Lower Extremity Injuries in Small Overlap Crashes

Frank A. Pintar
Dale Halloway, Jason J. Hallman,
James Rinaldi, Narayan Yoganandan

Department of Neurosurgery,
Medical College of Wisconsin
Zablocki VA Medical Center
Introduction

- Crashworthiness improvements

<table>
<thead>
<tr>
<th>Full engagement (rigid)</th>
<th>40% overlap (deformable)</th>
</tr>
</thead>
</table>

Longitudinal members

NHTSA
www.nhtsa.gov

safercar.gov
U.S. Department of Transportation

Insurance Institute for Highway Safety

Euro NCAP
www.euroncap.com

ANCAP
Crash testing for safety
Introduction

- Continued frontal impact fatalities
 - NHTSA (2009) \(n = 122 \)
What do we know from Crash Tests?
SOI Crash – Midsize Car
SOI Crash – Midsize Car
SOI Crash – Midsize Car

Fx Frame Capture

0170msec
SOI Crash – Small Car
SOI Crash – Small Car

Frame0060
SOI Crash – Small Car
SOI Crash – Small Car
Occupant Kinematics – SOI Crash
PDOF from Small Overlap Crash
SOI Occupant Kinematics

- Occupant moves initially forward in response to frontal crash vector
- Occupant moves laterally due to vehicle sideways translation
- Vehicle rotation occurs late and usually does not influence occupant motion until late in event
- Suspect lower extremity moves laterally either before dash impact or dash impact with body lateral movement induces bending moment
US Data: NASS and CIREN
- “FLEE” and “FREE” designations (CDC)

NASS

CIREN

Pintar et al. (2008)
Aims: Lower Extremity Injuries

- Small Overlap Crashes – Occupant Kinematics
- NASS study – SOI vs Frontal-208
- CIREN Injury examination
- Laboratory Crash Tests
NASS Query (2005 – 2009)

Any Lower Extremity Injury
Only Belted Drivers

Both rails engaged
12-o’clock impacts
FDEW and DVD=0

No rail engaged
Frontal plane impacts
SOI filter defined
Demographic Results

<table>
<thead>
<tr>
<th></th>
<th>Small Overlap</th>
<th>Frontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants (raw)</td>
<td>536</td>
<td>243</td>
</tr>
<tr>
<td>Occupants (weighted)</td>
<td>125,055</td>
<td>49,842</td>
</tr>
<tr>
<td>Mean age</td>
<td>41.6</td>
<td>40.0</td>
</tr>
<tr>
<td>Age range</td>
<td>16-92</td>
<td>15-91</td>
</tr>
<tr>
<td>Lo. Ex. Injuries (raw counts)</td>
<td>1111</td>
<td>666</td>
</tr>
</tbody>
</table>
Statistical Analysis

- SAS 9.2
- Logistic regression
 - Considered crash type only (SOI vs. Frontal)
- Computed odds ratio (OR) for lower extremity anatomic regions
 - Pelvis
 - Hip
 - Thigh
 - Knee
 - Shank
 - Ankle
 - Forefoot
Anatomic Regions (BioTab Style)

Pelvis
- e.g., Open/closed fx
- Sacroilium fx
- Pubic fx

Hip/Proximal Femur
- e.g., Sprain
- Dislocation
- Femoral head, neck, trochanters

Thigh
- e.g., Femur: shaft fx
- Subtrochanteric fx
- Supercondylar fx
- Nerves & vasculature

Knee
- e.g., Tibial platea fx
- Femoral condyle fx
- Meniscii
- Ligaments

Leg
- e.g., Tibial shaft
- Fibula shaft
- Vasculature

Foot
- e.g., Toe
- Metatarsals
- Foot
- Calcaneus

Ankle
- e.g., Joint
- Ligaments
- Malleoli
- Talus
Odds Ratio: AIS 1+ Occupants

- Pelvis
- Hip/Proximal Femur
- Pelvis + Hip/Prox. Femur
- Thigh
- Knee
- Leg
- Ankle
- Foot

Front-208 = Greater Risk
SOI = Greater Risk
Odds Ratio: AIS 2+ Occupants

Front-208 = Greater Risk

SOI = Greater Risk

- Pelvis
- Hip/Proximal Femur
- Pelvis + Hip/Prox. Femur
- Thigh
- Knee
- Leg
- Ankle
- Foot
Pelvis + Hip/Femur

Top 5 injury codes (by occupant counts)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Small Overlap</th>
<th>Frontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>852604.3</td>
<td>Pelvis fracture (open, displaced, and/or comminuted)</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>852602.2</td>
<td>Pelvis fracture (closed)</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>852600.2</td>
<td>Pelvis fracture (NFS)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>850614.2</td>
<td>Hip dislocation (no articular cartilage involvement)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>851810.3</td>
<td>Femur fracture (intertrochanteric)</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
CIREN Database Methods

- **CIREN Database**
 - Occupant data
 - Gender
 - Age
 - Injury severity score (ISS)
 - Seat position
 - Injury patterns
 - Vehicle/crash data
 - Extent zone
 - Collision partner
- Only Small Overlap Impacts
CIREN Results

