STRUCTURAL DESIGN CONSIDERATIONS FOR A LIGHTWEIGHTED VEHICLE TO ACHIEVE “GOOD” RATING IN IIHS SMALL OVERLAP

Harry Singh
Director – Lightweighting
EDAG, Inc.
EDAG, headquartered in Fulda, Germany, is one of the largest Design & Engineering service providers to the Automotive Industry worldwide. With facilities in Europe, North & South Americas and Asia.
EDAG, headquartered in Fulda, Germany is one of the largest Design & Engineering service provider to the Automotive Industry worldwide. With facilities in Europe, North & South Americas and Asia.
(Prime Contractor)
Since its inception, Electricore has had a successful history of collaboration with the departments of Defence, Energy and Transportation in the development, demonstration and deployment of advanced technologies.

The **Center for Collision Safety and Analysis (CCSA)** at [George Mason University](https://www.gmu.edu) brings together a strong and richly experienced team of scientists and engineers focused on using advanced technology to understand collisions involving transport vehicles and to develop means to avoid or mitigate them to enhance safety and security. CCSA is associated with the [College of Science](https://www.gmu.edu/science) at George Mason University and the [National Center for Manufacturing Science (NCMS)](https://www.ncms.org).
1. The presentation will discuss effective design strategies to identify structural design modifications to achieve ‘good’ rating for the IIHS Small Overlap Crash.

2. The results of a recent study funded by NHTSA will be presented.

3. Additional mass and cost implications to meet the IIHS requirement for a Mid-Size Sedan vehicle will be discussed.
1. The IIHS SOL test is designed to reproduce what happens when the front corner of a vehicle hits another vehicle or an object like a tree or utility pole, missing the structure rail/frame.

2. In this test, a vehicle travels at 40 mph toward a 5-foot tall rigid barrier. A Hybrid III dummy representing an average-size man is positioned in the driver seat. Twenty-five percent of the total width of the vehicle strikes the barrier on the driver side.
NHTSA Project Tasks

1. First task to build and refine a baseline vehicle LSDYNA crash simulation model and correlate with IIHS test results
2. Update NHTSA Light Weight Vehicle (LWV) LSDYNA model to accurately predict SOL crash performance
3. Design and optimize the LWV structure design so that it will achieve “good” rating for the structural performance and estimate the vehicle mass and cost increase due to this requirement

Light Weighted Vehicle (LWV) was created for NHTSA under contract DTNH22-11-C-00193[1], to identify vehicle mass reduction for years 2017-2025 in support of CAFE standards.

Baseline Vehicle 2009 Honda Accord
LSDYNA Model Build and Correlation with IIHS SOL Test Results

First task to build and refine a baseline vehicle LSDYNA crash simulation model and correlate with IIHS test results
Baseline Vehicle 2009 Honda Accord
LSDYNA Model Build and Correlation with IIHS SOL Test Results

<table>
<thead>
<tr>
<th>Number of Parts</th>
<th>1054</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Nodes</td>
<td>1,969,784</td>
</tr>
<tr>
<td>Number of Shell Elements</td>
<td>1,815,276</td>
</tr>
<tr>
<td>Number of Beam Elements</td>
<td>659</td>
</tr>
<tr>
<td>Number of Solid Elements</td>
<td>98,716</td>
</tr>
<tr>
<td>Total Number of Elements</td>
<td>1,914,659</td>
</tr>
</tbody>
</table>

Post-test laboratory vehicle and model of the 2009 Honda Accord for IIHS SOL test

Maximum intrusion in laboratory test and finite element simulation in IIHS SOL frontal impact.
Honda Accord 2008, 2009 & 2013
IIHS SOL Tests & Results

CF1001
2008 – 4 Door

CEN1229
2013 – 4 Door

CF10021
2009 – 4 Door

CEN1234
2013 – 2 Door
Honda Accord 2008, 2009
IIHS SOL Tests Results

[Diagram showing test results for Honda Accord 2008 and 2009]
Honda Accord 2013
IIHS SOL Tests Results

