

01/23/2008

U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION

MATLAB DATA PROCESSING PROCEDURES
FOR

FMVSS No. 126
ELECTRONIC STABILITY CONTROL SYSTEMS
COMPLIANCE TESTING
[image: image1.jpg]

January 23, 2008
Office of Vehicle Safety Compliance
NVS-221
1200 New Jersey Ave S.E.

Washington, DC 20590

Refer questions or comments to:
Mr. John Finneran (202) 366-0645

or

Mr. Phil Gorney (202) 366-0080
NHTSA FMVSS No. 126, ESC COMPLIANCE TESTING

MATLAB DATA PROCESSING PROCEDURES

Index

Page

1.0 FMVSS No. 126, ESC Compliance Test Data Processing Overview
3

1.1 Programs, Functions and Routines – “S7D” Program
3

2.0 Data Processing .
5

2.1 Assumptions: All Data .
5

2.2 Procedures .
6

2.2.1 Processing Static Files .
6
2.2.2 Filtering and Offset Corrections .
7
2.2.3 Sensor Offset Correction and Vehicle Information
8
2.2.4 Data Analysis: Slowly Increasing Steer (SIS) Test Data
9
2.2.5 Data Analysis: 0.7Hz Sine with Dwell (SWD) Test Data
10
3.0 MATLAB Specific Code Covering Yaw Rate Ratio and Lateral

 Displacement Metrics .
14

APPENDIX .
20
NHTSA FMVSS No. 126, ESC COMPLIANCE TESTING
MATLAB DATA PROCESSING PROCEDURES

1.0 FMVSS No. 126, ESC Compliance Test Data Processing Overview
This document contains information regarding NHTSA ESC Compliance Data Processing. Provided are a list of programs, functions and routines used by the “S7D” program. A list of mnemonics, a data processing flow chart and compliance metric specific code are also provided.
The “S7D” program is a Graphical User Interface written in MATLAB’s programming language. It is a windows based program that facilitates all of the necessary functions to process and analyze NHTSA ESC Compliance data files. NHTSA ESC Compliance data files refer to data files collected on the data acquisition system utilized by NHTSA’s Office of Vehicle Safety Compliance (OVSC) contracted test laboratories. These files should contain the data from static tests, Slowly Increasing Steer Maneuver tests or NHTSA 0.7Hz Sine with Dwell tests. The program is able to process data files stored in MATLAB numeric or structured data formats (file extension “*.mat”) or files with extensions “*.dx3”. The “S7D” program final outputs are stored in Excel spreadsheet format. Those spreadsheets contain pertinent information for input conditions, test procedures and ESC compliance pass/fail criteria.
1.1 Programs, Functions and Routines – “S7D” Program
For the “S7D” program to operate correctly its directory must be on the MATLAB search path. If you are unfamiliar with this operation please type “help path” or “help addpath” at the MATLAB command prompt. For example the command:
”addpath('D:\ESCHandling\NHTSA_Compliance_Programs', '-begin');”
adds the path “D:\ESCHandling\NHTSA_Compliance_Programs” to the beginning of MATLAB’s search path. Once the parent directory is on the search path, the program becomes operational by typing “S7D” at the MATLAB command prompt. Adding the path will also make the “help” documentation available regarding the programs, functions and routines written by NHTSA. Some of the subroutines and functions have help sections contained in them. The following list of programs, functions and routines have brief descriptions and additional help and resources listed.
BridgeSpikes_v2.m:
Function allows user to bridge spikes in ride height sensor data that are not removed with the spike filtering routine “out_filt.m”. For more information type “help out_filt.m” at the MATLAB command prompt.

ButterFilter.m:
Function used to filter raw data channels with Phaseless Butterworth Filter. Routine allows user to specify cutoff frequency, number of poles and data collection rate. For specifics type “help ButterFilter.m” or “help butter.m” at the MATLAB command prompt.

GxMatLabLib:
Dynamic library of files and routines used to load data into MATLAB from files created by NHTSA’s data acquisition system (file extension “*.dx3”).

DXload.m:

Routine uses library described above to open NHTSA data files.

S7D.fig:
Graphical User Interface (GUI) layout. To change the layout, preferences or default settings of the program: type “guide S7D” at the MATLAB command prompt.

S7D.m:
Graphical User Interface (GUI) main program. Program filters, corrects and calculates metrics. To RUN the program, type “S7D” at the MATLAB command prompt. To edit the program, type “edit S7D” at the MATLAB command prompt.

my_closereq.m:
Routine used to prevent user from closing information tables with out saving data first.

namedata.mat:
User data file used to save user settings, variable information, directory names and vehicle lists. To load the data file type “load namedata.mat” at the MATLAB prompt

out_filt.m:
Function used by “S7D” program to perform data outlier rejection for ride height sensor data channels. More information can be obtained by typing “help out_filt.m” at the MATLAB command prompt.

sis_out_s7d.m:
Routine analyzes Slowly Increasing Steer Maneuver tests. It produces a excel spreadsheet. The spreadsheet contains data reduction statistics, maneuver checks and steering scalar information needed to perform the NHTSA 0.7Hz Sine with Dwell maneuver.

uitable.m:
Function is used to graphically present and store information in user data tables. Function is available on the MATLAB Central File Exchange. For more information type “help uitable.m” at the MATLAB command prompt. Or visit the website at The MathWorks - MATLAB Central - File Exchange.
varnames.m:
Routine used to store, sort and remove variable information as specified by the user of the “S7D” program.

