Towards a AVST/Driver Partnership:
Research and Implementation Implications

“If at first, the idea is not absurd, then there is no hope for it”
Einstein

John D. Lee
University of Iowa
National Advanced Driving Simulator
Challenges and Opportunities with AVST

Challenges & Opportunities:

- Driving as Stimulus and Response
- Driving as Control with a Joint Cognitive System
- Driving as Multi-level Control
- Driving as Adaptation of a Diffuse Organism

Research & Implementation Implications

The University of Iowa
Capitalizing on the Opportunities

- Holistic rather than piecemeal—theoretically tractable, but practically difficult
- Consider human-technology as unit of analysis
- Augment human rather than automate
- Address underlying crash mechanisms—
 - Speed and following distance
 - Inattention
 - Expectations
 - Culture
Collision Warnings: Directing attention and response

Cross-modal attention cueing—Stimulating one sense can direct attention in another sense
- Implication: Locate source of stimuli in similar spatial location
- Research issue: How does the internal “display” space of the vehicle map to the spatial location of roadway events?

- Multi-sensory integration—Several stimuli can sometimes be perceived as a unit with super-additive effects on speed of processing
 - Implication: Stimuli perceived separately can delay response
 - Research issue: What parameters govern multi-sensory integration with in-vehicle warnings to enhance response speed?
Failure of multi-modal sensory integration
Graded and Ambient Information: Supporting control and situation adaptation

- Graded information provides context for warning
- Ambient information provides preattentive background to guide situation adaptation
 - Implication: Continuous information can guide expectations and reduce reaction time to events
 - Implication: Use urgency mapping and annoyance tradeoff principles to grade alerts
 - Research issue: How to combine multiple auditory and haptic streams to form a coherent whole?
Internal Models: Designing for appropriate reliance

- Trust—part of the driver’s internal model of the AVST that influences reliance
 - Implications: Support appropriate trust by representing AVST Performance, Process, Purpose
 - Research issue: Does the benefit of reducing false alarms with a more complex AVST outweigh the increased difficulty in developing appropriate trust?
Interface design to calibrate trust

- Trustable systems may ease driver adaptation to differences between vehicles
Calibration of trust in technology

Challenges & Opportunities

- Driving as Stimulus and Response
- Driving as Control with a Joint Cognitive System
- Driving as Multi-level Control
- Driving as Adaptation of a Diffuse Organism

Research & Implementation Implications

Mistrust: Trust exceeds system capabilities, leading to misuse

Calibrated trust: Trust matches system capabilities, leading to appropriate use

Distrust: Trust falls short of system capabilities, leading to disuse

Good resolution: A range of system capability maps onto the same range of trust

Poor resolution: A large range of system capability maps onto a small range of trust

Trust

Automation capability

- Calibrated trust: Trust matches system capabilities, leading to appropriate use
- Distrust: Trust falls short of system capabilities, leading to disuse
- Poor resolution: A large range of system capability maps onto a small range of trust
- Good resolution: A range of system capability maps onto the same range of trust
- Mistrust: Trust exceeds system capabilities, leading to misuse

- Calibration of trust in technology
- Automation capability
- Trust
Similar visual metaphor appears on side mirrors

- **Challenges & Opportunities**
- Driving as Stimulus and Response
- Driving as Control with a Joint Cognitive System
- Driving as Multi-level Control
- Driving as Adaptation of a Diffuse Organism

Research & Implementation Implications

- Safe with Acceleration (use the gas pedal)
- Safe without Acceleration (no gas pedal required)
- Unsafe (No Lane Change)

Your Vehicle

Other Vehicle

The University of Iowa
Challenges & Opportunities

Driving as Stimulus and Response

Driving as Control with a Joint Cognitive System

Driving as Multi-level Control

Driving as Adaptation of a Diffuse Organism

Research & Implementation Implications

Close Behind

Far Behind

LED Display

The University of Iowa
Traffic situation display

The University of Iowa

<table>
<thead>
<tr>
<th>Challenges & Opportunities</th>
<th>High traffic situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving as Stimulus and Response</td>
<td>![Image of traffic situation display]</td>
</tr>
<tr>
<td>Driving as Control with a Joint Cognitive System</td>
<td></td>
</tr>
<tr>
<td>Driving as Multi-level Control</td>
<td></td>
</tr>
<tr>
<td>Driving as Adaptation of a Diffuse Organism</td>
<td></td>
</tr>
<tr>
<td>Research & Implementation Implications</td>
<td></td>
</tr>
</tbody>
</table>
Driving across Multiple Timescales: Preparing and teaching the driver

- Operational, Tactical and Strategic Levels of Control—milliseconds to months matter
 - Implication: The short time-constant of operational control suggests AVST at this level needs representation at other levels to promote understanding
 - Research issue: To what degree is the influence of AVST confined to one level?
Information before and after an event provides context to collision warnings.

- **Trip demands**
- **Path demands**
- **Delay interaction**
- **Collision warning**
- **Discontinue interaction**
- **Situational feedback**
- **Trip report**
- **Safety review**

Challenges & Opportunities

Driving as Stimulus and Response

Driving as Control with a Joint Cognitive System

Driving as Multi-level Control

Driving as Adaptation of a Diffuse Organism

Research & Implementation Implications

Proactive Feedforward control

Reactive Feedback control
Traffic and Culture: AVST shapes the behavior of a diffuse organism

- Drivers/AVST are not isolated from others
 - Implication: AVST benefits may be most prominent in as they affect traffic and driving culture
 - Research issue: How does ASVT influence driving culture—perhaps the most powerful influence on traffic safety
Breakdowns in multi-driver compensatory processes

Challenges & Opportunities

Driving as Stimulus and Response
Driving as Control with a Joint Cognitive System
Driving as Multi-level Control
Driving as Adaptation of a Diffuse Organism

Research & Implementation Implications

You IDIOT! You were shaving and using your palm pilot instead of driving!

If you hadn't been sending a fax while playing with your GPS system, you MORON!
Towards a AVST/Driver Cyborg
Research and Implementation Implications

Conception of the driver AVST relationship drives:

- Interface design
- System architecture
- Standardization
- Benefits analysis

What would a collision avoidance system be like without a warning?

More information: http://www.engineering.uiowa.edu/~csl/

The University of Iowa
Select references

- Moeckli, J., & Lee, J. D. (In press). The making of driving cultures. In *AAA Compendium on Driving Culture*.