Development of a Surrogate Seatbelt Retractor for Use in Child Restraint Testing

Kathleen D. Klinich, Miriam Manary, Kyle Boyle, Nichole Orton, Brian Eby, Quentin Weir
Booster Seats in the Field

- Booster seats are used in the field with vehicle production 3-point belts that have shoulder belt retractor systems.
- Retractor systems spool small amounts of webbing out during a crash event:
 - some at initial lock up
 - some due to tightening of webbing spool
 - potentially with load limiting
Booster Seats in the Lab

• FMVSS No. 213 evaluates booster seat dynamic performance using a static 3-point belt with no spool out

• Booster seat designs could be improved if tested using more realistic belt systems

• Why not use real retractors?
 – Expense
 – Variation among manufacturers
 – Repeatability
Objectives

Develop hardware and procedures for a surrogate seatbelt retractor for potential use with dynamic evaluation of belt-positioning booster seats
Commercial Hardware Survey

- Measured convenience sample of 20+ UMTRI staff vehicles
- Phone survey of manufacturers
- Determined resting belt tension
- Determined amount of spoolout with belt jerk
- Established targets of 1-2 inches of spool out and 2-4 lbf resting tension
Surrogate retractor

- Resting tension of 9-14 N
- Spoolout can be adjusted to different levels
Test bench

- Drawings from May 17, 2015
 Federal Docket No. NHTSA-2013-0055-0002
- Lower anchors lowered 40 mm
- Back extended upwards 50 mm
- Midway through testing, shoulder belt anchor moved inboard according to the drawings posted in docket NHTSA-2013-0055-0008 (Aug. 25, 2015)
Vehicle Seats

- Kinematics depend on
 - Vehicle seat stiffness
 - Belt anchor geometry
 - Retractor

- Vehicle systems
 - Ford Explorer
 - Jeep Grand Cherokee
ATD and Instrumentation

• Hybrid III 6YO ATD
• Instrumentation
 – Head, chest, pelvis triaxial accelerometers
 – Load cells in upper neck, lower neck, lumbar spine, upper and lower ASIS
 – Angular rate sensors in spine and pelvis to measure rotation about y-axis
• Current FMVSS No. 213 seating procedures
CRS Selection

B1: Graco Turbobooster
B2: Evenflo AMP
B3: Safety 1st Incognito
B4: Bubble Bum Inflatable
Sled Test Matrix

<table>
<thead>
<tr>
<th>Seat</th>
<th>Belt</th>
<th>None</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeep</td>
<td>Jeep</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeep</td>
<td>Static</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explorer</td>
<td>Explorer</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explorer</td>
<td>Static</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NewBuck</td>
<td>Static</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NewBuck</td>
<td>Commercial</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NewBuck</td>
<td>Surrogate</td>
<td>X</td>
<td>X</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
</tr>
</tbody>
</table>

Series 1: several tests damaged ATD because of error in shoulder belt anchor location

Series 2: testing run using shoulder belt location included in August 2015 drawing revision that resolved error
Static vs Production on Vehicle Seats
(3 comparisons – 6 tests)

Static Belt produces:
- Higher HIC (up 85), Neck Force (up 148 N)
- Lower Torso Angle (down 20 deg), Head Ex (down 55 mm), Knee Ex (16 mm)
Vehicle Seats vs. Test Bench

- Compare kinematics between vehicle seat and test bench
 - Static belts
 - Production belts
 - Using same booster
- Preliminary 213 test bench kinematics closer to tests run with Ford seat than Jeep seat
- Design of surrogate retractor tuned to match Ford retractor
Comparison of surrogate vs production

Surrogate Belt produces kinematics similar to production belt:
- Lower HIC (down 11), Neck Force (down 148 N)
- Lower Torso Angle (down 2 deg),
 Head Ex (down 12 mm), Knee Ex (15 mm)
Comparison of surrogate vs production
Comparison of surrogate v production – Booster 1

Legend will be added & plot lines better distinguishable
Summary and Continuing Research

• Surrogate retractor produces realistic kinematics compared to production belts
• Assess surrogate retractor performance with a greater range of booster seats, including high back boosters
• Assess durability of surrogate retractor using Hybrid III 10YO
• Assess repeatability of surrogate retractor
We acknowledge the National Highway Traffic Safety Administration for sponsoring this research.

Thank you for your attention.