Status of NHTSA’s Roof Ejection Mitigation Research

Aloke Prasad, NHTSA
Corinn Pruitt, Transportation Research Center Inc.
Background

- FMVSS No. 226 Final Rule (Jan 2011) preamble says, “NHTSA is interested in learning more about roof ejections and would like to explore this area further…”
- Annual average 87 fatalities (FARS 2004-2017, coded as roof ejection path, excluding unknown path)
 - “Occupant Injuries Related to Rollover Crashes and Ejections from Recent Crash Data” Jingshu Wu et. al. 26th ESV, 2019
- Tests on production vehicles with laminated sunroof panels at 16, 20 km/h
 - 2009 Ford Flex (fixed); 2014 Ford CMax (fixed); 2013 Subaru Forester (movable)
 - 2016 SAE Government Industry Meeting
 - Paper at 25th Conference on Enhanced Safety of Vehicles (ESV), Detroit, 2017
- Tests on production and countermeasure* sunroof panels at 14, 16, 20 km/h
 - 2016 Ford F-150* (laminated - inner slider); 2010 Toyota Prius (fixed polycarbonate); 2019 Aisin (laminated - outer slider)
 - Paper at 26th Conference on Enhanced Safety of Vehicles (ESV), Eindhoven, Netherlands, 2019
Test Setup

- FMVSS No. 226 Impactor
- Featureless headform (40 lbs. [18kg])
- Displacement, speed from Linear Pot (LVDT)
- Accelerometer on the ram

Impact locations and speeds
- Speeds (14/16/20 km/h)
- Assumes
 - Left-right side are identical
 - Front-back are NOT identical
- Test each panel at
 - Front corner
 - Rear corner
 - Center
 - Mid-point of front transverse edge
 - Mid-point of rear transverse edge
 - At 2/3 of longitudinal edge
Lincoln MKZ

- Large panoramic design
- Outer slider type (opens to outside)
- ProTec 2® (PET) film
- Attached to rails at front and back
- Production and countermeasure panels

PET = polyethylene terephthalate
Lincoln MKZ – Module Description

• Glass panel bonded to ProTec 2® film and glued to steel assembly
 • ProTec 2® film (0.2mm PET film) – bonded to inner side of tempered glass
 • Film does not go all the way to edge of glass just to outside of frit line
• Production film has holes along edges (2) – reinforcement glued to both glass and film
• Countermeasure film does not have holes – reinforcement glued directly to film

Moving Glass Panel Assembly:
1. Moving Glass Panel
2. ProTec2 Film
3. Inner and Outer Glue Beads
4. Steel Reinforcement Assembly

frit = a black enamel band that is baked into the edges of the windshield for better adhesive bond and protect bond from UV
Test Setup

- Custom made frame – module attached to frame using 17 sliding brackets (shown with arrows)

- Glass prebroken on one side (outside)
 - Punched once in corner– glass fractured all the way across

- Brackets with targets for photographic analysis attached at inner glue line (near frit line) – measure edge excursions
Results/Ram Excursion Values

At 14 km/h
At 16 km/h
At 20 km/h

Plastic film tear

Lincoln MKZ (Webasto) Production ProTec 2®
Plastic Film Tear

Production panel- Front corner – 16 km/h
Lincoln MKZ (Webasto) Countermeasure ProTec 2®

Results/Ram Excursion Values

- **At 14 km/h**
- **At 16 km/h**
- **At 20 km/h**

- No rips or tears in PET layer
- No gross failures at mounting or attachment brackets
- Some bending of steel reinforcement of glass

<table>
<thead>
<tr>
<th>Side</th>
<th>Front</th>
<th>Passenger Side</th>
<th>Rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>118/118</td>
<td>109/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106/102</td>
<td>105/111</td>
</tr>
</tbody>
</table>

Only difference between production and countermeasure panels are holes in PET film
Results – Countermeasure

Some bending of steel frame
 • 4 inch ball did not pass through

Rear edge – mid @ 20 km/h

Bottom edge 2/3 A @ 20km/h

Front edge mid @ 20 km/h
Test Observations – MKZ Countermeasure

• Excursion values below 100 mm at 16 km/h and just slightly above at 20 km/h
• No rips or tears in PET layer
• No gross failures at mounting or attachment brackets
• Bending of steel reinforcement of glass
 • Most severe when impacted at mid points of transverse and 2/3 of lateral edges at 20 km/h
 • 4 inch ball did not pass through
Hyundai-Mobis Roof Air Curtain System
Curtain Air Bag Module

- Headliner (interior) and roof frame (exterior)
- Polycarbonate “glass” → aid in target alignment, zero plane
- Fabricated for testing purposes – not from production or prototype vehicle
- Guide rods and air bag to be installed for each test
Curtain Air Bag Module Assembly

