Using CIREN Data to Assess the Performance of the Second Generation of Air Bags

Jeffrey Augenstei, Elana Perdeck, James Stratton, Luis Labiste, Jerry Phillips, and Jeffrey Mackinnon
William Lehman Injury Research Center, University of Miami
Kennerly Digges, Brian Alonzo
FHWA/NHTSA National Crash Analysis Center, George Washington University

University of MIAMI
Presentation Outline

• Description of the WLIRC Database

• Performance of 1st and 2nd Generation Driver Air Bags

• Performance of 1st and 2nd Generation Passenger Air Bags

• Illustrative Cases
Adult Trauma Criteria

<table>
<thead>
<tr>
<th>Category 1 (ANY 1 Meets TTC)</th>
<th>Category 2 (ANY 2 Meets TTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>55 years old</td>
</tr>
<tr>
<td>AIRWAY</td>
<td>Respiratory rate 30</td>
</tr>
<tr>
<td>CONSCIOUSNESS</td>
<td>BMR 5</td>
</tr>
<tr>
<td>Assisted / Intubated</td>
<td></td>
</tr>
<tr>
<td>Alter mental status</td>
<td></td>
</tr>
<tr>
<td>GCS ≤ 12</td>
<td>Heart rate 120 bpm</td>
</tr>
<tr>
<td>HR > 120 bpm < 90 mmHg.</td>
<td>Long bone fracture</td>
</tr>
<tr>
<td>2 + long bone fractures</td>
<td>Major degloving injury</td>
</tr>
<tr>
<td>2(^{nd}) or 3(^{rd})° burns to 15% TBSA</td>
<td>Avulsion > 5 inches</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MECHANISM OF INJURY</td>
<td></td>
</tr>
<tr>
<td>Amputation</td>
<td>GSW</td>
</tr>
<tr>
<td></td>
<td>Ejection</td>
</tr>
<tr>
<td></td>
<td>Steering wheel deformity</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
</tr>
<tr>
<td>High index of suspicion</td>
<td></td>
</tr>
</tbody>
</table>
Crash Injury Research and Engineering Network

- Miami
- San Diego
- Seattle
- Ann Arbor
- Baltimore
- Wash. DC
- Birmingham
- Newark
- Fairfax
- Milwaukee
The WLIRC CIREN Center

- Has Been Collecting Data since 1992
- Collects a Near Census of Occupants with Air Bag Deployment in the South Florida Region who Meet the Trauma Criteria
- By 1995 Provided Data on:
 - Child Fatalities with deploying passenger air bags
 - Fatal neck injuries to small close-in drivers
- Provides Early Data on the Performance of New Safety Features
Comparison of NASS and CIREN Data
Distribution NASS Occupants, in Frontal Crashes by Delta-V

Delta V, mph

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40+

Percentage

Based on Weighted NASS Data

University of MIAMI
Average Weight Factors in NASS vs Delta-V

The diagram shows the average weight factors in NASS compared to Delta-V. The bars represent different delta-V MPH ranges, with the highest weight factors noted in the 0-5 and 5-10 MPH ranges. The text highlights that high weight factors correspond to sparse sample sizes.
NASS Distribution of MAIS Injured

- Failures
 - MAIS 3+: 2%
 - MAIS 1-2: 48%
 - MAIS 0: 50%

- Successes

Injury Rate = \(\frac{\text{MAIS 3+}}{\text{ALL}} \)
NASS vs Trauma Center
Distribution of MAIS Injured

Tow-away (NASS) Trauma Center Injured

- Fatals
- MAIS 3+
- MAIS 1-2
- MAIS 0

1% 2% 47% 25%
50% 50% 25%
Typical Trauma Center Distribution of MAIS Injured

Fatality Rate = Fatalities/All
Disclaimer

• Statements in the following slides are made relative to WLIRC data only.
• The data is a near census of people in crashes in South Florida who meet trauma criteria; people thought to have life threatening injuries + fatalities.
• Ratios are not statistically significant but are generally consistent with observations from in depth studies.
• Database is not representative of the population of all tow-away crashes in the US.
WLIRC Data on 1st and 2nd Generation Driver Air Bags
Assumptions for Old and New Air Bags

• Old Air Bags (1st Generation) are in all pre MY 1998 vehicles
• New Air Bags (2nd & 3rd Generation) in are all in MY 1998 and later vehicles
• Most of the “New” Air Bags are Sled Certified Air Bags
Driver Air Bag Performance – WLIRC Data

- Frontal Crashes with No Rollover
- WLIRC Cases + All Fatal Cases
- Trauma Center Patients + Fatals = Census of Severely Injured in South Florida

