
DOT HS 812 807 October 2020

Cybersecurity of Firmware Updates

DISCLAIMER

This publication is distributed by the U.S. Department of Transportation, National
Highway Traffic Safety Administration, in the interest of information exchange.
The opinions, findings, and conclusions expressed in this publication are those of
the authors and not necessarily those of the Department of Transportation or the
National Highway Traffic Safety Administration. The United States Government
assumes no liability for its contents or use thereof. If trade or manufacturers’
names are mentioned, it is only because they are considered essential to the object
of the publication and should not be construed as an endorsement. The United
States Government does not endorse products or manufacturers.

Suggested APA Format Citation:

Bielawski, R., Gaynier, R., Ma, D., Lauzon, S., & Weimerskirch, A. (2020, October).
Cybersecurity of Firmware Updates (Report No. DOT HS 812 807). National Highway
Traffic Safety Administration.

i

Technical Report Documentation Page

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

1. Report No.

DOT HS 812 807
2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Cybersecurity of Firmware Updates
5. Report Date
October 2020

6. Performing Organization Code

7. Authors

Russ Bielawski, Ron Gaynier, Dr. Di Ma, Sam Lauzon, and Dr. André
Weimerskirch

8. Performing Organization Report No.

9. Performing Organization Name and Address

Transportation Research Institute
University of Michigan (Ann Arbor, MI)
University of Michigan-Dearborn
Volkswagen Group of America (Herndon, VA)

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

DTNH22-15-R-00104 Vehicle
Electronics Systems Safety IDIQ

12. Sponsoring Agency Name and Address

National Highway Traffic Safety Administration
1200 New Jersey Avenue, SE
Washington, DC 20590

13. Type of Report and Period Covered

Final Report

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Over-the-Air (OTA) software and firmware updates are widely considered essential for networked devices. In the
automotive industry, OTA firmware updates are anticipated to increase the efficiency and decrease the time in
updating the critical firmware in vehicles’ electronic control units (ECUs). This project had these objectives:
understand the scope and relevant attributes of firmware updates, understand their vulnerabilities and update
solutions, understand mitigation methods for those vulnerabilities, and learn from adjacent industries.

The report first presents a literature and technology review of the state-of-the-art of software updates in industries
related to automotive, including the commercial aviation, medical, and consumer electronics industries. Next it
identifies and assesses software update functionality risks in current and near-term future automobiles. Finally, it
reviews mitigation methods to address those risks. In addition, this report describes the SAE AS5553A voluntary
standard for the detection of and protection against counterfeit electronic parts in the aerospace industry and how
it relates to the automotive industry.

17. Key Words 18. Distribution Statement
This document is available to the public through
the National Technical Information Service,
www.ntis.gov.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)

Unclassified
21. No. of Pages

103
22. Price

Over-the-Air, Updates, Firmware, Software,
ECU (Electronic Control Unit), Automotive,
Network, Theft, Counterfeit, SAE AS5553A

ii

Executive Summary

Over-the-Air (OTA) software and firmware updates are widely considered essential for
networked devices. In the automotive industry, OTA firmware updates are anticipated to increase
the efficiency and decrease the time in updating the critical firmware in vehicles’ electronic
control units (ECUs). There is a demand to better understand firmware and software updates,
particularly for embedded systems, and how to implement them securely.

This work had the following objectives.

• Understand the scope and relevant attributes of firmware updates
• Understand the vulnerabilities of firmware update solutions
• Understand the mitigation methods for those vulnerabilities
• Learn from adjacent industries

The report first presents a literature and technology review of the-state-of-the-art of software
updates in industries related to automotive, including the commercial aviation, medical, and
consumer electronics industries. Next it identifies and assesses the risks presented by software
update functionality in current and near-term future automobiles. Finally, it gives a review of the
mitigation methods to address those risks. In addition, this report describes the SAE AS5553A
voluntary standard for the detection of and protection against counterfeit electronic parts in the
aerospace industry and how it relates to the automotive industry.

Summary of Lessons Learned in Adjacent Industry:
Common existing defense mechanisms (e.g., signing, fortification, and intrusion detection) and
vulnerabilities are noted in the body of the report as are potential defenses for secure vehicle
firmware updates.

Risk Assessment Conclusions:
In identifying risks at both the vehicle-level and the technological design and implementation
level, the researchers have identified the biggest risk with software update mechanisms as
malware installation.

Mitigation Methods Conclusions:
In-field software updates are a necessity in the automotive industry to fix flaws without replacing
hardware that is already deployed in the field. The current generation of automobiles primarily
uses OTA software updates for telematics and infotainment ECUs only.

While software updates are a boon for security, the mechanism, particularly the remote
mechanism, creates a new avenue for attackers to exploit.

A matrix of specific mitigations versus risks appears in the report (see Table 17).

Intellectual Property Theft Risks and Mitigations Conclusions:
Intellectual property theft, particularly software theft, can be enabled and made easier with
software update mechanisms, particularly OTA mechanisms. In discussions with the original
equipment manufacturer (OEM) and tier-1 supplier employees, the majority opinion is that
protecting the software binaries is not a priority. The prevailing opinion in the industry is that

iii

there are too many other ways for an adversary to obtain a software binary to justify the cost of
adding encryption to the software update process.

Counterfeit and Fraudulent Electronic Parts and Products Conclusions:
Fraudulent and counterfeit parts can pose a safety and monetary liability risk. SAE AS5553A is
an aerospace standard for the creation of processes for detection, prevention, mitigation, and
disposition of suspect, fraudulent, and counterfeit electronic parts. In general, SAE AS5553A
should apply to the automotive industry quite readily. It is designed to be flexible and risk-
informed. The requirements themselves should be applicable to the automotive industry;
however, a more tailored collection of best practices might be reasonable to develop for the
automotive sector specifically (not developed within this project).

Final Conclusions:
Secure in-field software updates are nearly universally considered to be essential for any
networked computer system. However, software update functionality creates a new attack
surface for attackers to potentially exploit. The installation of malware is one of the biggest risks
for software updates.
There is no singular, perfect reference model for securing software updates. Every system has
different requirements and user experience targets that shape the design enough to require
security to be at a minimum analyzed and usually designed with an application-specific
approach.
While software updates have a large surface from which vulnerabilities can potentially spring,
many of the mitigations are known. Software update functionality can be attacked at many
different places in the distribution process. And, while technical risks exist, many of the risks are
social (such as lost passwords, etc.) in nature. The benefit of reliable, prompt software updates
for in-field electronics is significant.

iv

Table of Contents

Executive Summary .. ii

Summary of Lessons Learned in Adjacent Industry: ... ii
1. Introduction ... 1

2. Background, Definitions, and Literature Review ... 2

2.1 Background ... 2

2.2 Software Update: Overview and Definitions .. 2

2.2.1 Current automotive software update mechanism and best practices. 3

2.3 Step-By-Step: The OTA Software Update Process ... 5

2.3.1 Packaging. .. 6
2.3.2 Transport. ... 6
2.3.3 Reception. ... 6
2.3.4 Installation. ... 6
2.3.5 Verification and maintenance (optional). ... 6

2.4 Software Update Packaging ... 7

2.4.1 Complete image overwrite. ... 7
2.4.2 Delta update. ... 8
2.4.3 Dynamic update. ... 8
2.4.4 Distributed update. .. 9
2.4.5 Aircraft avionics. .. 9

2.5 Update Package Transport ... 9

2.5.1 Medical devices. ... 9
2.5.2 Aircraft avionics. .. 10

2.6 Update Package Authentication, Verification, and Unpacking 10

2.6.1 Aircraft avionics. .. 10

2.7 Software Update Installation .. 10

2.7.1 Medical devices. ... 11
2.7.2 Aircraft avionics. .. 11

2.8 Verification and Maintenance (Optional) ... 11

2.8.1 Aircraft avionics. .. 12

2.9 Related Security Issues .. 12

2.9.1 Secure boot features in relation to secure software update. 12

2.9.1.1 The chain of trust in software. .. 12

2.10 Lessons Learned From Adjacent Industry for security software updates............. 12

2.10.1 Industry/device attributes. ... 12

v

2.10.2 PC BIOS updates. ... 14
2.10.3 PC operating system and standalone application software update. 16
2.10.4 Printer firmware update... 17
2.10.5 Smart battery firmware update. ... 18
2.10.6 Medical devices. ... 18
2.10.7 Commercial aviation. .. 19
2.10.8 Summary of lessons learned in adjacent industry....................................... 20

2.11 Conclusion .. 20

3. Risk Assessment.. 21

3.1 Reference Vehicle Architecture Model .. 21

3.2 Baseline Threat Model and Methodology .. 22

3.2.1 Vehicle-level risks. ... 22
3.2.2 Threat actors. .. 23
3.2.3 Baseline threat model. ... 23

3.3 Attack Scenarios .. 27

3.3.1 Malicious control of vehicle. ... 27

3.3.1.1 Remote malicious control of many vehicles. 27
3.3.1.2 Remote malicious control of a small number of vehicles. 27
3.3.1.3 Near-range malicious control of a small number of vehicles. 28

3.3.2 Denial-of-service of vehicle. ... 28

3.3.2.1 Targeted, coordinated denial-of-service. .. 29
3.3.2.2 Ransomware. ... 29

3.3.3 Vehicle or contents theft. .. 29

3.3.3.1 Pairing an unauthorized key to a vehicle. ... 30

3.3.4 Intellectual property theft / private information exfiltration. 30

3.3.4.1 Eavesdropping. .. 30
3.3.4.2 Activity logger software installation. ... 31

3.3.5 Performance tuning or unauthorized feature activation. 31

3.3.5.1 Performance tuning. ... 31
3.3.5.2 Unauthorized feature or content activation. .. 32

3.3.6 Summary. ... 33

3.4 Technical Risks ... 33

3.4.1 Rogue software (malware) installation. ... 35

3.4.1.1 Real authority signs unauthorized software. 35
3.4.1.2 Supplier compromise. .. 35
3.4.1.3 Signing credentials are stolen. .. 36
3.4.1.4 Attacker forges signature on inauthentic software. 36
3.4.1.5 Attacker remotely exploits a software flaw. 37

vi

3.4.1.6 Attacker uses undocumented bypass functionality. 37
3.4.1.7 Attacker sneaks hidden functionality into app store. 37
3.4.1.8 Attacker with physical access installs malware. 38
3.4.1.9 Attacker installs malware with hacked OBD dongle. 38
3.4.1.10 Physical media tampering in transit. ... 38
3.4.1.11 Software installation tools are compromised. 38
3.4.1.12 Forged software bypasses system verification routines. 39

3.4.2 Denial-of-service. ... 39

3.4.2.1 Attacker masquerades as a legitimate server in distribution network. . 39
3.4.2.2 Attacker spoofs a legitimate ECU and tampers with software updates.40
3.4.2.3 Attacker spoofs legitimate wireless interface access point. 40
3.4.2.4 Jamming of wireless interfaces. ... 40

3.4.3 Unauthorized download of information. .. 41

3.4.3.1 Attacker masquerades as legitimate ECU to download data. 41
3.4.3.2 Attacker abuses data gathering functionality. 41
3.4.3.3 Man-in-the-middle / man-on-the-side. .. 42
3.4.3.4 Digital rights management circumvention. ... 42

3.5 Risk Assessment Discussion .. 42

3.5.1 Code signing. .. 42
3.5.2 Automatic updates. ... 42
3.5.3 Robustness against denial-of-service attacks. .. 42
3.5.4 Full software updates vs configuration tweaks. ... 43

3.6 Conclusion .. 43

4. Mitigation Methods ... 44

4.1 Definitions ... 44

4.2 Mitigations .. 45

4.2.1 Malware installation.. 46

4.2.1.1 Update authentication. ... 49
4.2.1.2 Secure channel (authentication and encryption).................................. 50
4.2.1.3 Secure in-vehicle networks. ... 51
4.2.1.4 Entity authentication. ... 51
4.2.1.5 User authentication and authorization. ... 55
4.2.1.6 Use a root-of-trust-for-update. ... 55
4.2.1.7 Protect keys and security-relevant data stored in ECUs. 56
4.2.1.8 Prevent bypassing of authentication mechanisms. 57
4.2.1.9 Prevent forgery or unauthorized generation of digital signatures. 57
4.2.1.10 Separation of duties. .. 58
4.2.1.11 Code reviews before code deployment. .. 58
4.2.1.12 Ethical hacking and penetration testing. ... 59
4.2.1.13 Quickly fix security bugs for in-house and third-party software. 59
4.2.1.14 Traditional IT best practices. .. 59

vii

4.2.1.15 App store security. ... 60
4.2.1.16 Physical security. ... 60
4.2.1.17 Secure vehicle architecture. ... 60

4.2.2 Denial-of-service. ... 61
4.2.3 Unauthorized download of information. .. 62

4.2.3.1 Update encryption. ... 63
4.2.3.2 Data gathering encryption. ... 64
4.2.3.3 Access policies. ... 64

4.3 Conclusion .. 64

5. Intellectual Property Theft Risks and Mitigations ... 66

5.1 Abuse Cases and Risks .. 66

5.2 Mitigations .. 67

5.2.1 Physical tampering protection. .. 68

5.3 DRM Circumvention ... 68

5.4 Conclusion .. 70

6. Counterfeit and Fraudulent Electronic Parts and Products................................ 71

6.1 SAE AS5553A .. 71

6.1.1 Personnel training. .. 73
6.1.2 Parts availability. .. 73

6.1.2.1 Planning and obsolescence management. ... 73

6.1.3 Purchasing process. ... 74

6.1.3.1 Risk assessment. .. 74
6.1.3.2 Supplier selection. ... 74
6.1.3.3 Supplier auditing.. 74
6.1.3.4 Applicability to automotive. ... 74

6.1.4 Purchasing information. .. 75

6.1.4.1 Supply chain traceability. ... 75

6.1.5 Verification of purchased/returned parts. ... 75
6.1.6 In-process investigation. ... 76
6.1.7 Failure analysis. .. 76
6.1.8 Material control. ... 76

6.1.8.1 Control of suspect, fraudulent, or counterfeit parts. 77
6.1.8.2 Applicability to automotive. ... 77

6.1.9 Reporting. ... 77
6.1.10 Postdelivery support.. 77

6.2 Applicability to Software Products and Software Components 78

6.3 Conclusion .. 78

viii

7. Conclusion ... 80

8. Glossary ... 82

References.. 89

Document History ... 92

1

1. Introduction

Electronic control units (ECUs), and the ability to update the software they contain, have been in
use for decades in vehicle control applications. Traditionally software updates have been the
domain of auto dealerships, service centers, and home mechanics with aftermarket programming
tools, and little or no authentication was required. With the introduction of wireless
communication within vehicles has come the potential capability to distribute software remotely
without attaching a programming tool to the vehicle controller area network (CAN) bus. The
advantages of remote software updates to vehicle manufacturers are reduced warranty costs,
improved customer satisfaction, and the ability to offer customers improved features and content.

The importance of software in computer system architecture makes it an attractive target for
attackers. Software modification attacks on various embedded systems have been demonstrated
repeatedly at hacking conferences and in academic publications. The capability of OTA updates
for vehicle software only widens the attack vector, making it possible for hackers to distribute
malware to millions of vehicles simultaneously.

While the threats with respect to an OTA update procedure with cybersecurity vulnerabilities are
daunting, there is a need to understand software update techniques, the potential threats, as well
as potential countermeasures. This project studies the cybersecurity of automotive software
updates. The objectives of this project are to define terms commonly used in this domain and
identify interesting attributes; survey available firmware update mechanisms used in the
automotive industry and across other industries; perform a literature review that also covers all
industries; assess cybersecurity threats due to software update methods and practices; and study,
and propose mitigation mechanisms.

2

2. Background, Definitions, and Literature Review

2.1 Background
Modern cars are controlled by complex distributed systems comprising millions of lines of code,
executing on tens of heterogeneous digital components known as ECUs. ECUs are
interconnected by serial data networks such as CAN, Ethernet, or FlexRay buses. They oversee a
broad range of functions including engine, transmission, brakes, steering, windows, locks,
lighting, and entertainment systems. Operations not mediated by computer control in a modern
vehicle are shrinking, increasingly so with the rise of automated driving technology. This shift
toward computer-controlled cars has offered significant benefits to efficiency, safety, and cost.
The ability to update firmware running on heterogeneous ECUs is an important part of routine
maintenance to fix software bugs, support new features, and improve performance of the vehicle.

Traditionally, software is installed during the manufacturing process, and updates are performed
in auto dealerships or service centers by trained mechanics using special programming tools that
are physically connected to cars. Today, while most vehicle manufacturers are distributing
software and data updates for infotainment features directly to vehicles OTA, only one, Tesla, is
performing OTA updates of ECUs that support safety-critical vehicle functionality [Bri12]. OTA
updates are made possible as modern cars become increasingly equipped with various wireless
communication interfaces, for example, Bluetooth, Wi-Fi, radio frequency identification (RFID)
near-field communications (NFC), dedicated short-range communications (DSRC), and cellular,
some of which provide internet access. The authors refer to wireless interfaces providing internet
access, generally, as wireless wide area network (WWAN) interfaces. Although OTA update
offer benefits such as reduced warranty costs and improved customer satisfaction, it also makes
remote attack through OTA update mechanisms possible and widens the possibility of undesired
operation. Moreover, the transition to OTA update will shift some of the responsibility for
successful completion of the update to end users. This means the OTA update process must be
implemented to be both secure and robust.

2.2 Software Update: Overview and Definitions
Software is a general term that can be defined as including one or more of the following:

• Bootloader: A small block of software facilitating the startup of an operating system or
firmware, and for performing updates.

• Operating System: The main software which facilitates the execution of one or many
applications.

• Application: The software which implements a feature/function on a computer or ECU.
• Data: Information that is necessary for proper execution of an application. In ECUs, this

is typically constant data that configures the application software for the specific vehicle
feature’s content.

• Firmware: Software designed to perform a set of functions that is updated infrequently.
• Over-The-Air: A software update distribution method which uses wireless transmission.

3

The software update process can be broken down into four individual process steps (described
further in Section 3):

1. Packing: Preparation of the software update for distribution.
2. Transport: Mechanism by which the update is transferred from the source to the target.
3. Reception: Receipt and initial processing of the software update data which includes

unpacking, authentication and consistency checks.
4. Installation: Process of updating the memory with the new software including validation

(i.e., what was received was installed properly, not to be confused with the authentication
which occurs during reception).

5. Verification and Maintenance (Optional): Ongoing security and robustness checks
throughout the life of the product.

These four mandatory steps are displayed in Figure 1. For a secure OTA update, an optional fifth
step of verification and maintenance could be useful to allow for periodic checks of consistency,
troubleshooting, and versioning information in a post update setting. While not immediately
falling under the scope of secure OTA updates, this fifth step can be used to determine the
conditions for follow-up software updates and alert the software distributor in the event of a
security problem because of unexpected changes in software versions.

Figure 1. Packaging, Transport, Reception, and Installation: The four mandatory software update steps.

2.2.1 Current automotive software update mechanism and best practices.
Firmware is a type of software that provides low-level control of computer systems, including
embedded systems, computers, computer peripherals, mobile phones, and so on. Firmware
derives its name from the fact that it is usually held in non-volatile memory that in normal
operation is considered read-only memory (ROM). Firmware is a subset of the term software,
and in this document, the terms are used interchangeably, although the emphasis remains on
firmware.

ROM technology has evolved from mask programmed devices that are truly read-only to devices
that can be erased and reprogrammed. The first of these were the erasable programmable ROM
(EPROM) that could be programmed electrically by applying special programming signals and
erased by ultraviolet light applied through a fused quartz window in the top of the package. This
was followed by electrically erasable programmable ROM (EEPROM) that can be both
programmed and erased via special programming signals.

4

Flash memory is a form of EEPROM. Uniquely, flash memory is erased in blocks whose sizes
are determined by the device implementation, whereas traditional EEPROM can be erased at the
byte level. The minimum erase block size also sets the minimum amount of memory that must be
written during any write event, since to write to memory, it must first be erased. Flash memory
may be grouped into partitions with each partition containing one or more erase blocks. In most
implementations, a flash ROM partition cannot be read while an erase or write operation is being
performed on any block within that partition. Flash memory is cheaper than traditional
EEPROM, and thus comes in larger capacities. Flash memory is the near universal ROM
technology used in automotive embedded control applications.

Error correcting codes (a.k.a. error correcting circuitry or error checking & correction, but
always abbreviated ECC) are now offered as a feature of flash memory for safety critical
embedded control applications and provide single-bit correction and multi-bit detection. This
requires storage of the ECC checksum during write of flash (performed automatically by
dedicated circuitry). For example, each ECC code might apply to each 64 bits aligned on a 0
modulo 8-byte address. This sets the minimum amount of memory that must be written to 8
bytes to ensure proper ECC code calculation.

Most ECUs are field updateable; that is, they contain a bootloader, which can receive new
software from the network (such as CAN or a wireless link directly in some cases) and
programming the ROM memory. Programming the memory is sometimes called “flashing” due
to the prevalence of flash memory. The bootloader resides in flash ROM also, but, on most
hardware, the code used to erase and write the flash ROM must run out of a different partition or
memory device, such as RAM. This bootloader differs from the bootstrap mechanism that is part
of the debug port of the microprocessor that is used during development. The bootloader is
software dedicated to providing the serial communications handler (typically CAN, supporting
the Unified Diagnostic Services (UDS) protocol), flash erase/write routines, plus any security,
code validation, and recovery features. The so-called secondary bootloader, including the flash
erase and write routines, has, historically, been downloaded over the network interface prior to
the installation step when the programming happens, but that design is not universal.

While the bootloader is designed to be robust and allow for recovery from failed programming
sessions, updating ECU firmware for critical components has been limited to the assembly plant
or dealerships where trained individuals could facilitate restarting/recovery of a failed update
process up to and including replacement of the ECU if necessary. Tesla is the exception to this
rule [Bri12]. However, the implementation details of Tesla’s OTA update mechanism are not
known and some owners have reported having issues during updates. OTA firmware updates to a
vehicle in the possession of the owner will necessitate increased robustness, in addition to
increased cyber security features, to ensure the vehicle is always left in a drivable state for all but
the rarest cases (where damage is extensive that the system cannot be brought back to a safe
operational state). Having even a modest percentage of customers adversely affected by a failed
firmware update is likely to be unacceptable to manufacturers and the public.

Updating firmware in ECUs relies on first erasing the existing firmware prior to loading in new
firmware into the same memory location to keep Flash memory size requirements to a minimum.

5

In the case of critical ECUs, this renders the vehicle unavailable from the time that the erase
begins until the new firmware is completely loaded. Requiring the ECUs to have double the
memory space, to provide for a complete firmware update prior to erasing the existing firmware,
is one proposed solution to this problem.

A stable power source is necessary during the firmware update to ensure success. Most OEMs
recommend that their dealership service technicians place the vehicle on a battery charger if
firmware updates are performed. Owners of electric or plug-in hybrids will be accustomed to
plugging in their vehicles, but it is unrealistic to expect owners of conventional gasoline and
diesel vehicles to own battery chargers (power outages are still a possibility).

Events that can lead to corruption, such as power failure while writing software to the flash
memory, can cause an ECU application to be unusable until a successful update can be
performed. In addition, the bootloader must be designed in such a way that it provides a means
of recovery in the event of an update failure. Otherwise, even worse than an ECU unusable
application, an ECU might become “bricked” where the hardware cannot be field repaired and
must be replaced. To minimize the probability of an unusable or bricked ECU and make the
update process fail-safe, some best practices include:

1. Separate program spaces. Firmware can be divided into multiple program spaces
including a bootloader, the firmware OS, Application and Data, and/or a backup program
with different read/write policies. In many cases, it is a good idea to have a well-
validated, read-only bootloader. However, not all hardware, due to cost constraints,
provides a mechanism to guarantee that.

2. Backup.
• In case the bootloader itself needs to be upgradable, a backup bootloader is essential

to prevent bricking.
• If memory allocation is not a problem, the new firmware image could be written into

memory in a separate memory space while retaining the current firmware image. This
allows for immediate recovery to full operation if the update fails.

3. Integrity/Checksum. It is a good practice that the bootloader always does an integrity
check before running the firmware application code (at start up, or after a download is
completed). Unsuccessful verification indicates corrupted updates. The bootloader can
signal to the user to re-start a new download or it can reset to default/previous firmware
stored on the device if it is still available in the memory.

2.3 Step-By-Step: The OTA Software Update Process
For the purposes of investigation and comparison to adjacent industries, UMTRI has broken
down the software update process to the basic components. This allows the research team to then
identify the benefits, drawbacks, and security implications during each process step of the secure
OTA update. This section provides a detailed description of each step and they are discussed
individually in the following sections.

Commercial aviation and medical devices are adjacent industries that seem to offer the most to
the auto industry since they are both safety critical applications and have some similarities in

6

platform and device architectures. The results of what was learned about them to date are
contained within the following sections. Discussions of PC software updates and the consumer
electronics industry are reserved for Section 2.10. Table 1 provides an overview of the update
process steps in the automotive and adjacent industry domains.

2.3.1 Packaging.
Packaging is how the data required to update an ECU is prepared for transportation to the
destination, (e.g., a vehicle service center, dealership, vehicle owner, website for further
distribution) which generally also includes the necessary documentation and a means by which
the update data is protected from both corruption and nefarious tampering by outside sources
during transport.

2.3.2 Transport.
Transport is how the package containing the necessary data makes its way to the target location
to be applied. In some cases, this may be by courier on physical media1 to a service technician
(wired/dealership), or, via secure HTTPS connection through wireless cellular modem directly to
an ECU. If not properly secured, the transport phase can be used as an attack vector to swap
authorized packages with unauthorized or modified versions, or to misdirect authorized packages
to an unintended destination leading to potential device compromise.

2.3.3 Reception.
Reception is when the intended ECU receives the package from transport, authenticates any
signatures contained in the package and validates the consistency.

