An Analysis Of Injury Type And Distribution Of Belted, Non-ejected Occupants Involved In Rollover Crashes

Stephen A. Ridella¹, Ana-Maria Eigen², Jason Kerrigan³, Jeff Crandall³ 1-National Highway Traffic Safety Administration 2- Federal Highway Administration, United States Department of Transportation 3-Center for Applied Biomechanics – University of Virginia

> 2010 SAE Government/Industry Meeting January 29, 2010

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission

Issue

Source: FARS 1998-2008

Issue

About 25% of rollover fatalities are to belted, nonejected occupants.

- Little published data on nature of specific injuries to these rollover-involved occupants on a national scale.
- This study to determine distributions of specific injury types in rollover crashes of belted, non-ejected occupants from recent years of the NASS-CDS database.

Dynamic Rollover Assessment

■ NHTSA is exploring dynamic rollover test procedure.

- Need to assess vehicle, crash, and occupant parameters sensitive to occupant injury frequency and severity.
- Data will help to understand mechanisms associated with most severe injuries and help to develop test procedure including dummy assessment and injury criteria.

AIS 3+ Injury Distribution by Body Region/Rollover Crash Type from CIREN*

5

Method

Data Source

- NASS-CDS 2003-2007 Rollover Crashes (weighted data analysis)
- Selection parameters (similar to Ridella and Eigen, 2008)
 - Occupant: Adult, front-row, outboard, belted, non-ejected
 - Vehicle: Passenger vehicles, <= 2 roof inversions (eight ¼ turns or less)

Analysis

- AIS3+ injury distribution by body region for pure and multi-event rollovers
- Determine top 10 injuries (by AIS90 code) for both rollover modes
- Determine top 5 body region injury codes for pure rollover crashes
- Determine demographic information

AIS 3+ Injury Distribution by Body Region and by Rollover Crash Type

Top Ten AIS 3+ Injuries by Rollover Crash Type

Pure Rol	llover		Multi-Event Rollover			
Injury	Ν	%	Injury	Ν	%	
Cervical Spine fracture			Lung contusion unilateral			
facet	1,128	12.0%	with or without HTX/PTX	2,518	8.2%	
Lung contusion bilateral			Pelvis fracture			
with or without HTX/PTX	954	10.1%	open/displaced/comminuted	1,916	6.2%	
Orbit fracture			Humerus fracture			
open/displaced/comminuted	768	8.1%	open/displaced/comminuted	1,512	4.9%	
Cerebrum subarachnoid			Tibia fracture shaft			
hemorrhage	710	7.5%	open/displaced/comminuted	1,434	4.6%	
Radius fracture			Radius fracture			
open/displaced/comminuted	693	7.4%	open/displaced/comminuted	1,279	4.2%	
Lung contusion unilateral			Lung contusion bilateral			
with or without HTX/PTX	675	7.2%	with or without HTX/PTX	1,084	3.5%	
Cervical Spine fracture						
lamina	616	6.5%	Femur fracture shaft	956	3.1%	
Cervical Spine fracture			Cerebrum contusion single			
pedicle	458	4.8%	small	913	3.0%	
Thoracic Spine fracture			Orbit fracture			
lamina	418	4.4%	open/displaced/comminuted	908	3.0%	
Cerebrum						
hematoma/hemorrhage			Cervical Spine fracture			
subdural small	289	3.1%	facet	803	2.6%	

(% is of total AIS 3+ Injuries for that crash type)

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permssion

Distribution of Top Ten AIS 3+ Injuries by Injury and Rollover Crash Type

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permssion

Top 5 AIS 3+ Injuries for Head, Spine and Thorax for Pure Rollover Crash Type

Head		Spine			Thorax			
Injury	N	%	Injury	N	%	Injury	Ν	%
Cerebrum subarachnoid hemorrhage	710	37.1%	Cervical Spine fracture facet	1,128	34.2%	Lung contusion bilateral with or without HTX/PTX	954	46.9%
Cerebrum hematoma/ hemorrhage subdural small	289	15.1%	Cervical Spine fracture lamina	616	18.7%	Lung contusion unilateral with or without HTX/PTX	675	33.2%
Cerebrum hematoma/ hemorrhage intra-cerebral bilateral	202	10.6%	Cervical Spine fracture pedicle	458	13.9%	Rib cage fracture open/ displaced/ comminuted with HTX/PTX	173	8.5%
Cerebrum hematoma/ hemorrhage epidural or extradural NFS	127	6.6%	Thoracic Spine fracture lamina	418	12.7%	Lung NFS	105	5.2%
Base (basilar) skull fracture without CSF leak	105	5.5%	Thoracic Spine fracture vertebral body major compression	232	7.0%	Rib cage fracture >3 ribs on one side and <4 ribs on either side	67	3.3%

(% is of total AIS 3+ Injuries for that body region)

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission

Selected Occupant and Vehicle Statistics for Top 5 Injuries by Body Region

	Head	Spine	Thorax
% Two roof			
inversions	62.3	38.8	58.7
% Max Intrusion > 30cm	54.6	46.2	45.2
Median Age (yrs)	30	43	30
% Obese (BMI > 30)	21.4	41.3	0.0
Near/Far Occupant ratio	3.4	1.2	0.3

Continuing Work

Determine Specific Injuries for All Body Regions

- Focus on head, cervical spine and thorax
- More NASS and CIREN analysis in progress
 - Injury causation and injury mechanism analysis
- Determine Injury Clustering Scenarios

Multi-variate regression analysis to find significant factors involved

Summary/Conclusions

National estimates for rollover injury types using recent crashes

- Data helps to determine priorities for:
 - Test procedure development
 - Crash dummy response requirements and injury criteria
 - Countermeasure development to mitigate injuries