2.0 Data Processing

The following sections of Chapter 2 provide assumptions and procedures used to run the data processing software program, “S7D”, which is used to process data for NHTSA ESC Compliance Testing.

2.1 Assumptions: All Data

1. User has MATLAB Software Installed

2. User has MATLAB version 7.0 or higher. Program has not been tested for backward compatibility.

3. User has Installed NHTSA Compliance Program “S7D” and accompanying files.

4. User has collected data. If necessary, convert channels to the proper units.

5. User is employing the SAE coordinate system for vehicle dynamics.
a. Earth-fixed Axis System (X,Y,Z) – This system is a right-hand orthogonal axis system fixed on earth. The trajectory of the vehicle is described with respect to this earth-fixed system. The X and Y-axis are in a horizontal plane and the Z-axis points downward.

b. Vehicle Axis System (x,y,z) – This system is a right-hand orthogonal axis system fixed in a vehicle such that with the vehicle moving steadily in a straight line on a level road, the x-axis is substantially horizontal, points forward, and is in the longitudinal plane of symmetry. The y-axis points to the driver’s right hand and the z-axis points downward. (see Figure 1)

 [image: image2.png]+y axis

+x axis

42 axis

Figure 1 – Vehicle Axis System – Dynamic Measurement
6. Has measured vehicle center of gravity. X-direction origin is from the center of the front axle, positive toward rear of vehicle. Y-direction origin is from the centerline of the vehicle, positive toward the right side of the vehicle. Z-direction origin is from the ground plane, positive from the ground up. (see Figure 2)
 [image: image3.png]Center of front axle »!
|

Ground plane

-z

[image: image4.png]Centerline of vehicle

[

Figure 2 – Center of Gravity
7. Has measured the inertial sensor system location. (Origins are the same as vehicle center of gravity.)

8. Has measured the distance between ride height sensors. Value should be in inches.

(see Figure 3)
 [image: image5.png]Distance
Between Ride
Height Sensors

Ride Height
Sensor- Left =

Ride Height
<Sensor - Right

Figure 3 – Distance Measured Between Height Sensors

9. Data has a minimum of 1.25 seconds of data prior to testing event (Slowly Increasing Steer Test or 0.7Hz Sine With Dwell Test). Data is needed for proper dynamic zeroing.

10. There is at least 2.00 seconds of data following the completion of steer (cos) for 0.7Hz Sine With Dwell tests. Needed to calculate yaw rate ratio at 1.75 seconds after (cos).

11. User has collected the minimum number of variables as explained in Table 1.

12. Files converted and saved as MATLAB data files (file extension - *.mat) need to be structured into numeric arrays as defined by MATLAB. Once converted save as MATLAB data file (file extension - *.mat). Arrays must be one dimensional and double precision.

13. Each steering maneuver in a test series should be saved as an individual data file to prevent systems/program limits from being exceeded resulting in program error and/or malfunction.

14. User has Microsoft Excel installed.

2.2 Procedures
2.2.1 Processing Static Files

1. Open MATLAB Software

2. Type “S7D” at MATLAB command prompt. S7D should pop-up.

3. Make sure the checkbox labeled “NHTSA Collected Data – (ext. *.dx3)” is checked if the file extension used is “*.dx3” and NOT checked in the file extension used is “*.mat”.
4. Push Button [Select Static File]. User will be prompted to select a static file from a list.

5. A prompt will ask the user to enter the distance (inches) between the ride height sensors.

6. Then user will be shown which variables have been selected for static offset correction. The user is given the option to add or remove variables from the list. See Table 2 for variables to offset for NHTSA Data. User must make selection.

7. The user will then be prompted to cycle through plots of the variables chosen for offset correction. Press [Return or Enter] to cycle through plots.

8. Next the user will be prompted to enter the beginning and ending count numbers over which the mean offset correction will be calculated. If possible, choose a section at least 200 counts long where data appears “normal”. Defaults equal one for the beginning and the last data count is used as the default for the end count.

9. Lastly the user will be given a message stating the static processing is complete and provide the test number and directory location to the user.

Note: If undefined variables are present in the data files collected, the “S7D” program will find them and prompt the user to define them. Variable information can be edited or deleted by pressing the [Edit Variable Information] button. For each undefined “Raw Data Name”, if the variable is one to be processed, the user must enter a user-created variable name in the “Defined Channels” column, enter a “Filter Cutoff Frequency”, enter a ‘1’ in the “Filt. On/Off = 1/0” column, and enter the name for the resultant processed variable in the “Filtered Name” [p.”name”]” column. See Table 1 for appropriate variables to be processed, filter cutoff frequencies, and processed variable naming convention. For each undefined “Raw Data Name”, if the variable is NOT one to be processed, the user must only enter a user-created variable name in the “Defined Channels” column, and enter a ‘0’ in the “Filt. On/Off = 1/0” column. To remove a variable from the list, delete information in the columns labeled “Defined Channels” and “Raw Data Name” then select the [Ok] button.
2.2.2 Filtering and Offset Corrections

