NHTSA Research on Improved Restraints in Rollovers

Michael L. Sword
Transportation Research Center, Inc.

SAE Government/Industry Meeting
13 May 2008
Session G13: Rollover
Presentation Overview

- Introduction
- 2007/08 Testing
- Inflatable Belts
- 4-Point Belts
- Summary
Introduction

2007/08 Testing

Inflatable Belts

4-Point Belts

Summary
• Reducing Roof Crush alone will not eliminate occupant contact with roof.

• Previous NHTSA (mid-1990’s) research found reduced occupant excursion with improved restraint systems in rollover conditions.

• Few studies looking at improved restraint system effectiveness for rollover accident conditions exist.
Objective

• Evaluate the current state-of-the-art restraint systems in a rollover condition.
• Examine *Occupant Head Excursion* of various restraint configurations.
• Build research data for aiding in the potential test procedure development for assessing restraint effectiveness.
Introduction

RRT Overview Video
Fixture Dynamics

• Roll Rate (Goal: 315 deg/s at impact)
• Impact Force (~100000 N)
• Shock Deflection (up to 25 cm)
• Acceleration Under Seat (~50 g)
• Lap Belt Force
• Shoulder Belt Force
Base Configurations

Non-Integrated 3-point:
- **Baseline** *(No Pretension)*
 - Lower D-Ring **C**
 - Upper D-Ring **D**

Pretensioners
- Retractor Pretensioner **E**
- Buckle Pretensioner **F**
- Retractor & Buckle Pretensioner **G**
- Motorized Pretensioner **H**
- Motorized & Buckle Pretensioner **I**

Integrated 3-Point:
- No Pretensioner **A**
- SWAP No Pretensioner **B**

4-Point Belts:
- 4-Point w/Pretensioners **J**
- 4-Point redesign w/Pretensioners **M**

Inflatable Belts:
- Inflatable Belt w/Pretensioner **K**
- Inflatable Belt (No Pretension) **L**
2007/08 Testing

Introduction

2007/08 Testing

Inflatable Belts

4-Point Belts

Summary
Base Configurations

Non-Integrated 3-point:
Baseline *(No Pretension)*
- Lower D-Ring **C**
- Upper D-Ring **D**

Pretensioners
- Retractor Pretensioner **E**
- Buckle Pretensioner **F**
- Retractor & Buckle Pretensioner **G**
- Motorized Pretensioner **H**
- Motorized & Buckle Pretensioner **I**

Integrated 3-Point:
- No Pretensioner **A**
- SWAP No Pretensioner **B**

4-Point Belts:
- 4-Point w/Pretensioners **J**
- 4-Point redesign w/Preten **M**

Inflatable Belts:
- Inflatable Belt w/Pretensioner **K**
- Inflatable Belt (No Pretension) **L**
95th Test Matrix

Non-Integrated 3-point:
- **Baseline (No Pretension)**
 - Upper D- Ring D
- **Pretensioners**
 - Retractor & Buckle Pretensioner G
 - Motorized & Buckle Pretensioner I

Integrated 3-Point:
- No Pretensioner A
- SWAP No Pretensioner B

4-Point Belts:
- 4-Point redesign w/Preten M

Inflatable Belts:
- Inflatable Belt w/Pretensioner K
Session G13: Rollover
SAE Government/Industry Meeting
13 May 2008

95th Male Average Plots

Y-Excursion

Time (s)

Excursion (mm)

Pre Impact

Post Impact

-D- -G- -I- -K- -M-
95th Male Average Y-Excursion

Testing
95th Male Average

Z-Excursion

Configuration

C D E F G H I A B K L J M

3 PT CONFIG
Non-Integrated

INTEGRATED
INFLATABLE
4 PT CONFIG
5th, 50th, & 95th Comparison
Baseline (D)

No Pretensioning
Y-Direction

Testing
Testing

5th, 50th, & 95th Comparison
Baseline (D)

No Pretensioning
Z-Direction

![Graph showing excursion over time with labels for 5th, 50th, and 95th percentiles in Z-direction. Pre Impact and Post Impact areas are highlighted.]
5th, 50th, & 95th Comparison
Configuration G
Retractor and Buckle Pyrotechnic Pretensioners

Y-Direction

Z-Direction

Excursion (mm)

Time (s)
Testing

5th, 50th, & 95th Comparison
Configuration I

Motorized Retractor and Pyrotechnic Buckle Pretensioners

Y-Direction

Z-Direction

Excursion (mm)

Pre Impact

Post Impact

-5TH Female - 50TH Male - 95TH Male

Excursion (mm)

Pre Impact

Post Impact

-5TH Female - 50TH Male - 95TH Male

Time (s)

Time (s)
50th, 5th, 95th Comparison
Y-Excursion
Testing

50th, 5th, 95th Comparison

Z-Excursion

Configuration

Z-Excursion [mm]
Inflatable Belts

- Introduction
- 2007/08 Testing
- Inflatable Belts
- 4-Point Belts
- Summary
95th Male
Configuration K

95th Male directly prior to inflation

95th Male directly after inflation
5th, 50th, & 95th
Configuration K

50th Male

5th Female

95th Male
5th Female
Configuration K vs C

5th Female Inflatable Belt (K)
5th Female Baseline (C)
95th Male vs 5th Female
Configuration K

5th Female
Inflatable Belt (K)

95th Male
Inflatable Belt (K)
50th, 5th, 95th Comparison
Configuration K

Y-Direction

Excursion (mm)

Pre Impact
Post Impact

-5TH Female -50TH Male -95TH Male

Time (s)

-1.5 -1 -0.5 0 0.5

Session G13: Rollover
SAE Government/Industry Meeting
13 May 2008
Introduction
2007/08 Testing
Inflatable Belts
4-Point Belts
Summary
50th, 5th, 95th Comparison
Configuration M

4-Point

5th Female

50th Male

95th Male
4-Point

5th Female vs. 95th Male
Configuration M

5th Female Video

95th Male Video
4-Point

50th Male
Configuration M

50th Male
5th Female Configuration M vs. C

M
4-point
W/Pretensioning

C
Baseline
No Pretensioner

Session G13: Rollover
SAE Government/Industry Meeting
13 May 2008
5th Female
Configuration M vs. I

I
Motorized Retractor
W/Buckle Pretensioner

M
4-point
W/Pretensioning
50th, 5th, 95th Comparison
Configuration M
Y-Direction

4-Point

Excursion (mm)

Pre Impact

Post Impact

50TH Female - 50TH Male - 95TH Male

Time (s)
50th, 5th, 95th Comparison
Configuration M

Z-Direction

Excursion (mm)

-5TH Female - 50TH Male - 95TH Male

Time (s)
Summary

- Pretensioning appears to reduce head excursion in both the Y and Z directions of all size dummies
- 95th male testing followed trends similar to prior testing
- 5th female appear to demonstrate more excursion when compared to equivalent 50th male tests
Summary

• Inflatable belts were effective in reducing dummy excursion when compared to baseline.

• 4-point belts were effective in reducing Z-direction for excursion but less effective in Y-direction compared to baseline.
Summary

Future Work

- Future testing to include incorporation of a reaction surface to replicate the roof interior
- Full Scale Dynamic Rollovers to evaluate advanced restraints (J211 Dolly)
- Work with OEMs, suppliers and test labs to explore other rollover test devices or restraint evaluation
Thank You

NHTSA Research on Improved Restraints in Rollovers

Michael L. Sword
Transportation Research Center, Inc.
mike.sword@dot.gov
937-666-4511