NHTSA Mass-Size-Safety Symposium

Jeya Padmanaban JP Research, Inc.

February 25, 2011

Background

- About 60% of fatalities in automotive accidents are the result of MVAs; 50% are front-to-front crashes between light vehicles
- Mass and size effects are closely related to vehicle compatibility
- More than 25 years of research by NHTSA and other institutions to address *vehicle compatibility* issues:
 - Mass compatibility
 - LTVs are on average 900 lbs heavier than passenger cars (Kahane, 1997)
 - Stiffness compatibility
 - LTV's frontal structures are stiffer than passenger cars
 - Geometric compatibility
 - LTV's ride higher than passenger cars (bumper height)

Background

- JP Research conducted a 6 phase study (2001-2009) to address:
 - Effects of vehicle *mass* on the odds of driver fatality in frontal/side impact crashes
 - Identify vehicle size parameters that influence driver odds of fatality
- Estimate the societal effect associated with vehicle *weight* reduction, compare the results to other studies.

Background

Examined:

- Over 40 vehicle parameters (mass ratio, stiffness, bumper height, AHOF, wheelbase, distance from axle to windshield etc)
- Over 1,500 vehicle groupings (primarily domestic, 1981-2003 model years)
- Car-to-car; light truck-to-car crashes (front, left, right)
- Logistic models predicting "Odds of Fatality"

Initial Vehicle Dimension Metrics Illustrated

Additional Metrics: Illustrated

Data Sources

- Vehicle Parameter Data from various sources
 - AAMA, Kelly Blue Book, EPA, NCAP tests, websites, Gas Truck Index, Industry Sources
- FARS Data/State Accident Data (7 states)
- Frontal stiffness Data:
 - NHTSA's NCAP tests and "KW400"
 - Three types (Ke1, Ke2 and Ke3 = energy equivalent) of stiffness data from the industry
- NASS/CDS Data

Definitions of "Stiffness"

Energy Equivalent Stiffness

Average F(d)*2/d

Ke1: [25 250]

Ke2: [25 400]

JP Research, Inc.

Definitions of "Stiffness"

Global Linear Energy Equivalent Stiffness

$$Ke3 = \frac{mv^2}{x^2}$$

where m = mass v = velocity x = crush

Repeat of Evan's Study Effect of *Mass Ratio* for Car-to-Car

Effect of Wheelbase Ratio for Car-to-Car

Coefficients of Log (Mass Ratio) Predicting Drivers Odds of fatality

	Front-Front	Front-Left (Struck Left)	Front-Right (Struck Right)
Car-to-Car	3.87 - 5.4	4.35	4.04
Car-to-Truck	5.89 - 6.1	3.49	3.85

MASS ratio is the most important vehicle factor predicting driver odds of fatality.

Results Car-to-Car Crashes

	Data Used	Crash Configuration	Significant Vehicle Parameters for Frontals
Phase 1 and Phase 2	FARS/States	Front, left, right	Mass ratio, FAW (Front Axle to Windshield Distance)
Phase 3	FARS/States	Front, left	Mass Ratio, FAW, Stiffness (Struck Vehicle)
Phase 4	FARS	Frontal	Mass Ratio, FAW, Stiffness * Bumper Height Ratio
Phase 5 and Phase 6	FARS/States	Frontal	Mass ratio, FAW

Driver age/belt use are highly significant driver factors predicting fatality odds.

JP Research, Inc.

Results Truck-to-Car Crashes

	Data Used	Crash Configuration	Significant Vehicle Parameters for Frontals
Phase 1 And Phase 2	FARS/States	Front, left, right	Mass Ratio, Vehicle Height Ratio FAW (striking)
Phase 3	FARS/States	Front, left	Mass Ratio Stiffness (Striking & Struck), FAW (Striking & Struck), Bumper Height Difference, Overall Height (Struck)
Phase 4	FARS	Frontal	Mass Ratio, Stiffness * Bumper Height Ratio
Phase 5 and Phase 6	FARS/States	Frontal	Mass ratio, FAW, Stiffness * Bumper Height Ratio

JP Research, Inc.

Results (Frontal Crashes)

- Car-to-Car:
 - Mass ratio, vehicle stiffness, and FAW (front axle to windshield distance) are significant predictors.
 - ➤ Ke3 (global linear energy equivalent stiffness measure*) was the best stiffness predictor of fatality odds.
 - Light Truck-to-Car:
 - Mass ratio, vehicle stiffness, FAW and bumper height ratio are significant.
 - > Ke3 was the best stiffness predictor.

Weight or Wheelbase?

- System Identification Errors
 - Correlation Weight and wheelbase are highly correlated (0.9)
- Using weight and wheelbase in logistic model distorts the estimates, resulting in:
 - > Inflated variance
 - Wrong signs and magnitudes
- Our size parameter of choice: *FAW* (front axle to windshield distance)
 - Weak interaction with the *weight* (about 0.4)
 - Provides better model fit than the wheelbase
- Physical Interpretation

Other Vehicle Parameters

Stiffness

- Second order effect (explains 1% of variation while mass ratio explains 20% of variation in fatality odds)
- Energy equivalent stiffness parameter (Ke3) is the best stiffness predictor
- Bumper Height Ratio
 - More Significant for truck-to-car frontals when combined with stiffness
 - Significant when "bumper height difference" is used as a separate variableindicates vehicle compatibility
- Front axle to windshield (FAW) distance
 - Very significant for car-to-car and truck-to-car crashes

Societal Effect* of Reducing Mass by 100 lbs for *Passenger Cars* in US Fleet

Crash Type	Kahane 1997	Kahane 2003	Van Auken 2005	JP Research Study
Car-to-Car	-0.6% (n.s.)	N/A	-6.7%	+0.4%
Truck-to-Car	+2.6%	+4.3%	-0.2% (n.s.)	+3.4%

*Change in the annual number of fatalities

Societal Effect of Reducing Mass by 100 lbs for *Light Trucks* in US Fleet

Crash	Kahane	Kahane	Van Auken	JP Research
Type	1997	2003	2005	Study
Truck-to-Car	-1.4%	-0.2% (n.s.)	+0.6% (n.s.)	-2.1%

Conclusions

- *Vehicle Mass Ratio* is the most influential vehicle parameter
- FAW, Frontal stiffness and bumper height ratio (second order of effect compared to weight)
- Societal effect of reducing vehicle weight by 100 lbs for truck-to-car crashes:
 - Reducing passenger cars: 3.4% increase in fatalities
 - Reducing light trucks: 2.1% decrease in fatalities