1. User has performed steps covered in section labeled 2.2.1 Processing Static Files
2. Press button labeled [Select Files for Filtering]. User will be given a message containing information regarding the static file used for offset correction.
3. If the proper static file is selected press button labeled [Yes]. [No] button terminates the process.
4. Then the user will be prompted to select test files from a list. Select files and then press the button labeled [Open] to continue.
5. The first test file selected will be loaded and the user will be shown data from the ride height sensors. Blue Trace = unfiltered data, Red = filtered data. Press [Return or Enter] key on keyboard to continue.
6. User will then be prompted with a question about the how well the filtering fits the data. If the filtering does not look appropriate then select [No] and the outlier filter parameters will be iteratively increased. The data will be re-filtered with new parameters, and then data is displayed to the user again with the same question about filtered data. User can cycle as many times as needed through the data channel. If iteratively increasing the outlier filter parameters does not produce the desire result the user has the option to [Bridge]. [Bridge] will allow the user to manually remove spike by selecting data points for the beginning and end point of the bridge. A linear bridge will be drawn between data points selected. Procedure for “Bridge”:

a. User will be shown a dot plot of the data trace for bridging. Then the user will be asked if there is a gap in the data they would like to bridge. Select [Yes] to bridge, select [No] to return to main program, select [Restart] to restart bridging process.
b. User selects [Yes]: Follow directions given at the top of the figure and zoom in on the area of the data to bridge, press [Return or Enter] key on keyboard to continue.
c. User is then given a cursor to select the beginning data point for the bridging. Using the left mouse button select the point then using the same cursor selects the end point by using the left mouse button.
d. The user will then be shown bridged data and asked if there is further bridging to be performed. If user is done bridging then select [No] and processing returns to the main program.
e. The user will then be shown the filtered data again after the bridging has been applied. Basically repeating step 6 with the bridging applied.

7. If data looks appropriate then select [Yes] to repeat steps 6 and 7 on the other ride height sensor. When the 2nd ride height sensor data channel has been processed, a new file will be saved containing filtered and offset corrected data.

8. The user is finished with the file, steps 5-7 will be repeated as the number of files selected in step 4 cycles through.

9. Once all files have cycled through the user will be informed that filtering and offset corrections are complete on the files selected.

10. Proceed to section 2.2.3 Sensor Offset Correction and Vehicle Information
Note: This procedure will save filtered and unfiltered data in structure format to the directory in which the files were accessed with the prefix “p_” attached to the front end of the file names selected for processing.

2.2.3 Sensor Offset Correction and Vehicle Information

1. If vehicle information has already been entered proceed to step 3. If information has not been entered proceed to Step 2.

2. Before sensor offset correction can be completed the user must enter some vehicle information. To do so the user must push the button labeled [Push To Edit Vehicle List].

a. The user will then be queried to either enter a new vehicle “Yes” or view the list of registered vehicles [View List]. By selecting [Yes] a new line is added to the top of the list for new information to be entered. By selecting [View List] the user has the option to delete a vehicle or edit already registered information. To delete a vehicle and its information just delete the information in the fist column labeled ‘Vehicle Description’.

b. User has selected [Yes] enter a vehicle description

c. Then enter the center of gravity location into the appropriate locations in columns 2-4. Values should be entered in units of inches.

d. Then enter the inertial sensing system location into the appropriate locations in columns 5-7. Values should be entered in units of inches.

e. Then push the button labeled [OK] to save vehicle information.

3. Once vehicle information has been entered the user will be able to select the desired vehicle from the pop-up menu directly above the button labeled [Push To Edit Vehicle List]. The menu will display the message “Select Vehicle”. Select the desired vehicle. Once the vehicle is selected the information associated with that vehicle will be displayed in the area below the above mentioned button and menu.

4. User has performed steps covered in section 2.2.1 and 2.2.2.
5. Begin sensor offset correcting data by selecting the button labeled [Perform Sensor Offset Corr.].

6. If the user entered non-zero values for vertical offsets in steps 2.c and 2.d they will be asked if processing should continue with those non-zero values. By selecting [No] the vertical offsets will temporarily be set to zero. By selecting [Yes] the program will perform corrections with the vertical offsets included.

7. Then the user will be prompted to select test files from a list. Select desired files and then press the button labeled [Open] to continue. Desired files are those created in section 2.2.2 that have the prefix “p_” attached to the front of the files.
8. The program will now cycle though the selected files using the vehicle information to correct acceleration data for sensor offset from center of gravity. The box below the button labeled [Perform Sensor Offset Corr.] will display what file the program is currently processing.

9. Once all files have been completed, the user will be informed that processing is complete.

10. Proceed to section 2.2.4-5 Data Analysis.

Note: This procedure will append the files selected. The structured data within the files will be updated with the corrected data that is created in this procedure.

2.2.4 Data Analysis: Slowly Increasing Steer (SIS) Test Data

1. User has performed steps covered in sections 2.2.1 through 2.2.3 on the test data.
2. From the “S7D” program push the button labeled [Calculate SWA Scalars] to perform data analysis of Slowly Increasing Steer Test Data.

3. Then the user will be prompted to select test files from a list. Select desired SIS files and then press the button labeled [Open] to continue. Desired files are those created in section 2.2.2 that have the prefix “p_” attached to the front of the files.
4. The files selected will be cycled through the following steps. During the cycle the user will be shown a plot of steering wheel angle data and then asked if the highlighted zeroing range appears correct. If it appears correct select [Yes] and proceed to step 5. If [No] is selected, alternative zeroing options become available to the user. Procedure for alternative “zeroing options”:

a. User will be given instructions to zoom in on the desired zeroing range and to select the appropriate beginning of steer data point. To do so select [Ok].

b. Zoom in on desired range by using figure tools. Then press the [Return or Enter] key on the keyboard to continue.

c. User will then be prompted to enter the data count number then select the [Ok] button.

d. Press the button labeled [Ok]. Figure will be updated with zeroing range based on information entered in step c. Proceed to step 5.

