Transportation Active Safety Institute
TASI: Our Focus on the Human Machine Interface

An Industry-Academic-Government Consortium to Advance the Use of Active Safety Systems to Reduce Vehicle Crashes and Save Lives

Dr. Sarah Koskie
Purdue School of Engineering & Technology, IUPUI
skoskie@iupui.edu

25 January 2007
Obstacles to introduction and acceptance

- One of the biggest obstacles to introduction and acceptance of Active Safety Systems is absence of a standard HMI protocol.

- Active Safety Systems provide two types of responses:
 - Warnings that require driver intervention
 » Beep, Flash, rumble of seat
 - Autonomous responses triggered by driving situation
 » Apply brakes strategically, adjust steering angle, etc.

- Autonomous actions provide the most consistent responses and simplify design of Active Safety Systems.

- However, some driving situations require a more complex response, obtainable only through human intervention.
Some HMI issues for active safety systems

- **How do people react?**
 - What is the average and range of abilities?
 - Hearing
 - Vision
 - Coordination
 - Attention span
 - Multi-tasking ability

- **Does a trigger yield an appropriate reaction?**

- **Should the driver have choices of how information is displayed?**

- **Should the driver have choices regarding alerts?**
Questions relating to HMI Design

- Is it possible to warn the driver?

 YES: What’s the best way?

 - What is range of human ability?

 - How many warnings is too many?

 - Which warning is best for each scenario?

 NO: What can we do to prevent the need for warnings?

 - How much information can the driver process?

 - Which information is most important in a given scenario?

 - How is the information best conveyed?

- What standards are needed?
Standards will eliminate a possible source of driver confusion

- Drivers need consistent alerts and displays.

Audible Alerts

Visual Alerts

Haptic Alerts

- Motorized Seatbelt
- Seat Vibration

- Acceptance / effectiveness also depend on
 - Reaction time
 - Data processing speed
 - Ability to distinguish among signals
 - Ability to respond without panicking
 - etc.
Summary

- Again, one of the biggest obstacles to introduction and acceptance of Active Safety Systems is absence of a standard HMI protocol.

- TASI universities will work with industry partners to design experiments to address these issues.

- Target start date is beginning of 2nd quarter.

- Questions?
Contacts

- Interested in specific activities? Please contact:

 Ralph V. Wilhelm, Ph.D.
 Technical Director
 Transportation Active Safety Institute (TASI)
 Purdue School of Eng. & Tech., IUPUI
 723 W. Michigan St. SL 160
 Indianapolis IN 46202
 Phone: (317) 508-6866
 rvwilhel@iupui.edu
 Fax: (317) 571-0429

 Sarah Koskie, Ph.D.
 Asst. Prof. of Elec. & Comp. Eng.
 Purdue School of Eng. & Tech., IUPUI
 723 W. Michigan St. SL 160
 Indianapolis IN 46202
 Phone: (317) 278-9043
 skoskie@iupui.edu
 Fax: (317) 274-4493
Slides describing TASI Activities follow

- Flow charts show larger scope of TASI’s activities.

- Activities in which Human Factors play a key role are highlighted in red.
TASI Activities

- **Mine available data;**
- **Run experiments to obtain missing data**
 - Accident data analysis
 - Benefit/effectiveness analysis
 - Cost sensitivity analysis
 - Human Factors/Biomechanics
- **Technology Research and Development**
 - New sensors
 - Algorithms

Common Protocols & Processes
- HMI protocol
- Product performance testing
- Test Methodology
TASI Activities

- **Common Protocols & Processes**
 - HMI protocol
 - Performance testing
 - Test Methodology

- **Test Methodology**
 - Laboratory/bench-test
 - Hardware-in-loop simulation
 - Closed-course test track
 - Instrumented roadway segment
 - On-road

- **Evaluation/Validation**
 - Protocols
 - HMI
 - Performance

- **Consumer Awareness/Education**