ES-2 Biofidelity and Injury Assessment Capability

May 2001

Matthew R. Maltese
Randa Radwan Samaha

US Department of Transportation
National Highway Traffic Safety Administration

John Bolte
Transportation Research Center

People Saving People
Http://www.nhtsa.dot.gov
Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work

NHTSA Side Impact Research
Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work
Why ES-2?

- NHTSA is evaluating the ES-2...
 - ...to improve safety for the US driving population, and
 - ...for interim regulatory harmonization of a side impact dummy
ES-2 Research Testing

<table>
<thead>
<tr>
<th>3-5/00</th>
<th>7/00</th>
<th>8/00-4/01</th>
<th>5-7/01</th>
<th>8/01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Planned

- Six full scale tests with front and rear ES-2: two EU, two 214, & two side NCAP tests
- Thirteen torso & pelvis biofidelity sled tests & limited repeatability

Second ES-2 Available

- Three 214 tests/IIHS barrier
- Eight 201P pole comparison tests: ES-2 versus SIDH3
- Component tests: back plate interaction, flat top
- Sled tests: head/neck/shoulder biofidelity & kinematics

High mass impactor tests to evaluate ES-2 proposed rib designs: coated piston, ball bearing, & needle bearing

TBD- Eight 214/NCAP tests with current vehicles for fleet performance
Presentation Overview

• ES-2 Research Program Time Line
• Flat top and the ES-2
• Biofidelity of the ES-2 and SID
• Injury Assessment Capability of the ES-2 and SID
• Back Plate Loads in the ES-2
• Conclusions
• Future Work
ES-2 and Flat-Top

- Flat-top is a period of constant rib deflection over time.

- Flat-top is merely evidence that the ribs and the spine are moving at the same velocity relative to ground.
 - Flat-top is not necessarily evidence of rib binding.
“High Mass” Impactor Tests

- Impactor: 907 kg at 5 m/s contacting the thorax and abdomen
- Test conditions: Impactor contacted the ES-2 at angles of 0, +10, +20, and -10 in the horizontal plane
- ES-2 rib modules designs: coated piston, ball and needle bearings
“High Mass” Impactor Tests - Results

- No evidence of flat-top in ES-2 needle bearing rib modules
- Higher deflections in ES-2 compared to Eurosid-1
High-mass Pendulum Tests

Rib Deflection, Minus Ten Degrees - Middle Rib Module

Displacement (MM)

Time (MS)

Eurosid-1 Coated Piston
ES-2 Needle Bearing
High-mass Pendulum Tests

<table>
<thead>
<tr>
<th>Time (MS)</th>
<th>Displacement (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-10</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>0.15</td>
<td>20</td>
</tr>
</tbody>
</table>

Graph:

- **Rib Deflection, Zero Degrees - Middle Rib Module**

- **Y-axis:** Displacement (MM)
- **X-axis:** Time (MS)

Legend:
- **Eurosid-1 Coated Piston**
- **ES-2 Needle Bearing**
High-mass Pendulum Test

Rib Deflection, Ten Degrees - Middle Rib Module

- Displacement (MM)
- Time (MS)

Eurosid-1 Coated Piston
ES-2 Needle Bearing
High-mass Pendulum Tests

Rib Deflection, Twenty Degrees - Middle Rib Module

- Displacement (MM)
- Time (MS)

- Eurosid-1 Coated Piston
- ES-2 Needle Bearing
ES-2 Phase I Full Scale Tests

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>DUMMY</th>
<th>TEST CONFIGURATION</th>
<th>SPEED (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 Taurus- 4dr*</td>
<td>Eurosid-1</td>
<td>EU Side</td>
<td>48.3</td>
</tr>
<tr>
<td>96 Taurus- 4dr</td>
<td>ES-2</td>
<td>EU Side</td>
<td>49.2</td>
</tr>
<tr>
<td>95 Metro- 3 dr*</td>
<td>Eurosid-1</td>
<td>EU Side</td>
<td>50.3</td>
</tr>
<tr>
<td>96 Metro- 3 dr</td>
<td>ES-2</td>
<td>EU Side</td>
<td>50.5</td>
</tr>
<tr>
<td>96 Taurus- 4dr</td>
<td>ES-2</td>
<td>FMVSS 214</td>
<td>53.3</td>
</tr>
<tr>
<td>96 Taurus- 4dr</td>
<td>ES-2</td>
<td>FMVSS 214</td>
<td>52.3</td>
</tr>
<tr>
<td>98 Chevy Cavalier-4dr</td>
<td>ES-2</td>
<td>US Side NCAP</td>
<td>61.6</td>
</tr>
<tr>
<td>2000 Grand Am- 2dr</td>
<td>ES-2</td>
<td>US Side NCAP</td>
<td>62.1</td>
</tr>
</tbody>
</table>