5. More test data will be shown to the user to verify data is visually correct. To continue select [Ok].

6. Then lateral acceleration versus time will be plotted with the best fit line drawn though the data. To continue select [Ok].

7. Steps 4 through 6 will cycle though until the last file has been processed. Then the user will be queried to choose a location and filename for the Excel output spreadsheet. Enter desired information and location then select [Save].

8. The user will then be informed that the output table has been saved and data analysis of SIS data is complete.

9. Open the Spreadsheet view information and use steering scalar data to complete 0.7Hz Sine with Dwell Testing.
2.2.5 Data Analysis: 0.7Hz Sine with Dwell (SWD) Test Data

1. User has performed steps covered in sections 2.2.1 through 2.2.3 on the test data.
2. From the “S7D” program push the button labeled [Calculate S7D Metrics] to perform data analysis of SWD tests.

3. Then the user will be prompted to select test files from a list. Select desired SWD files and then press the button labeled [Open] to continue. Desired files are those created in section 2.2.2 that have the prefix “p_” attached to the front of the files.
4. The files selected will be cycled through the proceeding steps. During the cycle on a per file basis the steering wheel angle and yaw rate data from that file will be plotted and displayed to the user. User should verify that data markers are visually correct (to the nearest data count).

5. Press the [Enter or Return] key on the keyboard to continue. Lateral displacement data from the current file will be plotted. User should then visually verify event markers.

6. Press the [Enter or Return] key on the keyboard to continue on to the next file and repeat step 4 or if processing is complete proceed on to step 7.

7. Then the user will be queried to choose a location and filename for the Excel output spreadsheet. Enter desired information and location then select [Save].

8. The user will then be informed that the output table has been saved and data analysis of SWD data is complete.

9. Open the spreadsheet view information and assess Stability and Responsiveness Metrics stored in the spreadsheet.

Note: Button labeled [Change Directory] in the “S7D” program will allow the user to set a default folder location in which the output spreadsheet will be stored. The location is then displayed in the text box to the right of the button. Each file selected is appended in this procedure. The field “dx_calc” is added to the structure “p” in each file. Field “dx_calc” is an array containing the lateral displacement calculated from lateral acceleration with all corrections and zeroing applied.
Table 1: NHTSA “S7D” program default Channel Names, filter Cutoff Frequency and Output Names. “Dt.” is the data structure created when the file created by the NHTSA ESC Compliance testing data acquisition system is loaded into MATLAB (files with extension “*.dx3” or “*.mat”). Actual names used by the user’s data acquisition system must be correlated to the Raw Channel Names listed below with the “Dt.” prefix. Example 'Dt.AXCG' = AXCG named by NHTSA data acquisition system.
Note: Channels highlighted are needed to calculate NHTSA Stability and Responsiveness Metrics and must be defined.

	Channel Description
	Raw Channel Name
	Channel Units
	Cutoff Freq. (Hz)
	Output Name

	RAW DATA STRUCTURE
	Dt
	''
	''
	rawdata.dt

	Uncorrected Long. Acceleration
	Dt.AXCG
	g
	'6'
	p.ax_f

	Uncorrected Lateral Acceleration
	Dt.AYCG
	g
	'6'
	p.ay_f

	Uncorrected Vertical Acceleration
	Dt.AZCG
	g
	'6'
	p.az_f

	Brake Light Indicator
	Dt.BrkSw
	volts
	''
	''

	Event Pt – Marks Steering Event
	Dt.EventPts
	count
	''
	p.EventPt

	Brake Pedal Force
	Dt.FRCPDL
	lbs
	''
	''

	Steering Controller Start
	Dt.HWSTART
	volts
	''
	''

	Left Front Brake Pressure
	Dt.LFPRESS
	psi
	''
	''

	Left Front Brake Pressure
	Dt.LFPRS
	psi
	''
	''

	Left Rear Brake Pressure
	Dt.LRPRESS
	psi
	''
	''

	Left Rear Brake Pressure
	Dt.LRPRS
	psi
	''
	''

	Lateral Velocity
	Dt.LatSpd
	mph
	''
	''

	Left Front Inner Wheel Lift Sensors
	Dt.LfWhLftIn
	inches
	''
	''

	Left Front Outer Wheel Lift Sensors
	Dt.LfWhLftOut
	inches
	''
	''

	Left Front Wheel Lift Calculation
	Dt.LfWhLftTot
	inches
	''
	''

	S400 Longitudinal Speed
	Dt.LngSpd
	mph
	''
	''

	S400 Longitudinal Speed
	Dt.LongSpd
	mph
	''
	''

	Left Rear Inner Wheel Lift Sensors
	Dt.LrWhLftIn
	inches
	''
	''

	Left Rear Outer Wheel Lift Sensors
	Dt.LrWhLftOut
	inches
	''
	''

	Left Rear Wheel Lift Calculation
	Dt.LrWhLftTot
	inches
	''
	''

	Left Ride Height
	Dt.PZCHS1
	inches
	'6'
	p.rh1

	Right Ride Height
	Dt.PZCHS2
	inches
	'6'
	p.rh2

	Right Front Brake Pressure
	Dt.RFPRESS
	psi
	''
	''

	Right Front Brake Pressure
	Dt.RFPRS
	psi
	''
	''

	Steering Controller Flag
	Dt.RLFLAG
	volts
	''
	''

	Roll Velocity
	Dt.RLVELX
	deg/sec
	'6'
	p.rvx_f

	Pitch Velocity
	Dt.RLVELY
	deg/sec
	'6'
	p.rvy_f

	Yaw Velocity
	Dt.RLVELZ
	deg/sec
	'6'
	p.rvz_f

	Right Rear Brake Pressure
	Dt.RRPRESS
	psi
	''
	''

