Previous G&I Sessions (2014)

NHTSA’s PCAM Testing and Dummy Development

• Test Maneuvers (Scenarios)
• Test Mannequin Development
• Test Apparatus (Motion Control)
• Test Results (CAMP and Production Vehicles)

This Session

• Discuss UPDATED PCAM performance results from testing production level vehicles and engineering prototypes.
PCAM – Pedestrian Crash Avoidance/Mitigation

NHTSA Initiated PCAM Research in 2011

Volpe –
• Crash analyses and assess the potential safety benefits of PCAM technology
• Completed
• Final Report – DOT HS 811 998 (April 2014)

CAMP – GM, Ford, Mercedes-Benz, Continental, and Delphi
• Develop preliminary test methods (Scenarios, Mannequins, Motion Control, etc.)
• Completed
• Final Report - DOT HS 812 040 (June 2014)

NHTSA Internal Research – (ongoing)
• Further Refinement of Test Scenarios, Mannequins, Motion Control, etc.
• Development of Objective Test Procedures and Metrics
What is Pedestrian Crash Avoidance/Mitigation?

The diagram illustrates the concept of pedestrian crash avoidance/mitigation through a time-based event timeline. It categorizes different states into:

- **Avoidance Zone**:
 - Normal State
 - Warning State
 - Avoidable State

- **Unavoidable State**
 - Pre-Crash Zone
 - Crash Zone

- **Post-Collision State**

The diagram highlights critical points such as:

- **Pre-crash event**
- **Crash avoidance action**
- **Crash warning alert**

Additionally, it mentions active safety systems activated to reduce injury risk and passive occupant protection countermeasures. The graph also includes general risk for crash while driving.

Slide from CAMP PCAM
4,743 Pedestrian Fatalities (14% of total fatalities)

<table>
<thead>
<tr>
<th>Pedestrians Killed</th>
<th>2011 (% Killed)</th>
<th>2012 (% Killed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>26%</td>
<td>27%</td>
</tr>
<tr>
<td>Urban</td>
<td>73%</td>
<td>73%</td>
</tr>
<tr>
<td>Intersection</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Non-Intersection</td>
<td>68%</td>
<td>70%</td>
</tr>
<tr>
<td>Other</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Daytime</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Nighttime</td>
<td>69%</td>
<td>70%</td>
</tr>
<tr>
<td>Clear/Cloudy</td>
<td>88%</td>
<td>88%</td>
</tr>
<tr>
<td>Rain</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Snow</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Fog</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Top 20 pre-crash scenarios by functional years lost (FYL) can be grouped into 4 general scenarios (N = 139,000 Crashes)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Cases</th>
<th>% Total FYL</th>
<th>Fatalities</th>
<th>%Fatalities ** (67% of the top 20 scenarios)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>115,000</td>
<td>84%</td>
<td>7,000</td>
<td>88%</td>
</tr>
<tr>
<td>S2</td>
<td>2,000</td>
<td>1%</td>
<td>16</td>
<td><1%</td>
</tr>
<tr>
<td>S3</td>
<td>9,000</td>
<td>1%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>S4</td>
<td>13,000</td>
<td>10%</td>
<td>1,000</td>
<td>12%</td>
</tr>
</tbody>
</table>

** Note: Top 20 Scenarios represent 67% of estimated pedestrian fatalities
<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Production</th>
<th>Sensor Technology</th>
<th>CIB/AEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle 1</td>
<td>Y</td>
<td>RADAR, LIDAR, and Mono Camera</td>
<td>Up to Full Braking</td>
</tr>
<tr>
<td>Vehicle 2</td>
<td>Y</td>
<td>Stereo Camera</td>
<td>Up to Full Braking</td>
</tr>
<tr>
<td>Vehicle 3</td>
<td>Y</td>
<td>Stereo Camera</td>
<td>Up to Full Braking</td>
</tr>
<tr>
<td>Vehicle 4</td>
<td>Y</td>
<td>RADAR and Stereo Camera</td>
<td>Up to Full Braking</td>
</tr>
<tr>
<td>Vehicle 5</td>
<td>Y</td>
<td>RADAR(s) and Mono Camera</td>
<td>Up to Full Braking</td>
</tr>
</tbody>
</table>
S1 - Scenario
S1 – 25 MPH – Adult – Walking – 50 % Overlap

The graph shows the speed reduction (mph) for different test runs. The x-axis represents the test run number, while the y-axis shows the speed reduction in miles per hour (mph). The data is color-coded with purple, blue, red, and black bars representing different categories or conditions.
S1 – 10 MPH – Adult – Running – 50 % Overlap

S1: SV = 10MPH Ped = AdultRun Impact 50%

Test Run

Speed Reduction (mph)

0 2 4 6 8 10 12 14 16 18 20 22
S1 – 25 MPH – Adult – Running – 50% Overlap

S1:SV = 25MPH Ped = AdultRun Impact 50%
Euro Obstructed Test: Ped = ChildWalk Impact 50%
Euro NCAP Obstructed Child Test - Running

Euro Obstructed Test: Ped = ChildRun Impact 50%
Stationary Pedestrian – Increasing Speed

![Graph showing speed reduction over test runs for stationary pedestrians.](image)
Test data supports:

• PCAM can avoid and mitigate common pedestrian crashes.
 • Data suggests technology is improving.
• PCAM data shows better performance for slower moving pedestrians
 • “Running” Pedestrian scenarios remain challenging for the PCAM systems tested.
• Obstructed pedestrian tests still challenging for PCAM systems.
 • Pedestrian speed a major factor.
• Performance differences can be observed using the objective test conditions described in this presentation.
Planned Research

- Continue testing production vehicles with PCAM. (Sept 2015)
- Refine a PCAM target population to assess system effectiveness and benefit estimates (Dec 2015).
- Refine and further investigate false positive tests. (Oct 2015)
- Complete development adult and child mannequin designs. (May 2015)
 - Select a standard design for objective testing.
- Complete objective test development and procedure (Dec 2015).
Animated Pedestrian
Night Testing
QUESTIONS?

FRANK BARICKMAN
FRANK.BARICKMAN@DOT.GOV