NHTSA’s Hydrogen Fuel Cell Vehicle Safety Research Program

Barbara C. Hennessey
National Highway Traffic Safety Administration

February 9, 2009
Outline

- Hydrogen - FMVSS XXX?
- Global Technical Regulation Action Plan
- Safety Issues
- Alternative Approaches
- Research/Rulemaking Goals
- Research Tasks
Objective

- Develop a global technical regulation for hydrogen/fuel cells
- Attain equivalent levels of safety to conventional gasoline vehicles
- Performance based and does not restrict future technologies

Content:

- Performance requirements for fuel containers
- Electrical isolation
- Maximum allowable hydrogen leakage
Safety issues to be addressed under scope of research program

- Fuel system crashworthiness
 - Hydrogen leakage limits
 - Electrical integrity of high voltage fuel cell propulsion system
 - High pressure container safety
- Ensure a safety level consistent with gasoline, CNG, conventional electric hybrids
 - FMVSS Nos. 301, 303, 304, and 305
 - Identify unique fuel system safety hazards
Alternate approaches to address fuel system crashworthiness

Hydrogen leakage limits based on FMVSS 303
- Hydrogen vs. helium surrogate
- High pressure vs. low pressure and scaling up

Electrical integrity of high voltage fuel cell propulsion system
- Active fuel cell with hydrogen onboard vs.
- Inactive fuel cell, system “off”

High pressure container safety
- Cumulative life cycle and extreme use durability (SAE) vs. discrete testing
- Localized flame impingement test vs. engulfing bonfire
Issues Associated with Each Fueling Approach for Crash Testing

- High pressure hydrogen
 - + Electrical system is operational
 - + Worse case for leak rate
 - - Poses additional fire hazard in case of rupture or rapid release of hydrogen
- High pressure helium
 - + Consistent with FMVSS Nos. 301, 303
 - + Non-flammable
 - - Surrogate leak rate is slightly different
 - - Electrical system is not operational
- Low pressure hydrogen option
 - + Electrical system operational
 - - Must scale up leak rate to represent worse case at high pressure
 - +/- Cylinders more vulnerable to impact at low pressure
Research/Rulemaking goals

- Conduct research to assess all proposed alternatives
 - Confirm that selected alternative detects potential failure
- Prescribe additional requirements if results indicate safety need, e.g.:
 - Localized flame impingement test replaces bonfire test for hydrogen containers
 - Extend post-crash leakage measurement beyond 60 minutes to adjust for reduced flow rate of helium through same sized orifice
2009 - Research Tasks to Support Rulemaking/GTR Objectives

- 1. Localized fire testing - flame impingement on hydrogen storage cylinders
- 2. Cumulative cylinder life cycle testing
- 3. Comparative assessment of fueling options for crash testing
- 4. Fire safety of proposed leakage limits
- 5. Electrical isolation testing in the absence of hydrogen
1. Localized flame impingement on hydrogen storage cylinders

- **FMVSS No. 304, Compressed natural gas fuel container integrity**
 - Requires engulfing bonfire test
 - Cylinder must survive fire for 20 minutes or vent contents

- **Localized flame impingement (SAE 2579)**
 - Real world data indicates Type IV composite cylinders may not vent in localized fire
 - Lack of heat transfer to PRD
 - Composite loses structural integrity, resulting in catastrophic rupture

- **Research Task:**
 - Localized fire test procedure – Developed by Powertech under contract to Transport Canada using temp/propagation behavior ID’d in vehicle fire literature (OEM test data).
 - Powertech/NHTSA follow-on testing - Cylinders which have failed in real world fires will be used to test mitigation technologies

- **Possible Outcome:**
 - Requirement for localized flame test
Localized fire test temp/time profile

- (vs. FMVSS 304, engulfing bonfire 430°C – vent or survive 20 minutes)
NHTSA follow-on study objectives

- DOT-NHTSA contract to continue localized fire studies

Objectives:

- Evaluate fire resistance of various coatings and insulating materials (includes testing on pressurized tanks)
- Evaluate the use of remote heat sensing technologies to activate PRDs
- Perform localized fire tests on tanks from an OEM fuel system currently protected using a proprietary insulating coating
- Provide recommendations for standards regarding fire test requirements
2. Cumulative cylinder life cycle testing

- Generate simulated real-world life cycle data which is lacking
 - SAE TIR 2579 specifies expected service and durability test procedures. (pneumatic gas cycling, parking, extreme temperature, flaw, chemical tolerance, burst)
 - Japan considering similar requirements in new standard, JARI 001 upgrade.
- Research Task:
 - Conduct life cycle testing on representative hydrogen storage systems, vary test conditions to represent different service conditions
- Possible Outcome:
 - Requirement for pneumatic rather than hydraulic pressure cycling test (FMVSS No. 304)
 - Requirement for post pressure-cycle burst strength
Test matrix evaluates test temperatures, cycling count, parking performance

- What number of cycles simulates full service life?
- Are any observed failures realistic of service conditions?
- What temperature conditions are reasonable without inducing unrealistic failures?
3. Comparative assessment of fueling options for crash testing

- **Fueling options advocated by industry**
 - High pressure hydrogen (SAE)
 - High pressure helium (SAE, Japan)
 - Low pressure hydrogen (SAE, GM)

- **Research task:**
 - Conduct testing to compare container vulnerability to impact at high and low pressure fill
 - Conduct leakage tests using hydrogen and helium at high to low pressure fill for a range of cylinder sizes

- **Possible Outcome:**
 - Selection of most appropriate fill option for assessing pass/fail leakage and fuel system vulnerability per FMVSS crash conditions
Technical Approach

- **Task 3a: Drop weight impact tests**
 - Various internal pressures,
 - Container wall thicknesses (by service pressure),
 - Impact orientation (simulated front, rear, and side crashes)
 To find the most vulnerable conditions.

