NHTSA’s Lateral Deviation Support Test Method Research

November 5, 2015

Garrick J. Forkenbrock
NHTSA Research
This presentation will...

- Provide an overview of NHTSA’s test track LDS research
- Describe some considerations related to how LDS performance can be objectively assessed

Note: The work described is preliminary; follow-up work is anticipated in 2016.
What is LDS?

• Lateral deviation support (LDS) is a category of crash avoidance technologies designed to address the lane and road departure safety problem

• LDS systems presently range from those that only provide passive warnings (e.g., lane departure warning) to those with active control (e.g., lane centering)

• Includes side crash avoidance technologies (e.g. blind spot intervention)
Examples of LDS Technologies

- Blind Spot Warning (BSW)
- Lane Departure Warning (LDW)
- Lane Keeping Support (LKS)
- Lane Centering Control (LCC)
- Road Departure Support (RDS)
- Crash Imminent Steering (CIS)

Provide active interventions

![Diagram showing applicable technologies: LDW, LKS, LCC, RDS](image1)

![Diagram showing applicable technologies: BSW, CIS](image2)
The Importance of LDS systems

• Applicable pre-crash scenarios include
 – Road edge departure without prior vehicle maneuver
 – Vehicle(s) changing lanes – same direction
 – Vehicle(s) drifting – same direction
 – Vehicle(s) making a maneuver – opposite direction
 – Vehicle(s) not making a maneuver – opposite direction

• Many LDS technologies are stepping stones leading to higher levels of vehicle automation

• Scenarios can be addressed with a combination of technologies including:
 – Conventional sensors
 – V2V communication
LDS-Relevant Crashes
(2004 – 2008 GES)

<table>
<thead>
<tr>
<th>Pre-Crash Scenario</th>
<th>Total Crashes</th>
<th>Percent of Crashes, Per Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Straight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry</td>
</tr>
<tr>
<td>Road edge departure/no maneuver</td>
<td>370,417</td>
<td>63%</td>
</tr>
<tr>
<td>Changing lanes/same direction</td>
<td>335,824</td>
<td>79%</td>
</tr>
<tr>
<td>Opposite direction/no maneuver</td>
<td>118,104</td>
<td>47%</td>
</tr>
<tr>
<td>Drifting/same direction</td>
<td>105,326</td>
<td>72%</td>
</tr>
<tr>
<td>Opposite direction/maneuver</td>
<td>10,987</td>
<td>61%</td>
</tr>
</tbody>
</table>
Corrective Actions Attempted
(2004 – 2008 GES; Imputed)

<table>
<thead>
<tr>
<th>Pre-Crash Scenario</th>
<th>No Avoidance Maneuver</th>
<th>Braking (No Lockup)</th>
<th>Braking (Lockup)</th>
<th>Steering(^1)</th>
<th>Braking and Steering</th>
<th>Other Action(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road edge departure/ no maneuver</td>
<td>64.3 %</td>
<td>2.4 %</td>
<td>5.3 %</td>
<td>24.4 %</td>
<td>1.1 %</td>
<td>2.5 %</td>
</tr>
<tr>
<td>Changing lanes/same direction</td>
<td>52.0 %</td>
<td>1.3 %</td>
<td>2.1 %</td>
<td>40.0 %</td>
<td>4.4 %</td>
<td>0.3 %</td>
</tr>
<tr>
<td>Opposite direction/ no maneuver</td>
<td>17.8 %</td>
<td>2.8 %</td>
<td>6.5 %</td>
<td>66.6 %</td>
<td>5.1 %</td>
<td>1.2 %</td>
</tr>
<tr>
<td>Drifting/same direction</td>
<td>65.1 %</td>
<td>2.4 %</td>
<td>3.5 %</td>
<td>25.1 %</td>
<td>2.6 %</td>
<td>1.4 %</td>
</tr>
<tr>
<td>Opposite direction/maneuver</td>
<td>14.8 %</td>
<td>0.1 %</td>
<td>3.7 %</td>
<td>75.0 %</td>
<td>4.1 %</td>
<td>2.3 %</td>
</tr>
</tbody>
</table>

