890*** 6.882*** 7.067*** 6.935*** 

(0.019) (0.026) (0.025) (0.095) (0.206) (0.403) (0.685) (0.918) (0.021) (0.019) (0.031) (0.033) 

Model Years 
1998-2000 

-0.195 
*** 

-0.195 
*** 

-0.189 
*** 

-0.0900 
*** 

-0.0944 
*** 

-0.0813 
*** 

-0.0866 
*** 

-0.0823 
*** 

-0.124 
*** -0.124*** -0.119*** -0.112*** 

(0.017) (0.016) (0.017) (0.018) (0.018) (0.019) (0.020) (0.020) (0.023) (0.019) (0.017) (0.017) 

Model Years 
2001-2006 

-0.351 
*** 

-0.341 
*** 

-0.335 
*** 

-0.165 
*** 

-0.171 
*** 

-0.150 
*** 

-0.160 
*** 

-0.150 
*** 

-0.226 
*** -0.215*** -0.221*** -0.209*** 

(0.015) (0.015) (0.016) (0.023) (0.023) (0.027) (0.029) (0.028) (0.032) (0.026) (0.025) (0.024) 

Model Years 
2007-2008 

-0.465 
*** 

-0.453 
*** 

-0.437 
*** 

-0.207 
*** 

-0.220 
*** 

-0.192 
*** 

-0.207 
*** 

-0.194 
*** 

-0.286 
*** -0.271*** -0.289*** -0.277*** 

(0.028) (0.028) (0.029) (0.036) (0.036) (0.041) (0.044) (0.043) (0.049) (0.041) (0.038) (0.036) 

Model Years 
2009-2015 

-0.511 
*** 

-0.508 
*** 

-0.491 
*** 

-0.212 
*** 

-0.229 
*** 

-0.200 
*** 

-0.218 
*** 

-0.206 
*** 

-0.290 
*** -0.320*** -0.348*** -0.334*** 

(0.025) (0.025) (0.026) (0.038) (0.038) (0.047) (0.050) (0.049) (0.056) (0.046) (0.043) (0.041) 

Vehicle Age 
0.0487 

*** 0.0195 ** 0.0499 
*** 

0.0729 
*** 

0.0715 
*** 

0.0847 
*** 

0.0837 
*** 

0.0845 
*** 

0.0629 
*** 0.0657*** 0.0706*** 0.0722*** 

(0.004) (0.009) (0.003) (0.004) (0.004) (0.005) (0.005) (0.004) (0.005) (0.004) (0.004) (0.004) 

Vehicle Age2 
-0.00193 

*** 0.00104 -0.00192 
*** 

-0.00222 
*** 

-0.00220 
*** 

-0.00267 
*** 

-0.00266 
*** 

-0.00267 
*** 

-0.00202 
*** 

-0.00214 
*** 

-0.00239 
*** 

-0.00242 
*** 

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vehicle Age3  
 -8.14e-05 

*** 
          

 (0.000)           

Unemployment 
Rate 

  -1.183 
*** 

-0.991 
*** -0.698** -1.010 

*** 
-1.049 

*** 
-2.112 

*** 
    

  (0.361) (0.323) (0.341) (0.335) (0.337) (0.401)     

% Using Lap/ 
Shoulder Belts 

   -1.410 
*** 

-1.486 
*** 

-1.240 
*** 

-1.498 
*** 0.71     

   (0.152) (0.154) (0.312) (0.414) (0.630)     

% Non-Fatal 
Injuries in 

    -1.296** -2.722 
*** -1.95 0.889     
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Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Crashes 
Involving Drunk 
Driver 

    (0.517) (0.902) (1.217) (1.331)     

% Using Hand-
Held Electronic 
Devices 

     0.00915 0.00542 0.0149     

     (0.009) (0.010) (0.009)     

% Drivers Male 
<25 years 

      -8.16 -27.34 
*** 

    

      (8.629) (9.344)     

% Rural Travel 
       4.358***     
       (0.961)     

Trend 
        -0.0130 

*** 
-0.0115 

*** 
-0.0419 

*** 
-0.0155 

*** 
        (0.003) (0.002) (0.005) (0.004) 

Trend2 
          0.000952 

*** 
 

          (0.000)  

Trend Shift 
           -0.0165 

*** 
           (0.002) 

Trend Shift x 
Trend 

           0.000737 
*** 

           (0.000) 

Calendar Year 
1991 

         0.0417 -0.0931 -0.0124 
         (0.060) (0.059) (0.058) 

Calendar Year 
2001 

         -0.0695 -0.181*** -0.122** 
         (0.049) (0.049) (0.048) 

Calendar Year 
2007 

         -0.0852 
*** -0.0493** -0.0431** 

         (0.021) (0.020) (0.019) 

Calendar year 
2008 

         -0.0979 
*** 

-0.0651 
*** 

-0.0616 
*** 

         (0.020) (0.019) (0.019) 
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Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Calendar Year 
2009 

         -0.215*** -0.187*** -0.185*** 
         (0.020) (0.019) (0.018) 

Calendar Year 
2010 

         -0.117*** -0.0952 
*** 

-0.0958 
*** 

         (0.019) (0.018) (0.017) 
              

Observations 336 336 336 336 336 281 281 281 336 336 336 336 
R-squared within 
(1) 0.37 0.39 0.39 0.52 0.53 0.62 0.62 0.64 0.41 0.61 0.66 0.69 

R-squared 
between (2) 0.57 0.67 0.74 0.99 0.99 0.99 0.99 0.99 0.95 0.98 0.99 0.99 

R-squared overall 
(3) 0.18 0.22 0.26 0.79 0.79 0.83 0.82 0.84 0.68 0.73 0.72 0.75 

Corr (u_i, Xb) (4) 0.10 0.14 0.19 0.74 0.73 0.73 0.72 0.73 0.66 0.61 0.57 0.59 
sigma_u (5) 0.21 0.21 0.20 0.09 0.10 0.08 0.09 0.09 0.12 0.13 0.14 0.13 
sigma_e (6) 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.10 0.08 0.08 0.07 
rho (7) 0.81 0.81 0.79 0.50 0.54 0.51 0.54 0.53 0.60 0.71 0.77 0.77 

Footnotes: See Table 7-2 – Estimation Results for Fatality Rate Models. 

 



  618 

Substituting the time trend measure for the period effect variables in the models for non-fatal 
injuries reveals a considerably slower rate of decline (1.1-1.6 percent annually, except for the 
anomalously large decline suggested by Model 11) than was the case with fatalities.  Again, 
including indicator variables for recession years improves the model’s fit to the data slightly, and 
the transient effects of higher unemployment and other economic stresses during those years 
weaken the downward trend in non-fatal injuries slightly.  As with the fatality rate models, 
Models 11 and 12 in Table 7-3 show some slowing in the downward trend in non-fatal injury 
rates, although the apparent increase in the strength of the downward trend suggested by Model 
11 seems suspect.  In any case, both models show only very slight weakening in the downward 
historical trend, slowing it by only 0.1 to 0.2 percent per year.  

7.1.11 Property Damage Rates 

Table 7-4 shows the results of estimating similar models for crashes that cause only property 
damage to vehicles or the immediate surroundings.  Here, the dependent variable is the natural 
logarithm of the number of vehicles involved in property damage only crashes per billion 
vehicle-miles driven by cars and light trucks, and this measure again varies across the model 
years (and thus vehicles of different ages) making up the fleet during each calendar year, as well 
as over successive calendar years (and thus ages) for each model year.  The models for property 
damage group model years into the same 5 clusters as did those for non-fatal injuries the fatality 
rate model, but Table 7-4 shows that there is not the same orderly downward progression the 
fixed effects associated with model year groups as was evident in the models for fatality and 
non-fatal injury rates.  In several specifications, property damage crash rates for model years 
2007-08 seem to be slightly higher when they were newly introduced than those for the 
immediately preceding group of model years, although in each of those cases crash involvement 
rates once again decline significantly for model years 2009 and later. 

As with fatality and non-fatal injury rates, Table 7-4 shows that model-year fixed effects and age 
alone explain much of the variation in property damage rates, while the effect of age cubed is 
empirically small and does not significantly improve the models’ ability to explain historical 
variation in the data.  The estimated effects of the period variables on the rate of property 
damage crashes are inconsistent across models and difficult to interpret; for example, while the 
estimated coefficient on the unemployment rate consistently shows the anticipated negative sign, 
its magnitude is extremely sensitive to the combination of other period effect variables that are 
included.  The effect of the drunk driving measure varies in both direction and magnitude 
depending on the other variables used in combination with it, and there is little evidence that 
drivers’ use of hand-held electronic devices affects property damage crash rates significantly.  
The effects of the fraction of licensed drivers who are young males and the proportion of vehicle 
use in rural areas have the expected directions, although the strength of the former again seems 
unexpectedly large in relation to the other period effect measures.   

The results for Models 8 through 11 in Table 7-4 provide only limited evidence that the same 
downward trend that was observed for fatality and non-fatal injury rates also applies in the case 
of property damage crashes.  One possible explanation for this result is that crashes resulting in 
significant property damage, but no injuries have actually become more common over time as 
vehicles have become increasingly complex in design and more costly to repair.  Only Models 10 
and 11 in Table 7-4, the two specifications that allow for a weakening in the trend over time, 
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show the expected downward trend over time in the rate of cars’ and light trucks’ involvement in 
property damage crashes.  Its apparent strength in Model 10 – which allows the trend to slow 
gradually over time – is not only large by comparison to those estimated for fatal and injury 
crashes, but also and well over twice that in Model 11, which allows the trend to become less 
steep starting in 2010.  In both cases, however, the trend moderates only very minimally over 
time, the same result that was observed in the models for fatality and non-fatal injury rates.   
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Table 7-4 – Estimation Results for Property Damage-Only Crash Involvement Rates 

Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 

Constant 7.822*** 7.858*** 7.861*** 7.801*** 8.230*** 9.302*** 9.360 *** 7.813 *** 7.796 *** 8.044*** 7.963*** 
(0.014) (0.019) (0.019) (0.138) (0.206) (0.244) (0.242) (0.016) (0.015) (0.022) (0.023) 

Model Years 
1998-2000 

-0.0420 
*** 

-0.0422 
*** 

-0.0380 
*** 

-0.0366 
*** 0.0184 -0.0326 

** -0.0257* -0.0562 
*** 

-0.0578 
*** 

-0.0510 
*** 

-0.0478 
*** 

(0.013) (0.012) (0.012) (0.013) (0.012) (0.013) (0.013) (0.017) (0.015) (0.012) (0.012) 

Model Years 
2001-2006 

-0.0793 
*** 

-0.0740 
*** 

-0.0687 
*** 

-0.0665 
*** 0.0105 -0.0842 

*** 
-0.0703 

*** 
-0.104 

*** 
-0.103 

*** -0.110 *** -0.106*** 

(0.012) (0.012) (0.012) (0.013) (0.014) (0.019) (0.019) (0.025) (0.022) (0.017) (0.017) 

Model Years 
2007-2008 

-0.0610 
*** -0.0541 ** -0.0410* -0.0373 0.0623 

*** 
-0.0756 

*** -0.0567* -0.0970 
** 

-0.0909 
*** -0.115 *** -0.111*** 

(0.021) (0.021) (0.022) (0.024) (0.023) (0.029) (0.029) (0.038) (0.033) (0.026) (0.026) 

Model Years 
2009-2015 

-0.0930 
*** 

-0.0911 
*** 

-0.0786 
*** 

-0.0738 
*** 0.0374 -0.134 

*** 
-0.112 

*** 
-0.137 

*** 
-0.162 

*** -0.198 *** -0.194*** 

(0.019) (0.019) (0.019) (0.022) (0.024) (0.033) (0.033) (0.043) (0.038) (0.030) (0.029) 

Vehicle Age 
0.0379 

*** 0.0212 *** 0.0387 
*** 

0.0391 
*** 

0.0602 
*** 

0.0495 
*** 

0.0512 
*** 

0.0351 
*** 

0.0369 
*** 0.0434 *** 0.0441 *** 

(0.003) (0.007) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.002) 

Vehicle Age2 
-0.00142 

*** 0.00028 -0.00142 
*** 

-0.00142 
*** 

-0.00201 
*** 

-0.00196 
*** 

-0.00197 
*** 

-0.00141 
*** 

-0.00150 
*** 

-0.00183 
*** 

-0.00185 
*** 

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Vehicle Age3  
 -4.67e-05 

*** 
         

 (0.000)          

Unemployment 
Rate 

  -0.831 
*** 

-0.873 
*** 

-1.241 
*** 

-1.549 
*** 

-1.827 
*** 

    

  (0.270) (0.286) (0.241) (0.227) (0.243)     
% of Vehicles 
Damaged in 
Crashes 
Involving Drunk 
Driver 

   0.189 -1.746 
*** 1.767** 3.126***     

   (0.430) (0.641) (0.775) (0.898)     

% Using Hand-
Held Electronic 
Devices 

    0.00754 0.0101** 0.00293     

    (0.005) (0.005) (0.005)     
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Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 

% Drivers Male 
<25 years 

     -30.54 
*** 

-44.27 
*** 

    

     (4.362) (6.413)     

% Rural Travel 
      1.210***     
      (0.419)     

Trend 
       0.00261 0.00426 

** 
-0.0363 

*** 
-0.0146 

*** 
       (0.002) (0.002) (0.003) (0.003) 

Trend2 
         0.00127 

*** 
 

         (0.000)  

Trend Shift 
          -0.0149 

*** 
          (0.001) 

Trend Shift x 
Trend 

          0.00112 
*** 

          (0.000) 
Calendar Year 
1991 

        0.103** -0.0775* -0.0363 
        (0.049) (0.041) (0.041) 

Calendar Year 
2001 

        0.00881 -0.140*** -0.114*** 
        (0.040) (0.034) (0.034) 

Calendar Year 
2007 

        -0.0348 
** 0.0132 0.0142 

        (0.017) (0.014) (0.014) 
Calendar Year 
2008 

        -0.0305* 0.0134 0.0131 
        (0.017) (0.014) (0.013) 

Calendar Year 
2009 

        -0.144 
*** -0.107*** -0.108*** 

        (0.016) (0.013) (0.013) 

Calendar Year 
2010 

        -0.0910 
*** 

-0.0622 
*** 

-0.0641 
*** 

        (0.016) (0.013) (0.012) 
             
Observations 336 336 336 336 281 281 281 336 336 336 336 
R-squared 
within (1) 0.40 0.41 0.42 0.42 0.66 0.71 0.72 0.40 0.56 0.72 0.74 
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Explanatory 
Variables 

Estimated Coefficients (Standard Errors in Parentheses; *** p<0.01, ** p<0.05, * p<0.1) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 
R-squared 
between (2) 0.79 0.83 0.85 0.86 0.94 0.73 0.88 0.33 0.07 0.87 0.87 

R-squared 
overall (3) 0.41 0.43 0.45 0.46 0.71 0.62 0.68 0.31 0.41 0.47 0.50 

Corr (u_i, Xb) 
(4) 0.14 0.16 0.20 0.21 -0.50 0.06 0.15 -0.06 -0.08 -0.15 -0.13 

sigma_u (5) 0.04 0.03 0.03 0.03 0.02 0.05 0.04 0.05 0.06 0.07 0.07 
sigma_e (6) 0.08 0.08 0.08 0.08 0.06 0.06 0.06 0.08 0.07 0.05 0.05 
rho (7) 0.18 0.17 0.14 0.13 0.14 0.46 0.38 0.32 0.44 0.66 0.67 
Footnotes: See Table 7-2 – Estimation Results for Fatality Rate Models. 
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7.1.12 Using the Models to Forecast 

To simplify forecasting baseline future rates for fatalities, non-fatal injuries, and involvement in 
property damage only crashes, we utilize the versions of each model that include fixed effects for 
safety regimes, vehicle age and its squared value, the time trend measure (including any 
significant change in the trend), and indicator variables for recession years.  Specifically, we use 
model 10 from Table 7-1 and Table 7-3, and model 11 from Table 7-4.  

Starting with the relevant rate for the latest model year when it was new (e.g., the fatality rate for 
model year 2019 during calendar year 2019, when most vehicles from that model year were sold 
and placed into service), we apply estimates of the shares of new vehicles produced during future 
model years that will be equipped with various crash avoidance technologies and the 
effectiveness of each of those technologies in reducing crashes (fatal, non-fatal, or property 
damage, as appropriate).  The nature of these technologies, projections of the shares of new cars 
and light trucks that will be equipped with each of them, and estimates of the effectiveness of 
those technologies in preventing these three different types of crashes are discussed in the 
following section.  This generates forecasts of fatality, non-fatal injury, and property damage 
crash involvement rates for future model years during their initial year of use, which for 
simplicity is assumed to be the same calendar year.  

During each future calendar year, the appropriate new model year is assumed to be incorporated 
into the fleet, with its forecast rate (of fatalities per billion miles, for example).  At the same 
time, the rate for each earlier model year making up the fleet during that calendar year is 
increased to reflect the aging effect implied by the coefficients on the variables age and age-
squared in the relevant model.  Any remaining vehicles originally produced during the model 
year that would have reached age 41 in a future calendar year are assumed to be retired from 
service or driven so little that they contribute negligibly to overall safety.  Finally, the rates 
(again, fatality, non-fatal injury, or property damage) for these earlier model years are also 
adjusted downward to reflect continuation of their historical downward trends, which were 
estimated as part of the models discussed previously.   

This produces estimates of fatality, non-fatal injury, and property damage crash involvement 
rates for each model year making up the fleet during each future calendar year, and the process is 
continued until calendar year 2050.  Multiplying these rates by the estimated number of miles 
driven by cars and light trucks of each model year in use during a future calendar year produces 
baseline estimates of total fatalities, non-fatal injuries, and cars and light trucks involved in 
property damage-only crashes.   

Figure 7-3 illustrates the recent history and baseline forecast of the overall fatality rate for 
occupants of cars and light trucks.  The sharp rise in the fatality rate for 2020 reflects the steep 
drop in car and light truck VMT during that year due to the COVID-19 pandemic and 
accompanying restrictions on activity, as well as an increase in fatalities that is not yet fully 
explained, but which may be due to riskier driving on less congested roadways.838  These rates 
are also used as the basis for estimating changes in safety resulting from reductions in the mass 

 
838 See, e.g., https://www.nhtsa.gov/press-releases/2020-fatality-data-show-increased-traffic-fatalities-during-
pandemic.  (Accessed: February 14, 2022). 
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of new vehicles, additional rebound-effect driving, and changes in the numbers of cars and light 
trucks from different model years making up each calendar year’s fleet.  The underlying causes 
and methods for estimating each of those three sources of changes in safety are discussed in 
detail in various subsections of this chapter.   

 

Figure 7-4 – Recent and Projected Future Fatality Rates for Cars and Light Trucks 

Note: The abrupt rise in the fatality rate for 2020 shown in this figure reflects the large drop in 
car and light truck VMT during that year due to the COVID-19 pandemic and accompanying 
restrictions on activity, as well as a rise in fatalities. 

7.1.13 Future Safety Trends Predicted by Advanced Safety Technologies 

The baseline model described above uses trends observed over several decades to make a coarse 
projection of future safety rates.  To augment these projections with knowledge about 
forthcoming safety improvements, the agency applied detailed empirical estimates of the market 
uptake and improving effectiveness of crash avoidance technologies to estimate their effect on 
the fleet-wide fatality rate, including explicitly incorporating both the direct effect of those 
technologies on the crash involvement rates of new vehicles equipped with them, as well as the 
“spillover” effect of those technologies on improving the safety of occupants of vehicles that are 
not equipped with these technologies.  

The development of advanced crash avoidance technologies in recent years indicates some level 
of safety improvement is almost certain to occur going forward.  Moreover, autonomous vehicles 
offer the possibility of significantly reducing the effect of human perception, judgment or error 
in crash causation, a contributing factor in roughly 94 percent of all crashes.  However, there is 
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insufficient information and certainty regarding autonomous vehicles eventual impact to include 
them in this analysis.  

Advanced technologies that are currently deployed or in development include: 

1. Forward Collision Warning (FCW) systems passively assist drivers in avoiding or 
mitigating the impact of rear-end collisions (i.e., a vehicle striking the rear portion of a 
vehicle traveling in the same direction directly in front of it).  FCW uses forward-looking 
vehicle detection capability, such as RADAR, LIDAR (laser), camera, etc., to detect 
other vehicles ahead and use the information from these sensors to warn the driver and to 
prevent crashes.  FCW systems provide an audible, visual, or haptic warning, or any 
combination thereof, to alert the driver of an FCW-equipped vehicle of a potential 
collision with another vehicle or vehicles in the anticipated forward pathway of the 
vehicle. 

2. Crash Imminent Braking (CIB) systems actively assist the drivers by mitigating the 
impact of rear-end collisions.  These safety systems have forward-looking vehicle 
detection capability provided by sensing technologies such as RADAR, LIDAR, video 
camera, etc.  CIB systems mitigate crash severity by automatically applying the vehicle’s 
brakes shortly before the expected impact (i.e., without requiring the driver to apply force 
to the brake pedal).  

3. Dynamic Brake Support (DBS) is a technology that actively increases the amount of 
braking provided to the driver during a rear-end crash avoidance maneuver.  If the driver 
has applied force to the brake pedal, DBS uses forward-looking sensor data provided by 
technologies such as RADAR, LIDAR, video cameras, etc. to assess the potential for a 
rear-end crash.  Should DBS ascertain a crash is likely (i.e., the sensor data indicate the 
driver has not applied enough braking to avoid the crash), DBS automatically intervenes.  
Although the manner in which DBS has been implemented differs among vehicle 
manufacturers, the objective of the interventions is largely the same - to supplement the 
driver’s commanded brake input by increasing the output of the foundation brake system.  
In some situations, the increased braking provided by DBS may allow the driver to avoid 
a crash.  In other cases, DBS interventions mitigate crash severity. 

4. Pedestrian Automatic Emergency Breaking (PAEB) systems provide automatic 
braking for vehicles when pedestrians are in the forward path of travel and the driver has 
taken insufficient action to avoid an imminent crash.  Like CIB, PAEB safety systems use 
information from forward-looking sensors to automatically apply or supplement the 
brakes in certain driving situations in which the system determines a pedestrian is in 
imminent danger of being hit by the vehicle.   

5. Rear Automatic Braking features have the ability to sense the presence of objects 
behind a reversing vehicle, alert the driver of the presence of the object(s) via auditory 
and visual alerts, and automatically engage the available braking system(s) to stop the 
vehicle. 
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6. Semi-automatic Headlamp Beam Switching devices provide either automatic or 
manual control of headlamp beam switching at the option of the driver.  When the control 
is automatic, headlamps switch from the upper beam to the lower beam when illuminated 
by headlamps on an approaching vehicle and switch back to the upper beam when the 
road ahead is dark.  When the control is manual, the driver may obtain either beam 
manually regardless of the conditions ahead of the vehicle. 

7. Lane Departure Warning (LDW) is a driver assistance system that monitors lane 
markings on the road and alerts the driver when their vehicle is about to drift beyond a 
delineated edge line of their current travel lane. 

8. Lane Keep Assist (LKA) utilizes LDW sensors to monitor lane markings but, in addition 
to warning the driver, provides gentle steering adjustments to prevent drivers from 
unintentionally drifting out of their lane. 

9. Lane Centering keeps the vehicle centered in its lane and typically comes with steering 
assist to help the vehicle take gentle turns at highway speeds.  These systems also work 
together with adaptive cruise control and lane keeping assist to give the car semi-
autonomous capability. 

10. Blind Spot Detection (BSD) systems use digital camera imaging technology or radar 
sensor technology to detect one or more vehicles in either of the adjacent lanes that may 
not be apparent to the driver.  The system warns the driver of an approaching vehicle’s 
presence to help facilitate safe lane changes.  

11. Lane Change Alert (LCA) systems use digital camera imaging technology or radar 
sensor technology to detect vehicles either in, or rapidly approaching in adjacent lanes 
that may not be apparent to the driver.  The system warns the driver of an approaching 
vehicle’s presence to help facilitate safe lane changes. 

7.1.13.1 Crash Avoidance Technologies 

Beginning with the 2020 CAFE final rule, NHTSA augmented the sales-scrappage safety 
analysis with recent research into the effectiveness of specific advanced crash avoidance safety 
technologies (also known as ADAS or advanced driver assistance systems) that are expected to 
drive future safety improvement to estimate the impacts of crash avoidance technologies.  The 
analysis analyzes six crash avoidance technologies that are currently being produced and 
commercially deployed in the new vehicle fleet.  These FCW, Automatic Emergency Braking 
(AEB),839 LDW, LKA, BSD, and LCA.  These are the principal technologies that are being 
developed and adopted in new vehicle fleets and will likely drive vehicle-based safety 
improvements for the coming decade.  These technologies are being installed in more and more 
new vehicles; in fact, manufacturers recently reported that they voluntarily installed AEB 
systems in more than 70 percent of their new vehicles sold in the year ending August 31, 

 
839 AEB is a combination of CIB, DBS, and PEAB. 
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2019.840  NHTSA notes that the terminology and the detailed characteristics of these systems 
may differ across manufacturers, but the basic system functions are generally similar. 

These 6 technologies address three basic crash scenarios through warnings to the driver or 
alternately, through dynamic vehicle control: 

1. Forward collisions, typically involving a crash into the rear of a stopped 
vehicle; 

2. Lane departure crashes, typically involving inadvertent drifting across or 
into another traffic lane; and 

3. Blind spot crashes, typically involving intentional lane changes into 
unseen vehicles driving in or approaching the driver’s blind spot. 

Unlike traditional safety features where the bulk of the safety improvements were attributable to 
improved protection when a crash occurs (crash worthiness), the impact of advanced crash 
avoidance technologies (ADAS or advanced driver assistance systems) will have on fatality and 
injury rates is a direct function of their effectiveness in preventing or reducing the severity of the 
crashes they are designed to mitigate.  This effectiveness is typically measured using real world 
data comparing vehicles with these technologies to similar vehicles without them.  While these 
technologies are actively being deployed in new vehicles, their penetration in the larger on-road 
vehicle fleet has been at a low but increasing level.  This limits the precision of statistical 
regression analyses, at least until the technologies become more common in the on-road fleet. 

NHTSA’s approach to measuring these impacts is to derive effectiveness rates for these 
advanced crash-avoidance technologies from safety technology literature.  NHTSA then applies 
these effectiveness rates to specific crash target populations for which the crash avoidance 
technology is designed to mitigate and adjusted to reflect the current pace of adoption of the 
technology, including the public commitment by manufactures to install these technologies.  The 
products of these factors, combined across all 6 advanced technologies, produce a fatality rate 
reduction percentage that is applied to the fatality rate trend model discussed above, which 
projects both vehicle and non-vehicle safety trends.  The combined model produces a projection 
of impacts of changes in vehicle safety technology as well as behavioral and infrastructural 
trends. 

