DATA SHEET 7

DUMMY POSITIONING IN VEHICLE

FRONT SEAT MEASUREMENT TABLE

<table>
<thead>
<tr>
<th>DRIVER (Serial No. _________)</th>
<th>PASS. (Serial No. _________)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td></td>
</tr>
<tr>
<td>SWA</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>HZ</td>
<td></td>
</tr>
<tr>
<td>HH</td>
<td></td>
</tr>
<tr>
<td>HW</td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>ANGLE (NA)</td>
</tr>
<tr>
<td>CD</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td></td>
</tr>
<tr>
<td>KDL</td>
<td>ANGLE (KDA)</td>
</tr>
<tr>
<td>KDR</td>
<td>ANGLE (KDA)</td>
</tr>
<tr>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>ANGLE</td>
</tr>
<tr>
<td>SK</td>
<td>ANGLE</td>
</tr>
<tr>
<td>SH</td>
<td>ANGLE</td>
</tr>
<tr>
<td>SHY</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTIONS OF DUMMY MEASUREMENTS

When a level is to be used, it is to ensure that the line containing the two points described is either parallel or perpendicular to the ground. If a measurement to be made is less than 10 inches ignore the directions to use a level and approximate a level measurement. Also, when a measurement is to be taken to or from the center of a bolt on the dummy, take the measurement from the center of the bolt hole if the bolt is recessed.

The following measurements are to be made within a vertical longitudinal plane.

* HH Head to Header, taken from the point where the dummy's nose meets his forehead (between his eyes) to the furthest point forward on the header.

* HW Head to Windshield, taken from the point where the dummy's nose meets his forehead (between his eyes) to a point on the windshield. Use a level.

HZ Head to Roof, taken from the point where the dummy's nose meets his forehead (between his eyes) to the point on the roof directly above it. Use a level.

* CS Steering Wheel to Chest, taken from the center of the steering wheel hub to the dummy's chest. Use a level.

* CD Chest to Dash, place a tape measure on the tip of the dummy's chin and rotate five inches of it downward toward the dummy to the point of contact on the transverse center of the dummy's chest. Then measure from this point to the closest point on the dashboard either between the upper part of the steering wheel between the hub and the rim, or measure to the dashboard placing the tape measure above the rim, whichever is a shorter measurement. See photograph.

RA Steering Wheel Rim to Abdomen, taken from the bottommost point of the steering wheel rim horizontally rearward to the dummy. Use a level.

NR Nose to Rim, taken from the tip of the dummy's nose to the closest point on the top of the steering wheel rim. Also indicate the angle this line makes with respect to the horizontal (NA).

* Measurement used in Data Tape Reference Guide
15. DATA SHEETS....Continued

*1 KDL, KDR Left and Right Knees to Dashboard, taken from the center of the knee pivot bolt's outer surface to the closest point forward acquired by swinging the tape measure in continually larger arcs until it contacts the dashboard. Also reference the angle of this measurement with respect to the horizontal for the outboard knee (KDA). See photograph.

SH, SK, ST Striker to Hip, Knee, and Head, these measurements are to be taken in the X-Z plane measured from the forward most center point on the striker to the center of the H-point, outer knee bolt, and head target. When taking this measurement a firm device that can be rigidly connected to the striker should be used. Use a level. The angles of these measurements with respect to the horizontal should also be recorded. The measurement in the Y (transverse) direction from the striker to the H-point should also be taken (SHY). See photograph.

The following measurements are to be made within a vertical transverse plane.

HS Head to Side Window, taken from the point where the dummy's nose meets his forehead (between his eyes) to the outside of the side window. In order to make this measurement, roll the window down to the exact height which allows a level measurement. Use a level. See photograph.

* AD Arm to Door, taken from the outer surface of the elbow pivot bolt on a Hybrid II dummy to the first point it hits on the door. In the case of a Hybrid III dummy, measure from the bolt on the outer biceps. When a SID is used make the measurement from the center of the bottom of the arm segment where it meets the dummy's torso.

* HD H-point to Door, taken from the H-point on the dummy to the closest point on the door. Use a level.

* HR Head to Side Header, measure the shortest distance from the point where the dummy's nose meets his forehead (between his eyes) to the side edge of the header just above the window frame, directly adjacent to the dummy.

SHY Striker to H-point, taken from a rod rigidly connected to the forward most center point on the striker to the H-point. Use a level. See photograph.

