NHTSA Pedestrian Testing with TRL and Flex-GTR Legforms and the Status of the GTR

Ann Mallory
Transportation Research Center Inc.

Jason Stammen & Susan Meyerson
NHTSA

SAE G/I Meeting 2010

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission
Background – Pedestrian GTR

- **GTR 9 was adopted November 2008**
 - NHTSA has initiated Rulemaking efforts and plans to publish an NPRM by late 2010

- **Amendment 1 to GTR 9**
 - Incorporates the FlexGTR into the GTR
 - NHTSA is participating in evaluation efforts of the pedestrian legform
Background – Previous Tests

Previous VRTC testing of prototype FlexPLI

FlexPLI (Mallory, Stammen and Legault, ESV 2005)
- Durability → Unable to test at GTR speed on US vehicles

FlexGT (Mallory and Stammen, SAE Gov’t Ind 2008)
- Durability improved → Tested 2 US vehicles at GTR speed
- Compared to TRL for same vehicles
 - Injury risk ranked similarly (fracture, knee ligaments bend/shear)
 - FlexGT more likely to exceed injury limits than TRL

Current tests

FlexGTR SN/01
- Prototype provided by Flex Technical Evaluation Group (TEG)

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission
Objectives

- Test 5 US vehicles using newest Flex (FlexGTR)
- Include vehicles where
 - Previous performance with TRL legform was not overly aggressive
 - A reasonable range of performance was expected
- Compare the FlexGTR injury results with TRL results from the same vehicles
- Evaluate FlexGTR: durability, usability, repeatability

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission
Vehicles Tested

FlexGTR tests performed on 5 vehicles

– 2006 VW Passat
– 2005 Honda CR-V
– 2002 Mazda Miata
– 2001 Honda Civic
– 2006 Nissan Fuga bumper
 (on 2006 Infiniti M-35)

Compared to TRL tests performed previously

– Passat, CR-V, and Miata
– Civic, Fuga

1 NHTSA, 10th Flex-PLI Technical Evaluation Group (Flex-TEG) Meeting, December 2009.
2 Mallory and Stammen, ESV, June 2009

Relatively good performance with TRL legform
Instrumentation and Injury Measures

<table>
<thead>
<tr>
<th>Fracture Risk</th>
<th>FlexGTR Onboard DTS Slice</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture Risk</td>
<td>Tibia bending moment</td>
<td>Upper tibia acceleration</td>
</tr>
<tr>
<td>Ligament Injury Risk (Bending)</td>
<td>MCL elongation</td>
<td>Knee bending angle</td>
</tr>
<tr>
<td>Ligament Injury Risk (Shear)</td>
<td>PCL/ACL elongation</td>
<td>Knee shear displacement</td>
</tr>
<tr>
<td>Additional measures</td>
<td>Femur bending moment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tibia acceleration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCL elongation</td>
<td></td>
</tr>
</tbody>
</table>

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
Test Setup - Method

- **GTR conditions (40 km/h)**
 - Ground reference level: EEVC/TRL=25 mm, Flex-GTR=75 mm

- **Center impacts**

- **Speed and alignment**
 - Video analysis to monitor alignment during flight
 - Laser speed-traps to measure impact velocity
Results
<table>
<thead>
<tr>
<th>MIATA</th>
<th>FlexGTR</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Bending)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Shear)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
Injury Measures: Fracture

CR-V
Fuga
Miata
Passat
Civic

Injury measure as % of limit

TRL - Tibia Acceleration
FLEX - Max Tibia Bend Moment

\(TRL = \frac{\text{Tibia Acceleration}}{170 \text{ g}} \)

\(\text{FlexGTR} = \frac{\text{Tibia Moment}}{340 \text{ Nm}} \)
Injury Measures: Ligament Injury (Bending)

- **TRL - Knee bend angle**
- **FLEX - MCL Elongation**

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>TRL BendAngle</th>
<th>FlexGTR MCL Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-V</td>
<td>19°</td>
<td>22 mm</td>
</tr>
<tr>
<td>Fuga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
Injury Measures: Ligament Injury (Shear)

- **CR-V**
 - ACL

- **Fuga**
 - ACL

- **Miata**
 - ACL

- **Passat**
 - ACL

- **Civic**
 - ACL

Injury measure as % of limit

TRL - Knee shear displacement
- CR-V: 6mm

FLEX - Max ACL/PCL Elongation
- CR-V: 13mm

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
FlexGTR Durability

Minor or cosmetic damage only

Scuffing (rebound)

Segment face displaced (rebound)
FlexGTR Repeatability

FlexGTR: Good repeatability in paired tests
Example – 2001 Honda Civic
Flex-GTR durability, repeatability, and usability
Comparison: Ease of Use

<table>
<thead>
<tr>
<th>FlexGTR</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-test Maintenance</td>
<td></td>
</tr>
<tr>
<td>Cable adjustment</td>
<td>Ligament replacement</td>
</tr>
<tr>
<td></td>
<td>Foam replacement, gluing</td>
</tr>
<tr>
<td></td>
<td>Temperature and humidity soaking</td>
</tr>
<tr>
<td>Flight Orientation</td>
<td></td>
</tr>
<tr>
<td>Flat pushing surface</td>
<td>Foam pushing surface</td>
</tr>
<tr>
<td>Onboard acquisition system eliminates cable drag</td>
<td>Possibly complicated by data acquisition cables</td>
</tr>
</tbody>
</table>

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
Summary

- FlexGTR tended to measure higher injury risk than TRL relative to proposed injury limits.

- The two legforms ranked these 5 vehicles similarly in terms of fracture risk and knee ligament risk (bending, shear).
 - Corresponded especially well for vehicles that passed GTR in TRL testing.

- FlexGTR tended not to discriminate among more aggressive vehicles (even when TRL indicated there was a performance difference)

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
Summary (Cont.)

- Preliminary results show Flex has good repeatability and has several features that make it easier to use than the TRL legform.
 - Certification procedures were not compared.
- The current set of tests did not result in functional damage to either legform.
- The FlexGTR is more robust than the FlexGT. However, thorough evaluation of the durability of the FlexGTR for use with the US fleet would require testing of more aggressive vehicles than those included in this test matrix.
Thank You

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
<table>
<thead>
<tr>
<th>Civic</th>
<th>FlexGTR</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Bending)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Shear)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
<table>
<thead>
<tr>
<th>CRV</th>
<th>FlexGTR</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Bending)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Shear)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.
MIATA | FlexGTR | TRL

Fracture Risk

Ligament Injury Risk (Bending)

Ligament Injury Risk (Shear)
<table>
<thead>
<tr>
<th>PASSAT</th>
<th>FlexGTR</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Bending)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligament Injury Risk (Shear)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>