7.1.13.2 Technology Effectiveness Rates 

7.1.13.2.1  Forward Crash Collision Technologies 

For forward collisions, manufacturers are currently equipping vehicles with FCW, which warns 
drivers of impending collisions, as well as AEB, which incorporates the sensor systems from 
FCW together with dynamic brake support (DBS) and crash imminent braking (CIB) to help 

 
840 NHTSA Announces Update to Historic AEB Commitment by 20 Automakers, NHTSA press release December 
17, 2019.  https://www.nhtsa.gov/press-releases/nhtsa-announces-update-historic-aeb-commitment-20-automakers.  
(Accessed: February 14, 2022). 
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avoid crashes or mitigate their severity.  Manufacturers have committed voluntarily to install 
some form of AEB on all light vehicles by the 2023 model year (September 2022).841 

Table 7-5 summarizes studies which have measured effectiveness for various forms of FCW and 
AEB over the past 13 years.  Most studies focused on crash reduction rather than injury 
reduction.  This is a function of limited injury data in the on-road fleet, especially during the 
early years of deployment of these technologies.  In addition, it reflects engineering limitations in 
the technologies themselves.  Initial designs of AEB systems were basically incapable of 
detecting stationary objects at speeds higher than 30 mph, making them potentially ineffective in 
higher speed crashes that are more likely to result in fatalities or serious injury.  For example, 
Wiacek et al. (2-15) conducted a review of rear-end crashes involving a fatal occupant in the 
2003-2012 NASS-CDS data-bases to determine the factors that contribute to fatal rear-end 
crashes.842  They found that the speed of the striking vehicle was the primary factor in 71 percent 
of the cases they examined.  The average Delta-v of the striking vehicle in these cases was 46 
km/h (28.5 mph), implying pre-crash travel speeds in excess of this speed.  While Table 7-5 
includes studies going back to 2005, the agency focus’ discussion on more recent studies 
conducted after 2012 in order to reflect more current safety systems and vehicle designs. 

Table 7-5 – Summary of AEB Technology Effectiveness Estimates 

Authors AEB Type Crashes Fatalities Injury Reduction All 
Injuries Serious Minor 

Sugimoto & Sauer (2005)843 CMBS 38% 44%    
Page et al. (2005)844 EBA  7.50%   11% 
Najm et al. (2005)845 ACAS846 6-15%     
Breuer et al. (2007)847 BAS+848 44%     
Kuehn et al. (2009)849 CMBS 40.80%     

 
841 See https://www.nhtsa.gov/press-releases/nhtsa-iihs-announcement-aeb.  (Accessed: February 14, 2022).  Note 
that the agreement calls for CIB, but systems installed by manufacturers include various combinations of 
technologies that make up AEB. 
842 Wiacek, C., Bean, J., Sharma, D., Real World Analysis of Fatal Rear-End Crashes, National Highway Traffic 
Safety Administration, 24th Enhanced Safety of Vehicles Conference, 150270, 2015. 
843 Sugimoto, Y., and Sauer, C., (2005).  Effectiveness Estimation Method for Advanced Driver Assistance System 
and its Application to Collision Mitigation Brake systems, paper number 05-148, 19th International Technical 
Conference on the Enhanced safety of Vehicles (ESV), Washington D.C., June 6-9, 2005. 
844 Page, Y., Foret-Bruno, J., & Cuny, S. (2005).  Are expected and observed effectiveness of emergency brake 
assist in preventing road injury accidents consistent? 19th ESV Conference, Washington DC.  
845 Najm, W.G., Stearns, M.D., Howarth, H., Koopman, J. & Hitz, J., (2006).  Evaluation of an Automotive Rear-
End Collision Avoidance System (technical report DOT HS 810 569), Cambridge, MA: John A. Volpe National 
Transportation System Center, U.S. Department of Transportation. 
846 Automotive Collision Avoidance System (ACAS). 
847 Breuer, JJ., Faulhaber, A., Frank, P. and Gleissner, S. (2007).  Real world Safety Benefits of Brake Assistance 
Systems, Proceedings of the 20th International Technical Conference of the Enhanced Safety of Vehicles (ESV) in 
Lyon, France June 18-21, 2007. https://trid.trb.org/view/1364815 
848 Brake Assistance Systems (BAS). 
849 Keuhn, M., Hummel, T., and Bende J., Benefit estimation of advanced driver assistance systems for cars derived 
from real-world accidents, Paper No. 09-0317, 21st International Technical Conference on the Enhanced Safety of 
Vehicles (ESV) – International Congress Centre, Stuttgart, Germany, June 15-18, 2009. 

https://trid.trb.org/view/1364815
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Authors AEB Type Crashes Fatalities Injury Reduction All 
Injuries Serious Minor 

Grover et al. (2008)850 AEB 30%     
Kisano &Gabler (2015)851 AEB 0-67% 2-69% 2-69%   

HLDI (2011)852 AEB 22-27%    51% 
Doecke et al. (2012)853 AEB 25-28%     
Chauvel et al. (2013)854 PAEB 4.30% 15% 37%   
Fildes et al. (2015)855 AEB 38%     

Cicchino (2017)856 
FCW 27%    20% 

Low AEB 43%    45% 
High AEB 50%    56% 

Kusano & Gabler (2012)857 FCW 3.20% 29% 29%   
AEB 7.70% 50% 50%   

Leslie et al. (2019)858 FCW 21%     
AEB 46%     

Doecke et al. (2012) created simulations of 103 real world crashes and applied AEB system 
models with differing specifications to determine the change in impact speed that various AEB 
interventions might produce.  Their modeling found significant rear-end crash speed reductions 
with various AEB performance assumptions.  In addition, they estimated a 29 percent reduction 
in rear-end crashes and that 25 percent of crashes over 10 km/h were reduced to 10 km/h or less. 

Cicchino (2017) analyzed the effectiveness of a variety of forward collision mitigation systems 
including both FCW and AEB systems.  Cicchino used a Poisson regression to compare rates of 
police-reported crashes per insured vehicle year between vehicles with these systems and the 

 
850 Grover, C., Knight, I., Okoro, F., Simmons I., Couper, G., Massie, P., and Smith, B. (2008).  Automated 
Emergency Brake Systems: Technical requirements, Costs and Benefits, PPR227, TRL Limited, DG Enterprise, 
European Commission, April 2008. 
851 Kusano, K.G., and Gabler, H.C. (2015).  Comparison of Expected Crash Injury and Injury Reduction from 
Production Forward Collision and Lane Departure Warning Systems, Traffic Injury Prevention 2015; Suppl. 2: 
S109-14. https://www.tandfonline.com/doi/full/10.1080/15389588.2015.1063619?scroll=top&needAccess=true 
852 HLDI (2011).  Volvo’s City Safety prevents low-speed crashes and cuts insurance costs, Status Report, Vol. 46, 
No. 6, July 19,2011. 
853 Docke, S.D., Anderson, R.W.G., Mackenzie, J.R.R., Ponte, G. (2012).  The potential of autonomous emergency 
braking systems to mitigate passenger vehicle crashes.  Australian Road Safety Research Policing and Education 
Conference, October 4-6, 2012, Wellington, New Zealand.  
854 Chauvel, C., Page, Y., Files, B.N., and Lahausse, J. (2013).  Automatic emergency braking for pedestrian’s 
effective target population and expected safety benefits, Paper No. 13-0008, 23rd International Technical Conference 
on the Enhanced Safety of Vehicles (ESV), Seoul, Republic of Korea, May 27-30, 2013. 
855 Fildes B., Keall M., Bos A., Lie A., Page, Y., Pastor, C., Pennisi, L., Rizzi, M., Thomas, P., and Tingvall, C. 
Effectiveness of Low Speed Autonomous Emergency Braking in Real-World Rear-End Crashes.  Accident Analysis 
and Prevention, AAP-D-14-00692R2.   
856 Cicchino, J.B. (2017).  Effectiveness of forward collision warning and autonomous emergency braking systems 
in reducing front-to-rear crash rates.  Accident Analysis and Prevention, V. 99, Part A, February 2017, pp. 142–52. 
857 Kusano, K.D., and Gabler H.C. (2012).  Safety Benefits of Forward Collision Warning, Brake Assist, and 
Autonomous Braking Systems in Rear-End Collisions, Intelligent Transportation Systems, IEEE Transactions, 
Volume 13 (4). 
858 Leslie, A, Kiefer, R., Meitzner, M, and Flannagan, C.  (2019).  Analysis of the Field Effectiveness of General 
Motors Production Active Safety and Advanced headlighting Systems.  University of Michigan Transportation 
Research Institute, UMTRI-2019-6, September 2019. 
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same models that did not elect to install them.  The analysis was based on crashes occurring 
during 2010 to 2014 in 22 States and controlled for other factors that affected crash risk.  
Cicchino found that FCW reduced all rear-end striking crashes by 27 percent and rear-end 
striking injury crashes by 20 percent, and that AEB functional at high speeds reduced these 
crashes by 50 and 56 percent, respectively.  She also found that low speed AEB without driver 
warning reduced all crashes by 43 percent and injury crashes by 45 percent.  She also found that 
even low-speed AEB could impact crashes at higher speed limits.  Reductions were found of 53 
percent, 59 percent, and 58 percent for all rear-end striking crash rates, rear-end striking injury 
crash rates, and rear-end third party injury crash rates, respectively, at speed limits of 40-45 mph.  
For speed limits of 35 mph or less, reductions of 40 percent, 40 percent, and 43 percent were 
found.  For speed limits of 50 mph or greater, reductions of 31 percent, 30 percent, and 28 
percent, were found.  Further, Cicchino (2016) found significant reductions (30 percent) in rear-
end injury crashes even in crashes on roadways where speed limits exceeded 50 mph.   

Kusano and Gabler (2012) examined the effectiveness of various levels of forward collision 
technologies including FCW and AEB based on simulations of 1,396 real world rear end crashes 
from 1993-2008 NASS CDS databases.  The authors developed a probability-based framework 
to account for variable driver responses to the warning systems.  Kusano and Gabler found FCW 
systems could reduce rear-end crashes by 3.2 percent and driver injuries in rear-end crashes by 
29 percent.  They also found that full AEB systems with FCW, pre-crash brake assist, and 
autonomous pre-crash braking could reduce rear-end crashes by 7.7 percent and reduce moderate 
to fatal driver injuries in rear-end crashes by 50 percent. 

Fildes et al. (2015) performed meta-analyses to evaluate the effectiveness of low-speed AEB 
technology in passenger vehicles based on real-world crash experience across six different 
predominantly European countries.  Data from these countries was pooled into a standard 
analysis format and induced exposure methods were used to control for extraneous effects.  The 
study found a 38 percent overall reduction in rear-end crashes for vehicles with AEB compared 
to similar vehicles without this technology.  The study also found no statistical evidence for any 
difference in effectiveness between urban roads with speed limits less than or equal to 60 km/h, 
and rural roads with speed limits greater than 60 km/h.  Fildes et al. (2015) found no statistical 
difference in the performance of AEBs on lower speed urban or higher speed rural roadways. 

Kusano and Gabler (2015) simulated rear-end crashes based on a sample of 1,042 crashes in the 
2012 NASS-CDS.  Modelling was based on 54 model year 2010-2014 vehicles that were 
evaluated in NHTSA’s New Car Assessment Program (NCAP).  Kusano and Gabler found FCW 
systems could prevent 0-67 percent of rear-end crashes and 2-69 percent of serious to fatal driver 
injuries. 

Leslie et al. (2019) analyzed the relative crash performance of 123,377 General Motors (GM) 
MY 2013 to 2017 vehicles linked to State police-reported crashes by VIN.  GM provided VIN-
linked safety content information for these vehicles to enable precise identification of safety 
technology content.  The authors analyzed the effectiveness of a variety of crash avoidance 
technologies including both FCW and AEB separately.  They estimated effectiveness comparing 
system-relevant crashes to baseline (control group) crashes using a quasi-induced exposure 
method in which rear-end struck crashes are used as the control group.  Leslie et al. found that 
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FCW reduced rear-end striking crashes of all severities by 21 percent, and that AEB (which 
includes FCW) reduced these crashes by 46 percent.859 

For this analysis, NHTSA based its projections on Leslie et al. because they are the most recent 
study, and thus reflect the most current versions of these systems in the largest number of 
vehicles, and also because they arguably have the most precise identification of the presence of 
the specific technologies in the vehicle fleet.  Furthermore, Leslie et al. was the only study to 
report estimates for each of the six crash avoidance technologies analyzed for the final rule, 
hence providing a certain level of consistency amongst estimates.  NHTSA recognizes that there 
is uncertainty in estimates of these technologies’ effectiveness, especially at this early stage of 
deployment.  For this reason, the agency examines a range of effectiveness rates to estimate 
boundary outcomes in a sensitivity analysis.   

Leslie et al. measured effectiveness against all categories of crashes but did not specify 
effectiveness against crashes that result in fatalities or injuries.  NHTSA examined a range of 
effectiveness rates against fatal crashes using a central case based on boundary assumptions of 
no effectiveness and full effectiveness across all crash types.  Our central case is thus a simple 
average of these two extremes.  Sensitivity cases were based on the 95th percent confidence 
intervals calculated from this central case.  Leslie et al. found effectiveness rates of 21 percent 
for FCW and 46 percent for AEB.  Our central fatality effectiveness estimates will thus be 10.5 
percent for FCW and 23 percent for AEB.  The calculated 95th percentile confidence limits 
range is 8.11 to 12.58 percent effective for FCW and 20.85 to 25.27 for AEB.  We note that our 
central estimate is conservative compared to averages of those studies that did specifically 
examine fatality impacts; that is, the analysis assumes reduced future fatalities less than most of, 
or the average of, those studies, and thus minimizes the estimate of fatality impacts under 
alternatives to the current standards.  Furthermore, we note that the estimates against fatal 
crashes is higher in the recent studies in Table 7-5, which reflects our understanding that earlier 
iterations of AEB and FCW may have been less effective against crashes that result in fatalities 
than newer and improved versions.860   

 
859 NHTSA notes that UMTRI, the sponsoring organization for the Leslie et al. study, published a previous version 
of this same study utilizing the same methods in March of 2018 (Flannagan, C. and Leslie, A, Crash Avoidance 
Technology Evaluation Using Real-World crashes, University of Michigan Transportation Research Institute, March 
22, 2018).  The agency focused on the more recent 2019 study because its sample size is significantly larger, and it 
represents more recent model year vehicles.  The revised (2019) study uses the same basic techniques but 
incorporated a larger database of system-relevant and control cases (123,377 cases in the 2019 study vs. 35,401 in 
the 2018 study).  Relative to the Flannagan and Leslie (2018) findings, the results of the 2019 study varied by 
technology.  The revised study found effectiveness rates of 21 percent for FCW and 46 percent for AEB, compared 
to 16 and 45 percent in the 2018 study.  The revised study found effectiveness rates of 10 percent for LDW and 20 
percent for LKA, compared to 3 and 30 percent for these technologies in the 2018 study.  The revised study found 
effectiveness rates of 3 percent for BSD and 26-37 percent for LCA systems, compared to 8 percent and 19-32 
percent for these technologies in the 2018 study.  Thus, some system effectiveness estimates increased while others 
decreased.   
860 As an example of improvements, NHTSA notes that the Mercedes system described in their 2015 owner’s 
manual specified that for stationary objects the system would only work in crashes below 31 mph, but that in their 
manual for the 2019 model, the systems are specified to work in these crashes up to 50 mph.  
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7.1.13.2.2  Lane Departure Crash Technologies 

For lane departure crashes, manufacturers are currently equipping vehicles with lane departure 
warning (LDW), which monitors lane markings on the road and alerts the driver when their 
vehicle is about to drift beyond a delineated edge line of their current travel lane, as well as lane 
keep assist (LKA), which provides gentle steering adjustments to help drivers avoid 
unintentional lane crossing.  Table 7-6 summarizes studies which have measured effectiveness 
for LDW and LKA. 

Table 7-6 – Summary of LDW Technology Effectiveness Estimates 

Authors LDW Type Crash Reduction Fatalities 
Injury Reduction 

All Injuries 
Serious Minor 

Cicchino (2018)861 LDW 11%    21% 
Sternlund, Strandroth,  
et al. (2017)862 LDW/LKA     6-30% 

Leslie et al. (2019)863 
LDW 10%     
LKA 20%     

Kusano & Gabler (2015)864 LDW 11-23% 13-22% 13-22%   
Kusano, Gorman, et al. (2014)865 LDW 29%  24%   

Cicchino (2018) examined crash involvement rates per insured vehicle year for vehicles that 
offered LDW as an option and compared crash rates for those that had the option installed to 
those that did not.  The study focused on single-vehicle, sideswipe, and head-on crashes as the 
relevant target population for LDW effectiveness rates.  The study examined 5,433 relevant 
crashes of all severities found in 2009-2015 police-reported data from 25 States.  The study was 
limited to crashes on roadways with 40 mph or greater speed limits not covered in ice or snow 
since lower travel speeds would be more likely to fall outside of the LDW systems’ minimum 
operational threshold.  Cicchino found an overall reduction in relevant crashes of 11 percent for 
vehicles that were equipped with LDW.  She also found a 21 percent reduction in injury crashes.  
The result for all crashes was statistically significant, while that for injury crashes approached 
significance (p<0.07).  Cicchino did not separately analyze LKA systems. 

Sternlund et al. (2017) studied single vehicle and head-on injury crash involvements relevant to 
LDW and LKA in Volvos on Swedish roadways.  They used rear-end crashes as a control and 
compared the ratio of these two crash groups in vehicles that had elected to install LDW or LKA 

 
861 Cicchino, J.B. (2018).  Effects of lane departure warning on police-reported crash rates, Journal of Safety 
Research 66 (2018), pp.61-70.  National Safety Council and Elsevier Ltd., May, 2018. 
https://pubmed.ncbi.nlm.nih.gov/30121111/ 
862 Sternlund, S., Strandroth, J., Rizzi, M., Lie, A., and Tingvall, C. (2017).  The effectiveness of lane departure 
warning systems – A reduction in real-world passenger car injury crashes.  Traffic Injury Prevention V. 18 Issue 2 
Jan 2017.  https://pubmed.ncbi.nlm.nih.gov/27624313/ 
863  Leslie et al. (2019), op. cit.  
864 Kusano and Gabler (2015), op. cit. 
865 Kusano, K., Gorman, T.I., Sherony, R., and Gabler, H.C.  Potential occupant injury reduction in the U.S. vehicle 
fleet for lane departure warning-equipped vehicles in single-vehicle crashes.  Traffic Injury Prevention 2014 Suppl 
1:S157-64. https://pubmed.ncbi.nlm.nih.gov/25307382/ 
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to the ratio in vehicles that did not have this content.  Studied crashes were limited to roadways 
with speeds of 70-120 kph and not covered with ice or snow.  Sternlund et al. found that 
LDW/LKA systems reduced single vehicle and head-on injury crashes in their crash population 
by 53 percent, with a lower limit of 11 percent, which they determined corresponded to a 
reduction of 30 percent (lower limit of 6 percent) across all speed limits and road surface 
assumptions. 

Leslie et al. (2019) analyzed the relative crash performance of 123,377 General Motors (GM) 
MY 2013 to 2017 vehicles linked to state police-reported crashes by VIN.  GM provided VIN-
linked safety content information for these vehicles to enable precise identification of safety 
technology content.  The authors analyzed the effectiveness of a variety of crash avoidance 
technologies including both LDW and LKA separately.  They estimated effectiveness comparing 
system-relevant crashes to baseline (control group) crashes using a quasi-induced exposure 
method in which rear-end struck crashes are used as the control group.  Leslie et al. found that 
LDW reduced lane departure crashes of all severities by 10 percent, and that LKA (which 
includes LDW) reduced these crashes by 20 percent. 

Kusano et al. (2014) developed a comprehensive crash and injury simulation model to estimate 
the potential safety impacts of LDW.  The model simulated results from 481 single-vehicle 
collisions documented in the NASS-CDS database for the year 2012.  Each crash was simulated 
as it actually occurred and again as it would occur had the vehicles been equipped with LDW.  
Crashes were simulated multiple times to account for variation in driver reaction, roadway, and 
vehicle conditions.  Kusano et al. found that LDW could reduce all roadway departure crashes 
caused by the driver drifting from his or her lane by 28.9 percent, resulting in 24.3 percent fewer 
serious injuries. 

Kusano and Gabler (2015), simulated single-vehicle roadway departure crashes based on a 
sample of 478 crashes in the 2012 NASS-CDS.  Modelling was based on 54 model year 2010-
2014 vehicles that were evaluated in NHTSA’s New Car Assessment Program (NCAP).  Kusano 
and Gabler found LDW systems could prevent 11-23 percent of drift-out-of-lane crashes and 13-
22 percent of serious to fatally injured drivers. 

As noted previously for frontal crash technologies, we will base our projections on Leslie et al. 
because they are the most recent study, thereby reflecting the most current versions of these 
systems in the largest number of vehicles, and because they arguably have the most precise 
identification of the presence of the specific technologies in the vehicle fleet.  However, unlike 
forward crash technologies, lane change technologies are operational at travel speeds where 
fatalities are likely to occur.  Both LDW and LKA typically operate at speeds above roughly 35 
mph.  For this reason, and because the research noted in Table 7-6 indicates similar effectiveness 
against fatalities, injuries, and crashes, we believe it is reasonable to assume the Leslie et al.  
crash reduction estimates are generally applicable to all crash severities, including fatal crashes.  
Our central effectiveness estimates are thus 10 percent for LDW and 20 percent for LKA.  For 
sensitivity analysis, we adopt the 95 percent confidence intervals from Leslie et al.  For LKA this 
range is 14.95-25.15 percent.  For LDW, the upper range was 4.95-13.93 percent. 
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7.1.13.2.3  Blind Spot Crash Technologies 

To address blind spot crashes, manufacturers are currently equipping vehicles with BSD, which 
detects vehicles in either of the adjacent lanes that may not be apparent to the driver.  The system 
warns the driver of an approaching vehicle’s presence to help facilitate safe lane changes and 
avoid crashes.  A more advanced version of this, LCA, also detects vehicles that are rapidly 
approaching the driver’s blind spot.  Table 7-7 summarizes studies which have measured 
effectiveness for BSD and LCA. 

Table 7-7 – Summary of BSD Technology Effectiveness Estimates 

Authors BSD Type Crash Reduction Injury Reduction 
Cicchino (2017b)866 BSD 14% 23% 

Leslie et al. (2019)867 
BSD 3%  

LCA 26%  

Isaksson-Hellman & Lindman (2018)868 LCA 30%* 31%** 
* reduction in claim costs across all lane change crashes 
** reduction in severe crashes with repair costs greater than $1250 

Cicchino (2017) used Poisson regression to compare crash involvement rates per insured vehicle 
year in police-reported lane-change crashes in 26 U.S. States during 2009-2015 between vehicles 
with blind spot monitoring and the same vehicle models without the optional system, controlling 
for other factors that can affect crash risk.  Systems designs across the 10 different manufacturers 
included in the study varied regarding the extent to which the size of the adjacent lane zone that 
they covered exceeded the blind spot area, speed differentials at which vehicles could be 
detected, and their ability to detect rapidly approaching vehicles, but these different systems 
were not examined separately.  The study examined 4,620 lane change crashes, including 568 
injury crashes.  Cicchino found an overall reduction of 14 percent in blind spot related crashes of 
all severities, with a non-significant 23 percent reduction in injury crashes. 

Leslie et al. (2019) analyzed the relative crash performance of 123,377 2013-2017 General 
Motors (GM) vehicles linked to State police-reported crashes by VIN.  GM provided VIN-linked 
safety content information for these vehicles to enable precise identification of safety technology 
content.  The authors analyzed the effectiveness of a variety of crash avoidance technologies 
including both BSD and LCA separately.  They estimated effectiveness comparing system-
relevant crashes to baseline (control group) crashes using a quasi-induced exposure method in 
which rear-end struck crashes are used as the control group.  Flannagan and Leslie found that 
BSD reduced lane departure crashes of all severities by 3 percent (non-significant), and that LCA 
(which includes BSD) reduced these crashes by 26 percent. 

 
866 Cicchino, J.B. (2017b).  Effects of blind spot monitoring systems on police-reported lane-change crashes.  
Insurance Institute for Highway Safety, August 2017. 
867 Leslie et al. (2019), op. cit. 
868 Isaksson-Hellman, I., Lindman, M., An evaluation of the real-world safety effect of a lane change driver support 
system and characteristics of lane change crashes based on insurance claims.  Traffic Injury Prevention, February 
28, 2018: 19 (supp. 1). https://pubmed.ncbi.nlm.nih.gov/29584482/ 
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Isaksson-Hellman and Lindman (2018) evaluated the effect of the Volvo Blind Spot Information 
System (BLIS) on lane change crashes.  Volvo’s BLIS functions as an LCA, detecting vehicles 
approaching the blind spot as well as those already in it.  The authors analyzed crash rate 
differences in lane change situations for cars with and without the BLIS system based on a 
population of 380,000 insured vehicle years.  The authors found the BLIS system did not 
significantly reduce the overall number of lane change crashes of all severities, but they did find 
a significant 31 percent reduction in crashes with a repair cost exceeding $1250, and a 30 percent 
lower claim cost across all lane change crashes, indicating a reduced crash severity effect. 

Like lane change technologies, blind spot technologies are operational at travel speeds where 
fatalities are likely to occur.  NHTSA therefore assumes the Leslie et al. crash reduction 
estimates are generally applicable to all crash severities, including fatal crashes.  Our central 
effectiveness estimates are thus 3 percent for BSD and 26 percent for LCA.  For sensitivity 
analysis, we adopt the 95 percent confidence intervals from Leslie et al.  For LCA this range is 
16.59-33.74 percent.  For BSD, the upper range was 14.72 percent, but the findings were not 
statistically significant.  The agency therefore limited the range to 0-14.72 percent.  Table 7-8 
summarizes the effectiveness rates calculated in Leslie et al. and used in this analysis.  
Differences between the rates listed as “Used in CAFE Fatality Analysis” and those computed 
from Leslie et al. are explained in the above discussion. 

Table 7-8 – Summary of Advanced Technology Effectiveness Rates for Central and Sensitivity Cases 

Tech. 
UMTRI September 2019 Report  Used in CAFE Fatality Analysis 

Estimate Std. Error Central Low High Central Low High 
FCW -0.2334 0.0288 21 16.22 25.16 10.5 8.11 12.58 
AEB -0.6218 0.0419 46 41.71 50.54 23 20.85 25.27 
LDW -0.1004 0.0253 10 4.95 13.93 10 4.95 13.93 
LKA -0.2258 0.0326 20 14.95 25.15 20 14.95 25.15 
BSD -0.0297 0.0661 3 -10.50 14.72 3 0.00 14.72 
LCA -0.2965 0.0587 26 16.59 33.74 26 16.59 33.74 

7.1.13.3 Target Populations for Crash Avoidance Technologies 

The impact these technologies will have on safety is a function of both their effectiveness rate 
and the portion of occupant fatalities that occur under circumstances that are relevant to the 
technologies function.  NHTSA based target population estimates on a recent study that 
examined these portions specifically for a variety of crash avoidance technologies.  Wang 
(2019)869 documented target populations for five groups of collision avoidance technologies in 
passenger vehicles including forward collisions, lane keeping, blind zone detection, forward 
pedestrian impact, and backing collision avoidance.  The first three of these affect the light 
vehicle occupant target population examined in this analysis.  Wang separately examined crash 
populations stratified by severity including fatal injuries, non-fatal injuries, and property 
damaged only (PDO) vehicles.  Wang based her analysis on 2011-2015 data from NHTSA’s 

 
869 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812653.  (Accessed: February 14, 2022). 
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Fatality Analysis Reporting System (FARS), National Automotive Sampling System (NASS), 
and General Estimates System (GES).  FARS data were the basis for fatal crashes while nonfatal 
injuries and PDOs were derived from the NASS and GES. 