* Measurement used in Data Tape Reference Guide

* Only outboard measurement is referenced in Data Tape Reference Guide
15. DATA SHEETS....Continued

KK Knee to Knee, for Hybrid II dummies measure the distance between knee pivot bolt head outer surfaces. For Hybrid III dummies measure the distance between the outboard knee clevis flange surfaces. (This measurement may not be exactly transverse)

Angles

SA Seat Back Angle, find this angle using the instructions provided by the manufacturer. If the manufacturer doesn't provide clear instructions contact the COTR.

PA Pelvic or Femur Angle, taken by inserting the pelvic angle gauge into the H-point gauging hole on the SID or the Hybrid III dummies and taking this angle with respect to the horizontal. Measure the angle of the line connecting the H-point hole and the outer knee pivot bolt hole on a Hybrid II dummy with respect to the horizontal, to find the femur angle.

SWA Steering Wheel Angle, find this by placing a straight edge against the steering wheel rim along the longitudinal plane. Then measure the acute angle of the straight edge with respect to the horizontal.

SCA Steering Column Angle, measured with respect to the horizontal by placing an inclinometer on the center of the underside of the steering column.

NA Measure the angle made when taking the measurement NR with respect to the horizontal.

KDA Knee to Dash Angle, the angle that the measurement KD is taken at with respect to the horizontal. Only get this angle for the outboard knee. See photograph.

WA Windshield Angle, place an inclinometer along the transverse center of the windshield exterior (measurement is made with respect to horizontal).

TA Tibial Angle, use a straight edge to connect the dummy’s knee and ankle bolts. Then place an inclinometer on the straight edge and measure the angle with respect to the horizontal.
15. DATA SHEETS...CONTINUED (DUMMY MEASUREMENT PHOTOS)

ST – STRIKER TO HEAD
MEASUREMENT

ST.-- STRIKER TO HEAD
ANGLE

CD – CHEST TO DASH
1

CD – CHEST TO DASH
2
SH – STRIKER TO H-POINT
MEASUREMENT

SH - STRIKER TO H-POINT
ANGLE

SK – STRIKER TO KNEE
MEASUREMENT

SK – STRIKER TO KNEE
ANGLE
HS - HEAD TO SIDE WINDOW

SHY – STRIKER TO H-POINT (Y DIRECTION)

KDL/KDR – KNEE TO DASH

KDA – KNEE TO DASH ANGLE
VEHICLE ACCELEROMETER LOCATION AND DATA SUMMARY

TOP VIEW

LEFT SIDE VIEW

15. DATA SHEETS....Continued
DATA SHEET 8

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION NO.</th>
<th>DESCRIPTION</th>
<th>MAXIMUM VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X-</td>
</tr>
<tr>
<td>1</td>
<td>Rear Seat X-Member @ Left Side</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rear Seat X-Member @ Right Side</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Top of Engine Block</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear Axle</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left Vehicle Frame (if applicable)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Right Vehicle Frame (if applicable)</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
NOTE: THE FOLLOWING TEST DATA PLOTS WILL BE INCLUDED IN EACH FINAL TEST REPORT with the test vehicle NHTSA number and date of impact test appearing on each plot:

D-1 Driver dummy head longitudinal acceleration ... \(A_x \)
D-2 Driver dummy head lateral acceleration ... \(Y_a \)
D-3 Driver dummy head vertical acceleration ... \(A_z \)
D-4 Driver dummy head resultant acceleration .. \(A_r \)
D-5 Driver dummy chest longitudinal acceleration ... \(A_x \)
D-6 Driver dummy chest lateral acceleration ... \(Y_a \)
D-7 Driver dummy chest vertical acceleration ... \(A_z \)
D-8 Driver dummy chest resultant acceleration .. \(A_r \)
D-9 Driver dummy left femur load ... \(F_l \)
D-10 Driver dummy right femur load .. \(F_r \)
D-11 Driver dummy chest deflection (Part 572 Subpart E dummy) \(X \)
D-12 Driver dummy upper neck bending moment ... \(M_x \)
D-13 Driver dummy upper neck bending moment .. \(M_y \)
D-14 Driver dummy upper neck bending moment .. \(M_z \)
D-15 Driver dummy upper neck shear force ... \(F_x \)
D-16 Driver dummy upper neck shear force ... \(F_y \)
D-17 Driver dummy upper neck axial load ... \(F_z \)
D-18 Driver dummy upper neck bending moment about occipital condyle \(M_{oc} \)