- 161 Drivers with Old Air Bags; 48% Belted
- 66 Drivers with New Air Bags; 38% Belted
1st Generation Driver Air Bags

9 Fatalities at Delta-V > 20 mph

- Characteristics of Fatalities:
- 4 Short Statured – 5’4” or less
 - Head/neck injuries
- 4 Elderly – 65 or older
 - Chest Organ Injuries
- 1 at 20 mph due to incompatibility/intrusion

Issue:
Air Bags too aggressive close-up and too stiff for elderly

University of MIAMI
Driver Air Bag Deployment in WLIRC Database by Delta-V

Number of Drivers at WLIRC – All Data
- Old Air Bags – 161
- New Air Bags – 66

Crash distribution generally similar
Driver Air Bag Deployment in WLIRC Database by Delta-V

Fatality Rate of Drivers at WLIRC

Delta-V, mph.

Distribution of Drivers at WLIRC

Delta-V, mph.

Much Lower Rate of Fatalities in Low Severity Crashes

Old Air Bag Deployment in WLIRC Database by Delta-V

Distribution of Drivers at WLIRC

Delta-V, mph.

Much Lower Rate of Fatalities in Low Severity Crashes

Old Air Bag
New Air Bag

0 - 20 21 - 25 26 - 30 31+

Look further at this

Old Air Bags
New Air Bags

0 - 20 21 - 25 26 - 30 31+

University of MIAMI
Driver Air Bag Deployment in WLIRC Database by Delta-V

Number of Drivers at WLIRC - Unbelted
- Old Air Bags - 83
- New Air Bags - 41

New Air Bags in lower severity crashes
Driver Air Bag Fatality Rate in WLIRC Database by Delta-V

Number of Drivers at WLIRC - Unbelted
- Old Air Bags - 83
- New Air Bags - 41

New Air Bags Have:
- Lower % Fatalities in Low Severity Crashes
- Higher % Fatalities in High Severity Crashes
Driver Air Bag Deployment in WLIRC Database by Delta-V

Number of Drivers at WLIRC - Bleted
- Old Air Bags - 78
- New Air Bags - 25

Higher % of New Air Bags in 26-30 mph crashes

<table>
<thead>
<tr>
<th>Delta-V, mph</th>
<th>Old Air Bags</th>
<th>New Air Bags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Driver Air Bag Fatality Rate in WLIRC Database by Delta-V

Number of Drivers at WLIRC & CIREN -
Belted
Old Air Bags - 78
New Air Bags - 25
New Air Bags Have Lower % of Fatalities in all Crashes

Fatality Rate of Belted Drivers at WLRC

- Fatality Rate
- Delta-V, mph.
- Old Air Bag
- New Air Bag

0 0.25 0.5
0-20 21-25 26-30 31+

University of MIAMI
Belted Driver Air Bag Risks in CIREN Database by Delta-V

Number of Drivers at CIREN - Belted
- Old Air Bags - 141
- New Air Bags - 78

New Air Bags Performing Well for Belted Drivers

Fatality Risk of Belted Driver in CIREN

<table>
<thead>
<tr>
<th>Delta-V, mph</th>
<th>Fatality Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>0.25</td>
</tr>
<tr>
<td>21-30</td>
<td>0.00</td>
</tr>
<tr>
<td>31-40</td>
<td>0.50</td>
</tr>
</tbody>
</table>

- Old Air Bag
- New Air Bag
Belted Driver Air Bag Risks in WLIRC & CIREN

Fatality Rate of Belted Drivers at WLIRC

Fatality Risk of Belted Driver in CIREN

Old Air Bag New Air Bag

Fatality Rate

Delta-V, mph.

Old Air Bag New Air Bag

Fatality Rate

Delta-V, mph.
New Driver Air Bags - Observations

- No Elderly Fatalities below 30 mph Delta-V
- No Short Statured fatalities below 30 mph Delta-V
- New Driver Air Bags appear to be working well for belted drivers at all crash severities and for unbelted drivers in crashes less than 25 Mph
- Watch the unbelted fatality rate at 25+ mph

University of MIAMI
Selected Cases from WLIRC Data
Case Subject

- 18 Year old male - Driver
- 66", 125 lbs
- Unrestrained
- Front & passenger air bags deployed
- Single occupant

High suspicion of injury

9 days in hospital
Scene

Crash occurred: 06:30 am
Trauma arrival: 06:54 am
Via-rescue vehicle

-High suspicion of injury
Case Vehicle

- 2003 Honda Element
- Max crush: 43"
- PDOF: 12 O’clock
- DeltaV: 44mph
Injuries

