# MCW-CIREN Research Project Updated T and L Injury Mechanism Study

**16 December 2015** 

# Hans Hauschild, Frank Pintar, Dale Halloway

**Medical College of Wisconsin** 





# **Updated T and L Injury Mechanism Study**

- Background / Introduction
- Purpose
- Methods
- Results
- Discussion



 CIREN Study found increased risk of T-L Spinal fx in newer model vehicles





- Other research
  - Doud (2014)
    - Found an approximate 8% 9% increase of injury with MY increase
  - del Fueyo (2015)
- Studies found more likely with fixed object collisions
  - Belted occupants
  - Frontal Impacts
- Limited studies have been done examining injury source or cause
  - MCW Studies
- FEM modeling



- MCW Studies
  - Quasi-static Seat design
  - Dynamic Sled Seat design
  - Dynamic Sled- Pulse influence
  - Full Scale Crash Systems input
  - Dynamic Sled Current Study
    - Based on modeling studies



Full Scale Crash Tests





- Computational Modeling
  - FEM GHBMC results guided test matrix
    - Seating position/knee bolster influence
    - Belt pretensioner influence
    - Pulse influence





- Computational Modeling Modeling results indicate
  - Knee bolster increase peak force by about 20 %
  - Seat belt showed highest sensitivity



# Purpose



- Evaluation of spine loads in different seating positions and restraint system interactions in a reproducible vehicle setting
  - Belted occupant seating system interaction influence
  - Knee bolster system distance influence
  - Pretensioner and airbag system influence



- Dynamic Sled Test
  - Body in white Yaris
  - LF seating position
  - HIII 50% with curved spine and lumbar load cell
  - Seat with pan and anti-submarine bar
  - Full dash with knee bolsters (no knee bags)
  - Pole Pulse
  - 8 tests
  - Seat position
  - Belt with and w/o pretensioner
  - Airbag timing



- Dynamic Sled Test
  - Body in white Yaris
  - LF seating position
  - Fore/aft seat positions used 3





- Dynamic Sled Test
  - Factory seat
  - Seat with pan and thigh-bar
  - Pan set at highest angle 15 degrees +





- Dynamic Sled Test
  - Full dash with knee bolsters
  - Belts with pretensioners
  - Steering column highest position





- Dynamic Sled Test
  - HIII 50% with upper and lower lumbar load cells
  - Driver seating position (P1)
  - Positioning based on
    - Other NHTSA tests
      - NCAP
    - Other Yaris tests
      - SOI
      - Oblique angle







- Dynamic Sled Test
  - Seat position
    - Mid Position
    - Full rear
    - 1 Forward of full rear
  - Belt with and w/o pretensioner
  - Airbag / pretensioner timing
    - 10 ms Baseline frontal
    - 35 ms
      - IIHS Pole test (30 & 34 ms)
      - EDR from NASS (FLEE/FREE)(34, 38, 46 ms)





#### Dynamic Sled Test



Tests 701 – 704
No airbag,
No pretensioner
Seat position varied
-mid & full rear

Tests 705 & 706
Pretensioner 10 ms
No airbag
Seat position 1 forward full
rear

Tests 707 & 708
Airbag,& pretensioner timing varied
10 ms & 35 ms
Seat position 1 forward full rear



#### Dynamic Sled Test - Pole Pulse





#### Dynamic Sled Test

#### 8 tests

|        |             |          |             |                        |            | Belt        |        | Airbag |          |          |       | Target   |
|--------|-------------|----------|-------------|------------------------|------------|-------------|--------|--------|----------|----------|-------|----------|
|        |             |          |             | Seat Position/         | Belt       | Pretension  |        | Timing | Steering | Column   |       | Delta -v |
| Test # | Seat        | Position | ATD/Spine   | Distance to bolster    | Pretension | Timing (ms) | Airbag | (ms)   | Column   | Position | Pulse | (km/h)   |
| 701    | Stock Yaris | D        | HIII/curved | full rear              | N          | na          | N      | na     | N        | na       | Pole  | 56       |
| 702    | Stock Yaris | D        | HIII/curved | full rear              | N          | na          | N      | na     | N        | na       | Pole  | 56       |
| 703    | Stock Yaris | D        | HIII/curved | Mid per NHTSA          | N          | na          | N      | na     | N        | na       | Pole  | 56       |
| 704    | Stock Yaris | D        | HIII/curved | Mid per NHTSA          | N          | na          | N      | na     | N        | na       | Pole  | 56       |
| 705    | Stock Yaris | D        | HIII/curved | 1 forward of full rear | Υ          | 10          | N      | na     | N        | na       | Pole  | 56       |
| 706    | Stock Yaris | D        | HIII/curved | 1 forward of full rear | Υ          | 10          | N      | na     | N        | na       | Pole  | 56       |
| 707    | Stock Yaris | D        | HIII/curved | 1 forward of full rear | Υ          | 10          | Υ      | 10     | Y        | full up  | Pole  | 56       |
| 708    | Stock Yaris | D        | HIII/curved | 1 forward of full rear | Υ          | 35          | Υ      | 35     | Υ        | full up  | Pole  | 56       |





- Lumbar Compression Force
- Belt Loads
- Femur Forces
- Pelvis vertical accelerations
- Seat anti-submarine bar vertical deformation



































#### Seat Thigh-bar Z Static Deformation





Seat Thigh-bar Deformation





Seat Thigh-bar Deformation







## **Discussion**



- Seat position influence
  - Knee to Knee Bolster Distance
- Belt pretention influence timing
- Airbag influence
  - Airbag timing
- Lumbar load timing
  - With respect to kinematics
- Other factors

#### **Discussion**



- Future testing short term
  - Seat position
    - UMTRI Reed et al (2001)
    - 45.5 mm rearward of mid position (avg.)
  - Airbag Belt Timing
  - Crash test validation
    - Yaris to Pole/ Centered Frontal
- Computational Modeling
  - Validate inputs
  - Improve OEM seat characteristics
  - Future GHBMC
    - Role of pelvis motion influence to spine kinetics
  - Determine future testing

# Summary



- 8 Dynamic sled tests
- 1 model stock vehicle seat with thigh-bar design
- 50<sup>th</sup> HIII ATD w/ curved spine and load cells
- 4 Configurations
- 2 Different belt and airbag fire times
- 1.0 − 2.3 kN load on lower lumbar
- 22 37 mm of seat structure deformation downward

#### Conclusion



- Belt pretensioner influences lumbar loading
  - Results similar to modeling
- Airbag and pretensioner timing influence lumbar loading
- Seat position influences lumbar loading
- Knee to bolster interaction may influence lumbar loads
  - More investigation needed
  - Model indicated potential knee bolster influence
- Seat deformation is related to lumbar loads

# **Questions**



# Updated T and L Injury Mechanism Study 16 December 2015



Hans Hauschild, Frank Pintar, Dale Halloway

Medical College of Wisconsin