2.3.4 Installation.
Installation is the means by which the data contained in the package is applied to a target ECU in
a target vehicle. As ECUs are networked together, the ability for one ECU to program another
emerges as a viable solution where only one ECU is exposed outside the vehicle via wireless
connection or a physical service port. Thus, these exposed areas must remain secure to ensure
only the appropriately authorized update data is applied.

2.3.5 Verification and maintenance (optional).
Manufacturers may query the status, versions, consistency, and ECU authentication to find issues
that may have arisen after an update occurs. This can be particularly useful in the event of an
ECU failing to update, thus reverting to its prior version, or to identify end-user modification to
the ECU’s software. Conversely, it may be desirable to upload the version of software currently
being run if it is not identifiable by the manufacturer and thought to have been modified by a
third party.

1 CD, thumb drive, etc.

7

 Automotive Aviation Medical Consumer
Electronics

Packaging Variable2
Standard process,
Physical Media or
“EDS Crate”

Variable Variable

Transport Wired/Wireless/D
ealership

Physical Media/
Secure Network to
Airline database.
Local wireless to
aircraft.

Physical
Media Wireless

Reception Single Module In-Plane
Manual
download/
extraction

Automatic

Installation
Single Module,
Manual
application

Single Module,
Manual
application

Single
Module,
Manual
application

Device,
Automatic
application

Verification &
Maintenance Post-Application

Post-Application
Continual-
Local wireless to
aircraft.

Post-
Application
Inspection

Continual

Table 1. Overview of Update Process Steps of Adjacent Industries.

2.4 Software Update Packaging
There are many possible ways to package a software update for application in the target system
depending on the intended application. Encryption may be required, but generally encryption is
used to ensure the privacy of the information the package contains and does not ensure the
authenticity of the package. Encryption methods are not discussed here.

2.4.1 Complete image overwrite.
The simplest way to implement software updates is to overwrite the entire firmware image. This
is by far the most widely used firmware update method in the auto industry today. However, it
introduces unnecessary wear and tear (erase/write cycles), prolongs the update time, especially
when the actual change is small and increases both the storage space and bandwidth needed to
store and transfer the image.

2 Packaging of software updates for the automotive, medical, and consumer electronics industries can be done in
many different ways.

8

2.4.2 Delta update.
Delta update or differential update is an update mechanism where only the difference between
different versions is updated. Major automatic OS update implementations, such as Windows’,
use this method to reduce unnecessary communication cost. Delta updates can add security
through obscurity, as patch files may be more difficult to dissect than full updates in the event
they are intercepted by a malicious user. Although delta updates are effective in reducing
communication cost in theory, they may bring additional issues due to the characteristics of flash
memory and the increased complexity of the update process.

First, as firmware is usually stored in flash memory, the characteristics of flash memory needs to
be considered. Flash memory requires explicit erasure before data can be written. One cannot
write over existing data directly. Moreover, erasure in flash memory is done in units of blocks or
pages. Unchanged data may have to be shifted to accommodate the new written data of different
sizes. To solve the problem of shifting code, fragment layout has been proposed by inserting
gaps between partitions (i.e., erasure units). However, this approach leads to fragmentation. It
may no longer be effective after a series of firmware updates.

Control-flow dependency is another problem of shifting code. Once a called function is updated,
all the caller functions need to be updated with the new address, and these caller functions may
reside in different partitions. Indirect call through a jump table is a common solution to solve the
control-flow dependency. Whenever there is a called function update, only the jump table needs
to be updated. However, it incurs runtime overhead for each function call. The commercial
software industry offers several solutions for performing delta updates, for use in different
system architectures, while supporting many image formats. Some solutions claim to have
automotive editions that are Motor Industry Software Reliability Association (MISRA)
compliant to promote bug-free operation through strict source code auditing. Free software
solutions for creating this type of data also exist, such as xdelta and bsdiff, which allow for
customized solutions without commercial overhead costs. In the update of software images that
contain file systems used by operating systems, a differential update can be implemented to
modify only the individual files on the filesystem, rather than update the entire image. As the
files being updated may be the same files used at runtime, this patching method may have to exit
normal operation modes and enter a programming or recovery mode to accomplish this
operation. Having a redundant recovery mode may also be desired by a system implementation
to direct a user in the event of a failed programming operation or general system failure.

2.4.3 Dynamic update.
Traditionally, firmware update involves overwriting existing firmware in a flash memory, and
restarting the computing system to execute the new firmware so that the new firmware can take
control of hardware resources. Dynamic update is an update mechanism that is used to update
software systems while they are still running, and there is no need to stop and restart the system.
If any running program is presented as a tuple (S, P), where S is the current program state and P
is the current program code, dynamic update can be thought of as a transformation from a
running program (S, P) to a new version (S’, P’).

9

Dynamic update is not commonly used in industry although a wide variety of dynamic systems
has been proposed by the research community and tested on real-world systems. Some
distributions of Linux systems such as Oracle Linux and Red Hat Linux use dynamic update
techniques for live kernel patching [Vau15]. Unisys’ patent for “Dynamic Firmware Updating
System for use in Translated Computing Environments” provides a mechanism for dynamic
firmware updates in a running computing system [U12].

There are no known example companies within the auto industry adopting dynamic updates yet.
Still, dynamic update might be interesting as it does not require the system to be stopped first.
For example, dynamic update can be used to deploy a security fix on a running and vulnerable
vehicle system. Imagine an attack on vehicles in a major metropolitan area during rush hour
traffic; rapid restoration of traffic flow would require a dynamic update process.

2.4.4 Distributed update.
Another approach is described extensively in [SKHR15]. An IEEE 802.11s mesh network is
used for distributing software update files. An 802.11s wireless device is plugged into the
vehicle’s on-board diagnostics (OBD) port, which connects to both the vehicle’s CAN bus and a
mesh network in the local area. A technician with an 802.11s-enabled device (laptop, tablet, etc.)
could join the network, transmit update instructions and data to the device connected to the
vehicle, and diagnose any issues that arise.

2.4.5 Aircraft avionics.
Prior to networked means of distributing Loadable Software Aircraft Parts (LSAP), hard media
(floppies) were sent to the airline maintenance centers. They were carefully labeled and sent by
bonded courier. With the advent of secure network protocols, the industry developed the
Electronic Distribution of Software (EDS) Crate, as described in the ARINC 827 standard
[AR827], “This standard describes the format for electronic distribution of aircraft software parts
and other contents between aerospace business partners using a digital container referred to as an
EDS crate.” This standard established the format and authentication requirements for LSAP
transferred electronically. The LSAP is digitally signed, any required paperwork is added, and
the entire package is signed again. Complete image overwriting is done since each new LSAP is
a separate part from any that it replaces and a maintenance technician is required to validate and
test each new part installation.

2.5 Update Package Transport
Transport is described in Section 2.3.2. The package transport is likely one of the most important
aspects of the secure software OTA system. Any vulnerability in the transport mechanism may
lead to the inability to reliably communicate with a vehicle in the field, loss of intellectual
property via unauthorized interception, or possibly even leaving vehicles susceptible to third-
party reprogramming and control.

2.5.1 Medical devices.
The initial investigations have shown that the distribution and transport of updates for medical
devices is largely at the discretion of the device manufacturer. Generally, packages are

10

distributed over the internet and accessed by the end professional via the service website. In one
instance, surveys showed that device updates for a basic heart monitor are generally available
without authentication, on a website designed specifically for download by the medical IT staff.
While in the case of larger imaging devices, medical IT staff said that the websites require
identification of the machine to be updated (via serial number) prior to making a package
available for download.

2.5.2 Aircraft avionics.
As with the packaging, there also are standards for the transport of LSAP electronically. ARINC
Report 666 [AR666] states: “This document describes a secure internet facility for sending all
types of aviation software using the World Wide Web (www). Software suppliers may use this
document as a starting point for the construction of a secure web server utility. It provides
sufficient flexibility and is compatible with numerous software distribution models. The file
management structure is consistent with other ARINC standards for loadable software, and
references ARINC 665 (Loadable Software Standard) [AR665] and ARINC 667 (Guidance for
the Management of Field Loadable Software) [AR667]. While some flexibility exists in
implementing the transport step, the standards do create an environment of careful management
and security for LSAP distribution on the web. Also, like the medical devices, airlines are
notified by the manufacturer when an update is available and it is the responsibility of the airline
to retrieve and apply the update.

2.6 Update Package Authentication, Verification, and Unpacking
Once received by the destination vehicle, the package must be checked for consistency and its
authenticity verified to remain secure. Optionally, a package may be decrypted if encrypted at
the time of packaging. Encryption protects the privacy of the package content but does not prove
its authenticity. Generally, the operations in this step will entirely depend on the operations used
at the time of packaging. Ideally, this data should not be decrypted or unpackaged in a place that
is readable or accessible by the end user.

2.6.1 Aircraft avionics.
ARINC 835 (Guidance for Security of Loadable Software Parts Using Digital Signatures)
[AR835] establishes the standard for use of digital signatures for authentication. As noted in
section 5.2.2, the LSAP within the EDS Crate is signed, and the assembly of LSAP and
documents within the crate is signed separately. As stated in Section 2.5.2 it is the responsibility
of the airlines to retrieve the crate from the manufacturer when it has been made available.

2.7 Software Update Installation
The installation of the unpackaged data will largely depend on the architecture of the target ECU
(single or multiprocessor, etc.), the type of data being updated (application software,
configuration data, calibration data, etc.), the state of the vehicle, and any input that may be
required by the user. Care must be taken to ensure the vehicle is in a prepared state to perform an
update operation; the use of ignition or transmission locks may be necessary to ensure safety, the

11

state of charge of the battery should be taken into consideration to ensure robustness, and proper
user instruction is required.

2.7.1 Medical devices.
The current findings indicate that installation of software on these devices is done strictly by a
medical IT professional. These professionals have a general understanding and/or specific
training on the device being updated, and in some cases, specific login credentials to the device
as well as credentials to retrieve the update from the manufacturer’s website.

2.7.2 Aircraft avionics.
Airlines work in cooperation with the manufacturers to establish proper electronic inventories for
their software parts. These are the repositories where the LSAP are loaded when retrieved from
the manufacturer. The LSAP are transferred to the aircraft via a local secure wireless connection
provided by the airline at some airports, and each aircraft has keys for validating the connection.
The LSAP is then transferred to the aircraft and staged for installation. The LSAP remains staged
until a maintenance professional can assess the aircraft for the final installation, verification, and
testing of the LSAP.

2.8 Verification and Maintenance (Optional)
While not entirely scoped to the secure OTA update process, the manufacturer’s desire to query
the status, versions, consistency, and ECU authentication of the vehicles they are responsible to
update in the field is roughly estimated to increase in a similar pace as the desire to deploy OTA
update functionality. The useful information that can be attained in a wireless and unattended
manner can also give manufacturers further insight into how often these vehicles are serviced by
third-party technicians, how often equipment fails, how much distance the vehicle has driven,
and possibly even which radio station is listened to most often or other personal operator
statistical data.

In the scope of secure OTA update, the ability to query the status, version and current state of the
module allows a manufacturer to structure a differential update specifically for that ECU.
Generally, to apply a binary patch (such as in a differential update) to a specific piece of
software, both the current and desired versions must be entirely known. A difference is taken at
the development facility between the desired and current versions, and those differences are
stored in what is known as a patch or a diff. This patch can then be applied to the current version
deployed in the field to create the desired version on the target dynamically. If the current
version in the field differs from the current version in the development facility, the patching
operation will fail.

The transmission of this differential data is desired from a security aspect as it allows for some
protection against reverse engineering. In the event the transport mechanism is ever
compromised, the attacker would end up with only a partial record of the data in the ECU
contained in a differential update. Compared to a compromise in a full update transmission, an
attacker will only have bits and pieces of the data. This makes it much more difficult for the
attacker to understand the inner workings of the ECU.

12

2.8.1 Aircraft avionics.
Commercial aircraft are subjected to constant maintenance that is mandated by the Federal
Aviation Administration (FAA). The loadable software parts are tracked and logged just as any
other aircraft component. Commercial aircraft carry a means of maintaining a spare copy of all
LSAP on board if a hardware component fails, is replaced, and needs the LSAP installed. This
means that once the LSAP is loaded on the aircraft, it can be reinstalled in the target device
locally, provided a maintenance professional is available.

2.9 Related Security Issues
2.9.1 Secure boot features in relation to secure software update.
Secure boot is a feature being offered by many manufacturers of system-on-chip (SoC) devices,
such as Texas Instruments and Freescale Semiconductor. The secure boot feature generally
includes the ability for the SoC device to cryptographically authenticate and verify the initial
bootloader prior to execution in the normal boot process. Once the initial bootloader has been
loaded, verified, and executed, the secure boot hardware feature has no further responsibility for
the security and functionality of the system for the remainder of the boot cycle. The bootloader
must check the rest of the software components for authenticity prior to execution, forming a
chain of trust down to the hardware boot.

2.9.1.1 The chain of trust in software.
Chain of trust is a term used in a secure boot environment, where all software executed must be
authenticated by previously authenticated software. In the simplest example, a secure boot device
will load and authenticate the bootloader. The bootloader would then load and authenticate a
firmware image. The bootloader would only execute the image if authentication was successful.

The above example can be extended to an ECU with a general-purpose operating system such as
GNU/Linux, Android, or QNX by simply replacing the firmware image with the initial program
loader of the desired system. At that point, the entire basic operating system environment will
have been authenticated and can be deemed secure. It would then be the responsibility of the
running system to verify applications, libraries, and data being used at runtime.

This chain of trust must be carefully observed during software development, as any component
that can load and execute software must also have the capability of verifying that software prior
to execution.

2.10 Lessons Learned From Adjacent Industry for security software updates
In the previous sections, details were included from both the commercial aviation and medical
industries. In this section, the authors summarize the lessons learned while reviewing the state of
the art in similar industries to automotive, including consumer electronics.

2.10.1 Industry/device attributes.
During investigations into related industries, the researchers found it helpful to not only consider
the update process steps but also consider aspects of the industry/device attributes. Table 2

13

provides a comparison of attributes among the adjacent industries, both current and future, and a
description of each attribute follows.

• Update Methodology: Refers to the type of firmware-loading mechanism that is used. A
low-level methodology uses the microprocessor debug port (e.g., IEEE-ISTO 5001-2003,
a.k.a., Nexus). A high-level methodology uses a bootloader that contains additional
features (usually for in-service reprogramming) such as serial port driver (e.g., CAN
driver), checksum validation, and/or authentication.

• Update Target: Data, applications, OS, or all levels of software and data within the
target.

• Communications Channel: Wired (OBD port, USB), OTA, mixture (OTA to data
logger and then physical connection to target), and hard media.

• User and Access Level: End user, specialist (doctor or nurse), elevated (IT professional,
aircraft mechanic), minimal or none (automatic).

• Interaction: Automatic (e.g., PC updates), minimal user interaction (user request or
acknowledgement of update), professionally trained technician (aircraft mechanic, IT
professional, auto service technician).

• System Topology: Many networked devices each of which can be updated (e.g.,
automobile, aircraft), single networked devices (e.g., smart phone, PC, medical device).

Multicore devices with shared memory or connected via an on-board bus, such as a serial
peripheral interface (SPI) or an inter-integrated circuit (I2C) bus are considered single devices.

The commercial aviation industry is like the auto industry in many ways: both automobiles and
aircraft have many hardware devices containing loadable firmware components, both industries
have a need/desire to track installation of those updates across their fleets, and security of the
update process is considered critical to safety. However, in the future, the auto industry would
like the User and Access Level and Interaction attributes to move towards those of consumer
electronics in that the OEMs want to require no expertise and little interaction from the vehicle
owner beyond notifications that are necessary; commercial aviation will still rely on the airlines
and their trained maintenance staff.

The important distinction between “Interaction” and “User and Access Level” is that
“Interaction” refers to the level of knowledge or skill level required to perform the update
whereas “User and Access Level” refers to who is permitted access. For example, updating a
device may be as simple as hitting “enter” when prompted, but the same device may first prompt
for a password that is only known by the IT professional (Minimal interaction but with Elevated
access).

14

A
tt

ri
bu

te
s

Adjacent Industries

Current/Future Automotive Commercial
Aviation

Medical
Devices

Consumer
Electronics

Update
Methodology High High High High

Update Target All All All All

Communication
Channel

Wired/

Wireless

Hard media /
Wired
(Electronic
Crate)
Mixture

Wired/
Mixture Wireless

User and
Access Level

Specialist / End-
User, Minimal Elevated Elevated End-user/None

Interaction
Professional/

Minimal
Professional –
FAA cert. IT Professional Automatic /

Minimal

System
Topology

Distributed
system

Distributed
system

Single micro-
controller

Single micro-
controller

Table 2. Comparison of Attributes Across Adjacent Industries.

Will it be possible to provide the ease of update for consumer electronics while retaining the
security of commercial aviation and medical devices? Tampering with an aircraft or aircraft
components is a Federal offense, and the risk of terrorism means aircraft systems are not
physically accessible by the public. Medical devices are not readily accessible to the public, and
there is little to be gained monetarily from hacking them. In the automotive industry, the Library
of Congress has decided that altering computer programs in cars for modification and repair is
exempt from the Digital Millennium Copyright Act’s (DMCA) provisions on technology
circumvention [LOC14]. Aftermarket products for modifying automobile performance through
changes to hardware and software within the ECUs are a big business and will continue to be.
Traditionally, the auto industry has looked the other way regarding aftermarket software
changes, and it has even been said anecdotally that it is a marketing feature of the high-
performance cars (auto enthusiasts may purchase the vehicle knowing it can be later modified for
greater performance). So, the auto industry faces the challenge of trying to provide owners with a
secure and robust software update process without destroying the aftermarket possibilities where
possible.

2.10.2 PC BIOS updates.
System firmware on modern computers is also known as the system basic input/output system
(BIOS). The primary function of the system BIOS is to facilitate the hardware initialization and
testing process and to load the operating system. It is initially distributed to the end users by
computer hardware and may later be updated by computer manufacturers to fix bugs, patch
vulnerabilities, and support new hardware.

15

Older desktop and laptop computers (pre ~2012) use conventional BIOS firmware often
executing in the 16-bit real mode (no memory protection, multitasking, or code privilege levels).
Newer computer systems use firmware based on the Unified Extensible Firmware Interface
(UEFI) specification running in 32- or 64-bit protected mode (protected virtual addressing and
safe multitasking) on the CPU. UEFI firmware is designed to replace conventional BIOS.
Compared with conventional BIOS, UEFI firmware has better security, faster startup times and
resuming from hibernation, supports larger drives, and additional benefits. Industry computer
systems are now shipping with UEFI BIOS.

In both conventional BIOS and UEFI BIOS, the first task after the firmware is running is to
execute the core root of trust of the system. This is done through a small core block of firmware
which executes first and can verify the integrity of the rest of firmware. This small core block of
firmware is usually logically separated from the rest of the BIOS. It is traditionally known as the
BIOS Boot Block. After the core root of trust is established, the system BIOS initializes and tests
key hardware on the computer system, loads and executes additional firmware modules, selects
the Boot Device where the operating system resides, and finally loads and hands the control to
the operation system.

Due to the BIOS’s unique and privileged position in the PC architecture, unauthorized
modification of BIOS firmware constitutes a significant security threat. Malicious code running
at the BIOS level can compromise any components that are loaded later in the boot process.
Because the BIOS is the first piece of software that runs after the system is powered on, malware
at the BIOS level is very difficult to detect as anti-malware products running in the OS have no
opportunity to authoritatively scan the BIOS. Malware written into the BIOS can be used to re-
infect the computer system even after new operating systems are installed and hard drives are
replaced because the BIOS is stored in persistent non-volatile memory. An attacker can also
corrupt the BIOS to cause permanent denial-of-service.

The National Institute for Standards and Technology (NIST) provides BIOS protection
guidelines in its Special Publication 800-147 [NIST11]. Guidelines in NIST 800-147 are not
designed to cover all threats during the system’s lifetime. Instead they focus on preventing
potential threats due to vulnerabilities in BIOS security controls, BIOS itself, and network-based
system management tools, assuming the system arrives with the manufacturer’s intended system
BIOS installed. The objective is to maintain the integrity of the BIOS by securing the BIOS
firmware update mechanism. System BIOS updates should be performed either though an
authenticated mechanism or through a secure local update without using the authenticated update
mechanism.

Authenticated Update. In the authenticated BIOS update mechanism, each BIOS update image
should be digitally signed before being delivered to a computer system. Update only proceeds
after the image is successfully verified. The computer system contains a public key for
verification and a signature verification algorithm. The public key and signature verification
algorithm are part of the Root-of-Trust-for-Update (RTU). NIST recommends that the RTU,
including the verification algorithms and keys, be stored in a protected fashion in the computer
system, as any unauthorized change to the RTU will compromise security of the system.

16

Secure Local Update. Alternatively, system BIOS updates can be performed through a secure
local update without using the authenticated update mechanism. However, the secure local
update mechanism should only be used in special conditions such as loading the first BIOS
image or recovering a corrupted BIOS that cannot be fixed through the authenticated update
mechanism. Additional protections (e.g., requirements of user presence, administrator password,
unlocking of a physical lock) may be implemented before the system BIOS is permitted to be
updated.

Integrity Protection. Both the secure BIOS update mechanisms rely on the integrity protection of
the RTU and the system BIOS. There should be a protection mechanism to protect the RTU and
the system BIOS from unintended or malicious modifications. The protection mechanism itself
should also be protected from unauthorized modification.

Non-Bypassability. The design of the system and accompanying system components shall ensure
secure BIOS update mechanisms (authenticated update mechanism and secure local update
mechanism) cannot be bypassed by any system processor or system component. Even when
some system components may have read access to the flash memory, they shall not be able to
modify the system BIOS except through the authenticated update mechanism or through the
secure local update mechanism with user intervention.

The NIST document also recommends best practices for managing system BIOS, focusing on
key activities around provisioning, deploying, managing, and decommissioning of the system
BIOS in an enterprise environment.

2.10.3 PC operating system and standalone application software update.
In 2006, Bellissimo, Burgess, and Fu published an analysis on the security of automatic update
mechanisms for major operating systems and standalone application software [BBF06]. The
authors analyze the mechanisms’ resistance to man-in-the-middle attacks mainly through
answering the following two questions:

a. Is the update distributed through a secure channel?
b. Is the update digitally signed?

The answers the authors found to those two questions for several popular PC software projects,
including Windows and MacOS general-purpose operating systems, are show in Table 3
[BBF06].

17

Software Authenticated Connection? Authenticated Binaries?

Apple Software Update No Yes

Windows Update Partially Yes

Adobe Acrobat No Yes

Microsoft Office No Yes

Mozilla Firefox Partially No

Fugu No No

McAfee VirusScan No No

McAfee VirusScan Enterprise Unknown Yes

McAfee Virex No No *

Debian No Yes

Table 3. Comparison of Major OS and Common Applications [BBF06]. This table is based on the data published in
Bellissimo, Burgess, and Fu.

This study shows that operating systems (e.g., Windows, iOS) tend to have better designed
update methods than standalone application software (e.g., Mozilla, Fugu) in that

• Updates are usually distributed through trusted content distribution networks/servers;
• Software is digitally signed under well-known public keys.

The paper also points out that firmware update for embedded devices face additional challenges
by comparing with PC OS and application software updates. Embedded devices usually have
only sporadic network connectivity and limited local resources. Also, there is a lack of trusted
infrastructure for embedded devices.

2.10.4 Printer firmware update.
[CCS13] presents techniques for exploiting firmware update vulnerabilities in HP LaserJet
printers. The authors implement a proof-of-concept printer malware (capable of network
reconnaissance, data exfiltration, and propagation to general computers) and conduct a case
study with HP-RFU (remote firmware update) LaserJet printer by mounting a firmware
modification attack. The attack is based on a fundamental design flaw in the HP-RFU procedure.
In HP-RFU, an RFU file is printed to the target device via the raw-print protocol over standard
channels. HP- RFU works as follows:

• When a print job is received, the printer uses a proprietary mechanism to determine the
presence of a valid firmware update package;

• If a valid RFU package is present, the integrity of the RFU payload is verified and
decompressed; and

• Then the payload’s unpacked payload is written to persistent storage.

18

As can be seen from the RFU process, firmware modification is coupled with the printing
subsystem, which must accept incoming printing requests in an unauthenticated manner as
per general specification. This means anyone can issue an update request in the form of a print
request containing their own update/attack. This attack could be potentially prevented through
firmware update signing such that only RFU files that are digitally signed by the manufacturer
can be written to the persistent storage.

In their study, the authors also find that firmware can contain known vulnerabilities found in
third-party libraries. Firmware update signing is NOT the panacea of embedded defense because
mandatory firmware signature only allows known vulnerable code to be signed and verified. It
does not help in removing the actual vulnerabilities, detecting, or mitigating the exploitation of
the actual vulnerability.

The authors discuss two defense techniques to prevent or mitigate firmware modification attacks.
One is a fortification technique that tries to output a security hardened, functionally equivalent
variant of the original. The other is to inject intrusion detection functionality into the binary
firmware of existing embedded devices.

2.10.5 Smart battery firmware update.
Reference [M11] demonstrates how to hack MacBook battery firmware updates (of a specific
battery model). This attack is possible due in part to Apple’s use of default passwords for both
unsealing the battery and opening full access mode to it.

The authors can also disable the checksum so that they can make changes in updates.

