Injury Mechanisms in Frontal Plane Corner Impacts

Frank A. Pintar
Dale Halloway
Narayan Yoganandan
Dennis J. Maiman
Medical College of Wisconsin and VA Medical Center, Milwaukee, WI
Motivation For Study

Sweden: Lindquist, et.al., 2004, IJ Crash

Corner impacts 48% (29/61)
Belted Frontal Fatal Crashes

Figure 4b Frequency of front end load path usage in the 61 fatalities.
Crush and Extent
CDC-Code: Specific Longitudinal or Lateral Area

1 2 3 4 5 6 7

D Y Z L C R
Fatalities in Frontal Impact by Crash Type

NASS Data 2000-2005 Frontal 11, 12, 1 o’clock
MAIS=3+ Trauma in Frontal Impact by Crash Type

NASS Data 2000-2005 Frontal 11, 12, 1 o’clock
Percent Risk of Fatality in Frontal Impact by Crash Type

NASS Data 2000-2005 Frontal 11, 12, 1 o’clock
Percent Risk of MAIS=3+ Trauma in Frontal Impact by Crash Type

NASS Data 2000-2005 Frontal 11, 12, 1 o’clock
Selection Criteria for CI REN Case

- Case occupant: driver or right front passenger
- Severe Injury: AIS=3+ or 2 AIS=2
- PDOF range: 340 to 0 (left); 0 to 30 (right) degrees
- Vehicle damage did not involve loading of the longitudinal structural members along the X-axis
- No other end or side-plane impacts with an extent zone at least two
- No roll-over event
- The object contacted was another vehicle, a pole or a tree
CDC-Code FLEE or FREE Crashes: CIREN Analysis

71 cases analyzed

Of the 71:
- 50 drivers, 21 passengers
- 44 Males; 27 Females
- 32 from 16-34 yrs; 15 from 55-older
- 51 belted (72%)
- 70 (99%) airbag deployed
CI REN Analysis: 71 Corner Impacts

Occupant Age

Number of Cases

- <16: 2 cases
- 16-24: 18 cases
- 25-34: 14 cases
- 35-44: 14 cases
- 45-54: 8 cases
- 55-64: 10 cases
- 65-older: 5 cases
CI REN Analysis: 71 Corner Impacts

Vehicle Model Year

Cases

CI REN Analysis: 71 Corner Impacts

Vehicle Type

- subcompact
- compact
- midsize
- large
- SUV
- LTV
- Van
CIREN Analysis: 71 Corner Impacts
Occupant Injuries

Occupants with AIS=2+ Injuries

- Head: 30
- Spine: 20
- Chest: 20
- Abdomen: 15
- Pelvis: 10
- Low Extr: 40
- Up Extr: 40

Legend:

- Light blue: Total count
- Dark blue: AIS=2+ count
CI REN Analysis: 71 Corner Impacts

Occupant Injuries

Occupants with AIS=3+ Injuries

- Head
- Spine
- Chest
- Abdomen
- Pelvis
- Low Extr
- Up Extr
Examples of Extremity Trauma: AIS S=3
71 CI REN Corner Impacts: Head Trauma

- 12 LOC or Concussion AIS=2+
- 5 hematoma/hemorrhage AIS=3
- 2 Basilar skull fractures AIS=3
- 3 Cerebrum contusion AIS=3
- 1 DAI AIS=5
- 2 Brain Stem Lac or Head crush AIS=6
CI REN Analysis: 71 Corner Impacts
Trauma Associated with Head Injury

% of Occupants with AIS=2+ Head Injuries

Spine Chest Abdomen Pelvis Low Extr Up Extr
71 CI REN Corner Impacts: Chest Trauma

- 5 Aorta/Heart Laceration AIS=5+
- 17 Rib Fractures AIS=2+
- 9 Lung contusions AIS=3+
CIREN Analysis: 71 Corner Impacts
Trauma Associated with Chest Injury

% of Occupants with AIS=2+ Chest Injuries

- Head: 45%
- Spine: 10%
- Abdomen: 45%
- Pelvis: 35%
- Low Extr: 75%
- Up Extr: 40%
71 CI REN Corner Impacts: Lower Extremity Trauma

- 33 Femur Fractures AIS=3
- 22 Tibia/Fibula Fractures AIS=2 or 3
- 24 Pelvis Fracture or Crush AIS=2, 3, or 4
CI REN Analysis: 71 Corner Impacts
Trauma Associated with Low Extremity Injury

% of Occupants with AIS=2+ Low Extremity Injuries

- Head: 35%
- Spine: 10%
- Chest: 50%
- Abdomen: 25%
- Pelvis: 30%
- Up Extr: 40%
CI REN 71 Corner Impacts: Severity

Extent Zone vs ISS

\[y = 0.0628x + 17.355 \]
\[R^2 = 0.0001 \]

Max Crush vs ISS

\[y = 0.0797x + 12.079 \]
\[R^2 = 0.0988 \]

Delta-V vs ISS

\[y = 0.1404x + 11.943 \]
\[R^2 = 0.0603 \]

