Assessment, Evaluation, and Approaches to Modification of FMVSS that may Impact Compliance of new Vehicle Designs Associated with Automated Driving Systems

January 2018
Agenda

• Goal
• Technical Translations
• Current Research Context
• Research Phasing and Process
• Stakeholder Engagement
• Introduce VTTI Team
Goal

Provide NHTSA findings and results needed to make informed decisions regarding Technical Translations of FMVSS that address the challenges of self-certification and compliance verification of innovative new vehicle designs precipitated by Automated Driving Systems (ADS).
Technical Translations

- Develop translations that address the challenges of innovative new vehicle designs that are also inclusive of current conventional designs.
 - Adapt regulations text and test procedures to encompass new vehicle designs.
 - Translations need to be concept/design agnostic.
 - A translation will not impact or change the safety intent of a standard.
 - A translation will not impact or change current minimum safety performance measures.
Translating for the Body versus Translating for the Brain

• FMVSS “are regulations written in terms of minimum safety performance requirements for motor vehicles or items of motor vehicle equipment” (49 C.F.R. §571).
• Currently: Body and Brain tested independently
 – FMVSS sets “body” performance requirements to support the ability of a human driver’s “brain” to complete the Dynamic Driving Tasks (DDT) and any DDT fallback.
 • Vehicle Brakes = Body (FMVSS 135)
 • Human driver = Brain (Driver Licensing; e.g., obeying stop signs; KSA)
• Current Research Scope: Translate for Body (New Design)
Research Phasing

- **Phase I Priority (initial) Research**
 - NHTSA will identify initial FMVSS including potential gaps that can be investigated over the initial 12 months.

- **Phase I Short Term Research**
 - This phase would cover short term efforts that would entail the technical translations that could be identified, developed, research tested and evaluated within an 18 month time period.

- **Phase II Long Term Research**
 - This phase would cover the modification that would take longer and are more complex than Phase I Priority 12 and Phase I Short Term.
Research Process

- Scoping
- Planning
- Development
- Test and Evaluation

Stakeholder Engagement
Stakeholder Engagement Process

Technical Translation Research Engagement

- NHTSA Working Groups
- VTTI Expert Peer Reviews
- VTTI Stakeholder Working Groups
- NHTSA Review
- VTTI Stakeholder Feedback Workshops
- Technical Translation Findings

NHTSA Stakeholder Outreach
ADS-DV Framework

- 6 Categories/30 Features
- 4 Concept vehicles
 - Conventional
 - Transitional
 - Unconventional
 - Low-Speed Unconventional

<table>
<thead>
<tr>
<th>Category</th>
<th>Vehicle Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry/Egress</td>
<td>Conventional Doors</td>
</tr>
<tr>
<td></td>
<td>Unconventional Doors</td>
</tr>
<tr>
<td>External Communication</td>
<td>Auditory Indicator</td>
</tr>
<tr>
<td></td>
<td>Exterior Illumination</td>
</tr>
<tr>
<td></td>
<td>Stop Lamp</td>
</tr>
<tr>
<td></td>
<td>Taillamps</td>
</tr>
<tr>
<td></td>
<td>Turn Signals</td>
</tr>
<tr>
<td></td>
<td>Wireless Intent Communication</td>
</tr>
<tr>
<td>Seating Configuration & Occupant Protection</td>
<td>Conventional Seating</td>
</tr>
<tr>
<td></td>
<td>Unconventional Seating</td>
</tr>
<tr>
<td>User Communication</td>
<td>Mounted Displays (Outside View/Media)</td>
</tr>
<tr>
<td></td>
<td>Panic Button (ICE) (Voluntary)</td>
</tr>
<tr>
<td></td>
<td>Portable Device Destination Input</td>
</tr>
<tr>
<td></td>
<td>Portable Device User Communication</td>
</tr>
<tr>
<td></td>
<td>Portable Device Window/Comfort Input</td>
</tr>
<tr>
<td></td>
<td>Telltales</td>
</tr>
<tr>
<td>Vehicle Control</td>
<td>Accelerator/Brake Pedal</td>
</tr>
<tr>
<td></td>
<td>Bidirectional Vehicle Motion</td>
</tr>
<tr>
<td></td>
<td>Parking Brake System (Human Activated)</td>
</tr>
<tr>
<td></td>
<td>Shifter</td>
</tr>
<tr>
<td></td>
<td>Steering Wheel</td>
</tr>
<tr>
<td>Visibility</td>
<td>Headlamp</td>
</tr>
<tr>
<td></td>
<td>Hood</td>
</tr>
<tr>
<td></td>
<td>Mirror</td>
</tr>
<tr>
<td></td>
<td>Rear Visibility System</td>
</tr>
<tr>
<td></td>
<td>Sun Visor</td>
</tr>
<tr>
<td></td>
<td>Window</td>
</tr>
<tr>
<td></td>
<td>Window Defog/Defrost</td>
</tr>
<tr>
<td></td>
<td>Windshield (<70% Transmissivity)</td>
</tr>
<tr>
<td></td>
<td>Windshield Wiper</td>
</tr>
</tbody>
</table>
Core Team

Myra Blanco, Ph.D.
PI & Program Manager

Michelle Chaka, M.S.
Co-PI & Crash Avoidance Lead

Clay Gabler, Ph.D.
Co-PI & Crashworthiness Lead

VTTI’s FMVSS Expert Group

William Hollowell, Ph.D.
Joseph Kananthra, Ph.D.
Priya Prasad, Ph.D.
George Soodoo, M.B.A.
Kenneth Weinstein, J.D.

Research Team Members

Industry Group

Research Institutions

Booz Allen Hamilton

Test Facilities

VTTI
Dynamic Research, Inc.
NAPA Research Corporation

Stakeholder/Peer Reviewer Group

NHTSA
Virginia Tech Transportation Institute

Core Group