2.10.6 Medical devices.
Reference [HRMP11] uses a case study to show that medical devices have firmware update
features that are not sufficiently protected by proper user authentication. Vulnerabilities found in
an automated external defibrillator (AED) include

• Software module with integer/buffer overflow vulnerability
• Weak password authentication

o Password stored locally and
o Password obscured using XOR

• Credentials stored in plaintext
• Improper use of weak CRC as digital signature

The paper does not give details about the firmware update process. The Food and Drug
Administration (FDA) leaves it up to the device manufacturers to determine how to distribute
and install firmware updates.3

3 www.fda.gov/downloads/MedicalDevices/DigitalHealth/UCM544684.pdf

19

In addition to meeting the FDA’s quality system regulations, section 164.306 of the Health
Insurance Portability and Accountability Act of 1996 (HIPAA), titled “Security Standards:
General Rules,” contains requirements for the security of electronic protected health information
(PHI) by covered entities and their business associates. The requirements listed in this section are
quite flexible, thus permitting a covered entity and business associates to use any security
measures that “reasonably and appropriately implement the standards and implementation
specifications as specified in this subpart.” [45 CFR § 164.306(b)(1).] by design and calls for a
covered entity or business associate to ensure the confidentiality, integrity, and availability of all
electronic protected health information against reasonable threat. In practice, this permits device
manufacturers to decide what works best for their equipment.

Two individuals involved in medical device firmware updates were interviewed and described
the medical device firmware update process as detailed below. The devices discussed to date are
interesting in that they are representative of the extremes in terms of the types of devices that are
considered medical devices, and the very different level of security required.

Simple devices include monitoring devices that do not record or log patient information. In the
specific case of the device discussed, it is updated by anyone with the appropriate update
contained on a USB stick. The update files for this device are distributed by a website and are
freely available to anyone with knowledge of the appropriate link, which is not published and
difficult to guess.

Complex devices include sophisticated imaging devices that capture and retain data directly from
a patient. These hold private patient information and require authentication from the skilled
technician to simply operate. Further, a separate authentication is required to enter a service
menu to select a firmware update procedure. The maintenance professional first logs into the
manufacturer’s website from a PC to download the firmware update package. The serial number
of the device to be updated must also be entered before an update package can be downloaded.
The update package is then transferred from the PC to hard media for installation in the imaging
device. Since the update package is specific to the device by serial number, it cannot be used on
any other device even if the password required to enter the service menu of the device is known.
This device-specific process provides a measure of security but it also guarantees that the
software update has been validated on the hardware specific to the device, in the case where
hardware differences may exist between devices that otherwise appear to be identical.

More participants are needed who can provide information about additional medical devices,
such as surgical robots and laboratory test equipment. It has been learned through literature
reviews that great (perhaps more) effort is also placed on protecting patient records in addition to
protecting the integrity of the firmware for devices that hold patient information.

2.10.7 Commercial aviation.
Perhaps the most salient comment made during the interviews with commercial aviation
professionals was: “Nothing changes without someone touching the aircraft.” The team
concludes from the interviews that it is not in the foreseeable future that commercial aircraft will
receive software/firmware updates directly from the manufacturer via OTA transmission without
intervention from an aircraft maintenance professional. Additionally, it continues to be the

20

responsibility of the airline to ensure their fleet is maintained, including performing software
updates as necessary.

2.10.8 Summary of lessons learned in adjacent industry.
Common existing defense mechanisms:

• Trusted content distribution network
• Digitally signed software update

Common existing vulnerabilities:

• Software vulnerabilities
o Software bugs, (e.g., buffer overflow)
o Known vulnerabilities in underlying third-party libraries

• Weak (user) authentication
o Weak password
o Default password
o Password stored locally (and can be extracted through reverse engineering)

• Weak/improper software authentication
o E.g., CRC is used as digital signature for HP LaserJet printers.

• System design vulnerability
o E.g., update is coupled with raw printing service -> (should be secure) update

function is requested through low-security printing service.

Potential defenses for secure vehicle firmware update:

• Secure software engineering
o Secure software design
o Static and dynamic analysis

• Secure cryptographic primitives
• Secure update protocol design
• Secure software attestation

2.11 Conclusion
There is no single, perfect reference model for securing software updates. Every application has
different requirements, and user experience shapes the design enough to require security to be at
a minimum analyzed and usually designed with the application in mind. Even though there is no
one-size-fits-all software update architecture, there are several mature industries and products
from which the automotive world can learn the commercial aviation field is very like
automotive. In Section 2, the authors presented different approaches to software updates,
particularly securing them, across similar industries and electronics products in general.

21

3. Risk Assessment

This section provides a risk analysis of software update mechanisms that are currently being used
or considered in automobiles and attempts to lay the groundwork for further identifying,
analyzing, and mitigating risks identified now and as the technological path unfolds. In this
section, different risks are identified and assessed. In the following section, mitigations to
address these risks are detailed.

3.1 Reference Vehicle Architecture Model
The research team assessed the risks posed by software update mechanisms in current and near-
term future automobiles. For that purpose, they defined some reference models of the software
update capabilities and vehicle electrical architecture to support those capabilities. In this risk
analysis, a high-end, high-connectivity (current model year) vehicle was targeted, which is most
likely to contain more software update mechanisms and paths than a lower-end or lower-
connectivity (older) vehicle.

Today, Tesla already performs remote updates over an internet connection while the vehicle is in
the customer’s possession for both fixing issues and licensing newly purchased content [Tesla16]
[Mas15]. For that reason and because of the high level of automation in Tesla vehicles as
compared to competitors, the Tesla Model S makes a good choice for a reference vehicle.
However, there are many data paths for software updates, and different automakers use different
combinations of connectivity interfaces. For that reason, the researchers consider the features of
the Tesla (as a level 2 automated passenger vehicle). However, for identifying technical risks
with software update mechanisms, we consider the whole swath of current or near-term potential
transmission mechanisms for software updates such as OBD port, Bluetooth, Wi-Fi, or cellular
data connection.

The risk assessment will cover the traditional, OBD-attached software update mechanism,
particularly as we relate those methods to newer ways of delivering software and firmware
updates to vehicles. Traditional, OBD-attached software updates can have a variety of potential
differences from vehicle to vehicle, such as travelling over a different data link layer (e.g., CAN
[ISO11898], J1850 [J1850]) or what diagnostic protocol is used (e.g., UDS [ISO14229],
KWP2000 [ISO14230]). In addition, emissions related ECUs are mandated to support the SAE
J2534 standard PC software tool application programming interface standard [J2534]. Tools
implementing J2534 are easy to use and readily available to the public. The authors consider the
following software update (transmission) mechanisms:

1. [Wireless internet] Updates over a cellular connection with internet access.
2. [Wireless internet] Updates over a Wi-Fi connection with internet access.
3. [Wireless internet] Updates over an OBD-attached dongle with internet access.
4. [Wireless long-range] Updates over a satellite link.

22

5. [Short-range wireless internet] Updates through a Bluetooth-attached mobile device.
6. [Short-range wireless] Updates over short-range RF link (standard or proprietary).
7. [Short-range wireless] Updates over an OBD-attached dongle with short-range RF

link.
8. [Wired] USB thumb drive updates.
9. [Wired] Traditional updates with an OBD port-attached device.

3.2 Baseline Threat Model and Methodology
The purpose of the baseline threat model is to identify the vehicle-level impacts, severity, threat
actors, and attack scenarios in modern and future automobiles. The baseline risks and threats can
be viewed as the end goals of a would-be attacker (a threat actor). These vehicle-level risks have
some motivating appeal to some subset of unauthorized parties, which we attempt to coarsely
quantify. In addition, baseline risks have some potential damage to stakeholders, which can also
be quantified. Detailed threat modeling at different levels is a whole activity itself. In this risk
analysis of software updates, the baseline threat model applies to software updates specifically
and is not a comprehensive threat model of the full vehicle, which is beyond the scope of this
risk analysis of software update mechanisms. The baseline threat model is presented here to
motivate and frame the more technical software updates risk analysis that follows in this section.

In this section, some potential malicious parties (i.e., threat actors) are listed. Threat actors are
the groups or individuals with motives to carry out attacks (specifically, cyber-attacks) on
automobiles. A threat model identifies the highest-order cybersecurity risks, specifically those
that can be described naturally in terms of a realistic potential attacker with some motivation and
ability to succeed.

Throughout the remainder this document, we will present the highest-order risks in a few
different ways, including discussion of the high-level attack scenarios. We then identify the
technical risks, which might lead to a realized attack for any one of the higher-level risks.

3.2.1 Vehicle-level risks.
The following risks apply, at a high-level, to the whole vehicle. The items represent bad
outcomes that an attacker might want to cause for some gain. Each vehicle-level risk is
considered for a single vehicle only. With long-range attack vectors, such as a cellular module
with full or filtered internet access, it becomes possible for an adversary to produce one or more
of these attacks on several vehicles at the same time and in coordination. The vehicle-level risks
for an automobile are

• Intentional vehicular crash.
• Disruption of operation (for example, loss of some or all controls while driving).
• Disruption of service (for example, the inability to use a parked vehicle).
• Coordinated attack (involving one or more of the prior attacks in coordination).
• Vehicle theft.
• Vehicle parts or contents theft.

23

• Intellectual property theft.
• Private information theft.
• Unauthorized activation of upgrade features (e.g. software piracy).
• Aftermarket performance tuning.

3.2.2 Threat actors.
Table 4 lists the threat actors that were identified. These are the entities with some motivation to
carry out a cyber-attack on a vehicle. Threat actors are the identified theoretical adversaries and
their associated resource access and motivations, which influence their likelihood to carry out a
cyber-attack on an automobile. The threat actors and their associated resource access and
motivations are listed in Table 4.

Threat Actor Resources Motivation

Nation states
Well- to very well-funded
Backed by military force

Self-defense
Control

Ideological

Terrorist groups
Moderately to well-funded

Backed by militia

Control

Ideological

Organized crime
Moderately to well-funded

Backed by violence

Financial

Control

Activists/ideologues/terrorists or
small groups Minimally funded

Ideological

Attention

For-profit BlackHat hackers or small
groups Minimally to well-funded

Financial
Attention

Thieves or small groups Minimally to moderately funded Financial

Aftermarket tuners (owners or third
party) Minimally to moderately funded

Financial

Sport

Owners
Minimally funded

Financial

Sport

Table 4. Threat actors.

3.2.3 Baseline threat model.
Table 5 provides a baseline threat model for a vehicle. Because the threats are not tied to
functionality, this threat model is not software update functionality-specific. However, this threat
model gives a good reference of the types of threats that apply to a modern or near-term future
automobile.

24

The threat model serves to provide the highest-order risks to the vehicle and the associated threat
actors, motivations and severities. Probability of success will be a function of the probabilities of
the next level risks that the team will analyze in the following sections. The baseline threat
model for the vehicle establishes the potential attacks and high-level risks that are affected by
software updates.

Table 5 shows several examples of the possible bad outcomes of an attack on software update
mechanisms at the vehicle-level. The sheer power of malware installation means that essentially
anything is possible. Almost any software-only attack can be launched via the installation of
malware. For that reason, we show the threats and high-level risks to motivate the risk analysis
of the malware installation risk.

25

Attack Scenarios

Type of attack Malicious control
of vehicle

Denial-of-service of
vehicle

Vehicle or
contents theft

Intellectual
property theft /

private information
exfiltration

Performance tuning
or unauthorized

feature activation

Attack
description

The attacker can
control the vehicle,
either partially or in

full.

The attacker
prevents the use of
the vehicle. This

may be performed
on many vehicles in

a coordinated
manner.

The attacker or
attackers steal the

vehicle or its
contents.

The attacker can
remotely track the

vehicle, its operators
and their behavior
and other private

information.

The attacker is an
owner or third party

who changes the
control firmware to

get different
performance

characteristics.

Threat Actors

Threat Actors

Nation states
Terrorists

Organized crime
Activists

Nation states
Terrorists

Organized crime
Blackhats
Activists

Car thieves
Terrorists

Nation states
Organized crime

Activists
Blackhats
Owners

Tuners
Owners

Resultant
Motivation

Self-defense
Control of
adversaries
Financial

Ideological

Self-defense
Control of
adversaries
Financial

Ideological

Financial
Control of
adversaries
Financial

Financial
Sport

Attack Potential

Time elapsed Months-Years Months Weeks-Months Months Days-Years

Finances High
Medium

High
Medium

Medium
Low

High
Medium Medium

26

Expertise High High Medium
Low Medium Medium

Knowledge of
system

Private
Public

Private
Public Public Private

Public
Private
Public

Window of
opportunity Unlimited Unlimited Moderate Unlimited

Unlimited

Equipment Custom Custom Custom Custom Custom

Motivation of Attacker

Financial gain Medium
Low

Medium
Low High Low Medium

Ideology High High None Low None

Passion Medium Medium Low High
Low High

Likelihood Medium Medium High Medium Medium

Loss to Stakeholders

Financial Moderate Moderate High None Medium

Privacy Low Low None High None

Safety violation Very high
High

Very high
High None None Medium

Table 5. Baseline Threat Model Matrix. This table presents the baseline threat model as a matrix with motivation, cost of attack, and other relevant attributes. This
is a non-comprehensive threat model of a modern automobile (with potential attacks enabled by software update functionality). Insecure software updates can
provide a powerful threat vector for these scenarios: the installation of non-authentic software (i.e., malware).

27

3.3 Attack Scenarios
In this section, the authors present several vehicle attack scenarios and analyze them. The main
headings in this section correspond to the five columns in Table 5, the Baseline Threat Model
Matrix. The risks themselves are at the vehicle-level, presented with their associated real-world
threats and severities (potential impacts). Threat actors who are not motivated to attack are
omitted from the attribute tables below. For each scenario, software update mechanisms create
new attack vectors for malicious entities. Each scenario is tied to the software update risks that
affect them.

3.3.1 Malicious control of vehicle.
The most serious safety risk of all the scenarios listed in this report are those that allow an
adversary to actively control the vehicle in some way (for example, change the steering wheel
angle, engage the brakes, or cause an engine stall). Within this class of threats, the most serious
scenario is when an adversary can remotely control many similar vehicles from an arbitrary
location. However, there are other, less severe scenarios.

Malicious loss of vehicle operation at speed is extremely like malicious control, because causing
a loss of operator control is a form of control. For that reason, this section also applies to attacks
that can cause some loss of vehicle controls while the vehicle is in operation. Loss of vehicle
operation while not in operation is covered under the next section, Denial-of-service.

3.3.1.1 Remote malicious control of many vehicles.
The most serious form of malicious vehicle control is control of multiple vehicles from a remote
location. Remote malicious control of many vehicles has the potential for widespread impact in
the event of a coordinate attack. Unknown and remotely exploitable software bugs (i.e., zero-day
vulnerabilities) could allow an attacker to gain a foothold into many vehicles and control critical
vehicle functions. Table 6 presents risk attributes for remote malicious control of many vehicles.

Attack Remote Malicious Control of Many Vehicles

Threat Actor Nation state Terrorist Organized crime Ideologue/activist

Probability of Success High Medium Medium Low

Motivation High High Medium Low

Stakeholder Impact Very High

Table 6. Remote Malicious Control of Many Vehicles—Risk Attributes. Remote malicious control of many vehicles
has the potential for widespread impact in the event of a coordinated attack.

3.3.1.2 Remote malicious control of a small number of vehicles.
There is a possibility that an attacker can control a single vehicle or a small number of vehicles
in an instance. For example, an attacker might be able to influence the owner of a vehicle to
perform some action or give up some vital information using social engineering such as a spear-
phishing campaign. In this case, due to the dependency on naïve owner action influenced by a
malicious actor, the likelihood of a coordinated or widespread attack is low.

28

Another possible way an attacker might gain a foothold into the vehicle is physical access at a
prior time. Due to the necessity of one-time access to the vehicle, such an attack cannot be
executed on an arbitrary number of similar vehicles. However, even though such an attack
requires physical access to a vehicle, it only requires this access once; afterwards, the attack can
be launched remotely (arbitrarily far away). Table 7 lists risk attributes for remote malicious
control of small number of vehicles.

Attack Remote Malicious Control of Small Number of Vehicles

Threat Actor Nation state Terrorist Organized crime Ideologue/activist

Probability of Success High High Medium Low

Motivation High Low Medium Medium

Stakeholder Impact High

Table 7. Remote Malicious Control of Small Number of Vehicles—Risk Attributes. While the risk is remote control
of vehicles as in Table 6, the impact is lower. The motivations for such an attack are lower for terrorists, and this
attack is easier than controlling many vehicles in coordination.

3.3.1.3 Near-range malicious control of a small number of vehicles.
Attacks that enable control of vehicles that might be launched when in range of the vehicle in
some way (e.g., within range of a dedicated short-range communication such as DSRC or
Bluetooth). This attack may be translated to a remote malicious control of a limited number of
vehicles by installing a rogue device with a long-range transmitter with one-time physical access
to a vehicle. An attacker might execute a near-range attack without gaining physical access to the
vehicle by, for example, exploiting a bug in the Bluetooth communications with an infotainment
system or the DSRC interface used for V2X communications. Table 8 shows risk attributes for
near-range malicious control of vehicles.

Attack Near-Range Malicious Control of a Small Number of Vehicles

Threat Actor Nation state Terrorist Organized crime Ideologue/activist

Probability of Success High Medium Medium Low

Motivation High Low Medium Medium

Stakeholder Impact High

Table 8. Near-Range Malicious Control of Vehicles—Risk Attributes. Near-range control of vehicles is the risk that
an attacker will be able to partially or fully control vehicles within some range of an attack point such as a rogue
cellular base station. The stakeholder impact is lower than full remote-control due to the limited area of attack.

3.3.2 Denial-of-service of vehicle.
Malicious loss of vehicle operation at rest is a form of denial-of-service attack. From the vehicle
perspective, this is a DoS of the vehicle itself rather than some feature (such as air conditioning
or software update functionality). One growing class of a DoS attack on consumer products is so-
called ransomware. CryptoLocker [CERT14] was a very visible example of ransomware, which
plagued average PC users, and recently, a hacking group exacted a ransom of 40 bitcoins (worth

29

over $16,000) from the Hollywood Presbyterian Medical Center, a hospital in Los Angeles, to
restore operation of its computer network [Dal16]. While not a safety issue, ransomware can
spread like a computer virus, leading to large loss.

3.3.2.1 Targeted, coordinated denial-of-service.
A powerful attacker might wish to perform a targeted, coordinated DoS on, for example, a fleet
or on all vehicles sharing some property such as physical location. A military at war would have
great success if it could shut down enemy vehicles. A terrorist might see this as an attractive way
to create mayhem. If all emergency vehicles in a large region were disabled, that could lead to a
severe situation. Table 9 shows targeted, coordinated DoS.

Attack Targeted, Coordinated Denial-of-service

Threat Actor Nation state Terrorist Organized crime Ideologue/activist

Probability of Success High Medium Medium Low

Motivation High High Medium Low

Stakeholder Impact Very High

Table 9. Targeted, Coordinated Denial-of-service. While the DoS on a single, arbitrary vehicle is not a high-impact
attack, a coordinated attack disabling many vehicles is. For example, if an attacker were to disable all emergency
vehicles in a relatively large or dense area, the impact could be large.

3.3.2.2 Ransomware.
Ransomware is a growing class of attacks whereby the target is denied use of their property by a
hacker or hacking group unless and until a ransom is paid. By nature, ransomware attacks are
almost always remotely executed (from an unknown location).

Software update mechanisms are an attractive path to ransomware and other broadly targeted
malware installations. While app stores for mobile phones have safeguards, malware is still
difficult to completely prevent. As vehicles start to include application store-like functionality,
this opens the door further (that is, increases the attack surface) to malware installation like
ransomware. The authors assume that ransomware does not normally cause permanent damage
and has a low stakeholder impact. Table 10 shows ransomware attack levels.

Attack Ransomware
Threat Actor Organized crime For-profit black hats

Probability of Success High High
Motivation High High

Stakeholder Impact Low
Table 10. Ransomware.

3.3.3 Vehicle or contents theft.
Vehicle theft remains a goal for criminals the world over. Although cybersecurity and the
connected vehicle do not change that fact, they add additional attack vectors by which a thief or
would-be thief can steal a vehicle or its parts or contents. Today, many security features are

30

software controlled. For that reason, software updates can be a path by which a would-be thief
may weaken or defeat the anti-theft features of a modern automobile.

3.3.3.1 Pairing an unauthorized key to a vehicle.
In modern (and near-term future) vehicles, mating new keys with existing vehicles in the field is
generally done almost purely with software. For this reason, software update mechanisms can be
an attractive attack path for pairing unauthorized keys with a vehicle targeted for theft (or
content theft). Table 11 shows risk attribute paring of unauthorized key to a vehicle.

Attack Pairing an Unauthorized Key to a Vehicle

Threat Actor Organized crime Thief

Probability of Success Medium Medium

Motivation Medium Extreme

Stakeholder Impact Medium

Table 11. Paring an Unauthorized Key to a Vehicle—Risk Attributes. Modern vehicles are equipped with
immobilizers to prevent the vehicle from driving away without an authorized key present. However, pairing of new
keys and vehicles is largely done in software, and software update mechanisms can provide a path to pairing a new,
unauthorized key for vehicle or contents theft.

3.3.4 Intellectual property theft / private information exfiltration.
Eavesdropping can allow any sort of information or data theft, including intellectual property or
private information exfiltration. While the installation of malware can allow data theft, OTA
software update mechanisms can create a larger attack surface for theft of a customer’s personal
information beyond just malware-based attacks. Because metadata is often an integral part of
software updates, not only does the addition of OTA software update functionality broaden the
attack surface, it can be a driver for adding streaming analytics data to a vehicle. If not carefully
designed, streaming analytics and metadata intended to support software updates might
inadvertently reveal private information about the vehicle operators and occupants. In addition, if
this information is not properly protected, an unauthorized party may exfiltrate metadata
intended to support software updates (or any other analytics data).

3.3.4.1 Eavesdropping.
In an eavesdropping (e.g., man-in-the-middle or man-on-the-side) attack, an interested
unauthorized party can capture firmware images, which are sent to a legitimate vehicle ECU as
part of the software update. If those images are not encrypted, that party or another downstream
party might be able to steal the intellectual property either through reverse engineering or simple
counterfeiting of parts. intellectual property theft can hurt legitimate companies’ bottom lines.
For this reason, the potential impact is assessed to be high due to the widespread stakeholder loss
possible. Table 12 shows ease dropping (intellectual property theft) risk attributes.

31

Attack Eavesdropping (intellectual property Theft)

Threat Actor Organized crime For-profit black hats Aftermarket tuners

Probability of Success High High Medium

Motivation Low Medium High

Stakeholder Impact Low

Table 12. Eavesdropping—Risk Attributes. The purpose of passive listening (eavesdropping) is for stealing secrets
(either private owner/occupant information like location information or credit card information or intellectual
property). Although the stakeholder impact is low, the loss due to IP theft can be quite large even for a single
incident.

3.3.4.2 Activity logger software installation.
Surreptitious tracking falls into two categories: targeted (unlikely to affect a large group) or
untargeted (advertising, for example). Installation of key loggers is a common form of
surreptitious tracking in the PC realm. An activity logger is similar to a key logger in traditional
PC security. Vehicles arguably convey even more personal information about the user and, at
least, more information about the user’s whereabouts. Nation states, organized crime, and even
individuals are motivated to secretly track others. Software update mechanisms can be exploited
to install tracking malware onto ECUs. Even relatively benign ECUs (such as button readers or
chime triggers) can listen in on the CAN bus for tracking relevant data. Table 13 shows activity
logger software installation risk attributes.

Attack Activity Logger Software Installation

Threat Actor Nation state Organized crime Ideologue/activist

Probability of Success High Medium Low

Motivation High High Medium

Stakeholder Impact Low

Table 13. Activity Logger Software Installation—Risk Attributes. An activity logger is like a key logger in
traditional PC security. Nation states, organized crime, and even individuals are motivated to secretly track others.

3.3.5 Performance tuning or unauthorized feature activation.
Unauthorized performance or feature modifications can range from powertrain performance
modifications, a.k.a., tuning, to software modifications to customize alerts (e.g., to disable a
seatbelt chime) to software modifications to unlock digitally licensed content without proper
authorization. The impact of unauthorized performance tuning is moderate due to the possibility
of expensive warranty claims because of improper or overly aggressive tuning of parts.

3.3.5.1 Performance tuning.
Third-party aftermarket tuners (i.e., tuning shops) as well as individuals who perform the tuning
modifications on their own vehicles, purchase off-the-shelf tuning performance tuning software
for modifying the performance envelope of vehicles and their components. Tuning software is

32

often community supported and may even be produced by individual or mass tuners themselves.
Automakers might incur loss from warranty claims due to improper or out-of-specification
performance tuning.

Because better performing cars are good for brand building, automakers sometimes turn a blind
eye to performance tuning. In the past, improperly secured software update functionality is one
of the ways that aftermarket tuners and owners have could install custom software on ECUs
and/or perform custom calibrations. When software updates are properly secured, however,
automakers will either need to bless performance tuners with ways to update and customize
vehicles and their ECUs or lock them out entirely.

Attack Performance Tuning

Threat Actor Aftermarket tuners Owners

Probability of Success Medium Medium

Motivation Very High Low

Stakeholder Impact Low

Table 14. Performance Tuning—Risk Attributes. Performance tuning is the act of creating unauthorized
modifications (often in software) to increase the performance of stock parts (such as engines). The property loss in
aggregate is still rather small, but some automakers seek to limit aftermarket performance tuning, both to sell more
performance upgrades and prevent warranty claims from out-of-spec tuning.

3.3.5.2 Unauthorized feature or content activation.
Today, the performance profile of a vehicle or a system within the vehicle, such as the engine,
may be enabled by nothing more than a different software build or configuration. Economically,
automakers can save money in this case by only designing a single hardware variant and
changing its behavior with software alone. By configuring the performance of the vehicle with
software, OEMs gain the manufacturing economy of scale and engineering efficiency of a single
hardware variant while still retaining an enforcement mechanism so that customers can be
charged for purchased upgrades. Some owners will want to enable these software-configured
upgrades without paying for them. Just like performance tuning, there are vibrant communities
on the internet dedicated to unlocking features or content that are software controlled.

With the rise of digital feature distribution, even performance upgrades can be downloaded to a
vehicle. Tesla, for example, uses OTA software updates to distribute digital authorization for
their “Ludicrous Mode,” a performance upgrade that adds increased acceleration to the Model S
[Mat15]. In the future, digital distribution of features, and even digital content such as music,
will grow much larger. Automakers will likely want to secure the activation mechanism to
protect their revenue stream.