Wang followed the pre-crash typology concept initially developed by Volpe.870  Under this 
concept, crashes are categorized into mutually exclusive and distinct scenarios based on vehicle 
movements and critical events occurring just prior to the crash.  Table 7-9 summarizes the 
portion of total annual crashes and injuries for each crash severity category that is relevant to the 
three crash scenarios examined. 

Table 7-9 – Summary of Target Crash Proportions by Technology Group 

Safety System 
Crash Type Crashes Fatalities MAIS 1-5 

Injuries PDOVs 

Frontal Crashes 29.4% 3.8% 31.5% 36.3% 
Lane Departure 
Crashes 19.4% 44.3% 17.1% 11.9% 

Blind Spot Crashes 8.7% 1.6% 6.7% 11.8% 

The relevant proportions vary significantly depending on the severity of the crash.  The rear-end 
crashes that are addressed by FCW and AEB technologies tend to be low-speed crashes and thus 
account for a larger portion of non-fatal injury and PDO crashes than for fatalities.  Only 4 
percent of fatal crashes occur in front-to-rear crashes, but over 30 percent of nonfatal crashes are 
this type.  By contrast, fatal crashes are highly likely to involve inadvertent lane departure, 44 
percent of all light vehicle occupant fatalities occur in crashes that involve lane departure, but 
only 17 percent of non-fatal injuries and 12 percent of PDOs involve this crash scenario.  Blind 
spot crashes account for only about 2 percent of fatalities, 7 percent of MAIS1-5 injuries, and 12 
percent of PDOs. 

The target population of this analysis is occupants of light-duty vehicles subject to CAFE.  We 
chose occupants of light-duty vehicles rather than a more inclusive group such as all road 
users—which would include pedestrians, bicyclists, and occupants of heavier vehicles—because 
the agency has been collecting data and developing statistical models for in-vehicle occupants 
for decades.  The agency sought comment in the proposal on whether all road users should be 
included in the fatality model.  While we are not including all road users in the safety model for 
this final rule, we will consider including them in future iterations of the model.  The values in 
Table 7-5 are portions of all crashes that occur annually.  These include crashes of motor 
vehicles not subject to the current CAFE rulemaking such as medium and large trucks, buses, 
motorcycles, bicycles, etc.  To adjust for this, the values in Wang are normalized to represent 
their portion of all light passenger vehicle (PV) crashes, rather than all crashes of any type.  
Wang provides total PV fatalities consistent with her technology numbers which are used as a 
baseline for this process.  Based on 2011-2015 FARS data, Wang found an average of 29,170 PV 
occupant fatalities occurred annually. 

 
870 Najm, W. G., Smith, J., & Yanagisawa, M. (2007, April). Pre-crash scenario typology for crash avoidance 
research (Report No. DOT HS 810 767). Washington, DC: National Highway Traffic Safety Administration. 
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A second adjustment to Wang’s results was made to make them compatible with the 
effectiveness estimates found in Leslie et al.  In her target population estimate for lane departure 
warning, Wang included both head-on collisions and rollovers, but Leslie et al. did not.  The 
Leslie et al. effectiveness rate is thus applicable to a smaller target population than that examined 
by Wang.  To make these numbers more compatible, counts for these crash types were removed 
from Wang’s lane departure totals. 

Electronic Stability Control (ESC) has been standard equipment in all light vehicles in the United 
States since the 2012 model year.  ESC is highly effective in reducing roadway departure and 
traction loss crashes, and although it will be present in all future model year vehicles, it was 
present in only about 30 percent of the 2011-2015 on-road fleet examined by Wang.  To reflect 
the impact of ESC on future on-road fleets therefore, NHTSA further adjusted Wang’s numbers 
to reflect a 100 percent ESC presence in the on-road fleet.  NHTSA allocated the reduced 
roadway departure fatalities to the LDW target population, and the reduced traction loss fatalities 
to the AEB target population.  This has the effect of reducing the total fatalities in both groups as 
well as in the total projected fatalities baseline. 

Table 7-10 summarizes the revised incidence counts and re-calculated proportions of total PV 
occupant crash /injury.  Revised totals are derived from original totals referenced in Table 1-3 in 
Wang (2019). 

Table 7-10 – Adjusted Target Crash Counts and Proportions 

Crash Type Crashes Fatalities MAIS 1-5 PDOVs 
Frontal Crashes 1,703,541 1,048 883,386 2,641,884 
% All PV 
Occupant Crashes 30.2% 4.0% 32.4% 36.8% 

Lane Departure 
Crashes 1,126,397 9,428 479,939 863,213 

% All PV 
Occupant Crashes 20.0% 35.8% 17.6% 12.0% 

Blind Spot 
Crashes 503,070 542 188,304 860,726 

% All PV 
Occupant Crashes 8.9% 2.1% 6.9% 12.0% 

Total, all Tech 
Groups 3,333,008 11,017 1,551,629 4,365,823 

% All PV 
Occupant Crashes 59.1% 41.8% 56.8% 60.9% 

All Crashes 5,640,000 26,364 2,730,000 7,170,000 

7.1.13.4 Fleet Penetration Schedules 

The third element of the rule’s safety projections is the fleet technology penetration schedules.  
Advanced safety technologies (ADAS) will only influence the safety of future MY fleets to the 
extent that they are installed and used in those fleets.  These technologies are already being 
installed on some vehicles to varying degrees, but the agency expects that over time, they will 
become standard equipment due to some combination of market pressure and/or safety 
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regulation.  NHTSA adopts this assumption based on the history of most previous vehicle safety 
technologies, which are now standard equipment on all new vehicles sold in the United States. 

The pace of technology adoption is estimated based on a variety of factors, but the most 
fundamental is the current pace of adoption in recent years.  These published data were obtained 
from Ward’s Automotive Reports for each technology.871  Since these technologies are relatively 
recent, only a few years of data—typically 2 or 3 years—were available from which to derive a 
trend.  This makes these projections uncertain, but under these circumstances, a continuation of 
the known trend is the baseline assumption, which we modify only when there is a rationale to 
justify it. 

The technologies are examined in pairs reflecting their mutual target populations.  Both FCW 
and AEB affect the same target population—frontal collisions.  Both systems have been installed 
in some current MY vehicles, but their relative paces are expected to diverge significantly due to 
a formal agreement brokered by NHTSA and IIHS involving nearly all auto manufacturers, to 
have AEB installed in 100 percent of their vehicles by September 2022 (MY 2023).872  Wards 
first published installation rates for FCW and AEB for the 2016 model year and as of this 
analysis the 2017 MY is the latest data they have published.  We thus have data indicating that 
FCW was installed in 17.6 percent of MY 2016 vehicles and 30.5 percent of MY 2017 vehicles.  
AEB was installed in 12.0 percent of MY 2016 vehicles and 27.0 percent of MY 2017 vehicles.  
More recent reports submitted by manufacturers to the Federal Register indicate that installation 
rates accelerated in MY 2018 and 2019 vehicles.  Four manufacturers, Tesla, Volvo, Audi, and 
Mercedes have already met their voluntary commitment of 100 percent installation 3 years ahead 
of schedule.  During the period, September 1, 2018, through August 31, 2019, 12 of the 20 
manufacturers equipped more than 75 percent of their new passenger vehicles with AEB, and 
overall manufacturers equipped more than 9.5 million new passenger vehicles with AEB.873 

Because of the NHTSA/IIHS agreement, NHTSA assumed that some form of AEB will be in 
100 percent of light vehicles by MY 2023.  To derive installation rates for MYs 2020 through 
2022, NHTSA interpolated between the MY 2019 rate of 58.3 percent and the MY 2023 rate of 
100 percent.  To derive a MY 2015 estimate, NHTSA modelled the results for MYs 2016-2023 
and calculated a value for year x=0, essentially extending the model results back one year on the 
same trendline. 

For FCW, NHTSA used the same interpolation/modeling method as was used for AEB to derive 
an initial baseline trend.  However, while both systems are available on some portion of the 
current MY fleet, the agency anticipates that by MY 2023, all vehicles will have AEB systems 
that essentially encompass both FCW and AEB functions.  NHTSA therefore projects a gradual 
increase in both systems until the sum of both systems penetration rates exceeds 100 percent.  At 

 
871 Derived from Ward’s Automotive Yearbooks, 2014 through 2018, % Factory Installed Electronic ADAS 
Equipment tables, weighting domestic and imported passenger cars and light trucks by sales volume.   
872 https://www.nhtsa.gov/press-releases/nhtsa-iihs-announcement-aeb.  (Accessed: February 14, 2022). 
873 NHTSA Announces Update to Historic AEB Commitment by 20 Automakers.  December 17, 2019.  
https://www.nhtsa.gov/press-releases/nhtsa-announces-update-historic-aeb-commitment-20-automakers.  (Accessed: 
February 14, 2022). 
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that point, the agency projects a gradual decrease in FCW only installations until FCW only 
systems are completely replaced by AEB systems in MY 2023. 

For LDW, Wards penetration data were available as far back as MY 2013, giving a total of 7 
data points through MY 2019.  The projection for LDW was derived by modelling these data 
points.  The data indicate a near linear trend and our initial projections of future years were 
derived directly from this model.  Wards did not report any of the more advanced LKA systems 
until MY 2016, leaving only 4 data points through 2019.  NHTSA modelled a simple trendline 
through these data points to estimate the pace of future LKA installations.  As with Frontal 
crashes, the agency assumes a gradual phase-in of the most effective technology, LKA, will 
eventually replace the lesser technology, LDW, and NHTSA allows gradual increases in both 
systems penetration until their sum exceeds 100 percent, at which point LDW penetration begins 
to decline to zero while LKA penetration climbs to 100 percent. 

For blind spot crashes, Wards data were available for MYs 2013-2017 for BSD, but no data were 
available to distinguish LCA systems.  LCA systems were available as optional equipment on at 
least 10 MY 2016 vehicles.874  In addition, Flannagan and Leslie found numerous cases in State 
databases involving vehicles with LCA.  Because LCA data are not specifically identified, 
NHTSA will estimate its frequency based on the samples found in Flannagan & Leslie.  In that 
study, 62 percent of vehicles with blind spot technologies had BSD alone, while 38 percent had 
LCA (which includes BSD).  NHTSA employs this ratio to establish the relative frequency of 
these technologies in our projections.  As with frontal and lane change technologies, the agency 
assumes a gradual phase-in of the most effective technology, LCA, will eventually replace the 
lesser technology, BSD, and the agency allows gradual increases in both systems penetration 
until their sum exceeds 100 percent, at which point BSD penetration begins to decline to zero 
while LCA penetration climbs to 100 percent. 

7.1.13.5 Impact Calculations 

Table 7-11, Table 7-12, and Table 7-13 summarize the resulting estimates of impacts on fatality 
rates for frontal crash technologies, lane change technologies, and blind spot technologies 
respectively for MYs 2015-2035.  All previously discussed inputs are shown in the tables.  The 
effect of each technology is the product of its effectiveness, its percent installation in the MY 
fleet, and the portion of the total light vehicle occupant target population that each technology 
might address.  Since installation rates for each technology apply to different portions of the 
vehicle fleet (i.e., vehicles have either the more basic or more advanced version of the 
technology), the effect of the two technologies combined is a simple sum of the two effects.  
Similarly, because each crash type addresses a unique target population, there is no overlap 
among the three crash types and the sum of the normalized crash impacts across all three crash 
types represents the total impact on fatality rates from these 6 technologies for each model year.  
These cumulative results are shown in the last column of Table 7-13.  As technologies phase in 
to newer MY fleets,875 their impact on the light vehicle occupant fatality rate increases 

 
874 https://www.autobytel.com/car-buying-guides/features/10-cars-with-lane-change-assist-using-cameras-or-
sensors-130847.  (Accessed: February 14, 2022). 
875 While it is technically possible to retrofit these systems into the on-road fleet, such retrofits would be 
significantly more expensive than OEM installations.  NHTSA thus assumes all on-road fleet penetration of these 
technologies will come through new vehicle sales.   
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proportionally to roughly 8.5 percent before levelling off.  That is, eventually, by approximately 
MY 2026, these technologies are ultimately expected to reduce fatalities and fatality rates for 
new vehicles by 8.6 percent from their initial baseline levels. 

Table 7-11 – Phased Impact of Crashworthiness Technologies on Fatality Rates, Forward Collision Crashes 

MY Forward Collision Warning Automatic Emergency Braking % T.P. Weighted  
Effectiveness FCW Eff. % Inst. AEB Eff. % Inst. 

2015 10.5% 0.047 23.0% 0.011 4.0% 0.000292 
2016 10.5% 0.176 23.0% 0.120 4.0% 0.001831 
2017 10.5% 0.305 23.0% 0.270 4.0% 0.00374 
2018 10.5% 0.466 23.0% 0.445 4.0% 0.006011 
2019 10.5% 0.417 23.0% 0.583 4.0% 0.007068 
2020 10.5% 0.313 23.0% 0.687 4.0% 0.007585 
2021 10.5% 0.209 23.0% 0.792 4.0% 0.008103 
2022 10.5% 0.104 23.0% 0.896 4.0% 0.008625 
2023 10.5% 0 23.0% 1 4.0% 0.009139 
2024 10.5% 0 23.0% 1 4.0% 0.009139 
2025 10.5% 0 23.0% 1 4.0% 0.009139 
2026 10.5% 0 23.0% 1 4.0% 0.009139 
2027 10.5% 0 23.0% 1 4.0% 0.009139 
2028 10.5% 0 23.0% 1 4.0% 0.009139 
2029 10.5% 0 23.0% 1 4.0% 0.009139 
2030 10.5% 0 23.0% 1 4.0% 0.009139 
2031 10.5% 0 23.0% 1 4.0% 0.009139 
2032 10.5% 0 23.0% 1 4.0% 0.009139 
2033 10.5% 0 23.0% 1 4.0% 0.009139 
2034 10.5% 0 23.0% 1 4.0% 0.009139 
2035 10.5% 0 23.0% 1 4.0% 0.009139 

Table 7-12 – Phased Impact of Crashworthiness Technologies on Fatality Rates, Lane Departure Crashes 

MY 
Lane Departure Warning Lane Keep Assist 

% T.P. Weighted Effectiveness 
LDW Eff. % Inst. LKA Eff. % Inst. 

2015 10.0% 0.177 20.0% 0.000 35.8% 0.006329 
2016 10.0% 0.198 20.0% 0.088 35.8% 0.013374 
2017 10.0% 0.280 20.0% 0.205 35.8% 0.024674 
2018 10.0% 0.382 20.0% 0.320 35.8% 0.036546 
2019 10.0% 0.479 20.0% 0.442 35.8% 0.04874 
2020 10.0% 0.442 20.0% 0.558 35.8% 0.055717 
2021 10.0% 0.324 20.0% 0.676 35.8% 0.059925 
2022 10.0% 0.207 20.0% 0.794 35.8% 0.064134 
2023 10.0% 0.089 20.0% 0.911 35.8% 0.068343 
2024 10.0% 0 20.0% 1 35.8% 0.071519 
2025 10.0% 0 20.0% 1 35.8% 0.071519 
2026 10.0% 0 20.0% 1 35.8% 0.071519 
2027 10.0% 0 20.0% 1 35.8% 0.071519 
2028 10.0% 0 20.0% 1 35.8% 0.071519 
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2029 10.0% 0 20.0% 1 35.8% 0.071519 
2030 10.0% 0 20.0% 1 35.8% 0.071519 
2031 10.0% 0 20.0% 1 35.8% 0.071519 
2032 10.0% 0 20.0% 1 35.8% 0.071519 
2033 10.0% 0 20.0% 1 35.8% 0.071519 
2034 10.0% 0 20.0% 1 35.8% 0.071519 
2035 10.0% 0 20.0% 1 35.8% 0.071519 

Table 7-13 – Phased Impact of Crashworthiness Technologies on Fatality Rates, Blind Spot Crashes and 
Combined Total – All Three Crash Types 

MY 
Blind Spot Detection Lane Change Assist 

% T.P. Weighted  
Effectiveness 

Three Techs  
Avg Eff. Impact BSD Eff. % Inst. LCA Eff. % Inst. 

2015 3.0% 0.082 26.0% 0.123 2.1% 0.000711 0.007332 
2016 3.0% 0.124 26.0% 0.186 2.1% 0.001073 0.016278 
2017 3.0% 0.155 26.0% 0.233 2.1% 0.001342 0.029756 
2018 3.0% 0.191 26.0% 0.287 2.1% 0.001654 0.044211 
2019 3.0% 0.222 26.0% 0.333 2.1% 0.001915 0.057723 
2020 3.0% 0.252 26.0% 0.376 2.1% 0.002165 0.065467 
2021 3.0% 0.283 26.0% 0.424 2.1% 0.002442 0.07047 
2022 3.0% 0.314 26.0% 0.472 2.1% 0.002718 0.075473 
2023 3.0% 0.345 26.0% 0.520 2.1% 0.002994 0.080476 
2024 3.0% 0.376 26.0% 0.568 2.1% 0.00327 0.083938 
2025 3.0% 0.384 26.0% 0.617 2.1% 0.003532 0.084189 
2026 3.0% 0.335 26.0% 0.665 2.1% 0.003759 0.084417 
2027 3.0% 0.287 26.0% 0.713 2.1% 0.003987 0.084644 
2028 3.0% 0.239 26.0% 0.761 2.1% 0.004214 0.084871 
2029 3.0% 0.101 26.0% 0.809 2.1% 0.004442 0.085099 
2030 3.0% 0.143 26.0% 0.857 2.1% 0.004669 0.085326 
2031 3.0% 0.095 26.0% 0.905 2.1% 0.004896 0.085554 
2032 3.0% 0.047 26.0% 0.953 2.1% 0.005124 0.085781 
2033 3.0% 0 26.0% 1 2.1% 0.005345 0.086002 
2034 3.0% 0 26.0% 1 2.1% 0.005345 0.086002 
2035 3.0% 0 26.0% 1 2.1% 0.005345 0.086002 

7.1.13.6 Impact of Advanced Technologies on Older Vehicles’ Fatality Rates 

The users of older vehicles will also benefit from crash avoidance technologies on newer 
vehicles when those technologies prevent multi-vehicle crashes with older vehicles.  Crash 
avoidance technologies prevent crashes from happening and thus benefit both the vehicle with 
the technology and any other vehicles that it might have collided with.  However, the scope of 
these impacts on older vehicle’s fatality rates are somewhat limited due to several factors: 

• Single vehicle crashes, which make up about half of all fatal crashes, will not be affected.  
Only multi-vehicle crashes involving a newer vehicle with the advanced technology and 
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an older vehicle will be affected.  Multi-vehicle crashes account for roughly half of all 
light vehicle occupant fatalities. 

• For a new safety technology to benefit an older vehicle in a multi-vehicle crash, the 
vehicle with the technology must have been in a position to control or prevent the crash.  
For example, in front-to-rear crashes which can be addressed by FCW and AEB, the 
older vehicle would only benefit if it was the vehicle struck from behind.  If the struck 
vehicle were the newer vehicle, its AEB technology would not prevent the crash.  
Logically this would occur in roughly half of two-vehicle crashes and a third of all three-
vehicle crashes.  Since most multi-vehicle crashes involve only two vehicles, roughly half 
of all multi-vehicle crashes might qualify. 

• The benefits experienced by older vehicles are proportional to the probability that the 
vehicles they collide with are newer vehicles with advanced crash avoidance technology.  
We estimate that the probability that this would occur is a function of the relative 
exposure of vehicles by age, measured by the portion of total VMT driven by vehicles of 
that age.  Based on VMT schedules (see CY 2016 example in Table 7-14) new (current 
MY) vehicles account for about 9.6 percent of annual fleet VMT.  The relevant portion 
would increase over time as additional MY vehicles are produced with advanced 
technologies.  However, the portion of older vehicle crashes that might be affected by 
newer technologies is initially very small—only about 2 percent (.5*.5*.096) of older 
vehicles involved in crashes might benefit from advanced crash avoidance technologies 
in other vehicles in the first year. 

Table 7-14 – Registrations, Total VMT, and Proportions of Total VMT by Vehicle Age 

Registrations, Total VMT, And Proportions of Total VMT By Vehicle Age 
Model Year Age CY 2016 Registrations VMT (thousand) % Total VMT 
1977 39 286,019 927,877 0.000329 
1978 38 332,760 1,247,190 0.000443 
1979 37 375,561 1,556,553 0.000553 
1980 36 205,942 903,948 0.000321 
1981 35 208,192 1,010,499 0.000359 
1982 34 213,697 1,130,039 0.000401 
1983 33 265,583 1,496,439 0.000531 
1984 32 408,058 2,428,835 0.000862 
1985 31 477,178 2,993,451 0.001063 
1986 30 605,932 3,991,280 0.001417 
1987 29 644,568 4,396,414 0.001561 
1988 28 629,179 4,431,880 0.001574 
1989 27 747,740 5,475,868 0.001944 
1990 26 755,244 5,685,511 0.002019 
1991 25 899,252 6,991,287 0.002483 
1992 24 1,005,716 8,055,442 0.00286 
1993 23 1,308,396 10,784,619 0.003829 
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Registrations, Total VMT, And Proportions of Total VMT By Vehicle Age 
Model Year Age CY 2016 Registrations VMT (thousand) % Total VMT 
1994 22 1,738,409 14,739,099 0.005234 
1995 21 2,212,145 19,191,169 0.006815 
1996 20 2,364,368 21,059,984 0.007478 
1997 19 3,401,992 31,134,256 0.011055 
1998 18 4,079,728 38,358,375 0.013621 
1999 17 5,377,629 52,039,074 0.018478 
2000 16 6,826,267 67,907,099 0.024113 
2001 15 7,475,530 76,512,692 0.027169 
2002 14 8,912,404 94,016,400 0.033384 
2003 13 9,825,521 106,764,943 0.037911 
2004 12 10,806,847 121,080,704 0.042994 
2005 11 11,649,021 134,404,144 0.047725 
2006 10 11,699,430 138,962,811 0.049344 
2007 9 12,519,932 153,300,527 0.054435 
2008 8 11,781,605 148,871,424 0.052862 
2009 7 8,171,782 106,120,610 0.037682 
2010 6 9,944,848 133,696,015 0.047474 
2011 5 10,967,994 152,795,831 0.054256 
2012 4 12,409,627 177,760,326 0.06312 
2013 3 14,197,792 210,386,962 0.074706 
2014 2 14,726,690 226,423,858 0.0804 
2015 1 16,208,153 257,415,893 0.091405 
2016 0 16,338,755 269,760,666 0.095789 
Total  223,005,486 2,816,209,994 1 

To reflect this safety benefit for older vehicles, NHTSA calculated a revised fatality rate for each 
older MY vehicle on the road based on its interaction with each new MY starting with MY 2021 
vehicles based on the following relationship: 

Revised fatality rate = Fm-((x-y)mnp)+F(1-m) 

Where:  

F = initial fatality rate for each MY 
x = baseline MY fatality rate 
y = current MY fatality rate  
m = proportion of occupant fatalities that occur in multi-vehicle crashes (52 percent) 
n = probability that crash is with a new MY vehicle containing advanced technologies 
p = probability that new vehicle is “striking” vehicle   

The initial fatality rate for each vehicle MY (F) was derived by combining fatality counts from 
NHTSA’s Fatality Analysis Reporting System (FARS) with VMT data from IHS/Polk. 
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The baseline MY fatality rate (x) represents the baseline rate over which the impact of new crash 
avoidance technologies should be measured.  It establishes the baseline rate for each MY that 
will be compared to the most current MY rate to determine the change in fatality rate (FR) for 
each MY.  The relative effectiveness of new crash-avoidance technologies in modifying the 
fatality rate of older model vehicles is measured differently depending on the age of the older 
vehicle.  The fatality rate is a historical measure that reflects safety differences due to both 
crashworthiness technologies such as air bags and crash avoidance technologies such as 
electronic stability control, but up through MY 2017, crashworthiness standards are the 
predominate cause of these differences.   

The most recent significant crashworthiness safety standard, which upgraded roof strength 
standards, was effective in all new passenger vehicles in MY 2017.  Crashworthiness standards 
would not have secondary benefits for older MY vehicles.  Post MY 2017, NHTSA believes 
crash avoidance technologies will drive safety improvements.  To isolate the added crash 
avoidance safety expected in newer vehicles, the marginal impact of the difference between the 
MY 2017 fatality rate and the most current MY fatality rate represents the added marginal 
effectiveness of new crash-avoidance technologies of each subsequent MY for MYs 2017 and 
earlier.  Beginning with MY 2018, the difference between the older MY fatality rate and most 
current MY rate determines the potential safety benefit for the older vehicles. 

The current MY fatality rate (y), represents the projected fatality rate of future MY vehicles after 
adjustment for the impacts of the advanced crash avoidance technologies and projected 
improvements in non-technology factors examined in this analysis.  This process was discussed 
in detail in the previous section. 

The proportion of passenger vehicle occupant fatalities that occur in multi-vehicle crashes (m), 
was derived from an analysis of occupants of fatal passenger vehicle crashes from 2002-2017 
FARS.  The analysis indicated that 47.8 percent of fatal crash occupants were in single vehicle 
crashes, 40.2 percent were in two vehicle crashes, and 12 percent were in crashes involving 3 or 
more vehicles.  Overall, 52.2 percent were in multi-vehicle crashes. 