Baseline Tests in 1997
ES-2 Phase I Full Scale Tests

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>DUMMY</th>
<th>TEST CONFIGURATION</th>
<th>SPEED (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 Taurus- 4dr*</td>
<td>Eurosid-1</td>
<td>EU Side</td>
<td>48.3</td>
</tr>
<tr>
<td>96 Taurus- 4dr</td>
<td>ES-2</td>
<td>EU Side</td>
<td>49.2</td>
</tr>
<tr>
<td>95 Metro- 3 dr*</td>
<td>Eurosid-1</td>
<td>EU Side</td>
<td>50.3</td>
</tr>
<tr>
<td>96 Metro- 3 dr</td>
<td>ES-2</td>
<td>EU Side</td>
<td>50.5</td>
</tr>
<tr>
<td>96 Taurus- 4dr</td>
<td>ES-2</td>
<td>FMVSS 214</td>
<td>53.3</td>
</tr>
<tr>
<td>96 Taurus- 4dr</td>
<td>ES-2</td>
<td>FMVSS 214</td>
<td>52.3</td>
</tr>
<tr>
<td>98 Chevy Cavalier-4dr</td>
<td>ES-2</td>
<td>US Side NCAP</td>
<td>61.6</td>
</tr>
<tr>
<td>2000 Grand Am- 2dr</td>
<td>ES-2</td>
<td>US Side NCAP</td>
<td>62.1</td>
</tr>
</tbody>
</table>

* Baseline Tests in 1997
Full Scale Test Rib Responses
EU Tests: ES-2 Versus Eurosid-1

- Deflection flat tops reduced but still present for ES-2
- Higher deflection for ES-2
Post-event oscillations in most rib deflections and minor oscillations near main event in a few deflections
Full Scale Test Rib Responses
214/Side NCAP Tests: ES-2

NHTSA Side Impact Research

- With one “exception” deflection flat tops not present

214 Taurus #1 with ES-2
Driver Rib Deflections

Side NCAP Grand Am with ES-2
Passenger Rib Deflections
Full Scale Test Rib Responses
214/Side NCAP Tests: ES-2

NHTSA Side Impact Research

- One rib deflection (of 24) exhibited flat top behavior ... close to full dynamic range of rib module.
Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work
Biofidelity – What is Important?

- First and foremost, a dummy should interact with the vehicle environment in a human-like manner.
 - Human-like force-area-time histories between occupant and vehicle.

- Secondly, those measures necessary to calculate injury criteria should be similar to the same measures on the human.
IHRA Side Impact Torso and Pelvis Sled Test Requirements

- Shoulder to Pelvis evaluation
- Based upon 45 NHTSA sponsored cadaver tests
- Two door speeds - 6.7 and 8.9 m/s (15 and 20 mph)
- Two door stiffnesses - Padded and rigid
- Four door surface geometries
IHRA Side Impact Sled Test
Load Wall Geometry
IHRA Side Impact Sled Requirements

- Door Forces at the thorax, abdomen, pelvis and legs
- Deflection of the upper and lower thorax, and mid abdomen.
- Acceleration – spine, pelvis and ribs
Rating Dummy Biofidelity - DCV/CCV Ratio

<table>
<thead>
<tr>
<th>DCV/CCV Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq \frac{DCV}{CCV} < 1$</td>
<td>Excellent - Dummy is less variant than the cadaver sample.</td>
</tr>
<tr>
<td>$\frac{DCV}{CCV} = 1$</td>
<td>Excellent - Dummy is as variant as the cadaver sample.</td>
</tr>
<tr>
<td>$1 < \frac{DCV}{CCV} \leq 2$</td>
<td>Good - Dummy is between one and two times as variant as the cadaver sample.</td>
</tr>
<tr>
<td>$2 < \frac{DCV}{CCV} \leq 3$</td>
<td>Moderate - Dummy is between two and three times as variant as the cadaver sample.</td>
</tr>
<tr>
<td>$N < \frac{DCV}{CCV} \leq N+1$</td>
<td>Poor - Dummy is between n and $n+1$ times as variant as the cadaver sample.</td>
</tr>
</tbody>
</table>

Marcus et al, 1986
Results - Door Force DCV/CCV Ratio

Thorax	Abdomen	Pelvis	Average
ES-2 | SID | |

Increasing Biofidelity

Samaha et al 2001 ESV
DCV/CCV Ratio – Acceleration

Samaha et al 2001 ESV
DCV/CCV Ratio – Deflection

Samaha et al 2001 ESV
DCV/CCV Ratio vs. Test Condition

- **Rigid 8.9 m/s Padded 8.9 m/s**
- **Rigid 6.7 m/s Padded 6.7 m/s**

Test Condition

- **ES-2 Ribs bottomed out in this condition**

Increasing Biofidelity

Samaha et al 2001 ESV
Previous work - ISO Biofidelity Ratings

Note: Larger numbers indicate better biofidelity.