33

Attack Unauthorized Feature or Content Activation

Threat Actor Aftermarket tuners Owners

Probability of Success Medium Medium

Motivation Low High

Stakeholder Impact Low

Table 15. Unauthorized Feature or Content Activation. With the rise of the internet as the universal distribution
platform, even automobiles will be able to receive upgrades to performance and convenience functionality through
OTA software updates. Owners will attempt to unlock new features or content without paying.

3.3.6 Summary.
This section details different attack scenarios, matching them up with probable threat actors’ and
loose values’ probability of success, motivation, and stakeholder impact. In the following
section, we describe the technical risks that can lead to these attack scenarios. The installation of
malware on the right ECU can allow for all the attack scenarios described in this section. For that
reason, much of the following section is devoted to risks that can lead to malware installation.

3.4 Technical Risks
In this section, the authors look at the possible technical risks that are created or broadened with
the addition of software update functionality. Whereas Section 3.3 focuses on the possible
attacks from the vehicle perspective, this section focuses on the technical risks that manifest at a
lower level of the design, risks that might lead to those outcomes described in the previous
section. Table 16 shows the risks identified, and the following subsections provide further detail.
In the table, each risk is listed with an assessment of whether it allows for viral malware
distribution. The Packaging stage risks provide the most opportunities for an attacker to create
malware which is distributed and installed in a fast moving, viral fashion.

34

 Risk Allows Viral Malware
Distribution?

Pa
ck

ag
in

g

Real Authority Signs Unauthorized Software Yes

Supplier Compromise Yes

Signing Credentials Are Stolen Yes

Attacker Forges Signature on Inauthentic Software Yes

Attacker Remotely Exploits a Software Flaw Yes

T
ra

ns
po

rt

Physical Media Tampering in Transit No

Software Installation Tools Are Compromised No

Attacker Sneaks Hidden Functionality into Application Store No

Attacker Masquerades as Legitimate Wireless Endpoint No

Attacker Masquerades as Legitimate Server in the Distribution
Network Yes

R
ec

ep
tio

n

Attacker with Physical Access Installs Software No

Attacker Installs Software with Hacked OBD Dongle Yes

User Overrides Security Feature No

In
st

al
l

Attacker Uses Undocumented Bypass Functionality Yes

V
er

ifi
ca

tio
n

&

M
ai

nt
en

an
ce

Attacker Spoofs Legitimate ECU and Reports False
Installation Information No

Forged Software Bypasses System Verification Routines No

Table 16. Risk. This table shows the risks we have identified and maps them onto the 5 software update stages
identified in Section 2.3.

35

3.4.1 Rogue software (malware) installation.
The execution of rogue software—that is, malware—is one of the biggest risks to all software
systems, and the connection to software update mechanisms is obvious. While attackers certainly
find ways to gain full control of processors, they must work with what vulnerabilities are
available. Attackers will abuse software already found in a vulnerable device when possible to
make system compromise easier. For example, if an attacker can convince the software update
mechanism installed on an ECU to install software of the attacker’s choosing, this provides a
convenient path to abuse (and potentially to remotely abuse with OTA updates). If an attacker
can get malware installed on a customer’s vehicle, almost any feature that is software controlled
can be potentially compromised, obviously depending on where the software is installed. The
bulk of this section is devoted to risks that can lead to malware installation.

The following subsections list common ways that an attacker might install malware (a.k.a., rogue
software) into ECUs. The researchers make very few assumptions about the security controls in a
potential software update system.

3.4.1.1 Real authority signs unauthorized software.
There are several ways that a real authority might sign malware. If an attacker can find a way to
get rogue software signed by the true signing authority, the most basic security control, the
software signature, is defeated. In addition, the distribution authority might distribute the
software as well if the software is not otherwise detected. The flaws that can lead to this attack
are mainly in the IT infrastructure, for which industry standard security controls are more mature
as compared to the electronics systems themselves.

Ways that the real authority might sign malware include the following:

• A flaw in the OEM database upload interface allows an unauthorized person to upload
software by circumventing the credentials check.

• A flaw in the OEM database allows an attacker to modify or replace authentic software
once it has been accepted into the OEM database, but which will not be detected
afterwards.

• Any other software flaw known to allow compromise on traditional computers and
servers. Research on traditional computer security is quite mature, and detailing all
possible paths at the low-level is beyond the reasonable scope of this risk analysis.

• Supplier compromise (see below).

3.4.1.2 Supplier compromise.
We split supplier compromise into its own section due to its size, but in these scenarios, the real
authority signs the malware just as in section 3.4.1.1. Compromise is possible at all levels in the
supply chain, not merely the tier-1 supplier. We focus on suppliers generically, but the risks tend
to cluster around the interfaces between different parties. Would-be attackers may target
developers, especially those with credentials to submit software releases into the official stream
of software updates. The following are ways an attacker might compromise a supplier and get
non-authentic software signed:

36

• A rogue software supplier employee uploads bad software to the OEM database via valid
credentials.

• An unauthorized person uploads software to the OEM database via valid, stolen
credentials.

• An attacker launches a social engineering attack and convinces a legitimate software
release developer to upload malware to the software repository.

• A computer virus or PC malware makes changes to the actual software, which gets
committed to the software supplier’s software repository.

3.4.1.3 Signing credentials are stolen.
The keys used to authorize software can be stolen. Keys are often hierarchical, with parent keys
having the ability to revoke their children. Signing keys, at least at the highest levels, are often
protected via a hardware security module (HSM). An HSM is a high-security datacenter device
designed to hold very sensitive information, especially cryptographic information like keys. The
term hardware security module is used in both server and embedded contexts to mean
conceptually similar but practically very different devices. In the context of storing signing
credentials, we are referring to the traditional, datacenter type of HSM. Flat key architectures,
where no key is parent to or child of any other key, are also possible, but more difficult to
quickly recover from a key breach. In the worst case, the compromise of keys could lead to a
recall to fix.

3.4.1.4 Attacker forges signature on inauthentic software.
Credential (e.g., certificate, key) forgery, like theft, is particularly relevant for software updates,
as digital signatures for authentic software are one of the strongest and most typical security
controls for ensuring only authentic software is uploaded to the target hardware. If a digital
signature check is part of the software update design, then defeating that check is a necessary
building block in most possible attacks.

Signature credential forgery or theft relates specifically to the credentials used to authenticate the
software image to the target. In many designs, this is a certificate, but in embedded systems,
might simply be an RSA public key / private key pair. If an adversary can sign inauthentic
software (i.e., malware) using forged or stolen credentials, the adversary will not need to defeat
the digital signature check on the software update image using another mechanism. Credentials
could be stolen from an automaker’s data center, for example. Credentials can be forged due to a
flaw in the way the credentials were created. An attacker’s possession of credentials, which
allow them to create a digital signature on arbitrary files, which will look authentic to the update
target, without any modification of that target, is the common denominator between credential
forgery and theft.

The use of digital signatures is a mitigation against basic naïve spoofing and impersonation.
Because using end-to-end digital signatures on software update files is near universally
considered necessary today, this baseline system architecture assumes that any reasonable
software update architecture will include the use of end-to-end digital signatures. Therefore, the
authors do not consider naïve spoofing and impersonation to be a reasonable risk. Rather, the
risks are that vulnerabilities will exist allowing an attacker to achieve the same goal, albeit with a

37

more difficult path to finding key vulnerabilities. Credential forgery or theft is one way an
attacker could achieve the goal of malware installation without circumventing the digital
signature check on the target itself.

3.4.1.5 Attacker remotely exploits a software flaw.
Software bugs are not fully avoidable, and some software flaws are security vulnerabilities.
Some software flaws that allow or assist an attacker in installing malware include the following:

• The signature check is performed, but the memory can be changed between checking the
signature and checking that it matches the software download (or vice versa). The
attacker changes the signature in between.

• The attacker can replace the public key (or certificate) on the ECU to an arbitrary public
key (or certificate). Afterwards, an attacker can sign a firmware update, which, if
downloaded, will look authentic to the ECU.

• The attacker can change memory to make the software think that it has performed all
security validations on software before it has.

• The attacker can change the memory to make the software think that security validations
have passed when they failed.

3.4.1.6 Attacker uses undocumented bypass functionality.
Backdoors are undocumented functionality that can bypass software update security checks.
Backdoors can be left in or added by suppliers (either authorized or unauthorized) or
governments or powerful criminal agents. Backdoors could be added intentionally (by the
original supplier) or unintentionally (by a rogue agent either inside the original supplier or by
breaching the security of the original supplier). Backdoors could also be added after the software
has been release from the software supplier. However, that is an instance of exploiting a flaw in
or infiltrating the software distribution network itself, rather than an instance of using
undocumented bypass capability. Examples of undocumented bypass functionality are the
following:

• Supplier has left a backdoor for software updates.
• Government or powerful criminal group has infiltrated the supply chain and added a

backdoor to the software.

3.4.1.7 Attacker sneaks hidden functionality into app store.
Mobile phones have had application (app) stores for several years now, and the technology heart
of an app store is a software distribution and update framework. As vehicles move to OTA, go-
anywhere software updates, app store models might develop for automotive computing (as well
as software for mobile phones which pair with vehicle services). App stores have safeguards, but
they aren’t perfect. The app store or aftermarket features delivery network represents a new
attack vector for malware. Research into this type of app store security is relatively mature but
still active.

38

3.4.1.8 Attacker with physical access installs malware.
Although physical access is a high barrier for installing malware and preventing local installation
methods from being part of viral, coordinated, or widespread attacks, there are plenty of targeted
attack scenarios that motivate installation of malware on just one or a small number of vehicles.
Traditional physical software updates using OBD port-attached programming tools can be
exploited to install malware with local access.

Current physical software update mechanisms (i.e., traditional mechanisms using OBD port-
attached devices) do not necessarily include any strong security controls (such as a digital
signature). Seed/key algorithms are used to provide rudimentary security before diagnostics and
reprogramming routines are allowed. Seed/key algorithms might be cryptographically strong, but
current solutions are weak because secrets are widely shared (e.g., in service tools accessible by
almost anyone without too much effort). There are several ways in which an attacker with
physical access may reprogram software in modules:

• The attacker programs malware into ECUs using official or otherwise standard diagnostic
tools for vehicle service and/or manufacturing.

• The attacker steals the secret information needed to perform authentic seed/key
exchanges and then reprograms ECUs with a standard reprogramming protocol (e.g., the
UDS programming flow) using commodity bus interface hardware.

3.4.1.9 Attacker installs malware with hacked OBD dongle.
OBD dongles are sold targeting non-technical vehicle owners adding health and usage tracking
features in a simple installation (plug in to the OBD port). OBD dongles are not necessarily
validated to the same standard as automotive ECUs, and because traditional ECU programming
procedures run over the OBD port, any device with OBD access can use those procedures.
Therefore, an attacker may hack into OBD dongles to facilitate installation of malware on the
vehicle. Dongles with internet access may be compromised from anywhere in the world. OBD-
attached devices with large sales may be attacked at the same time leading to a coordinated
attack.

3.4.1.10 Physical media tampering in transit.
An attacker can capture and tamper with physical media for software updates distributed in that
way. In traditional software updates over the OBD port, media is distributed to some
manufacturing and service facilities on physical media. If an attacker can switch out the software
stored on the physical media, that route can allow for malware distribution.

3.4.1.11 Software installation tools are compromised.
In the traditional software update model, a trained technician installs software updates on
vehicles using a discrete or PC-based software tool. The software update tool itself is also a
target for attackers. If the software installation tools are compromised, this may allow an attacker
to install malware onto ECUs.

39

3.4.1.12 Forged software bypasses system verification routines.
In the model of the software update process described here, the fifth and optional stage is
Verification and Maintenance. In this stage, the systems in the vehicle and network perform
various logging and ongoing verification checks. In some ECUs, the software installed might be
checked periodically or at each boot. While this isn’t technically part of the software update
functionality itself, it is closely related. If a system performs ongoing verification, an attacker
might create malware that circumvents those checks.

3.4.2 Denial-of-service.
Denial-of-service attacks are a broad class of attacks whereby an adversary prevents the intended
operation of a system or subsystem. DoS attacks can even prevent the vehicle from operating.
This section only contains risks beyond malware installation. Malware can be used to carry out a
DoS attack (ransomware is one such example). However, since the malware installation risks
have already been covered, the risks in this section do not require malware to be installed on any
part of the vehicle’s electrical system.

The scenarios listed below all assume that the DoS purpose is to prevent software updates from
working. An attacker might prevent an ECU with a known security flaw from performing a
software update to fix it. Or, an owner might prevent software updates on his or her own vehicle.
If software update mechanisms are not designed properly, an attacker might be able to brick
ECUs (bricking happens when recovery from a failed software update is impossible, and the
hardware must be scrapped and replaced). A bricked (non-field-repairable) ECU will cause
degraded or even full loss of vehicle functionality until serviced at a dealership or auto repair
shop.

The most important scenario to mention is a DoS of the vehicle itself. If OTA software updates
are not designed correctly, an attacker could prevent operation of the vehicle for an indefinite
amount of time. Vehicle DoS is a useful targeted attack (e.g., an organized criminal group that
attempts to prevent an enemy from using his or her vehicle), but if a single vehicle can be
rendered inoperable with a denial-of-service attack, it should also be possible to render a large
swath of vehicles inoperable in coordination. In general, if ECUs are not bricked or duped into
installing malware, a DoS attack creates a temporary condition.

3.4.2.1 Attacker masquerades as a legitimate server in distribution network.
With any OTA update mechanism, new software binaries must be downloaded onto the vehicle
ECUs from a remote device. With internet-based OTA updates (as are the most common), the
remote device is a whole software distribution network (e.g., a collection of load-balanced edge
servers for the software distribution network). An attacker with the ability to inject packets into
the network used to deliver software (or spoof that network with reasonable range) can attempt
to masquerade as a legitimate server in the delivery network, causing protocol confusion.
Recovering from protocol confusion (for software updates or otherwise) usually entails starting
over at some agreed upon good point in the sequence (like the beginning).
An attacker who can arbitrarily (or with limited constraints) inject spoofed messages into the
communication between the vehicle and delivery network can trigger repeated protocol failures
and restarts, a DoS of the software update mechanism. If the vehicle or some of its ECUs are in
an intermediate and temporarily inoperable state when the software update protocol is disrupted

40

(e.g., if their memory is erased but not programmed), the DoS can be extended to the vehicle
itself. A good software update design should include mitigations against this scenario. If the end-
to-end validation of software updates is not sufficiently robust, an attacker could cause ECUs to
become bricked creating a permanent DoS on said ECUs and potentially the vehicle itself. The
vehicle must be serviced at a dealership or repair shop to recover from a persistent inoperable
state, such as when an ECU is bricked.

An attacker might spoof an OTA software distribution network such that:

• The attacker injects a bad message in the middle of a legitimate server/vehicle
communication, preventing successful software update even after an update has started.

• The attacker interrupts communication during the OTA software update process causing
the download to not finish.

• The attacker provides incorrect metadata to the vehicle and/or its ECUs so that the ECU
is tricked into performing an erroneous software update action. Without robust validation,
manipulated metadata can cause ECUs to perform illogical or improper software update
activities.

3.4.2.2 Attacker spoofs a legitimate ECU and tampers with software updates.
To engineers, it often seems obvious that a server requires credentials to authenticate to its
clients. For most websites, the server presents a credential but the user does not, providing one
directional verification. However, software updating is a two-way communication between the
clients (ECUs) and servers, with vital metadata going in both directions. Even if an attacker
cannot spoof the delivery network servers, he or she may disrupt software updates by spoofing
traffic coming from the target ECUs themselves.

• An attacker with access to the software distribution network may spoof legitimate ECUs,
reporting incorrect metadata to tamper with and/or confound the software update
mechanism.

• An attacker with access to a vehicle’s internal networks (e.g., CAN networks) may spoof
a legitimate ECU in that vehicle to the same end.

• An attacker with access to a vehicle’s internal networks may spoof legitimate ECUs in
other vehicles, and if the software distribution network servers are not performing robust
validation, they may regard this communication as authentic.

3.4.2.3 Attacker spoofs legitimate wireless interface access point.
An attacker with near range access to a vehicle can spoof a legitimate wireless network access
point, such as a Wi-Fi access point or cellular tower. If other controls are not in place, an
attacker, spoofing a legitimate network that the vehicle’s wireless interfaces expect, can
masquerade as the delivery network servers and upload rogue software.

3.4.2.4 Jamming of wireless interfaces.
Radio frequency (RF) jamming is inelegant, but for that reason, it is difficult to prevent.
Jamming is not usually a high-value attack, both because it lacks precision and because it

41

requires physical locality. Nonetheless, RF jamming will deny service to OTA software update
functionality.

3.4.3 Unauthorized download of information.
Because data from the vehicle and its ECUs is likely to be gathered in support of software update
functionality, it is possible that some data is private information, that is, sensitive or private
details about the operator or occupant. Such data ought to be protected against theft or leak to
unauthorized parties, and, in some countries, regulations may mandate certain steps be taken. In
addition to theft of occupants’ information, the software binaries themselves might be deemed
sensitive (e.g., to protect against reverse engineering by a competitor or counterfeiting).

While suppliers might view software binaries as containing descriptions of trade secrets and
proprietary algorithms, attackers might also use software reverse engineering to look for
exploitable flaws. This compromise is not nearly as damaging, but preventing software reverse
engineering can increase the difficulty of a successful attack. Further analysis for the
unauthorized download of information risks is found in Section 5.

3.4.3.1 Attacker masquerades as legitimate ECU to download data.
An attacker might masquerade as a legitimate ECU, downloading authentic software from the
distribution server/network to steal intellectual property for reverse engineering or
counterfeiting. This reference design assumes the ECUs have a way to verify authentic software
signed by an authentic server, but does not assume that the ECU has any strong way to identify
itself. An attacker can potentially masquerade as a legitimate ECU to download firmware (for
reverse engineering or counterfeiting). This can be done remotely if the software update
distribution network is not protected against injection by outside parties. Because intellectual
property theft can be a one-time thing and still have a big impact, there is risk that an attacker
connects to a legitimate vehicle’s CAN networks and masquerades as a legitimate ECU for
downloading software binaries. Suppliers might design mitigations on top of those used by
automakers to protect their intellectual property.

3.4.3.2 Attacker abuses data gathering functionality.
Software updates rely on accurate metadata. However, metadata is necessarily secured to the
same standard as the actual software binaries. If metadata is gathered from the vehicle in support
of software updates (or any other reason), it’s possible that the information is private to the
occupants and should be protected from unauthorized access. If the metadata containing private
information from vehicles is not properly protected, an attacker can access that data. Here are
some ways this might happen:

• The attacker can query vehicle metadata without providing any sort of credentials.
• The attacker can query vehicle metadata with credentials, and the attacker bypasses the

check or forges the credentials.
• The attacker infiltrates the delivery network and only minimal checking is performed

(e.g., IP address) on the delivery network by the ECU that is providing metadata.

42

3.4.3.3 Man-in-the-middle / man-on-the-side.
In a man-in-the-middle or man-on-the-side attack, the attacker acts as a go-between between
some backend entity and the vehicle and its ECUs or merely finds a place in the network
topology to passively spy on the exchange. This is usually the result of a compromise of the
delivery network, but data might flow through untrusted paths as well.

3.4.3.4 Digital rights management circumvention.
In a naïve implementation of software updates used to enable new content and features, it might
be possible to circumvent digital rights management (DRM) for add-on and purchased content
by capturing a legitimate authorization. This is a replay attack, as a legitimate buyer of an add-
one feature or content captures the traffic used to authorize his vehicle. The key messages sent
from the network (backend) would be authentic and signed, and without additional controls,
would enable the same features or content for other vehicles. This user could then give out or sell
the content at a lower price to others.

3.5 Risk Assessment Discussion
3.5.1 Code signing.
Code signing is the act of appending digital signature metadata to software binaries as one of the
most basic and fundamental end-to-end security controls. Signatures on the software binary
(a.k.a., code signing) are widely considered an essential security mechanism, especially for OTA
methods.

3.5.2 Automatic updates.
Automatic updates can be preferable to updates that require explicit user confirmation because
security updates can be pushed seamlessly without nagging the user. However, with automatic
updates, if malware were to make its way into the official software updates channel, it could
spread very quickly. Coordinated attacks have higher severities than similar attacks on just a few
vehicles or a single vehicle. Automatic updates, if exploited to allow viral distribution, could
make it easier for an attacker to launch a coordinated attack on many vehicles. Requiring user
interaction before software updates are applied would mitigate this problem. If malware makes
its way into the official software updates channel, a significant number of vehicles will be
infected. In any case, rigorous engineering checks should be performed before any binaries are
distributed through the production software updates distribution network.

3.5.3 Robustness against denial-of-service attacks.
DoS attacks are, as a class, very difficult to prevent completely. In OTA software updates, for
example, RF jamming is unlikely to be defeated as the physical phenomenon that is used for data
transmission (an RF band) is heavily degraded. However, both DoS of vehicles and bricking
should be prevented at all costs, even if prevention of all DoS attacks on the software update
mechanisms is not possible. Single-vehicle DoS is only a minor stakeholder loss in most cases,
but coordinated vehicle DoS could be quite severe.

43

3.5.4 Full software updates vs configuration tweaks.
Software updates in vehicles can range from simple configuration tweaks of just a few bits or a
full software update of all memory in the ECU. Larger software updates have additional
logistical difficulties. Increased download and installation time for full software updates increase
the time the vehicle is out of operation. Today, vehicles in service are frequently connected to a
charging device during software updates to prevent the battery from dying in the middle. Today,
we do not know how these issues will be handled if full software updates on critical control
systems are to be performed over the air while the vehicle is in the customer’s possession. We do
not know of any gasoline-powered vehicles which receive full software updates over the air.

3.6 Conclusion
In identifying risks at both the vehicle level and technological design and implementation level,
the researchers have identified the biggest risk with software update mechanisms as malware
installation, which makes sense. The team teased apart the different paths to compromise and
analyzed the potential attacks (risks) at the vehicle level in Sections 3.2 and 3.3 and the
technical-level in Section 3.4 While risks from a relatively high level were identified, software
updates come with a large variety of risks from security threats. Yet, software updates are
essential functionality for automobile electronics, like any other pervasively networked computer
system. In the following section, the authors discuss technical (and non-technical) mitigations for
the risks identified.

44

4. Mitigation Methods

ECUs, and the ability to update the software they contain, have been in use for decades in
vehicle-control applications. Traditionally, motor vehicle software updates have been the domain
of auto dealerships, service centers, and home mechanics. With aftermarket programming tools,
with minimal or no authentication required, the introduction of wireless communication within
vehicles brings the potential to distribute software directly through the internet without attaching
a programming tool to the vehicle CAN bus. The advantages to vehicle manufacturers are
reduced warranty costs, improved customer satisfaction, and the ability to offer customers
improved features and content.

The importance of software in computer system architecture makes it an attractive target for
attackers. At hacking conferences and in academic publications, software modification attacks
have been demonstrated repeatedly on various embedded systems including automotive systems.
[Che11] [MV15] [RM15] [Fos15] The capability of OTA updates for vehicle software only
widens the attack vector, making it possible for hackers to distribute malware to millions of
vehicles simultaneously.

While the threats with respect to an OTA update procedure with cybersecurity vulnerabilities are
daunting, there is a need to understand software update techniques, the potential threats, as well
as potential countermeasures. This project studies the cybersecurity of automotive software
updates. The objectives of this project are to define terms commonly used in this domain and
identify interesting attributes, survey available firmware update mechanisms used in the
automotive industry and across other industries, perform a literature review that also covers all
industries, assess cybersecurity threats due to software update methods and practices, and study
and propose mitigation mechanisms.

In the previous sections, the authors presented different approaches to software updates across
similar industries and electronics in general and a risk identification and analysis of software
update mechanisms that are currently being used or planned in automobiles, considering the
features of a Tesla Model S for a near-term future design reference. In this section, the team will
present mitigations, either required or optional for securing software update mechanisms, both
traditional and OTA, for the risks identified in the previous section.

4.1 Definitions
In this section, terms are defined that are used throughout this section, are context specific, and
may or may not have a meaning outside this document. Although this project considers security
of firmware updates, the writers prefer the more generic term software. The risks and mitigations
apply the same to software in general as they do to firmware particularly. Where possible, the
writers attempt to use these terms in a way that does not conflict with other uses outside this
document or cause confusion with similar terms, but it is possible that they do so inadvertently.
To put forth a meaning for these terms and to resolve confusion or conflict with existing

45

terminology in use, the following terms are defined. A full glossary is found at the end of this
document.

• The target ECU is the electronic control unit (ECU) that is to receive a software update.
• A software update package is a file or bundle of files representing the data required to

perform a software update on the target ECU. It is a binary representation of a version of
software, possibly a diff update created by programmatically comparing (or diffing) the
new software version and the version installed in the target ECU for communications
efficiency. A distinction between diff and full software update packages is not made.

• A secondary bootloader is a file or bundle of files, which is usually downloaded to the
target ECU prior to performing the software update process. The secondary bootloader
might contain arbitrary code for the target ECU to run. The secondary bootloader often
contains routines to interact with (i.e., read, write and erase) the flash memory on the
target ECU. The authors do not make a distinction between the secondary bootloader and
the software update package in this document. The same mitigations must be applied to
the secondary bootloader and to software update packages.

• The software distribution network is the network used to support software updates,
including OTA and traditional local, OBD port-attached updates. For OTA updates, there
is network infrastructure, which is to be built out to support connecting to the vehicle and
performing the remote update procedure. For local updates, for completeness, the authors
consider the software distribution network to include the full path from the software
repository to the vehicle installation, including the portal to request and receive software
update packages electronically, media transportation and the mechanics, PC tools, and
vehicle-interface hardware. For most mitigations, we do not deeply consider the
architecture of the software distribution network, considering it to be a heterogeneous
collection of servers, some possibly hosted and/or managed by a trusted third party. Other
network functions supporting software updates might or might not be part of the software
distribution network. In this document, when two other network functions are referred to,
the authors assume an OEM’s IT infrastructure will include

o The software repository is the IT infrastructure, which stores, receives, and
transports the software update packages themselves.

o The bookkeeping database is the IT infrastructure, which stores the vast
configuration and status data for vehicles in the field. It may be part of the
software distribution network or separate in practice.