P-1 Passenger dummy head longitudinal acceleration \(A_x \)
P-2 Passenger dummy head lateral acceleration ... \(Y_a \)
P-3 Passenger dummy head vertical acceleration ... \(A_z \)
P-4 Passenger dummy head resultant acceleration ... \(A_r \)
P-5 Passenger dummy chest longitudinal acceleration .. \(A_x \)
P-6 Passenger dummy chest lateral acceleration .. \(Y_a \)
P-7 Passenger dummy chest vertical acceleration ... \(A_z \)
P-8 Passenger dummy chest resultant acceleration ... \(A_r \)
P-9 Passenger dummy left femur load ... \(F_l \)
P-10 Passenger dummy right femur load .. \(F_r \)
P-11 Passenger dummy chest deflection (Part 572 Subpart E dummy) \(X \)
P-12 Passenger dummy upper neck bending moment \(M_x \)
P-13 Passenger dummy upper neck bending moment .. \(M_y \)
P-14 Passenger dummy upper neck bending moment .. \(M_z \)
P-15 Passenger dummy upper neck shear force ... \(F_x \)
P-16 Passenger dummy upper neck shear force ... \(F_y \)
P-17 Passenger dummy upper neck axial load .. \(F_z \)
P-18 Passenger dummy upper neck bending moment about occipital condyle \(M_{oc} \)

TEST VEHICLE AND SLED ACCELERATION PLOTS SHALL ALSO BE INCLUDED.

Each plot shall be on an 8½ inch by 11 inch page with a scale that does not exceed the maximum value by more than 10%.
VEH. NHTSA No.: C_________; TEST DATE: _________________; TIME: _________

VEH. YEAR/MAKE/MODEL/BODY STYLE: _______________________________________

<table>
<thead>
<tr>
<th>CAMERA NO.</th>
<th>VIEW</th>
<th>CAMERA POSITIONS (in.)</th>
<th>ANGLE (deg.)</th>
<th>FILM PLANE TO HEAD TARGET</th>
<th>LENS (mm)</th>
<th>SPEED (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left Side View</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Left Side View</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Left Side View</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Right Side View</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Right Side View</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Front View Driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Front View Pass.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* X - film plane to monorail centerline
 Y - film plane to barrier face
 Z - film plane to ground

REMARKS:
CAMERA POSITIONS FOR SLED TEST

TOP VIEW

CAMERA FRAME RATES:
#1 = 24 fps
All Others = 1,000 fps

LEFT SIDE VIEW

SLED INTERFACE FRAME
SLED CENTERLINE
SLED INTERFACE FRAME
REFERENCE PHOTO TARGETS

LEFT SIDE VIEW
DATA SHEET 10

LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver’s seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

NHTSA NO. C____________ Technician ______________________ Date ____________

DESIGNATED SEATING POSITION (DSP):

1. Record test seat position. (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner’s manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))

 _ _ Yes-Pass _ _ No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))

 _ _ Yes-Pass _ _ No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?

 _ _ Yes _ _ No

If **YES**, go to 6.1. If **NO**, go to 7.
15. DATA SHEETS....Continued

6.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))

__ Yes-Pass __ No-FAIL

__7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

__8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

__9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

__10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

Measured distance between A and B_________________ inches

__11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

__12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle______________________(spec. 5 - 15 degrees)
WEBBING TENSION PULL DEVICE

DIMENSION A

Insert Webbing to Rest Against This Surface

1/4" DIA. (Steel)

Dimension A —
Width of Webbing + 1/2"
Dimension B —
1/2 of Dimension A

DIRECTION OF PULL

15. DATA SHEETS....Continued
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B_______________________ inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate_____________ lb/sec (spec. 10 to 50 lb/sec)

 Measured distance between A and B_______________________ inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 14 from the measurement in 13. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

 13-14=________ inches __ Yes-Pass __ No-FAIL

16. Subtract the measurement in 10 from the measurement in 14. Is the difference 3 inches or more? (S7.1.1.5(c)(7))

 10-14=________ inches __ Yes-Pass __ No-FAIL

REMARKS:
15. **DATA SHEETS...Continued**

DATA SHEET 11

AIR BAG LABELS

NHTSA NO. ____________ Technician ________________ Date ______

1. **Air Bag Maintenance Label and Owner’s Manual Instructions: (S4.5.1(a))**

 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 - __ Yes (Go to 1.2)
 - __ No (Go to 2)

 1.2 Does the Vehicle have a maintenance or replacement label?
 - __Yes-Pass __No-FAIL

 1.3 Does the label contain one of the following?
 - __Yes-Pass __No-FAIL

 Check applicable schedule
 - __ Schedule on label specifies month and year (Record date __________)
 - __ Schedule on label specifies vehicle mileage (Record mileage _______)
 - __ Schedule on label specifies interval measured from date on certification label (Record date __________)