	Right Rear Brake Pressure
	Dt.RRPRS
	psi
	''
	''

	Right Front Inner Wheel Lift Sensors
	Dt.RfWhLftIn
	inches
	''
	''

	Right Front Outer Wheel Lift Sensors
	Dt.RfWhLftOut
	inches
	''
	''

	Right Front Wheel Lift Calculation
	Dt.RfWhLftTot
	inches
	''
	''

	Right Rear Inner Wheel Lift Sensors
	Dt.RrWhLftIn
	inches
	''
	''

	Right Rear Outer Wheel Lift Sensors
	Dt.RrWhLftOut
	inches
	''
	''

	Right Rear Wheel Lift Calculation
	Dt.RrWhLftTot
	inches
	''
	''

	Doppler Speed
	Dt.SPDCHS
	mph
	'2'
	p.spd

	Steering Angle
	Dt.THETAENC
	degrees
	'10'
	p.swaf

	Steering Torque
	Dt.Torque
	foot-lbs
	''
	''

	GPS Trigger
	Dt.Trigger
	volts
	''
	''

	GPS Trigger
	Dt.Trigger2
	volts
	''
	''

	VGPS Distance Pulse
	Dt.VGPS_DistPulse
	volts
	''
	''

	VGPS Speed
	Dt.VGPS_Spd
	mph
	''
	''

	Time Increment
	Dt.XIncr
	seconds
	''
	''

	Yaw Acceleration
	Dt.YAWACCEL
	deg/sec^2
	''
	''

	Time Channel'
	Dt.time0
	seconds
	'10'
	p.time

Table 2: NHTSA 0.7Hz Sine with Dwell Data Processing Flow Chart.
	Data Channel
	1st Step
	2nd Step
	3rd Step
	4th Step
	5th Step
	6th Step
	7th Step
	8th Step
	9th Step
	10th Step

	
	Filter Cutoff Freq. (Hz)
	Static Corrected Offset (1)
	Calculate
	Corrections and Filtering
	Correct for Roll Angle
	Dynamic Zero (3)
	Integrate To Obtain
	Zero (4)
	Integrate To Obtain
	Zero (4)

	Longitudinal Acceleration
	6
	YES
	--
	Correct Sensor Offset From C.G.
	--
	--
	--
	--
	--
	--

	Lateral Acceleration
	6
	YES
	--
	Correct Sensor Offset From C.G.
	YES
	YES
	Lateral Velocity
	Lateral Velocity
	Lateral Disp.
	Lateral Disp.

	Vertical Acceleration
	6
	YES
	--
	Correct Sensor Offset From C.G.
	--
	--
	--
	--
	--
	--

	Roll Rate
	6
	YES
	Roll Acceleration
	--
	--
	--
	--
	--
	--
	--

	Pitch Rate
	6
	YES
	Pitch Acceleration
	--
	--
	--
	--
	--
	--
	--

	Yaw Rate
	6
	YES
	Yaw Acceleration
	--
	--
	YES
	--
	--
	--
	--

	Steering Angle
	10
	YES
	Steering Rate
	Apply 100ms RAF To Steering Rate (2)
	--
	YES
	--
	--
	--
	--

	Speed
	2
	--
	--
	--
	--
	--
	--
	--
	--
	--

	Left Front Brake Pres.
	10
	YES
	--
	--
	--
	--
	--
	--
	--
	--

	Left Rear Brake Pres.
	10
	YES
	--
	--
	--
	--
	--
	--
	--
	--

	Right Front Brake Pres.
	10
	YES
	--
	--
	--
	--
	--
	--
	--
	--

	Right Rear Brake Pres.
	10
	YES
	--
	--
	--
	--
	--
	--
	--
	--

	Time
	--
	--
	--
	--
	--
	--
	--
	--
	--
	--

	Left Side Ride Height
	6
	YES
	Roll Angle
	--
	--
	--
	--
	--
	--
	--

	Right Side Ride Height
	6
	YES
	
	
	
	
	
	
	
	

1. Offset is corrected using mean value from a static calibration file.

2. Running Average Filter (RAF)
3. Dynamic Zeroing refers to a zeroing range of 1 second prior to the point steering rate reaches 75 deg/sec. [Uses mean value]

4. Zeroing in this step should be performed at the point steering wheel angle first achieves 5 degrees. [Uses point value]
Table 3: The Data processing flow chart shown below contains the line numbers where S7D.m executes the desired operation.
	Data Channel
	1st Step
	2nd Step
	3rd Step
	4th Step
	5th Step
	6th Step
	7th Step
	8th Step
	9th Step
	10th Step

	
	Filter Cutoff Freq. (Hz)
	Static Corrected Offset
	Calculate
	Corrections and Filtering
	Correct for Roll Angle
	Dynamic Zero
	Integrate To Obtain
	Zero
	Integrate To Obtain
	Zero

	Longitudinal Acceleration
	447
	447
	--
	Sensor Offset From C.G. 691
	--
	--
	--
	--
	--
	--

	Lateral Acceleration
	447
	447
	--
	Sensor Offset From C.G. 692
	696
	853
	Lat. Vel. 1011
	Lat. Vel. 1014
	Lat. Disp. 1016
	Lat. Disp. 1018

	Vertical Acceleration
	447,449
	447
	--
	Sensor Offset From C.G. 693

Optional Correction
	--
	--
	--
	--
	--
	--

	Roll Rate
	447
	447
	Roll Acc.