4.2 Mitigations
In this section, the researchers reiterate the risks identified previously and map them to the
mitigations identified. Mitigations that are mandatory or optional are not specifically called out.
An OEM, when implementing software updates, can use a risk-driven approach based on their
design, including functional and security goals, to determine which mitigations are not
necessary, if any.

Much of this section is devoted to the high-level risk of malware installation. In addition to the
high-level risk of malware installation, the section finishes with the two lower-level technical

46

risks for software updates: DoS of the software update mechanism and unauthorized download
(either from the vehicle or the network servers). Further detail on unauthorized download of
information is found in Section 5, including intellectual property theft and private information
exfiltration.

The authors draw mitigations from internal expertise in systems security and automotive
electrical architecture as well as both academic, industrial, and government publications. We
examine the failings and vulnerabilities found in the attack publications of Checkoway, et al.,
[Che11], Foster, et. Al. [Fos15], Miller and Valasek [MV15] and Rogers and Mahaffey [RM15],
and consider their recommendations for fixes and mitigations. In addition, the authors draw upon
successes and lessons learned from existing industries, particularly mobile and aviation. Finally,
many of the mitigations follow existing guidelines, particularly from the United States National
Institute of Standards and Technology (NIST). Where NIST guidelines do not exactly match the
needs of automotive software but are similar (for example, the NIST BIOS Protection Guidelines
[NIST11]), we merely follow their lead and take cues for the mitigations proposed.

4.2.1 Malware installation.
Malware installation is the risk with the highest impact, especially in modern vehicles, which
have not been internally well partitioned for security. [MV15] If an attacker can get rogue
software installed on a customer’s vehicle, almost any feature that is software controlled can be
potentially compromised, obviously depending on where the software is installed. However, the
researchers have recently seen that, in today’s vehicles, malware on just the telematics ECU is
powerful enough to control vital vehicle control functions [MV15].

Table 17 shows the mapping of the proposed mitigations to the risks identified by the software
update stages. Risks are listed on the right as rows and mitigations at the top as columns. Where
an X is found, the mitigation corresponding to the column applies to the risk corresponding to
the row. Following the table, the mitigation methods are detailed.

47

 Mitigations

U
pd

at
e

A
ut

he
nt

ic
at

io
n

Se
cu

re
 C

ha
nn

el

(A
ut

he
nt

ic
at

ed
 a

nd
 E

nc
ry

pt
ed

)

En
tit

y
A

ut
he

nt
ic

at
io

n

U
se

r A
ut

he
nt

ic
at

io
n

an
d

A
ut

ho
riz

at
io

n

U
se

 a
 R

oo
t-o

f-T
ru

st
-fo

r-U
pd

at
e

Pr
ot

ec
t K

ey
s a

nd
 S

ec
ur

ity
-R

el
ev

an
t

D
at

a
St

or
ed

 in
 E

C
U

s
Pr

ev
en

t B
yp

as
sin

g
of

 A
ut

he
nt

ic
at

io
n

M
ec

ha
ni

sm
s

Pr
ev

en
t F

or
ge

ry
 o

r U
na

ut
ho

riz
ed

G

en
er

at
io

n
of

 D
ig

ita
l S

ig
na

tu
re

s

Se
pa

ra
tio

n
of

 D
ut

ie
s

C
od

e
R

ev
ie

w
s b

ef
or

e
C

od
e

D
ep

lo
ym

en
t

Et
hi

ca
l H

ac
ki

ng
 a

nd

Pe
ne

tra
tio

n
Te

st
in

g
Q

ui
ck

ly
 F

ix
 S

ec
ur

ity
 B

ug
s f

or

In
-H

ou
se

 a
nd

 3
rd

 P
ar

ty
 S

of
tw

ar
e

Tr
ad

iti
on

al
 IT

 B
es

t P
ra

ct
ic

es

A
pp

 S
to

re
 S

ec
ur

ity

Ph
ys

ic
al

 S
ec

ur
ity

Se
cu

re
 A

rc
hi

te
ct

ur
e

Pa
ck

ag
in

g

Real Authority Signs Unauthorized
Software X X X X X X

Supplier Compromise X X X X X X X

Signing Credentials Are Stolen X X X X X

Attacker Forges Signature on
Inauthentic Software X X X X X

Attacker Remotely Exploits a
Software Flaw X X X X X X

T
ra

ns
po

rt

Physical Media Tampering in Transit X X X X X

Software Installation Tools Are
Compromised X X X X X X X X X

48

Table 17. Mapping Malware Installation Risks to Mitigations. In this table, we list the risks (which might result in malware installation) from Section 3 as
rows and mitigations as columns. Cells with an X indicate that the mitigation applies to the risk in that column.

T
ra

ns
po

rt
, c

on
td

. Attacker Sneaks Hidden Functionality
into App Store X X X X

Attacker Masquerades as Legitimate
Wireless Endpoint X X X X X X

Attacker Masquerades as Legitimate
Server in the Distribution Network X X X X X X X

R
ec

ep
tio

n

Attacker with Physical Access
Installs Malware X X X X X X X

Attacker Installs Malware with
Hacked OBD Dongle X X X X X X

User Overrides Security Feature X X

In
st

al
l

Attacker Used Undocumented Bypass
Functionality X X

V
er

ifi
ca

tio
n

&

M
ai

nt
en

an
ce

 Attacker Spoofs Legitimate ECU and
Reports False Information X X X X X

Attacker Bypasses System
Verification Routines X X X X X X X X

49

4.2.1.1 Update authentication.
Message authentication on the software update package itself, or simply update authentication, is
the primary (and most vital) mitigation against the risk of malware installation. Conceptually,
update authentication is authentication of the software update package which must be performed
before the package is installed. The authors assume that installation must be completed before
the new application can have a functional effect on the target ECU. When working correctly,
update authentication ensures that only authentic software can be installed on the ECU,
providing a guarantee of authenticity and integrity of the received data.

Update authentication is almost always achieved with a digital signature. When using update
authentication, each software update package is digitally signed before being delivered into the
software distribution network or any vehicle. A digital signature is created by the publishing
party or parties (for example, the supplier, OEM, and/or a trusted third-party provider) who
create and append it to the software update package using their private key and an asymmetric
cryptosystem such as RSA or Elliptic Curve Cryptography (ECC). NIST, in the Federal
Information Processing Standards Publication 186-4, FIPS 186-4 [FIPS186], recommends the
use of one of three standards for digital signature usage: The Digital Signature Algorithm
[FIPIS186], RSA Security’s PKCS #1 [PKCS1], or the Elliptic Curve Digital Signature
Algorithm. Implementation of a digital-signature check based on one of the standards
recommended in FIPS 186-4 before installation of a software update is widely considered a vital
security control for software updates.

Asymmetric cryptography is the uncontroversial recommendation for update authentication,
unlike generic message authentication for commands and requests from the network, where a
symmetric-only solution might make sense. Authentication beyond update authentication is
covered in Section 4.2.1.4. The authors believe that all or nearly all microcontrollers in a modern
vehicle can perform a digital signature verification in a reasonable amount of time (processor
time on the order of seconds or better).

It is currently believed that even the most powerful adversaries in the world cannot defeat digital
signature verification, which employs modern high-strength cryptography and key lengths,
although the design of the full system may include other, exploitable vulnerabilities allowing for
bypassing the authentication provided by a digital signature. To protect against the installation of
non-authorized software, the software update data must be verified according to the update
authentication mechanism before it can be installed. Prior to installation, the contents of a
software update package must not functionally affect the operation of the ECU.

There are best practices to protect the integrity of the design and ensure that the strong
authentication methods are not bypassed. Providing a root-of-trust including secure storage of
the verification key can prevent a keen adversary from finding a way to compromise the secrecy
of the key itself, rather than breaking the algorithm, which is likely impossible with modern
computing hardware (although the rise of quantum computing will break that assumption
[Sch15]). Discussion of using a root-of-trust-for-update is given in Section 4.2.1.6 and secure
storage of keys in Section 4.2.1.7.

50

If the target ECU cannot verify the authenticity of a software update package prior to self-
installation, another ECU in the vehicle can perform this verification on a cached copy of the
software update package before sending it to the target ECU for installation. Regardless, in an
end-to-end update authentication design, the target ECU verifies the authenticity of the software
update prior to allowing it to run for the first time. This check is in the reception stage from the
previously identified software update stages. This check is performed in the bootloader, which,
along with its cryptographic keys forms the root-of-trust-for-update. If the target ECU is
convinced to start installation of a non-authentic software update package, the update verification
check before running will prevent the non-authentic software from running, but the application
will be disabled until a working application is reinstalled. This path can allow an attacker to
cause a DoS of an application by sending it malicious or just junk data. Entity authentication
from the server to the target ECU prior to the target ECU starting installation can protect against
arbitrary DoS attacks using the software update mechanism on the target ECUs. Entity
authentication beyond update authentication is discussed in Section 4.2.1.4.

4.2.1.2 Secure channel (authentication and encryption).
A secure transport channel is an important front-line defense against intrusion and unauthorized
monitoring and data gathering. On the Internet, for example, hypertext transfer protocol (HTTP)
over transport layer security (TLS) (HTTPS) is commonly employed to provide server
authentication and encryption. Passwords or two-factor authentication provide the mechanism
for the user to authenticate to the servers. For secure automotive software updates, particularly
those delivered OTA, a secure channel between the vehicle and the software distribution network
can be used. An end-to-end secure channel between the target ECU and the software distribution
network servers is the most secure choice, but there are practical difficulties. Automakers today
use a secure channel between the company’s servers and a single, connectivity master ECU
(generally, this is a telematics ECU).

While an end-to-end secure transport mechanism between the target ECU and the distribution
network servers is the most secure solution, the authors do not expect most automakers to choose
that design, at least not in the near term. The primary challenge is that it requires online
operation for most of the duration of a software update. During the installation stage of the
software update procedure, the target ECU being updated enters a state when the application is
broken temporarily which varies in duration based on the design. Duration and external
dependencies are minimized during the vital installation step, as during this period, the target
ECU does not perform its functionality and this will affect the functionality of the whole vehicle.
Local caching of software update packages within the vehicle prior to performing the software
update installation procedure on the target ECUs removes dependency on an external network
connection when performing the installation, particularly for OTA updates.

In their DEF CON talk from 2015, Marc Rogers and Kevin Mahaffey identified that Tesla is
using OpenVPN to provide a bidirectionally authenticated and encrypted link between the
vehicle’s central information display (CID), the main connectivity and telematics ECU, and the
company’s servers [RM15]. While Tesla’s Model S did not stand up to attackers with physical
access, in their analysis of Tesla’s architecture and design, Rogers and Mahaffey applauded
Tesla’s use and specific implementation of OpenVPN for transport authentication and encryption
between the vehicle and the network, making this a reasonable reference design going forward.

51

The researchers believe that all modern vehicles with telematics ECUs provide at least some
encrypted channel between the company’s servers and some connectivity master ECUs ((e.g.,
telematic ESC) or even a dedicated software update master ECU, usually the telematics ECU.
Most likely, implementations of transport-layer security (TLS) are used in most of today’s
vehicle telematics designs, for example over HTTP or, in Tesla’s case, within OpenVPN.

Tesla’s use of OpenVPN serves as a good example. When used correctly, TLS and OpenVPN is
believed to be secure against even the most powerful adversaries. The connectivity master ECU
will have both a public and private key for a bi-directional secure channel between the vehicle
and network. Key management is non-trivial. Several mitigations that follow involve secure key
creation, storage, and handling.

4.2.1.3 Secure in-vehicle networks.
In the future, vehicle networks and ECUs are likely to include secure communications channels
within the vehicle as well. With the move towards Ethernet and/or CAN-FD as replacements for
CAN as the internal backbone of vehicle networks, authentication and possibly encryption can be
used to create a secure channel within the vehicle itself. However, in the near-term, CAN
technology itself makes adding cryptographic authentication mechanisms difficult due to its
relatively small frame payload size. In addition, there are still technological and operational
challenges to meet before vehicles can use secure communication for much of the traffic on their
internal networks, including re-visiting the vehicle communication architectures, provisioning
the bandwidth and handling the complexity of keys.

Without an end-to-end secure channel between the target ECU and software distribution
network, purpose-specific authentication can be used to add application-layer, end-to-end
guarantees of authenticity to select communications. The next section discusses this mitigation.

4.2.1.4 Entity authentication.
Entity authentication for specific communications beyond the update package itself can be
incorporated to better secure traditional, local software update mechanisms. For OTA updates,
entity authentication is even more important. Two things motivate for authentication above and
beyond the two mitigations previously described:

• An end-to-end secure channel between the target ECU and software distribution network
is impractical today.

• The connectivity master ECU, which contains the trust basis for the secure channel
between the vehicle and the network, is today usually the telematics ECU, a high-
complexity ECU class on which successful, remote malware installation attacks have
been demonstrated [Che11] [MV15] [Fos15].

Entity authentication beyond the update authentication itself is an important mitigation against
compromised telematics units (or other ECUs for that matter). Today’s vehicles are using a
“coconut” design with strong mitigations used for communications between the vehicle and the
outside world (as discussed in the previous section) and weak or no security controls used on

52

internal communications. End-to-end entity authentication for certain communications used for
software updates is an important mitigation as well.

Digital signatures can be used for all entity authentication. Alternatively, symmetric
cryptography like the Advanced Encryption Standard (AES) may be used to create message
authentication codes (MAC), which can serve the same purpose as a digital signature in practice,
providing guarantees of authenticity and integrity. (A MAC cannot provide what is called non-
repudiation, meaning that any key holder can generate a valid MAC, unlike a digital signature,
which can only be created by the unique holder of the private key.) Mitigations later in this
document cover some aspects of key creation, storage and handling.

Entity authentication exists for two purposes:

• Server authentication
• ECU authentication

Server authentication.
For server authentication, the software distribution network or related servers in the OEM’s
network architecture have private keys, either asymmetric or shared private keys. Previously, the
authors assumed that the target ECUs in vehicles will have the computing power to verify an
asymmetric digital signature for update authentication, and that holds for entity authentication.
Using digital signatures allows for a secure multiple-verifier communication pattern, meaning
that the server can sign a single message, and many different parties (such as the target ECU and
another ECU like the telematics ECU) can verify that signature without compromising the secret
key.

Server authentication can allow the ECU to authenticate messages coming from the network at
large (for software updates, this means the software distribution network servers). The target
ECU, with a public key for the server/network, can verify digital signatures or message
authentication codes (MACs) appended to certain requests by the server/network with the ability
to create those signatures or MACs with the private key. It is important that the design take
precautions in creating, storing, and handling keys. Exactly what messages, requests, commands
are to include message authentication can vary according to design. With entity authentication
properly implemented, an ECU other than the target ECU that is compromised, such as the
telematics ECU, cannot easily cause the software update mechanism to do something that either
prevents correct, regular functionality of another ECU or do something to weaken the security
controls/mitigations. As discussed in Section 4.2.1.1, one example of server authentication is
using a command from the server with authentication prior to a target ECU beginning a software
installation used if the target ECU cannot verify the authenticity of the software update package
prior to self-installation.

Software version rollback protection.
Software version rollback can be used as a building block for an attacker. Here, we do not mean
rollback after a failed update procedure (i.e., re-installing the current version of software after a
failed software update procedure used as a robustness mechanism). Rather, we mean rollback

53

from one working version of software to an older, but still legitimate, software version. One of
the primary purposes of OTA software updates is to fix known security vulnerabilities. Often
those vulnerabilities are relatively well known and possibly even published. An attacker with the
ability to arbitrarily install old software versions can use this as a building block for getting
malware onto vehicle systems by installing a software version with a known vulnerability and
then exploiting that vulnerability.

One use for authentication is to authorize software versions for installation with a command sent
from the software distribution network to the target ECU directly. Apple uses this design where
devices running iOS must request authorization from the Apple installation authorization server
before installing a version of the operating system [App15]. The design uses a digital signature
and a combination of device-specific personalization and a random nonce from the mobile
device to prevent replay of the authorization message later or for a different device. A nonce,
derived from “number used once,” is just that: a number that is probably only ever used once in
the lifetime of the system (or a very long space of time). “Probably” is the preferred term
because nonces are often random numbers, and the guarantee that a nonce is not used again in
that case is a probabilistic guarantee, not absolute.

Replay protection.
Entity authentication is usually paired with a scheme preventing replay attacks where an attacker
replays valid messages again later. Replay protection protects against replay attacks. Adding
freshness also adds a time limit to messages even if they are not consumed by the receiving
party, so valid commands are not valid forever. Notice that in the case of update authentication
replay protection is not recommended. Generally, software update packages are applicable,
without modification, on many devices (a “class” of devices). Therefore, it is not important to
add replay protection onto the software update package itself, and is more difficult logistically.

A nonce is the typical way to guarantee replay protection (and, optionally, freshness, if used in a
design that guarantees freshness). Generally, the target device generates a good pseudorandom
number, the nonce, and sends it to the server. The server then includes that nonce in their
authorization message. Because, in a replay attack, the attacker masquerades as the server, but
does not control the ECU, the ECU choosing the nonce randomly makes it practically impossible
for the attacker to generate the correct authentication message. When used correctly, nonces are
resilient against attackers who can spend significant time building a “codebook,” a database of
nonces/commands. The size of the nonce determines its strength and, in practice, so does the
quality of randomness.

Apple uses device personalization to further add to the difficulty of gathering nonce/command
pairs. By adding device personalization (that is, including some unique device identifier in the
message over which the signature or MAC is created by the server), an attacker who can spend
time gathering nonce/command pairs can only apply that codebook to a single device (the same
one that was being monitored).

In automotive ECUs, however, random nonces are problematic because many ECUs will not be
able to generate good random numbers. However, nonces do not need to be unpredictable; they
merely need to be non-repeated (or have a very long repeat cycle). Using a nonce and device

54

personalization to messages, commands, and/or requests with entity authentication is an
important piece to the authentication scheme to prevent replay attacks and, optionally, guarantee
freshness.

ECU authentication.
For ECU authentication, the target ECU itself has private keys, either asymmetric private keys or
shared private keys. Those keys are stored securely with the root-of-trust-for-update, which is
detailed in Section 4.2.1.6. Secure storage and handling of keys in the ECUs themselves is
detailed in Section 4.2.1.7. ECU authentication may be achieved with either digital signatures or
MACs. Today, however, hardware-assisted, asymmetric cryptography solutions are not widely
available and may not be for some time. Asymmetric cryptography can be logistically much
simpler due to the single signer/multiple verifier pattern. However, that pattern fails for ECU
authentication and asymmetric cryptography is not significantly less complex than a symmetric
scheme.

Data and status reporting.
Accurate reporting of information from vehicles and their electronics and ECUs in the field is an
important part of software updates, for both those delivered locally and remotely. In traditional
OBD-attached software updates, data is generally gathered offline using traditional diagnostics
routines for gathering data from the vehicle (e.g., those in the Unified Diagnostics Services
(UDS) standard [ISO14229]). Software update packages and any related data in traditional
programming are obtained either through a web portal or media received through the mail. For
OTA software updates (and traditional, local updates with a network-attached or augmented
design), data and status reporting can be transmitted by the vehicle ECUs themselves. In many
modern designs, a telematics ECU assists or facilitates this communication between the
bookkeeping database, software distribution network, and ECUs in the vehicle.

By giving the ECU an authentication mechanism (that is cryptographic algorithms, keys, and an
authentication scheme), the ECU can securely transmit communications to the software
distribution network (and bookkeeping database, directly or indirectly). Key management is a
large hurdle to providing ECU authentication in practice.

The authors believe that some OEMs will use ECU authentication in their OTA updates, but
possibly not all initially due to the logistical and technical challenges that remain.

Secure remote attestation.
Remote attestation (RA) is a technique that allows a trusted server to verify the integrity of the
software running on a remote untrusted and possibly compromised computer system, such as an
ECU in this context. [Cok11] After an update is installed, remote attestation can be used later to
check whether the installed software has unauthorized changes or not. If the system cannot pass
the attestation process, it means the installed software has been modified in some way and
become potentially unsecure and unsafe. Thus, the server can issue a warning and alert the driver
to install a healthy version of the software.

55

RA has been considered a promising technique to fortify embedded systems security. A
successful attestation allows the establishment of the root of trust of the remote entity. Various
RA techniques have been proposed and can be classified into three categories based on whether
secure hardware is used to assist in the attestation.

Software-based remote attestation techniques usually ask the remote party (e.g., an ECU) to
compute a checksum of its memory using a specially crafted function, which can result in
observable side effects such as too much delay if there is any cheating attempt to emulate the
function. Hardware-based remote attestation techniques usually use secure hardware to assist
attestation. Commercial and standardized hardware-based RA techniques include ARM
TrustZone and Trusted Platform Module (TPM) based high-end microprocessors. Hybrid remote
attestation techniques explore the design space between the two extremes of software and
hardware based RA and use a hardware-software co-design to allow remote attestation.

The electrical system, including the ECUs, of a modern vehicle is a complicated distributed
cyber physical system with multiple tens of ECUs of various kinds. Many challenges exist to
applying RA techniques to a complex automotive system. High-end ECUs may have secure
hardware such as ARM TrustZone to allow hardware-based attestation. Medium-end ECUs may
be modified to support hybrid remote attestation methods. Low-end ECUs, lacking hardware to
support RA, may use software-only RA. Alternatively, high-end and medium-end ECUs can be
used to help remote attestation of low-end ECUs.

4.2.1.5 User authentication and authorization.
The user (such as a technician in a dealership or an end-user driver) or the OBD debugging tool
that performs the update needs to be authenticated first before the update process starts. That is,
an update process starts only after an authenticated user allows the update process to proceed.
Along with update authentication (Section 2.1.1), user authentication adds another layer of
security check to avoid potential unsafe operations. User authentication can take many forms
including password verification, hardware authentication tokens, biometric-based authentication
methods, or cryptographic challenge-response authentication protocols. If the presence of a
human can be determined securely, this indicates possession of the vehicle (something you
have), one factor of two-factor security. The second factor can be a password, passphrase, or pin
(something you know).

User authentication can be particularly useful for securing traditional OBD port-attached
software updates. It is important that remote attacks are not able to use the “local” update
functionality. By securely communicating to the target ECU that a valid user (either the owner or
a mechanic) has authorized a local update, the target ECU can be quite certain that the local
update is allowed. In NIST’s “BIOS Protection Guidelines,” local update routines can be secured
via some physical mechanism, like a hardware jumper [NIST11]. User authentication is a logical
extension of that concept to automotive.

4.2.1.6 Use a root-of-trust-for-update.
In the NIST-published “BIOS Protection Guidelines,” recommendations for securing BIOS
firmware, the authors recommend the use of a root-of-trust-for-update[NIST11]. The root-of-

56

trust-for-update, in the NIST recommendations, includes the verification algorithms and keys for
the verification. For the automotive space, the root-of-trust-for-update is essentially the
bootloader along with its verification routines and verification keys. In the past, automotive ECU
bootloaders did not perform cryptographic verification, instead relying on a CRC for integrity
guarantees before starting a new application. However, the risk of malware installation either
using OTA or traditional OBD software update mechanisms means that cryptographic
authentication is now widely recommended for software updates (as described in the previous
sections). Because keys are somewhat different from software routines, the writers treat the keys
separately in the next section. This section is devoted to securing the bootloader and verification
routines.

Prevent easy modification of the bootloader.
The NIST “BIOS Protection Guidelines” recommend that any update to the root-of-trust-for-
update must include at least the same mitigations as an update to the software [NIST11]. This is
the bare minimum. If possible, the root-of-trust-for-update can be stored in a protected region of
ROM. However, this might not be possible, in which case the bootloader must include software
mechanisms to prevent allowing itself to be overwritten.
Preventing bootloader-type malware could include making so-called dark regions, or areas of the
storage that are rarely modified and are not part of the file system, un-writeable. By restricting
firmware bootloader writes to physical access, this type of malware could be defeated. Any
attempt to write to these regions can instantly raise as a red flag.

Use a trusted region that cannot be updated remotely.
One mitigation against bootloader malware (and invalidation of the root-of-trust-for-update) is to
completely disallow updating of the root-of-trust-for-update from being updated remotely. When
working properly, a local OBD port-attached software update would be required to update any
part of the root-of-trust-for-update, perhaps except for keys. The keys in the root-of-trust-for-
update are discussed in the next section.

4.2.1.7 Protect keys and security-relevant data stored in ECUs.
To protect bypass of correct verification, each ECU can store its verification keys in such a way
that an outside party without authorization cannot modify them. If those keys are modifiable by
an authorized party, the cryptographic mechanisms and design to authorize key change can be, at
minimum, as strong as the mechanisms used for software updates themselves.

Hardware-assisted secure storage.
Secure storage is a solution that is particularly resilient against software attacks and is currently
being investigated by the SAE Vehicle Electrical System Security Committee [J3101]. Silicon
vendors are beginning to offer microcontroller system-on-a-chip (SoC) solutions with embedded
hardware security modules (HSMs) for secure key storage and accelerated cryptographic
operations. Embedded HSMs have their roots in the German auto industry, specifically the
Hersteller-Initiative Software’s (HIS) Secure Hardware Extension [HIS09] and the E-safety
vehicle intrusion protected applications (EVITA) group’s fuller HSM design [EVITA10].

57

In the near term, the researchers believe that HSMs offered with microcontrollers will remain
limited to symmetric keys and algorithms, although generic secure storage might be an optional
use case in some designs. Additionally, today’s automotive computing hardware does not usually
include secure storage, and many ECUs will likely continue to use computing hardware targeted
for low-cost, eschewing non-essential peripherals. Therefore, even ECUs which do not have
hardware-assisted secure storage for some or all keys must secure their internal storage and
RAM, especially sensitive areas where cryptographic material is stored using modern best
practices for secure product and software development.