\(^1\) Includes categories: “accelerating and steering left/right”
\(^2\) Includes categories: “releasing brakes” and “accelerating”
2015 NHTSA Test Track Work

- Review existing test methods and procedures, develop relevant updates
- Develop methods for evaluating new technologies, perform pilot testing
• Some drivers feel they experience too many LDW nuisance alerts
 – If the systems are being disabled, they cannot provide any safety benefits
• To address this concern, NHTSA…
 – Summarized all available LDW NCAP test report data
 – Met with ODI and vehicle manufacturers
 – Reviewed GM, IIHS, and CWIM studies
 – Compared test track performance to real-world impressions
 – Developed recommendations on how the LDW evaluation criteria could be changed to improve customer acceptance
LKS Background

• LKS systems are designed to mitigate or prevent lane departures via automatic steering and/or differential braking
• NHTSA presently includes a short series of optional LKS tests within the NCAP LDW test procedure, however:
 – They are supplementary
 – Performed with a straight road only
 – Intended for research purposes
• Questionable performance was observed during 2010 testing
 – Secondary lane departures
 – Ping-ponging
Current LKS Work

• Quantifying current state-of-technology
 – Include a broad range of lateral velocities, from low to the suppression threshold

• Working to expand NHTSA’s existing LKS test matrix
 – Inclusion of straight and curved (500m radius?) roads
 – Include non-activation tests
 – Coordinating with EuroNCAP

• 2015 testing has emphasized the need for a lightweight steering machine
 – A low inertia design should not affect LKS steering interventions
 – Will maximize test accuracy and repeatability
LCC Work

• LCC systems are designed to mitigate or prevent lane departures by using automatic steering to keep the vehicle near the center of the travel lane
• Anticipated scenarios are similar to those used for LKS
• Test methods will likely be different than for LKS
 – Achieving a constant headway towards a lane line will not be possible
 – Evaluation criteria are expected to relate to how well lane position is maintained during a period of activation
• Suppression threshold tests may be of interest
• Use of additional scenarios is anticipated
 – False positive test (e.g., exit ramp)
RDS Work

- RDS systems are designed to mitigate or prevent lane departures if LKS is unable to
- RDS activation may not require lane lines to be present
- Most anticipated scenarios are identical to those used for LKS
 - Straight road
 - Curved road
 - Broad range of lateral velocities
 - Non-activation tests
- Use of a lightweight steering machine is expected to improve the accuracy and repeatability of test conduct
CIS Work

• Examples of CIS technology
 – Blind Spot Intervention (BSI)
 – Head-on crash avoidance
 – Steering-based rear-end crash avoidance
• Production-based CIS technologies are very limited
• Thus far, 2015 testing has been limited to BSI pilot testing
Test matrix includes 5 scenarios

Three test vehicles
- 2014 Infiniti Q50
- 2015 Tesla Model S 85D
- 2016 Mercedes C300

A full-size surrogate vehicle is being used as the principal other vehicle

Test maneuvers are complicated
- Fully automated tests will be developed to improve the accuracy and repeatability of test conduct
Recognizing the potential safety benefits of LDS, EuroNCAP has initiated a program similar to NHTSA’s
 – Test method harmonization is being carefully considered
Additional harmonization efforts include 3D surrogate vehicle development
 – An acceptable global surrogate must appropriately balance of realism, durability, and ease-of-use
 – NHTSA, working with IIHS, and EuroNCAP, are evaluating what features best define “realism”
 – A decision on what 3D surrogate the agency will use for advanced technology evaluations is expected in 2016
Safer drivers. Safer cars. Safer roads.

Garrick J. Forkenbrock

garrick.forkenbrock@dot.gov

www.NHTSA.gov