480
	--
	--
	--
	--
	--
	--
	--

	Pitch Rate
	447
	447
	Pitch Acc.

486
	--
	--
	--
	--
	--
	--
	--

	Yaw Rate
	447
	447
	Yaw Acc. 492
	--
	--
	852
	--
	--
	--
	--

	Steering Angle
	410
	447
	Steering Rate 467
	Filter Steering Rate 472
	--
	851
	--
	--
	--
	--

	Speed
	410
	--
	--
	--
	--
	--
	--
	--
	--
	--

	Left Front Brake Pres.
	410
	447
	--
	--
	--
	--
	--
	--
	--
	--

	Left Rear Brake Pres.
	410
	447
	--
	--
	--
	--
	--
	--
	--
	--

	Right Front Brake Pres.
	410
	447
	--
	--
	--
	--
	--
	--
	--
	--

	Right Rear Brake Pres.
	410
	447
	--
	--
	--
	--
	--
	--
	--
	--

	Time
	--
	--
	--
	--
	--
	--
	--
	--
	--
	--

	Left Side Ride Height
	447
	447
	Roll Angle 462
	--
	--
	--
	--
	--
	--
	--

	Right Side Ride Height
	447
	447
	
	
	
	
	
	
	
	

3.0 MATLAB Specific Code Covering Yaw Rate Ratio and Lateral Displacement Metrics

Prior Procedures not shown in code below:

1. Data Filtering – all necessary channels.

2. Static Offset Correction – all necessary channels.

3. Calculations – Roll, Yaw and Pitch Acceleration, Roll Angle and Steering Rate.

4. Corrections – Correct sensor offset from C.G. and Filter Steering Rate.
5. Lateral Accelerations correction for roll angle.
6. How the file being processed is loaded into MATLAB.
MATLAB CODE - SPECIFICS
 % Begin Search for 1st instance that steering rate reaches 75deg/sec
 % and is sustanined for atleast 175ms.
 swar75 = 1; %Default swar75 count number
 while abs(p.swrf(swar75+round(0.175/p.XIncr)))<75 &&…

swar75+round(0.175/p.XIncr)<length(p.swaf)
 swar75 = swar75+round(0.150/p.XIncr);
 trackpt = swar75;
 swar75 = find(abs(p.swrf(trackpt:end)) >= 75);
 swar75 = swar75(1)+trackpt-1;
 end
 % If swar75 cannot be determined terminate process for current file
 if isempty(swar75)
 str{1} = 'COULD NOT DETERMINE TIME';
 str{2} = 'STEERING RATE IS AT 75 deg/sec';
 str{3} = ['Skipping File ',deblank(filename{:,i})];
 h = msgbox(char(str),'Start Steering Error');
 uiwait(h);
 clear p swar75 h
 continue
 end
 % Dynamic Zeroing
 if swar75(1)>1.0/p.XIncr+1
 swaf = p.swaf - mean(p.swaf(swar75(1)-…

round(1.0/p.XIncr):swar75(1)));
 rvz_f = p.rvz_f - mean(p.rvz_f(swar75(1)-…

round(1.0/p.XIncr):swar75(1)));
 aycg = p.aycg - mean(p.aycg(swar75(1)-…

round(1.0/p.XIncr):swar75(1)));

% Maneuver Entrance Speed - 500ms Interval

MES = mean(p.spd(swar75(1)-round(0.5/p.XIncr):swar75(1))); meanstart = swar75(1)-round(1.0/p.XIncr);
 else
 swaf = p.swaf - mean(p.swaf(1:swar75(1)));
 rvz_f = p.rvz_f - mean(p.rvz_f(1:swar75(1)));
 aycg = p.aycg - mean(p.aycg(1:swar75(1)));
 MES = mean(p.spd(1:swar75(1))); % Maneuver Entrance Speed
 meanstart = 1;
 end
 % Refine search for beginning of steering input to nearest
 % point to 5degrees.
 SWA5 = find((swaf(swar75(1):swar75(1)+round(0.4/p.XIncr)))…

*sign(swaf(swar75(1)+round(0.4/p.XIncr))) >= 5);

 % If SWA5 cannot be determined terminate process for current file
 if isempty(SWA5)
 str{1} = 'COULD NOT DETERMINE TIME';
 str{2} = 'THAT STEERING REACHES 5 DEGREES';
 str{3} = ['Skipping File ',deblank(filename{:,i})];
 h = msgbox(char(str),'Start Steering Error ');
 uiwait(h);
 clear p swar75 str h
 continue
 end

 % Correct for count offset
 SWA5 = SWA5(1) + swar75(1) - 1;
 % Begin 5 degree interpolation - linear fit
 time5 = interp1([abs(swaf(SWA5-1)) abs(swaf(SWA5))],[p.time(SWA5-1)…

p.time(SWA5)],5);
 % EventPt is defined as time or count number closest to SWA passing
 % through 5 degrees.
 EventPt = SWA5;
 % Time at 1.07s after Steer begin
 time107 = time5+1.070;
 % Nearest Count number to time107
 count107 = SWA5+round(1.070/p.XIncr);
 % Begin search for Completion on Steer (COS) event.
 % End of sine curve that overshoots zero.
 % When Steering rate drops below 45 deg/sec
 cos45 = find(sign(p.swrf(SWA5))*p.swrf(count107:count107+…

round(1.15/p.XIncr)) >= 45);