4.2.1.8 Prevent bypassing of authentication mechanisms.
The NIST document about BIOS updates recommends “preventing bypass of message
authentication” [NIST11]. This seems obvious, but proves to be difficult in practice. Backdoors
left in production systems plague computers of every kind, from powerful servers to puny single-
purpose ECUs. Many otherwise robust security designs are defeated by backdoors or other
engineering- and test-only interfaces, either willfully or accidentally left in production systems.
Government-mandated backdoors are also at risk of compromise or discovery by unauthorized
parties.

Backdoors are generally left in production systems through carelessness or the belief that they
will not be discovered in practice. However, hackers and penetration testers look for backdoors
as a matter of course. Examples of backdoors in production embedded systems are serial ports,
network services such as telnet, JTAG ports, and secret network diagnostics routines. At the
Black Hat security conference two years ago, Charlie Miller and Chris Valasek exploited a
powerful interface called D-Bus to gain malicious code execution on a Jeep’s Infotainment ECU
[MV15]. That interface likely should have been disabled in production systems. It is not unheard
of for suppliers to leave secret powerful diagnostics routines enabled on production systems for
configuration or calibration in the field.

All mechanisms that can allow for code installation and configuration on production ECUs can
be enumerated as front doors and protected with proper authentication mechanisms as described
previously in this document. Engineering and test interfaces that are not essential can be disabled
in production ECUs, ideally irrevocably.

4.2.1.9 Prevent forgery or unauthorized generation of digital signatures.
Forgery and unauthorized signature generation are the other main attack paths for getting around
a digital signature, which cannot be defeated directly using modern computers. Forgery may
exploit weaknesses in the key selection where the algorithm itself is otherwise probabilistically
impossible to defeat. Unauthorized generation of signatures can be because of key theft or
insufficient security controls on the production signing process and system.

Proper key selection and handling is a topic in its own right. Key management for traditional IT
systems is well understood, and best practices exist and can be followed. In recent years,
weaknesses in key generation procedures, usually due to poor entropy, have been a hot topic
[Hen12]. The problem seems to be more prevalent in networked, embedded systems where good
entropy is scarce. Charlie Miller and Chris Valasek showed that the Uconnect infotainment

58

system creates Wi-Fi Protected Access (WPA) keys with little entropy, resulting in a very few
possible selections, which can be brute forced based on an estimation of a vehicle’s assembly
date [MV15]. Best practices for properly creating cryptographic keys can be followed as well.

Because software update package signing is a semi-automated procedure involving some
coordination between employees within at least one supplier, the OEM and possibly a trusted
third party, this provides a significant source of human interaction in the signing process.
Humans lose passwords and can be coerced or convinced to betray their loyalties. In the
production software-acceptance/signing process, best practices can be followed. Proper
authentication mechanisms and management can be used. Separation of duties can prevent a
single point of human failure. Code reviews can prevent backdoors or malicious code from being
snuck into software at the source level. These mitigations are discussed further in the next
sections.

4.2.1.10 Separation of duties.
Maintaining a separation of duties is important for secure software development. Separation of
duties ensures no one could potentially, while undetected, siphon information or maliciously
modify code or system infrastructure. For instance, when using digital signature for update
authentication, the signature would be generated by one party (e.g., the security department) and
added to the update by another party (e.g., the development department). In this way, no single
entity can abuse the use of digital signatures.

Like many security mitigations and controls, separation of duties creates layers, which an
attacker must penetrate to form a successful attack. This, again, like many security mitigations,
creates a less efficient process for greater security. That said, most modern software companies
practice separation of duties to a relatively large degree.

Human beings are one of weakest links in a security chain. Unlike computer systems, humans
are not deterministic. While machines can be subverted, the mechanism is purely deterministic
and, when discovered, can be fixed or mitigated. With humans, anything is possible. Humans can
be coerced or enticed to work against the interests of their job role, for example, through
blackmail or bribery. Moles within large organizations are not unheard of either. For this reason,
it is important that secure software update procedures are designed with a healthy separation of
duties so that a single or small number of compromised (or even lazy, incompetent, or ill-trained)
employees cannot be a single point of security failure. For example, while a software supplier
may be able to submit malware to the software repository, a healthy separation of duties would
mean that, at minimum, checks among the OEM and other employees at the supplier and even
possibly trusted third parties before that software update package is signed or delivered to
vehicles is important. Separation of duties is important for a secure software update process.

4.2.1.11 Code reviews before code deployment.
Code reviews are an important technique that must be used to ensure that no malicious code or
software vulnerabilities exist in the codebase. Thorough peer review, code change tracking and
integration testing can be done so that the code is free from backdoors or other malicious
implanted behaviors. The next generation of vehicles are very complex and often use third-party

59

supplier software or open source software. Constant attention to security bulletins and regression
testing for security flaws is important. Open-source flaws can be detected many years after a
piece of software exists in production systems, and applying these updates can be swiftly done.

4.2.1.12 Ethical hacking and penetration testing.
Penetration testing is the specific engagement of using a set of white hat hackers to attempt to
exploit a production or would-be production system just as an attacker would. Some penetration
testing is done with no inside information (so-called “black box”) or some inside information
(so-called “gray box”). Ethical hacking is a broader category, including security research
community engagement and even bug bounties.

Penetration testing is an important part of a security-conscious product development life cycle,
particularly for electronics. It is a form of measurement, which cannot be achieved with
traditional testing mechanisms. This measurement is important because, without it, system
designers and engineers generally continue to believe that their security controls cannot and will
not be defeated. Even the most experienced and talented engineers can fall into that trap.

Therefore, it is a powerful mitigation to use outside ethical hackers to help find any system
vulnerability unknown to the developers. Recently, Tesla had security researchers from firms
Lookout and Cloudflare attempt to find and exploit security vulnerabilities [RM15]. Until
recently, the automotive industry has been a security black box and has downplayed
cybersecurity vulnerabilities with emphasis on protecting trade secrets and mitigating legal risks.
Automakers can move into a more modern software-driven culture and engage with white hat
hackers and the security community at large.

4.2.1.13 Quickly fix security bugs for in-house and third-party software.
Using outdated and often insecure software has plagued networked embedded systems. The
researches have known about this very problem within automotive software for a few years now,
as well, particularly in infotainment and telematics ECUs [Che11] [Fos15] [RM15]. For any
electronic system, it is important that known security vulnerabilities be patched in a timely
manner. Suppliers and OEMs can embrace the reality that networked software must be up-to-
date to be secure. Zero-day vulnerabilities (i.e., vulnerabilities that are not known prior to real-
world exploitation) are a problem, but the exploitation of well-known security vulnerabilities in
the field is particularly important to avoid.

4.2.1.14 Traditional IT best practices.
There are a host of traditional IT best practices that can be followed to secure the network
servers used for software updates (including the software distribution network, software
repository, and bookkeeping database). Traditional IT security is a mature field and more than
can be covered in this report. The following items, however, can be addressed:

• Protection of private keys used for software update package signing and authentication.
Key management is non-trivial, but there are many well-known best practices and
mitigations.

60

• Strong authentication used for submission of software update packages to the software
repository. Strong, bi-directional authentication can be achieved with two-factor
authentication.

• Logging and auditing. The use of logging and auditing is very important and serves to
both debrief after an incident as well as detect potential incidents in progress. The benefit
of good logging is that auditing can be improved and automated over time.

• Quick response to cyber incidents. Companies must have procedures in place to handle
cybersecurity incidents prior to one occurring. Creating or recommending best practices
for designing and implementing a cybersecurity incident response process is well beyond
the scope in this document and will vary from company to company.

4.2.1.15 App store security.
Experts have suggested that the emerging automotive infotainment ecosystem is ripe for app
stores, which are integral in the mobile phone ecosystem. While this is not technology of today,
soon software add-ons to automobiles will be distributed via app stores. App stores are difficult
from a security perspective because the software is only somewhat controlled by the OEM.
Fortunately, there is a wealth of knowledge and lessons learned in the mobile industry, including
thorough systematic vetting of developers and their apps, API access control, and swift responses
to malware when detected. If app stores are rolled out by automakers, these mitigations can be
adapted from the mobile space.

4.2.1.16 Physical security.
Physical security is the set of mitigations used to keep physical locations and things secure. For
software updates that are delivered on physical media, physical security mitigations can be used
to preserve the integrity of the software update packages. Physical security mechanisms include
controlled access to secure locations, break-in deterrents such as cameras or barbed wire, and
tamper-detection packaging of media. The exact physical security mechanisms applied to
storage, transportation, and creation of physical media or tools for software updates can be
tailored to the specific technical design and logistical infrastructure of the suppliers, OEM, and
possibly, trusted third parties.

4.2.1.17 Secure vehicle architecture.
Modern vehicles are highly electrified. With the rise in partially autonomous and active driver
assistance features, almost all functions of vehicles are under electrical control, and the ECUs in
control are, for the most part, networked together using serial bus technology like Ethernet,
FlexRay, Universal Asynchronous Receiver/Transmitter (UART)/Local Interconnect Network
(LIN), or most commonly, CAN.

The traditional assumption that only persons with physical access (or proximity) can affect
vehicles’ electrical systems and internal networks has driven cost-first optimization of the
vehicle’s data and control architecture and partitioning without accounting for security.
However, with the rise of connected vehicles equipped with cellular data modems, Wi-Fi, or an
attached mobile phone providing pass-through access to the Internet, that assumption no longer
holds.

61

Up to this point in the document, the mitigations described have been augmentations to the
vehicle’s electrical architecture to improve the security posture, at minimum to the current
known best practices. However, the difficulty in creating drastic security and even safety attacks
can be increased by rethinking the entire electrical architecture. As a motivating example, it is
not uncommon today for a connectivity device like an infotainment unit or a telematics device to
share a CAN network with a dozen or so controllers with disparate functionality. This
architecture, combined with non-intentional gateway logic between network buses, has shown to
be particularly vulnerable to remote control attacks [MV15].

Intentionally revisiting the electrical architecture and partitioning of future automobiles allows
for drastically increasing the probability of success for high-impact outcomes like remote vehicle
control. In the perfect case, connectivity modules like OnStar or Ford SYNC or U-Connect
would be completely partitioned (that is, disconnected) from the remainder of the vehicle and its
electronic controls. While this design removes much of the expanding utility of connectivity to
the vehicle and is, therefore, unlikely to be adopted in practice, it also removes the possibility of
a remote-control attack by malware installed on an “air-gapped” infotainment system.

While air gapping so-called connectivity devices is unlikely to be implemented in practice, a
more intentional secure architecture and functional partitioning can come a lot closer to the
perfect, air-gap solution than the naïve, cost-driven architectures of many of today’s
automobiles. By segmenting the bus functionally, different control systems can be better isolated
into unique segments, with less data needing to be copied from one bus to another by a gateway.
To maintain the sanctity of the segmentation, gateways—ECUs that move data between different
network buses (for example, between a powertrain controls CAN bus to a body electronics CAN
bus)—will need to be seen as firewalls. Firewalls can be chosen intentionally for their security
properties. In some cases, firewalls can include new logic to block and/or monitor suspicious
traffic. Secure architecture may include the use of intrusion detection systems (IDSs), and
security-specific applications (either dedicated or built into another ECU) specifically tasked
with monitoring for and flagging malicious, suspicious, and/or anomalous traffic on the vehicle
networks.

4.2.2 Denial-of-service.
A denial-of-service attack happens when an attacker with some amount of control over a system
causes it to fail to perform some of its duties. For example, an attacker might spawn many clients
to overwhelm an HTTP server (or servers). When many attackers or an attacker with control of a
botnet, a collection of computers or devices running malware and at the command of an attacker,
performs a DoS attack in coordination, it is called a distributed denial-of-service (DDoS). The
design of the software distribution network and/or datacenter must protect against DDoS attacks,
for example, by using authentication in communications with clients and using load balancing.
This topic is mature and outside the scope of this work.

These traditional DoS and DDoS attacks on IT infrastructure are certainly risks for any server
network/datacenter, but they are not the focus in this work. Rather, the focus here is to
specifically consider DoS attacks against the software update mechanism itself, which might
allow an attacker, possibly the owner, to bypass software updates to retain an older version of
software, potentially with known security vulnerabilities.

62

DoS attacks are extremely difficult to prevent in practice. In fact, one of the best deterrents
against DoS attacks is the potential legal consequences (either criminal or civil). The team does
not propose any specific mitigation against DoS attacks that are not also relevant to malware
installation. Therefore, any mitigations that apply to DoS have already been described. Table 18
reiterates the DoS risks from Section 3.4.2 and lists the mechanisms to mitigate those risks.
Mitigations have been described in Section 4.2.1.

Risk Mitigation Technique

Attacker spoofs delivery
network servers Server authentication Entity authentication.

Attacker spoofs legitimate ECU
to tamper with software updates ECU authentication Entity authentication.

Attacker spoofs legitimate
wireless interface access point Network authentication

Digital signature, message
authentication, proper key and

password management.

Jamming of wireless interface Anti-jamming techniques

No specific anti-jamming techniques
recommended, as this is well outside

the scope of software update
mechanisms.

Table 18. DoS—Risks and Mitigations. This table reiterates the DoS risks from Section 3 and lists the mechanisms
to mitigate those risks. Mitigations have been described in Section 4.2.1.

4.2.3 Unauthorized download of information.
In Section 3, the team defined the high-level risk of unauthorized download of information as the
unauthorized access of either intellectual property or private information related to drivers or
owners. This section reiterates the risks from Section 3 and maps them against the mitigations
proposed. Table 19 shows the risks and mitigations.

This report focuses on the mitigations for the malicious software installation (and to a lesser
extent, DoS) misuse cases. In this section, some mitigations related to unauthorized data
access/download are briefly mentioned. Many of the mitigations presented in the malware
installation scenario also apply to unauthorized download of information, including
authentication mechanisms prior to download (ECU-to-server authentication) and using an
encrypted channel between the vehicle and the back end.

63

Risk Mitigation Technique

Attacker masquerades as
legitimate ECU to download

data

ECU authentication
End-to-end encryption

Entity authentication. Update
encryption.

Attacker spoofs legitimate ECU
to tamper with software updates ECU authentication Entity authentication.

Attacker abuses data gathering
functionality

Server authentication
Secure channel

End-to-end encryption

Entity authentication. TLS secure
channel. Data gathering encryption.

Man-in-the-middle
Secure channel

Physical security
End-to-end encryption

TLS secure channel. Update
encryption. Data gathering

encryption.

DRM circumvention

Entity authentication
User authentication

Secure channel
Access control

Personalized message authentication
for feature authorization. User

authentication to tie content to a
person instead of a vehicle or its
hardware. TLS secure channel.
Access control to authorization

servers.

Table 19. Unauthorized Download—Risks and Mitigations. This table reiterates the unauthorized download of
information risks from Section 3 and lists the mechanisms to mitigate those risks. Most mitigations have been
described in Section 4.2.1.

4.2.3.1 Update encryption.
Because loss of intellectual property is a one-and-done attack (that is, once the information has
been stolen, it is unlikely that an attacker has more to do, if intellectual property theft is the
attacker’s purpose), a stronger privacy mechanism is justified. Particularly, end-to-end update
encryption can be used to secure the intellectual property contained in a software update package
all the way to the target ECU. Update authentication can be augmented with two signatures: one
on the application binary and one on the encrypted software update package itself, so that parties
without access to the decryption key can still verify the authenticity of an encrypted software
update package. When update encryption is properly designed and implemented, only the target
ECUs and software distribution network (and related) servers have access to the private key used
for decryption.

Symmetric cryptography is used for encryption, AES being the de facto standard in use today.
Using AES to achieve a secure, private data transmission is well understood and best practices
can be followed. It is possible to perform a key exchange between the ECU itself and the back
end using asymmetric cryptography to authenticate the ECU to the server, but this is a less likely
design for the same reasons it is unlikely to use asymmetric cryptography for ECU
authentication. Private keys, whether asymmetric or symmetric, can be managed securely.
Mitigations related to creation, storage, and transportation of keys are discussed in Section 4.2.1.

64

It is possible to use the same private key for encryption and decryption across a broad class of
ECUs so that the software update package does not need to be encrypted differently for each
individual ECU. This is analogous to the non-personal nature of the update authentication
mechanism.

Update encryption is technically a weak mitigation for the malware installation risk. By
encrypting updates and only providing plaintext (that is, unencrypted data) to authorized parties,
it becomes more difficult for an adversary to gain access to the software binary for reverse
engineering. Reverse engineering is very useful in building a successful attack; the alternative is
trial-and-error. However, update encryption may not be very strong against reverse engineering
because a dedicated adversary will still likely find a way to get firmware from a device in the
field.

4.2.3.2 Data gathering encryption.
The data gathering functionality to support software updates might possibly contain private
information on the drivers and/or owners of vehicles. Alternatively, the metadata to support
software updates might be mixed with analytics of all kinds, including private information. To
secure this data against unauthorized access, the metadata can be encrypted from the target ECU
to the software distribution network/bookkeeping database. As with update encryption, when
properly designed and implemented, only the target ECUs and software distribution network
(and related) servers have access to the private key used for decryption. And, again, symmetric
key cryptography is the most likely way to achieve encryption with a private key shared between
the ECU and the back end. In the case of data gathering encryption, the ECU should have a
unique private key.

4.2.3.3 Access policies.
Finally, because unauthorized download can happen from anywhere by anyone, access policies
can be created and enforced on the software distribution network and/or feature authorization
servers. This is to prevent unauthorized individuals from accessing sensitive information, either
to prevent theft of intellectual property or private information. Separation of duties and
traditional IT best practices can also be followed and are discussed in Section 4.2.1.10 and
4.2.1.14, respectively.

4.3 Conclusion
In-field software updates are a necessity in the automotive industry to fix flaws without replacing
hardware. With the rise of the connected vehicle, OTA software updates have also become
necessary to keep software patched when security vulnerabilities are found. The current
generation of automobiles primarily uses OTA software updates for telematics and infotainment
ECUs only. However, Tesla, for example, has a mechanism to update any ECU remotely OTA,
and automakers that do not are moving towards OTA software updates for other ECUs quickly.

While software updates are a boon for security, the mechanism, particularly the remote
mechanism, creates a new avenue for attackers to exploit. In addition to adding to the threat
surface of an automobile’s electrical system and ECUs, software update mechanisms include the

65

ability to download binary software from a network and install it. If the update functionality
itself can be compromised, this is very attractive to attackers for installing malware.

In this report, the team created a list of mitigations that apply to the risks identified previously.
Next, the risks are mapped onto the update stages, and a matrix is created showing which
mitigations apply to which risks, shown in Table 17. OEMs will choose what mitigations to
implement as they design and roll out OTA software updates and improve upon the security of
traditional OBD port-attached software updates.

66

5. Intellectual Property Theft Risks and Mitigations

Intellectual property theft can take many forms. For example, a competitor may want to steal
intellectual property such as software in a current or future product design. Or, maybe a
counterfeiter may seek to download a software or firmware binary to place into a counterfeit
electronics part without modification. Even rich information about the vehicle, owner, and/or
operators can be viewed as OEM intellectual property beyond the privacy concern, which
necessitates care. Finally, digital rights management (DRM) is used to license purchased content
in the field, or after-sale add-on content. Circumvention of DRM features is attractive to vehicle
owners to enable additional content without paying, such as new vehicle features like adaptive
cruise control or even just media files.

Software intellectual property often represents an enormous investment in its development. One
of the difficulties with intellectual property theft is that, in some scenarios, such as software
binary theft, even a single incident of improper access is enough for an attacker to achieve their
goal and the information to be leaked. For that reason, it is extremely difficult to completely
protect against intellectual property theft. It is very reasonable to assume that the adversaries can
spend countless hours with physical access to the hardware attempting to get the software binary
or other intellectual property out. Software binaries are essentially machine code, which can be
used to counterfeit the electronics without recreating the software or for reverse engineering by
competitors or hackers. Vehicle owners are also interested in circumventing DRM protections
for licensing add-on content. Even private information about vehicles and their owners and
operators can be viewed as OEM intellectual property.

5.1 Abuse Cases and Risks
The following abuse cases are slightly different than the risks identified in Section 3.4.3. Abuse
cases are effectively use cases from the perspective of a motivated adversary. Each abuse case
begins with the adversary named as the subject of the abuse case.

1. Competitor steals intellectual property in the form of software or firmware.
2. Counterfeiter steals intellectual property in the form of software or firmware to produce

counterfeit parts that run the stolen application software.
3. Customer uses flaws in the DRM of after-sale purchased content to gain access to content

that was not actually purchased.
4. Unauthorized entity gathers data from many vehicles in the field.

The technical risks that can lead to the first two abuse cases are the same, although the actor is
different. The specific risks map quite closely to the four abuse cases. These risks are the same as
were identified in Section 3.

1. Attacker masquerades as legitimate ECU to download software. (Abuse cases #1 and #2)
2. Attacker circumvents DRM to install add-on content that has not been paid for or licitly

acquired. (abuse case #3)

67

3. Attacker abuses data-gathering functionality and masquerades as legitimate server to
siphon information from vehicles in the field. (Abuse case #4)

4. Attacker creates a man-in-the-middle attack and siphons off the intellectual property data
desired. (Abuse cases #1-4)

There are other intellectual property theft risks; however, they are not related to software
updates. One such example is the risk that an attacker attaches directly to the JTAG port on an
ECU and downloads the software. That attack works just as well to download ECU software, but
it is not related to in-field software update functionality in any way. This analysis is limited in
scope to only risks relevant to in-field software updates.

In Section 4, a table was created mapping malware installation risks to mitigations. Many of
those mitigations are applicable to intellectual property theft risks as well. Table 20 is the
risk/mitigation mapping for intellectual property theft risks. Risks and mitigations that were
retained from the malware installation table are non-bold, and intellectual property theft specific
risks and mitigations are bold.

For dedicated, moderately funded threats, the motivation and severity attributes are mostly fixed.
The stakeholder impact is monetary only. The motivation for attackers is high. The mitigations
proposed here, then, seek to reduce a would-be attacker’s probability of success.

Interestingly, most people that the research team speaks with regularly from the automotive
industry, both automakers and tier-1 suppliers, do not express a strong intention to do anything
about intellectual property protection for software binaries. The prevailing opinion seems to be
that there are so many ways for attackers to get a hold of software binaries that it simply isn’t
worth adding additional protections like update encryption for the software update process
(discussed in Section 4 and the next section). However, according to the automakers, protection
of owners’ and operators’ private information, which might be considered OEM intellectual
property, is very important. The team believes that integrity of DRM in licensing after-sale, add-
on content will be important to OEMs in tier-1 suppliers as that opportunity grows in the future.

5.2 Mitigations
The primary mitigation applied to software updates to reduce the risk of intellectual property
theft of the software is update encryption. Just like update authentication using a digital signature
is the primary, essential mitigation against the installation of malware, update encryption is the
primary, essential mitigation against unauthorized download of information with regards to
software distribution. End-to-end encryption from the software distribution network to the target
ECU can prevent an adversary from being able to access the software binary while in transit or
storage on a server ready for download, even if an adversary can perform a man-in-the-middle
attack between the vehicle and parts or all the software distribution network.

It is important that the encryption cannot be bypassed (in this case, it is the distribution network
which must ensure this) and that cryptographic keys are created, stored, transported, and
maintained properly, both on the ECUs and in the software distribution network. In addition,
ECUs can be locked down on local interfaces to protect software binaries. This includes using, at

68

minimum, password control on ECUs to access debug features which can read from memory. It
also includes not permitting any sort of legitimate interface, such as UDS diagnostic routines, to
allow the binary to be downloaded from the ECU in production, even with physical access to the
vehicle or ECU itself.

Encryption is difficult to use securely in practice. The main difficulty is the logistics of the keys
and of the encrypted software images. If a single symmetric key or small set of keys is shared
among many ECUs (such as an entire vehicle line or model year), the security of the encryption
is reduced because there are many places where keys might be compromised. The usual solution
is to avoid cryptographic key reuse and give each unique ECU its own key. However, using
unique encryption keys for each ECU is logistically difficult and confounds caching and
distribution (because each different ECU with a different key will need to download a
completely different binary which has been encrypted for that one unique key specific to that
ECU).

A sensible middle- ground design might be to share keys among only homogeneous ECUs for
software update encryption. If each ECU in the homogeneous “class” protects the keys in the
same way and software is not otherwise significantly personalized to each ECU, this makes
perfect sense. Once a symmetric encryption key is compromised for a homogeneous class of
ECUs, the firmware for that class can be decrypted. The attacker cannot do much more with the
encryption key in that class of ECU. This assumes that proper key provisioning best practices are
used, and the encryption/decryption keys are not used for authentication; rather, dedicated keys
are used for that purpose (generally asymmetric as well).

5.2.1 Physical tampering protection.
Physical tampering protection is a mitigation against intellectual property theft as it can prevent
an attacker with local, physical access from extracting the software or other intellectual property
from a device in his or her physical presence. Tamper-proofing hardware can be created in such
a way that attempting to remove the tamper proofing destroys the software and hardware
preventing access to the information. This mitigation is not discussed further here because it is
not related to software distribution.

5.3 DRM Circumvention
The astute reader will observe that no mitigations specific to the DRM circumvention risk are
listed. From the perspective of software updates, the secure way to provision add-on content is to
use the existing secure software update mechanism. Secure software distribution can be safely
assumed to be in place before or concurrently with large amounts of after-sale, add-on content
becomes mainstream. If software updates are implemented correctly, the distribution of
authorization commands can use the same utility (these could be called tokens or tickets).
Therefore, the mitigations against DRM circumvention are the same as the mitigations against
malware installation. DRM features, just like other intellectual property theft features, must be
protected against adversaries with physical access as well. The one primary difference between
DRM tokens and software binaries is that replay of DRM tokens is a legitimate concern and,
therefore, they can be protected against replay attacks.