<table>
<thead>
<tr>
<th></th>
<th>CEN129 2013 Honda Accord</th>
<th>CEN1234 2013 Honda Accord</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nj - Tension-Extension</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Nj - Tension-Flexion</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Nj - Compression-Extension</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Nj - Compression-Flexion</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Neck axial compression</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Neck axial tension</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Chest acceleration (3ms clip)</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Chest compression</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Stenum deflection rate</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Viscous criteria</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Left KTH injury</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Left knee displacement</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Left upper tibia index</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Left lower tibia index</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Left tibia axial force</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Left foot acceleration</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Right KTH injury</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Right knee displacement</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Right upper tibia index</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Right lower tibia index</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Right tibia axial force</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Right foot acceleration</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
</tbody>
</table>

Legend:
- Poor
- Marginal
- Acceptable
- Good
- Measured Values
IIHS SOL Tests Results;
Main Observations

On most vehicles the 25 percent offset barrier is out-board of the main front-rail structure of the vehicle. On review of several IIHS crash videos, it was noticed that vehicles that do not perform well in the test shows the following characteristics:

- The front frame rail structure does not engage the barrier and hence does not play a significant role in slowing the vehicle down.
- There is significant failure of the suspension and drive components, such as control arm, knuckle, drive-shaft, steering link, ball joints, wheel rim and tire.
- The tire wheel assembly is pushed hard into the ‘Front Body Hinge Pillar’ structure, causing the “A Pillar” and ‘Rocker Section’ to collapse.
- The failures of the ‘A Pillar’ and the ‘Rocker’ lead to excessive penetration of the Dash Panel, Instrument Panel and Steering Column/Wheel into the passenger compartment. This collection of structural failures also leads to lateral movement of the steering wheel thus displacing the driver airbag.
IIHS SOL Tests Results; Main Observations

Rocker and A Pillars premature collapse on most pre 2013 vehicles during the test

Energy absorbing structural elements not designed for 25%Overlap (pre 2013 vehicles)
IIHS SOL Tests
Vehicle Structure Design Strategy

1. Redesign front structure to ‘Deflect’ vehicle off the barrier (reduce impact velocity)
2. Add structure to ‘Absorb’ energy
3. ‘Reinforce’ the passenger compartment structure to reduce excessive deformation

Chevrolet 2014 Equinox – Rating Good Test Video (CEN1401)
Acura 2014 MDX – Rating Good Test Video (CEN1339)
IIHS SOL Test – 2014 Chevrolet Equinox (CEN1401)
Vehicle Structure Design Strategy

Deflector 1 - Bumper
Deflector 2 – attached to front rail
Deflector 3 – attached to engine cradle

2014 Chevrolet Equinox
Rating Good
Roof Strength SWR – 4.17

No A Pillar collapse
IIHS SOL Test – 2014 Chevrolet Equinox (CEN1339)
Vehicle Structure Design Strategy

2014 Acura MDX – Rating Good
Roof Strength SWR – 5.87

- Hot stamped UHSS
- Triangular tie in below rail
- Bumper beam bolt on attachment
- No A Pillar collapse
- Minimal Door Damage
- Minimal Rocker(Sill) Damage
IIHS SOL Test – Light Weight Vehicle
Vehicle Structure Design Strategy

1. Redesign front structure to ‘Deflect’ vehicle off the barrier (reduce impact velocity)
2. Add structure to ‘Absorb’ energy
3. ‘Reinforce’ the passenger compartment structure to reduce excessive deformation
IIHS SOL Test – Light Weight Vehicle Vehicle Structure Design Ideas

1. A Pillar – increased thickness
2. Joint reinforcement
3. Rocker reinforcement
4. FBHP – Section reinforcements
5. Smoother transition surface
IIHS SOL Test – Light Weight Vehicle
Vehicle Structure Design Ideas

Off set front rail outboard?
IIHS SOL Test – Light Weight Vehicle
Vehicle Structure Design Ideas

- Radiator Support
- Front bumper crush box
- Front bumper beam
Additional structure – Deflect Vehicle & Front Rail energy absorption

Radiator Support

Front bumper crush box

Front bumper beam

IIHS SOL Test – Light Weight Vehicle
Vehicle Structure Design Ideas
IIHS SOL Test – Light Weight Vehicle
Vehicle Structure Design Ideas