The portion of older vehicle crashes involving newer vehicles containing advanced crash 
avoidance technologies (n), is assumed to be equal to the cumulative risk exposure of vehicles 
that have these technologies.  This exposure is measured by the product of annual VMT by 
vehicle age and registrations of vehicles of that age.  The CAFE Model calculates this 
dynamically, but as an example, based on 2016 registration data (see Table 7-14), the most 
current model year would represent 9.6 percent of all VMT in a calendar year, implying a 9.6 
percent probability that the vehicle encountered would be from the most current MY.  This 
percentage would increase for each calendar year as more model year vehicles adopt advanced 
crashworthiness technologies.  NHTSA notes that other factors such as uneven concentrations of 
newer vs. older vehicles or improved crash avoidance in the younger vehicles already on the road 
that are the basis for our VMT proportion table might disrupt this assumption, but it is likely that 
this would only serve to slow the probability of these encounters, making this a conservative 
assumption in that it maximizes the probability that older vehicles might benefit from newer 
technologies. 
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The probability that the vehicle with advanced crash avoidance technology is the controlling or 
striking vehicle (p), was calculated using the relative frequency of fatal crash occupants in multi-
vehicle crashes.  As noted previously, 40.2 percent were in two vehicle crashes, and 12 percent 
were in crashes involving 3 or more vehicles.  NHTSA assumes a probability of 50 percent for 
two vehicle crashes and 33 percent for crashes with 3 or more vehicles.  Weighted together we 
estimate a 46.1 percent probability that, given a multi-vehicle crash involving a vehicle with 
advanced technologies and an older vehicle without them, the newer vehicle will be the striking 
vehicle or in a position where its crash avoidance technologies might influence the outcome of 
the crash with the older vehicle. 

This process is illustrated in Table 7-15 below for adjustments due to improvements in MY 2021 
vehicles back through MY 1995.  In Table 7-15 the actual model year fatality rate is shown in 
the second column.  As noted above, the base fatality rate, shown in column 3, is the MY 2017 
rate for all MYs prior to 2018, after which it becomes the actual MY rate.  Column 4 shows the 
difference between the fatality rate for MY 2021 and the base rate for each MY.  Column 5 
shows the resulting revised fatality rate that would be used for each older MY, and columns 6 
and 7 list the change in that rate.  The various factors noted in the above formula are applied in 
column 5.  The results indicate a 0.006 decrease in pre-2018 MY vehicles fatality rates, with 
declining impacts going forward to MY 2021.  In subsequent years, this impact would grow to 
reflect the both the increased probability that an older vehicle would be involved in crashes with 
vehicles equipped with advanced technology, as well as the increased technology levels in 
progressively newer vehicles.876  The actual impacts are dynamically calculated within the 
CAFE Model using updated inputs applicable to this final rule and reflect revised fatality rate 
trends going forward and cover even older model years. 

Table 7-15 – Example Adjustment to Fatality Rates of Older Vehicles to Reflect Impact of Advanced Crash 
Avoidance Technologies in Newer Vehicles 

Model 
Year 

MY 
Fatality 

Rate 

Base 
Fatality 

Rate 

Difference 
Base FR -  
New MY 

FR 

Revised 
Fatality 

Rate 
% Change Difference 

1995 17.979 8.628 0.269 17.973 0.00034 -0.0062 
1996 16.519 8.628 0.269 16.513 0.00038 -0.0062 
1997 15.789 8.628 0.269 15.783 0.00039 -0.0062 
1998 14.709 8.628 0.269 14.703 0.00042 -0.0062 
1999 13.679 8.628 0.269 13.673 0.00045 -0.0062 
2000 12.909 8.628 0.269 12.903 0.00048 -0.0062 
2001 12.259 8.628 0.269 12.253 0.00051 -0.0062 
2002 11.489 8.628 0.269 11.483 0.00054 -0.0062 
2003 10.889 8.628 0.269 10.883 0.00057 -0.0062 
2004 10.349 8.628 0.269 10.343 0.00060 -0.0062 
2005 9.679 8.628 0.269 9.673 0.00064 -0.0062 
2006 9.349 8.628 0.269 9.343 0.00066 -0.0062 

 
876 Table 7-15 was created using inputs from the 2020 CAFE rule NPRM and is provided for explanatory purposes 
only.   
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Model 
Year 

MY 
Fatality 

Rate 

Base 
Fatality 

Rate 

Difference 
Base FR -  
New MY 

FR 

Revised 
Fatality 

Rate 
% Change Difference 

2007 9.284 8.628 0.269 9.278 0.00067 -0.0062 
2008 9.220 8.628 0.269 9.214 0.00067 -0.0062 
2009 9.155 8.628 0.269 9.149 0.00068 -0.0062 
2010 9.090 8.628 0.269 9.084 0.00068 -0.0062 
2011 9.024 8.628 0.269 9.018 0.00069 -0.0062 
2012 8.959 8.628 0.269 8.953 0.00069 -0.0062 
2013 8.893 8.628 0.269 8.887 0.00070 -0.0062 
2014 8.827 8.628 0.269 8.821 0.00070 -0.0062 
2015 8.761 8.628 0.269 8.755 0.00071 -0.0062 
2016 8.694 8.628 0.269 8.688 0.00071 -0.0062 
2017 8.628 8.628 0.269 8.622 0.00072 -0.0062 
2018 8.561 8.561 0.202 8.556 0.00054 -0.00466 
2019 8.494 8.494 0.135 8.491 0.00037 -0.00311 
2020 8.426 8.426 0.068 8.425 0.00018 -0.00156 
2021 8.359 8.359 0.000 8.359 0 0 

7.2 Impact of Weight Reduction on Safety 

Vehicle mass reduction can be one of the more cost-effective means of improving fuel economy, 
particularly for makes and models not already built with much high-strength steel or aluminum 
closures or low-mass components.  Manufacturers have stated that they will continue to reduce 
vehicle mass to meet more stringent standards, and therefore, this expectation is incorporated 
into the modeling analysis supporting the standards.  Newer vehicles incorporate design and 
hardware improvements that may mitigate some of the direct safety effects to occupants 
associated with light-weighting.   

Historically, as shown in FARS data analyzed by NHTSA,877 mass reduction concentrated 
among the heaviest vehicles (chiefly, the largest LTVs, CUVs and minivans) has been estimated 

 
877 See Kahane, C. J. (1997). Relationships Between Vehicle Size and Fatality Risk in Model Year 1985- 93 
Passenger Cars and Light Trucks, NHTSA Technical Report. DOT HS 808 570. Washington, DC: National 
Highway Traffic Safety Administration, http://wwwnrd.nhtsa.dot.gov/Pubs/808570.PDF; Kahane, C. J. (2003). 
Vehicle Weight, Fatality Risk and Crash Compatibility of Model Year 1991-99 Passenger Cars and Light Trucks, 
NHTSA Technical Report. DOT HS 809 662. Washington, DC: National Highway Traffic Safety Administration, 
http://wwwnrd.nhtsa.dot.gov/Pubs/809662.PDF; Kahane, C. J. (2010). “Relationships Between Fatality Risk, Mass, 
and Footprint in Model Year 1991-1999 and Other Passenger Cars and LTVs,” Final Regulatory Impact Analysis: 
Corporate Average Fuel Economy for MY 2012-MY 2016 Passenger Cars and Light Trucks. Washington, DC: 
National Highway Traffic Safety Administration, pp. 464–542, 
http://www.nhtsa.dot.gov/staticfiles/DOT/NHTSA/Rulemaking/Rules/Associated%20Files/CAF E_2012-
2016_FRIA_04012010.pdf Kahane, C.J. (2012). Relationships Between Fatality Risk, Mass, and Footprint in Model 
Year 2000-2007 Passenger Cars and LTVs: Final Report, NHTSA Technical Report. Washington, DC: National 
Highway Traffic Safety Administration, Report No. DOT-HS-811-665; Puckett, S.M. and Kindelberger, J.C. (2016, 
June). Relationships between Fatality Risk, Mass, and Footprint in Model Year 2003-2010 Passenger Cars and 
LTVs – Preliminary Report. (Docket No. NHTSA2016-0068). Washington, DC: National Highway Traffic Safety 
Administration. 
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to reduce overall fatalities, while mass reduction concentrated among the lightest vehicles 
(chiefly, smaller passenger cars) has been estimated to increase overall fatalities.  Past NHTSA 
analyses have consistently indicated that increasing the disparity of the masses of vehicles is 
harmful to safety.  In collisions among vehicles, mass reduction in heavier vehicles alone is more 
beneficial to the occupants of lighter vehicles than it is harmful to the occupants of the heavier 
vehicles.  Mass reduction in lighter vehicles alone is more harmful to the occupants of lighter 
vehicles than it is beneficial to the occupants of the heavier vehicles.  Reducing mass 
simultaneously across multiple vehicles can have a range of net effects; for example, 
proportional mass reduction across the vehicle fleet would be expected to have a roughly neutral 
effect on societal fatality rates for two-vehicle crashes.  This highlights the role of mass disparity 
in societal fatality risk: as the overall vehicle fleet moves closer together is in terms of mass (or, 
as measured in our analysis, curb weight), the impacts of changes in vehicle mass on fatality risk 
decrease for crashes involving two or more vehicles.  However, even if manufacturers were 
capable of coordinating and reducing mass equally across the new vehicle fleet, new vehicles 
would encounter vehicles with different masses within the existing fleet.  Further, many fatalities 
and injuries occur in single vehicle crashes and collisions between light-duty vehicles and 
cyclists or pedestrians and these must also be taken into account in representing the effects of 
mass reduction on societal fatality rates. 

In response to questions of whether designs and materials of more recent model year vehicles 
may have weakened the historical statistical relationships between mass, size, and safety, 
NHTSA updated its public database for statistical analysis consisting of crash data.  The database 
incorporates the full range of real-world crash types.  NHTSA also sponsored a study conducted 
by George Washington University (GWU) to develop a fleet simulation model and study the 
impact and relationship of light-weighted vehicle design with crash injuries and fatalities.  That 
study is discussed in detail in Chapter 7.2.5.  The GWU study found results that are directionally 
consistent with NHTSA’s statistical analyses of vehicle mass and fatality risk. 

As described below, NHTSA’s current analysis did not find a statistically significant relationship 
between mass and safety.  This may reflect the effects of a decreased sample size (the current 
study was based on 32 percent fewer fatal cases than the Kahane 2012 study) as well as possible 
mitigating effects from newer safety technologies or vehicle designs.  While not finding 
statistical significance, NHTSA’s current study did find results that are directionally consistent 
with previous NHTSA studies and the GWU fleet simulation.  The common pattern across all 
studies is that changes in mass disparity are associated with changes in motor vehicle safety: 
increased disparity increases fatality risk, while decreased disparity decreases risk.  The agency 
will continue to conduct research on the impacts of mass disparity on vehicle safety in an effort 
to identify the impacts of evolving vehicle fleets. 

The CAFE standards detailed here are “footprint-based,” with footprint being defined as a 
measure of a vehicle’s size, roughly equal to the wheelbase times the average of the front and 
rear track widths.  Manufacturers are less likely than they were in the past to reduce vehicle 
footprint to reduce mass for increased fuel economy.  Indeed, as reflected in shifts from smaller 
passenger cars to larger trucks, SUVs, and CUVs (see Chapter 1.2.8 and FRIA Chapter 3.2 
Simulating Manufacturers’ Potential Responses to the Alternatives) the average footprint of 
light-duty vehicles has increased slightly and gradually since the adoption of footprint-based 
standards.  Footprint-based standards create a disincentive for manufacturers to produce smaller-
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footprint vehicles.  This is because, as footprint decreases, the corresponding fuel economy target 
becomes more stringent.  The agency believes that the shape of the footprint curves themselves is 
such that the curves should neither encourage manufacturers to increase the footprint of their 
fleets, nor to decrease it.  Several technologies, such as substitution of light, high-strength 
materials for conventional materials during vehicle redesigns, have the potential to reduce weight 
and conserve fuel while maintaining a vehicle’s footprint. 

For the rulemaking analysis, the CAFE Model tracks the amount of mass reduction applied to 
each vehicle model, and then applies estimated changes in societal fatality risk per 100 pounds of 
mass reduction determined through the statistical analysis of FARS crash data.  100-pound mass 
reductions have been considered in NHTSA analyses as a matter of convention; the implications 
of the analysis would not change meaningfully either for focal vehicle classes or for the fleet at 
large (i.e., in terms of mass disparity) if different magnitudes of mass reduction were considered.  
This process allows the CAFE Model to tally changes in fatalities attributed to mass reduction 
across all the analyzed future model years.  In turn, the CAFE Model is able to provide an overall 
impact of the final standards and alternatives on fatalities attributed to changes in mass disparity 
resulting from mass reduction.  The projections of societal effects of mass reduction from the 
CAFE Model are subject to uncertainty in the paths that manufacturers will follow in applying 
mass reduction to the fleet.  That is, there is uncertainty in which vehicle models will undergo 
mass reduction.  Rather, the model is calibrated to incorporate the best available information on 
the application, and safety effects, of mass reduction. 

7.2.1 Historical Analyses of Vehicle Mass and Safety 

The methodology used for the statistical analysis of historical crash data has evolved over many 
years.  The methodology used for this final rule is carried forward from the 2020 CAFE rule, and 
reflects learnings and refinements from: NHTSA studies in 2003, 2010, 2011, 2012, and 2016; 
independent peer review of 23 studies by the University of Michigan Transportation Research 
Institute (UMTRI); two public workshops hosted by NHTSA; interagency collaboration among 
NHTSA, DOE and EPA; and comments to CAFE and GHG rulemakings in 2010, 2012, the 2016 
Draft TAR, and the 2020 rulemaking.  As explained in greater detail below, the methodology 
used for the statistical analysis of historical crash data for this final rule is the best and most up-
to-date available. 

Over the course of refining the methodology and the corresponding data per stakeholder 
feedback and internal review, NHTSA has confirmed the central relationship that mass reduction 
is most likely to reduce societal fatalities when concentrated among the heaviest vehicles.  For 
crashes involving two or more vehicles, this relationship manifests itself within the vehicle fleet 
in terms of the dispersion of vehicle mass (or curb weights): All else being equal, as disparities in 
mass among vehicles increase, fatalities increase as well.  That is, mass reduction concentrated 
among the lightest vehicles would increase the dispersion of mass (i.e., the heaviest vehicles 
become even heavier than the lightest vehicles), while mass reduction concentrated among the 
heaviest vehicles would decrease the dispersion of mass (i.e., the lightest vehicles grow closer in 
mass to the heaviest vehicles).   

Representing the overall relationship of mass reduction and safety within the CAFE Model (e.g., 
through model coefficients placing a detrimental effect on mass reduction in the lightest vehicles 
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and a beneficial effect on mass reduction in the heaviest vehicles) enables the model to project 
effects of mass reduction in individual vehicle models on societal fatalities.  The model achieves 
this by incorporating the corresponding effects of vehicle-model-specific mass reduction on the 
dispersion of mass for multi-vehicle crashes and effects of mass reduction on other types of 
crashes across the vehicle fleet.878  Projected levels of mass reduction are internal to the CAFE 
Model and represent plausible paths forward for manufacturers to meet fuel economy targets in 
an economical manner, rather than specific predictions on mass reduction paths.  Thus, there is 
some uncertainty introduced by the use of CAFE Model estimates as predictions of future 
changes in the distribution of vehicle mass.  Consistency in the directionality and magnitude of 
the central point estimates across NHTSA’s analyses has increased NHTSA’s confidence that 
reducing the dispersion of mass across the vehicle fleet would reduce societal fatalities.   

Researchers have been using statistical analysis to examine the relationship of vehicle mass and 
safety in historical crash data for many years and continue to refine their techniques.  In the MY 
2012-2016 final rule, NHTSA stated we would conduct further study and research into the 
interaction of mass, size, and safety to assist future rulemakings and start to work collaboratively 
by developing an interagency working group between NHTSA, EPA, DOE, and CARB to 
evaluate all aspects of mass, size, and safety.  The team would seek to coordinate government-
supported studies and independent research to the greatest extent possible to ensure the work is 
complementary to previous and ongoing research and to guide further research in this area. 

Subsequent to the publication of the MY 2012-2016 rule, NHTSA identified three specific areas 
to direct research in preparation for future CAFE rulemakings.  First, NHTSA would contract 
with an independent institution to review the statistical methods NHTSA and DRI used to 
analyze historical data related to mass, size, and safety, and to provide recommendations on 
whether existing or other methods should be used for future statistical analysis of historical data.   

In 2010, NHTSA published the results of the contractor’s review in a research report (hereinafter 
2010 Kahane report).  The 2010 Kahane report considered the potential near multicollinearity in 
the historical data and suggested methods to overcome it in a logistical regression analysis.  The 
2010 Kahane report was also peer reviewed by two other experts in the safety field - Farmer 
(Insurance Institute for Highway Safety) and Lie (Swedish Transport Administration) prior to 
publication. 

Second, NHTSA and EPA, in consultation with DOE, would update the MY 1991–1999 
database, used to calculate the mass safety coefficients, with newer vehicle data and create a 
common database that could be made publicly available to address concerns that differences in 
data were leading to different results in statistical analyses by different researchers.  The 
database contains FARS and State-level crash data, to enable the estimation of changes in fatality 
risk as a function of vehicle curb weight across recent light-duty vehicle models.  The FARS 
component of the database essentially forms the numerator of fatality risk calculations (i.e., 
societal fatalities), while the State component of the database forms the denominator (i.e., VMT 

 
878 There are nine types of crashes specified in the mass-safety analysis: three types of single-vehicle crashes, five 
types of two-vehicle crashes; and one classification of all other crashes.  Single-vehicle crashes include first-event 
rollovers, collisions with fixed objects, and collisions with pedestrians, bicycles and motorcycles.  Two-vehicle 
crashes include collisions with: heavy-duty vehicles; cars, CUVs, or minivans, truck-based LTVs.  All other fatal 
crash types include collisions involving more than two vehicles, animals, trains and other crash types. 
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by vehicle model).  The FARS component of the database represents a census of fatalities 
associated with vehicle models in the sample; the State component of the database represents a 
random sample of vehicle exposure (i.e., induced exposure, comprised of crashes where drivers 
are assumed to be not at fault), yielding estimates of distributions of key contextual factors, such 
as driver age, driver sex, and vehicle location.  Combining these data within a logistic regression 
yields a range of estimated fatality risks (i.e., fatalities per VMT) for each vehicle model, which 
vary with respect to vehicle curb weight, footprint, and contextual effects.  This enables the 
logistic regression to isolate effects associated with curb weight, yielding the estimates of 
primary interest for the analysis summarized in this section. 

And third, NHTSA sought to identify vehicles using newer material substitution and smart 
design and to assess if there were sufficient crash data involving those vehicles for statistical 
analysis to assess if modern mass reduction methods affected the historical relationship between 
vehicle mass, size, and safety.  If sufficient data existed, statistical analysis would be conducted 
to compare the relationship among mass, size, and safety of these smart design vehicles to 
vehicles of similar size and mass with more traditional designs. 

By the time of the MY 2017-2025 final rule, significant progress had been made on these tasks.  
The independent review then-recent statistical analyses of the relationship between vehicle mass, 
size, and crash fatality rates had been completed by UMTRI.  Led by Dr. Green, UMTRI 
evaluated more than 20 academic papers, including studies done by NHTSA’s Kahane, Wenzel 
of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, Dynamic 
Research, Inc., and others.  UMTRI’s basic findings will be discussed below. 

To support rulemaking efforts, NHTSA created a common, updated database for statistical 
analysis consisting of crash data of model years 2000-2007 vehicles in calendar years 2002-
2008, as compared to the database used in prior NHTSA analyses, which was based on model 
years 1991–1999 vehicles in calendar years 1995-2000.  The new database was the most up-to-
date possible, given the processing lead time for crash data and the need for enough crash cases 
to permit statistically meaningful analyses.  NHTSA made the preliminary version of the new 
database, which was the basis for NHTSA’s 2011 preliminary report (hereinafter 2011 Kahane 
report), available to the public in May 2011, and an updated version in April 2012 (used in 
NHTSA’s 2012 final report, hereinafter 2012 Kahane report), enabling other researchers to 
analyze the same data and hopefully minimize discrepancies in results because of inconsistencies 
across databases.  NHTSA updated the crash and exposure databases for the 2016 Draft TAR 
analysis and has added a new variable denoting status as a medium- or heavy-duty truck to the 
database accompanying the NPRM and this final rule. 

NHTSA was aware of several studies that had been initiated using the 2011 version or the 2012 
version of NHTSA’s newly established safety database.  In addition to new Kahane studies, other 
recent and on-going studies included two by Wenzel at Lawrence Berkeley National Laboratory 
(LBNL) under contract with the U.S. DOE and one by DRI contracted by ICCT.  These studies 
took somewhat different approaches to examining the statistical relationship between fatality 
risk, vehicle mass, and size.  In addition to a detailed assessment of the 2011 Kahane report, 
Wenzel considered the effect of mass and footprint reduction on casualty risk per crash, using 
data from 13 states.  Casualty risk includes fatalities and serious or incapacitating injuries.  Both 
LBNL studies were peer reviewed and subsequently revised and updated.  DRI used models 
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separating the effect of mass reduction on two components of fatality risk - crash avoidance and 
crashworthiness.  The LBNL and DRI studies were available in the docket for the 2012 final 
rule.  

For the 2020 CAFE rule, the crash and exposure databases were updated again; these databases 
were used to support this final rule as well.  The databases were updated to include crash data for 
MY 2004-2011 vehicles during CY 2006-2012; for ensuing rulemakings, NHTSA intends to 
once again update the databases with more recent model years and calendar years, where 
feasible.  As in previous analyses, NHTSA has made the databases available to the public on its 
website.879  

NHTSA has continued to sponsor new studies and research to inform the current CAFE 
rulemaking.  In addition, the National Academies of Science/National Academies of Sciences, 
Medicine, and Medicine (NAS/NASEM) published reports that include discussions of 
relationships between vehicle mass and societal fatality risk.880  The 2015 NAS report 
summarizes results from studies by NHTSA, DRI, and LBNL, confirming the general 
relationships between vehicle mass disparity and societal fatality risk (i.e., mass reduction in the 
lightest vehicles is detrimental, mass reduction on in the heaviest vehicles is beneficial) and 
noting that future changes in technology and fleet composition could lead to different 
conclusions.  The 2021 NASEM report highlights the role that mass disparity among the vehicle 
fleet plays in societal fatality risk, with greater mass disparity associated with greater societal 
fatality risk.  The NASEM report clarifies that the path of mass disparity is unknown (i.e., 
general trends and the application of mass reduction technologies could increase or decrease 
mass disparity).  The NASEM report qualifies the general conclusions associated with mass 
disparity, noting that new vehicle designs, continued effects associated with footprint-based fuel 
economy standards, changes in demand across vehicle classes, and increased demand for 
vehicles with (heavier) electrified powertrains could yield different safety relationships from 
those identified in relevant studies.  Throughout the rulemaking process, NHTSA’s goal is to 
publish as much of the agency’s research as possible.  In establishing standards, all available 
data, studies, and objective information without regard to whether they were sponsored by 
NHTSA, will be considered.  

Undertaking these tasks has helped come closer to resolving ongoing debates in statistical 
analysis research of historical crash data and has informed NHTSA analysis supporting this final 
rule.  It is intended that these conclusions will continue to be applied going forward in future 
rulemakings, and it is believed the research will assist the public discussion of the issues. 

 
879 Visit https://www.nhtsa.gov/content/nhtsa-ftp/191, (Accessed: February 14, 2022), for access to the databases 
and other files and documentation associated with CAFE rulemaking. 
880 National Research Council.  2015.  Cost, Effectiveness, and Deployment of Fuel Economy Technologies for 
Light-Duty Vehicles.  Washington, DC: The National Academies Press.  https://doi.org/10.17226/21744, (Accessed: 
February 14, 2022) and National Academies of Sciences, Medicine, and Engineering.  2021.  Assessment of 
Technologies for Improving Light-Duty Fuel Economy 2025-2035.  Washington, DC: The National Academies 
Press.  https://doi.org/10.17226/26092.  (Accessed: February 14, 2022). 
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7.2.1.1 2011 NHTSA Workshop on Vehicle Mass, Size, and Safety 

On February 25, 2011, NHTSA hosted a workshop on mass reduction, vehicle size, and fleet 
safety at the Headquarters of the U.S. Department of Transportation in Washington, D.C.  The 
purpose of the workshop was to provide a broad understanding of current research in the field 
and provide stakeholders and the public with an opportunity to weigh in on this issue.  NHTSA 
also created a public docket to receive comments from interested parties who were unable to 
attend. 

Speakers included Kahane of NHTSA, Wenzel of LBNL, Van Auken of DRI, Padmanaban of JP 
Research, Inc., Lund of the Insurance Institute for Highway Safety, Green of UMTRI, Summers 
of NHTSA, Peterson of Lotus Engineering, Kamiji of Honda, German of ICCT, Schmidt of the 
Alliance of Automobile Manufacturers, Nusholtz of Chrysler, and Field of the Massachusetts 
Institute of Technology. 

The wide participation in the workshop allowed the agency to hear from a broad range of experts 
and stakeholders.  Contributions were particularly relevant to the analysis of effects of mass 
reduction for the MY 2017-2025 final rule.  Presentations were divided into two sessions 
addressing two expansive sets of issues - statistical evidence of the roles of mass and size on 
safety, and engineering realities regarding structural crashworthiness, occupant injury, and 
advanced vehicle design.  Some main points from the workshop were:  

• Statistical studies of crash data attempting to identify relative recent historical effects of 
vehicle mass and size on fleet safety show complicated relationships with many 
confounding influences in data.  

• Analyses must control for individual technologies with significant safety effects (e.g., 
Electronic Stability Control, airbags).  

• Physics of a two-vehicle crash require the lighter vehicle experience a greater change in 
velocity, which, all else being equal, often leads to disproportionately more injury risk.  

• The separation of key parameters is a challenge to analyses, as vehicle size has 
historically been highly correlated with vehicle mass.  

• No consensus on whether smaller, lighter vehicles maneuver better, and thus avoid more 
crashes, than larger, heavier vehicles.  

• Kahane’s results from his 2010 report found a scenario, which took some mass out of 
heavier vehicles but little or no mass out of the lightest vehicles, did not affect safety in 
absolute terms, and noted if analyses were able to consider the mass of both vehicles in a 
two-vehicle crash, results may be more indicative of future crashes. 

7.2.1.2 UMTRI Report 

NHTSA contracted with UMTRI to conduct an independent review of a set of statistical analyses 
of relationships between vehicle curb weight, footprint variables (track width, wheelbase), and 
fatality rates from vehicle crashes.  The purpose of this review was to examine analysis methods, 
data sources, and assumptions of statistical studies, with the objective of identifying reasons for 
any differences in results.  Another objective was to examine the suitability of various methods 
for estimating fatality risks of future vehicles. 
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UMTRI reviewed a set of papers, reports, and manuscripts provided by NHTSA (listed in 
Appendix A of UMTRI’s report881) examining statistical relationships between fatality or 
casualty rates and vehicle properties such as curb weight, track width, wheelbase, and other 
variables.   

Fundamentally, the UMTRI team concluded the database created by Kahane appeared to be an 
impressive collection of files from appropriate sources and the best ones available for answering 
the research questions considered in this study; the disaggregate logistic regression model used 
by NHTSA in its 2003 report (hereinafter 2003 Kahane report) seemed to be the most 
appropriate model, valid for the analysis in the context that it was used - finding general 
associations between fatality risk and mass, and general directions of reported associations were 
correct. 