 % If cos45 cannot be determined terminate process for current file
 if isempty(cos45)
 str{1} = 'COULD NOT DETERMINE';
 str{2} = 'END OF STEERING INPUT';
 str{3} = ['Skipping File ',deblank(filename{:,i})];
 h = msgbox(char(str),'Steering Error');
 uiwait(h);
 clear ptcos cos45 count107 EventPt time5 SWA5 p swar75 str h
 continue
 end

 % Correct for count offset
 cos45 = cos45(end)+count107-1;

 % Calculate mean SWA after cos45 event.
 meanswa45 = mean(swaf(cos45:cos45+round(0.20/p.XIncr)))+…

sign(swaf(count107))*0.1; % 200ms interval
 % COS = time at 0degree for cases where the average SWA opposite the
 % SWA at count107 or time = 1.07s into maneuver.
 if isequal(sign(meanswa45), sign(swaf(count107))) == 0
 meanswa45 = 0;
 end

 % Find completion of steer (cos) event.
 cos = find(sign(swaf(count107))*swaf(count107:cos45+…

round(0.25/p.XIncr)) <= sign(swaf(count107))*meanswa45);

 % If cos cannot be determined an arbitrary time is chosen over which

 % to calculate mean swa so that a value can be determined for cos.
 % Then tell program user that an alternate method was chosen to

 % determine cos.
 if isempty(cos)
 swaendmean = mean(swaf(EventPt+round(2.00/p.XIncr):EventPt+…

round(2.15/p.XIncr)));
 cos = find(sign(swaf(count107))*swaf(count107:EventPt+…

round(2.3/p.XIncr)) <=
sign(swaf(count107))*swaendmean+0.1);
 str{1} = 'COULD NOT DETERMINE COS AT';
 str{2} = ['ZERO FOR FILE: ', char(deblank(filename{:,i}))];
 str{3} = ' ';
 str{4} = 'USED MEAN SWA @ 2.05 to 2.3s';
 str{5} = ['MEAN SWA USED: ' , num2str(swaendmean)];
 str{6} = 'HIT ENTER TO CONTINUE';
 h = msgbox(char(str),'Completion of Steer (COS) Error');
 uiwait(h);
 clear str ptcos cos45 count107 EventPt time5 SWA5 p swar75…

str h cos45 meanswa45
 end

 % Correct for count offset
 cos = cos(1) + count107 - 1;
 % Exact Time at COS event - Interpolated
 timecos = interp1([(swaf(cos-1)) (swaf(cos))],…

[p.time(cos-1) p.time(cos)],meanswa45);
 targetswa = 0;

 % while timecos is not a number or targetswa is less than 10degrees

 % expand interpolation incrementally to get a result.
 while isnan(timecos) && abs(targetswa)<10
 timecos = interp1([(swaf(cos-2)) (swaf(cos+1))],…

[p.time(cos-2) p.time(cos+1)],targetswa);
 targetswa = targetswa+0.05*sign(swaf(cos));
 end

 % If timecos could not be determined let user know and then continue
 % with next test
 if isnan(timecos)
 str = [{'COULD NOT DETERMINE'};{'END OF STEERING INPUT'};...
 {['Skipping File ',deblank(filename{:,i})]}];
 h = msgbox(char(str),'Steering Error');
 uiwait(h);
 clear ptcos cos45 count107 EventPt time5 SWA5 p swar75...
 str h timecos cos targetswa meanswa45 cos45
 continue
 end
 % reset cos(count number) to within one data count of timecos if
 % initial interpolation of timecos resulted in an NaN.
 if abs(targetswa) > 0.025
 cos = find(p.time > timecos);
 cos = cos(1);
 end
 % Determine Steering Angles - based on count numbers
 % 1st Steering Peak
 [intswapeak intswapeak_ct] = max(abs(swaf(SWA5:SWA5+…

round(0.65/p.XIncr))));
 intswapeak_ct = intswapeak_ct + SWA5 - 1; % count correction
 % 2nd Steering Input Average - Average is taken in the middle of
 % the Dwell
 revswamean125equal = sign(swaf(count107))*mean(swaf(SWA5+…

round(1.196/p.XIncr):SWA5+round(1.446/p.XIncr)));

 % Determine SWA zero crossing in the middle of steering profile
 mos = find(sign(swaf(EventPt))*swaf(EventPt+…

round(0.05/p.XIncr):count107) <= 0);
 mos = mos(1) + EventPt+round(0.05/p.XIncr) - 1;
 mostime = interp1([swaf(mos-1) swaf(mos)],…

[p.time(mos-1) p.time(mos)],0);
 % Determine the times for YRR metrics and the nearest count numbers
 % to them.
 timeyrr1 = timecos+1.00; % YRR 1.00s Time
 timeyrr175 = timecos+1.75; % YRR 1.75s Time

 % Nearest count number at YRR1

 countyrr1 = cos + round(1.00/p.XIncr);
 % Nearest count number at YRR175
 countyrr175 = cos + round(1.75/p.XIncr);
 % In event that there was not enough data collected to determine YRR1
 if countyrr1+2 > length(p.rvz_f)
 str = [{'File Length Is Too Short'};{'To Determine YRR1'};...
 {['Skipping Test ',deblank(filename{:,i})]}];
 h = msgbox(char(str),'Yaw Rate Ratio Error');
 uiwait(h);
 continue
 end
 % In event that there was not enough data collected to
 % determine YRR175
 if countyrr175+2 > length(p.rvz_f)
 countyrr175 = length(p.rvz_f)-3;
 timeyrr175 = p.time(countyrr175);
 str{1} = 'File Length Is Too Short';
 str{2} = 'To Determine YRR175';
 h = msgbox(char(str),'Yaw Rate Ratio Error');
 uiwait(h);
 end
 % determine 2nd yaw peak
 % (1st local peak that results from the reversal steering input)