- AIS 3 - Liver laceration
- AIS 2 - Spleen laceration
- AIS 3 - Right lung contusion & laceration
- AIS 2 - Right rib FX
- AIS 2 - Right malleolus & fibular FX
Observation

- Young Male, unbelted in 44 mph narrow object crash
- No head injuries
- Survivable AIS 3 chest injuries
- Air bag + steering column absorbed crash energy
40 MPH Fatality

Unrestrained Driver
Barrier Type Crash

FATALITY

University of MIAMI
40 MPH Fatality

2000 Toyota Celica
Vehicle-to-Barrier
PDOF: 12 o’clock
Delta V: 39 mph
Max Crush: 31 in.
On Scene Picture

Uneven Ground

University of MIAMI
Car to Barrier Crash

30” max vehicle crush

University of MIAMI
Vehicle Interior

A-pillar head strike

11” Left Toe Pan Intrusion
3.1” Steering Wheel Deformation

University of MIAMI
Vehicle Interior

Driver: Unrestrained 20 year old Female 5’4”, 135 lbs

Fatal Head Injury A-Pillar Contact
Fatal Brain Injuries –
A-pillar Contact

- Brain Injuries –
 - 3- AIS 5
 - 4- AIS 4
 - 1- AIS 3
 - 1- AIS 2
- No other AIS 2+
Injuries
- No Skull Fracture
Observation

- Unrestrained driver 5’4” in 39 mph collision
- May have been out of position due to rough ground
- No severe chest/abdominal injuries
- Catastrophic brain injuries from a-pillar contact
- Crash direction/driver position may have induced a-pillar head impact – head missed air bag
Conclusions- New Driver Air Bags

- New Driver Air Bags Perform Better than Expected
 - Very Low Fatality Rate for Belted (.08 new vs. .26 old)
 - Slightly Lower Fatality Rate for Unbelted
- No Short Person Fatalities Below Delta-V 30 Mph
- No Elderly Fatalities Below Delta-V 30 Mph
- Several Success Stories Above Delta-V 40 Mph
- Head Injuries Observed in Angular Impact (High Severe Crash & Unbelted Occupant)
- Need to Monitor Unbelted at 30+ mph – May Tend to Miss the Air Bag
WLIRC Data on Old and New Passenger Air Bags
Fatalities in 1st Generation Passenger Air Bags

Characteristics of 4 Low Delta-V Fatalities:

- 2 Infants in rear facing child seats
 - Head/neck injuries
- 2 Children under 3 years old – no belts
 - Head/neck injuries
- 1 Unexpected Fatality at moderate severity – Occupant reaching forward at time of crash (Out of Position)
 - Head/neck injuries
Issue: 1st Generation Passenger Air Bags too aggressive close-up
Passenger Air Bag Deployment in WLIRC Database by Delta-V

Number of Passengers at WLIRC

Old Air Bags - 33
New Air Bags - 25

New Air Bags Had Fewer Passengers in Lowest Severity Crashes

Distribution of Passengers at WLIRC

- Delta-V, mph.
- Old Air Bag
- New Air Bag

0-20
21-25
26-30
31+

0.6
0.4
0.2
0

OLD Air Bag
NEW Air Bag
Passenger Air Bag Risks in WLIRC Database by Delta-V

Number of Passengers at WLIRC
- Old Air Bags - 33
- New Air Bags - 25

New Air Bags Have Lower Fatality Rate in Low Severity Crashes; Higher in High Severity Crashes

Fatality Risk of Pass. at WLIRC

<table>
<thead>
<tr>
<th>Delta-V, mph.</th>
<th>0-20</th>
<th>21-25</th>
<th>26-30</th>
<th>31+</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLD Air Bag</td>
<td>0.25</td>
<td>0.25</td>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>NEW Air Bag</td>
<td>0.5</td>
<td>0.5</td>
<td>0.75</td>
<td>1</td>
</tr>
</tbody>
</table>
Conclusions: New Passenger Air Bags

- New Passenger Air Bags Perform As Expected In WLIRC Data
- No Child Fatalities, No Close-in Fatalities
- No Elderly Fatalities below 30 mph
- Not Much Difference in Old and New Fatality Rates
- Need to Verify Increased Fatality Rate Above Delta-V 25 mph

University of MIAMI
Conclusions – New Air Bags

• In WLIRC data, New Air Bags performed as expected – Less injury in lower severity crashes
• Except for higher fatality rates above 25 mph for unbelted drivers and passengers, findings are consistent with other research by Blue Ribbon Panel
• Limited data – Needs validation from other sources
The End