7.2.1.3 2012 LBNL Reports 

In its 2012 “Phase 1” report, LBNL replicated the 2012 NHTSA baseline results and conducted 
19 alternative regression models to test the sensitivity of the NHTSA baseline model to changes 
in the measure of risk, variables included, and data used.  In its report, LBNL pointed out that 
other vehicle attributes, driver characteristics, and crash circumstances were associated with 
much larger changes in risk than mass reduction.  LBNL also demonstrated there was little 
correlation between mass and fatality risk by vehicle model, even after accounting for all other 
vehicle attributes, driver characteristics, and crash circumstances.  

In its 2012 “Phase 2” report, LBNL used data from police reported crashes in the 13 states to 
study casualty (fatality plus severe injury) risk per VMT, and to divide risk per VMT into its two 
components - crash frequency (crashes per VMT) and crashworthiness/crash compatibility (risk 
per crash).  LBNL found mass reduction was associated with increases in crash frequency and 
decreases in fatality or serious injury risk per crash.  Preliminary versions LBNL’s Phase 1 and 
Phase 2 reports were reviewed by external reviewers, and comments were incorporated into final 
versions published in 2012.882 

7.2.1.4 2012 DRI Reports 

DRI published three preliminary reports in 2012.  DRI’s preliminary Phase I report updated its 
analysis of data from 1995 to 2000 and was able to replicate results from the 2003 Kahane 
report.  DRI’s preliminary Phase II report replicated the 2012 rulemaking baseline results and 
used a simultaneous two-stage model to estimate separate effects of mass reduction on crash 

 
881 Green, P.E., Kostyniuk, L.P., Gordon, T.J., and M.P.  Reed.  (2011).  Independent Review Statistical Analyses of 
Relationship between Vehicle Curb Weight, Track Width, Wheelbase and Fatality Rates.  Report for U.S. 
Department of Transportation, Report No.  UMTRI-2011-12.  Available in the docket to the MY 2017-2025 
rulemaking at regulations.gov, or at 
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/85162/102752.pdf?sequence=1&isAllowed=y.  (Accessed: 
February 14, 2022). 
882 See Wenzel, T.P.  (2012).  An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass 
and Footprint for Model Year 2000-2007 Light-Duty Vehicles – Final Report.  Lawrence Berkeley National 
Laboratory Report No. LBNL-5697E and Wenzel T.P.  (2012).  Assessment of NHTSA’s Report “Relationships 
Between Fatality Risk, Mass, and Footprint in Model Year 2000-2007 Passenger Cars and LTVs” – Final Report.  
Lawrence Berkeley National Laboratory Report No. LBNL-5698E. 
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frequency and fatality risk per crash.  Results from DRI’s two-stage model were comparable to 
LBNL’s Phase 2 analysis - mass reduction was associated with increases in crash frequency and 
decreases in risk per crash.  DRI’s preliminary summary report showed the effect of two 
alternative regression models - using stopped rather than non-culpable vehicles as the basis for 
the induced exposure database and replacing vehicle footprint with its component’s wheelbase 
and track width.  Under these two alternatives, mass reduction was estimated to have less 
harmful (e.g., for the lightest passenger cars) or more beneficial (e.g., for the heaviest LTVs) 
impacts on societal fatality risk.  The three preliminary DRI reports were peer-reviewed with 
comments incorporated into the final versions published in 2013.  

Results from LBNL’s Phase 2 and DRI’s Phase II reports implied the increase in fatality risk per 
VMT from mass reduction in lighter cars estimated by the NHTSA baseline model was because 
of increasing crash frequency and not increasing fatality risk once a crash had occurred, as mass 
was reduced.  In the 2012 Kahane report, NHTSA argued effects of crash frequency could not be 
separated from risk per crash because of reporting bias in state crash data, such as lack of a crash 
severity measure, and possible bias because of underreporting of less severe crashes in certain 
states.  This is a complex issue, in which it is possible for crashes to be reported at variable rates 
across vehicle type, vehicle size, or vehicle weight.  That is, if underreporting were solely 
random, it may be feasible to draw unbiased inferences with respect to crash risk and crash 
severity independently.  However, if underreporting is not random (e.g., crashes involving 
smaller, lighter, or older, less valuable vehicles may be less likely to meet State reporting 
thresholds), factors leading to variable reporting rates would be conflated with representations of 
crash frequency. 

7.2.1.5 2013 NHTSA Workshop on Vehicle Mass, Size, and Safety 

On May 13-14, 2013, NHTSA hosted a follow-on symposium to continue exploring relevant 
issues and concerns with mass, size, and potential safety tradeoffs, bringing together experts in 
the field to discuss questions to address CAFE standards for model years 2022-2025.  The first 
day of the two-day symposium focused on engineering, while the second day investigated 
various methodologies for assessing statistical evidence of roles of vehicle mass and size on 
occupant safety.   

Speakers for the second day, focusing on the subject matter of this chapter, included Kahane of 
NHTSA, Nolan of the Insurance Institute for Highway, Nusholtz of Chrysler, Van Auken of 
Dynamic Research Incorporated, and Wenzel of Lawrence Berkeley National Laboratory.  
Summaries of the topics follow:  

• Kahane gave an overview of statistical studies designed to determine the incremental 
change in societal risk as vehicle mass of a particular vehicle is modified while keeping 
its footprint (the product of wheelbase and track width) constant.  The physics of crashes, 
in particular conservation of momentum and equal and opposite forces, imply mass 
reduction in the heaviest vehicles and/or mass increase in the lightest vehicles can reduce 
societal risk in two-vehicle crashes.  It is, therefore, reasonable that reducing disparities 
in mass ratio in the vehicle fleet (such as by reducing the mass of heavy vehicles by a 
larger percentage than that of light vehicles) should reduce societal harm.  This trend was 
noticed in data for model year 2000-2007 vehicles but only statistically significant for the 
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lightest group of vehicles.  This is similar to results found for model year 1991-1999 
vehicles in a 2003 study.  Kahane acknowledged numerous confounding factors such as 
maneuverability of different vehicle classes (although data indicated smaller cars were 
more likely to be involved in crashes), driver attributes and vulnerabilities, advances in 
restraint safety systems and vehicle structures, and electronic stability control.  

• Wenzel replicated Kahane’s results using the same data and methods but came to slightly 
different conclusions.  Wenzel demonstrated that the effect of mass or footprint reduction 
estimated on societal risk is much smaller than the effect estimated for other vehicle 
attributes, driver characteristics, or crash circumstances.  Wenzel plotted actual fatality 
risk versus weight by vehicle make and model and estimated predicted risk by make and 
model after accounting for all control variables used in NHTSA’s baseline model except 
for mass and footprint.  The remaining, or residual risk, not explained by the control 
variables has no correlation with vehicle weight.  Wenzel presented results of the 19 
alternative regression models he conducted to test the sensitivity of results from 
NHTSA’s baseline model.  He also presented results from LBNL’s Phase 2 analysis, 
which examined the effect of mass or footprint reduction on the two components of risk 
per VMT - crashes per VMT (crash frequency), and risk per crash (crashworthiness).  His 
analysis of casualty risk using crash data from 13 states and his replication of the DRI 
two-state simultaneous regression model indicate mass reduction is associated with an 
increase in crash frequency but a decrease in risk per crash.  

• Van Auken also replicated Kahane’s results from the NHTSA baseline model and 
presented results from three sensitivity regression models.  Replacing footprint with its 
components wheelbase and track width reduces the estimated increase in risk from mass 
reduction in cars and suggests reduction in light trucks decreases societal risk.  Using 
stopped rather than non-culpable vehicles to derive the induced exposure dataset also 
reduces the estimated increase in risk from mass reduction in lighter-than-average cars 
and light trucks and estimates mass reduction in heavier cars and trucks decreases 
societal risk.  Adding these changes to the NHTSA baseline model greatly reduces the 
estimated increase in risk from mass reduction in the lightest cars and is associated with 
decreases in risk for all other vehicle types.  Van Auken described in more detail his two-
stage simultaneous regression model, which allows risk per vehicle mile of travel to be 
decomposed into crashes per VMT (crash frequency) and risk per crash (crashworthiness/ 
crash compatibility).  As with Wenzel’s analysis, Van Auken found mass reduction is 
associated with an increase in crash frequency but with a decrease in risk per crash.  Once 
again, resulting trends were similar to those from Kahane and Wenzel.  Van Auken 
explored the issue of inducing the exposure of vehicles via crash statistics in which 
relative exposure was measured by non-culpable vehicles in the crash database versus by 
its subset of stopped vehicles in the data and also investigated the effect of substituting 
footprint for track width and wheelbase as size variables in the regression.  

• Nusholtz of Chrysler presented an analysis of the sensitivity of the fleet-wide fatality risk 
to changes in vehicle mass and size.  He noted the difficulty in finding a definitive metric 
for “size.” He dismissed some assertions of mass having negligible (or purely negative) 
effects on safety as leading to absurd conclusions in the extreme.  He extended the 
methods of Joksch (1993) and Evans (1992) to estimate risk as a function of readily 
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measurable vehicle attributes and reported crash characteristics.  He used crash physics 
(closing speed, estimates of inelastic stiffness, and energy absorption) to estimate 
changes in fleet risk as a function of changes in these parameters.  He observed mass is a 
dominant factor but believed crush space could begin to dominate if vehicles could be 
made larger.  Nusholtz concurred removing more mass from larger vehicles could reduce 
risk but is not convinced such a strategy will be sufficient to meet fuel economy goals.  
He regards safety implications of mass reduction to be transition issues of greater 
importance so long as legacy heavier vehicles are used in significant numbers.  

• Nolan analyzed historical trends in the fleet.  While median vehicle mass has increased, 
safety technologies have enhanced the safety of current small cars to the level only 
achieved by larger cars in the past.  In particular, electronic stability control has reduced 
the relative importance of some severe crash modes.  While acknowledging that smaller 
vehicles will always be at a disadvantage, there is hope further technological advances 
such as crash avoidance systems hold promise in advancing safety.  Fleet safety would be 
enhanced if these technologies could quickly penetrate across the fleet to small cars as 
well as large ones.  

• Nusholtz presented the results of an attempt to separate the effect of mass on crash 
outcome as distinct from the likelihood of the crash itself.  It was acknowledged mass can 
affect both.  Nusholtz emphasized crash parameters (e.g., closing speed) necessarily 
dominate.  Kahane suggested reporting rates might be sufficiently different to affect 
results.  Nusholtz cautioned physics and statistics must be considered but, in a way, 
connecting them to reality rather than abstractions.  Nusholtz noted assessments of that 
effect are difficult because determining when and why a crash did not occur is 
problematic against the backdrop of confounding information. 

7.2.1.6 Subsequent Analyses by LBNL 

As part of its review of the 2012 DRI studies, LBNL recreated DRI’s two-stage simultaneous 
regression model, which estimated the effect of mass or footprint reduction on the two 
components of fatality risk per VMT - number of crashes per VMT and risk of fatality per crash.  
LBNL first replicated DRI’s methodology of taking a random “decimated” sample of crash data 
from 10 states for induced exposure records.  Although LBNL was not able to exactly recreate 
DRI’s results, its results were comparable to DRI’s, and LBNL’s Phase 2, analysis.  That is, 
mass reduction is associated with - (1) increases in crash frequency for all vehicle types; and (2) 
with decreases in fatalities per crash for all vehicle types except heavier cars.  LBNL then re-ran 
the two-stage regression model using all crash data from the 13 states NHTSA used in their 
baseline model and obtained similar results.  

The LBNL Phase 2 study and DRI Phase II study had two unexpected results - mass reduction is 
associated with increased crash frequency but decreased risk per crash, and signs on some of the 
control variables are in the unexpected direction.  Mass reduction could feasibly reduce crash 
risk due to increased maneuverability and braking capability; the converse result may reflect 
driver behavior (e.g., riskier maneuvers under higher power-to-weight ratios) or important 
structural changes under light-weighting.  Examples of unexpected signs for control variables 
include - side airbags in light trucks and CUVs/minivans were estimated to reduce crash 
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frequency; the crash avoidance technologies electronic stability control (ESC) and antilock 
braking systems (ABS) were estimated to reduce risk once a crash had occurred; and all-wheel-
drive and brand new vehicles were estimated to increase risk once a crash had occurred.  In 
addition, male drivers were estimated to have essentially no effect on crash frequency but were 
associated with a statistically significant increase in fatality risk once a crash had occurred.  In 
addition, driving at night, on high-speed or rural roads, was associated with higher increases in 
risk per crash than on crash frequency.  

A possible explanation for these unexpected results is that important control variables were not 
included in regression models.  For example, crashes involving male drivers, in vehicles 
equipped with AWD, or occurring at night on rural or high-speed roads, may not be more 
frequent but are rather more severe than other crashes, leading to greater fatality or casualty risk.  
Drivers who select vehicles with certain safety features may tend to drive more carefully, 
resulting in vehicle safety features designed to improve crashworthiness or compatibility, such as 
side airbags, and are associated with lower crash frequency.  

LBNL made several attempts to create a regression model that “corrected” for these unexpected 
results.  LBNL first examined results of three vehicle braking and handling tests conducted by 
Consumer Reports - the maximum speed achieved during the avoidance maneuver test, 
acceleration time from 45 to 60 mph, and dry braking distance.  

When these three test results were added to the LBNL baseline regression model of the number 
of crashes per mile of vehicle travel in cars, none of the three handling/braking variables had the 
expected effect on crash frequency.  In other words, an increase in maximum maneuver speed, 
the time to reach 60 miles per hour, or braking distance on dry pavement in cars, either 
separately or combined, was associated with a decrease in the likelihood of a crash, of any type 
or with a stationary object.  Adding one or all of the three handling/braking variables had 
relatively little effect on the estimated relationship between mass or footprint reduction in cars 
and crash frequency, either in all types of crashes or only in crashes with stationary objects.  

LBNL next tested the sensitivity of the relationship between mass or footprint reduction and 
crash frequency by adding five additional variables to the regression models - initial vehicle 
price, average household income, bad driver rating, alcohol/drug use, and seat belt use.  An 
increase in vehicle price, household income, or belt use was associated with a decrease in crash 
frequency, while an increase in alcohol/drug use was associated with an increase in crash 
frequency, for all three vehicle types; a poor bad driver rating increases crash frequency in cars, 
but unexpectedly decreases crash frequency in light trucks and CUVs/minivans.  Including these 
five variables, either individually or including all in the same regression model, did not change 
general results of the baseline LBNL regression model - mass reduction is associated with an 
increase in crash frequency in all three types of vehicles, while footprint reduction is associated 
with an increase in crash frequency in cars and light trucks but with a decrease in crash 
frequency in CUVs/ minivans.  The variable with the biggest effect was initial vehicle purchase 
price, which dramatically reduced the estimated increase in crash frequency in heavier-than-
average cars (and in heavier-than-average light trucks, and all CUVs/minivans).  These results 
suggest other, subtler, differences in vehicles and their drivers account for the unexpected 
finding that lighter vehicles have higher crash frequencies than heavier vehicles for all three 
types of vehicles.  
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In the 2012 Kahane report NHTSA suggested two possible explanations for unexpected results in 
the LBNL Phase 2 analysis and the DRI and LBNL two-stage regression models – the analyses 
did not account for the severity of the crash, and there was possible bias in the crashes reported 
to police in different states, with less severe crashes being under-reported for certain vehicle 
types.  LBNL analyzed the first of Kahane’s explanations for the unexpected result of mass 
reduction being associated with decreased risk per crash, by re-running the baseline Phase 2 
regressions after excluding the least-severe crashes from the state crash databases objects.  Only 
vehicles described as “disabled” or as having “severe” damage were included, while vehicles 
driven away from the crash site or that had functional, none, or unknown damage were excluded.  
Excluding non-severe crashes had little effect on the relationship between mass reduction and 
crash frequency; in either LBNL’s Phase 2 baseline model or the two-stage simultaneous model - 
mass reduction was associated with an increase in crash frequency and a decrease in risk per 
crash.  Excluding the non-severe crashes also did not change unexpected results for other control 
variables - most of the side airbag variables and the crash compatibility variables in light trucks, 
continued to be associated with an increase in crash frequency, while antilock braking systems, 
electronic stability control, AWD, male drivers, young drivers, and driving at night, in rural 
counties, and on high-speed roads continued to be associated with an increase in risk per crash. 

DOE contracted with Wenzel of LBNL to conduct an assessment of NHTSA’s updated 2016 
study of the effect of mass and footprint reductions on U.S. fatality risk per VMT (LBNL 2016 
“Phase 1” preliminary report), and to provide an analysis of the effect of mass and footprint 
reduction on casualty risk per police-reported crash, using independent data from 13 states 
(LBNL 2016 “Phase 2” preliminary report).  

The 2016 LBNL Phase 1 report replicated the analysis in NHTSA’s 2016 report (hereinafter, 
2016 Puckett and Kindelberger report), using the same data and methods, and in many cases 
using the same SAS programs, to confirm NHTSA’s results.  The LBNL report confirmed 
NHTSA’s 2016 finding, holding footprint constant, each 100-lbs of mass reduction is associated 
with a 1.49 percent increase in fatality risk per VMT for cars weighing less than 3,197 pounds, a 
0.50 percent increase for cars weighing more than 3,197 pounds, a 0.10 percent decrease in risk 
for light trucks weighing less than 4,947 pounds, a 0.71 percent decrease in risk for light trucks 
weighing more than 4,947 pounds, and a 0.99 percent decrease in risk for CUVs/minivans.  

Wenzel tested the sensitivity of model estimates to changes in the measure of risk as well as 
control variables and data used in the regression models.  Wenzel concluded there is a wide 
range in fatality risk by vehicle model for models possessing comparable mass or footprint, even 
after accounting for differences in drivers’ age and gender, safety features installed, and crash 
times and locations.  

The 2016 LBNL Phase 1 report notes many of the control variables NHTSA includes in its 
logistic regressions are statistically significant and have a much larger estimated effect on fatality 
risk than vehicle mass.  For example, installing torso side airbags, electronic stability control, or 
an antilock braking system in a car was estimated to reduce fatality risk by at least 7 percent; cars 
driven by men were estimated to have a 40 percent higher fatality risk than cars driven by 
women; and cars driven at night, on rural roads, or on roads with a speed limit higher than 55 
mph were estimated to have a fatality risk over 100 times higher than cars driven during the 
daytime on low-speed non-rural roads.  The report concluded that, while the estimated effect of 
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mass reduction may result in a statistically-significant increase in risk in certain cases, the 
increase is small and is overwhelmed by other known vehicle, driver, and crash factors. 

7.2.1.7 Presentation to NAS Subcommittee 

Kahane, Wenzel, Ridella, Thomas of Honda, and Nolan of IIHS, were invited to the June 2013 
NAS subcommittee on light-duty fuel economy to present results from their 2012 analyses.  At 
the meeting, committee members raised several questions about the studies; presenters responded 
to these questions at the meeting, as well as in two emails in August 2013 and December 2014. 

7.2.1.8 2015 National Academy of Sciences Report 

In 2015, the National Academy of Sciences published the report “Cost, Effectiveness and 
Deployment of Fuel Economy Technologies for Light-Duty Vehicles.”  The report is the result 
of the work of the Committee on Assessment of Technologies for Improving the Fuel Economy 
of Light-Duty Vehicles, Phase 2, established upon the request of NHTSA to help inform the 
midterm review.  The committee was asked to assess the CAFE standard program and the 
analysis leading to the setting of standards, as well as to provide its opinion on costs and fuel 
consumption improvements of a variety of technologies likely to be implemented in the light-
duty fleet between now and 2030. 

The Committee found the estimates of mass reductions to be conservative for cars; the 
Committee projected mass reductions between 5 percent (for small and large cars) and 6.5 
percent (for midsize cars) larger than the projections.  The Committee acknowledged the 
possibility of negative safety effects during the transition period because of variances in how 
reductions occurred.  Because of this, the Committee recommended NHTSA consider and, if 
necessary, take steps to mitigate this possibility. 

7.2.1.9 National Bureau of Economic Research (NBER) Working Paper 

In a NBER working paper, Bento et al. (2017) present an analysis of relationships among traffic 
fatalities, CAFE standards, and distributions of MY 1989-2005 light-duty vehicle curb weights.  
Consistent with NHTSA’s mass-size-safety analyses, Bento et al. concluded decreases in the 
dispersion of curb weights have a positive effect on safety.  A central conclusion in Bento et al. 
is the monetized value of the net safety improvements achieved under CAFE exceed costs of 
meeting CAFE standards (i.e., CAFE offers a positive net societal benefit independent of fuel-
related impacts).  However, NHTSA identified factors in the analysis limiting the inference that 
can be drawn with respect to CAFE rulemaking going forward.  The temporal range of the 
analysis does not include current footprint-based standards that incentivize light-weighting 
existing models rather than switching to lighter models.  The statistical approach in the analysis 
did not account for the rebound effect or effects of CAFE on vehicle sales (which affect per-mile 
fatality risk), and Bento et al. also represented annual CAFE compliance costs at a level 
substantially less than expected to comply with standards. 

7.2.2 Recent NHTSA Analysis Supporting CAFE Rulemaking 

As mentioned previously, NHTSA and EPA’s 2012 joint final rule for MY 2017 and beyond set 
“footprint-based” standards, with footprint being defined as roughly equal to the wheelbase 
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multiplied by the average of the front and rear track widths.  Basing standards on vehicle 
footprint is intended to discourage manufacturers from downsizing their vehicles because fuel 
economy targets are contingent on the vehicles size—the smaller the vehicle’s footprint, the 
higher (more stringent) MPG target.  However, mass reduction that maintains a vehicle’s 
footprint does not create an additional MPG burden as downsizing and is a viable compliance 
mechanism.  Several technologies, such as substitution of light, high-strength materials for 
conventional materials during vehicle redesigns, have the potential to reduce weight and 
conserve fuel while maintaining a vehicle’s footprint.   

NHTSA considers the likely effect of mass reduction on safety.  The relationship between a 
vehicle’s mass, size, and fatality risk is complex, and it varies in different types of crashes.  As 
summarized above, NHTSA, along with others, have been examining this relationship for over a 
decade.  The safety chapter of NHTSA’s April 2012 final regulatory impact analysis (FRIA) of 
CAFE standards for MY 2017-2021 passenger cars and light trucks included a statistical analysis 
of relationships between fatality risk, mass, and footprint in MY 2000-2007 passenger cars and 
LTVs (light trucks and vans), based on CY 2002-2008 crash and vehicle-registration data; this 
analysis was also detailed in the 2012 Kahane report.  The principal findings and conclusions of 
the 2012 Kahane report were mass reduction in the lighter cars, even while holding footprint 
constant, would significantly increase fatality risk, whereas mass reduction in the heavier LTVs 
would reduce societal fatality risk by reducing the fatality risk of occupants of lighter vehicles 
colliding with those heavier LTVs.  NHTSA concluded, as a result, any reasonable combination 
of mass reductions that held footprint constant in MY 2017-2021 vehicles – concentrated, at least 
to some extent, in the heavier LTVs and limited in the lighter cars – would likely be 
approximately safety-neutral; it would not significantly increase fatalities and might well 
decrease them. 

NHTSA released a preliminary report (2016 Puckett and Kindelberger report) on the relationship 
between fatality risk, mass, and footprint in June 2016 in advance of the Draft TAR.  The 
preliminary report covered the same scope as the 2012 Kahane report, offering a detailed 
description of the databases, modeling approach, and analytical results on relationships among 
vehicle size, mass, and fatalities that informed the Draft TAR.  Results in the Draft TAR and the 
2016 Puckett and Kindelberger report are consistent with results in the 2012 Kahane report with 
respect to mass disparity; chiefly, societal effects of mass reduction are small, and mass 
reduction concentrated in larger vehicles is likely to have a beneficial effect on fatalities, while 
mass reduction concentrated in smaller vehicles is likely to have a detrimental effect on fatalities.  
There are differences between the studies in how a proportional reduction of mass would be 
expected to affect societal fatalities directionally, but the estimated effects are functionally near 
zero in both cases. 

For the 2016 Puckett and Kindelberger report and Draft TAR, NHTSA, working closely with 
EPA and the DOE, performed an updated statistical analysis of relationships between fatality 
rates, mass and footprint, updating the crash and exposure databases to the latest available model 
years.  NHTSA analyzed updated databases that included MY 2003-2010 vehicles in CY 2005-
2011 crashes.  For this regulatory analysis, databases are the most up-to-date possible (MY 2004-
2011 vehicles in CY 2006-2012), given the processing time for crash data and the need for 
enough crash cases to permit statistically meaningful analyses.  As in previous analyses, NHTSA 
has made the new databases available to the public at http://www.nhtsa.gov/fuel-economy, 
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enabling other researchers to analyze the same data and hopefully minimizing discrepancies in 
results that would have occurred because of inconsistencies across databases. 

7.2.3 Analysis Supporting this Rulemaking 

The basic analytical method used to analyze the impacts of weight reduction on safety for this 
final rule is the same as in the 2016 Puckett and Kindelberger report.  NHTSA released the 2016 
Puckett and Kindelberger report as a preliminary report on the relationship between fatality risk, 
mass, and footprint in June 2016 in advance of the Draft TAR.  The 2016 Puckett and 
Kindelberger report covered the same scope as previous NHTSA reports, offering a detailed 
description of the crash and exposure databases, modeling approach, and analytical results on 
relationships among vehicle size, mass, and fatalities that informed the Draft TAR.  The 
modeling approach described in the 2016 Puckett and Kindelberger report was developed with 
the collaborative input of NHTSA, EPA, and DOE, and subject to extensive public review, 
scrutiny in two NHTSA-sponsored workshops, and a thorough peer review that compared it with 
the methodologies used in other studies.   

In computing the impact of changes in mass on safety, NHTSA is faced with competing 
challenges.  Research has consistently shown that mass reduction affects “lighter” and “heavier” 
vehicles differently across crash types.  The 2016 Puckett and Kindelberger report found mass 
reduction concentrated amongst the heaviest vehicles is likely to have a beneficial effect on 
overall societal fatalities, while mass reduction concentrated among the lightest vehicles is likely 
to have a detrimental effect on fatalities.  To accurately capture the differing effect on lighter and 
heavier vehicles, NHTSA must split vehicles into lighter and heavier vehicle classifications in 
the analysis.  However, this poses a challenge of creating statistically-meaningful results.  There 
is limited relevant crash data to use for the analysis.  Each partition of the data reduces the 
number of observations per vehicle classification and crash type, and thus reduces the statistical 
robustness of the results.  The methodology employed by NHTSA was designed to balance these 
competing forces as an optimal trade-off to accurately capture the impact of mass-reduction 
across vehicle curb weights and crash types while preserving the potential to identify robust 
estimates. 

For this final rule, as in the 2020 CAFE rule, NHTSA employed the modeling technique 
developed in the 2016 Puckett and Kindelberger report to analyze the updated crash and 
exposure data by examining the cross sections of the societal fatality rate per billion vehicle 
miles of travel (VMT) by mass and footprint, while controlling for driver age, gender, and other 
factors, in separate logistic regressions for five vehicle groups and nine crash types.  NHTSA 
utilized the relationships between weight and safety from this analysis, expressed as percentage 
increases in fatalities per 100-pound weight reduction, to examine the weight impacts applied in 
this CAFE analysis.  The effects of mass reduction on safety were estimated relative to 
(incremental to) the regulatory baseline in the CAFE analysis, across all vehicles for MY 2018 
and beyond. 