69

 Mitigations

Se
cu

re
 C

ha
nn

el

(A
ut

he
nt

ic
at

ed
 a

nd
 E

nc
ry

pt
ed

)

EC
U

 A
ut

he
nt

ic
at

io
n

Pr
ot

ec
t K

ey
s a

nd
 S

ec
ur

ity
-

R
el

ev
an

t D
at

a
St

or
ed

 in
 E

C
U

s

Se
pa

ra
tio

n
of

 D
ut

ie
s

Et
hi

ca
l H

ac
ki

ng
 a

nd

Pe
ne

tra
tio

n
Te

st
in

g
Q

ui
ck

ly
 F

ix
 S

ec
ur

ity
 B

ug
s f

or

In
-H

ou
se

 a
nd

 3
rd

 P
ar

ty
 S

of
tw

ar
e

Tr
ad

iti
on

al
 IT

 B
es

t P
ra

ct
ic

es

Ph
ys

ic
al

 S
ec

ur
ity

U
pd

at
e

En
cr

yp
tio

n

D
at

a
G

at
he

ri
ng

 E
nc

ry
pt

io
n

Pa
ck

ag
in

g

Supplier compromise
 X X X

T
ra

ns
po

rt

Physical media tampering in-transit
 X X X X

Software installation tools are
compromised X X X X X

Attacker masquerades as legitimate
ECU to download data X X X X X X X

Man-in-the-middle X X X X X X X

R
ec

ep
tio

n

DRM circumvention X X X X X X X

V
er

ifi
ca

tio
n

&

M
ai

nt
en

an
ce

Attacker abuses data gathering
functionality X X X X X X X

Table 20. Risks and Mitigations. Intellectual property theft risks are the rows in the table and mitigations are the
columns. Cells with an X indicate that the mitigation applies to the risk in that column. Risks and mitigations for
intellectual property theft were discussed in Section 4, which included a similar table for malware installation risks.
Risks and mitigations specifically added for intellectual property theft are in bold.

70

5.4 Conclusion
Intellectual property theft, particularly software binary theft, can be enabled and made easier
with software update mechanisms, particularly OTA mechanisms. In sections 3 and 4, the team
identified the intellectual property theft risks and mitigations. In this section, intellectual property
theft risks and mitigations were revisited, and then a mapping was created between the two based
on the frameworks from the previous sections.

In discussions with the OEM and tier-1 employees, the majority opinion is that protecting the
software binaries is not a priority. The prevailing opinion in the industry is that there are too
many other ways for an adversary to obtain a software binary to justify the cost of adding
encryption to the software update process. Some specific ECUs and/or applications are likely to
use software update encryption, however.

71

6. Counterfeit and Fraudulent Electronic Parts and Products

Fraudulent and counterfeit parts can pose a safety and monetary liability risk. Even if out-of-spec
electronic parts don’t always compromise safety, they can wear out more quickly and perform
poorly. In the automotive industry, counterfeit parts not only impact warranty and maintenance
costs, but can also lead to brand damage. SAE aerospace standard AS5553A [AS5553A] is a
quality standard that organizations can adopt to create a robust process for detecting, preventing,
mitigating, and disposing of fraudulent or counterfeit parts.

SAE AS5553A is an existing standard for the prevention, detection, mitigation, and disposition
of counterfeit and fraudulent electronic parts in the aerospace industry. Due to the similarity of
aerospace and ground vehicle electronics and the existence of an SAE standard for protection
against counterfeit and fraudulent electronics in aerospace, the team’s analysis of that document
guides this section. They attempt to identify unique insights for the automotive industry. That
said, the SAE AS5553A standard is general enough to apply to the automotive industry with only
minor modification.

SAE AS5553A defines the following types of parts:

• A suspect part is “any part for which there is some indication that it might be fraudulent
or counterfeit.”

• A fraudulent part is “any part misrepresented to the customer as meeting the customer’s
requirements.”

• A counterfeit part is “a fraudulent part that has been confirmed to be a copy, imitation,
or substitute that has been represented, identified, or marked as genuine, and/or altered by
a source without legal right with intent to mislead, deceive, or defraud.”

6.1 SAE AS5553A
This section follows the requirements put forth in SAE AS5553A—Fraudulent/Counterfeit
Electronic Parts: Avoidance, Detection, Mitigation, and Disposition. It is recommended that the
reader have a copy of SAE AS5553A for reference. No figures were duplicated in this document.
SAE AS5553A is a not a regulatory standard.

SAE AS5553A contains both hard requirements and recommended practices; therefore, the
requirements themselves are very high level. Meeting those requirements requires a careful
analysis of the needs of the implementing organization and its customers as well as the
application under consideration. Risk assessments on the part of the implementing organization
(and possibly, its customers) drive the detailed mitigations applied to meet the requirements of
AS5553A.

Each requirement (of the single root requirement) from AS5553A is a subheading in this section.
AS5553A defines the following requirements:

1. Personnel Training: The implementing organization must train all relevant personnel.

72

2. Parts Availability: The implementing organization must train all relevant personnel as
appropriate to their job function, including management.

3. Purchasing Process: The implementing organization’s processes must
a. assess potential parts supply sources, documenting the criteria and maintaining

records for assessed suppliers.
b. specifically prefer procurement from original component manufacturers (OCMs)

or authorized suppliers based on criteria set.
c. assure that approved sources are maintaining effective counterfeit and fraudulent

parts processes.
d. include documented risk assessments and mitigation plans for all non-OCM/non-

authorized sources.
4. Purchasing Information: The implementing organization’s processes must specify

contractual requirements to minimize the risk of receiving counterfeit or fraudulent parts
and the processes must

a. include traceability to the original source (either OCM or aftermarket
manufacturer), which identifies the name and location of all intermediaries in the
supply chain between the original source and procurement by the implementing
organization. Require a documented risk assessment if traceability document is
unavailable or suspected to be falsified.

b. specify flow-down of requirements from the implementing organization’s
processes (compliant to SAE AS5553A) to all contractors and sub-contracts.
Require a documented risk assessment for any supply chain intermediaries that do
not have an AS5553A-compliant process.

c. require disclosure at the time of quotation of whether the source is authorized for
the parts being quoted and whether a full manufacturer’s warranty is provided.

5. Verification of Purchases/Returned Parts: The implementing organization’s processes
must

a. include detection of suspect, fraudulent, and counterfeit parts prior to formal
acceptance.

b. specify inspection as part of the returns process.
6. In-Process Investigation: The implementing organization’s processes must address

detection and control of suspect, fraudulent, and counterfeit parts post acceptance from
supplier and in-service.

7. Failure Analysis: When a specific part instance is determined to be the cause of a failure,
the implementing organization’s process must include provisions to document whether
the part is a suspect, fraudulent, or counterfeit part.

8. Material Control: The implementing organization’s processes must specify methods to
a. control excess and nonconforming parts.
b. control and quarantine suspect, fraudulent, and counterfeit parts, including

enforcing access rules for controlled areas.

73

9. Reporting: The implementing organization’s processes must include provisions to report
all occurrences of suspect, fraudulent, and counterfeit parts to customers, government,
and industry bodies and authorities having jurisdiction.

10. Postdelivery Support: The implementing organization’s processes must handle
resolving nonconforming products or parts delivered to the organization’s customers due
to suspect, fraudulent, or counterfeit parts including investigation and reporting
processes.

6.1.1 Personnel training.
The implementing organization must train all relevant personnel as appropriate to their job
function, including management.

6.1.2 Parts availability.
The implementing organization’s counterfeit and fraudulent parts avoidance, detection,
mitigation, and disposition processes must maximize availability of authentic, originally
designed, or certified parts. The primary takeaway from this requirement is that the
implementing organization’s processes must include a risk-driven plan for the lifetime of the
product or part. Upstream components may have a shorter lifespan than a part or product that
uses them. The part availability requirement comes with guidance, but no mitigations are
required.

Automotive electronics parts do not have distinct needs regarding the parts availability
requirement or guidelines, and AS5553A can be applied directly.

6.1.2.1 Planning and obsolescence management.
“[E]lectronic equipment manufacturers should proactively manage the life cycle of their products
using an Obsolescence Management Plan or Diminishing Manufacturing Sources and Material
Shortages (DMSMS) management plan.” [AS5553A] Steps to reduce exposure to fraudulent
and/or counterfeit parts are bridge buying, system redesigning, using multiple sources, part
substitutions, and planning for adequate procurement lead times.

There are many ways to reduce the risk of supply chain disruption. AS5553A is written for
aerospace, where vessels have very long lifetimes, even longer than automobiles in most cases.
However, automobiles, and commercial vehicles especially, can still have long lifetimes.
Vehicles with 50+-year lifetimes are not unheard of, especially performance and collector cars as
well as heavy vehicles. The availability of high-quality parts is still critical for vehicles with long
lifetimes.

The primary difference between automotive and aerospace is the volume of parts used. The basic
mitigations are the same with small adjustments. This requirement and the optional guidance in
AS5553A translates to automotive with minimal adjustment.

74

6.1.3 Purchasing process.
Parts should be purchased directly from OCMs or authorized suppliers whenever possible.
Independent distributors are not covered by franchise agreements with the OCM. The standard
accepts that as fact. Some distributors will be authorized distributors for some OCMs and not
others or even potentially some parts and not others. Franchise agreements with OEMs protect
the user and customer by ensuring product integrity and supply chain traceability, and are
generally required for warranty from the OCM.

6.1.3.1 Risk assessment.
A counterfeit/fraudulent parts risk is assigned based on either the source (e.g., OCM, certified
manufacturer directly, authorized supplier, independent distributor) or the product or part
application (e.g., life dependent, mission critical, non-critical). When either indicates a higher
risk, the organization should take additional mitigation steps against counterfeit, fraudulent, or
sub-standard parts.

Within the document, there is a reasonable flow chart for what due diligence is required at a
minimum. At each point, if the application dictates extra stringency, the path can be taken which
requires more additional steps and documentation, even if the supplier is low-risk (e.g., the OCM
itself or an authorized supplier).

6.1.3.2 Supplier selection.
Processes related to detection, prevention, mitigation, and disposition of counterfeit and
fraudulent parts should begin prior to execution of a purchase contract with a supplier. When
choosing a supplier, selection criteria should include historical experience with that supplier, any
previously documented problems with the supplier, how long the supplier has been in business,
supplier’s demonstrated adherence to quality standards (e.g., AS5553A itself), results of audits,
the supplier’s documented processes, the use of in-house or external lab testing, the use of
certified quality inspectors, and the terms of the warranty, return policy, and product liability.

6.1.3.3 Supplier auditing.
SAE AS5553A Figure B2, “Supplier Assessment Pyramid,” shows different risk-mitigation
steps. Lower items in the pyramid are more important (because they have larger area). The base
of the pyramid is “customer audited and approved with site visit.” Yet, in the automotive
industry, auditing is most likely not as common as in aerospace.

Audit frequency and scope should be based on the assessed risk of the supplier.

6.1.3.4 Applicability to automotive.
The purchasing process guidelines in AS5553A are generic enough to cover automotive with
minimal modifications. Automotive applications will be lower risk on average, but the
specification and guidelines are flexible enough to handle both circumstances.

75

6.1.4 Purchasing information.
Purchasing contracts must have certain clauses and/or requirements to minimize the counterfeit
and fraudulent parts risk. The following items should be included in procurement contracts:

• Supply chain traceability provided.
• Tests and inspections performed by the customer to assure authenticity and accept/reject

criteria established.
• Quality management system required of the supplier.
• Seller’s acceptance of financial responsibility, including remedial costs.
• Length of seller’s obligation.
• Required documentation that the seller must keep and finish.
• Penalties associated with fraud.

Suppliers should be required to provide a certificate of conformance, a formal statement that the
contract terms have been met.

6.1.4.1 Supply chain traceability.
The implementing organization must require supply traceability of its authorized suppliers,
including names and organizations of all intermediaries between the OCM and the customer. If a
supplier cannot meet the documentation requirement, a documented risk assessment must be
performed and greater inspection and testing likely performed.

For the automotive industry, these items are probably extreme. Creating a process that is
AS5553A compliant, however, is possible, because the requirements themselves are general. The
implementing organization, whether in automotive or aerospace, must choose correct processes
based on risk assessment.

6.1.5 Verification of purchased/returned parts.
SAE AS5553A provides guidance in the Appendices, which do not form actual requirements for
conformance to the specification. The inspection and/or verification steps taken for purchased
and returned parts, like previous steps, must be informed by the risk. Risk is assessed based on
the specific supplier, the supplier’s relationship with the manufacturer for that part (e.g., is the
supplier an authorized supplier for the part in question), and the product criticality. Higher
criticality applications dictate greater due diligence.

The following inspection methods are recommended (applied based on the risk assessment).

• Packaging and documentation inspection
• Visual inspection of parts
• Destructive inspection for remarking or resurfacing
• Solvent test for remarking
• Solvent test for resurfacing
• Scanning electron microscope inspection

76

• Scanning acoustic microscopy inspection
• Destructive or non-destructive X-Ray inspection
• Destructive or nondestructive lead finish evaluation
• Electrical testing
• Burn-in testing
• Thermal cycle testing
• Hermeticity verification (for hermetic parts)
• Destructive decapsulation physical analysis
• Destructive physical analysis

Again, scope and frequency of the verification and inspection methods are informed by the risk
assessment performed by the implementing organization as part of its fraudulent and counterfeit
parts protection processes. It is quite clear that there are many robust and increasingly insightful
inspection procedures for electronic parts. These guidelines should work for the automotive
industry without modification, although the same inspection plans might not be applied in
practice between the aerospace and automotive industries.

Because the requirement is general and the guidelines flexible, this requirement does not seem to
need any modification for automotive use. Again, for many automotive ECUs, less due diligence
may be required as compared to avionics, but the specification and guidelines in AS5553A are
general enough to handle automotive application.

6.1.6 In-process investigation.
The implementing organization’s processes must address detection and control of suspect,
fraudulent, and counterfeit parts post-acceptance from supplier and in-service.

6.1.7 Failure analysis.
When a specific part instance is determined to be the cause of a failure, the implementing
organization’s process must include provisions to document whether the part is a suspect,
fraudulent, or counterfeit part. Failure analysis in automotive is quite different than in aerospace.
Ordinarily, vehicular crashes and incidents are not investigated for parts failure. Therefore, the
requirement to perform failure analysis and document/report when a part determined to cause a
failure is also suspect, fraudulent, or counterfeit is less applicable to the automotive industry.

6.1.8 Material control.
The implementing organization’s processes must specify methods to control excess and
nonconforming parts, and specifically, control, segregate, and quarantine suspect, fraudulent, and
counterfeit parts.

Excess or nonconforming product or part may be one of the following.

• Scrap product: scrap product should be physically marked and segregated.

77

• Surplus product: surplus product should only be transferred (e.g., sold) to organizations
with a robust suspect, fraudulent, and counterfeit products and parts processes. Ideally,
those organizations should have demonstrated adherence to high-level quality standards
and AS5553A and/or rigorous business, ethical, and quality standards.

• Return product: When products or parts are returned, steps should be taken to permit
validation of authenticity. Returns should not be accepted without proper return material
paperwork.

• Suspect, fraudulent, or counterfeit product.

6.1.8.1 Control of suspect, fraudulent, or counterfeit parts.
When a part is determined to be suspect, fraudulent, or counterfeit, the following actions should
be taken.

• The part should be physically marked and segregated.
• Segregated parts should be quarantined with physical barriers and access control.
• Suspect, fraudulent, and counterfeit parts should not be returned to the supplier if doing

so would allow the suspect, fraudulent, or counterfeit parts back into the supply chain and
not prevent the supplier from performing an investigation.

• Confirm the authenticity of the part (for example, through further testing or research with
the part’s presumed OCM).

• When a part is confirmed fraudulent or counterfeit, place a hold on all other potential
fraudulent or counterfeit parts in storage or installed.

• Report the incident to the appropriate authorities.

6.1.8.2 Applicability to automotive.
In automotive, parts are not nearly as strictly controlled as in the aerospace and military domains.
This is true in the manufacturing environment due to the large volumes of vehicles built every
year comparatively. It’s doubly true for vehicles in service. It’s not completely clear how
applicable the martial control actions recommended for aerospace and military in AS5553A are
to the automotive industry.

6.1.9 Reporting.
SAE AS5553A requires that the implementing organization’s processes include steps to report
instances of suspect, fraudulent, and counterfeit parts. While industry reporting is a good best
practice, automotive applications will not have the same regulatory requirements as aerospace
and military applications. These reporting best practices are still sensible for automotive, but the
regulatory aspects will not apply.

6.1.10 Postdelivery support.
The implementing organization’s processes must handle resolving nonconforming products or
parts delivered to the organization’s customers due to suspect, fraudulent, or counterfeit parts,
including investigation and reporting processes. As discussed previously in section 6.1.8,
Material control, a nonconforming product or part may be one of the following:

78

• Scrap product
• Return product
• Suspect, fraudulent, or counterfeit product

6.2 Applicability to Software Products and Software Components
Software counterfeiting is not out of the realm of possibility. The SAE AS5553A standard relates
solely to electronics parts and products. While those parts/products may contain software, the
software itself is not accounted for in the standard. It is not out of the realm of possibility for
fraudulent software, that is, software that has been misrepresented to the customer, to enter the
supply/development chain.

With software, especially, there is very little auditing performed by the OEMs. Software
oversight and secure development processes are an area of active research, and more research is
needed in the automotive industry.

6.3 Conclusion
Fraudulent and counterfeit parts can pose a safety and monetary liability risk. SAE AS5553A is
an SAE aerospace standard for the creation of processes for detection, prevention, mitigation,
and disposition of suspect, fraudulent, and counterfeit electronic parts.
In general, SAE AS5553A should apply to the automotive industry quite readily. It is designed to
be flexible and risk-informed. Because of that, the meat of the specification is best practices for
an organization attempting to create AS5553A-compliant fraudulent parts processes. Two
differences were seen between the automotive and aviation industries that make the requirements
of AS5553A potentially insufficient or a bad match for automotive:

• Automotive parts are distributed through a much broader distribution network than
aviation parts and are produced and sold in much higher volumes. This makes detailed
traceability and material control much more difficult in automotive.

• In the automotive industry, customers do not have a direct relationship with OEMs or
OCMs. Dealerships and automotive service centers may have a greater duty to the
customers than the OEM. This makes collection and inspection of suspect parts difficult.

The requirements themselves should be applicable to automotive; however, a more tailored
collection of best practices might be reasonable to develop for automotive specifically. Many of
the processes recommended for aerospace and military are potentially too burdensome for the
automotive industry or difficult to implement logistically given the much greater volume of
products and parts in automotive.

While air vessels have extremely long lives, even longer than automobiles on average, some
automobiles will have very long lifetimes, especially commercial vehicles. Performance and
collector vehicles may remain in the field for 50+ years. The availability of quality parts for
long-lifetime vehicles is just as critical for automotive and heavy vehicles with long lifetimes.

79

Interestingly, AS5553A places customer audits of suppliers and site visits to be the greatest risk-
reducing mitigation when assessing suppliers. The automotive industry OEMs likely do not
perform regular audits of that depth. For software, neither AS5553A nor the standard automotive
industry practices today provide auditing against suspect, fraudulent, or counterfeit software
parts.

In addition, the traceability management and parts accounting used in aerospace might be a bad
fit for automotive warranting further research. Automotive products and, therefore, parts are
much higher volume than aerospace; therefore, this system seems to be too arduous for the
automotive environment. There may be value to further identification of the unique attributes of
the automotive industry regarding counterfeit parts detection and prevention.

80

7. Conclusion

Secure in-field software updates are nearly universally considered to be essential for any
networked computer system. However, software update functionality creates a new attack
surface for attackers to potentially exploit. The installation of malware is one of the biggest risks
in computing systems, both because of the vast number of ways that a system can be
compromised for installing malware and because malware is very useful, particularly in small
embedded systems which frequently lack an operating system running at a higher trust level than
the application code.

Summary of Lessons Learned in Adjacent Industry:
Common existing defense mechanisms (e.g., Signing, Fortification, and Intrusion Detection) and
vulnerabilities are noted in the body of the report as are potential defenses for secure vehicle
firmware updates.

Risk Assessment Conclusions:
In identifying risks at both the vehicle-level and the technological design and implementation
level, the researchers have identified the biggest risk with software update mechanisms as
malware installation.

Mitigation Methods Conclusions:
In-field software updates are a necessity in the automotive industry to fix flaws without replacing
hardware that is already deployed in the field. The current generation of automobiles primarily
uses OTA software updates for telematics and infotainment ECUs only.
While software updates are a boon for security, the mechanism, particularly the remote
mechanism, creates a new avenue for attackers to exploit.
A matrix of specific mitigations versus risks appears in the report (see Table 17).

Intellectual Property Theft Risks and Mitigations Conclusions:
Intellectual property theft, particularly software theft, can be enabled and made easier with
software update mechanisms, particularly OTA mechanisms. In discussions with the OEM and
tier-1 supplier employees, the majority opinion is that protecting the software binaries is not a
priority. The prevailing opinion in the industry is that there are too many other ways for an
adversary to obtain a software binary to justify the cost of adding encryption to the software
update process.

Counterfeit and Fraudulent Electronic Parts and Products Conclusions:
Fraudulent and counterfeit parts can pose a safety and monetary liability risk. SAE AS5553A is
an aerospace standard for the creation of processes for detection, prevention, mitigation, and
disposition of suspect, fraudulent, and counterfeit electronic parts. In general, SAE AS5553A
should apply to the automotive industry quite readily. It is designed to be flexible and risk-
informed. The requirements themselves should be applicable to the automotive industry;
however, a more tailored collection of best practices might be reasonable to develop for the
automotive sector specifically (not developed within this project).

81

There is no singular, perfect reference model for securing software updates. Every application
has different requirements and user experience targets that shape the design enough to require
security to be, at minimum, analyzed and usually designed with an application-specific approach.
This work presents a literature and technology survey of software update procedures in related
industries, a risk assessment of firmware updates in modern and near-term future automobiles,
and presents mitigations for those risks.

Because there are not standard meanings (or loose standard meanings) for many of the words
used throughout this document, there is the possibility of miscommunication between the readers
and authors. In addition, while the authors strive to use the generic but contextually specific
words (such as risk, threat, or vulnerability) in the most common, correct, and reasonable way,
it’s possible that they deviate from the reader’s expected meaning. To reduce the risk of
miscommunication, definitions to specific terms are presented in this section. When the
following words appear in this document, the writers intend the definitions found in this section.

82

8. Glossary

Abuse case An abuse case is a use case from the perspective of a would-be
attacker.

Advanced Encryption
Standard (AES)

The Advanced Encryption Standard (AES) (originally named
Rijndael) is the de facto standard for symmetric key encryption,
established by an open competition held by the U.S. National Institute
of Standards and Technology (NIST). Symmetric cryptography
includes methods based on private keys shared between parties, and
symmetric-key algorithms like message authentication codes (MACs)
are built with symmetric-key ciphers such as AES.

Aftermarket
manufacturer

An aftermarket manufacturer of an electronic part or process is one
that is not the original component manufacturer (OCM).

Approved supplier An approved supplier is one who has been approved by the SAE
AS5553A implementing organization as having acceptable fraudulent
and counterfeit parts mitigation processes.

Asymmetric
cryptography

Asymmetric cryptography is the use of cryptographic algorithms
where a single party has a private key that is not shared and any number
of other parties can have the associated public key without
compromising the security of the private kay. Generally, for
authentication, the private key is used to sign and public keys to verify;
for encryption, public keys can encrypt data which can only be
decrypted with the private key. RSA and elliptic curve cryptography
(ECC) are examples of asymmetric cryptosystems.

Attack An attack is some unintended and usually undesirable control of a
system by an unauthorized party, the attacker.

Attacker / adversary An attacker or adversary is an actor (frequently theoretical) who
might perform some manipulation of a system that is not originally
intended and could lead to a security compromise.

Authorized distributor An authorized distributor of electronic products or parts is a
distributor in a franchise contract with the OCM.

Backdoor A backdoor is undocumented functionality in a production system. It
may or may not include circumvention of the system’s security
mechanisms.

83

Baseline reference
architecture

The baseline reference architecture is the reference design the team
assume for how software updates would be implemented in a current or
near-term, high connectivity automobile and is used as the basis for the
risk assessment and mitigations proposed. The team’s reference
architecture intends to make the minimal set of assumptions about the
design of a software update mechanism to give the most useful risk
analysis possible.

Bookkeeping database The bookkeeping database is the IT infrastructure that stores the vast
configuration and status data for vehicles in the field. It may be part of
the software distribution network or separate in practice.

Bootloader The bootloader is a trusted piece of software in an ECU (or other
electronics device) that performs booting and loading the application
software (or operating system in more complex systems). A bootloader
may perform cryptographic verification prior to booting, and generally
should perform a cryptographic authentication verification prior to
loading new software.

Bricking/bricked An electronic part or product is bricked when it suffers permanent or
semi-permanent loss of functionality. Historically, bricking of an
electronics part referred to putting it in an unrecoverable state, but due
to the nuance of different recovery methods, particularly as they change
during different lifecycle states, such as in development or in
production, a bricked part may retain some path to recovery that is
prohibitively difficult or costly. This technical jargon term comes from
the fact that the part becomes as useful as a brick.

Bridge buy A bridge buy, also called a lifetime buy, is a purchase of a part all at
once for the full lifetime of the product into which it will be integrated.
Bridge buying is a mitigation against upstream parts obsolescence.

Compromise A compromise is a realized risk, whereby an adversary has
breachedbreachedbreachedbreachedbreachedbreachedbreachedbreached
a system leading to loss of security control in some way.

Counterfeit part Per SAE AS5553A, a counterfeit part is a fraudulent part that has
been confirmed to be a counterfeit, that is, a clone knowingly
misrepresented and sold as genuine.

Credential A credential is a secret that is used to provide authentication of the
party who knows or has that secret to another party, who may then
verify the authentication. An RSA private key, for example, is a
credential.