 1.4 Is the label permanently affixed within the passenger compartment?
 - __Yes-Pass __No-FAIL

 1.5 Is the label lettered in English?
 - __Yes-Pass __No-FAIL

 1.6 Is the label in block capitals and numerals?
 - __Yes-Pass __No-FAIL

 1.7 Are the letters and numerals at least 3/32 inches high?
 - __Yes-Pass __No-FAIL

 1.8 Does the owner’s manual set forth the recommended schedule for maintenance or replacement?
 - __Yes-Pass __No-FAIL

I. **Does the owner’s manual: (S4.5.1(f))**

 2.1 Include a description of the vehicle’s air bag system in an easily understandable format?
 - __Yes-Pass __No-FAIL

 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder belt at the front outboard seating positions?
 - __Yes-Pass __No-FAIL
2.3 Include a statement that the air bag is a supplemental restraint at the front outboard seating positions?

 __Yes-Pass __No-FAIL

2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash?

 __Yes-Pass __No-FAIL

2.5 Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to insure maximum safety protection for those occupants?

 __Yes-Pass __No-FAIL

2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate?

 __Yes-Pass __No-FAIL

3. Does the vehicle:

3.1 Provide an automatic means to ensure that the air bag does not deploy when a child seat or child with a total mass of 30 kg or less is present on the front outboard passenger?

 __Yes __No

3.2 Incorporate sensors, other than or in addition to weight sensors, which automatically prevent the passenger air bag from deploying in situations in which it might have an adverse effect on infants in rear-facing child seats, and unbelted or improperly belted children?

 __Yes __No

3.3 Have a passenger air bag designed to deploy in a manner that does not create a risk of serious injury to infants in rear-facing child seats, and unbelted or improperly belted children?

 __Yes __No

If yes to 3.1, or 3.2, or 3.3, the vehicle is not required to have a Sun Visor Warning Label (S4.5.1(b)), an air bag alert label (S4.5.1(c)) or a label on the dash (S4.5.1(e)) and this check sheet is complete. (S4.5.1) If no to 3.1, 3.2, and 3.3, go to 4.

4. Sun Visor Warning Label

4.1 Is the label permanently affixed (may be permanent marking or molding) to either side of the sun visor at each front outboard seating position with an air bag? (S4.5.1(b)(2))

 Driver side __ Yes-Pass __No-FAIL

 Passenger side __ N/A __ Yes-Pass __No-FAIL
4.2 Does the label conform in content (vehicles without back seats may omit the statement: “The BACK SEAT is the SAFEST place for children.”) (S4.5.1(b)(2)(v)) to the label shown in either Figure 6a or 6b as appropriate at each front outboard seating position with an air bag? (S4.5.1(b)(2))

4.2.1 Dual air bags __ N/A

Driver side __ Yes-Pass __N-FAIL

Passenger side __ Yes-Pass __N-FAIL

4.2.2 Vehicle with driver air bag ONLY - either 4.2.2.1 or 4.2.2.2 is applicable not both. (S4.5.1(b)(2)(iv))

4.2.2.1 Does the label conform in content to the label shown in either Figure 6a or 6b as appropriate?

__ N/A

Driver side __ Yes-Pass __N-FAIL

4.2.2.2 Does the label conform in content to the label shown in Figure 6a where the label can be modified to omit the pictogram and the message text may read:

DEATH or SERIOUS INJURY can occur.

Sit as far back as possible from the air bag.
ALWAYS use SEAT BELTS and CHILD RESTRAINTS.
The BACK SEAT is the SAFEST place for children.

__ N/A

Driver side __ Yes-Pass __N-FAIL
15. DATA SHEETS....Continued

Figure 6a (S4.5.1(b)(2))

SUN VISOR LABEL VISIBLE WHEN VISOR IS IN DOWN POSITION

LABEL OUTLINE, VERTICAL AND HORIZONTAL LINE BLACK

ARTWORK BLACK WITH WHITE BACKGROUND

CIRCLE AND LINE RED WITH WHITE BACKGROUND

BOTTOM TEXT BLACK WITH RED BULLETS ON WHITE BACKGROUND

TOP TEXT AND SYMBOL BLACK WITH YELLOW BACKGROUND

⚠️ WARNING

DEATH or SERIOUS INJURY can occur

- Children 12 and under can be killed by the air bag
- The BACK SEAT is the SAFEST place for children
- NEVER put a rear-facing child seat in the front
- Sit as far back as possible from the air bag
- ALWAYS use SEAT BELTS and CHILD RESTRAINTS
Figure 6b (S4.5.1(b)(2))