As in the 2012 Kahane report, 2016 Puckett and Kindelberger report, the Draft TAR, and the 
2020 CAFE rule, the vehicles are grouped into three classes: passenger cars (including both two-
door and four-door cars); CUVs and minivans; and truck-based LTVs.  The curb weight of 
passenger cars is formulated, as in the 2012 Kahane report, 2016 Puckett and Kindelberger 



  662 

report, Draft TAR, and 2020 CAFE rule, as a two-piece linear variable to estimate one effect of 
mass reduction in the lighter cars and another effect in the heavier cars.   

Comments on the NPRM for the 2020 CAFE rule included suggestions that the sample of LTVs 
in the analysis should not include the medium- or heavy-duty (i.e., truck-based vehicles with 
GVWR above 8,500 pounds) equivalents of light-duty vehicles in the sample (e.g., Ford F-250 
versus F-150, RAM 2500 versus RAM 1500, Chevrolet Suburban 2500 versus Chevrolet 
Suburban 1500), or Class 2b and 3 vehicles.  For the NPRM, NHTSA explored revising the 
analysis consistent with such comments.  The process involved two key analytical steps: (1) 
removing all case vehicles from the analysis whose GVWR exceeded 8,500 pounds; and (2) re-
classifying all crash partners with GVWR above 8,500 pounds as heavy vehicles.  The direct 
effects of these changes are: (1) the range of curb weights in the LTV sample is reduced, 
lowering the median curb weight from 5,014 pounds to 4,808 pounds; (2) the sample size of 
LTVs is reduced (the number of case LTVs under this alternative specification is approximately 
18 percent lower than in the central analysis); and (3) the relative impact of crashes with LTVs 
on overall impacts on societal fatality rates decreases, while the corresponding impact of crashes 
with heavy vehicles increases.   

The results from the exploratory analysis of this alternative approach are provided in the 
Sensitivity Analysis section below.  NHTSA sought comment on this alternative approach in the 
NPRM, but the review of public comments identified no comments on this topic.  In turn, 
NHTSA will seek further input to inform the decision whether to incorporate the results into 
future versions of the CAFE Model.  The primary functional change offered by the alternative 
approach is that the sample of vehicles classified as LTVs would be restricted to vehicles that 
would be subject to CAFE regulations; it is important to note that the LTVs in question are 
subject to other fuel economy regulations, hence their relevance within a study informing the 
CAFE Model is not immediately nullified by being outside the scope of CAFE regulations.  At 
the statistical level, the concerns raised in NHTSA’s response to comment on the 2018 CAFE 
NPRM remain.  In particular, including Class 2b and 3 vehicles in the analysis to determine the 
relationship of vehicle mass on safety has the added benefit of improving correlation constraints.  
Notably, curb weight increases faster than footprint for large light trucks and Class 2b and 3 
pickup trucks and SUVs, in part because the widths of vehicles are constrained more tightly (i.e., 
due to lane widths) than their curb weights.  Including data from Class 2b and 3 pick-up truck 
and SUV fatal crashes provides data over a wider range of vehicle weights, which improves the 
ability to estimate the mass-crash fatality relationship.  That is, by extending the footprint-curb 
weight-fatality data to include Class 2b and 3 trucks that are functionally and structurally similar 
to corresponding ½-ton models that are subject to CAFE regulation, the sample size and ranges 
of curb weights and footprint are improved.  However, this result may arise due to the presence 
of non-linearities over the relatively large range of vehicle curb weights when Class 2b and 3 
vehicles are included in the sample.  Sample size is a challenge for estimating relationships 
between curb weight and fatality risk for individual crash types in the main analysis; dividing the 
sample further or removing observations makes it increasingly difficult to identify meaningful 
estimates and the relationships that are present in the data, as shown in the sensitivity analysis 
below.  For the final rule, NHTSA has maintained its position that the benefit of the additional 
data points outweighs the concern that some of the vehicles used to determine the mass-safety 
coefficients are not regulated by CAFE vehicles. 
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NHTSA also explored three other alternative model specifications that are presented in the 
sensitivity analysis below.  The first alternative centers on aligning CUVs and minivans with the 
rest of the sample, by splitting these vehicles into two weight classes.  The key factor restricting 
this change historically has been a low sample size for these vehicles; the exploratory analysis 
examined whether the current database (which, due to the range of CYs covered, contains a 
smaller share of CUVs and minivans than the current fleet) contains a sufficient sample size to 
evaluate two weight classes for CUVs and minivans.  A complicating factor in this analysis is 
that minivans tend to have higher curb weights than other CUVs, adding statistical burden in 
identifying meaningful effects of mass on societal fatality rates after accounting for body type in 
the weight class with the fewest minivans (i.e., lighter CUVs and minivans).  

The second alternative centers on aligning passenger cars with the rest of the sample by 
including cars that are equipped with AWD.  In previous analyses, passenger cars with AWD 
were excluded from the analysis because they represented a sufficiently low share of the vehicle 
fleet that statistical relationships between AWD status and societal fatality risk were highly 
prone to being conflated with other factors associated with AWD status (e.g., location, luxury 
vehicle status).  However, the share of AWD passenger cars in the fleet has grown.  
Approximately one-quarter of the passenger cars in the database have AWD, compared to an 
approximately five-percent share in the MY 2000-2007 database.  Furthermore, all other vehicle 
types in the analysis include AWD as an explanatory variable.  Thus, NHTSA finds the inclusion 
of a considerable portion of the real-world fleet (i.e., passenger cars with AWD) to be a 
meaningful consideration. 

The third alternative is a minor procedural question: whether to expand the calendar years and 
model years used to identify the distribution of fatalities across crash types.  The timing of the 
safety databases places the years of the analysis used to establish the distribution of fatalities by 
crash type firmly within the central years of the economic downturn of the late 2000s and early 
2010s.  During these years, travel demand was below long-term trends, resulting in fewer 
crashes.  In turn, applying the same window of calendar years and model years to the 
identification of the distribution of fatalities across crash types results in notably fewer crashes to 
incorporate into the analysis.  NHTSA conducted exploratory analysis on the question of whether 
to add calendar years and model years to the range of crashes used to identify the distribution of 
fatalities across crash types; this analysis was conducted in concert with the two alternatives 
discussed directly above.  Results incorporating these three alternatives are presented in the 
sensitivity analysis below. 

The boundary between “lighter” and “heavier” cars is 3,201 pounds (which is the median mass 
of MY 2004-2011 cars in fatal crashes in CY 2006-2012, up from 3,106 pounds for MY 2000-
2007 cars in CY 2002-2008 in the 2012 NHTSA safety database, and up from 3,197 pounds for 
MY 2003-2010 cars in CY 2005-2011 in the 2016 NHTSA safety database).  Likewise, for 
truck-based LTVs, curb weight is a two-piece linear variable with the boundary at 5,014 pounds 
(again, the MY 2004-2011 median, higher than the median of 4,594 pounds for MY 2000-2007 
LTVs in CY 2002-2008 and the median of 4,947 pounds for MY 2003-2010 LTVs in CY 2005-
2011).  CUVs and minivans are grouped together in a single group covering all curb weights of 
those vehicles; as a result, curb weight is formulated as a simple linear variable for CUVs and 
minivans.  Historically, CUVs and minivans have accounted for a relatively small share of new-
vehicle sales over the range of the data, resulting in less crash data available than for cars or 
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truck-based LTVs.  CUVs have increased their share of the fleet both across the years covered in 
the database and since, in turn increasing the importance of relationships between mass and 
societal fatality risk for CUVs.  As the share of CUVs increases, any estimated beneficial mass 
reduction in CUVs will have a larger beneficial effect on overall societal fatality risk.  As 
discussed in the sensitivity analysis below, NHTSA evaluated whether the current database 
contains sufficient observations of CUVs and minivans to separate these vehicles into two 
weight classes.  The evidence does not support such a change under the current database; 
however, adding new calendar years and model years to the next database may yield sufficient 
observations to make this change.  In sum, vehicles are distributed into five groups by class and 
curb weights: passenger cars < 3,201 pounds; passenger cars 3,201 pounds or greater; truck-
based LTVs < 5,014 pounds; truck-based LTVs 5,014 pounds or greater; and all CUVs and 
minivans. 

There are nine types of crashes specified in the analysis for each vehicle group: three types of 
single-vehicle crashes, five types of two-vehicle crashes; and one classification of all other 
crashes.  Single-vehicle crashes include first-event rollovers, collisions with fixed objects, and 
collisions with pedestrians, bicycles, and motorcycles.  Two-vehicle crashes include collisions 
with: heavy-duty vehicles; cars, CUVs, or minivans < 3,187 pounds (the median curb weight of 
other, non-case, cars, CUVs and minivans in fatal crashes in the database); cars, CUVs, or 
minivans ≥ 3,187 pounds; truck-based LTVs < 4,360 pounds (the median curb weight of other 
truck-based LTVs in fatal crashes in the database); and truck-based LTVs ≥ 4,360 pounds.  
Grouping partner-vehicle CUVs and minivans with cars rather than LTVs is more appropriate 
because their front-end profile and rigidity more closely resemble a car than a typical truck-based 
LTV.  An additional crash type includes all other fatal crash types (e.g., collisions involving 
more than two vehicles, animals, or trains).  Splitting the vehicles from this crash type involved 
in crashes involving two light-duty vehicles into a lighter and a heavier group permits more 
accurate analyses of the mass effect in collisions of two vehicles. 

For a given vehicle class and weight range (if applicable), regression coefficients for mass (while 
holding footprint constant) in the nine types of crashes are averaged, weighted by the number of 
baseline fatalities that would have occurred for the subgroup MY 2008-2011 vehicles in CY 
2008-2012 if these vehicles had all been equipped with electronic stability control (ESC).  The 
adjustment for ESC, a feature of the analysis added in 2012, accounts for the fact that all mass 
reduction in future vehicles will apply to vehicles that are equipped with ESC, as required by 
NHTSA’s regulations. 

Table 7-1 presents the estimated percent increase in U.S. societal fatality risk per ten billion 
VMT for each 100-pound reduction in vehicle mass, while holding footprint constant, for each of 
the five vehicle classes. 
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Table 7-16 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant - MY 
2004-2011, CY 2006-2012 

Vehicle Class Point Estimate 95% Confidence 
Bounds 

Cars < 3,201 pounds 1.20 -.35 to +2.75 

Cars > 3,201 pounds 0.42 -.67 to +1.50 

CUVs and minivans -0.25 -1.55 to +1.04 
Truck-based LTVs < 

5,014 pounds 0.31 - .51 to  +1.13 

Truck-based LTVs > 
5,014 pounds -0.61 -1.46 to +.25 

Techniques developed in the 2011 (preliminary) and 2012 (final) Kahane reports have been 
retained to test statistical significance and to estimate 95 percent confidence bounds (sampling 
error) for mass effects and to estimate the combined annual effect of removing 100 pounds of 
mass from every vehicle (or of removing different amounts of mass from the various classes of 
vehicles), while holding footprint constant.  Confidence bounds estimate only the sampling error 
internal to the data used in the specific analysis that generated the point estimate.  Point estimates 
are also sensitive to the modification of components of the analysis, as discussed at the end of 
this section.  However, this degree of uncertainty is methodological in nature rather than 
statistical.   

None of the estimated effects has 95-percent confidence bounds that exclude zero, and thus are 
not statistically significant at the 95-percent confidence level.  NHTSA has evaluated these 
results and provided them for the purposes of transparency.  Sensitivity analyses have confirmed 
that the exclusion of these statistically-insignificant results would not affect our policy 
determination, because the net effects of mass reduction on safety costs are small relative to 
predominant estimated benefit and cost impacts.  Among the estimated effects, the most 
important effects of mass reduction are, as expected, concentrated among the lightest and 
heaviest vehicles.  Societal fatality risk is estimated to: (1) increase by 1.2 percent if mass is 
reduced by 100 pounds in the lighter cars; and (2) decrease by 0.61 percent if mass is reduced by 
100 pounds in the heavier truck-based LTVs.    

A key constraint limiting statistical significance is that the analysis focuses on societal fatality 
risk (i.e., all fatalities, including crash partners and people outside of vehicles, such as 
pedestrians, cyclists, and motorcyclists) rather than merely in-vehicle fatality risk, which yields 
estimates that are smaller in magnitude (and thus more difficult to identify meaningful 
differences from zero) than estimates representing changes in in-vehicle fatality risk.  That is, 
compared to an analysis of in-vehicle fatality risk (which would tend to yield relatively large 
estimated effects of mass reduction – either relatively highly-beneficial to reduce mass in the 
heaviest vehicles, or relatively highly-detrimental to reduce mass in the lightest vehicles), the 
focus on societal fatalities tends to yield relatively small (net) effects of mass reduction on 
fatality risk.  This arises because the effects of mass reduction inherently net out to some extent 
in two-vehicle crashes: Impacts of mass reduction that protect one set of occupants (i.e., 
occupants of the vehicle striking or being struck by the vehicle that has experienced mass 
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reduction) are accompanied by impacts that make the other set of occupants more vulnerable 
(i.e., occupants of the vehicle that has experienced mass reduction).   

NHTSA judges the central value estimates are the best estimates available; the estimates offer a 
stronger statistical representation of relationships among vehicle curb weight, footprint, and 
fatality risk than an assumption of no correlation whatsoever.  NHTSA appropriately presents the 
statistical uncertainty.  For example, the central values for the highest vehicle weight group 
(LTVs 5,014 pounds or heavier) and the lowest vehicle weight group (passenger cars lighter than 
3,201 pounds) (which, based on fundamental physics, are expected to have the greatest impact of 
mass reduction on safety) are economically meaningful,883 and are in line with the prior analyses 
used in past NHTSA CAFE rulemakings.  As shown in Table 7-17, the estimated coefficients 
have trended to lower numerical values in successive studies, but remain positive for lighter cars 
and negative for heavier LTVs.   

The regression results are constructed to project the effect of changes in mass, independent of all 
other factors, including footprint.  With each additional change from the current environment 
(e.g., the scale of mass change, presence and prevalence of safety features, demographic 
characteristics), the results may become less representative.  That is, although safety features and 
demographic factors are accounted for separately, the estimated effects of mass are identified 
under the specific mix of vehicles and drivers in the data.  NHTSA notes that the analysis 
accounts for safety features that are optional but available across all model years in the sample 
(most notably electronic stability control, which was not yet mandatory for all model years in the 
sample), and calibrates historical safety data to account for future fleets with full ESC 
penetration to reflect the mandate. 

NHTSA considered the near multicollinearity of mass and footprint to be a major issue in the 
2010 Kahane report and voiced concern about inaccurately estimated regression coefficients.  
High correlations between mass and footprint and variance inflation factors have not changed 
from MY 1991-1999 to MY 2004-2011; large vehicles continued to be, on the average, heavier 
than small vehicles to the same extent as in the previous decade. 

Nevertheless, multicollinearity appears to have become less of a problem in the 2012 Kahane, 
2016 Puckett and Kindelberger/Draft TAR, and 2020 CAFE rulemaking analyses.  Ultimately, 
only three of the 27 core models of fatality risk by vehicle type in the current analysis indicate 
the potential presence of effects of multicollinearity, with estimated effects of mass and footprint 
reduction greater than two percent per 100-pound mass reduction and one-square-foot footprint 
reduction, respectively; these three models include passenger cars and CUVs in first-event 
rollovers, and CUVs in collisions with LTVs greater than 4,360 pounds.  This result is consistent 

 
883 NHTSA uses “economically meaningful results” to mean values that have an important, practical implication, but 
may be derived from estimates that do not meet traditional levels of statistical significance.  For example, if the 
projected economic benefit of a project equaled $100 billion, the agency would consider the impact economically 
meaningful, even if the estimates used to derive the impact were not statistically significant at the 95-percent 
confidence level.  Conversely, if the projected economic benefit of a project equaled $1, the agency would not 
consider the impact economically meaningful, even if the estimates used to derive the impact were statistically 
significant at the 99.99-percent confidence level.  In the case above, the results associated with the lightest and 
heaviest vehicle types were considered to be economically meaningful because the associated safety costs were 
large, and the estimates had magnitudes meaningfully different from zero and were statistically significant at the 85-
percent confidence level. 
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with the 2016 Puckett and Kindelberger report, which also found only three cases out of 27 
models with estimated effects of mass and footprint reduction greater than two percent per 100-
pound mass reduction and one-square-foot footprint reduction. 

Multicollinearity is one of the important concerns regarding the robustness of the results, along 
with estimated statistical significance.  An alternative gauge of the robustness of the results is 
stability in estimates over time.  That is, concerns regarding limitations of the data and low levels 
of statistical significance may be dampened if related, but substantially different, analyses using 
the same methodology yield consistent results.  Table 7-17 compares the fatality coefficients 
from the 2012 Kahane report (MY 2000-2007 vehicles in CY 2002-2008) and the 2016 Puckett 
and Kindelberger report and Draft TAR (MY 2003-2010 vehicles in CY 2005-2011). 

Table 7-17 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant 

Vehicle Class884 2012 Report Point 
Estimate 

2016 Report/Draft 
TAR Point 
Estimate 

2012 Report 95% 
Confidence 

Bounds 

2016 Report 95% 
Confidence 

Bounds 
Lighter Passenger 

Cars 1.56 1.49 +.39 to +2.73 -.30 to +3.27 

Heavier Passenger 
Cars .51 .50 -.59 to 1.60 -.59 to +1.60 

CUVs and minivans -.37 -.99 -1.55 to +.81 -2.17 to +.19 
Lighter Truck-based 

LTVs .52 -.10 -.45 to +1.48 -1.08 to +.88 

Heavier Truck-
based LTVs -.34 -.72 -.97 to + .30 -1.45 to +.02 

The most recent results are directionally the same as in 2012; in the 2016 analysis, the estimate 
for lighter LTVs was of opposite sign (but small magnitude).  Consistent with the 2012 Kahane 
and 2016 Puckett and Kindelberger reports, mass reductions in lighter cars are estimated to lead 
to increases in fatalities, and mass reductions in heavier LTVs are estimated to lead to decreases 
in fatalities. 

The estimated mass effect for heavier truck-based LTVs has higher statistical significance in this 
analysis and in the 2016 Puckett and Kindelberger report than in the 2012 Kahane report; both 
estimates are statistically significant at the 85-percent confidence level, unlike the corresponding 
estimate in the 2012 Kahane report.  The estimated mass effect for lighter truck-based LTVs is 
insignificant and positive in this analysis and the 2012 Kahane report, while the corresponding 
estimate in the 2016 Puckett and Kindelberger report was insignificant and negative. 

NHTSA believes the most recent analysis represents the best estimate of the impacts of mass 
reduction that results in changes in mass disparities on crash fatalities, although it is important to 
note that these best estimates are not significantly different from zero.  We have conducted 
sensitivity analyses to illustrate the uncertainty of the estimates, and we have determined that 

 
884 Median curb weights in the 2012 Kahane report - 3,106 pounds for cars, 4,594 pounds for truck-based LTVs.  
Median curb weights in the 2016 Puckett and Kindelberger report - 3,197 pounds for cars, 4,947 pounds for truck-
based LTVs. 
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inclusion of these estimates does not alter the agency’s determination of what is maximum 
feasible because the effects are so small.  We continue to believe that is reasonable for the 
analysis to continue to include the best available estimates despite their lack of statistical 
significance at the 0.05 level.  Similar to past analyses, the most recent analysis uses the best 
available data and estimates.  NHTSA feels it is inappropriate to ignore likely impacts of the 
standards simply because the best available estimates have confidence levels below 95 percent; 
uniform estimates of zero are statistically weaker than the estimates identified in the analysis, 
and thus are not the best available.  Because the point estimates are derived from the best-fitting 
estimates for each crash type (all of which are non-zero), the confidence bounds around an 
overall estimate of zero would necessarily be larger than the corresponding confidence bounds 
around the point estimates presented here.  Ultimately, the point estimates for the lightest and 
heaviest vehicles in the sample are the estimates that have shown consistent directionality (and, 
to a lesser extent, magnitude) across studies, and these estimates are the most important in 
representing the effects of changes in mass disparity.  Thus, the point estimates for lighter 
passenger cars and heavier LTVs offer the highest informative value among the estimates in the 
analysis; the smaller estimates corresponding to vehicles near the median of the fleet curb weight 
distribution are likely to be less informative. 

The sensitivity analysis in the accompanying FRIA Chapter 7 Expanded Sensitivity Analysis 
provides an evaluation of extreme cases in which all the estimated net fatality rate impacts of 
mass reduction are either at their fifth- or 95th-percentile values.  The range of net impacts in the 
sensitivity analysis not only covers the relatively more likely case that uncertain, yet generally 
offsetting, effects are distinct from the central estimates considered here (e.g., in a plausible case 
where mass reduction in the heaviest LTVs is less beneficial than indicated by the central 
estimates, it would also be relatively likely that mass reduction in the lightest passenger cars 
would be less harmful, yielding a similar net impact), but also covers the relatively unlikely case 
that all of the estimates are uncertain in the same direction. 

The 2012 Kahane report, the 2016 Puckett and Kindelberger, the Draft TAR, and the 2020 CAFE 
rule all have concluded that both mass disparity and vehicle size impact societal safety.  Across 
recent rulemakings, the analyses have confirmed a protective effect of vehicle size (i.e., societal 
fatality risk decreases as footprint increases).  As mentioned previously, NHTSA believes 
vehicle footprint-based standards help to discourage vehicle manufacturers from downsizing 
their vehicles, and therefore assume changes in CAFE standards will not impact vehicle size and 
size-related safety impacts.  On the other hand, mass reduction is a cost-effective technology for 
increasing fuel economy.  Therefore, NHTSA includes the assessment of safety impacts related 
to mass reduction and its potential impact on mass disparity.  In this regard, the CAFE Model 
estimates of how mass reductions will be distributed across the new vehicle fleet and the effects 
of electrification which tends to increase vehicle mass, can strongly affect conclusions about the 
effects of standards on safety.  As discussed throughout this mass-safety subsection, 
comprehensive consideration of the various studies and workshops on the impact of vehicle mass 
disparity on safety is presented and conclude there has been a relationship historically.  The fleet 
simulation study, discussed in the next subsection, further supports the existence of this 
relationship and that this relationship will continue to exist in future vehicle designs.  However, 
in the analysis presented here, the relationship between mass and safety was not estimated to be 
significantly different from zero at the 0.05 level. 
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Vehicle mass continued an historical upward trend across the model years in the newest 
databases.  The average (VMT-weighted) masses of passenger cars and CUVs both increased by 
approximately 3 percent from MY 2004 to MY 2011 (3,184 pounds to 3,289 pounds for 
passenger cars, and 3,821 pounds to 3,924 pounds for CUVs).  Over the same period, the average 
mass of minivans increased by 6 percent (from 4,204 pounds to 4,462 pounds), and the average 
mass of LTVs increased by 10 percent (from 4,819 pounds to 5,311 pounds).  Historical reasons 
for mass increases within vehicle classes include - manufacturers discontinuing lighter models; 
manufacturers re-designing models to be heavier and larger; and shifting consumer preferences 
with respect to cabin size and overall vehicle size.  Indeed, not only have vehicles increased in 
mass, but also footprint.  Across vehicles involved in fatal accidents in the analysis, mean 
footprint increased by between approximately 3 percent (for CUVs) and 8 percent (for sedans).   

The principal difference between heavier vehicles, especially truck-based LTVs, and lighter 
vehicles, especially passenger cars, is mass reduction has a different effect in collisions with 
another car or LTV.  When two vehicles of unequal mass collide, the change in velocity (delta 
V) is greater in the lighter vehicle.  Through conservation of momentum, the degree to which the 
delta V in the lighter vehicle is greater than in the heavier vehicle is proportional to the ratio of 
mass in the heavier vehicle to mass in the lighter vehicle.   

The relationships among vehicle velocities and vehicle masses in inelastic collisions are given in 
Equation 7-1. 

𝑣𝑣1𝑓𝑓 =
𝐶𝐶𝑅𝑅𝑚𝑚2(𝑣𝑣2𝑖𝑖 − 𝑣𝑣1𝑖𝑖) + 𝑚𝑚1𝑣𝑣1𝑖𝑖 + 𝑚𝑚2𝑣𝑣2𝑖𝑖

𝑚𝑚1 + 𝑚𝑚2
 

Equation 7-1 – Final Velocity for Focal Vehicle in an Inelastic Collision 

Where: 
𝑣𝑣1 is the velocity for a focal vehicle 
 𝑣𝑣2 is the velocity for a partner vehicle 
 i and f represent initial and final velocities respectively 
𝑚𝑚1 and 𝑚𝑚2 are the masses of the vehicles 
𝐶𝐶𝑅𝑅 is the coefficient of restitution (which represents effects extending the time of 
deceleration and dissipating energy through deformation and heat transfer) 

As the final velocity decreases, delta-v increases.885  Thus, delta-v increases with the mass of the 
partner vehicle but is unchanged if both vehicles increase their mass proportionally. 

Because fatality risk is a positive function of delta-v, the fatality risk in the lighter vehicle in 
two-vehicle collisions is also higher.  Vehicle design can reduce the magnitude of delta-v to 
some degree (e.g., changing the stiffness of a vehicle’s structure could dampen delta-v for both 
crash partners).  These considerations drive the overall result: increased mass disparity is 
associated with an increase in fatality risk in lighter cars, a decrease in fatality risk in heavier 
LTVs, CUVs, and minivans, and has smaller effects in the intermediate groups.  Mass reduction 
may also be harmful in a crash with a movable object such as a small tree, which may break if hit 

 
885 Delta-V refers to the change of in the velocity experienced during a crash.  
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by a high mass vehicle resulting in a lower delta-v than may occur if hit by a lower mass vehicle 
which does not break the tree and therefore has a higher delta-v.  However, in some types of 
crashes not involving collisions between cars and LTVs, especially first-event rollovers and 
impacts with fixed objects or collisions with vulnerable road users (e.g., pedestrians and 
cyclists), mass reduction may not be harmful and may even be beneficial. 

Ultimately, delta-v is a direct function of relative vehicle mass for given vehicle structures.  
Removing some mass from the heavier vehicle involved in an accident with a lighter vehicle 
reduces the delta-v in the lighter vehicle, where fatality risk is higher, resulting in a large benefit 
to the passengers of the lighter vehicle.  This is partially offset by a small increase in the delta-v 
in the heavy vehicle; however, the fatality risk is lower in the heavier vehicle and remains 
relatively low despite the increase in delta-v.  In sum, the change in mass and delta-v from mass 
reduction in heavier vehicles results in a net societal benefit. 

