Estimation of Target Crashes and Safety Benefits for Different Phases of Countermeasure Intervention

Wassim G. Najm
Crash Avoidance and Advanced Safety Systems Division

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”

John A. Volpe National Transportation Systems Center
U.S. Department of Transportation
Presentation Outline

• Introduction
• Crash Prevention
• Crash Severity Reduction
• Crash Injury Mitigation
• Concluding Remarks
Crash Scenarios and Countermeasures

- **Pre-Crash Scenario**
- Attempted Avoidance Maneuver
- Pre-Impact Stability
- Impact Scenario
- Injury Scenario
- Harm

Prevention
- Stability Control
- Rear-End Crash Warning
- Lane Departure Warning
- Red Light Violation Warning

Severity Reduction
- Automatic Braking

Injury Mitigation
- Next-Generation Airbags
- Advanced Seatbelts

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Crash Analysis and Benefits Estimation

Crash Data

Operational Conditions

System Functions and Minimum Specifications

Select & Build Prototype(s)

Objective Tests

Benefit/Cost Estimation

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Crash Analysis Framework

Top-Down Analysis

Prioritize Scenarios
Select Dominant Scenarios

Bottom-Up Analysis

Determine Applicable Cases
Analyze Cases

Breakdown of Crash Types

Single Impact
Multiple Impacts
First Impact
Not Vehicle in Transport

Vehicle Object Crashes
Vehicle Vehicle Crashes

Single Vehicle
Multiple Vehicles

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission
Safety Benefits Estimation

Harm Reduction = $H_{wo} - H_w = H_{wo} \times SE$

- H_{wo} and H_w: Total harm without and with countermeasure intervention
- SE: Countermeasure effectiveness in reducing harm

Harm Measures:
- No. crashes
- No. persons/body regions injured at MAIS 2$^+$ or 3$^+$
- Value of statistical life
- Functional years lost

MAIS: Maximum Abbreviated Injury Scale
Harm Values

- **VSL (Crash Avoidance)**
- **VSL (Crashworthiness)**
- **FYL**

VSL: Value of Statistical Life

FYL: Functional Years Lost

42.7 $6,104,610 $6,128,666

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Crash Prevention: Pre-Crash Scenarios

Proportion

0% 6% 12% 18%

- Control Loss without Prior Vehicle Action
- Lead Vehicle Stopped
- Road Edge Departure without Prior Vehicle Maneuver
- Vehicle(s) Turning at Non-Signalized Junctions
- Straight Crossing Paths at Non-Signalized Junctions
- Lead Vehicle Decelerating
- Vehicle(s) Not Making a Maneuver – Opposite Direction

Frequency Functional Years Lost Economic Cost

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Crash Prevention: Benefits Estimation

\[\sum_{i=1}^{n} N_{wo}(S_i) \times E(S_i) \]

- \(n \): Number of pre-crash scenarios, \(S_i \)
- \(N_{wo}(S_i) \): Annual number of baseline crashes preceded by \(S_i \)
- \(E(S_i) \): System effectiveness in avoiding crashes preceded by \(S_i \)
Crash Prevention: Benefits Estimation

No. crashes × \{1 – \text{exposure ratio} \times \text{prevention ratio}\}

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Severity Reduction: Target Crashes

Target Vehicles:
• Light vehicles of model year ≥1998 with frontal damage from first impact (most harmful event)

Target Occupants:
• All occupants in target vehicle and all other persons involved in the crash
• MAIS levels 2 through 6

Crash Imminent Braking:
• No braking
• No Control loss
Injury Mitigation: Target Crashes

Target Vehicles:
• Light vehicles of model year ≥1998 with frontal damage from first impact (most harmful event)

Target Occupants:
• Driver and front seat passenger ≥ 13 years old in target vehicles
• MAIS levels 3 through 6
• Head and thorax MAIS 3^+, and lower limbs MAIS 2^+

Advanced Restraints:
• Restrained target occupants

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Crash Severity and Injury Mitigation: Target Vehicle-Object Scenarios

Crash Scenario Ranking

Road Departure – Ground
Road Departure – Pole
Road Departure – Structure
Road Departure – Tree

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Crash Severity and Injury Mitigation: Target Vehicle-Vehicle Scenarios

LTAP/OD Pre-Crash Scenario

SCP Pre-Crash Scenario

Crash Scenario Ranking

- Opposite-Direction - Front-Front
- Rear-End - Front-Back
- LTAP/OD - Front-Front
- SCP - Front-Left Side
- Turning - Front-Left Side
- SCP - Front-Right Side

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Severity Reduction: Benefits Estimation

Filter

Crash Data
Applicable Pre-Crash/Impact Scenarios

Derive

Modeling & Test Data
Impact Speed ΔV

Crash Data
Impact Scenarios

Baseline Occupant Distributions

Safety Benefits

$\{\text{Avg. harm} \times \text{Bas. Occp. Dist.} - \text{Avg. harm} \times \text{CM Occp. Dist.}\}$

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Injury Mitigation: Benefits Estimation

- **x5(j)**: Proportion of occupants represented by 5%-ile dummy in speed j
- **piMAIS^5(j)**: Probability of MAIS i injury for 5%-ile dummy in speed j
- **x50(j)**: Proportion of occupants represented by 50%-ile dummy in speed j
- **piMAIS^50(j)**: Probability of MAIS i injury for 50%-ile dummy in speed j
- **x95(j)**: Proportion of occupants represented by 95%-ile dummy in speed j
- **piMAIS^95(j)**: Probability of MAIS i injury for 95%-ile dummy in speed j
- **piMAIS(j)**: Probability of MAIS i injury in speed j

\[E_i(j) = \frac{\text{piMAIS}(j) \text{with CM}}{\text{piMAIS}(j) \text{without CM}} \]

Crash data

Test/simulation data

\(i \equiv \text{Index to injury type} \)

“This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission”
Concluding Remarks

Estimation of target crashes and safety benefits for different countermeasures is underway in a number of U.S. DOT-sponsored projects:

• Advanced Crash Avoidance Technologies (ACAT) program
• IntelliDrive℠ Vehicle-to-Vehicle (V2V) Communications Safety
• Integrated Vehicle Based Safety System (IVBSS)
• Vehicle Safety Communications – Applications (VSC-A)
• Pre-Crash Sensing Crash Imminent Braking (CIB)
• Pre-Crash Sensing Advanced Restraint Systems (ARS)
• Other projects