4.3 Is the label heading area yellow with the word “warning” and the alert symbol in black? (S4.5.1(b)(2)(i))

Driver side __ Yes-Pass __ No-FAIL

Passenger side __ No air bag __ Yes-Pass __ No-FAIL

4.4 Is the message white with black text? (S4.5.1(b)(2)(ii))

Driver side __ Yes-Pass __ No-FAIL

Passenger side __ No air bag __ Yes-Pass __ No-FAIL

4.5 Is the message area at least 30 cm²? (S4.5.1(b)(2)(ii))

Actual message area _________cm²

Driver side __ Yes-Pass __ No-FAIL

Passenger side __ No air bag __ Yes-Pass __ No-FAIL
4.6 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(iii) & (S4.5.1(b)(2)(iv))

For vehicles with driver side air bag ONLY __N/A

Driver side __ Yes-Pass __No-FAIL

Passenger side __ No air bag __ Yes-Pass __No-FAIL

4.7 Is the pictogram at least 30 mm in diameter? (S4.5.1(b)(2)(iii))
Actual diameter ______________mm

For vehicles with driver side air bag ONLY __N/A

Driver side __ Yes-Pass __No-FAIL

Passenger side __ No air bag __ Yes-Pass __No-FAIL

4.8 Is the same side of the sun visor to which the sun visor label is affixed free of other information with the exception of an air bag maintenance label? (S4.5.1(b)(3))

Driver side __ Yes-Pass __No-FAIL

Passenger side __ No air bag __ Yes-Pass __No-FAIL

4.9 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label or the utility vehicle label? (S4.5.1(b)(3))

Driver side __ Yes-Pass __No-FAIL

Passenger side __ No air bag __ Yes-Pass __No-FAIL

5. Air Bag Alert Label

5.1 Is the Sun Visor Warning Label visible when the sun visor is in the stowed position?

Driver side __ Yes __No If yes, go to 6.

Passenger side __ No air bag __Yes __ No

5.2 Does the label conform in content to the label shown in Figure 6c? (S4.5.1(c)(2))

Driver side __ Yes-Pass __No-FAIL

Passenger side __ No air bag __ Yes-Pass __No-FAIL
15. DATA SHEETS...Continued

5.3 Is the message area black with yellow text? (S4.5.1(c)(2)(i))

<table>
<thead>
<tr>
<th></th>
<th>Driver side</th>
<th>Passenger side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes-Pass</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No-FAIL</td>
<td>No-FAIL</td>
</tr>
</tbody>
</table>

5.4 Is the message area at least 20 cm2? (S4.5.1(c)(2)(i))

<table>
<thead>
<tr>
<th>Actual message area</th>
<th>Driver side</th>
<th>Passenger side</th>
</tr>
</thead>
<tbody>
<tr>
<td>_________cm2</td>
<td>Yes-Pass</td>
<td>No</td>
</tr>
<tr>
<td>No-FAIL</td>
<td>No-FAIL</td>
<td>No-FAIL</td>
</tr>
</tbody>
</table>

5.5 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2)(ii))

<table>
<thead>
<tr>
<th>For vehicles with driver side air bag ONLY</th>
<th>N/A</th>
<th>Yes-Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No-FAIL</td>
<td></td>
</tr>
</tbody>
</table>
15. DATA SHEETS....Continued

5.6 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2)(ii))
Actual diameter __________ mm

For vehicles with driver side air bag ONLY __N/A
__ Yes-Pass __No-FAIL

Figure 6c

SUN VISOR LABEL VISIBLE WHEN VISOR IS IN UP POSITION (S4.5.1(c)(2))

CIRCLE AND LINE RED WITH WHITE BACKGROUND
ARTWORK BLACK WITH WHITE BACKGROUND
TEXT YELLOW WITH BLACK BACKGROUND

AIR BAG WARNING
FLIP VISOR OVER

6. Label On the Dash

6.1 Does the vehicle have a passenger side air bag? __ Yes __ No
If no, this check sheet is complete.

6.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e))
__ Yes-Pass __ No-FAIL

6.3 Does the label conform in content (vehicles without back seats may omit the statement: “The back seat is the safest place for children 12 and under.” (S4.5.1(e)(iii))) to the label shown in Figure 7? (S4.5.1(e))
__ Yes-Pass __ No-Fail

6.4 Is the heading area yellow with the word “warning” and the alert symbol in black? (S4.5.1(e)(i))
__ Yes-Pass __ No-FAIL

6.5 Is the message white with black text? (S4.5.1(e)(ii))
__ Yes-Pass __ No-FAIL
15. DATA SHEETS....Continued

6.6 Is the message area at least 30 cm2? (S4.5.1(e)(ii))
Actual message area __________ cm2 ___ Yes-Pass ___ No-FAIL

Figure 7 (S4.5.1(e))