<table>
<thead>
<tr>
<th></th>
<th>Eurosid-1</th>
<th>SID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>3.33</td>
<td>0.0</td>
</tr>
<tr>
<td>Neck</td>
<td>3.70</td>
<td>2.55</td>
</tr>
<tr>
<td>Shoulder</td>
<td>3.90</td>
<td>0.0</td>
</tr>
<tr>
<td>Thorax</td>
<td>4.78</td>
<td>5.02</td>
</tr>
<tr>
<td>Abdomen</td>
<td>3.23</td>
<td>4.38</td>
</tr>
<tr>
<td>Pelvis</td>
<td>1.76</td>
<td>2.76</td>
</tr>
<tr>
<td>Overall</td>
<td>3.22</td>
<td>2.78</td>
</tr>
</tbody>
</table>
Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work
Comparison of ES-2 and SID/H3 Instrumentation

<table>
<thead>
<tr>
<th>Measurement</th>
<th>ES-2</th>
<th>SID/H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Neck</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Lower Loads</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Shoulder</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Load/Rotation</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of ES-2 and SID/H3 Instrumentation

<table>
<thead>
<tr>
<th>Measurement</th>
<th>ES-2</th>
<th>SID/H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deflection</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Acceleration</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Abdomen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Force</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>
ES-2 Torso Injury Assessment Capability Compared to SID

- Compare SID and ES-2 instrumentation output in flat wall and abdominal offset conditions
- Correlate instrumentation output with injuries in similar cadaver tests
ES-2 Torso Injury Assessment Capability Compared to SID

- Cadaver Test B4218
 - AIS 4 Kidney Laceration
 - 5 fractured Ribs
ES-2 Torso Injury Assessment Capability Compared to SID

• Cadaver Test B4268
 • AIS 3 Kidney Laceration
 • 7 fractured Ribs
ES-2 Torso Injury Assessment Capability Compared to SID

<table>
<thead>
<tr>
<th></th>
<th>Flat Wall</th>
<th>Abdominal Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTI (85 g)</td>
<td>71 g</td>
<td>52 g</td>
</tr>
<tr>
<td>Pelvis Acceleration (120 g)</td>
<td>67 g</td>
<td>53 g</td>
</tr>
<tr>
<td>ES-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest Deflection (42 mm)</td>
<td>52 mm</td>
<td>31 mm</td>
</tr>
<tr>
<td>Abdominal Force (2500 N)</td>
<td>1402 N</td>
<td>8585 N</td>
</tr>
</tbody>
</table>

Cadaver Autopsy Results

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractured Ribs</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>None</td>
<td>Kidney Laceration</td>
</tr>
</tbody>
</table>
ES-2 Torso Injury Assessment Capability Compared to SID

- Conclusion - ES-2 abdominal load measurement capability detects injuries the SID misses.
ES-2 Pelvis

- ES-2 measures Pelvis Acceleration and Pubic Symphysis Load (PSL), while SID only measures acceleration.

- PSL may be a better measure of the load which is directed into the hip joint, and thus may be a better predictor of serious pelvic injury.
Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work
ES-2 Back-plate
ES-2 Back-plate

- Force Balance on ES-2 Spine
Full-Scale Vehicle Test – Driver Impulse Analysis

![Graph showing impulse analysis for various vehicle models and impact categories. The graph compares the impulse (in Newtons x seconds) for different regions of the body, including Neck, Back Plate, Lumbar Spine, and Rib + Shoulder, across various vehicles like Metro, Taurus, Taurus #1, Taurus #2, Cavalier, and Grand AM. The data is presented for different impact categories: EU, 214, and NCAP.](image-url)
Full-Scale Vehicle Test – Passenger Impulse Analysis

Y Impulse (Newtons x seconds)

Metro | Taurus | Taurus #1 | Taurus #2 | Cavalier | Grand AM

EU | 214 | NCAP
Presentation Overview

- ES-2 Research Program Time Line
- Flat top and the ES-2
- Biofidelity of the ES-2 and SID
- Injury Assessment Capability of the ES-2 and SID
- Back Plate Loads in the ES-2
- Conclusions
- Future Work
Conclusions

- The ES-2 thorax is less biofidelic than the SID while the ES-2 abdomen and pelvis biofidelity are roughly equivalent.
- ES-2 detects abdominal injuries that the SID misses.
- ES-2 has the potential to better detect serious pelvic injuries.
- More research is necessary to understand the biofidelity of the head/neck complex.
- ES-2 modifications appear to have addressed rib binding which is one mechanism of rib deflection flat top.
- Loads from the seat back through the ES-2 back plate transfer little momentum to the spine of the dummy.
Additional ES-2 Research

- Additional component/sled tests to provide an assessment of head/neck/shoulder biofidelity and kinematics (summer 01)

- Additional component test to ensure that the ES-2 ribs are not binding and that the dummy is repeatable (summer 01)

- Component tests to assess back plate interaction with the seat back (summer 01)

- Application of injury criteria for the ES-2 dummy (summer 01)
Thank you!