PEDESTRIAN CRASH AVOIDANCE RESEARCH PROGRAM UPDATE

Frank S. Barickman, NHTSA Heath Albrecht, NHTSA

Previous G&I Sessions (2014)

NHTSA's PCAM Testing and Dummy Development

- Test Maneuvers (Scenarios)
- Test Mannequin Development
- Test Apparatus (Motion Control)
- Test Results (CAMP and Production Vehicles)

This Session

 Discuss UPDATED PCAM performance results from testing production level vehicles and engineering prototypes.

NHTSA Initiated PCAM Research in 2011

Volpe –

- Crash analyses and assess the potential safety benefits of PCAM technology
- Completed
- Final Report DOT HS 811 998 (April 2014)

CAMP – GM, Ford, Mercedes-Benz, Continental, and Delphi

- Develop preliminary test methods (Scenarios, Mannequins, Motion Control, etc.)
- Completed
- Final Report DOT HS 812 040 (June 2014)

NHTSA Internal Research – (ongoing)

- Further Refinement of Test Scenarios, Mannequins, Motion Control, etc.
- Development of Objective Test Procedures and Metrics

What is Pedestrian Crash Avoidance/Mitigation?

4,743 Pedestrian Fatalities (14% of total fatalities)

Pedestrians Killed	2011 (% Killed)	2012 (% Killed)
Rural	26%	27%
Urban	73%	73%
Intersection	20%	20%
Non-Intersection	68%	70%
Other	10%	10%
Daytime	30%	30%
Nighttime	69%	70%
Clear/Cloudy	88%	88%
Rain	8%	8%
Snow	1%	1%
Fog	1%	1%

SAE INTERNATIONAL

Top 20 pre-crash scenarios by functional years lost (FYL) can be grouped into 4 general scenarios (N = 139,000 Crashes)

Scenario	Cases	% Total FYL	Fatalities	%Fatalities ** (67% of the top 20 scenarios)
S1	115,000	84%	7,000	88%
S2	2,000	1%	16	<1%
S3	9,000	1%	0	0%
S4	13,000	10%	1,000	12%

** Note: Top 20 Scenarios represent 67% of estimated pedestrian fatalities

Vehicle	Production	Sensor Technology	CIB/AEB
Vehicle 1	Y	RADAR, LIDAR, and Mono Camera	Up to Full Braking
Vehicle 2	Y	Stereo Camera	Up to Full Braking
Vehicle 3	Y	Stereo Camera	Up to Full Braking
Vehicle 4	Y	RADAR and Stereo Camera	Up to Full Braking
Vehicle 5	Y	RADAR(s) and Mono Camera	Up to Full Braking

S1 - Scenario

SAE INTERNATIONAL

S1 – 10 MPH – Adult – Walking – 50 % Overlap

SAE INTERNATIONAL

S1 – 25 MPH – Adult – Walking – 50 % Overlap

S1

SAE INTERNATIONAL

S1 – 10 MPH – Adult – Running – 50 % Overlap

S1

SAE INTERNATIONAL

S1 – 25 MPH – Adult – Running – 50 % Overlap

S1

S1 – Obstructed Testing

SAE INTERNATIONAL

Euro NCAP Obstructed Child Test - Walking

SAE INTERNATIONAL

Euro NCAP Obstructed Child Test - Running

SAE INTERNATIONAL

Stationary Pedestrian

Stationary Pedestrian – Increasing Speed

SAE INTERNATIONAL

Test data supports:

- PCAM can avoid and mitigate common pedestrian crashes.
 - Data suggests technology is improving.
- PCAM data shows better performance for slower moving pedestrians
 - "Running" Pedestrian scenarios remain challenging for the PCAM systems tested.
- Obstructed pedestrian tests still challenging for PCAM systems.
 - Pedestrian speed a major factor.
- Performance differences can be observed using the objective test conditions described in this presentation.

- Continue testing production vehicles with PCAM. (Sept 2015)
- Refine a PCAM target population to assess system effectiveness and benefit estimates (Dec 2015).
- Refine and further investigate false positive tests. (Oct 2015)
- Complete development adult and child mannequin designs. (May 2015)
 - Select a standard design for objective testing.
- Complete objective test development and procedure (Dec 2015).

Animated Pedestrian

SAE INTERNATIONAL

SAE INTERNATIONAL

QUESTIONS?

FRANK BARICKMAN FRANK.BARICKMAN@DOT.GOV