- CIREN SOI cases = 84

- Shotgun beam (deformed)
- Suspension tower (deformed)
- Longitudinal member (undeformed)
- Wheel (deformed)
CIREN Results 84 SOI Cases

● 70 out of 84 occupants had lower extremity injury
● Of the 70:
 – 26 had Pelvis trauma
 – 17 had Hip trauma
 – 27 had Thigh trauma
 – 15 had Knee trauma
 – 24 had Leg trauma
 – 17 had Ankle trauma
 – 19 had Foot trauma
Pelvis Injuries

- Closed pelvis fx
 - Sacrum or pubis: 5-left, 3-right, 4-bilateral
- Open/displaced/comminuted fx
 - Acetabulum or ilium: 12-left, 2-right, 1-bilateral
 - Sacrum or pubis: 0-left, 6-right, 1-bilateral
- Hip dislocation
 - 5-left, 0-right, 1-bilateral
- Sacroilium fx
 - 5-left, 3-right, 2-bilateral
- Symphysis Pubis
 - Separation – 5
Thigh and Knee Injuries

- Mid Shaft Femur fx
 - 22-left, 2-right
- Head, Neck or subtrochanteric
 - 5-left, 0-right
- Condylar or supracondylar
 - 4-left, 1-right
- Patella or knee condyles
 - 10-left, 5-right
Foot and Ankle Injuries

- Tibial condyle fx
 - 7-left, 4-right
- Tibia – Fibula shaft fx
 - 9-left, 6-right, 2-bilateral
- Ankle single, bi, or tri-malleolar
 - 2-left, 5-right
- Ankle or foot joint dislocation
 - 2-left, 1-right
- Calcaneous or Talus fx
 - 3-left, 4-right
- Tarsal or Metatarsal fx
 - 20-left, 12-right
Associated Injuries

% Associated with Pelvis Injury

- Hip
- Thigh
- Knee
- Leg
- Ankle
- Foot
- Isolated

Graph showing the percentage of associated injuries with pelvis injury for different body parts.
Associated Injuries

% Associated with Hip Injury

Pelvis: 50%
Thigh: 15%
Knee: 20%
Leg: 5%
Ankle: 5%
Foot: 5%
Isolated: 5%
Associated Injuries

% Associated with Thigh Injury

Pelvis | Hip | Knee | Leg | Ankle | Foot | Isolated

0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45
Associated Injuries

% Associated with Leg Injury

Pelvis Hip Thigh Knee Ankle Foot Isolated
Methods: Vehicle Tests

- Four vehicles

<table>
<thead>
<tr>
<th>Test</th>
<th>Model year</th>
<th>Class</th>
<th>Weight (kg)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2006</td>
<td>Mid-sized</td>
<td>1742.7</td>
<td>Normal</td>
</tr>
<tr>
<td>2</td>
<td>2010</td>
<td>Sub-Compact</td>
<td>1268.2</td>
<td>Normal</td>
</tr>
<tr>
<td>3</td>
<td>2005</td>
<td>Compact</td>
<td>1445.6</td>
<td>Normal</td>
</tr>
<tr>
<td>4</td>
<td>2010</td>
<td>Compact</td>
<td>1446.0</td>
<td>Enhanced*</td>
</tr>
</tbody>
</table>

* As advertised by manufacturer
Methods: Vehicle Tests

- THOR-NT occupant (driver)
 - 50th percentile
Results: Vehicle deformation

Lab

Lab

Field

Field
Typical JARI sled test

![Graph showing X and Y displacement with time t1 and t2.](image)
SOI Test 1 (Mid-sized)

X displacement (mm)

Y displacement (mm)

\(t_1 \)

\(t_2 \)
Test 3 (Compact)

X displacement (mm)

Y displacement (mm)
THOR-NT Lower Extremity Results

Acetabulum Forces N=4
THOR-NT Lower Extremity Results
Femur Loads N=4

The diagram shows the forces and moments on the femur for different conditions and sides. The y-axis represents force (N) or moment (Ncm), and the x-axis lists conditions such as SO1-Fz, SO1-Mx, SO1-Fz, SO1-Mx, 208-Fz, 208-Mx, 208-Fz, and 208-Mx. The forces and moments are compared for left and right sides.
Mechanisms of Lower Extremity Injury
Conclusions

- NASS analysis
 - Lower Extremity injuries substantial problem
 - SOI higher odd ration for Pelvis, Hip, Proximal Femur, and Knee

- CIREN analysis
 - Pelvis injuries more severe and more left side
 - Proximal femur fractures more prevalent and associated with pelvis fractures
 - Mid-shaft femur fractures more severe

- Vehicle crash tests
 - Occupant kinematics altered toward side
 - THOR dummy indicates higher off-axis loads
 - Shear in acetabulum; bending moment in femur
Acknowledgments

- US Department of Transportation
 - DTNH22-10-H00292
- VA Medical Research
 - MCW Neuroscience Laboratories Staff