V001 + 4.84 kg
V002 + 1.81 kg
V003 + 4.32 kg
V003a + 13.36 kg
IIHS SOL Test – Light Weight Vehicle
Vehicle Structure Design Ideas

V004 + 2.12 kg
V005 + 5.72 kg
V006 + 1.31 kg
V007 + 0.54 kg
IIHS SOL Test – Light Weight Vehicle Design Ideas- Selected for detailed design and optimization

<table>
<thead>
<tr>
<th>Variant</th>
<th>X-Displ A In mm</th>
<th>X-Displ B In mm</th>
<th>Add Weight In Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>V000 Baseline Model</td>
<td>95.4</td>
<td>59.6</td>
<td></td>
</tr>
<tr>
<td>V001</td>
<td>39.2</td>
<td>34.0</td>
<td>4.84</td>
</tr>
<tr>
<td>V002</td>
<td>68.0</td>
<td>41.5</td>
<td>1.81</td>
</tr>
<tr>
<td>V003</td>
<td>67.8</td>
<td>51.8</td>
<td>4.32</td>
</tr>
<tr>
<td>V003a</td>
<td>73.1</td>
<td>25.4</td>
<td>13.36</td>
</tr>
<tr>
<td>V004</td>
<td>68.6</td>
<td>30.9</td>
<td>2.12</td>
</tr>
<tr>
<td>V005</td>
<td>69.1</td>
<td>50.3</td>
<td>5.72</td>
</tr>
<tr>
<td>V006</td>
<td>129.5</td>
<td>53.4</td>
<td>1.31</td>
</tr>
<tr>
<td>V007</td>
<td>67.4</td>
<td>46.6</td>
<td>0.54</td>
</tr>
</tbody>
</table>

D – Deflect
A – Absorb
R – Reinforce
IIHS SOL Test – Light Weight Vehicle
Design Ideas- Optimized Design Solutions

Panel thicknesses increased
1.1 > 2.0, 0.9 > 1.8

Combined Optimized Design + 6.9 Kg

Additional parts and parts integration
IIHS SOL Test – Light Weight Vehicle
Optimized Design Solutions: Results Comparison

- LWV 1.1 - baseline model
- LWV 1.2 – baseline with SOL changes
IIHS SOL Test – Light Weight Vehicle
Optimized Design Solutions: Results Comparison

- LWV 1.1 - baseline model
- LWV 1.2 – baseline with SOL changes
IIHS SOL Test – Light Weight Vehicle
Optimized Design Solutions: Results Comparison

Compared with baseline the A pillar is stable – no buckling, Rocker lower deformation, Steering wheel; reduced axial movement

- LWV 1.1 – baseline model
- LWV 1.2 – baseline with SOL changes
IIHS SOL Test – Light Weight Vehicle
Optimized Design Solutions: Results Comparison

Compared with baseline the front rail is more active, absorb energy in lateral crush.

- LWV 1.1 – baseline model
- LWV 1.2 – baseline with SOL changes

Compared with baseline the A pillar is stable – no buckling; Rocker lower deformation, steering wheel; reduced axial and lateral movement.
Intrusions of MY2013 Accord and the LWV 1.2 on the IIHS structural measuring scheme

Crash pulse in the x-direction for the center of gravity of the MY2013 Honda Accord and the LWV 1.2 in IIHS SOL impact
Simulation under different impact conditions were performed and results compared to the following full-scale crash tests:

1. Frontal Full Wall – 56 km/h
2. Lateral NCAP MDB – 62 km/h
3. Frontal 40% Offset – 64 km/h
4. IIHS Lateral MDB – 50 km/h
5. Side Pole Impact – km/hr
6. Roof Crush – Quasi-static
7. Small Overlap (SOL) – 64 km/h
Due to the design changes made to the LWV structure to meet SOL test requirements, the mass of the body structure increased by 6.90 kg with a cost increase of $26.88. The cost is calculated for part manufacture and assembly to the body structure during body build (production volume 200,000 annual).
Thank you for your time

Questions?

Harjinder ‘Harry’ Singh
Director – Vehicle Lightweighting
EDAG, Inc.
1875 Research Drive, Suite 200
Troy, MI 48083
Phone: (248) 588 3134
E-mail: Harjinder.Singh@edag-us.com