Restraint Optimization for Obese Occupants

Hamed Joodaki¹, Vivek Maripudi²

¹University of Virginia Center for Applied Biomechanics
²Joyson Safety Systems
Motivation

% of Adult U.S. Pop. Obese

2012

35%

2011-2012: 78.6 million U.S. adults obese
(Ogden et al. 2014)

Motivation

More likely to die or get injured in car crash

Rear-seat frontal impact sled tests

BMI 35

Experimental test video
Obese subject

BMI 22

Experimental test video
Non-obese subject
Restraint system optimization for obese occupants
Overview

Field Data Analysis

HBM Evaluation

Injury Metrics

HBM Instrumentation

Sled and Restraint Models

Parameter Selection

Simulation Runs

Meta-model Development

Optimization
FURTHER UNDERSTANDING THE ISSUE

FIELD DATA ANALYSIS
Restrained occupants in frontal crashes

Data
- NASS-CDS
- Frontal crashes (PDOF -30° to 30°)
- Belted occupants only
- Air bag deployed
Restrained occupants in frontal crashes

Data

- NASS-CDS
- Frontal crashes (PDOF -30° to 30°)
- Belted occupants only
- Air bag deployed

Objectives

- BMI vs Risk of AIS2+ injury to different body regions
- Most common injuries of obese vs non-obese
- Injury mechanism speculation
BMI vs Risk of Injury to Different Body Regions

Risk of AIS2+ Injury (%)

Body Region

All Injuries Head Face Thorax Abdomen Spine UX LX

Underweight Normal Overweight Obese I Obese II Obese III

Significant difference From multivariate regression analysis
Most common injuries of obese

<table>
<thead>
<tr>
<th>Rank</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> frequent</td>
<td>Talus fracture</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>Tibia NFS; medial malleolus; open/ displaced/ comminuted</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>Metatarsal or tarsal fracture</td>
</tr>
<tr>
<td>4<sup>th</sup></td>
<td>Carpus or Metacarpus fracture</td>
</tr>
<tr>
<td>5<sup>th</sup></td>
<td>Patella fracture</td>
</tr>
<tr>
<td>6<sup>th</sup></td>
<td>Radius Fracture NFS with or without styloid process including Colles</td>
</tr>
<tr>
<td>7<sup>th</sup></td>
<td>Knee NFS sprain</td>
</tr>
<tr>
<td>8<sup>th</sup></td>
<td>Fibula fracture; any type but NFS as to site; head, neck, shaft</td>
</tr>
<tr>
<td>9<sup>th</sup></td>
<td>Rib Cage NFS; 2-3 multiple rib fractures; any location or multiple fractures of single rib; with stable chest or NFS (OIS Grade I, II, III)</td>
</tr>
<tr>
<td>10<sup>th</sup> frequent</td>
<td>Rib Cage NFS; multiple rib fractures NFS; >3 ribs on one side and no more than 3 ribs on other side, stable chest or NFS</td>
</tr>
</tbody>
</table>

risk for obese > risk for non-obese
Injury mechanism speculation

- Large forward motion
 - Higher risk of LX and UX injury
 - Foot/ankle/tibia injuries
- Limited by knee bolsters
 - Knee injuries commonly observed
 - No difference in abdominal injuries
Obese HBM

- Baseline GHBMC morphed
 - External body contour
 - Rib cage and lower extremity skeletons geometry
- 3 BMIs, 2 heights, 2 ages
29 km/h Tests

Pelvis excursion 19 cm

Experimental test video
48 km/h Tests

Submarining

Pelvis excursion 25 cm

Pelvis excursion 40 cm

Experimental test video
Reasons contributing to decreased protection of obese

1- Big body mass → higher belt force required
2- Thick adipose tissue → delayed engagement of lap-belt with pelvis
3- Submarining → penetration into abdomen

Mimicked by HBM

HBM unable to submarine due to large shear stiffness of flesh
Conclusion

- HBM and PMHS behaviors comparable in test with no submarining
- Pelvis motion restrained for driver
- → HBM useful
RESTRAINT MODELS

SIMULATION SET-UP
Restraint models

Sled
Seat belt
 Standard and inflatable
 Buckle and anchor pre-tensioner
Adaptive vent driver air bag
Knee air bag
 Low-mount
 Mid-mount
Under-the-seat air bag
Curtain air bag
Choosing parameters

- Seat belt
 - Buckle vs anchor pre-tensioner
 - Load limiter and pre-tensioner levels
 - Air-belt vs no air-belt
 - Air-belt pressure
- Pressure of different air bags
- Force level of collapsible steering column
Optimization method

Choosing parameters → Domain reduction

Guess a solution

Run simulation

Not good enough

2500 simulations

Good enough

Solution
Optimization method

Choosing parameters ➔ Domain reduction ➔ Latin hypercube sampling

Guess a solution

Estimate the response

Run ~300 simulations

Meta model

Solution

Not good enough

Good enough
Objective Function

- **Functional Capacity Index**
- **Risk of Injury to different body regions**
Restraint Optimization for Obese Occupants
Hamed Joodaki1, Vivek Maripudi2
1University of Virginia Center for Applied Biomechanics
2Joyson Safety Systems