 % filter Rot. Accel about Z axis
 raz = ButterFilter(p.raz,12,6,1/p.XIncr);
 % Search raz to find zero after the reversal steering input has begun
 raz_zero = find(sign(rvz_f(cos-round(0.5/p.XIncr)))*…

raz(count107-round(0.2/p.XIncr):cos) <= 0);

 % if raz_zero is empty set = to cos, 2nd yaw peak could not be found
 if isempty(raz_zero)
 raz_zero = cos;
 else

% Correct for narrowing search domain
 raz_zero = raz_zero(1) + count107 - round(0.2/p.XIncr) - 1;
 end

 %Determine Yaw 2nd yaw peak
 [yp2 yp2_ct] = max(sign(rvz_f(cos-round(0.5/p.XIncr)))*…

(rvz_f(count107-round(0.2/p.XIncr):raz_zero+…

round(0.075/p.XIncr))));
 yp2_ct = yp2_ct + count107-round(0.2/p.XIncr) - 1; %Offset correction
 yp2 = sign(rvz_f(cos-round(0.5/p.XIncr)))*yp2; %Sign Correction
 %Interpolate to determine YRR1 and YRR175
 %YRR1
 yr1 = interp1([p.time(countyrr1-2) p.time(countyrr1+2)],[rvz_f(countyrr1-2) rvz_f(countyrr1+2)],timeyrr1); %Linear Interpolation Function
 yrr1 = interp1([p.time(countyrr1-2) p.time(countyrr1+2)],[rvz_f(countyrr1-2) rvz_f(countyrr1+2)],timeyrr1)/yp2*100; %Linear Interpolation Function
 %YRR175
 %yrr175 = interp1(p.time(1:length(rvz_f)),rvz_f,timeyrr175)/yp2*100; %Linear Interpolation Function
 yr175 = interp1([p.time(countyrr175-2) p.time(countyrr175+2)],[rvz_f(countyrr175-2) rvz_f(countyrr175+2)],timeyrr175); %Linear Interpolation Function
 yrr175 = interp1([p.time(countyrr175-2) p.time(countyrr175+2)],[rvz_f(countyrr175-2) rvz_f(countyrr175+2)],timeyrr175)/yp2*100; %Linear Interpolation Function
 % Calculate lateral displacement from corrected lateral acceleration
 % Lateral Velocity
 LatVelCalc_CD2 = cumtrapz(aycg*32.17417)*p.XIncr; %Feet Conversion
 % LatVelCalc_CD2 = cumtrapz(aycg/9.80665*32.17417)*XIncr; %Metric to

 % Feet Conversion

 %Zero using interpolation time at 5 degrees
 LatVelCalc_CD2 = LatVelCalc_CD2 - interp1(p.time(1:length(swaf)),…

LatVelCalc_CD2,time5);

 %Lateral Displacement
 LatdispCalc_CD2 = cumtrapz(LatVelCalc_CD2)*p.XIncr;

 %Zero using interpolation time at 5 degrees
 LatdispCalc_CD2 = LatdispCalc_CD2 - interp1(p.time(1:length(swaf)),…

LatdispCalc_CD2,time5);

 %Interpolate lateral displacement at time107
 latdisp107 = interp1(p.time(1:length(swaf)),LatdispCalc_CD2,time107);
The code continues on from the line above, but is not displayed in this document. At this point in the code plots are displayed to the user for verification of program output. Then the program will store the output spreadsheets in Excel format.
APPENDIX

List of Abbreviations Used In Output Spreadsheets
COS:

Completion of Steering input for a SWD test.
Corr.:

Correction.

Ct:

Count.
Info.:

Information

MES:
Maneuver Entrance Speed – 0.5 seconds average of speed about SWA5Deg in Miles Per Hour.
MOS:
Data count at which the steering wheel angle trace crosses zero after the initial steering input for a SWD test, near the middle of the steering input trace.
SIS:

Slowly Increasing Steer test.
SWA5Deg:

Data count for which steering wheel angle first achieves ± 5 degrees.
SWA:

Steering Wheel Angle.
SWD:

0.7Hz Sine with Dwell test.
Time@5deg:

Interpolated time that SWA5Deg occurs.
Time@COS:

Interpolated time that COS occurs.
Time@MOS:

Interpolated time that MOS occurs.
YRR1:

Yaw Rate Ratio at 1.00 second after COS.
YRR175:

Yaw Rate Ratio at 1.75 second after COS.
2nd Yaw Peak:
2nd Yaw Rate Peak in degrees per second.
Lat Disp (ft):

Lateral Displacement in feet.
EventPt:

Count that the SIS maneuver’s steering wheel input begins

DOS:

Direction of steering wheel input. Left or Right.

SPD:

Speed.
AYcount_3:
Nearest data count number to the point that lateral acceleration achieves ±0.3 g during a SIS test
THETAENCF_3:
Steering angle at 0.3g, value is interpolated for SIS data.
AYCG_CD2_3:
Lateral acceleration at the data count labeled AYcount_3.

r_squared:

Statistical R^2 value.

ZeroBegin:

Beginning count number used for dynamic zeroing of SIS data.

ZeroEnd:

End count number used for dynamic zeroing of SIS data.

PAGE
3