Denial-of-service Denial-of-service attacks are a class of attacks where an adversary
prevents normal activity, totally or partially, permanently or
temporarily.

84

Diff update A diff update package (or differential update) is a software update
package that does not contain all the necessary application data, but
rather contains the data required to compose the new software version
with the current version on the target ECU and the diff update
package. A diff update is created by programmatically comparing (or
“diffing”) the installed software version and the new software version.

Digital Rights
Management

Digital rights management (DRM) is a class of cryptographic
schemes for controlling the licensed use of content, generally by a
customer.

Digital signature A digital signature, or just signature, is a piece of cryptographic
metadata providing a guarantee that an authentic party issued or
attested the data. Digital signatures are one of the most basic controls
for secure software updates, but may also be used for exchanging
metadata or remote commands securely. A digital signature is created
by a party which has a secret credential and may be verified by a
receiving party.

Electronic Control Unit An electronic control unit (ECU) is any electrical controller within a
vehicle. An ECU is assumed to have a computer processor (e.g. a
microcontroller) at its heart and be largely software-controlled.

Elliptic Curve
Cryptography

Elliptic curve cryptography (ECC) is a class of asymmetric
cryptography algorithms that rely on the presumed (but unproven)
hardness of finding the discrete logarithm of a random elliptic curve
element based on a publicly known base point. It is an alternative to
RSA, and the two are presumed to be similarly secure and
interchangeable for most functional purposes, although ECC achieves
comparable strength with shorter key lengths.

Exploit An exploit is an exploitation of a vulnerability, part of a successful
attack and/or compromise.

Firmware Firmware is software that runs from normally immutable memory,
such as read-only memory (ROM). Firmware does not need to run from
ROM, and in the case of software updates, it is usually necessary for
some firmware to run from RAM while ROM is being re-programmed.
In this document, the authors use the terms firmware and software
interchangeably.

Foothold/beachhead A foothold or beachhead is an initial (and possibly persistent) malware
installation in software systems, through which further exploitation of
the compromise may be executed.

Fraudulent part Per SAE AS5553A, a fraudulent part is any suspect part
misrepresented to the customer as meeting the customer’s requirements.

Freshness Freshness is the property of a message that uses cryptographic
authentication and replay protection that guarantees that the message is
recent, in addition to not having been used twice.

85

Hardware Security
Module

A hardware security module (HSM) is a peripheral for the highly
secure storage of cryptographic keys. HSMs are traditionally associated
with server-class devices found in secure datacenters. An embedded
HSM is a microcontroller peripheral/secondary core for performing
high-security tasks, especially storing keys. Embedded HSMs are
resilient against temporary software intrusions for keeping keys private.

Independent
distributors

Per SAE AS5553A, independent distributors are electronics parts
distributors that are not in franchise agreements with the OCM.

Intrusion Detection
System

An intrusion detection system (IDS) is an electronics device or
application that monitors network communication (or system activities)
for malicious or anomalous patterns, which are logged and reported to
some authority. An IDS may be distinguished from an intrusion
detection and protection system (IPS) which actively seeks to prevent
malicious activity, although this distinction is not always made.

Keylogger A key logger is software (often installed on a system without the users’
knowledge or consent) which logs the users’ most basic actions, such as
key strokes on a keyboard, and saves for or sends to a third party.

Man-in-the-middle
attack / man-on-the-
side attack

A man-in-the-middle attack may be successfully launched in a variety
of ways and allows the attacker the privilege of masquerading as one
side of a communication to the other (in either direction). A man-on-
the-side attack allows an attacker to somehow listen in on an otherwise
private communication between two other parties. Colloquially, both
types of attacks may be called man-in-the-middle attacks. Throughout
this document the writers refer to man-on-the-side attacks as man-in-
the-middle attacks generically.

Malware/rogue
software

Malware is any software created to harm or interfere with the intended
operation of a user’s computer. Sometimes malware is differentiated
from software that is unintentionally harmful (such as well-meaning
software which opens security holes, for example), called badware. In
this document, the authors use the terms malware and rogue software
interchangeably.

Message
Authentication Code

A message authentication code (MAC) is a cryptographic scheme for
guaranteeing the authenticity and integrity of a piece of data using
symmetric cryptography, such as the Advanced Encryption Standard
(AES). In practice, it can be an alternative authentication mechanism to
a digital signature.

NIST The United States National Institute of Standards and Technology is
a non-regulatory division of the United States Chamber of Commerce.
NIST publishes standards and best practices for securing electronic
systems, among other things.

86

Nonce A nonce, a portmanteau of “number used once,” is a number which is
guaranteed not to be repeated for a very long time (possibly a
probabilistic guarantee). Combined with a cryptographic authentication
mechanism like a digital signature or MAC, it is used to prevent replay
attacks and possibly guarantee freshness.

On-Board Diagnostics On-board diagnostics (OBD) is used to mean several things: the
regulated diagnostics that must be supported for electronic emissions
reporting, proprietary diagnostics used by engineers and service
technicians accessible via the same port as the regulatory services, and
the actual physical port itself, the OBD port.

Original Component
Manufacturer

An OCM is an entity that designs or engineers a part, owning the
intellectual property rights to that part.

Over-the-Air An OTA software update is one that is delivered over the Internet or
short-range wireless without a physical connection to the vehicle or
device.

PKCS PKCS, or the public key cryptography standards, are a suite of usage
and best practices standards published by RSA Security, Inc. The
PKCS standards are de facto standards for many asymmetric
cryptography techniques, including digital signature generation and
verification

Ransomware Ransomware is malware that prevents a rightful owner or user of a
computer system from using the system until a ransom is paid. A
ransomware attack is usually a reversible denial-of-service attack, but
in some cases, ransomware may threaten or cause permanent damage
to the system if the ransom is not paid.

Read-Only Memory ROM is memory in a computer system, such as an ECU, which retains
its contents even when the memory is not powered. ROM is typically
read-only during normal operation, but most ROM used is automotive
systems today is flash-based, which can be reprogrammed in-service.
The bootloader is the piece of software which reprograms the ROM of
an ECU during in-service software updates.

Replay attack A replay attack is an attack where an adversary replays a legitimate
message later for a purpose not intended by the legitimate sender.

Risk A risk is a theoretical bad outcome. The security risks in this document
are possible compromises or attacks, which could be executed by a
threat actor.

Root-of-Trust-for-
Update

The root-of-trust-for-update is a protected section of an electronics
system containing the bootloader, cryptographic algorithms and
cryptographic keys. It was proposed for BIOS software updates by
NIST. [NIST11]

87

RSA RSA, an acronym for the initials of its creators, Rivest, Shamir, and
Adleman, is a class of asymmetric cryptography algorithms that rely on
the presumed (but unproven) hardness of factoring the product of two
large prime numbers. It is an alternative to ECC, and the two are
presumed to be similarly secure and interchangeable for most
functional purposes, although ECC achieves comparable strength with
shorter key lengths.

Secondary bootloader The secondary bootloader is a file or bundle of files, which is usually
downloaded to the target ECU prior to performing the software update
process. The secondary bootloader might contain arbitrary code for the
target ECU to run. The secondary bootloader often contains routines to
interact with (i.e., read, write and erase) the flash memory on the target
ECU.

Secure Hardware
Extension

The Secure Hardware Extension (SHE) is a peripheral capable of
storing symmetric keys and performing symmetric cryptography. It is
also known as the HSM Light. [EVITA10]

Stakeholder impact The stakeholder impact of an attack is a categorization of the potential
for loss to stakeholders, including safety, privacy, or financial.

Software distribution
network

The software distribution network is the interface between the
vehicle and all other entities it connects to for software updates. For
OTA updates, the vehicle and its ECUs must communicate directly
with the software distribution network, whereas with traditional
OBD-attached updates, mechanics may receive software update
packages through an internet portal or even digital media sent through
the mail. In this document, it is assumed the software distribution
network connects to some bookkeeping database for tracking installed
versions in the field.

Software repository The software repository is the IT infrastructure that stores, receives
and transports the software update packages themselves.

Software update
package

A software update package, or just package, is a piece or multiple
pieces of data (usually, a file or files) which, when downloaded and
applied to an ECU, allow the ECU to update to a different software
version.

Spoofing/masquerading Spoofing is when a nonauthentic party sends communications claiming
to be an authentic party. Spoofing is also called masquerading as the
non-authentic party is masquerading as someone else (the authentic
party). Although outside of this document, these terms may have
nuanced differences in meaning, spoofing and masquerading are used
interchangeably in this document.

Suspect part Per SAE AS5553A, a suspect part is any part for which there is some
indication that it might be fraudulent or counterfeit.

88

Symmetric
cryptography

Symmetric cryptography is a class of cryptographic algorithms that
use symmetric ciphers, such as the AES, which perform encryption and
decryption using a single private key shared between all
communicating parties.

Target ECU The target ECU is the ECU that is to receive a software update. This is
not a standard term outside of this document.

Threat actor A threat actor is a theoretical party who has motive to carry out an
attack (a potential attacker).

Transport-Layer
Security

TLS is a collection of cryptographic protocols that provide the ability
to create a secure channel between two parties over which to
communicate. TLS is the successor of the SSL, and, today, the terms
TLS and SSL are generally both used interchangeably to mean TLS.

Update authentication Update authentication is message authentication applied to the
software update package itself, used to allow the receiving ECU to
authenticate the software update package prior to installation or first
run of the new software or both.

Vehicle automation
level

NHTSA has assigned different vehicle automation levels to vehicles
with different capabilities [NHTSA13] where level 0 is no autonomy
(e.g., most vehicles produced more than 15 years ago) and level 4 is full
autonomy (i.e., no driver interaction necessary whatsoever).

Vulnerability A vulnerability is a weakness or flaw in design or implementation of a
product (in this document, a computer product) which could allow an
adversary to carry out an attack.

Wireless Wide Area
Network

A WWAN interface is a wireless network interface, such as 3G cellular
data or Wi-Fi, that provides internet access.

Zero-day A zero-day vulnerability is a software vulnerability that is known to
third parties before it is known to the primary stakeholder. Zero-day
vulnerabilities are often discovered in the wild being exploited by an
adversary, rather than during official product testing or security
evaluation.

89

References

[App15] Apple Inc., iOS Security, 2015.

[AR665] Aeronautical Radio Incorporated (Rockwell Collins), ARINC 665-3: Loadable
Software Standard.

[AR666] Aeronautical Radio Incorporated (Rockwell Collins), ARINC 666: Electronic
Distribution of Software.

[AR667] Aeronautical Radio Incorporated (Rockwell Collins), ARINC 667-1: Guidance for
the Management of Field Loadable Software.

[AR827] Aeronautical Radio Incorporated (Rockwell Collins), ARINC 827: Electronic
Distribution of Software by Crate (EDS Crate).

[AR835] Aeronautical Radio Incorporated (Rockwell Collins), ARINC 835-1: Guidance for
Security of Loadable Software Parts Using Digital Siguatures.

[AS5553A] SAE International, AS5553A: Fraudulent/Counterfeit Electronic Parts; Avoidance,
Detection, Mitigation, and Disposition. SAE International, AS5553A, January 21,
2013.

[BBF06] A. Bellissimo, J. Burgess, & K. Fu, “Secure Software Updates: Disappointments
and New Challenges,” in Proceedings of USENIX Hot Topics in Security (HotSec).
USENIX, July 2006.

[Bri12] A. Brisbourne, Tesla’s Over-the-Air Fix: Best Example Yet of the Internet of
Things???? Wired, February 2014.

[CCS13] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications attack: A case
study of embedded exploitation,” in Proceedings of 20th Annual Network &
Distributed System Security Symposium (NDSS’13). NDSS’13.

[CERT 14] US-CERT (2014): CryptoLocker Ransomware Infections. www.us-
cert.gov/ncas/alerts/TA13-309A.

[Che11] Checkoway S.; McCoy D.; Kantor B. et al., “Comprehensive experimental analyses
of automotive attack surfaces,” in Proceedings of 20th USENIX conference on
Security (SEC’11). USENIX, 2011.

[Cok11] Coker G., Guttman J., Loscocco P., et al, “Principles of Remote Attestation,” in
International Journal of Information Security, 10, 2, 63-81.

[Dal10] Dalton A. (2016): Hospital paid 17K ransom to hackers of its computer network.
Associated Press. Retrieved from
http://bigstory.ap.org/article/d89e63ffea8b46d98583bfe06cf2c5af/hospital-paid-
17k-ransom-hackers-its-computer-network.

http://bigstory.ap.org/article/d89e63ffea8b46d98583bfe06cf2c5af/hospital-paid-17k-ransom-hackers-its-computer-network
http://bigstory.ap.org/article/d89e63ffea8b46d98583bfe06cf2c5af/hospital-paid-17k-ransom-hackers-its-computer-network

90

[DiB16] DiBlasio N. and Weise E. (2016): Here’s why the FBI forcing Apple to break into
an iPhone is a big deal. USA Today.
www.usatoday.com/story/tech/2016/02/16/heres-why-fbi-forcing-apple-break-into-
iphone-big-deal/80481766/.

[EVITA10] Apvrille L.; El Khayari R.; Henniger O. et al., Secure Automotive On-Board
Electronics Network. E-safety vehicle intrusion protected applications (EVITA),
2010.

[FIPS186] National Institute of Standards and Technology (2013): Federal Information
Processing Standards Publication 186-4: Digital Signature Standard (DSS)., FIPS
186-4. NIST, 2013.

[Fos15] Foster I.; Prudhomme A.; Koscher K. et al. (2015): Fast and Vulnerable: A Story of
Telematic Failures. In: 9th USENIX Workshop on Offensive Technologies (WOOT
’15). Washington, D.C.: USENIX, 2015.

[Hen12] Heninger N.; Durumeric Z.; Wustrow E. et al., Mining Your Ps and Qs: Detection
ofWidespread Weak Keys in Network Devices. In: 21st USENIX Security
Symposium. USENIX, 2012.

[HIS09] Escherich R.; Ledendecker I.; Schmal C. et al., SHE – Secure Hardware Extension
Functional Specification Version 1.1. Hersteller-Initiative Software (HIS) AK
Security, 2009.

[HRMP11] S. Hanna, R. Rolles, A. Molina-Markham, P. Poosankam, K. Fu, and D. Song,
“Take Two Software Updates and See Me in the Morning: The Case for Software
Security Evaluations of Medical Devices,” in Proceedings of the 2nd USENIX
conference on Health security and privacy. USENIX Association, 2011.

[ISO11898] International Organization for Standardization, ISO 11898:2015 Road vehicles –
Controller area network (CAN) – Part 1: Data link layer and physical signaling,
ISO, December 14, 2015.

[ISO14229] International Organization for Standardization, ISO 14229:2013: Road Vehicles –
Unified Diagnostic Services (UDS). ISO, March 15, 2013.

[ISO14230] International Organization for Standardization, ISO 14230:2063: Road Vehicles –
Diagnostic communication over K-Line (DoK-Line). ISO, August 15, 2016.

[J1850] SAE International, J1850 Class B Data Communications Network Interface. SAE
International, 2015.

[J2534] SAE International, J2534/1 Recommended Practice for Pass-Thru Vehicle
Programming. SAE International, 2004.

[J3061] SAE International, J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle
Systems. SAE International, 2016.

[J3101] SAE International, SAE J3101 [Work in Progress].
http://standards.sae.org/wip/j3101/. SAE International, 2016.

http://www.usatoday.com/story/tech/2016/02/16/heres-why-fbi-forcing-apple-break-into-iphone-big-deal/80481766/
http://www.usatoday.com/story/tech/2016/02/16/heres-why-fbi-forcing-apple-break-into-iphone-big-deal/80481766/
http://standards.sae.org/wip/j3101/

91

[LOC14] U.S. Copyright Office, Library of Congress, Exemption to Prohibition on
Circumvention of Copyright Protection Systems for Access Control Technologies.
Library of Congress, October 28, 2015.

[Mas15] Masunaga S., Researchers hack a Tesla Model S, bring car to stop. Los Angeles
Times, 2015. Retrieved from www.latimes.com/business/la-fi-hy-tesla-hack-
20150806-story.html.

[Mat15] Matthews, L., Tesla P85D software update reduces the car’s already insane 0-60
time. Geek.com, 2015. Retrieved from www.geek.com/apps/tesla-p85d-software-
update-reduces-the-cars-already-insane-0-60-time-1614741/.

[M11] C. Miller, “Battery Firmware Hacking,” in Black Hat USA. UBM, 2011.

[MV15] Miller C. and Valasek C., Remote Exploitation of an Unaltered Passenger Vehicle.
In: Black Hat. UBM, 2015.

[NHTSA13] National Highway Traffic Safety Administration, Preliminary Statement of Policy
Concerning Automated Vehicles. (Press Release) Washington, D.C., NHTSA 14-
13, 2013.

[NIST11] Cooper D.; Polk W.; Regenscheid A. et al., BIOS Protection Guidelines. National
Institute of Standards and Technology (NIST), Special Publication 800-147, 2011.

[PKCS1] RSA Laboratories, Public-Key Cryptography Standard PKCS #1 v2.2: RSA
Cryptography Standard. EMC Corporation, PKCS #1 v2.2. RSA Laboratories,
2012.

[RM15] Rogers M. and Mahaffey K.,: How to Hack a Tesla Model S. DEF CON
Communications, Inc., 2015.

[Sch15] Schneier B., NSA Plans for a Post-Quantum World. Schenier on Security, 2015.
Retrieved from www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html.

[Sch16] Schneier B., Decrypting an iPhone for the FBI. Schenier on Security, 2016.
Retreived from www.schneier.com/blog/archives/2016/02/decrypting_an_i.html.

[SKHR15] Steger, M.; Karner, M.; Hillebrand, J., et. al., Applicability of IEEE 802.11s for
Automotive Wireless Software Updates, 2015.

[Tesla16] Tesla Motors: Support: Software updates. Retrieved from
www.teslamotors.com/en_GB/support/software-updates.

[U12] Unisys Corporation, Dynamic firmware updating system for use in translated
computing environments, U.S. patent US8972964, filed July 26, 2012.

[Vau15] Vaughan-Nichols, S., No reboot patching comes to Linux 4.0. ZDNET, March 3,
2015.

http://www.geek.com/apps/tesla-p85d-software-update-reduces-the-cars-already-insane-0-60-time-1614741/
http://www.geek.com/apps/tesla-p85d-software-update-reduces-the-cars-already-insane-0-60-time-1614741/
http://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html

92

Document History

Document Title Cybersecurity of Firmware
Updates

Document Status: Report Version: 1.0

Revision
Number:

Revision
Author:

Date: Company: Changes: Review Author:

0.1 Russ Bielawski 9/1/2016 UMTRI Initial draft.

1.0 Russ Bielawski 9/28/2016 UMTRI Final report. Di Ma

DOT HS 812 807
February 2020

14455-021220-v3

	Executive Summary
	Summary of Lessons Learned in Adjacent Industry:

	Table of Contents
	1. Introduction
	2. Background, Definitions, and Literature Review
	2.1 Background
	2.2 Software Update: Overview and Definitions
	2.2.1 Current automotive software update mechanism and best practices.

	2.3 Step-By-Step: The OTA Software Update Process
	2.3.1 Packaging.
	2.3.2 Transport.
	2.3.3 Reception.
	2.3.4 Installation.
	2.3.5 Verification and maintenance (optional).

	2.4 Software Update Packaging
	2.4.1 Complete image overwrite.
	2.4.2 Delta update.
	2.4.3 Dynamic update.
	2.4.4 Distributed update.
	2.4.5 Aircraft avionics.

	2.5 Update Package Transport
	2.5.1 Medical devices.
	2.5.2 Aircraft avionics.

	2.6 Update Package Authentication, Verification, and Unpacking
	2.6.1 Aircraft avionics.

	2.7 Software Update Installation
	2.7.1 Medical devices.
	2.7.2 Aircraft avionics.

	2.8 Verification and Maintenance (Optional)
	2.8.1 Aircraft avionics.

	2.9 Related Security Issues
	2.9.1 Secure boot features in relation to secure software update.
	2.9.1.1 The chain of trust in software.

	2.10 Lessons Learned From Adjacent Industry for security software updates
	2.10.1 Industry/device attributes.
	2.10.2 PC BIOS updates.
	2.10.3 PC operating system and standalone application software update.
	2.10.4 Printer firmware update.
	2.10.5 Smart battery firmware update.
	2.10.6 Medical devices.
	2.10.7 Commercial aviation.
	2.10.8 Summary of lessons learned in adjacent industry.

	2.11 Conclusion

	3. Risk Assessment
	3.1 Reference Vehicle Architecture Model
	3.2 Baseline Threat Model and Methodology
	3.2.1 Vehicle-level risks.
	3.2.2 Threat actors.
	3.2.3 Baseline threat model.

	3.3 Attack Scenarios
	3.3.1 Malicious control of vehicle.
	3.3.1.1 Remote malicious control of many vehicles.
	3.3.1.2 Remote malicious control of a small number of vehicles.
	3.3.1.3 Near-range malicious control of a small number of vehicles.

	3.3.2 Denial-of-service of vehicle.
	3.3.2.1 Targeted, coordinated denial-of-service.
	3.3.2.2 Ransomware.

	3.3.3 Vehicle or contents theft.
	3.3.3.1 Pairing an unauthorized key to a vehicle.

	3.3.4 Intellectual property theft / private information exfiltration.
	3.3.4.1 Eavesdropping.
	3.3.4.2 Activity logger software installation.

	3.3.5 Performance tuning or unauthorized feature activation.
	3.3.5.1 Performance tuning.
	3.3.5.2 Unauthorized feature or content activation.

	3.3.6 Summary.

	3.4 Technical Risks
	3.4.1 Rogue software (malware) installation.
	3.4.1.1 Real authority signs unauthorized software.
	3.4.1.2 Supplier compromise.
	3.4.1.3 Signing credentials are stolen.
	3.4.1.4 Attacker forges signature on inauthentic software.
	3.4.1.5 Attacker remotely exploits a software flaw.
	3.4.1.6 Attacker uses undocumented bypass functionality.
	3.4.1.7 Attacker sneaks hidden functionality into app store.
	3.4.1.8 Attacker with physical access installs malware.
	3.4.1.9 Attacker installs malware with hacked OBD dongle.
	3.4.1.10 Physical media tampering in transit.
	3.4.1.11 Software installation tools are compromised.
	3.4.1.12 Forged software bypasses system verification routines.

	3.4.2 Denial-of-service.
	3.4.2.1 Attacker masquerades as a legitimate server in distribution network.
	3.4.2.2 Attacker spoofs a legitimate ECU and tampers with software updates.
	3.4.2.3 Attacker spoofs legitimate wireless interface access point.
	3.4.2.4 Jamming of wireless interfaces.

	3.4.3 Unauthorized download of information.
	3.4.3.1 Attacker masquerades as legitimate ECU to download data.
	3.4.3.2 Attacker abuses data gathering functionality.
	3.4.3.3 Man-in-the-middle / man-on-the-side.
	3.4.3.4 Digital rights management circumvention.

	3.5 Risk Assessment Discussion
	3.5.1 Code signing.
	3.5.2 Automatic updates.
	3.5.3 Robustness against denial-of-service attacks.
	3.5.4 Full software updates vs configuration tweaks.

	3.6 Conclusion

	4. Mitigation Methods
	4.1 Definitions
	4.2 Mitigations
	4.2.1 Malware installation.
	4.2.1.1 Update authentication.
	4.2.1.2 Secure channel (authentication and encryption).
	4.2.1.3 Secure in-vehicle networks.
	4.2.1.4 Entity authentication.
	Server authentication.
	Software version rollback protection.
	Replay protection.
	ECU authentication.
	Data and status reporting.
	Secure remote attestation.

	4.2.1.5 User authentication and authorization.
	4.2.1.6 Use a root-of-trust-for-update.
	Prevent easy modification of the bootloader.
	Use a trusted region that cannot be updated remotely.

	4.2.1.7 Protect keys and security-relevant data stored in ECUs.
	Hardware-assisted secure storage.

	4.2.1.8 Prevent bypassing of authentication mechanisms.
	4.2.1.9 Prevent forgery or unauthorized generation of digital signatures.
	4.2.1.10 Separation of duties.
	4.2.1.11 Code reviews before code deployment.
	4.2.1.12 Ethical hacking and penetration testing.
	4.2.1.13 Quickly fix security bugs for in-house and third-party software.
	4.2.1.14 Traditional IT best practices.
	4.2.1.15 App store security.
	4.2.1.16 Physical security.
	4.2.1.17 Secure vehicle architecture.

	4.2.2 Denial-of-service.
	4.2.3 Unauthorized download of information.
	4.2.3.1 Update encryption.
	4.2.3.2 Data gathering encryption.
	4.2.3.3 Access policies.

	4.3 Conclusion

	5. Intellectual Property Theft Risks and Mitigations
	5.1 Abuse Cases and Risks
	5.2 Mitigations
	5.2.1 Physical tampering protection.

	5.3 DRM Circumvention
	5.4 Conclusion

	6. Counterfeit and Fraudulent Electronic Parts and Products
	6.1 SAE AS5553A
	6.1.1 Personnel training.
	6.1.2 Parts availability.
	6.1.2.1 Planning and obsolescence management.

	6.1.3 Purchasing process.
	6.1.3.1 Risk assessment.
	6.1.3.2 Supplier selection.
	6.1.3.3 Supplier auditing.
	6.1.3.4 Applicability to automotive.

	6.1.4 Purchasing information.
	6.1.4.1 Supply chain traceability.

	6.1.5 Verification of purchased/returned parts.
	6.1.6 In-process investigation.
	6.1.7 Failure analysis.
	6.1.8 Material control.
	6.1.8.1 Control of suspect, fraudulent, or counterfeit parts.
	6.1.8.2 Applicability to automotive.

	6.1.9 Reporting.
	6.1.10 Postdelivery support.

	6.2 Applicability to Software Products and Software Components
	6.3 Conclusion

	7. Conclusion
	8. Glossary
	References
	Document History