These considerations drive the overall result that has been observed historically: Mass reduction 
in lighter cars is associated with an increase in societal fatality risk; mass reduction in heavier 
LTVs, CUVs, and minivans is associated with a decrease in societal fatality risk; and mass 
reduction in the intermediate groups has smaller effects.  These results can be considered in 
concert to represent the potential effects of fleetwide mass reduction; in particular, certain ratios 
of mass reduction across the fleet may have little to no net effect on societal fatalities.   

Mass reduction may also be harmful in a crash with a movable object such as a small tree, which 
may break if hit by a high mass vehicle resulting in a lower delta-v than may occur if hit by a 
lower mass vehicle which does not break the tree and therefore has a higher delta-v.  However, 
in some types of crashes not involving collisions between cars and LTVs, especially first-event 
rollovers and impacts with fixed objects, mass reduction may not be harmful and may be 
beneficial.  To the extent lighter vehicles may respond more quickly to braking and steering, or 
may be more stable because their center of gravity is lower, they may more successfully avoid 
crashes or reduce the severity of crashes. 

Farmer, Green, and Lie, who reviewed the 2010 Kahane report, again peer-reviewed the 2011 
Kahane report.  In preparing his 2012 report (along with the 2016 Puckett and Kindelberger 
report and Draft TAR), Kahane also took into account Wenzel’s assessment of the preliminary 
report and its peer reviews, DRI’s analyses published early in 2012, and public comments such 
as the International Council on Clean Transportation’s comments submitted on NHTSA and 
EPA’s 2010 notice of joint rulemaking.  These comments prompted supplementary analyses, 
especially sensitivity tests, discussed at the end of this section. 

The regression results are best suited to predict the effect of a small change in mass, leaving all 
other factors, including footprint, the same.  With each additional change from the current 
environment (e.g., the scale of mass change, presence and prevalence of safety features, 
demographic characteristics), uncertainty in the model results may increase.  It is recognized that 
the light-duty vehicle fleet in the MY 2021-2026 timeframe will be different from the MY 
20042011 fleet analyzed here. 

Nevertheless, one consideration provides some basis for confidence in applying regression 
results to estimate effects of relatively large mass reductions or mass reductions over longer 
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periods.  The central results represent the findings from NHTSA’s sixth evaluation of effects of 
mass reduction and/or downsizing, comprising databases ranging from MY 1985 to MY 2011. 

Results of the six studies are not identical, but they have been consistent to a point.  During this 
time period, many makes and models have increased substantially in mass, sometimes as much 
as 30-40 percent.  If the statistical analysis has, over the past years, been able to accommodate 
mass increases of this magnitude, perhaps it will also succeed in modeling effects of mass 
reductions of approximately 10-20 percent, should they occur in the future. 

7.2.4 Sensitivity Analyses 

Table 7-18 shows the principal findings and includes sampling-error confidence bounds for the 
five parameters used in the CAFE Model.  The confidence bounds represent the statistical 
uncertainty that is a consequence of having less than a census of data.  NHTSA’s 2011, 2012, 
and 2016 reports acknowledged another source of uncertainty - The baseline statistical model 
can be varied by choosing different control variables or redefining the vehicle classes or crash 
types, which for example, could produce different point estimates.  

Beginning with the 2012 Kahane report, NHTSA has provided results of 11 plausible alternative 
models that serve as sensitivity tests of the baseline model.  Each alternative model was tested or 
proposed by: Farmer (IIHS) or Green (UMTRI) in their peer reviews; Van Auken (DRI) in his 
public comments; or Wenzel in his parallel research for DOE.  The 2012 Kahane and 2016 
Puckett and Kindelberger reports provide further discussion of the models and the rationales 
behind them.  

Alternative models use NHTSA’s databases and regression-analysis approach but differ from the 
baseline model in one or more explanatory variables, assumptions, or data restrictions.  NHTSA 
applied the 11 techniques to the latest databases to generate alternative CAFE Model 
coefficients.  The range of estimates produced by the sensitivity tests offers insight to the 
uncertainty inherent in the formulation of the models, subject to the caveat these 11 tests are, of 
course, not an exhaustive list of conceivable alternatives.  

The central and alternative results follow, ordered from the lowest to the highest estimated 
increase in societal risk per 100-pound reduction for cars weighing less than 3,201 pounds. 

Table 7-18 – Fatality Increase (%) Per 100-Pound Mass Reduction While Holding Footprint* Constant 

 Cars Cars CUVs & LTVs† LTVs† 
< 3,201 ≥ 3,201 Minivans < 5,014 ≥ 5,014 

Baseline Estimate 1.20 0.42 -0.25 0.31 -0.61 
95% 
Confidence 
Bounds 
(sampling 
error) 

Lower: -0.35 -0.67 -1.55 -0.51 -1.46 

Upper: 2.75 1.5 1.04 1.13 0.25 

11 Alternative Models: 
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1. Without CY control 
variables 0.26 -0.07 -0.58 0.35 -0.24 

2. By track width & 
wheelbase 0.66 0.54 -0.48 -0.44 -0.90 

3. Track width/wheelbase 
w. stopped veh data 0.73 -0.02 -0.18 -0.77 -1.91 

4. Without non-significant 
control variables 0.98 0.26 0.14 0.36 -0.50 

5. With stopped-vehicle 
State data 1.32 -0.17 -0.08 0.21 -1.55 

6. CUVs/minivans weighted 
by 2010 sales 1.20 0.42 -0.06 0.31 -0.61 

7. Including 
muscle/police/AWD 
cars/big vans 

1.56 1.01 -0.25 0.87 0.43 

8. Limited to drivers with 
BAC=0 1.72 1.33 0.01 0.35 -0.74 

9. Control for vehicle 
manufacturer 2.09 1.51 -0.01 1.12 0.30 

10. Limited to good 
drivers‡ 2.15 1.80 -0.33 0.40 -0.45 

11. Control for vehicle 
manufacturer/nameplate 2.26 2.70 -0.55 1.13 0.50 

*While holding track width and wheelbase constant (rather than footprint) in alternative model nos. 2 and 3. 
†Excluding CUVs and minivans. 
‡BAC=0, no drugs, valid license, at most 1 crash and 1 violation during the past 3 years. 

For example, in cars weighing less than 3,201 pounds, the baseline estimate associates 100-
pound mass reduction, while holding footprint constant, with a 1.56 percent increase in societal 
fatality risk.  The corresponding estimates for the 11 sensitivity tests range from a 0.26 to a 2.26 
percent increase.  

The sensitivity tests illustrate both the fragility and the robustness of baseline estimates.  On the 
one hand, the variation among NHTSA’s coefficients is quite large relative to the baseline 
estimate - In the preceding example of cars < 3,201 pounds, the estimated coefficients range 
from almost zero to almost double the baseline estimate.  This result underscores the key 
relationship that the societal effect of mass reduction is small, a finding shared by Wenzel (2011, 
2018).  In other words, varying how to model some of these other vehicle, driver, and crash 
factors, which is exactly what sensitivity tests do, can appreciably change the estimate of the 
societal effect of mass reduction. 

On the other hand, variations are not particularly large in absolute terms.  The ranges of 
alternative estimates are generally in line with the sampling-error confidence bounds for the 
central estimates.  Generally, in alternative models as in the central model, mass reduction tends 
to be relatively more harmful in the lighter vehicles and more beneficial in the heavier vehicles, 
just as they are in the central analysis.  In all models, the point estimate of the coefficient is 
positive for the lightest vehicle class, cars < 3,201 pounds.  In 10 out of 11 models, the point 
estimate is negative for CUVs and minivans, and in nine out of 11 models the point estimate is 
negative for LTVs ≥ 5,014 pounds.  NHTSA believes the central case uses the most rigorous 
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methodology, as discussed further above, and provides the best estimates of the impacts of 
differential mass reductions on safety. 

In addition to the above sensitivity analyses, NHTSA conducted exploratory analyses on four 
candidate revisions to the model.  The first candidate revision, per feedback on the 2018 CAFE 
NPRM, is the reclassification of Class 2b and Class 3 truck-based vehicles.  In the exploratory 
analysis, NHTSA removed Class 2b and Class 3 truck-based vehicles as case vehicles, and re-
assigned crash partner Class 2b and Class 3 vehicles from LTVs to heavy-duty vehicles.  The 
second candidate revision is the inclusion of passenger cars equipped with AWD.  The third 
candidate revision is splitting CUVs and minivans into two vehicle classes by curb weight, 
consistent with the treatment of passenger cars and truck-based LTVs.  The fourth candidate 
revision is the expansion of the range of calendar years and model years used to establish the 
distribution of fatalities by crash type. 

Results based on the candidate revisions are consolidated in Table 7-19. 

Table 7-19 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant with 
Alternative Model Specifications - MY 2004-2011, CY 2006-2012 

Vehicle Class 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2008-2011 in 

CY 2008-2012 
(Original 
Weights) 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2007-2011 in 

CY 2007-2012 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2006-2011 in 

CY 2006-2012 

Point Estimates, 
Fatalities 

Weighted Across 
MY 2004-2011 in 

CY 2006-2012 
(Full Sample) 

Cars < 3,201 
Pounds (including 

AWD) 
1.12% 1.12% 1.11% 1.12% 

Cars 3,201+ 
Pounds (including 

AWD) 
0.89% 0.87% 0.84% 0.86% 

LTVs < 4,808 
Pounds 

(No Class 2b/3) 
0.26% 0.26% 0.26% 0.29% 

LTVs 4,808+ 
Pounds 

(No Class 2b/3) 
-0.16% -0.17% -0.16% -0.17% 

CUVs and 
Minivans 

< 3,955 Pounds 
0.20% 0.19% 0.18% 0.18% 

CUVs and 
Minivans 

3,955+ Pounds 
-0.52% -0.52% -0.53% -0.51% 

Under the alternative specification excluding Class 2b and Class 3 truck-based vehicles as case 
vehicles, the median curb weight for LTVs is 4,808 pounds, or 206 pounds lighter than in the 
central analysis.  When splitting CUVs and minivans into two weight classes, the median curb 
weight for the vehicles is 3,955 pounds.  Under this alternative specification, where Class 2b and 
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Class 3 truck-based crash partners are shifted from truck-based LTVs to heavy-duty vehicles, the 
median curb weight for LTV crash partners is 4,216 pounds, or 144 pounds lighter than in the 
central analysis. 

Re-classifying Class 2b and Class 3 truck-based vehicles has a strong effect on the point estimate 
for heavier LTVs.  Critically, removing the heaviest trucks as case vehicles yields a much 
smaller point estimate (reduction in societal fatality rates of between 0.16 and 0.17 percent per 
100-pound mass reduction, versus 0.61 percent in the central analysis).  This result is consistent 
with a relationship where a key share of the sensitivity of fatality risk is attributed to the mass of 
the heaviest vehicles in the fleet (i.e., supporting the role of mass dispersion in societal fatality 
rates).  Importantly, the point estimate for lighter LTVs is not meaningfully different from the 
corresponding estimate in the central analysis (increase in societal fatality rates of between 0.26 
and 0.29 percent per 100-pound mass reduction, versus 0.3 percent in the central analysis).  
Considered in concert, these results indicate that the most effective reductions in societal fatality 
rates via mass reduction in truck-based vehicles would arise not from light-weighting the 
heaviest vehicles subject to CAFE regulation, but rather from light-weighting similar, medium- 
and heavy-duty vehicles.   

Including passenger cars with AWD in the analysis has little effect on the point estimate for 
lighter passenger cars (increase in societal fatality rates of approximately 1.1 percent per 100-
pound mass reduction, versus 1.2 percent in the central analysis).  However, this revision has a 
strong effect on the point estimate for heavier passenger cars (increase in societal fatality rates of 
between 0.84 and 0.89 percent per 100-pound mass reduction, versus 0.42 percent in the central 
analysis).  This result supports a hypothesis that, after taking AWD status into account, mass 
reduction in heavier passenger cars is a more important driver of societal fatality rates than 
previously estimated.  Although this result could be spurious, estimated confidence bounds 
(presented below) indicate that accounting for AWD status reduces uncertainty in the point 
estimate.   

Splitting CUVs and minivans into two vehicle classes yields point estimates that are consistent 
with the point estimate for the consolidated CUV-minivan vehicle class (an average decrease in 
societal fatality rates of approximately 0.16 to 0.18 percent per 100-pound mass reduction across 
the two vehicle classes, versus a decrease of 0.25 percent in the central analysis).  However, 
sample sizes half as large in the two vehicle classes relative to the consolidated vehicle class lead 
to very large estimated confidence bounds, as shown below.  Due to this uncertainty, NHTSA 
does not feel that the current databases contain a large enough sample of CUVs and minivans to 
split these vehicles into two classes in the analysis; however, this issue will be re-examined when 
the next iteration of the databases is complete. 

Extending the range of calendar years and model years used to establish the distribution of 
fatalities across crash types has a negligible effect on the point estimates.  Based on the narrow 
ranges of results in Table 7-19, NHTSA finds evidence supporting a flexible approach in the 
choice of calendar years and model years used in this manner.  All else being equal, extending 
the range helps to mitigate the potential for individual crash types with large estimated effects to 
drive spurious effects on overall estimates through unrepresentatively high estimated shares of 
overall fatalities.  As a hedge in this direction, NHTSA applied the estimates from the alternative 
specification with two additional calendar years and model years (i.e., the second column from 



  675 

the right in Table 7-19) when evaluating 95-percent confidence bounds for the alternative models 
considered here.   

The estimated confidence bounds are presented in Table 7-20. 

Table 7-20 – Fatality Increase (%) per 100-Pound Mass Reduction While Holding Footprint Constant with 
Alternative Model Specifications - MY 2004-2011, CY 2006-2012; Fatalities Weighted Across MY 2006-2011 

in CY 2006-2012 

Vehicle Class Point Estimates 
95% Confidence 
Interval Lower 

Bound 

95% Confidence 
Interval Upper 

Bound 
Cars < 3,201 Pounds 

(including AWD) 1.11% -0.57% 2.80% 

Cars 3,201+ Pounds 
(including AWD) 0.84% -0.14% 1.82% 

LTVs < 4,808 Pounds 
(No Class 2b/3) 0.26% -0.83% 1.36% 

LTVs 4,808+ Pounds 
(No Class 2b/3) -0.16% -1.47% 1.14% 

CUVs and Minivans 
< 3,955 Pounds 0.18% -2.94% 3.30% 

CUVs and Minivans 
3,955+ Pounds -0.53% -2.26% 1.21% 

All CUVs and Minivans -0.29% -1.56% 0.99% 

The estimated 95-percent confidence intervals are similar for lighter passenger cars with and 
without the inclusion of cars with AWD (-0.57 to 2.80 percent versus -0.35 to 2.75 percent) and 
CUVs and minivans as a combined class (-1.56 to 0.99 percent versus -1.55 to 1.04 percent).  
The latter result underscores the small impact that re-classifying Class 2b and Class 3 crash 
partners has on estimates in isolation.   

The estimated confidence interval for heavier passenger cars is somewhat narrower when 
including vehicles with AWD (-0.14 to 1.82 percent versus -0.67 to 1.50 percent when excluding 
cars with AWD).  Critically, combined with the increase in the magnitude of the point estimate, 
the alternative confidence interval indicates that the estimate is much closer to statistical 
significance at the 95-percent confidence level when including cars with AWD. 

The confidence interval for lighter LTVs is somewhat larger when re-classifying Class 2b and 
Class 3 truck-based vehicles (-0.83 to 1.36 percent versus -0.51 to 1.13 percent), reflecting in 
part the effects of reducing the range of vehicles represented in the group.  This effect is much 
stronger in the vehicle class affected most directly by this change, heavier LTVs.  The upper 
bound of the 95-percent confidence interval is much larger when re-classifying Class 2b and 
Class 3 truck-based vehicles (-1.47 to 1.14 percent versus -1.46 to 0.25 percent).  Thus, after 
removing the heaviest vehicles from the vehicle class, the point estimate changes from being at 
least economically meaningful to being simply statistically insignificant. 
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Lastly, the estimated confidence bounds for the separate CUV and minivan classes are much 
larger than the rest (-2.94 to 3.30 percent for lighter CUVs and minivans, and -2.26 to 1.21 
percent for heavier CUVs and minivans).  These results underscore the need for increased 
sample size before splitting CUVs and minivans into two vehicle classes. 

7.2.5 Fleet Simulation Model 

Commenters to recent CAFE rulemakings, including some vehicle manufacturers, have 
suggested that designs and materials of more recent model year vehicles may have weakened the 
historical statistical relationships between mass, size, and safety.  NHTSA agreed that the 
statistical analysis would be improved by using an updated crash and exposure database 
reflecting more recent safety technologies, vehicle designs and materials, and reflecting changes 
in the vehicle fleet.  As mentioned above, a new crash and exposure database was created with 
the intention of capturing modern vehicle engineering and has been employed for assessing 
safety effects for CAFE rules since 2012. 

NHTSA has traditionally relied solely on real-world crash data as the basis for projecting the 
future safety implications for regulatory changes.  NHTSA is required to consider relevant data 
in setting standards.  Every fleet regulated by NHTSA’s standards differs from the fleet used to 
establish said standard, and as such, the light-duty vehicle fleet in the MY 2024-2026 timeframe 
will be different from the MY 20042011 fleet analyzed in the 2012 study.  This is not a new or 
unique phenomenon, but instead is an inherent challenge in regulating an industry reliant on 
continual innovation.  The statistical analysis reviewed above is NHTSA’s sixth evaluation of 
effects of mass reduction and/or downsizing, comprising databases ranging from MY 1985 to 
MY 2011.  Despite continual claims that modern light-weight engineering will render current 
data obsolete, results of the six studies, while not identical, have been generally consistent in 
showing a small, negative impact related to increased mass disparity.  NHTSA strongly believes 
that real-world crash data remain the best, most relevant data to measure the effect of mass 
reduction on safety. 

However, because light-weight vehicle designs introduce fundamental changes to the structure of 
the vehicle, there remains a persistent question of whether historical safety trends will apply.  To 
address this concern and to verify that real-world crash data remain an appropriate source of data 
for projecting mass-safety relationships in the future fleet, in 2014, NHTSA sponsored research 
to develop an approach to utilize experimental light-weight vehicle designs to evaluate safety in 
a broader range of real-world representative crashes.  NHTSA contracted with George 
Washington University to develop a fleet simulation model to study the impact and relationship 
of light-weighted vehicle design with injuries and fatalities.  The study involved simulating 
crashes on eight test vehicles, five of which were equipped with light-weight materials and 
advanced designs not yet incorporated into the U.S. fleet.  The study assessed a range of frontal 
crashes, including crashes with fixed objects and other vehicles, across a wide range of vehicle 
speeds, and with mid-size male and mid-size female dummies.  It is worth noting, given the 
questions raised about whether new materials and designs have weakened or eliminated the 
historical relationship between mass and safety, that the model year vehicles evaluated in this 
study are from ten to twenty years ago, and materials and designs have continued to evolve 
during that time. 
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The methodology focused on frontal crashes because of the availability of existing vehicle and 
occupant restraint models.  Representative crashes were simulated between baseline and light-
weight vehicles against a range of vehicles and roadside objects using two different size belted 
driver occupants (adult male and small female) only.  No passenger(s) or unbelted driver 
occupants were considered in this fleet simulation.  The occupant injury risk from each 
simulation was calculated and summed to obtain combined occupant injury risk.  The combined 
occupant injury risk was weighted according to the frequency of real-world occurrences to 
develop overall societal risk for baseline and light-weighted vehicles.  Note - The generic 
restraint system developed and used in the baseline occupant simulations was also used in the 
light-weighted vehicle occupant simulations as the purpose of this fleet simulation was to 
understand changes in societal injury risks (SIRs) because of mass reduction for different classes 
of vehicles in frontal crashes.  No modifications to the restraint systems were made for light-
weighted vehicle occupant simulations.  Any modifications to restraint systems to improve 
occupant injury risks or SIRs in the light-weighted vehicle, would have conflated results without 
identifying effects of mass reduction only.  The following sections provide an overview of the 
fleet simulation study: 

In this study, there were eight vehicles as follows: 

• 2001 model year Ford Taurus finite element model baseline and two simple design 
variants included a 25 percent lighter vehicle while maintaining the same vehicle front 
end stiffness and 25 percent overall stiffer vehicle while maintaining the same overall 
vehicle mass.  

• 2011 model year Honda Accord finite element baseline vehicle and its 20 percent light- 
weight vehicle designed by Electricore.  This mass reduction study was sponsored by 
NHTSA.  

• 2009/2010 model year Toyota Venza finite element baseline vehicle and two design 
variants included a 20 percent light-weight vehicle model (2010 Venza) funded by EPA 
and International Council on Clean Transportation (ICCT) and a 35 percent light-weight 
vehicle (2009 Venza) funded by California Air Resources Board.  

Light-weight vehicles were designed to have similar vehicle crash pulses as baseline vehicles.  
More than 440 vehicle crash simulations were conducted for the range of crash speeds and crash 
configurations to generate crash pulse and intrusion data points shown in Figure 7-5.  The crash 
pulse data and intrusion data points will be used as inputs in the occupant simulation models. 
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Figure 7-5 – Vehicle Crash Simulations 

For vehicle-to-vehicle impact simulations, four finite element models were chosen to represent 
the fleet as shown in Table 7-21.  The partner vehicle models were selected to represent a range 
of vehicle types and weights.  It was assumed vehicle models would reflect the crash response 
for all vehicles of the same type, e.g. mid-size car.  Only the safety or injury risk for the driver in 
the target vehicle and in the partner vehicle were evaluated in this study. 

Table 7-21 – Base Vehicle Models Used in the Fleet Simulation Study 

Vehicle Models FE Weight / No. Parts /Elements 

Taurus 
(MY 2000 – 2007)  

 
 

 

1505 kg / 802 / 973,351 

Yaris 
(MY 2005 – 2013)  

 
 

 
1100 kg / 917 / 1,514,068 

Explorer  
(MY 2002 – 2005)  

  
 

2025 kg / 923 / 714,205 

Silverado  
(MY 2007 –2013)  

  
 

2270 kg / 719 / 963,482 

As noted, vehicle simulations generated vehicle deformations and acceleration responses utilized 
to drive occupant restraint simulations and predict the risk of injury to the head, neck, chest, and 
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lower extremities.  In all, more than 1,520 occupant restraint simulations were conducted to 
evaluate the risk of injury for mid-size male and small female drivers. 

The SIR, as computed by Equation 7-2, for a target vehicle v in frontal crashes is an aggregate of 
individual serious crash injury risks weighted by real-world frequency of occurrence (v) of a 
frontal crash incident.  A crash incident corresponds to a crash with different partners (Npartner) 
at a given impact speed (Pspeed), for a given driver occupant size (Loccsize), in the target or 
partner vehicle (T/P), in a given crash configuration (Mconfig), and in a single- or two-vehicle 
crash (Kevent).  CIR (v) represents the combined injury risk (by body region) in a single crash 
incident.  (v) designates the weighting factor, i.e., percent of occurrence, derived from National 
Automotive Sampling System Crashworthiness Data System (NASS CDS) for the crash incident.  
A driver age group of 16 to 50 years old was chosen to provide a population with a similar, i.e., 
more consistent, injury tolerance. 

 

Equation 7-2 – Societal Injury Risk 

Figure 7-6 shows how change in societal risk is computed. 

 

Figure 7-6 – Diagram of Computation for Overall Change in Societal Risk 

The fleet simulation was performed using the best available engineering models, with base 
vehicle restraint and airbag settings, to estimate societal risks of future light-weight vehicles.  
The range of the predicted risks for the baseline vehicles is from 1.25 to 1.56 percent, with an 
average of 1.39 percent, for the NASS frontal crashes that were simulated.  The change in driver 
injury risk between the baseline and light-weighted vehicles will provide insight into the estimate 
of modification needed in the restraint and airbag systems of light-weight vehicles.  If the 
difference extends beyond the expected baseline vehicle restraint and airbag capability, then 
adjustments to the structural designs would be needed.  Results from the fleet simulation study 
show that the trend of increased SIR for light-weighted vehicle designs, as compared to their 
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baselines, occurs for both single vehicle and two-vehicle crashes.  Results are listed in Table 
7-22. 

In general, the SIR in the frontal crash simulation associated with the small size driver is 
elevated when compared to that of the mid-size driver.  However, both occupant sizes had levels 
of injury risk in the simulated impact configurations representative of the regulatory and 
consumer information testing.  NHTSA examined three methods for combining injuries with 
different body regions.  One observation was the baseline mid-size CUV model was more 
sensitive to leg injuries. 

Table 7-22 – Overall Societal Risk Calculation Results for Model Runs, with Base Vehicle Restraint and 
Airbag Settings Being the same for All Vehicles, in Frontal Crash Only 

Target Vehicle Passenger 
Car Baseline 

Passenger Car 
LW 

CUV 
Baseline 

CUV Low 
Option 

CUV High 
Option 

Weight (lbs) 3681 2964 3980 3313 2537 
Reduction  716  668 1444 
% mass reduction  19%  17% 36% 
Societal Risk I 1.56% 1.73% 1.36% 1.46% 1.57% 
Delta Increase  0.17%  0.10% 0.21% 
Societal Risk II 1.43% 1.57% 1.14% 1.20% 1.30% 
Delta Increase  0.14%  0.06% 0.16% 
Societal Risk IIP 1.44% 1.59%  
Delta Increase  0.15% 
Societal Risk I - Target + Partner Combined AIS3+ risk of Head, Neck, Chest & Femur  
Societal Risk II - Target + Partner Combined AIS3+ risk of Head, Neck, and Chest 
Societal Risk IIP - Target + Partner Combined AIS3+ risk of Head, Neck, and Chest with A-Pillar  
Intrusion Penalty 

This study only looked at light-weight designs for a midsize sedan and a mid-size CUV and did 
not examine safety implications for heavier vehicles.  The study was also limited to only frontal 
crash configurations and considered just mid-size CUVs whereas the statistical regression model 
considered all CUVs and all crash modes. 

The change in the safety risk from the MY 2010 fleet simulation study was directionally 
consistent with results for passenger cars from the 2012 Kahane report, the 2016 Puckett and 
Kindelberger report, the 2020 final rule, and the analysis used for the NPRM and today’s final 
rule.  As noted, fleet simulations were performed only in frontal crash mode and did not consider 
other crash modes including rollover crashes. 

This fleet simulation study does not provide information that can be used to modify coefficients 
derived for the final rule regression analysis because of the restricted types of crashes and 
vehicle designs.  As explained earlier, the fleet simulation study assumed restraint equipment to 
be as in the baseline model, in which restraints/airbags are not redesigned to be optimal with 
light-weighting. 
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7.3 Impact of Vehicle Scrappage and Sales Response on Fatalities 

The sales response discussed above in Chapter 4.1 impacts the number of vehicles produced in a 
given model year and, consequently, in service in subsequent years.  Reduced new vehicle sales 
cause an increase in fatalities due primarily to slower adoption of safer vehicles while increased 
vehicle sales would have the opposite effect.  The scrappage response described in Chapter 4.2 
impacts safety because it changes the rate at which older, and less safe vehicles are retired from 
service.  Collectively, sales and scrappage influence how quickly the fleet will “turn over” to 
newer vehicles, which tend to be safer than older vehicles.  Any effects on fleet turnover caused 
by fuel economy standards increasing the price of new and used vehicles—either from changes 
in the pace of vehicle retirement or sales of new vehicles—will affect the distribution of both 
ages and model years present in the on-road fleet.  Because each of these vintages carries with it 
inherent rates of fatal crashes, and newer vintages are generally safer than older ones, changing 
that distribution of ages within the fleet will change the total number of on-road fatalities under 
each regulatory alternative.   