Damaged Wheel Base vs ISS

\[y = 0.0046x + 15.821 \]
\[R^2 = 0.0004 \]
Extent

Front-end plane

Measurement axis

Zone 6 Zones 7 & 8

Zones 1-5
Cl REN Analysis: 71 Corner Impacts

Front Tree/Pole Crashes

- 31 cases
- Extent Zone
 - Zone-2-5: 21 cases
 - Zone-6-9: 11 cases
- Average ISS = 18
CI REN Analysis: 71 Corner Impacts

Front-to-front Crashes
- Matched Vehicles

- 22 cases
- Extent Zone
 - Zone-2-5: 7 cases
 - Zone-6-9: 15 cases
- Average ISS = 18
Front-to-front Crashes – Mismatched Vehicles

- 16 cases
- Extent Zone
 - Zone-2-5: 4 cases
 - Zone-6-9: 12 cases
- Average ISS = 24
CI REN Analysis: 71 Corner Impacts

Zones 1-5

Zones 6-9

Percent Occupants with AIS=2+ Injuries

- Extent 2-5
- Extent 6-9

Head	Spine	Chest	Abdomen	Pelvis	Low Extr	Up Extr

Bar Chart: Comparison of injury distribution across different anatomical regions for Extent 2-5 and Extent 6-9.
CI REN Analysis: 71 Corner Impacts

Zones 1-5
Zones 6-9

Percent Occupants with AIS=3+ Injuries

- Extent 2-5
- Extent 6-9

- Head
- Spine
- Chest
- Abdomen
- Pelvis
- Low Extr
- Up Extr
Injury Mechanism Theory: Corner Impacts

Extent Zone 1-5

Occupant
Side Impact

Extent Zone 6-9

Occupant
Frontal Impact
Conduct Corner Impact Crash Test
Corner Impact Crash Test Results

Crash test video
Corner Impact Crash Test Results

Crash test video
Corner Impact Crash Test Result

- Vehicle linear acceleration (x)
- Vehicle linear acceleration (y)
- Vehicle angular velocity (z)

Extent zone = 4
Corner Impact Crash Test Results

Driver Response

Passenger Response

TTI = 6.9
Corner Impact Crash Test Results

Passenger Chest Deflections

RibEye® Instrumentation

Front-to-Back Deflections

LEFT CHEST

<table>
<thead>
<tr>
<th>Rib</th>
<th>Displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LX</td>
<td>19.7</td>
</tr>
<tr>
<td>2 LX</td>
<td>19.1</td>
</tr>
<tr>
<td>3 LX</td>
<td>18.3</td>
</tr>
<tr>
<td>4 LX</td>
<td>17.6</td>
</tr>
<tr>
<td>5 LX</td>
<td>17.5</td>
</tr>
<tr>
<td>6 LX</td>
<td>15.0</td>
</tr>
</tbody>
</table>

RIGHT CHEST

<table>
<thead>
<tr>
<th>Rib</th>
<th>Displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RX</td>
<td>7.0</td>
</tr>
<tr>
<td>2 RX</td>
<td>5.2</td>
</tr>
<tr>
<td>3 RX</td>
<td>5.7</td>
</tr>
<tr>
<td>4 RX</td>
<td>4.5</td>
</tr>
<tr>
<td>5 RX</td>
<td>3.8</td>
</tr>
<tr>
<td>6 RX</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Corner Impact Crash Test Results

Passenger Chest Deflections
RibEye® Instrumentation
Left-to-Right Deflections

<table>
<thead>
<tr>
<th>LEFT CHEST</th>
<th>RIGHT CHEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIB 6 LY</td>
<td>RIB 1 RY</td>
</tr>
<tr>
<td>5.8 mm</td>
<td>8.0 mm</td>
</tr>
<tr>
<td>RIB 5 LY</td>
<td>RIB 2 RY</td>
</tr>
<tr>
<td>6.1 mm</td>
<td>8.0 mm</td>
</tr>
<tr>
<td>RIB 4 LY</td>
<td>RIB 3 RY</td>
</tr>
<tr>
<td>5.4 mm</td>
<td>8.4 mm</td>
</tr>
<tr>
<td>RIB 3 LY</td>
<td>RIB 4 RY</td>
</tr>
<tr>
<td>5.1 mm</td>
<td>8.1 mm</td>
</tr>
<tr>
<td>RIB 2 LY</td>
<td>RIB 5 RY</td>
</tr>
<tr>
<td>5.0 mm</td>
<td>8.0 mm</td>
</tr>
<tr>
<td>RIB 1 LY</td>
<td>RIB 6 RY</td>
</tr>
<tr>
<td>4.9 mm</td>
<td>8.5 mm</td>
</tr>
</tbody>
</table>

Displacement (mm)
Summary: 71 Corner Impact Crashes

- Frontal corner impacts a significant percentage of fatalities/severe trauma
- Severe lower extremity trauma with chest and pelvis trauma
- Impact type matters
 - Tree/pole or Matched vehicles: ISS=18
 - Mismatched vehicles: ISS=24
- Delta-V, crush measures not good predictors of trauma severity
- Extent zone crush may cause different occupant kinematics and interaction with airbag
- Recommend vehicle structural inspection with crush measures
Acknowledgment

This research was supported in part by

US Dept. of Transportation NHTSA,
Dept. of Veterans Affairs Medical Research