- **Task 3b: Simulated Leak and pressure drop.**
 - Pressure drop rate vs. mass flow rate
 - Hydrogen and helium
 To specify pass/fail criteria

- **Task 3c: Full Scale Vehicle Crashes**
 - Forward, side, and rear crashes
 - Retrofit CNG vehicles with hydrogen containers conduct NHTSA front, side and rear, crash tests to verify tasks 3a and 3b
4. Post-Crash Hydrogen Leakage Limits/Fire Safety Research

- Research Task:
 - Conduct testing to verify the fire safety of proposed pass/fail hydrogen leakage limits
 - Determine hydrogen concentrations in vehicles as a function of leakage rate, test ignition of hydrogen at fixed concentration levels, conduct ignition tests in uncrashed and crashed vehicles.

- Outcome:
 - Confirmation of the fire safety of proposed leakage limits (118 – 130 NL/min), which are currently based on the thermal energy equivalent to gasoline
Technical Approach

- Conduct analysis and experiments to characterize:
 - Accumulation of combustible mixture of H2 in engine, passenger, and trunk compartments resulting from a H2 fuel system leak;
 - Heat flux and overpressure of different mixtures of H2 burning in air at concentration levels ranging from:
 - Lower flammability limit: 4%;
 - Stoichiometric ratio: 30%; and
 - Upper flammability limit: 75%
 - Assess combustion threats to humans from heat flux and overpressure resulting from H2 ignition and combustion.
Task 4a: Conduct Leak Rate vs. H_2
Concentration Tests on Intact Automobiles

- H_2 sampling locations:
 - 3 sensors in engine compartment;
 - 3 each in front and back of passenger compartment;
 - 3 in trunk compartment.
- Positioned @ 10%, 50% & 90% of vertical dimension in compartment

\[\text{\(\otimes\) = sensor locations (10\%, 50\%, 90\%)\]}

[Diagram of car with sensor locations indicated]
Task 4a (Cont.)

- Six leak locations
 - Four originating directly from H2 tank
 - Straight up, straight down, 45° forward and backwards (reflected off pavement along auto centerline)
 - One directly into the passenger compartment
 - One directly into the trunk compartment

- Determine safe-minimum and safe-maximum leak rates that avoid atmosphere becoming flammable:
 - 118 and 131 L/min baselines; iterate by halving and doubling to reach min/max

- Measurement duration:
 - Time to maximum H2 concentration steady-state or depletion of H2 supply (full tank storage volume)
 - Time to return to minimum H2 concentration steady-state
Task 4b: Conduct Ignition and Combustion Tests on Simulated Automobile Compartments

- 3 clear-plastic compartments approximating:
 - engine, passenger, trunk geometries and volumes
 - \(H_2 \) sensor locations same as Task 4a

- Leak rates/concentrations from Task 4a
 - 3 ignition times
 - at stoichiometric and lowest and highest obtainable concentrations
 - 3 igniter locations
 - 10\%, 50\%, 90\% vertical height
 - 1 pressure and 1 heat flux sensor at a minimum

- Data sought:
 - Severity of overpressure and thermal threats posed by combustion
Task 4c: Conduct Full-Scale Leak, Ignition and Fire Tests on Intact and Crashed Automobiles

- 1 intact and 3 crashed automobiles (from NHTSA’s compliance test program)
- For each vehicle: 3 leak locations, one each directly into engine, passenger and trunk compartment
- Leak rates from Task 4a
- 3 ignition times at stoichiometric and lowest and highest obtainable concentrations
- 3 igniter locations 10%, 50%, 90% vertical height
- Paired pressure and heat flux sensor suite locations:
 - Front and back seat; chest and head levels
 - Engine and trunk compartment
 - Outside automobile: front, back, and sides
- Data sought: Severity of overpressure and thermal threats posed by combustion
5. Electrical isolation testing in the absence of hydrogen

- Fuel cell produces no voltage when crash test is conducted using helium surrogate
 - NPRM FMVSS 305 sets electrical isolation limits for high voltage sources (batteries and fuel cells) post-crash, but does not specify test procedure for testing isolation of the high voltage fuel cell system in a deactivated state
 - SAE 2578 - Measure isolation by applying test voltage from an external source (megohmmeter)

- Research Task:
 - Conduct isolation testing with no hydrogen present, using megohmmeter

- Possible Outcome:
 - Confirm that testing can be conducted with the megohmmeter, without inducing damage to the vehicle propulsion circuit
Electrical Isolation Test Procedure
Development and Verification

- In cooperation with two HFCV manufacturers:
 - Conduct research utilizing OEM vehicles to determine whether electrical isolation testing using a megohmmeter (megger) is feasible when crash testing HFCVs with high pressure helium on board and the fuel cell in a stopped state.
 - Produce and validate an electrical isolation test procedure utilizing a megger that includes recommended test points and safety precautions.
Other Recent Related Activities

- FMEA of compressed hydrogen vehicle
 - Used this study to identify and rank the hazards addressed in this research effort

- Comparative assessment of post-crash electrical isolation testing options for HFCV’s
 - Low pressure or offboard hydrogen source, 4% hydrogen in helium, megger

- Assessment of recent published research regarding HFCV fuel system integrity
 - Using this study to identify gaps and/or redundancy in research areas

- Destructive testing of type 3 and 4 Hydrogen storage cylinders (SwRI)
Thank you!

- Questions?