The agency uses the fatality risk of vehicles combined with the changes in VMT across 
alternatives to calculate the safety impact of fleet turnover.  The fatality risk measures the 
likelihood that a vehicle will be involved in a fatal accident per mile driven.  As described in 
Chapter 7.1, NHTSA calculates the fatality risk of a vehicle based on the vehicle’s model year, 
age, and style, while controlling for factors that are independent of the intrinsic nature of the 
vehicle, such as behavioral characteristics.  Newer vehicles will have a lower fatality risk than 
older vehicles, all else being equal.  Fleetwide safety is also anticipated to benefit from both the 
improvement and increased prevalence of advance crash technologies as discussed in Chapter 
7.1.12, hence more ‘newer’ vehicles on the road will have the ancillary effect of lowering the 
amount of fatalities in the existing fleet.  As discussed in Chapter 4.3, we anticipate higher 
standards will slow fleet turnover which means miles that would have been driven in newer 
vehicles in our baseline will instead be driven in older vehicles in our alternatives.  As a 
consequence, more miles will be driven in older vehicles with a higher fatality risk.  

Relatedly, the dynamic fleet share model discussed above in Chapter 4.2.1.3 impacts the relative 
shares of passenger cars and light trucks produced in each model year (because as the fuel 
economy levels of both passenger cars and light trucks improve, the improvements add more 
value to the latter, the effect being amplified as fuel prices increase over time), and as cars and 
trucks have different fatality rates—in part due to their mass differences—variations in the 
market share of passenger cars and light-trucks across the alternatives will affect the estimated 
amount of fatalities.  As light trucks, SUVs and passenger cars respond differently to technology 
applied to meet the standards—namely mass reduction—fleets with different compositions of 
body styles will have varying amounts of fatalities.  Since mass-safety fatalities are calculated by 
multiplying mass point-estimates by VMT, which implicitly captures the impact of the dynamic 
fleet share model, the estimates of mass-safety fatalities in the previous section include the 
impact of vehicle prices and fuel savings on fleet composition.   

7.4 Impact of Rebound Effect on Fatalities 

The “rebound effect” is a measure of the additional driving that occurs when the cost of driving 
declines.  More stringent standards reduce vehicle operating costs, and in response, some 
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consumers may choose to drive more.  Driving more increases exposure to risks associated with 
on-road transportation, and this added exposure translates into higher fatalities.  NHTSA has 
calculated this impact by estimating the change in VMT that results from alternative standards.  
Estimates of the rebound effect in the literature differ significantly.  For this analysis, we use a 
rebound effect of 10 percent.  A full discussion of the basis for selecting this rate is provided in 
Chapter 4.3.3. 

Rebound miles are not imposed on consumers by regulation.  They are a freely chosen activity 
resulting from reduced vehicle operational costs.  As such, NHTSA believes a large portion of 
the safety risks associated with additional driving are offset by the benefits drivers gain from 
added driving.  The level of risk internalized by drivers is uncertain.  This analysis assumes that 
consumers internalize 90 percent of this risk, which mostly offsets the societal impact of any 
added fatalities from this voluntary consumer choice. 

The actual portion of risk from crashes that drivers internalize is unknown.  We suspect that 
drivers are more likely to internalize serious crash consequences than minor ones, and some 
drivers may not perfectly internalize injury consequences to other individuals, especially 
occupants of other vehicles and pedestrians.  However, legal consequences from crash liability, 
both criminal and civil, should also act as a caution for drivers considering added crash risk 
exposure.  NHTSA considered several approaches to estimating internalized crash risk.  The first 
assumes that drivers value harm to themselves as well as legal liability for causing harm to 
others.  It considers that all fatalities in single vehicle crashes are fully valued, that there is 
roughly a 50 percent chance that each driver would be the one killed in multi-vehicle crashes, 
and that there is roughly a 50 percent chance that each driver would be at-fault in a multi-vehicle 
crash that they survived.  This produces an estimate of roughly 88 percent.   

Another approach assumes that drivers fully value all damage in single vehicle crashes, and only 
discount property damage incidents in multi-vehicle crashes.  Based on data in Blincoe, et al. 
(2015),886 multi-vehicle property-damage-only crashes account for about 7 percent of all societal 
crash costs, leaving 93 percent recognized under this approach.  Yet another approach would 
assume drivers value injury crashes, but discount non-injury related costs such as property 
damage and traffic congestion.  This approach results in roughly an 88 percent estimate of costs 
internalized.  A fourth approach assumes that drivers fully value all quality-of-life losses 
associated with injury defined by the VSL, plus all personal expenses that result from external 
cost components not captured by the VSL.  This approach results in an estimate that 86 percent 
of crash risk costs are internalized.  Overall, while NHTSA recognizes this proportion is 
uncertain, we believe it is reasonable to assume that drivers internalize roughly 90 percent of the 
crash risk that results from added driving.  

Note that none of these estimates account for net consumer surplus, implying that the full value 
of added driving gained or lost through the rebound effect is somewhat higher than these 
estimates.  Based on this, we assume that 90 percent of the societal cost of additional motor 
vehicle crashes occurring due to rebound mileage is offset by the internalized acceptance of 

 
886 Blincoe, L., Miller, T.R., Zaloshnja, E., Lawrence, B. A., (May 2015, Revised) The Economic and Societal 
Impact of Motor Vehicle Crashes, 2010, (DOT HS 812 012), National Highway Traffic Safety Administration, 
Washington, D.C.   
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safety risk, and an additional portion is offset by added consumer surplus drivers obtain while 
assuming this risk.  An estimate of this consumer surplus is provided in Chapter 6.1.5 of this 
document.   

7.5 Fatalities by Source 

To calculate safety impacts, the model produces a dynamic total fleetwide safety impact that 
reflects the interaction of added rebound VMT, mass/safety impacts, and shifts in VMT among 
vehicles of different ages due to sales/scrappage impacts.  Because these factors are interactive, 
the model does not predict which fatalities are “only” attributable to the sales/scrappage 
response; it calculates a fleet response, and that fleet is the result of all those integrated modules.  
For this reason, we treat the sales/scrappage fatalities to be the residual from the total after 
accounting for rebound and mass/safety impacts, which can be more directly measured.  

Rebound fatalities are computed by taking the difference in per vehicle rebound miles in the 
regulatory alternative and the baseline case multiplied by the baseline fatality rate per mile and 
baseline vehicle count.  Fatalities due to rebound are computed as shown in Equation 7-3.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴
= �

𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴
𝑉𝑉𝑉𝑉ℎ𝐴𝐴𝐴𝐴𝐴𝐴

−
𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑉𝑉𝑉𝑉ℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
� ∗  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

∗ 𝑉𝑉𝑒𝑒ℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

Equation 7-3 – Fatalities Due to Rebound 

Where “RVMT” is VMT including rebound miles, “NRVMT” is VMT excluding rebound miles, 
“Veh” is the quantity of vehicles, and “Alt” represents the alternative being examined and 
“Base” is the baseline value.  The rebound fatalities will show as zero for the baseline scenario, 
and all alternatives will show fatalities due to rebound miles using the baseline vehicle counts.  
The formula specifies vehicle counts to clarify that vehicle counts will change over time among 
alternatives.   

The fatalities due to mass reduction use the baseline vehicle counts and baseline per vehicle 
VMT including rebound.  As with the fatalities attributable to rebound, the fatalities attributable 
to changes in mass reduction are calculated inherently as incremental values, relative to the 
baseline standards (the values will appear as zero for baseline standards in the outputs).  The 
equation used to calculate the fatalities due to curb weight (mass)changes is as shown in 
Equation 7-4. 

∆𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) ∗ 𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

Equation 7-4 – Fatalities Due to Curb Weight Change 

NHTSA then computed the sales/scrappage fatalities as the remainder, as was done in the 
NPRM. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
= �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴� − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 −  ∆𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
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Equation 7-5 – Fatalities Due to Sales/Scrappage 

7.6 Non-fatal Crash Impacts 

Fatalities are valued as a societal cost within the CAFE Model’s cost and benefit accounting.  
Their value is based on the comprehensive value of a fatality, which includes lost quality of life 
and is quantified in the VSL as well as economic consequences such as medical and emergency 
care, insurance administrative costs, legal costs, and other economic impacts not captured in the 
VSL alone.  These values were derived from data in Blincoe et al. (2015), adjusted to 2018 
economics, and updated to reflect the official DOT guidance on the VSL.  This gives a societal 
value of $10.8 million for each fatality.887  To estimate the impact of CAFE standards on non-
fatal crash impacts, different methods were used for each of the three safety categories.  These 
methods replace the previous method of scaling up the costs of non-fatal injuries and vehicle 
damage as a constant multiplier applied to increased fatality costs as was used in the 2020 CAFE 
final rule. 

7.6.1 Non-fatal Sales Scrappage Impacts 

To estimate the impacts on nonfatal injuries and property-damaged vehicles due to VMT shifts 
caused by changes in fleet turnover, we replicated the process used for fatalities, using 
effectiveness rates and target population proportions that are specific to these two nonfatal 
groupings.  The same data and methods described previously in this section to compute the 
impact of advanced crash avoidance technologies on fatalities can also be used to examine the 
effectiveness of these technologies against non-fatal and PDO crashes.  Effectiveness rates 
against nonfatal injuries and PDOs are identical for the two lane-change and blind spot 
technologies shown in Table 7-22.  For the two frontal impact technologies, the central 
effectiveness rate noted in Table 7-22 was used rather than the reduced rates that were applied 
against fatalities.  That is, we assume that effectiveness against crashes is a reasonable proxy for 
effectiveness against nonfatal injuries and PDOs.  The percentages of target population 
applicable to these crashes was taken from Wang (2019) using results specific to these types of 
crashes.  The inputs and results are summarized for nonfatal injuries in Table 7-23 through Table 
7-25, and for PDOs in Table 7-26 through Table 7-28.888   

 

 
887 See TSD 7.7 Valuation of Safety Impacts for further discussion of comprehensive value of a fatality. 
888 See previous discussion in this section for the studies and methodology used to create these estimates.  
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Table 7-23 – Phased Impact of Crashworthiness Technologies on Non-Fatal Injury Rates, Forward Collision 
Crashes 

MY 
Forward Collision Warning Automatic Emergency Braking Weighted  

Effectiveness Eff. % Inst. Eff. % Inst. % T.P. 
2015 21.0% 0.047 46.0% 0.011 32.4% 0.004757 
2016 21.0% 0.176 46.0% 0.120 32.4% 0.029822 
2017 21.0% 0.305 46.0% 0.270 32.4% 0.060915 
2018 21.0% 0.466 46.0% 0.445 32.4% 0.097904 
2019 21.0% 0.417 46.0% 0.583 32.4% 0.115115 
2020 21.0% 0.313 46.0% 0.687 32.4% 0.123549 
2021 21.0% 0.209 46.0% 0.792 32.4% 0.131982 
2022 21.0% 0.104 46.0% 0.896 32.4% 0.140415 
2023 21.0% 0 46.0% 1 32.4% 0.148849 
2024 21.0% 0 46.0% 1 32.4% 0.148849 
2025 21.0% 0 46.0% 1 32.4% 0.148849 
2026 21.0% 0 46.0% 1 32.4% 0.148849 
2027 21.0% 0 46.0% 1 32.4% 0.148849 
2028 21.0% 0 46.0% 1 32.4% 0.148849 
2029 21.0% 0 46.0% 1 32.4% 0.148849 
2030 21.0% 0 46.0% 1 32.4% 0.148849 
2031 21.0% 0 46.0% 1 32.4% 0.148849 
2032 21.0% 0 46.0% 1 32.4% 0.148849 
2033 21.0% 0 46.0% 1 32.4% 0.148849 
2034 21.0% 0 46.0% 1 32.4% 0.148849 
2035 21.0% 0 46.0% 1 32.4% 0.148849 
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Table 7-24 – Phased Impact of Crashworthiness Technologies on Non-Fatal Injury Rates, Lane Departure 
Crashes 

MY 
Lane Departure Warning Lane Keep Assist 

% T.P. Weighted  
Effectiveness Eff. % Inst. Eff. % Inst. 

2015 10.0% 0.177 20.0% 0.000 17.6% 0.003112 
2016 10.0% 0.198 20.0% 0.088 17.6% 0.006575 
2017 10.0% 0.280 20.0% 0.205 17.6% 0.01213 
2018 10.0% 0.382 20.0% 0.320 17.6% 0.017967 
2019 10.0% 0.479 20.0% 0.442 17.6% 0.023962 
2020 10.0% 0.442 20.0% 0.558 17.6% 0.027392 
2021 10.0% 0.324 20.0% 0.676 17.6% 0.029461 
2022 10.0% 0.207 20.0% 0.794 17.6% 0.03153 
2023 10.0% 0.089 20.0% 0.911 17.6% 0.033599 
2024 10.0% 0 20.0% 1 17.6% 0.03516 
2025 10.0% 0 20.0% 1 17.6% 0.03516 
2026 10.0% 0 20.0% 1 17.6% 0.03516 
2027 10.0% 0 20.0% 1 17.6% 0.03516 
2028 10.0% 0 20.0% 1 17.6% 0.03516 
2029 10.0% 0 20.0% 1 17.6% 0.03516 
2030 10.0% 0 20.0% 1 17.6% 0.03516 
2031 10.0% 0 20.0% 1 17.6% 0.03516 
2032 10.0% 0 20.0% 1 17.6% 0.03516 
2033 10.0% 0 20.0% 1 17.6% 0.03516 
2034 10.0% 0 20.0% 1 17.6% 0.03516 
2035 10.0% 0 20.0% 1 17.6% 0.03516 

Table 7-25 – Phased Impact of Crashworthiness Technologies on Non-Fatal Injury Rates, Blind Spot Crashes 
and Combined Total – All Three Crash Types, and Final Multiplier 

MY 
Blind Spot Detection Lane Change Assist 

% T.P. Weighted 
Effectiveness 

Three Techs 
Average Eff. 

Impact 

Multiplier/ 
Fatalities Eff. % Inst. Eff. % Inst. 

2015 3.0% 0.082 26.0% 0.123 6.9% 0.002385 0.010253 1.398385 
2016 3.0% 0.124 26.0% 0.186 6.9% 0.003601 0.039998 2.45713 
2017 3.0% 0.155 26.0% 0.233 6.9% 0.004503 0.077548 2.606141 
2018 3.0% 0.191 26.0% 0.287 6.9% 0.00555 0.121421 2.746386 
2019 3.0% 0.222 26.0% 0.333 6.9% 0.006425 0.145502 2.520716 
2020 3.0% 0.252 26.0% 0.376 6.9% 0.007265 0.158205 2.416556 
2021 3.0% 0.283 26.0% 0.424 6.9% 0.008192 0.169635 2.407186 
2022 3.0% 0.314 26.0% 0.472 6.9% 0.009119 0.181064 2.399058 
2023 3.0% 0.345 26.0% 0.520 6.9% 0.010045 0.192494 2.39194 
2024 3.0% 0.376 26.0% 0.568 6.9% 0.010972 0.194981 2.323211 
2025 3.0% 0.384 26.0% 0.617 6.9% 0.01185 0.195859 2.326417 
2026 3.0% 0.335 26.0% 0.665 6.9% 0.012613 0.196622 2.329189 
2027 3.0% 0.287 26.0% 0.713 6.9% 0.013376 0.197385 2.331945 
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MY 
Blind Spot Detection Lane Change Assist 

% T.P. Weighted 
Effectiveness 

Three Techs 
Average Eff. 

Impact 

Multiplier/ 
Fatalities Eff. % Inst. Eff. % Inst. 

2028 3.0% 0.239 26.0% 0.761 6.9% 0.014139 0.198148 2.334687 
2029 3.0% 0.191 26.0% 0.809 6.9% 0.014902 0.198911 2.337415 
2030 3.0% 0.143 26.0% 0.857 6.9% 0.015665 0.199674 2.340127 
2031 3.0% 0.095 26.0% 0.905 6.9% 0.016428 0.200437 2.342826 
2032 3.0% 0.047 26.0% 0.953 6.9% 0.017191 0.201201 2.34551 
2033 3.0% 0 26.0% 1 6.9% 0.017934 0.201943 2.348108 
2034 3.0% 0 26.0% 1 6.9% 0.017934 0.201943 2.348108 
2035 3.0% 0 26.0% 1 6.9% 0.017934 0.201943 2.348108 
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Table 7-26 – Phased Impact of Crashworthiness Technologies on PDO Crash Rates, Forward Collision 
Crashes 

MY 
Forward Collision Warning Automatic Emergency 

Braking Weighted 
Effectiveness FCW Eff. % Inst. AEB Eff. % Inst. % T.P. 

2015 21.0% 0.047 46.0% 0.011 36.8% 0.005416 
2016 21.0% 0.176 46.0% 0.120 36.8% 0.033958 
2017 21.0% 0.305 46.0% 0.270 36.8% 0.069363 
2018 21.0% 0.421 46.0% 0.445 36.8% 0.107987 
2019 21.0% 0.417 46.0% 0.583 36.8% 0.131081 
2020 21.0% 0.313 46.0% 0.687 36.8% 0.140684 
2021 21.0% 0.209 46.0% 0.792 36.8% 0.150287 
2022 21.0% 0.104 46.0% 0.896 36.8% 0.15989 
2023 21.0% 0 46.0% 1 36.8% 0.169493 
2024 21.0% 0 46.0% 1 36.8% 0.169493 
2025 21.0% 0 46.0% 1 36.8% 0.169493 
2026 21.0% 0 46.0% 1 36.8% 0.169493 
2027 21.0% 0 46.0% 1 36.8% 0.169493 
2028 21.0% 0 46.0% 1 36.8% 0.169493 
2029 21.0% 0 46.0% 1 36.8% 0.169493 
2030 21.0% 0 46.0% 1 36.8% 0.169493 
2031 21.0% 0 46.0% 1 36.8% 0.169493 
2032 21.0% 0 46.0% 1 36.8% 0.169493 
2033 21.0% 0 46.0% 1 36.8% 0.169493 
2034 21.0% 0 46.0% 1 36.8% 0.169493 
2035 21.0% 0 46.0% 1 36.8% 0.169493 
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Table 7-27 – Phased Impact of Crashworthiness Technologies on PDO Crash Rates, Lane Departure Crashes 

MY 
Lane Departure Warning Lane Keep Assist 

% T.P. Weighted 
Effectiveness LDW Eff. % Inst. LKA Eff. % Inst. 

2015 10.0% 0.177 20.0% 0.000 12.0% 0.002131 
2016 10.0% 0.198 20.0% 0.088 12.0% 0.004503 
2017 10.0% 0.280 20.0% 0.205 12.0% 0.008307 
2018 10.0% 0.382 20.0% 0.320 12.0% 0.012304 
2019 10.0% 0.479 20.0% 0.442 12.0% 0.016409 
2020 10.0% 0.442 20.0% 0.558 12.0% 0.018758 
2021 10.0% 0.324 20.0% 0.676 12.0% 0.020175 
2022 10.0% 0.207 20.0% 0.794 12.0% 0.021592 
2023 10.0% 0.089 20.0% 0.911 12.0% 0.023009 
2024 10.0% 0 20.0% 1 12.0% 0.024078 
2025 10.0% 0 20.0% 1 12.0% 0.024078 
2026 10.0% 0 20.0% 1 12.0% 0.024078 
2027 10.0% 0 20.0% 1 12.0% 0.024078 
2028 10.0% 0 20.0% 1 12.0% 0.024078 
2029 10.0% 0 20.0% 1 12.0% 0.024078 
2030 10.0% 0 20.0% 1 12.0% 0.024078 
2031 10.0% 0 20.0% 1 12.0% 0.024078 
2032 10.0% 0 20.0% 1 12.0% 0.024078 
2033 10.0% 0 20.0% 1 12.0% 0.024078 
2034 10.0% 0 20.0% 1 12.0% 0.024078 
2035 10.0% 0 20.0% 1 12.0% 0.024078 
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Table 7-28 – Phased Impact of Crashworthiness Technologies on PDO Crash Rates, Blind Spot Crashes and 
Combined Total – All Three Crash Types, and Final Multiplier 

MY 
Blind Spot Detection Lane Change Assist 

% T.P. Weighted 
Effectiveness 

Three Techs 
Average 

Eff. Impact 

Multiplier/ 
Fatalities Eff. % Inst. Eff. % Inst. 

2015 3.0% 0.082 26.0% 0.123 12.0% 0.004151 0.011698 1.59543 
2016 3.0% 0.124 26.0% 0.186 12.0% 0.006268 0.044728 2.747706 
2017 3.0% 0.155 26.0% 0.233 12.0% 0.007838 0.085508 2.873632 
2018 3.0% 0.191 26.0% 0.287 12.0% 0.009659 0.129951 2.939325 
2019 3.0% 0.222 26.0% 0.333 12.0% 0.011182 0.158673 2.748887 
2020 3.0% 0.252 26.0% 0.376 12.0% 0.012644 0.172087 2.628588 
2021 3.0% 0.283 26.0% 0.424 12.0% 0.014257 0.18472 2.621245 
2022 3.0% 0.314 26.0% 0.472 12.0% 0.01587 0.197353 2.614876 
2023 3.0% 0.345 26.0% 0.520 12.0% 0.017483 0.209986 2.609298 
2024 3.0% 0.376 26.0% 0.568 12.0% 0.019096 0.212668 2.533943 
2025 3.0% 0.384 26.0% 0.617 12.0% 0.020623 0.214195 2.544212 
2026 3.0% 0.335 26.0% 0.665 12.0% 0.021951 0.215523 2.553089 
2027 3.0% 0.287 26.0% 0.713 12.0% 0.023279 0.216851 2.561919 
2028 3.0% 0.239 26.0% 0.761 12.0% 0.024607 0.218179 2.570702 
2029 3.0% 0.191 26.0% 0.809 12.0% 0.025935 0.219507 2.579438 
2030 3.0% 0.143 26.0% 0.857 12.0% 0.027264 0.220835 2.588127 
2031 3.0% 0.095 26.0% 0.905 12.0% 0.028592 0.222163 2.59677 
2032 3.0% 0.047 26.0% 0.953 12.0% 0.02992 0.223491 2.605367 
2033 3.0% 0 26.0% 1 12.0% 0.031212 0.224784 2.613688 
2034 3.0% 0 26.0% 1 12.0% 0.031212 0.224784 2.613688 
2035 3.0% 0 26.0% 1 12.0% 0.031212 0.224784 2.613688 

Based on a comparison of the combined average effectiveness impacts for the three crash 
severity groups (fatalities, non-fatal injuries, and property damage), it is apparent that these 
advanced crash avoidance technologies will reduce non-fatal injuries and property damage 
crashes by more than they would fatalities.889   

7.6.2 Non-fatal Rebound VMT Crash Impacts 

Additional mileage driven due to the rebound effect increases exposure to risk and thus increases 
the probability of additional fatalities, non-fatal injuries, and property damage.  As was done for 
fatalities, we estimate the resulting additional numbers of non-fatal injuries and vehicles 
involved in PDO crashes explicitly (as the product of the change in miles driven and non-fatal 
injuries per mile, and similarly for PDO crashes) using the per-mile rates projected by our CAFE 
Model.  This produces estimates of increased incidence of nonfatal injuries and PDO vehicles.  
We apply our average monetary values (noted in Chapter 7.7) to the estimated numbers of 
additional non-fatal injuries and property damage to vehicles.   

 
889 For example, for MY 2035, the combined effectiveness for PDO crashes is .224784, as shown in the second to 
last column of Table 7-28, which is 2.613 times the .0860 combined effectiveness for fatalities, as seen in Table 
7-13, which shows the disproportionality impact of crash avoidance technologies on non-fatal accidents. 
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7.6.3 Non-fatal Mass/Size Safety impacts   

For mass/safety, extensive research documented elsewhere in this TSD establish relationships 
between changes in vehicle mass that increase mass disparity and safety.  These relationships are 
used as inputs in the CAFE Model to determine how predicted changes in vehicle mass initiated 
to improve CAFE will impact motor vehicle fatalities.  Research into the effect of changes in 
mass on safety has typically been confined to fatality impacts, but logically, the same physics 
that increase or decrease fatality risk should impact injury and property damage risk in a 
directionally consistent manner.  For non-fatal crash impacts, we assume that the rates of non-
fatal injuries and property damage to vehicles projected by our models will change in the same 
proportion to changes in vehicles’ mass disparities as do those vehicles’ fatality rates.  This 
produces estimates of changes in incidence for nonfatal injuries and PDO vehicles due to mass 
changes in the new vehicle fleet for each model year.  We apply our average monetary values 
(see Chapter 7.7) to the estimated numbers of additional non-fatal injuries and property damage 
to vehicles. 

7.7 Valuation of Safety Impacts 

Fatalities, nonfatal injuries, and property damage crashes are valued as a societal cost within the 
CAFE Model’s cost and benefit accounting.  Their value is based on the comprehensive value of 
a fatality, which includes lost quality of life and is quantified in the (VSL as well as economic 
consequences such as medical and emergency care, insurance administrative costs, legal costs, 
and other economic impacts not captured in the VSL alone.  These values were derived from 
data in Blincoe et al. (2015), adjusted to 2018 economics, and updated to reflect the official DOT 
guidance on the VSL.890  Nonfatal injury costs, which differ according to severity, were 
weighted according to the relative incidence of injuries across the Abbreviated Injury Scale 
(AIS).  To determine this incidence, the agency applied a KABCO/MAIS translator to GES 
KABCO based injury counts from 2010 through 2015.  This produced the MAIS based injury 
profile.  This profile was used to weight nonfatal injury unit costs derived from Blincoe et al, 
adjusted to 2018 economics and updated to reflect the official DOT guidance on the VSL.  
Property-damaged vehicle costs were also taken from Blincoe et al and adjusted to 2018 
economics.  VSL does not impact property damage.  This gives societal values of $10.8 million 
for each fatality, $132,000 for each nonfatal injury, and $7100 for each property damaged 
vehicle. 

7.8 Summary of Safety Impacts 

The previous discussion documents the methods used to determine the safety impacts of higher 
CAFE standards on vehicle occupants and their value to society.  The resulting estimates are 
generated inside the CAFE Model and are detailed in Chapter 5 of the Final Regulatory Impact 
Analysis (FRIA) accompanying this final rule. 

 
890 https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-
of-a-statistical-life-in-economic-analysis.  (Accessed: February 14, 2022). 
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