- Guide rods mounted along lateral edges
 - 2 nuts per end
 - Bolt to prevent turning
- Guide rings on both sides hold bag to module along guide rods
Curtain Air Bag Module Assembly

- Air bag mounted on rear of module at six locations, four on interior, two on exterior
- Inflator secured at two locations
Curtain Air Bag Types

• Curtain types
 • One Panel Woven (OPW)
 • 30 bags
 • Seam Sealing (SS)
 • 15 bags
 • Same inflator and chamber layout

• Differences between the two:
 • Material
 • Fabric in OPW sealed by plastic film material, woven together at seam
Test Setup

- Open bag across daylight opening
 - Assumed successful deployment
 - Full automatic deployment found to not be reliable – 2 trials
- 6 Impact Locations
 - Front Corner, Front Edge – Mid, Center, 2/3 Lateral Edge, Rear Edge – Mid, Rear Corner
- 3 speeds
 - 14 km/h, 16 km/h, 20 km/h
- Plexiglass positioning
 - Front panel impacts – front plexiglass down, rear up – “moveable panel”
 - Rear panel impacts – front and rear plexiglass down
 - Plexiglass is zero plane for excursion measurements

Some rear panel targets eliminated per FMVSS No. 226 procedure
Propulsion Methods

- **Method 1**
 - Tested front panel center, front corner, front edge-mid (8 tests)
 - Headform positioned so desired velocity achieved at plexiglass location
 - Zero plane at plexiglass
 - Caused questionable speed readouts

- **Method 2**
 - Re-tested front edge-mid and all remaining impacts (37 tests)
 - Headform positioned so desired velocity achieved just before impact with bag
 - Zero plane at plexiglass

- **6 second delay between inflation and impact**
 - Additional tests done at 1.5, 3 and 8 second delays
Hyundai-Mobis Curtain - Results

Results/Excursion Values

<table>
<thead>
<tr>
<th>Speed</th>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 km/h</td>
<td>120/116</td>
<td>191/192</td>
</tr>
<tr>
<td>16 km/h</td>
<td>144*/138</td>
<td>195/195</td>
</tr>
<tr>
<td>20 km/h</td>
<td>165/171</td>
<td>195/195</td>
</tr>
</tbody>
</table>

Notes:
- * Bag ripped at stitching
- Underline = Method 1
- Seam Sealing Bag
 - Bag more likely to rip or tear when hit at guide ring attachment
 - Excursions less in corners and on lateral edges where more supported by guide rings and rods
 - Excursions less closer to center support area

Diagram

- **Front:**
 - 120/116
 - 144*/138
 - 165/171
 - 195/195
- **Driver:**
 - 116
 - 142*/120/129
 - 101
 - 124
- **Passenger:**
 - 90
 - 106
 - 176*/215*
 - 107
 - 115
 - 144
 - 161
- **Rear:**
 - 135
 - 145
Failure Modes

- Ripping at stitching of guide ring
 - When headform impacted near stitching
 - Full and partial ripping
 - Headform still contained
Timing Delay Effect on Excursion

OPW and SS – Front Panel Center 16 km/h

- $y = 3.9136x + 187.36$
- $R^2 = 0.9478$

OPW - Rear Panel Center 16 km/h

- $y = 1.161x + 157.1$
- $R^2 = 0.7735$
Test Observations – Hyundai-Mobis Curtain

- Bag more likely to rip or tear when hit at guide ring attachment
- Excursions less in corners and on lateral edges where more supported by guide rings and rods
- Excursions less closer to center support area
- Delay Timing Effect on Excursion
 - Longer delay = greater excursion
 - Greater effect of delay differences on front panel than rear
 - Greater scatter with OPW than Seam Sealing
Force Comparison

- Front panel – Center – 16 km/h
 - Red – Hyundai Air Curtain
 - Green – Lincoln MKZ
 - Blue – Toyota Prius *
 - Black – Ford F150 *
 - Orange – Aisin *

- Using accelerometer mounted to the ram

* 26th Conference on Enhanced Safety of Vehicles (ESV), Eindhoven, Netherlands, 2019
Overall Observations

• Movable panels with good attachment designs can perform well (excursion <100mm)
 • MKZ had metal rails, pins and cam
• Air curtains feasible for preventing ejection but still in development stages
• Roof air curtain produced similar headform forces and energy as good performing laminate movable sunroofs, higher excursions
 • More testing needed on other air curtain setups
• All components in load path need to be designed for occupant containment
 • Rail, rail inserts, bonding to glass, glass/plastic strength
• Smaller excursions may lead to higher head and neck forces (Prius)
 • Perhaps no worse than metal roof (no testing of metal roof was conducted)
 • May be better than getting ejected!
Data can be found at: Component Test Database (COMDB)
Test Numbers: c01826 through c01888