Status of NHTSA’s Ejection Mitigation Research

J. Stephen Duffy
Transportation Research Center, Inc.

SAE Government/Industry Meeting
May 10, 2004
Ejection Mitigation

Problem Definition

- **51,700 Annual Ejections** (1997-2002)
 - 1% of all crash-involved occupants
- **10,600 Annual Ejected Fatalities**
 - 32% of all fatalities
 - 6,200 through side windows
- **10,900 Annual Rollover Fatalities**
 - 3,900 ejected through side windows
Ejection Mitigation
Research Program Goals

• Demonstrate Countermeasure Feasibility
 – Evaluate ejection mitigation capability
 – Evaluate injury-causing potential

• Develop Occupant Retention Test
 – Full-scale rollover tests not repeatable

• Develop Rollover Sensor Performance Test
Ejection Mitigation
Dynamic Rollover Fixture (DRF)

- Research Tool to Evaluate Countermeasures
- Produces Repeatable Full-Dummy Ejections
 - Allows dummy response measurements
- Produces Realistic Roll Rates
 - Up to 360 deg/sec
- Variable Occupant-to-Window Speeds
 - 15 to 30 kmph
- Variable Occupant Trajectories and Impact Locations
- Does Not Simulate Lateral Vehicle Accelerations
Ejection Mitigation
Countermeasure Candidates

- **Inflatable Systems**
 - Advanced Head Protection System (AHPS): Original & Beltline Systems
 - Zodiac Automotive US
 - Prototype Window Curtain
 - TRW Automotive

- **Advanced Side Glazings**
 - Bi-laminate
 - Tri-laminate
 - Modified door frame

- **Inflatable/Glazing Combination**
 - Less door frame modifications
Ejection Mitigation
DRF Testing

- **Window Treatments**
 - Open window
 - Inflatable, glazings, combination

- **Dummy Sizes**
 - 50th male
 - 5th female
 - 6 year-old

- **Seated Positions**
 - Behind steering wheel
 - Inboard
• **Open Window**
 – Complete ejection in every case

• **TRW and Original AHPS Inflatable Systems**
 – Prevented complete ejections
 – Shoulders & arms escaped below bag

• **Beltline AHPS Inflatable System**
 – Prevented complete and partial ejections

• **Advanced Glazing**
 – Prevented complete and partial ejections

• **Combination Systems**
 – Prevented complete and partial ejections
Ejection Mitigation
DRF Testing Results – AHPS Systems

Original

Beltline
• **Low Head Injury Potential**
 – Maximum $HIC_{36} = 121$

• **Low Neck Tension**
 – Maximum - 33% IARV (per FMVSS 208)

• **Generally Low Neck Compression**
 – Maximum - 82% IARV (per FMVSS 208)
 – All the rest below 60%
 – Higher values from contact with side roof rail while engaged with countermeasure
Ejection Mitigation
DRF Testing Results – Dummy Responses

Lateral Neck Loading

- **Maximum Shear Loads**
 - 50th male – 1020 N
 - 5th female – 754 N

- **Maximum Bending Moments**
 - 50th male – 68 N-m
 - 5th female – 42 N-m

- **No Established Injury Criteria**
Ejection Mitigation
Guided Impactor

- **18 kg Mass**
- **Featureless Headform**
 - Average of front & side of head geometries
 - Better approximation of head/shoulder loading area
- **Measures Displacement**
- **Positioned Inside Vehicle**
- **Impact a Variety of Locations**
Ejection Mitigation

Guided Impactor Test Matrix

Impact Location on Side Window Area

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 kmph 6 sec</td>
<td>20 kmph 1.5 sec</td>
<td>24 kmph 1.5 sec</td>
<td>16 kmph 6 sec</td>
</tr>
<tr>
<td>Advanced Glazing Systems Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflatable Systems Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflatable Systems With Glazing (pre-broken)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflatable Systems With Glazing (unbroken)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ejection Mitigation
Side Window Impact Locations
• **TRW**
 – 1.5 seconds = 62 kPa
 – 6 seconds = 28 kPa

• **Zodiac**
 – 1.5 seconds = 79 kPa
 – 6 seconds = 49 kPa
Ejection Mitigation
Pre-Broken Glazing
Ejection Mitigation
Guided Impactor Test Results

<table>
<thead>
<tr>
<th>Impactor Deflection Beyond Window Plane (mm)</th>
<th>Impact Location on Side Window Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>16 kmph</td>
</tr>
<tr>
<td>TRW Inflatable Curtain No Glazing</td>
<td>No Data*</td>
</tr>
<tr>
<td>TRW Inflatable Curtain With HP Laminate (pre-broken)</td>
<td>80</td>
</tr>
<tr>
<td>TRW Inflatable Curtain With HP Laminate (unbroken)</td>
<td>-42</td>
</tr>
<tr>
<td>Zodiac Beltline AHPS No Glazing</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

* Bag Provides No Coverage
Ejection Mitigation
Impactor Results

Maximum Excursion Beyond Window Plane
TRW - No Glazing

Impact Position

Displacement (mm)

No Coverage

16 kmph/0 sec
20 kmph/1.5 sec
24 kmph/1.5 sec

1 2 3 4
Ejection Mitigation Impactor Results

Maximum Excursion Beyond Window Plane
Zodiac AHPS(beltline) - No Glazing

Impact Position

Displacement (mm)

-15 -10 -5 0 5 10 15 20 25

16 kmph/6 sec
20 kmph/1.5 sec
24 kmph/1.5 sec
NO TEST
NO TEST
Ejection Mitigation
Impactor Test Repeatability

Impactor Test Excursion Repeatability

Displacement (mm)

Test 1 Test 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HP Laminate</td>
<td>No Glass</td>
<td>No Glass</td>
<td>No Glass</td>
<td>HP Laminate</td>
<td>HP Laminate</td>
<td>HP Laminate</td>
<td>HP Laminate</td>
</tr>
</tbody>
</table>
Ejection Mitigation
Ongoing Research

• **Evaluate Countermeasures and Continue Test Procedure Development**
 – Continue DRF testing, especially with 6YO
 – Expand to rear side windows
 – Develop/adopt method to pre-break glazing

• **Develop Rollover Sensor Performance Test**
We wish to thank

TRW Automotive
and
Zodiac Automotive US

for their cooperation in this research
THE END